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Abstract 35 

Despite several studies investigating the relationship between blood-oxygen-level-36 

dependent functional MRI (BOLD-fMRI) and neuroelectric activity, our understanding is 37 

rather incomplete. For instance, the canonical hemodynamic response function (HRF) is 38 

commonly used, regardless of brain region, frequency of electric activity and 39 

functional networks. We studied this relationship between BOLD-fMRI and 40 

electroencephalography (EEG) signal of the human brain in detail using simultaneous fMRI 41 

and EEG in healthy awake human subjects at rest. Signals from EEG sensors were filtered 42 

into different frequency bands and reconstructed it in the three-dimensional source space. 43 

The correlation of the time courses of the two modalities were quantified on a voxel-by-44 

voxel basis on full-brain level as well as separately for each resting state network, with 45 

different temporal shifts and EEG frequency bands. We found highly significant correlations 46 

between the BOLD-fMRI signal and simultaneously measured EEG, yet with varying time-47 

lags for different frequency bands and different resting state networks. Additionally, we 48 

found significant negative correlations with a much longer delay in the fMRI BOLD signal. 49 

The positive correlations were mostly around 6-8 seconds delayed in the BOLD time course 50 

while the negative correlations were noticed with a BOLD delay of around 20 to 26 seconds. 51 

These positive and negative correlation patterns included the commonly reported alpha 52 

and gamma bands but also extend in other frequency bands giving characteristic profiles for 53 

different resting state networks. Our results confirm recent works that suggest that the 54 

relationship between the two modalities is rather brain region / network-specific than a 55 

global function and suggest that applying a global canonical HRF for electrophysiological 56 

data is probably insufficient to account for the different spatial and temporal dynamics of 57 

different brain networks. Moreover, our results suggest that the HRF also varies in different 58 

frequency bands giving way to further studies investigating cross-frequency coupling and its 59 

interplay with resting state networks. 60 

 61 

Keywords 62 

EEG-fMRI, blood-oxygenation-level-dependent contrast, resting state networks, 63 

hemodynamic response function 64 
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1. Introduction 65 

Functional magnetic resonance imaging (fMRI) based on the blood-oxygen-level-dependent 66 

effect (BOLD) is currently a cornerstone method in neuroscience. It is commonly applied to 67 

study the brain during rest and task; in healthy and diseased participants (Smith et al., 2009; 68 

Zhang & Raichle, 2010). Its biggest advantage is the spatial resolution unmatched by all 69 

non-invasive electrophysiological modalities. However, the BOLD signal is only an indirect 70 

measure of the underlying neuronal activity. It is presumed to be a result of a series of 71 

physiological events that follow neuronal activation including localized changes in cerebral 72 

blood flow, cerebral blood volume, and cerebral metabolic rate of oxygen and 73 

deoxyhemoglobin content (Buxton et al., 2004; Ogawa et al., 1990). Hence, several studies 74 

strived to characterize the neurophysiological correlates of the BOLD signal and its 75 

connectivity patterns using various electrophysiological techniques. However, our 76 

understanding is still rather incomplete despite these previous works. For instance, 77 

the canonical hemodynamic response function (HRF) is commonly used to account for 78 

the delay of the BOLD-signal regardless of brain region, frequency of electric activity 79 

and functional networks. 80 

 81 

Pioneering animal studies measured BOLD and local field potential (LFP) power 82 

simultaneously in monkeys and cats and revealed consistently highly correlated LFP power 83 

with BOLD signal in the high gamma band mainly at 40 to 100 Hz (Logothetis et al., 2001; 84 

Niessing et al., 2005; Schölvinck et al., 2010; Shi et al., 2019; Shmuel & Leopold, 2008). This 85 

relationship was also found when correlating simultaneous BOLD and LFP signals in the 86 

human auditory cortex (Mukamel et al., 2005). Three of these animal studies also examined 87 

the time delay between the signal acquired from different modalities and demonstrated 88 

that the hemodynamic signal lagged the neural signal by 6 – 8 s (Logothetis et al., 2001; 89 

Schölvinck et al., 2010; Shmuel & Leopold, 2008). Additionally, Schölvinck et al. also 90 

reported a strong, positive correlation in lower frequencies (2–15 Hz) with a lag closer to 91 

zero. 92 

 93 

Earlier human studies focused on correlating the BOLD signal to electroencephalography 94 

(EEG) using the occipital EEG electrodes and consistently reported negative correlations of 95 
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the alpha band power between 8 – 12 Hz and BOLD signal (Goldman et al., 2002; Laufs, 96 

Kleinschmidt, et al., 2003; Laufs, Krakow, et al., 2003; Liu et al., 2012; Moosmann et al., 97 

2003). Mantini et al. correlated EEG power variation from different frequency bands with 98 

that of fMRI resting state networks (Mantini et al., 2007) and found specific 99 

electrophysiological signatures for each network. Recently, another group studied the 100 

correlation between BOLD global signal and the global signal of simultaneously recorded 101 

EEG and reported both a high gamma correlation as well as negative correlations in the 102 

lower bands including alpha (Huang et al., 2018). These combined EEG-fMRI studies 103 

investigated correlations using electrode time courses and did not apply source-localization 104 

techniques. Therefore, a direct spatial correspondence between the sensor-space EEG 105 

results and fMRI is not possible. These mentioned studies also did not investigate the time-106 

lag between the two modalities. Interestingly, Moosmann et al. studied simultaneous EEG-107 

NIRS as well as simultaneous EEG-fMRI and reported a lag of about 8 s between 108 

simultaneous EEG-NIRS while such a lag was not reported in the simultaneous EEG-fMRI 109 

(Moosmann et al., 2003). Many of the human EEG studies applied a convolution of the EEG 110 

time courses with the HRF, in particular all studies reporting EEG negative correlation with 111 

fMRI used this approach. The use of HRF is a common procedure in neuroimaging to 112 

account for the delay between neural activation and its reflection in fMRI BOLD signal 113 

(Boynton et al., 1996). Classically it is assumed to be canonical, i.e. constant/identical in the 114 

whole brain. However, several experiments have reported variations of the HRF in different 115 

cortical regions, across subjects and in different measurement sessions (Aguirre et al., 1998; 116 

Handwerker et al., 2004; Miezin et al., 2000; Tewarie et al., 2016). Moreover, it is not clear if 117 

a canonical function is suitable to study neuronal/vascular coupling, i.e. the relation of EEG 118 

and BOLD signal. In summary, it is still unclear how neuroelectric activity and the BOLD 119 

response relate to each other. 120 

 121 

In this work, we set to quantify and establish the link between spontaneous resting-state 122 

brain activity in simultaneously measured fMRI BOLD signal and source-reconstructed 256 123 

channel high-density EEG (HD-EEG). The combination of this high number of electrodes 124 

and source-localization favors a more precise assessment of the dependencies of the two 125 

modalities in time and space and could aid in clarifying the still enigmatic BOLD-EEG 126 

coupling. We use data-driven analysis of the whole brain in different time-shift intervals 127 
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from -30 to 30 seconds with minimal a priori constraints. We also evaluate this cross-128 

modality coupling in different EEG frequency bands. Since functionally different brain 129 

regions differ in terms of their neuroanatomy and function, the relationship between EEG- 130 

and BOLD-signals might also vary depending on the brain regions. To test this hypothesis, 131 

in addition to a global characterization of the EEG-BOLD coupling, we assessed network-132 

specific differences. We opted for studying resting state networks since each network 133 

connects different brain regions that are functionally related, and hence share similar 134 

dynamics of their time courses. We also evaluate the cross-modality coupling in different 135 

EEG frequency bands. 136 

 137 

2. Materials and methods 138 

 139 

2.1.  Participants:  140 

We recruited 20 healthy participants without any history of neurological disorders. Five 141 

participants were excluded during the preprocessing due to artifacts (see fMRI and EEG 142 

data acquisition and preprocessing below), leaving 15 participants for further analysis (8 143 

males, 7 females, mean age: 38.9 years, SD = 13.7 years, range 19-63 years). The study was 144 

approved by the Ethics committee of the Medical Faculty at the University of Tübingen and 145 

was conducted in accordance with the guidelines of the Declaration of Helsinki. All 146 

participants gave written consent before measurements. 147 

 148 

2.2.  Data acquisition: 149 

Magnetic resonance imaging data was acquired using a Siemens MAGNETOM Trio 3T 150 

scanner (Siemens AG, Erlangen, Germany) with a 12-channel array head coil for reception 151 

and the body coil for transmission. We acquired a sagittal T1-weighted volume with a 3D-152 

MPRAGE sequence as high-resolution anatomical reference (TR 2.3 s, TI 1.1 s, TE 3.03 ms, 153 

FA 8°, voxel size 1 x 1 x 1 mm3); we also recorded a B0 field map for later correction of 154 

distortions in the functional images caused by magnetic field inhomogeneity (TR 2 s, TE 32 155 

ms, FA 90°, 32 slices, voxel size 3 x 3 x 4 mm3). For the functional sequence, we acquired 180 156 

gradient-echo planar T2*-weighted images covering the whole brain (TR 2 s, TE 32 ms, FA 157 

90°, 32 slices, voxel size 3 x 3 x 4 mm3). The measurement duration was 10 minutes and 158 

participants were instructed to close their eyes and not to fall sleep. 159 
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Simultaneously with the fMRI measurement, we recorded a continuous high-density EEG 160 

signal using 256-channels EEG system (Electrical Geodesics, Inc., Eugene, OR, U.S.A.) and a 161 

sampling rate of 1000 Hz. Electrocardiogram (ECG) was measured simultaneously. The MR 162 

and EEG scanner clocks were synchronized, and the MR helium pump was turned off during 163 

the EEG resting-state measurement to reduce the noise induced by the pump in the EEG 164 

data (Nierhaus et al., 2013). This dataset will be referred to as simultaneous-EEG in this 165 

manuscript. We recorded an additional ten-minutes HD-EEG resting state measurement in 166 

an electrically shielded room outside the fMRI scanner. The second recording used the same 167 

256-channel EEG system mentioned above. This dataset will be referred to as non-168 

simultaneous-EEG. Both measurements were conducted in supine position. 169 

 170 

2.3.  Structural and functional MRI preprocessing 171 

MRI processing was done in MATLAB (http://www.mathworks.com) using Statistical 172 

Parametric Mapping (SPM 12 [6470], Wellcome Trust Centre for Imaging Neuroscience; 173 

http://www.fil.ion.ucl.ac.uk/spm) as well as the FSL toolbox [5.0.9] (FMRIB, Oxford, UK; 174 

https://fsl.fmrib.ox.ac.uk/fsl). Using unified segmentation of SPM12, the structural T1-175 

weighted images of all subjects were segmented into six tissue classes; grey matter, white 176 

matter, cerebrospinal fluid (CSF), skull, soft tissue outside the brain and finally air and other 177 

objects outside the head. The grey matter, white matter and CSF segmentations were 178 

joined to yield a segmented image of the intracranial volume (used as analysis space) and 179 

then spatially normalized and warped to MNI space using the DARTEL toolbox of SPM12. 180 

The flow fields of each participant’s anatomical transformation to the DARTEL template in 181 

MNI space were later used for warping the functional data. Tissue masks were also 182 

generated by binarizing the segmented tissues at a threshold of 0.5. 183 

fMRI functional time series were first slice-time corrected using the first slice (slice-time = 0 184 

ms) as reference to correspond with the TR trigger sent to the EEG and conserve temporal 185 

comparability of the two methods. Head motion correction was then performed using FSL 186 

MCFLIRT (Jenkinson et al., 2002). Additionally, a framewise displacement (FD) (Power et 187 

al., 2014) threshold was set to 0.5 mm and volumes exceeding this threshold were 188 

discarded. Figure S1 shows the fMRI volumes framewise displacement for each subject 189 

along with the scrubbed above-threshold frames. The first ten volumes of fMRI data were 190 

also removed to avoid T1 effects. Volumes that were either scrubbed in fMRI or 191 
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corresponded to EEG-artifacts from both modalities were discarded (see details on EEG 192 

processing below). This was done to preserve the temporal comparability of the fMRI and 193 

EEG data. 194 

The voxel displacement maps (VDM) were then calculated using the acquired fieldmap 195 

images and the Fieldmap Toolbox [version 2.1] integrated in SPM. The time series were 196 

then distortion-corrected, realigned, co-registered to the T1-weighted anatomical 197 

reference image (normalized mutual information cost function) and finally normalized to 198 

MNI space using the DARTEL flow fields (compare above). The normalized data were 199 

smoothed with an isotropic Gaussian kernel (5 mm full width at half maximum). Individual 200 

brain masks were also normalized to MNI space using the DARTEL flow fields. Afterwards, a 201 

high-pass filter of 0.1 Hz was applied to the data. Finally, the normalized functional datasets 202 

were masked with the individual brain mask and a global brain mask (generated by 203 

averaging all normalized individual masks and then binarizing at the threshold of 0.8). This 204 

procedure ensures that only brain voxels that are consistently present in at least 80% of all 205 

subjects were considered in the further analysis. 206 

 207 

2.4. Resting States Networks masks extraction 208 

To extract data-driven fMRI resting state networks we used the CONN connectivity toolbox 209 

[version 18b] (http://www.nitrc.org/projects/conn) (Whitfield-Gabrieli & Nieto-Castanon, 210 

2012) on preprocessed fMRI time courses to extract 40 ICA components using the FastICA 211 

algorithm. The resulting components masks were spatially matched with seven reference 212 

resting state networks obtained from the Yeo et al. (Yeo et al., 2011) resting state atlas 213 

namely visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal and 214 

default mode networks. This spatial matching was performed with the FSLCC function in 215 

FSL with a correlation threshold of 0.2. Components surpassing the spatial correlation 216 

threshold are considered part of the network and were spatially merged into one 217 

mask for that network. See figure S2 for data-driven topographical maps of the extracted 218 

fMRI networks. 219 

 220 

2.5. EEG preprocessing  221 

MR gradient artifacts due to static and dynamic magnetic fields were removed from the 222 

simultaneously measured EEG data using average artifact subtraction (AAS) method (Allen 223 
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et al., 2000). Cardioballistic artifacts were detected and removed by the Pulse Detection 224 

Tool implemented in Net Station 5.2 software (Iannotti et al., 2015). The data was then 225 

downsampled to 250 Hz, demeaned and band-pass-filtered at 0.2-100 Hz. Power-line 226 

artifacts were removed by a bandstop filter of 49.5 to 50.5 Hz. The data was then 227 

segmented into epochs of 2 seconds where the fMRI TR trigger corresponded to the center 228 

sample (epochs ±1 s around fMRI trigger). The data was visually inspected to identify and 229 

discard noisy electrodes and epochs. Note that discarded artifacts in simultaneous-EEG 230 

were also removed from fMRI (compare to above). Preprocessing and analysis of EEG data 231 

was performed using the Fieldtrip toolbox (Oostenveld et al., 2011) running in MATLAB 232 

(version 9.0 [R2016a] Mathworks Inc.). See Table S1 for a comprehensive list of the number 233 

of channels and epochs removed from each subject’s data. In all modalities, at least 86% of 234 

the data and 80% of the electrodes were admitted to further analysis. 235 

 236 

2.6. Correlating EEG Alpha power with BOLD signal 237 

As a sanity check for our data and pipeline, we aimed at reproducing the analysis and 238 

findings employed by Laufs et al. in 2003 studying the relationship between fMRI and EEG 239 

Alpha power derived from occipital, central and frontal electrodes. We followed the same 240 

preprocessing steps as Laufs et al. 2003 but implemented it in Fieldtrip. We took the 241 

arithmetic mean of the two occipital electrodes corresponding to O1 and O2. The same was 242 

done for parietal electrodes C3/C4 and frontal ones F3/F4 for control purposes. The powers 243 

of EEG timecourses were then limited to their mean plus or minus 3 SD to account for brief 244 

motion or muscle artifacts. We performed Fast Fourier transformation using a hanning 245 

window on two second epochs. The spectral power was then demeaned and averaged 246 

across the alpha band frequency bins. Using this filtered Alpha signal per 2 seconds epochs 247 

(matching the TRs of the BOLD), we generated an additional version of the data by 248 

convoluting it with the HRF function. Each dataset (with and without HRF-convolution) was 249 

then correlated with the fMRI BOLD time-courses at each voxel obtaining a correlation 250 

brain map. The correlation was tested among the three types of electrodes using a Kruskal-251 

Wallis-Test. Significant voxels were separated into negative and positive ones based on the 252 

observed median correlation at that voxel. We then extracted clusters with minimum 9 253 

neighboring voxels using the MATLAB function “bwlabeln” and three-dimensional 18-254 

connected neighborhood (separate clusters for positive and negative correlations). The 255 
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median correlation for significant voxels was summed across clustered significant voxels in 256 

each of the 7 resting state networks and normalized by the number of voxels in that 257 

network. Figures S3 and S4 show the normalized summed correlations observed in each 258 

network for both positive and negative correlations.  259 

  260 

2.7. EEG source reconstruction: 261 

The preprocessed artifact-corrected EEG data was filtered into seven different frequency 262 

bands: delta (1-4 Hz), theta (4 – 8 Hz), alpha (8 – 12 Hz), beta1 (12 – 20 Hz), beta2 (20 – 30 263 

Hz), gamma1 (32 – 48 Hz), and gamma2 (52 – 68 Hz). Filtered data in each frequency band 264 

was projected onto a regular 5-mm grid spanning the entire brain using linearly constrained 265 

minimum variance (LCMV) scalar beamformer (Veen et al., 1997). For each grid position, the 266 

leadfield was calculated using a boundary element model (BEM) constructed from the 267 

participant’s structural MRI where the participant’s scalp, skull and brain surfaces were 268 

modeled. The first two boundaries, namely the scalp and the skull, were derived from 269 

corresponding SPM segmentations (c5 and c4 respectively). The brain surface was derived 270 

from the combination of the grey matter, white matter and CSF segmentations. We also 271 

calculated a covariance matrix for each frequency band. Using both the leadfield and the 272 

covariance matrix, a spatial filter was calculated for each of the studied frequency bands 273 

and used to project the time courses by the EEG sensors into source-space. For each grid-274 

position, the amplitude envelope was computed as the positive magnitude of the Hilbert 275 

transformation of the signal (Hilbert envelope). The Hilbert envelope was low-pass filtered 276 

to 0.25 Hz and then downsampled to 0.5 Hz. To ensure that the fMRI and MR-EEG time 277 

courses were temporally comparable, we selected the EEG samples that corresponded 278 

temporally to the registered TR-pulse triggers. The source-space EEG signal time course for 279 

each frequency band was exported in NIFTI format, up-sampled to a voxel size of 3 mm. It 280 

underwent the same spatial processing as the fMRI data, i.e. the volumes were warped into 281 

MNI space (via DARTEL flow fields), masked with individual brain masks and finally masked 282 

with a global brain mask. Non-simultaneous-EEG data acquired outside the scanner was 283 

preprocessed in the same pipeline as the simultaneous-EEG data except for the removal of 284 

MR gradient and cardioballistic artifacts. 285 

 286 

2.8.  Correlation of time courses: 287 
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To study the relationship between fMRI and EEG signals in different frequency bands, we 288 

studied the statistical dependency between the fMRI and different frequency specific EEG 289 

time courses for each voxel. We used Pearson’s correlation coefficient between time 290 

courses of both modalities at each voxel. Furthermore, we investigated these correlations at 291 

different temporal shifts between +30 to -30 seconds (cross-correlation). By shifting the 292 

fMRI backwards, we studied the assumption that neural signals are reflected in fMRI signal 293 

later than in EEG signal. Shifting the fMRI time course forward investigates the contrary. 294 

We studied both backward and forward lags of fMRI time courses from 1 to 15 samples, 295 

which represents 30 seconds in both directions in steps of two seconds (TR = 2 seconds). We 296 

then calculated Pearson’s correlation coefficient of the time course in each of the fMRI 297 

shifts with each of the EEG time courses (simultaneous- and non-simultaneous EEG, filtered 298 

in 7 frequency bands each). This procedure yielded a correlation matrix for each voxel per 299 

subject, frequency band, time-lag, and EEG dataset (simultaneous- and non-simultaneous-300 

EEG). See figure 1 for a schematic depiction of the analysis pipeline. 301 

  302 
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 303 

 304 

Figure 1: Outline of the steps used to obtain the correlations from preprocessed fMRI and EEG time courses. 305 

See figure S5 for the statistical testing pipeline. 306 

 307 

2.9. Statistical Testing and Network Analysis 308 

Since we assumed the absence of any meaningful temporal dependency between fMRI and 309 

non-simultaneous EEG, we considered their correlations as a control condition. This 310 

approach ensured that the general characteristics of the EEG signal (autocorrelations, 311 

microstates, etc.) should be similar in both conditions, since the EEG was measured in the 312 

same subject with the same system. Thus, our null hypothesis is that simultaneous EEG to 313 

fMRI correlations do not differ from non-simultaneous EEG to fMRI. A significantly higher 314 

simultaneous EEG to fMRI correlation would be perceived as a positive correlation between 315 

the two modalities while a significant lower correlation would be considered as a negative 316 

correlation (anticorrelation). 317 

The statistical analysis was done in several steps, as follows: 318 

Step 1: First we performed a first-level between groups non-parametric Wilcoxon signed-319 

rank test on the correlation values of simultaneous EEG:fMRI and non-simultaneous 320 

EEG:fMRI at each voxel and obtained a z-score.  321 

Step 2: The sum of positive z-scores of significant voxels (alpha = 0.05) divided by the sum 322 

of tissue probability weights. This was done to account for outlier values on the edge of the 323 

tissue / network boundaries. The weighted value was then noted per frequency band and 324 
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time-lag yielding a 7x31 matrix (7 frequency bands and 31 time-lags from -30 to 30 s in steps 325 

of 2 s). Similarly, another matrix was generated by summing only negative z-score values to 326 

capture negative correlations. 327 

Step 3: To test patterns of significant difference between the fMRI correlation with 328 

simultaneous vs. non-simultaneous EEG, we used a permutation-based approach to 329 

generate control-matrices by repeating the previous steps after randomly re-assigning the 330 

correlation values to one of the two conditions (simultaneous vs. non-simultaneous). We 331 

performed 10,000 permutations and in each we separately calculated the weighted sum of 332 

positive z-scores and the weighted sum of negative z-scores. For each frequency / time-lag 333 

combination, we set an arbitrary threshold level for a z-score sum at the 90th percentile of 334 

the 10,000 values. 335 

Step 4: Using these thresholds obtained from step 3 (7x31 matrix of 7 frequency bands and 336 

31 time-lags) we binarized the observed matrices as well as the permutation matrices to 337 

prepare for clustering analysis. 338 

Step 5: We assumed that a biologically meaningful relationship between fMRI and EEG 339 

would not be limited to one specific frequency band/time-lag combination but would rather 340 

be present in neighboring frequencies and/or time-lag combinations as well. Therefore, we 341 

used a cluster size of minimal 3 neighboring matrix positions as a threshold to extract 342 

clusters in each binarized matrix. The neighborhood was based on the “two-dimensional 343 

four-connected” principle using the “bwlabeln” function in MATLAB. For each observed 344 

cluster, we calculated the sum of the statistical values present of all points in the cluster 345 

(cluster sum score). 346 

Step 6: From each permutation, we used the maximal cluster sum score and constructed a 347 

random distribution for the null-hypothesis. The observed cluster sum score of the un-348 

permuted experiment was then tested against this null-curve of 10,000 permutations to 349 

determine the error probability that the actually found cluster value was generated by 350 

chance. The frequency of equal or higher values was reported as the probability (p) value of 351 

that cluster. See figure S5 for an illustration of the statistical approach employed. 352 

To assess the globality of the relationship between the two modalities, we performed the 353 

previous steps on different sets of voxels (regions of interest = ROI); namely all grey matter, 354 

white matter and CSF voxels as well as on the voxels belonging to each resting state 355 

network separately (0.5 ROI mask threshold). For each of those ROIs, we generated the 356 
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positive and negative matrices of sum z. The alpha level for the cluster statistics (step 6) was 357 

set at p=0.0025 (0.5/20 tests) to correct for multiple testing at 7 networks and 3 tissue types 358 

(grey matter, white matter and CSF) in 2 different matrix types (positive and negative). 359 

 360 

2.10.  Testing network pattern differences 361 

To test whether the extensions of the cluster patterns were different between networks, we 362 

determined the centroid of each cluster and calculated its distance to all points that form 363 

the cluster polygon. For each pair of clusters, we pooled the distances from both clusters 364 

together in order to get a probability distribution for distances in this cluster pair. We tested 365 

the distance between the two centroids against the distance distribution by determining 366 

the probability of the inter-centroid distance being within the range of either cluster. We 367 

used an alpha level of p = 0.05 to determine significantly different/distant clusters. We 368 

performed this step for each pair of tested networks positive correlation matrices as well as 369 

between pairs of negative correlation matrices. 370 

 371 

2.11. Data and code availability 372 

All data and code used in this study will be available upon reasonable request to the 373 

authors.  374 

 375 

3. Results 376 

We first studied the correlation between the fMRI BOLD and the EEG Alpha power from 377 

occipital, central and frontal electrodes. This was done to reproduce previous findings using 378 

our pipeline and as a sanity check for the data quality particularly after rejection of various 379 

MR-related artifacts. Comparing correlation profiles from different resting state networks 380 

with BOLD time courses (without HRF convolution), we found the highest positive 381 

correlation with the EEG alpha power between the occipital electrodes and frontoparietal 382 

network, followed by default mode-networks (figure S4), while the strongest negative 383 

correlation was found in the same networks respectively but with the frontal electrodes. 384 

When the BOLD time courses were convoluted with the HRF, we found the strongest 385 

positive correlation between the visual network and the frontal electrodes while the 386 

strongest negative correlations were between the visual network and the occipital 387 

electrodes (figure S3). 388 
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Next, we studied the global relationship between the fMRI and simultaneous-EEG in the 389 

gray matter, which is the main finding in this work. We tested this correlation in each 390 

frequency band in time-lags between -30 and +30 seconds (figure 2) using the source-391 

localized EEG activity. On the one hand, we found a cross-spectral pattern of positive 392 

correlations spanning all the studied frequency bands (p<0.0001). The maximal positive 393 

correlation was found in the high gamma band with around 6 – 8 seconds lag of the BOLD 394 

time courses in relation to the EEG signal. Interestingly, correlations in the lower 395 

frequencies had their maxima at around 2 seconds. On the other hand, we found two 396 

clusters of negative correlations; one in low frequencies with a maximal negativity in the 397 

delta band with a lag of about 20 seconds (p<0.001) and a second cluster extending towards 398 

the higher frequencies with a maximal negativity in the lower gamma band and a time-lag 399 

of around 24 seconds (p<0.0001). 400 

 401 

 402 

 403 

 404 

 405 

Figure 2: EEG-fMRI significant correlations across frequencies and time-lags in grey matter. 406 

(A) Shows a matrix of positive sum-z scores derived from significant positive correlations in the first-level 407 

statistics. Significant clusters are outlined with yellow strokes. (B) Significant clusters derived from positive 408 

correlations in A along with their cluster sum score compared to the random distribution derived from 10,000 409 

permutations where the two conditions were randomly shuffled.  410 

C and D: Similar sections to A and B but showing results derived from significant negative correlations. 411 

We also calculated the previous matrices separately for the white matter and CSF and found 412 

weaker but similar effects. However, the white matter positive correlations matrix was only 413 
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significant in the higher frequencies (p<0.0001) and the CSF correlations were maximum in 414 

the lower frequencies (p<0.0001) (figures S6 and S7). 415 

To test whether the effect in the gray matter is stereotypical across the whole brain or if 416 

there are regional/network differences, we tested the correlation patterns for gray matter 417 

separately for the 7 resting state networks. We generated matrices for both positive and 418 

negative weighted (sum z) of the correlations for each network separately. We also 419 

performed the permutation-based statistical assessment separately on each network 420 

(Bonferroni corrected for all tests). Patterns of positive significant clusters were found in all 421 

networks except for the dorsal attention network while significant negative clusters were 422 

found in four networks namely the visual, somatomotor, dorsal attention and limbic 423 

networks (figure 3 for the networks matrices and the figures S8 to S14 for clusters random 424 

distribution plots). Consistently, positive correlations preceded the negative correlations in 425 

all networks. We did not find negative correlation clusters earlier than 10 seconds lag and 426 

the positive correlations were lagged with maximum 16 seconds as in the visual network. 427 
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 428 

 429 

Figure 3: fMRI:simultaneous-EEG correlations across frequencies and time-lags in different resting state 430 

networks. Significant clusters are outlined with yellow strokes. 431 

 432 

The correlation patterns were not uniform across all resting-state networks. We found 433 

significant differences in the temporal/frequency matrix in 9 positive comparisons out of 21, 434 

mainly between the frontoparietal network and other networks. In the negative correlation 435 

patterns, we found 2 significant pairwise correlations out of 10 comparisons. These 436 

differences were between the limbic and dorsal attention network on one hand and the 437 

somatomotor network on the other hand. (see figure 4 for a schematic plot of the 438 
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similarities indices as well as estimated significance levels. See figures S15 and S16 for more 439 

detailed depiction of the clusters relationships).  440 
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441 
 442 

 443 

 444 

Figure 4: Visualization of the correlation similarities between networks temporal-frequency band clusters 445 

A: Pairwise network similarity (1- p-value) based on Euclidean distance between their respective significant 446 

positive clusters in the temporal-frequency band profile. Connection thickness is inversely proportional with 447 

the probability that the correlation pattern in the connected cluster is different. 448 

B: Matrix showing the p-values of pairwise comparisons of the clusters. Significantly different clusters 449 

comparisons are marked with yellow stars (alpha = 0.05). 450 

C and D: As in A and B respectively but using significant negative clusters. Note that only significant clusters 451 

were included in this analysis, hence the difference in the number of comparisons between positive and 452 

negative correlations. 453 
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3. Discussion 454 

We investigated the spatiotemporal coupling of the fMRI-BOLD and EEG signal in a data-455 

driven approach. Our results demonstrate a highly significant correlation between the fMRI 456 

signal and simultaneously measured EEG that varies in frequency bands and time-lags as 457 

well as between resting state networks. Globally, a significant positive correlation was 458 

found with fMRI lagging behind the EEG signal. This lag, however, varied in different EEG 459 

frequency bands with lower EEG frequencies having shorter fMRI to EEG lags (2 to 4 460 

seconds) and higher EEG frequencies having longer lags (6 – 8 seconds). The positive 461 

correlation in higher EEG frequency bands are consistent with findings reported from 462 

various studies investigating BOLD and simultaneous electrophysiological measurements 463 

(Lachaux et al., 2007; Scheeringa et al., 2011; Schölvinck et al., 2010; Shmuel & Leopold, 464 

2008). On the other hand, the lower EEG frequency band correlations are similar to those 465 

previously observed by Schölvnick et al. while studying BOLD and cortical LFP in monkeys 466 

(Schölvinck et al., 2010). This frequency-shift combination seems to vary as well in different 467 

resting state networks suggesting that the electrophysiological correspondence of fMRI 468 

BOLD signals is a rather multifaceted than a stable global relationship. 469 

 470 

Neuronal activities are reflected almost instantaneously in electrophysiological recordings 471 

(EEG in our case). Conversely, the reflection of these activities in BOLD oscillations has a 472 

longer temporal delay in the range of several seconds. The canonical hemodynamic 473 

response function (HRF) is, therefore, commonly used in general linear models to relate 474 

BOLD responses with experimental stimuli or EEG derived metrics (like power). However, 475 

several studies have suggested that the HRF and consequently the temporal delay in fMRI 476 

vary across brain regions and in different individuals (Aguirre et al., 1998; Handwerker et al., 477 

2004; Miezin et al., 2000; Taylor et al., 2018). Our results confirm that the relationship also 478 

varies among different resting state networks. Moreover, we hypothesized this relationship 479 

to vary in different EEG frequency bands. In fact, some networks exhibited maximal 480 

correlation in low frequency bands like delta and theta while other networks tended to 481 

correlate more in higher frequencies like beta and gamma. This is generally in line with 482 

various studies showing that hemodynamic response following neural activities varies in 483 

different networks and cortical locations (Aguirre et al., 1998; Hipp & Siegel, 2015; Mantini 484 

et al., 2007). Since the function of each network appears to be formed by a collective of 485 
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cross-spectral activation patterns (Mantini et al., 2007), it remains difficult to attribute the 486 

different time-lags to either functional network, the dominant frequency band or the 487 

interplay of these two aspects.  488 

Given variable temporal delays in different EEG frequency bands and different networks, 489 

our results and the available literature challenge the notion that a simple and universal 490 

model of a canonical function for EEG-fMRI/BOLD coupling is valid for all cortical regions 491 

and all spectral frequencies. Since employing a non-specific HRF model could lead to 492 

dramatic changes in the resulting BOLD activation and its temporal precision, there is an 493 

urgent need to further elucidate this relationship and possibly update current standard 494 

imaging analysis methods. Regional, or frequency-band specific data-driven HRF 495 

generation could offer a potential solution at least when studying EEG-fMRI coupling. 496 

 497 

In our results, we also observed patterns of negative correlation between the two modalities 498 

that temporally followed the positive correlations and lagged around 20 seconds in general. 499 

One possibility is that this negative correlation reflects the undershoot seen in the HRF 500 

which have been related to delayed vascular compliance and sustained increases in the 501 

metabolic rate of oxygen (van Zijl et al., 2012).  502 

Unlike previous simultaneous EEG-fMRI studies (Goldman et al., 2002; Huang et al., 2018; 503 

Laufs, Kleinschmidt, et al., 2003; Liu et al., 2012; Moosmann et al., 2003), we did not 504 

observe a strong negative correlation between the modalities in the alpha band especially in 505 

the occipital lobe using our main voxel-to-voxel analysis. We only found a relatively weak 506 

negative correlation for the alpha in the default-mode network sub-analysis around 2-4 507 

seconds that did not survive the cluster-level correction (compare figure 3) and was not 508 

evident in the global analysis. However, we also observed a negative correlation of the 509 

BOLD fMRI with the occipital alpha band EEG derived from the surface electrodes after 510 

convolution with the HRF. Since we did not use a canonical HRF to convolve the EEG time 511 

courses in our main voxel-to-voxel analysis, we could postulate that Applying a canonical 512 

HRF could possibly alter the temporal characteristics of the EEG signal and produce 513 

imprecise correlations with the corresponding BOLD signal. Such signal convolution was 514 

also not implemented in the typical animal studies (Logothetis et al., 2001; Schölvinck et al., 515 

2010; Shmuel & Leopold, 2008). 516 

 517 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2022. ; https://doi.org/10.1101/2022.08.28.505586doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.28.505586
http://creativecommons.org/licenses/by-nc-nd/4.0/


Many animal and human studies employing various electrophysiology techniques 518 

demonstrated that the gamma band presented the most common correlation with the 519 

BOLD signal in task and rest. This was done either by correlating time courses of fMRI and 520 

electrophysiological measures or by studying within modality connectivity and comparing 521 

the between modality similarities. While electrocorticography (ECoG) studies reported 522 

similarity in both low and high frequencies including gamma (Hacker et al., 2017; He et al., 523 

2008; Keller et al., 2013), non-invasive studies reported mainly effects around the alpha and 524 

beta bands using EEG and magnetoencephalography (MEG) (Brookes et al., 2011; 525 

Deligianni et al., 2014; Hipp & Siegel, 2015; Tewarie et al., 2016). It is unclear whether this 526 

can be attributed to the physical limits of the method to capture the activity of specific 527 

neural generators, i.e. as is the case with MEG, which is insensitive to radial currents (Hacker 528 

et al., 2017; Mosher et al., 1992). In our study, we could confirm the gamma band 529 

correlation but also the presence of significant correlations in lower EEG frequency bands. 530 

Compared to the other studies, we used source-space localized EEG signals from 256 531 

electrodes exceeding the maximum number of 64 electrodes in previous studies, which 532 

were also only investigated in the sensor space. 533 

 534 

Various decisions in the data processing pipeline have to be done. For example whether to 535 

regress out the global signal (time series of averaged signal intensity across all brain voxels) 536 

from fMRI timeseries prior to correlating it with the EEG data remains unclear given the 537 

controversy surrounding global signal regression in the field (Fox et al., 2009; Murphy et al., 538 

2009; Murphy & Fox, 2017; Power et al., 2017; Saad et al., 2012). In this work, we decided to 539 

preserve the global signal motivated by several recent studies that deduced its 540 

accountability for some electrophysiological correlates (Huang et al., 2018; Schölvinck et 541 

al., 2010; Wong et al., 2013, 2016). Nevertheless, a clear understanding of the contribution 542 

of the global signal to the electrophysiological signature of the BOLD response needs to be 543 

elucidated in further studies. 544 

 545 

Interestingly, we have also observed patterns of lagged correlation in the white matter and 546 

CSF. Correlations between BOLD fluctuations in the CSF and white matter were also 547 

reported in previous studies (Fultz et al., 2019; Schölvinck et al., 2010). Recent works by Li 548 

et al. investigated the HRF in the white matter in response to stimulus and reported that the 549 
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presence of white-matter specific HRF (Li et al., 2019). Fultz et al. studied 550 

electrophysiological, hemodynamic and CSF oscillations during sleep and found coherent 551 

dynamics of the three signals, which was also negatively related to the dynamics in the grey 552 

matter (Fultz et al., 2019). From our data, we cannot infer the nature of the observed effect 553 

in the white matter and CSF. It could possibly be attributed to the limitation of the EEG-554 

source localization spatial-resolution. 555 

 556 

Limitations 557 

A main obstacle in simultaneous EEG-fMRI experiments is the reduction of the MR artifact 558 

contaminating the EEG signal. We tackled this issue by turning off the helium pump and 559 

reducing the movement of the subject to the minimum during the acquisition as well as 560 

using state-of-the-art post-acquisition data preprocessing and artifact rejection methods. 561 

Since our results demonstrate correlation values at various, non-zero time-lags, it is unlikely 562 

that the observed correlations are largely due to residual gradient or other noise 563 

(movement, pulse, etc.), which would be expected to have a zero-lag between the two 564 

signals. 565 

Another limitation in multi-modal studies is the combined limitation of each modality. For 566 

example, we had to downsample the EEG time courses to that of the fMRI discarding much 567 

of the high temporal information contained in the EEG. Emerging new fMRI sequences in 568 

fast-band fMRI (Chen et al., 2020; Sahib et al., 2016) would aid in the multimodal imaging 569 

field to improve the temporal resolution of fMRI and allow more fine-grained assessment of 570 

the dynamics of EEG-fMRI coupling. On the other hand, due to the volume conduction and 571 

the relatively low resolution of EEG source localization, the spatial precision of the 572 

correlation of the two modalities is generally limited. However, we can assume that source-573 

reconstructed 256-channel EEG has reasonable spatial precision. In one of our recent 574 

studies, it was comparable to fMRI if an individual head-model was used (Klamer et al., 575 

2015). Also studying the link between EEG and other imaging probes of brain function and 576 

metabolic markers ([18F]FDG-PET for glucose metabolism, [15O]H2O-PET for perfusion) 577 

may be of value. 578 
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 579 

Conclusions 580 

In this study, we used simultaneous fMRI and high-density EEG to investigate the 581 

relationship of neuronal and vascular/BOLD signal in a data-driven approach with minimal 582 

a-priori assumptions. We measured another non-simultaneous EEG dataset from the same 583 

subjects as a control condition and used source reconstruction of EEG signals for a better 584 

estimation of the spatial relationship between the two signals. We showed that 585 

neuronal/vascular coupling has a distinct temporal profile for different EEG frequency bands 586 

and for different resting state networks. These results show that the use of canonical 587 

“hemodynamic response functions” is not adequate for EEG-fMRI coupling and that 588 

network and frequency band specific effects need to be considered. Based on this work, we 589 

recommend using data-driven HRF for different brain regions or networks in different 590 

frequency bands. 591 

The present findings provide a basis for further studies approaching the neural correlates of 592 

BOLD signal as well as studies seeking a deeper understanding of the mechanisms driving 593 

cross-frequency and cross-modality coupling. 594 
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