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35  Abstract

36 Despite several studies investigating the relationship between blood-oxygen-level-
37 dependent functional MRI (BOLD-fMRI) and neuroelectric activity, our understanding is
38 ratherincomplete. For instance, the canonical hemodynamic response function (HRF) is
39 commonly used, regardless of brain region, frequency of electric activity and
40 functional networks. We studied this relationship between BOLD-fMRI and
41 electroencephalography (EEG) signal of the human brain in detail using simultaneous fMRI
42 and EEG in healthy awake human subjects at rest. Signals from EEG sensors were filtered
43 into different frequency bands and reconstructed it in the three-dimensional source space.
44 The correlation of the time courses of the two modalities were quantified on a voxel-by-
45 voxel basis on full-brain level as well as separately for each resting state network, with
46  different temporal shifts and EEG frequency bands. We found highly significant correlations
47 between the BOLD-fMRI signal and simultaneously measured EEG, yet with varying time-
48 lags for different frequency bands and different resting state networks. Additionally, we
49  found significant negative correlations with a much longer delay in the fMRI BOLD signal.
50 The positive correlations were mostly around 6-8 seconds delayed in the BOLD time course
51 while the negative correlations were noticed with a BOLD delay of around 20 to 26 seconds.
52 These positive and negative correlation patterns included the commonly reported alpha
53 and gamma bands but also extend in other frequency bands giving characteristic profiles for
54  different resting state networks. Our results confirm recent works that suggest that the
55  relationship between the two modalities is rather brain region / network-specific than a
56 global function and suggest that applying a global canonical HRF for electrophysiological
57  data is probably insufficient to account for the different spatial and temporal dynamics of
58  different brain networks. Moreover, our results suggest that the HRF also varies in different
59  frequency bands giving way to further studies investigating cross-frequency coupling and its
60 interplay with resting state networks.

61
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65 1. Introduction

66  Functional magnetic resonance imaging (fMRI) based on the blood-oxygen-level-dependent
67  effect (BOLD) is currently a cornerstone method in neuroscience. It is commonly applied to
68  study the brain during rest and task; in healthy and diseased participants (Smith et al., 200g;
69 Zhang & Raichle, 2010). Its biggest advantage is the spatial resolution unmatched by all
70  non-invasive electrophysiological modalities. However, the BOLD signal is only an indirect
71 measure of the underlying neuronal activity. It is presumed to be a result of a series of
72 physiological events that follow neuronal activation including localized changes in cerebral
73 blood flow, cerebral blood volume, and cerebral metabolic rate of oxygen and
74 deoxyhemoglobin content (Buxton et al., 2004; Ogawa et al., 1990). Hence, several studies
75  strived to characterize the neurophysiological correlates of the BOLD signal and its
76 connectivity patterns using various electrophysiological techniques. However, our
77 understanding is still rather incomplete despite these previous works. For instance,
78 the canonical hemodynamic response function (HRF) is commonly used to account for
79 the delay of the BOLD-signal regardless of brain region, frequency of electric activity
go  and functional networks.

81

82  Pioneering animal studies measured BOLD and local field potential (LFP) power
83  simultaneously in monkeys and cats and revealed consistently highly correlated LFP power
84  with BOLD signal in the high gamma band mainly at 40 to 100 Hz (Logothetis et al., 2003;
85  Niessing et al., 2005; Scholvinck et al., 2010; Shi et al., 2019; Shmuel & Leopold, 2008). This
86  relationship was also found when correlating simultaneous BOLD and LFP signals in the
87 human auditory cortex (Mukamel et al., 2005). Three of these animal studies also examined
88  the time delay between the signal acquired from different modalities and demonstrated
89  that the hemodynamic signal lagged the neural signal by 6 — 8 s (Logothetis et al., 2003;
90  Scholvinck et al., 2010; Shmuel & Leopold, 2008). Additionally, Schélvinck et al. also
91 reported a strong, positive correlation in lower frequencies (2—15 Hz) with a lag closer to
92  zero.

93

94  Earlier human studies focused on correlating the BOLD signal to electroencephalography

95  (EEG) using the occipital EEG electrodes and consistently reported negative correlations of
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96 the alpha band power between 8 — 12 Hz and BOLD signal (Goldman et al., 2002; Laufs,
97 Kleinschmidt, et al., 2003; Laufs, Krakow, et al., 2003; Liu et al., 2012; Moosmann et al.,
98  2003). Mantini et al. correlated EEG power variation from different frequency bands with
99 that of fMRI resting state networks (Mantini et al., 2007) and found specific
100 electrophysiological signatures for each network. Recently, another group studied the
101 correlation between BOLD global signal and the global signal of simultaneously recorded
102  EEG and reported both a high gamma correlation as well as negative correlations in the
103  lower bands including alpha (Huang et al., 2018). These combined EEG-fMRI studies
104  investigated correlations using electrode time courses and did not apply source-localization
105  techniques. Therefore, a direct spatial correspondence between the sensor-space EEG
106  results and fMRI is not possible. These mentioned studies also did not investigate the time-
107 lag between the two modalities. Interestingly, Moosmann et al. studied simultaneous EEG-
108 NIRS as well as simultaneous EEG-fMRI and reported a lag of about 8 s between
109  simultaneous EEG-NIRS while such a lag was not reported in the simultaneous EEG-fMRI
110  (Moosmann et al., 2003). Many of the human EEG studies applied a convolution of the EEG
111 time courses with the HRF, in particular all studies reporting EEG negative correlation with
112 fMRI used this approach. The use of HRF is a common procedure in neuroimaging to
113 account for the delay between neural activation and its reflection in fMRI BOLD signal
114  (Boynton et al., 1996). Classically it is assumed to be canonical, i.e. constant/identical in the
115  whole brain. However, several experiments have reported variations of the HRF in different
116  cortical regions, across subjects and in different measurement sessions (Aguirre et al., 1998;
117 Handwerker et al., 2004; Miezin et al., 2000; Tewarie et al., 2016). Moreover, it is not clear if
118 a canonical function is suitable to study neuronal/vascular coupling, i.e. the relation of EEG
119  and BOLD signal. In summary, it is still unclear how neuroelectric activity and the BOLD
120  response relate to each other.

121

122 In this work, we set to quantify and establish the link between spontaneous resting-state
123 brain activity in simultaneously measured fMRI BOLD signal and source-reconstructed 256
124 channel high-density EEG (HD-EEG). The combination of this high number of electrodes
125 and source-localization favors a more precise assessment of the dependencies of the two
126 modalities in time and space and could aid in clarifying the still enigmatic BOLD-EEG

127 coupling. We use data-driven analysis of the whole brain in different time-shift intervals
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128 from -30 to 30 seconds with minimal a priori constraints. We also evaluate this cross-
129  modality coupling in different EEG frequency bands. Since functionally different brain
130  regions differ in terms of their neuroanatomy and function, the relationship between EEG-
131 and BOLD-signals might also vary depending on the brain regions. To test this hypothesis,
132 in addition to a global characterization of the EEG-BOLD coupling, we assessed network-
133 specific differences. We opted for studying resting state networks since each network
134  connects different brain regions that are functionally related, and hence share similar
135 dynamics of their time courses. We also evaluate the cross-modality coupling in different
136 EEG frequency bands.

137

138 2. Materials and methods

139

140 2.1. Participants:

141 We recruited 20 healthy participants without any history of neurological disorders. Five
142 participants were excluded during the preprocessing due to artifacts (see fMRI and EEG
143 data acquisition and preprocessing below), leaving 15 participants for further analysis (8
144 males, 7 females, mean age: 38.9 years, SD = 13.7 years, range 19-63 years). The study was
145  approved by the Ethics committee of the Medical Faculty at the University of TGbingen and
146 was conducted in accordance with the guidelines of the Declaration of Helsinki. All
147  participants gave written consent before measurements.

148

149 2.2. Data acquisition:

150  Magnetic resonance imaging data was acquired using a Siemens MAGNETOM Trio 3T
151 scanner (Siemens AG, Erlangen, Germany) with a 12-channel array head coil for reception
152 and the body coil for transmission. We acquired a sagittal T1-weighted volume with a 3D-
153  MPRAGE sequence as high-resolution anatomical reference (TR 2.3 s, Tl 1.1 s, TE 3.03 ms,
154  FA 8°, voxel size 1 x 1 x 2 mm?); we also recorded a Bo field map for later correction of
155  distortions in the functional images caused by magnetic field inhomogeneity (TR 2 s, TE 32
156  ms, FA 90°, 32 slices, voxel size 3 x 3 x 4 mm?). For the functional sequence, we acquired 180
157 gradient-echo planar T2*-weighted images covering the whole brain (TR 2's, TE 32 ms, FA
158 90°, 32 slices, voxel size 3 x 3 x 4 mm?®). The measurement duration was 10 minutes and

159  participants were instructed to close their eyes and not to fall sleep.
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160  Simultaneously with the fMRI measurement, we recorded a continuous high-density EEG
161 signal using 256-channels EEG system (Electrical Geodesics, Inc., Eugene, OR, U.S.A.) and a
162 sampling rate of 1000 Hz. Electrocardiogram (ECG) was measured simultaneously. The MR
163 and EEG scanner clocks were synchronized, and the MR helium pump was turned off during
164  the EEG resting-state measurement to reduce the noise induced by the pump in the EEG

165 data (Nierhaus et al., 2013). This dataset will be referred to as simultaneous-EEG in this

166 manuscript. We recorded an additional ten-minutes HD-EEG resting state measurement in
167 an electrically shielded room outside the fMRI scanner. The second recording used the same
168  256-channel EEG system mentioned above. This dataset will be referred to as non-

169  simultaneous-EEG. Both measurements were conducted in supine position.

170

171 2.3. Structural and functional MRI preprocessing

172 MRI processing was done in MATLAB (http://www.mathworks.com) using Statistical
173 Parametric Mapping (SPM 12 [6470], Wellcome Trust Centre for Imaging Neuroscience;
174 http://www fil.ion.ucl.ac.uk/spm) as well as the FSL toolbox [5.0.9] (FMRIB, Oxford, UK;
175 https://fsl.fmrib.ox.ac.uk/fsl). Using unified segmentation of SPMai2, the structural Ti-
176 weighted images of all subjects were segmented into six tissue classes; grey matter, white
177 matter, cerebrospinal fluid (CSF), skull, soft tissue outside the brain and finally air and other
178  objects outside the head. The grey matter, white matter and CSF segmentations were
179  joined to yield a segmented image of the intracranial volume (used as analysis space) and
180  then spatially normalized and warped to MNI space using the DARTEL toolbox of SPM12.
181 The flow fields of each participant’s anatomical transformation to the DARTEL template in
182 MNI space were later used for warping the functional data. Tissue masks were also
183  generated by binarizing the segmented tissues at a threshold of o.5.

184  fMRI functional time series were first slice-time corrected using the first slice (slice-time = o
185 ms) as reference to correspond with the TR trigger sent to the EEG and conserve temporal
186  comparability of the two methods. Head motion correction was then performed using FSL
187 MCFLIRT (Jenkinson et al., 2002). Additionally, a framewise displacement (FD) (Power et
188  al., 2014) threshold was set to o.5 mm and volumes exceeding this threshold were
189  discarded. Figure S1 shows the fMRI volumes framewise displacement for each subject
190  along with the scrubbed above-threshold frames. The first ten volumes of fMRI data were

191 also removed to avoid Ta effects. Volumes that were either scrubbed in fMRI or
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192 corresponded to EEG-artifacts from both modalities were discarded (see details on EEG
193  processing below). This was done to preserve the temporal comparability of the fMRI and
194 EEGdata.

195  The voxel displacement maps (VDM) were then calculated using the acquired fieldmap
196  images and the Fieldmap Toolbox [version 2.1] integrated in SPM. The time series were
197 then distortion-corrected, realigned, co-registered to the Ti-weighted anatomical
198 reference image (normalized mutual information cost function) and finally normalized to
199  MNI space using the DARTEL flow fields (compare above). The normalized data were
200 smoothed with an isotropic Gaussian kernel (5 mm full width at half maximum). Individual
201 brain masks were also normalized to MNI space using the DARTEL flow fields. Afterwards, a
202 high-pass filter of 0.1 Hz was applied to the data. Finally, the normalized functional datasets
203  were masked with the individual brain mask and a global brain mask (generated by
204  averaging all normalized individual masks and then binarizing at the threshold of 0.8). This
205 procedure ensures that only brain voxels that are consistently present in at least 80% of all
206 subjects were considered in the further analysis.

207

208 2.4. Resting States Networks masks extraction

209  To extract data-driven fMRI resting state networks we used the CONN connectivity toolbox
210  [version 18b] (http://www.nitrc.org/projects/conn) (Whitfield-Gabrieli & Nieto-Castanon,
211 2012) on preprocessed fMRI time courses to extract 40 ICA components using the FastICA
212 algorithm. The resulting components masks were spatially matched with seven reference
213 resting state networks obtained from the Yeo et al. (Yeo et al., 2011) resting state atlas
214 namely visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal and
215 default mode networks. This spatial matching was performed with the FSLCC function in
216  FSL with a correlation threshold of 0.2. Components surpassing the spatial correlation
217 threshold are considered part of the network and were spatially merged into one
218 mask for that network. See figure S2 for data-driven topographical maps of the extracted
219 fMRI networks.

220

221 2.5. EEG preprocessing

222 MR gradient artifacts due to static and dynamic magnetic fields were removed from the

223 simultaneously measured EEG data using average artifact subtraction (AAS) method (Allen
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224 et al.,, 2000). Cardioballistic artifacts were detected and removed by the Pulse Detection
225 Tool implemented in Net Station 5.2 software (lannotti et al., 2015). The data was then
226  downsampled to 250 Hz, demeaned and band-pass-filtered at 0.2-100 Hz. Power-line
227 artifacts were removed by a bandstop filter of 49.5 to 5o.5 Hz. The data was then
228  segmented into epochs of 2 seconds where the fMRI TR trigger corresponded to the center
229 sample (epochs +1 s around fMRI trigger). The data was visually inspected to identify and
230  discard noisy electrodes and epochs. Note that discarded artifacts in simultaneous-EEG
231 were also removed from fMRI (compare to above). Preprocessing and analysis of EEG data
232 was performed using the Fieldtrip toolbox (Oostenveld et al., 2011) running in MATLAB
233 (version 9.0 [R2016a] Mathworks Inc.). See Table S1 for a comprehensive list of the number
234 of channels and epochs removed from each subject’s data. In all modalities, at least 86% of
235 the data and 80% of the electrodes were admitted to further analysis.

236

237 2.6. Correlating EEG Alpha power with BOLD signal

238 As a sanity check for our data and pipeline, we aimed at reproducing the analysis and
239 findings employed by Laufs et al. in 2003 studying the relationship between fMRI and EEG
240  Alpha power derived from occipital, central and frontal electrodes. We followed the same
241  preprocessing steps as Laufs et al. 2003 but implemented it in Fieldtrip. We took the
242 arithmetic mean of the two occipital electrodes corresponding to O1 and O2. The same was
243 done for parietal electrodes C3/C4 and frontal ones F3/F4 for control purposes. The powers
244  of EEG timecourses were then limited to their mean plus or minus 3 SD to account for brief
245  motion or muscle artifacts. We performed Fast Fourier transformation using a hanning
246 window on two second epochs. The spectral power was then demeaned and averaged
247 across the alpha band frequency bins. Using this filtered Alpha signal per 2 seconds epochs
248  (matching the TRs of the BOLD), we generated an additional version of the data by
249  convoluting it with the HRF function. Each dataset (with and without HRF-convolution) was
250  then correlated with the fMRI BOLD time-courses at each voxel obtaining a correlation
251 brain map. The correlation was tested among the three types of electrodes using a Kruskal-
252 Wallis-Test. Significant voxels were separated into negative and positive ones based on the
253  observed median correlation at that voxel. We then extracted clusters with minimum g
254 neighboring voxels using the MATLAB function “bwlabeln” and three-dimensional 18-

255 connected neighborhood (separate clusters for positive and negative correlations). The
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256 median correlation for significant voxels was summed across clustered significant voxels in
257 each of the 7 resting state networks and normalized by the number of voxels in that
258  network. Figures S3 and S4 show the normalized summed correlations observed in each

259  network for both positive and negative correlations.
260

261 2.7.EEG source reconstruction:

262  The preprocessed artifact-corrected EEG data was filtered into seven different frequency
263  bands: delta (1-4 Hz), theta (4 — 8 Hz), alpha (8 — 12 Hz), beta1 (12 — 20 Hz), beta2 (20 - 30
264  Hz), gammazi (32 — 48 Hz), and gamma2 (52 — 68 Hz). Filtered data in each frequency band
265  was projected onto a regular 5-mm grid spanning the entire brain using linearly constrained
266 minimum variance (LCMV) scalar beamformer (Veen et al., 1997). For each grid position, the
267  leadfield was calculated using a boundary element model (BEM) constructed from the
268  participant’s structural MRI where the participant’s scalp, skull and brain surfaces were
269 modeled. The first two boundaries, namely the scalp and the skull, were derived from
270  corresponding SPM segmentations (c5 and c4 respectively). The brain surface was derived
271 from the combination of the grey matter, white matter and CSF segmentations. We also
272 calculated a covariance matrix for each frequency band. Using both the leadfield and the
273 covariance matrix, a spatial filter was calculated for each of the studied frequency bands
274 and used to project the time courses by the EEG sensors into source-space. For each grid-
275 position, the amplitude envelope was computed as the positive magnitude of the Hilbert
276  transformation of the signal (Hilbert envelope). The Hilbert envelope was low-pass filtered
277 to 0.25 Hz and then downsampled to o.5 Hz. To ensure that the fMRI and MR-EEG time
278 courses were temporally comparable, we selected the EEG samples that corresponded
279 temporally to the registered TR-pulse triggers. The source-space EEG signal time course for
280  each frequency band was exported in NIFTI format, up-sampled to a voxel size of 3 mm. It
281 underwent the same spatial processing as the fMRI data, i.e. the volumes were warped into
282 MNI space (via DARTEL flow fields), masked with individual brain masks and finally masked
283  with a global brain mask. Non-simultaneous-EEG data acquired outside the scanner was
284  preprocessed in the same pipeline as the simultaneous-EEG data except for the removal of
285 MR gradient and cardioballistic artifacts.

286

287 2.8. Correlation of time courses:
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288  To study the relationship between fMRI and EEG signals in different frequency bands, we
289  studied the statistical dependency between the fMRI and different frequency specific EEG
290 time courses for each voxel. We used Pearson’s correlation coefficient between time
201 courses of both modalities at each voxel. Furthermore, we investigated these correlations at
292 different temporal shifts between +30 to -30 seconds (cross-correlation). By shifting the
203  fMRI backwards, we studied the assumption that neural signals are reflected in fMRI signal
294  later than in EEG signal. Shifting the fMRI time course forward investigates the contrary.
205 We studied both backward and forward lags of fMRI time courses from 1 to 15 samples,
296  which represents 30 seconds in both directions in steps of two seconds (TR = 2 seconds). We
297 then calculated Pearson’s correlation coefficient of the time course in each of the fMRI
298  shifts with each of the EEG time courses (simultaneous- and non-simultaneous EEG, filtered
299 in 7 frequency bands each). This procedure yielded a correlation matrix for each voxel per
300  subject, frequency band, time-lag, and EEG dataset (simultaneous- and non-simultaneous-
301  EEG). See figure 1 for a schematic depiction of the analysis pipeline.

302
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305 | Figure 1: Outline of the steps used to obtain the correlations from preprocessed fMRI and EEG time courses.
306 | See figure S for the statistical testing pipeline.

307

308 2.9. Statistical Testing and Network Analysis

309  Since we assumed the absence of any meaningful temporal dependency between fMRI and
310 non-simultaneous EEG, we considered their correlations as a control condition. This
311 approach ensured that the general characteristics of the EEG signal (autocorrelations,
312  microstates, etc.) should be similar in both conditions, since the EEG was measured in the
313 same subject with the same system. Thus, our null hypothesis is that simultaneous EEG to
314  fMRI correlations do not differ from non-simultaneous EEG to fMRI. A significantly higher
315  simultaneous EEG to fMRI correlation would be perceived as a positive correlation between
316  the two modalities while a significant lower correlation would be considered as a negative
317  correlation (anticorrelation).

318  The statistical analysis was done in several steps, as follows:

319  Step 1: First we performed a first-level between groups non-parametric Wilcoxon signed-
320 rank test on the correlation values of simultaneous EEG:fMRI and non-simultaneous
321 EEG:fMRI at each voxel and obtained a z-score.

322 Step 2: The sum of positive z-scores of significant voxels (alpha = 0.05) divided by the sum
323 of tissue probability weights. This was done to account for outlier values on the edge of the

324  tissue [ network boundaries. The weighted value was then noted per frequency band and
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325  time-lag yielding a 7x31 matrix (7 frequency bands and 31 time-lags from -30 to 30 s in steps
326 of 2s). Similarly, another matrix was generated by summing only negative z-score values to
327 capture negative correlations.

328 Step 3: To test patterns of significant difference between the fMRI correlation with
329  simultaneous vs. non-simultaneous EEG, we used a permutation-based approach to
330 generate control-matrices by repeating the previous steps after randomly re-assigning the
331 correlation values to one of the two conditions (simultaneous vs. non-simultaneous). We
332 performed 10,000 permutations and in each we separately calculated the weighted sum of
333  positive z-scores and the weighted sum of negative z-scores. For each frequency / time-lag
334  combination, we set an arbitrary threshold level for a z-score sum at the go™ percentile of
335  the 10,000 values.

336  Step 4: Using these thresholds obtained from step 3 (7x31 matrix of 7 frequency bands and
337 31 time-lags) we binarized the observed matrices as well as the permutation matrices to
338  prepare for clustering analysis.

339  Step 5: We assumed that a biologically meaningful relationship between fMRI and EEG
340  would not be limited to one specific frequency band/time-lag combination but would rather
341 be present in neighboring frequencies and/or time-lag combinations as well. Therefore, we
342 used a cluster size of minimal 3 neighboring matrix positions as a threshold to extract
343 clusters in each binarized matrix. The neighborhood was based on the “two-dimensional
344 four-connected” principle using the “bwlabeln” function in MATLAB. For each observed
345 cluster, we calculated the sum of the statistical values present of all points in the cluster
346 (cluster sum score).

347 Step 6: From each permutation, we used the maximal cluster sum score and constructed a
348 random distribution for the null-hypothesis. The observed cluster sum score of the un-
349  permuted experiment was then tested against this null-curve of 10,000 permutations to
350 determine the error probability that the actually found cluster value was generated by
351 chance. The frequency of equal or higher values was reported as the probability (p) value of
352 thatcluster. See figure Si for aniillustration of the statistical approach employed.

353  To assess the globality of the relationship between the two modalities, we performed the
354  previous steps on different sets of voxels (regions of interest = ROI); namely all grey matter,
355  white matter and CSF voxels as well as on the voxels belonging to each resting state

35  network separately (0.5 ROl mask threshold). For each of those ROIs, we generated the
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357 positive and negative matrices of sum z. The alpha level for the cluster statistics (step 6) was
358  set at p=0.0025 (0.5/20 tests) to correct for multiple testing at 7 networks and 3 tissue types
359  (grey matter, white matter and CSF) in 2 different matrix types (positive and negative).

360

361 2.10. Testing network pattern differences

362  To test whether the extensions of the cluster patterns were different between networks, we
363  determined the centroid of each cluster and calculated its distance to all points that form
364 the cluster polygon. For each pair of clusters, we pooled the distances from both clusters
365  togetherin orderto get a probability distribution for distances in this cluster pair. We tested
366 the distance between the two centroids against the distance distribution by determining
367 the probability of the inter-centroid distance being within the range of either cluster. We
368 used an alpha level of p = 0.05 to determine significantly different/distant clusters. We
369  performed this step for each pair of tested networks positive correlation matrices as well as
370  between pairs of negative correlation matrices.

371

372 2.11. Data and code availability

373 All data and code used in this study will be available upon reasonable request to the

374  authors.

375

376 3. Results

377 We first studied the correlation between the fMRI BOLD and the EEG Alpha power from
378  occipital, central and frontal electrodes. This was done to reproduce previous findings using
379 our pipeline and as a sanity check for the data quality particularly after rejection of various
380  MR-related artifacts. Comparing correlation profiles from different resting state networks
381  with BOLD time courses (without HRF convolution), we found the highest positive
382  correlation with the EEG alpha power between the occipital electrodes and frontoparietal
383  network, followed by default mode-networks (figure Sg), while the strongest negative
384  correlation was found in the same networks respectively but with the frontal electrodes.
385 When the BOLD time courses were convoluted with the HRF, we found the strongest
386  positive correlation between the visual network and the frontal electrodes while the
387  strongest negative correlations were between the visual network and the occipital

388  electrodes (figure S3).
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389  Next, we studied the global relationship between the fMRI and simultaneous-EEG in the
390 gray matter, which is the main finding in this work. We tested this correlation in each
391  frequency band in time-lags between -30 and +30 seconds (figure 2) using the source-
392 localized EEG activity. On the one hand, we found a cross-spectral pattern of positive
393  correlations spanning all the studied frequency bands (p<o.0001). The maximal positive
394  correlation was found in the high gamma band with around 6 — 8 seconds lag of the BOLD
305 time courses in relation to the EEG signal. Interestingly, correlations in the lower
396 frequencies had their maxima at around 2 seconds. On the other hand, we found two
397 clusters of negative correlations; one in low frequencies with a maximal negativity in the
398  delta band with a lag of about 20 seconds (p<0.001) and a second cluster extending towards

399  the higher frequencies with a maximal negativity in the lower gamma band and a time-lag

400 of around 24 seconds (p<0.0001).
401
402
A Grey matter - Pogitieg Cormlations Cc Gy mmartier - Negative Cormelationy
o o } o
TR Y YV -1 |.l.|l....||l_!f+:l.1 T TR .’:_ T - TV W U TR Lol 4 |||...TII.J
B D
Cluster #1 . I l | % —— l'". ﬁ
Cluster Sum Score = 37 1 K Cluster Sum Score= 1.3 I v \
P <0.0001 I P <0.0001 F i S
Chuster #2 i ‘ -I -
Cluster Sum Score= 21 £ | [\ — rm
P <0.0001 . ‘,f \\_
403 -
404
405
406 | Figure 2: EEG-fMRI significant correlations across frequencies and time-lags in grey matter.
407 | (A) Shows a matrix of positive sum-z scores derived from significant positive correlations in the first-level
408 statistics. Significant clusters are outlined with yellow strokes. (B) Significant clusters derived from positive
409 | correlations in A along with their cluster sum score compared to the random distribution derived from 10,000
410 | permutations where the two conditions were randomly shuffled.
411 | Cand D: Similar sections to A and B but showing results derived from significant negative correlations.

412 We also calculated the previous matrices separately for the white matter and CSF and found

413 weaker but similar effects. However, the white matter positive correlations matrix was only
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414 significant in the higher frequencies (p<0.0001) and the CSF correlations were maximum in

415 the lower frequencies (p<0.0001) (figures S6 and S7).

416 To test whether the effect in the gray matter is stereotypical across the whole brain or if
417 there are regional/network differences, we tested the correlation patterns for gray matter
418  separately for the 7 resting state networks. We generated matrices for both positive and
419 negative weighted (sum z) of the correlations for each network separately. We also
420 performed the permutation-based statistical assessment separately on each network
421 (Bonferroni corrected for all tests). Patterns of positive significant clusters were found in all
422 networks except for the dorsal attention network while significant negative clusters were
423 found in four networks namely the visual, somatomotor, dorsal attention and limbic
424 networks (figure 3 for the networks matrices and the figures S8 to Sa4 for clusters random
425  distribution plots). Consistently, positive correlations preceded the negative correlations in
426 all networks. We did not find negative correlation clusters earlier than 10 seconds lag and

427 the positive correlations were lagged with maximum 16 seconds as in the visual network.
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Figure 3: fMRI:simultaneous-EEG correlations across frequencies and time-lags in different resting state

networks. Significant clusters are outlined with yellow strokes.

The correlation patterns were not uniform across all resting-state networks. We found
significant differences in the temporal/frequency matrix in g positive comparisons out of 21,
mainly between the frontoparietal network and other networks. In the negative correlation
patterns, we found 2 significant pairwise correlations out of 10 comparisons. These
differences were between the limbic and dorsal attention network on one hand and the

somatomotor network on the other hand. (see figure 4 for a schematic plot of the
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439 similarities indices as well as estimated significance levels. See figures Si5 and S16 for more

440  detailed depiction of the clusters relationships).
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445 | Figure 4: Visualization of the correlation similarities between networks temporal-frequency band clusters
446 | A: Pairwise network similarity (1- p-value) based on Euclidean distance between their respective significant
447 | positive clusters in the temporal-frequency band profile. Connection thickness is inversely proportional with
448 | the probability that the correlation pattern in the connected cluster is different.

449 | B: Matrix showing the p-values of pairwise comparisons of the clusters. Significantly different clusters

450 | comparisons are marked with yellow stars (alpha = 0.05).

451 | CandD:Asin A and B respectively but using significant negative clusters. Note that only significant clusters
452 | were included in this analysis, hence the difference in the number of comparisons between positive and

453 | negative correlations.
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454 3. Discussion

455  We investigated the spatiotemporal coupling of the fMRI-BOLD and EEG signal in a data-
456 driven approach. Our results demonstrate a highly significant correlation between the fMRI
457 signal and simultaneously measured EEG that varies in frequency bands and time-lags as
458  well as between resting state networks. Globally, a significant positive correlation was
459 found with fMRI lagging behind the EEG signal. This lag, however, varied in different EEG
460 frequency bands with lower EEG frequencies having shorter fMRI to EEG lags (2 to 4
461  seconds) and higher EEG frequencies having longer lags (6 — 8 seconds). The positive
462 correlation in higher EEG frequency bands are consistent with findings reported from
463  various studies investigating BOLD and simultaneous electrophysiological measurements
464  (Lachaux et al., 2007; Scheeringa et al., 2011; Scholvinck et al., 2010; Shmuel & Leopold,
465  2008). On the other hand, the lower EEG frequency band correlations are similar to those
466  previously observed by Scholvnick et al. while studying BOLD and cortical LFP in monkeys
467 (Scholvinck et al., 2010). This frequency-shift combination seems to vary as well in different
468  resting state networks suggesting that the electrophysiological correspondence of fMRI
469  BOLD signals is a rather multifaceted than a stable global relationship.

470

471 Neuronal activities are reflected almost instantaneously in electrophysiological recordings
472 (EEG in our case). Conversely, the reflection of these activities in BOLD oscillations has a
473 longer temporal delay in the range of several seconds. The canonical hemodynamic
474 response function (HRF) is, therefore, commonly used in general linear models to relate
475  BOLD responses with experimental stimuli or EEG derived metrics (like power). However,
476  several studies have suggested that the HRF and consequently the temporal delay in fMRI
477 vary across brain regions and in different individuals (Aguirre et al., 1998; Handwerker et al.,
478  2004; Miezin et al., 2000; Taylor et al., 2018). Our results confirm that the relationship also
479 varies among different resting state networks. Moreover, we hypothesized this relationship
480 to vary in different EEG frequency bands. In fact, some networks exhibited maximal
481 correlation in low frequency bands like delta and theta while other networks tended to
482 correlate more in higher frequencies like beta and gamma. This is generally in line with
483  various studies showing that hemodynamic response following neural activities varies in
484  different networks and cortical locations (Aguirre et al., 1998; Hipp & Siegel, 2015; Mantini

485 et al., 2007). Since the function of each network appears to be formed by a collective of
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486  cross-spectral activation patterns (Mantini et al., 2007), it remains difficult to attribute the
487 different time-lags to either functional network, the dominant frequency band or the
488 interplay of these two aspects.

489  Given variable temporal delays in different EEG frequency bands and different networks,
490  our results and the available literature challenge the notion that a simple and universal
491 model of a canonical function for EEG-fMRI/BOLD coupling is valid for all cortical regions
492 and all spectral frequencies. Since employing a non-specific HRF model could lead to
493  dramatic changes in the resulting BOLD activation and its temporal precision, there is an
494  urgent need to further elucidate this relationship and possibly update current standard
495 imaging analysis methods. Regional, or frequency-band specific data-driven HRF
496  generation could offer a potential solution at least when studying EEG-fMRI coupling.

497

498  In our results, we also observed patterns of negative correlation between the two modalities
499 that temporally followed the positive correlations and lagged around 20 seconds in general.
500 One possibility is that this negative correlation reflects the undershoot seen in the HRF
501  which have been related to delayed vascular compliance and sustained increases in the
502  metabolic rate of oxygen (van Zijl etal., 2012).

503  Unlike previous simultaneous EEG-fMRI studies (Goldman et al., 2002; Huang et al., 2018;
504 Laufs, Kleinschmidt, et al., 2003; Liu et al., 2012; Moosmann et al., 2003), we did not
505  observe a strong negative correlation between the modalities in the alpha band especially in
506  the occipital lobe using our main voxel-to-voxel analysis. We only found a relatively weak
507  negative correlation for the alpha in the default-mode network sub-analysis around 2-4
508 seconds that did not survive the cluster-level correction (compare figure 3) and was not
509 evident in the global analysis. However, we also observed a negative correlation of the
510 BOLD fMRI with the occipital alpha band EEG derived from the surface electrodes after
511 convolution with the HRF. Since we did not use a canonical HRF to convolve the EEG time
512 courses in our main voxel-to-voxel analysis, we could postulate that Applying a canonical
513 HRF could possibly alter the temporal characteristics of the EEG signal and produce
514  imprecise correlations with the corresponding BOLD signal. Such signal convolution was
515  also notimplemented in the typical animal studies (Logothetis et al., 2001; Schélvinck et al.,
516  2010; Shmuel & Leopold, 2008).

517
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518 Many animal and human studies employing various electrophysiology techniques
519 demonstrated that the gamma band presented the most common correlation with the
520 BOLD signal in task and rest. This was done either by correlating time courses of fMRI and
521 electrophysiological measures or by studying within modality connectivity and comparing
522 the between modality similarities. While electrocorticography (ECoG) studies reported
523 similarity in both low and high frequencies including gamma (Hacker et al., 2017; He et al.,
524 2008; Keller et al., 2013), non-invasive studies reported mainly effects around the alpha and
525  beta bands using EEG and magnetoencephalography (MEG) (Brookes et al.,, 2011;
526  Deligianni et al., 2014; Hipp & Siegel, 2015; Tewarie et al., 2016). It is unclear whether this
527 can be attributed to the physical limits of the method to capture the activity of specific
528  neural generators, i.e. as is the case with MEG, which is insensitive to radial currents (Hacker
529 et al., 2017; Mosher et al., 1992). In our study, we could confirm the gamma band
530  correlation but also the presence of significant correlations in lower EEG frequency bands.
531  Compared to the other studies, we used source-space localized EEG signals from 256
532  electrodes exceeding the maximum number of 64 electrodes in previous studies, which
533  were also only investigated in the sensor space.

534

535  Various decisions in the data processing pipeline have to be done. For example whether to
53  regress out the global signal (time series of averaged signal intensity across all brain voxels)
537 from fMRI timeseries prior to correlating it with the EEG data remains unclear given the
538  controversy surrounding global signal regression in the field (Fox et al., 2009; Murphy et al.,
539  2009; Murphy & Fox, 2017; Power et al., 2017; Saad et al., 2012). In this work, we decided to
540 preserve the global signal motivated by several recent studies that deduced its
541 accountability for some electrophysiological correlates (Huang et al., 2018; Scholvinck et
542 al., 2010; Wong et al., 2013, 2016). Nevertheless, a clear understanding of the contribution
543  of the global signal to the electrophysiological signature of the BOLD response needs to be
544  elucidated in further studies.

545

546 Interestingly, we have also observed patterns of lagged correlation in the white matter and
547 CSF. Correlations between BOLD fluctuations in the CSF and white matter were also
548  reported in previous studies (Fultz et al., 2019; Scholvinck et al., 2010). Recent works by Li

549  etal. investigated the HRF in the white matter in response to stimulus and reported that the
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550 presence of white-matter specific HRF (Li et al, 2019). Fultz et al. studied
551 electrophysiological, hemodynamic and CSF oscillations during sleep and found coherent
552 dynamics of the three signals, which was also negatively related to the dynamics in the grey
553  matter (Fultz et al., 2019). From our data, we cannot infer the nature of the observed effect
554 in the white matter and CSF. It could possibly be attributed to the limitation of the EEG-
555  source localization spatial-resolution.

556

557 Limitations

558 A main obstacle in simultaneous EEG-fMRI experiments is the reduction of the MR artifact
559  contaminating the EEG signal. We tackled this issue by turning off the helium pump and
560 reducing the movement of the subject to the minimum during the acquisition as well as
561  using state-of-the-art post-acquisition data preprocessing and artifact rejection methods.
562  Since our results demonstrate correlation values at various, non-zero time-lags, it is unlikely
563 that the observed correlations are largely due to residual gradient or other noise
564 (movement, pulse, etc.), which would be expected to have a zero-lag between the two

565  signals.

566  Another limitation in multi-modal studies is the combined limitation of each modality. For
567  example, we had to downsample the EEG time courses to that of the fMRI discarding much
568  of the high temporal information contained in the EEG. Emerging new fMRI sequences in
569  fast-band fMRI (Chen et al., 2020; Sahib et al., 2016) would aid in the multimodal imaging
570  field to improve the temporal resolution of fMRI and allow more fine-grained assessment of
571 the dynamics of EEG-fMRI coupling. On the other hand, due to the volume conduction and
572 the relatively low resolution of EEG source localization, the spatial precision of the
573  correlation of the two modalities is generally limited. However, we can assume that source-
574  reconstructed 256-channel EEG has reasonable spatial precision. In one of our recent
575  studies, it was comparable to fMRI if an individual head-model was used (Klamer et al.,
576  2015). Also studying the link between EEG and other imaging probes of brain function and
577 metabolic markers ([**F]JFDG-PET for glucose metabolism, [150]H,0-PET for perfusion)

578  may be of value.
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579

580 Conclusions

581 In this study, we used simultaneous fMRI and high-density EEG to investigate the
582 relationship of neuronal and vascular/BOLD signal in a data-driven approach with minimal
583  a-priori assumptions. We measured another non-simultaneous EEG dataset from the same
584  subjects as a control condition and used source reconstruction of EEG signals for a better
585  estimation of the spatial relationship between the two signals. We showed that
586  neuronalfvascular coupling has a distinct temporal profile for different EEG frequency bands
587 and for different resting state networks. These results show that the use of canonical
588  “hemodynamic response functions” is not adequate for EEG-fMRI coupling and that
580  network and frequency band specific effects need to be considered. Based on this work, we
500 recommend using data-driven HRF for different brain regions or networks in different
591 frequency bands.

592 The present findings provide a basis for further studies approaching the neural correlates of
503  BOLD signal as well as studies seeking a deeper understanding of the mechanisms driving

594  cross-frequency and cross-modality coupling.
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