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Abstract 17 

Recent improvements in spatial transcriptomics technologies have enabled the 18 

characterization of complex cellular mechanisms within tissue context through 19 

unbiased profiling of genome-wide transcriptomes in conjunction with spatial 20 
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coordinates. These technologies require a systematic analysis approach to deciphering 21 

the complex tissue architecture. Here, we develop SpaSEG, an unsupervised 22 

convolutional neural network-based method towards this end by jointly learning gene 23 

expression similarity of spots and their spatial contiguousness via adopting a loss 24 

function for spatial boundary continuity. Using several spatial transcriptomics datasets 25 

generated by different platforms with varying resolutions and assayed tissue sizes, we 26 

extensively demonstrate that not only can SpaSEG better identify spatial domains, but 27 

also be much more computationally and memory efficient than existing methods. In 28 

addition, SpaSEG is able to effectively detect genes with spatial expression patterns 29 

and infer spot-wise intercellular interactions as well as cell-type colocalization within 30 

the tissue section by utilizing the identified domains. Taken together, our results have 31 

indicated the flexibility of SpaSEG in multiple analysis tasks in spatial transcriptomics, 32 

making it as a desirable tool in facilitating the exploration of tissue architecture and the 33 

knowledge of underlying biology. 34 

 Introduction 35 

Coordinated activities of diverse cells with the spatial context in tissues that underlie 36 

their communications with surroundings and sophisticated biological processes can be 37 

characterized by spatial gene expression patterns. Emerging spatial transcriptomics (ST) 38 

technology has allowed the unbiased profiling of genome-wide gene expressions with 39 

physical capture sites (referred to as spots), offering a quantitative and spatial snapshot 40 

of cellular heterogeneity across a tissue section [1-3]. Recent years have witnessed 41 

considerable progress in the ST experimental methods including the imaging-based in-42 

situ transcriptomics approaches like MERFISH [4] and seqFISH[5], and the next-43 

generation sequencing (NGS)-based approaches such as Slide-seqV2 [6], 10x 44 
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Genomics Visium [7], and Stereo-seq [8]. These methods have reached an astonishing 45 

resolution from multicellular to single-cell or even subcellular level with varying gene 46 

throughput, delivering unprecedented insights into tissue-specific function, 47 

development, and pathology through elucidating tissue architectures with myriad cell 48 

types [9, 10].  49 

A pivotal task in ST data analysis is to identify spatial domains defined as regions in 50 

the tissue section with coherence in both gene expressions and spatial dependency. The 51 

identification of spatial domains serves unravelling tissue structures, facilitating the 52 

characterization of cell type composition and transcriptomic profiles in the tissue 53 

microenvironments [8, 11, 12]. Conventional approaches to arrange spots into distinct 54 

spatial domains resort to clustering methods such as Leiden [13] that only take into 55 

account gene expressions without considering localization information, usually leading 56 

to the loss of spatial contiguousness. Recently, several deep learning-based and 57 

statistical based methods have been developed to enhance spatial domain identification 58 

through incorporating gene expression with spatial information, including SEDR [14], 59 

BayesSpace [15], SpaGCN [16], stLearn [17] and Giotto [18], to name a few. Despite 60 

promising performance, these methods are only applied on the ST datasets with limited 61 

spots and thereby may be fragile for larger tissue section with higher capture resolution. 62 

Besides, these methods performing spatial clustering is absent of considering the 63 

boundary constraint of spatial domains.  64 

Additionally, knowledge of biological functions associated with spatial domains 65 

necessitates pinpointing genes that exhibit spatial expression variations and patterns 66 

known as spatially variable genes (SVGs). A handful of methods such as trendsceek 67 

[19], SpatialDE[20] and SPARK[21] have been proposed to identify SVGs by modeling 68 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516728
http://creativecommons.org/licenses/by/4.0/


spatial dependency of gene expressions and conducting correlation testing between the 69 

distribution of gene expression and spatial localization. These methods apparently 70 

neglected spatial domains and may obtain suspectable spatial gene expression patterns, 71 

failing to fully reflect tissue-specific spatial functions. Moreover, spatial variations in 72 

gene expression across spatial domains can imply spatial patterns in cell-cell 73 

interactions (CCIs) in a tissue [22]. However, the majority of existing methods do not 74 

present the automatic detection of CCIs across whole tissue section using ST data. 75 

Here, we propose SpaSEG, a simply yet powerful unsupervised convolutional neural 76 

network (CNN)-based model to jointly identify spatial domains, SVGs and CCIs. In 77 

brief, SpaSEG first establishes an unsupervised CNN network through learning gene 78 

expression similarity in conjunction with spatial coordinates to detect spatial domains. 79 

SVGs are then detected for each spatial domain to ensure spatial gene expression 80 

patterns. CCIs are further examined by investigating enriched expression of ligand-81 

receptor (L-R) pairs in both intra and inter spatial domains. By analyzing several 82 

datasets that encompass a wide range of ST platforms, including 10x Genomics Visium, 83 

Slide-seqV2, seqFISH, MERFISH, and Stereo-seq, we extensively demonstrate that 84 

SpaSEG exhibits superior performance on the identification of spatial domain over the 85 

existing state-of-the-art methods. We also use ST datasets of mouse embryo to examine 86 

the detection of SVGs, as well as mouse brain and human breast cancer section to 87 

delineate L-R pairs in normal and tumor microenvironment, respectively. Through 88 

comprehensive analyses, we show that SpaSEG is computational and memory efficient 89 

as well as applicable for diverse ST platforms and analysis tasks, serving as a desirable 90 

tool to explore tissue architecture and cellular characterization for different size of 91 

tissue section at varying resolutions. 92 
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Results 93 

Overview of SpaSEG 94 

SpaSEG starts with raw spatial transcriptomic data preprocessing through low-quality 95 

genes and poor spots removal, gene measure normalization and log-transformation, as 96 

well as principal component analysis (PCA) and 𝓏 -score scaling, leading to a 𝑑 -97 

dimensional feature vector 𝐬𝑛 ∈ ℝ𝑑 for each spot 𝑛 (Fig. 1a). SpaSEG then converts 98 

the low-dimensional representation of spots with spatial coordinates to an image-like 99 

tensor, where spots are analogous to image pixels while the corresponding 𝑑 -100 

dimensional feature vectors to image channels. Accordingly, the spatial domain 101 

identification problem can be regarded as the pixel-wise image segmentation problem 102 

in an unsupervised fashion.  103 

SpaSEG responsible for spatial domain identification is a CNN-based network model 104 

that consists of a batch normalization layer, two stacking convolutional modules and a 105 

refinement module (Fig.1b). The network model yields a response representation 𝐲𝑖 ∈106 

ℝ𝑑 for each spot 𝑖. To initialize model parameters, we first pre-train the model using 107 

the mean squared error (MSE) loss between 𝐬𝑛  and 𝐲𝑛  for all spots. Then, the 108 

softmax likelihood 𝐩𝑛  and the related pseudo-label 𝑐𝑛  for each spot 𝑛  can be 109 

obtained, and thus the classic cross entropy loss ℒseg  is applied in the subsequent 110 

training iterations. To encourage continuity of neighboring spots, we additionally 111 

calculate L1-norm of boundary gradients for each spot with its spatial location as 112 

domain boundary constraint loss ℒspa, inspired by the previous study [23]. To this end, 113 

we optimize the joint loss of the weighted sum of ℒseg and ℒspa for progressively 114 

enhancing spot classification during iterative learning while preserving spatial 115 
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dependency and continuity (Supplementary Figure 1). Finally, spots that present similar 116 

gene expression and spatially continuous coordinates are clustered into the same 117 

domain, and the detection of SVGs and CCIs based on the identified domains are further 118 

investigated (Fig.1c). We also showcase the capability of SpaSEG to integrated analysis 119 

of multiple tissue sections, thus helping to discover spatial domains in different tissue 120 

samples.  121 

SpaSEG improves spatial domain identification on the human dorsolateral 122 

prefrontal cortex dataset 123 

To evaluate the performance of SpaSEG on spatial domain identification, we first 124 

downloaded the publicly available dataset of the 10x Genomics Visium human 125 

dorsolateral prefrontal cortex (DLPFC) [12] and used as a benchmark. This manually 126 

annotated dataset is composed of 12 sections that cover six neuron layers and white 127 

matter with the number of spots ranging from 3460 to 4789 (Supplementary Table 1). 128 

To compare with SpaSEG, we chose a commonly used non-spatial clustering method 129 

Leiden plus five recently published state-of-the-art methods, including stLearn, Giotto, 130 

SpaGCN, BayesSpace, and SEDR. Apart from qualitative visualization analysis, two 131 

widely used evaluation metrics of adjusted rand index (ARI) [24] and normalized 132 

mutual information (NMI) [25] were employed to quantitatively assess performance of 133 

these methods. 134 

SpaSEG outperformed the competitive methods for the identification of spatial domains 135 

on the 12 DLPFC sections in terms of its highest values of ARI (0.532±0.058; mean 136 

± s.d.) and NMI (0.644±0.020) (Fig. 2a and Supplementary Table 3,4) while requiring 137 

the least running time and memory usage except for Leiden partially due to its lack of 138 

leveraging spatial information during clustering (Supplementary Figure 2, 139 
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Supplementary Table 5, 6).  SpaSEG also yielded the neatest spatial domains with 140 

clear boundaries to depict the tissue structures of all 12 sections in the comparison of 141 

other methods (Supplementary Figure 3). As a representative example of section 142 

151673 (Fig. 2b), we observed that spatial domains unraveled by SpaSEG (ARI=0.554) 143 

had the best consistency with the manual annotations in spite of failure to detect the 144 

thinnest layer 4 separately (Fig.2c). Interestingly, this failure also took place in all other 145 

methods, plausibly because of the small number of spots in the layer 4 that may have 146 

gene expressions similar to the adjacent layer. All methods struggled discerning layers 147 

4 and 5. Although being able to obtain comparable clustering accuracies and promising 148 

layer structures, SpaGCN (ARI=0.457) and BayesSpace (ARI=0.546) appeared to 149 

improperly separate the white matter into two domains with ragged boundaries, while 150 

SEDR (ARI=0.522) incorrectly merged the layers 4, 5 and 6 into a single layer. The 151 

spatial domains detected by Leiden, stLearn and Giotto massively mixed many 152 

unexpected outliers, leading to the rough tissue structures and the poorest clustering 153 

ARI values of 0.335, 0.306 and 0.291, respectively. 154 

SpaSEG displays high robustness on diverse ST platform datasets and high 155 

scalability on large tissue section with high resolution 156 

Next, we sought to test whether SpaSEG was robust to identify spatial domains on the 157 

datasets generated by different ST platforms such as Slide-seqV2, Stereo-seq, 158 

MERFISH, and seqFISH. Considering the above results regarding clustering accuracy 159 

and concordance of identified spatial domains with manual annotations, we only 160 

compared SpaSEG with SpaGCN and BayesSpace, as well as Leiden serving as a 161 

baseline method in the following experiments. 162 

We first applied SpaSEG on the mouse hemibrain Stereo-seq data [8]. This image-based 163 
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cell segmentation dataset has 50140 segmented cells (i.e., spots) and 25879 genes. As 164 

expected, SpaSEG can well uncover spatial regions of mouse hemibrain in comparison 165 

with Leiden and SpaGCN (Fig. 3a). BayesSpace did not successfully perform spatial 166 

clustering on this dataset because of the excessive large number of spots. Moreover, the 167 

LISI values displayed that SpaSEG reached significant more accuracy than Leiden 168 

(p<2.2e-16, Mann-Whitney U test) except for SpaGCN (Fig.3d). However, SpaSEG 169 

can clearer outline many cell-type spatial localizations than SpaGCN (Fig.3a), 170 

including neuroprotective astrocyte 2 types in thalamus, granule cells of dentate gyrus 171 

(GN DG), excitatory glutamatergic neurons from CA1 (EX CA1), and excitatory 172 

glutamatergic neurons from CA3 (EX CA3).  173 

Then, we examined the scalability and efficiency of SpaSEG on large tissue section 174 

with high resolution. To achieve this, we analyzed an unreported whole adult mouse 175 

brain spatial transcriptomic data generated by Stereo-seq [8]. To facilitate our analysis 176 

at different resolution levels, we aggregated transcripts of the same gene into non-177 

overlapping bin areas that covered corresponding DNB spots. These bins were of sizes 178 

in 10 μm diameter (bin20; 20×20 DNB sites; equivalent to ~1 medium mammal cell 179 

size), 25 μm diameter (bin50; 50×50 DNB sites), 50 μm diameter (bin100; 100×100 180 

DNB sites), and 100 μm diameter (bin200; 200× 200 DNB sites). As a result, we 181 

obtained four binned Stereo-seq ST datasets with the number of bins from 5420 to 182 

526716 (Supplementary Table 7). The annotation of whole mouse brain from Allen 183 

Reference Atlas [26] is used as the reference and we choose resolution bin50 as a 184 

representative in our study. SpaSEG can well characterize the structures of the whole 185 

adult mouse brain such as cortex layers and hippocampus (including DG-sp, CA3sp or 186 

CA1sp subfields) at all four resolution levels (Fig.3b, Supplement Figure 4). In contrast, 187 

Leiden mixed the domains with other spots at bin20 and bin50 resolution levels, neither 188 
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uncovering clear cortex layers at bin100 resolution nor separating DG-sp and CA3sp at 189 

bin200. SpaGCN was not able to handle Stereo-seq data at bin20 resolution due to the 190 

substantial number of bins (526716) and running out of memory. Neither it yielded 191 

continuous and neat spatial domains nor uncover DG-sp and CA3sp separately at 192 

resolution levels of bin50, bin100, and bin200. BayesSpace cannot successfully 193 

perform spatial domain identification for Stereo-seq data at high resolution levels of 194 

bin20, bin50, and bin100 because of large number of bins. The LISI values of resolution 195 

bin 50 demonstrated that SpaSEG identifying spatial domain was significant more 196 

accurate than Leiden, SpaGCN (p<2.2e-16, Mann-Whitney U test; Fig.3d). Moreover, 197 

SpaSEG took 12.1 minutes to perform spatial domain identification for the bin20 data 198 

(2.5 times faster than Leiden) while 4.2 minutes with only 3.5G memory for the bin50 199 

data, 26 times extraordinary faster and 35 times fewer memory usage than SpaGCN 200 

that suffered from considerable computational burden and took 110 minutes and 122.4G 201 

memory (Supplementary Table 7).  202 

We next used the mouse hippocampus Slide-seqV2 data with 53208 spots and 23264 203 

genes at 10 μm diameter resolution that can capture gene expressions at cellular level 204 

[6] (Supplementary Table 8). The annotation of hippocampus structures from the Allen 205 

Reference Atlas was employed as reference [26] (Fig. 3c). As expected, SpaSEG can 206 

better outline the topology of the tissue based on the identified neat spatial domains and 207 

sharp boundaries than that of Leiden, SpaGCN and BayesSpace (Fig.3c). For example, 208 

in addition to different cortical layers, SpaSEG was also able to clearly delineate the 209 

pyramidal layer of Ammon’s horn and the granule cell layer of the dentate gyrus. More 210 

specifically, SpaSEG successfully depicted subfields of Ammon’s horn such as CA1 211 

(CA1so, CA1sp, and CA1sr) and CA3 (CA3so, CA3sp, and CA3sr), as well as subfields 212 

of dentate gyrus including DG-mo, DG-sg, and DG-po. Spatial domains for CA2 were 213 
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not uncovered separately partly due to the few spots with gene expression similar to 214 

nearby domains. Owing to the lack of manual annotation on this dataset, we calculated 215 

the local inverse Simpson’s index (LISI) to measure the clustering performance. As a 216 

result, SpaSEG reached a significantly lower LISI value than other three methods 217 

(p<2.2e-16, Mann-Whitney U test; Fig 2d), suggesting its highest accuracy for spatial 218 

domains detection with high resolution data. 219 

We then utilized the mouse hypothalamic preoptic region data generated by MERFISH 220 

[4]. This annotated dataset contains 4975 single cells (i.e., spots) and 160 genes. 221 

SpaSEG achieved the ARI value of 0.46, which was higher than all other methods of 222 

Leiden (0.38), SpaGCN (0.26) and BayesSpace (0.33) (Fig. 2e. Moreover, SpaSEG also 223 

can delineate the spatial distribution of cell classes with spatial dependency such as 224 

ependymal, inhibitory, excitatory, mature OD, and mural, which were agreement to the 225 

annotations. We further employed the mouse organogenesis seqFISH data [5]. This 226 

dataset consists of 19416 single cells and 351 genes with a total of 22 cell types 227 

annotated. Compared to Leiden, SpaGCN and BayesSpace, SpaSEG yielded the highest 228 

ARI value of 0.46 (Fig. 2f). SpaSEG can better depict the spatial distribution of cell 229 

classes than other method, including three germ layers of ectoderm, mesoderm and 230 

endoderm, which were in consistent with the original study and known anatomy [27]. 231 

These results demonstrated that SpaSEG had the high accuracy for spatially clustering 232 

imaging-based in-situ transcriptomic data. 233 

SpaSEG can successfully detect spatially variable genes (SVGs)  234 

Next, we applied SpaSEG to detect SVGs for the validation of the identified spatial 235 

domain. Similar to previous study [16], we first examined the detected SVGs for each 236 

domain in the DLPFC section 151673 originally with 3639 spots and 33538 genes. 237 
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SpaSEG finally detected 143 SVGs with low false discovery rate (FDR)-adjusted P 238 

values (<0.05), of which 126 genes were specifically expressed highly in domain 0, 239 

while the rest 17 genes were in the remaining domains (Supplementary Table 10). The 240 

Gene Ontology (GO) term enrichment analysis indicated the most SVGs enriched in 241 

domain 0 were significant related to white matter such as central nervous system 242 

myelination, neural myelin sheath, and structural constituent of myelin sheath 243 

(Supplementary Figure 5d). SpaSEG detected single representative genes for each of 244 

neuronal layers and white matter. For example, PLP1, CNP, GFAP, CRYAB, TF, MOBP 245 

gene was enriched in domain 0 (white matter), CAMK2N1, ENC1, HPCAL1, HOPX in 246 

domain 2(layer2, 3), NEFL, NEFM, SNCG in domain 3(layer 3), PCP4, TMSB10, 247 

TUBB2A in domain 4(layer 4, 5) and MALAT1 was in domain 6(layer 1) (Fig.4a, b, 248 

Supplementary Figure 5a). By contrast, SpaGCN detected only 67 SVGs while 249 

SpatialDE and SPARK can totally detect 3661 and 3187 SVGs, respectively 250 

(Supplementary Figure 5c). However, SVGs detected by SpatialDE and SPARK did not 251 

necessarily show domain specificity. The Moran’s I values and Geary’s C values for 252 

SVGs detected by SpaSEG were significantly lower than that detected by SpatialDE 253 

(p<2.2e-16, Mann-Whitney U test) and SPARK (p<2.2e-16, Mann-Whitney U test) but 254 

showed no significant difference against that detected by SpaGCN (p=0.07,0.01 255 

Supplementary Figure 5b). These results suggested that SpaSEG can detected more 256 

domain-specific SVGs than SpaGCN, SpatialDE and SPARK while maintained the 257 

similar accuracy against SpaGCN in spite of being slightly inferior to SpaGCN in terms 258 

of the Moran’s I value and Geary’s C value. These results demonstrated that SpaSEG 259 

outperforms SpaGCN in identifying spatial patterns for genes. 260 

Then, we applied SpaSEG to detect SVGs on the unannotated mouse embryo Stereo-261 

seq data with 72944 spots (bin50, 25 μm diameter per spot) and 28879 genes. Based 262 
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on the 30 identified spatial domains (Fig.4c), SpaSEG detected a total of 490 SVGs that 263 

was more than SpaGCN (n=458) (mean of Moran’s I for SpaSEG 0.361 and mean of 264 

Geary’s C = 0.616, Fig.4d, e). These results demonstrated that SpaSEG outperforms 265 

SpaGCN in identifying spatial patterns for genes. Of particular interest in the following 266 

analyses were domain 1 (brain), domain 4 (epidermis), and domain 7 (cartilage 267 

primordium/bone), which were associated with 178 SVGs, 18 SVGs, and 18 SVGs 268 

respectively (Supplementary Table 11-13). These SVGs showed transcriptionally 269 

distinct patterns that distinguished the three spatial domains (Fig.4h). We further select 270 

top 5 genes that were highly expressed for each domain. For example, top 5 SVGs 271 

highly expressed in domain 1 contains brain development associated genes of Nnat, 272 

Tuba1a, Mapt, and brain marker genes Stmn2, Tubb2a, and top 5 SVGs in domain 4 of 273 

Krt10, Krt15, Krt77, Lor, Krtdap, and top 5 SVGs in domain 7 of lbsp, Col1a1, Col1a2, 274 

Sparc, Serpinh1 (Fig.4f). We also depicted spatial expression for each of top 2 SVGs 275 

that demonstrate strong spatial patterns in corresponding spatial domain (Fig.4g). GO 276 

enrichment analysis of the SVGs showed that a total 457 GO terms and 40 Kyoto 277 

Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in cluster 1 278 

(brain), of which many of these GO terms and KEGG paths are associated with the 279 

development of the nervous system (Fig.4i), for example, growth cone (GO 0030426), 280 

site of polarized growth (GO 0030427), distal axon (GO 0150034). In cluster 4 281 

(epidermis), 18 SVGs are selected (q value < 0.05 and p value < 0.05) for the 282 

enrichment analysis, a total 72 GO terms and 11 KEGG pathways were enriched and 283 

most of these GO terms and KEGG pathways are related to keratin and epidermal cells, 284 

(Fig.4i) such as intermediate filament (GO 0005882), intermediate filament 285 

cytoskeleton (GO 0045111), keratin filament (GO 0045095). While in cluster 7 286 

(cartilage primordium/bone), the most significant GO terms and KEGG paths are 287 
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related to collagen and cartilage or bone development (Fig.4i), collagen-containing 288 

extracellular matrix (GO 0062023), fibrillar collagen trimer (GO 0005583), banded 289 

collagen fibril (GO 0098643). In addition, SpaSEG is also capable to identified fine 290 

structure of mouse embryos and we further analysis the spatial variable genes in toes. 291 

Several representative marker genes are identified (Fig.4j), such as Krt10 (skin tissue), 292 

Dcn (connective tissue), Col2a1 (cartilage primordium). These results demonstrate that 293 

SpaSEG could effectively and accurately identify spatial variable based on our spatial 294 

segmentation results. 295 

 296 

SpaSEG facilitates the investigation of ligand-receptor interactions 297 

Most of cell-cell interactions and crosstalks are mediated by ligand-receptor (LR) 298 

interactions [ref]. To facilitate the exploration of putative intercellular interaction across 299 

the entire tissue section, we proposed a method to conduct LR interaction analysis by 300 

leveraging the spatial domains identified by SpaSEG and the co-expressions of the 301 

ligands and receptors. Here we applied the LR interaction analysis on the adult mouse 302 

brain Stereo-seq data at bin200 resolution with spatial domains identified by SpaSEG 303 

(Fig.5a). In order to further validate the accuracy of our clustering result, we first 304 

analyzed the SVGs in cortex (Fig.5d) and found that Lamp5, Nrgn are specifically 305 

enriched in cluster 5 (cortex layer 2/3), Pvalb gene in cluster 16 (cortex layer 4 or 5) 306 

and Tbr1 in cluster 7 (cortex layer 5/6). Region specific SVGs are also found in 307 

hippocampus (Fig.5e), such as Tmem54, Pantr1 in cluster 4 (CA1/2), Hpca and Ddn in 308 

cluster 17 (CA3) and Wipf3 in cluster 11 (DG). A total of 267 significant ligand-receptor 309 

pairs are first identified by CellPhoneDB (Supplementary Table 14), of which a large 310 

number of LR interactions are enriched in cortex area as showed in the overall LR score 311 
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heatmap (Fig.5b). The cell types are annotated by cell2location according to the max 312 

confidential spot-level cell type deconvolution score and we observed that the 313 

deconvolution result could well depict the analogy of the adult mouse brain (Fig. 5c). 314 

Then we calculated the Spearman correlations between spot-wise cell type 315 

deconvolution scores with its corresponding LR scores, in which a positive correlation 316 

suggests as the colocalization of LR pairs with specific cell types. We found a majority 317 

of cell types between cortex, hippocampus and amygdala displayed highly positive 318 

correlations, including cell types of Astrocytes and Excitatory neuros that suggested 319 

their well colocalization in spatial context of the tissue (Fig. 5f). For example, the ligand 320 

Il34 (Interleukin-34) and receptor Csf1r are highly active in the cortex, hippocampus 321 

and amygdala (cluster 5,7,8,9,10,12,16), which corresponding to the conclusion that 322 

Il34 identified as a tissue-specific ligand of Csf-1 receptor (Csf1r) is mainly expressed 323 

in brain cerebral cortex (Fig. 5f, g). Our result also shows that Cholecystokinin (Cck) 324 

and its receptor Cckbr are enriched in cortex, hippocampus, amygdala and piriform 325 

cortex [28]. Meanwhile, we find that Bdnf_Sort1 and Bdnf_Ntrk2 are enriched in cortex 326 

and hippocampus [29], which may be related to increased or decreased volume of the 327 

hippocampus.  328 

SpaSEG enables to elucidate the ligand-receptor interactions in Invasive ductal 329 

carcinoma 330 

To further validate our LR interaction results identified by SpaSEG, we analyzed a 331 

breast cancer sample originally published in BayesSpace [15] with tumor regions being 332 

annotated by the pathologist (Fig. 6a). The sample was an estrogen receptor-positive 333 

(ER+), progesterone receptor-negative (PR-), human epidermal growth factor receptor 334 

(HER)2-amplified (HER2+) invasive ductal carcinoma (IDC). The dataset was 335 
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generated by 10x Genomics Visium, leading to a total of 4727 spots in tissue and 36601 336 

genes with a median of 2964 genes per spot. To allow cell2location for cell type 337 

mapping at spot level, we downloaded a published breast cancer scRNA-seq dataset as 338 

the reference that comprised 16 primary tumors [30] (11 ER+ and 5 HER2+) with cell 339 

types being annotated.  340 

Spatial clusters obtained by applying SpaSEG were able to accurately distinguish 341 

regions among invasive carcinoma (cluster 0, 2,3, 8 and 9), carcinoma in situ (cluster 342 

6), and benign hyperplasia (cluster 2) as well as non-tumor tissue (cluster 1,5 and 7), 343 

which were strong accordance with histopathological annotations (Fig. 6b). Cell types 344 

mapping using cell2location showed that, compared to other clusters, predominant 345 

proportions of cancer cells resided at invasive tumor regions (cluster 0, 2,3, 8 and 9) 346 

while non-tumor regions (cluster 1,5 and 7) were enriched for more immune-related 347 

cells than other regions such as B cells, cancers associated fibroblasts (CAFs), T cells, 348 

and plasmablasts (Fig. 6d and 6f). These findings indicated that SpaSEG can well 349 

capture the inter- and intra-tumor heterogeneities at molecular level. Spatially co-350 

expressed LR pairs and its corresponding potential interaction cell types are showed in 351 

Figure 6e. By conducting cell-cell interaction analysis, we observed many interactions 352 

around the immune-invasive areas, especially between cluster 5 and cluster 0,4,3,9 353 

(Fig.6c), and found colocalizations of cell types such as B cells and T cells, 354 

macrophages and T cells, CAFs and T cells (Fig. 6e) For example, ligand PTPRC 355 

secreted by T cells is an essential regulator in mediating T- and B-cell antigen 356 

processing by targeting the CD22 receptor in B cells [31, 32], playing a major role in 357 

adaptive immune response. T cells communicated with dendritic cells (DCs) through 358 

ligand PTPRC and receptor MRC1 [32, 33] (Fig. 6g, h). The mannose receptor (MRC1) 359 

expressed on DCs acts as a direct regulator of CD8+ T-cell activity by interacting with 360 
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CD45[34, 35], which will result in the up-regulation of cytotoxic T-lymphocyte–361 

associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. The cytokine 362 

macrophage migration inhibitory factor (MIF) which constitutively found in 363 

macrophage sustains pro-inflammatory function and cell proliferation. And its receptor 364 

CD74 is also found in T-cells as previous literatures indicates and MIF_CD74 (Fig. 6g, 365 

h) shows significant high Spearman correlation with T cells in our study. In addition, 366 

we also detected that Galectin-9 (LGALS9 secreted by macrophages, monocytes) 367 

served as a ligand for immune checkpoints HAVCR2[30, 36, 37] (Fig. 6 e, g, h) (highly 368 

correlated with NKT cells, CD4+, CD8 T cells) and contributes to anti-cancer immune 369 

suppression by killing cytotoxic T lymphocytes and impairing the activity of natural 370 

killer (NK) cells[38], which is a promising target for immunotherapy. Apart from the 371 

active immune cell-cell interaction in TME, crosstalk between stromal cells and 372 

immune cells is also of great importance for angiogenesis, tumor invasion and 373 

metastasis. We detected that CAF ligand CXCL12 and its cognate T cell receptor 374 

(CXCR4/CXCR3) (Fig. 6g, h) are among the top ranked cell types for CXCL12_ 375 

CXCR4/CXCR3 pairs [39, 40], of which the CAF mainly promotes tumor growth by 376 

the secretion of SDF-1. Besides, CAF associated LR pairs like TIMP1_FGFR2, 377 

C3_C3AR1 [41, 42] (Fig. 6g, h) could also be observed. And the endothelial cells 378 

derived gene VEGFB, PDGFB, ACKR1 that could induce new blood vessel formation 379 

and stimulate cell proliferation and migration via interaction with NRP1 [43], LRP1 380 

and the chemokine ligand CCL5. 381 

Therefore, it is significant to understand the cell-cell interactions between macrophages 382 

and other immune cells and the factors that enhance existing anticancer treatments. 383 

These results proved that SpaSEG could be served as a handful tool for LR analysis in 384 

pathology, suggesting potential patterns of most likely cell-cell interactions. 385 
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Discussion 386 

Identification of spatial domain is a significant process in spatial transcriptomic data 387 

analyses. SpaSEG harmoniously integrated gene expression information and spatial 388 

coordinates into one three-dimensional matrix as model input. Through feeding the 389 

input data to the convolutional neural network, SpaSEG learns the gene expression 390 

similarity and spatial contiguity simultaneously with the optimization of the gene 391 

expression similarity loss and the spatial continuity loss and ultimately identifies 392 

separate spatial domains. In our study, we firstly demonstrate its strong ability in 393 

differentiating distinct layers and superior performance relative to existing alternatives 394 

in DLPFC benchmarking dataset. To further validate the utility of SpaSEG in ST data 395 

of diverse resolutions, we artificially simulated four datasets representing different 396 

levels of resolution by utilizing the adult mouse brain data generated by Stereo-seq, 397 

SpaSEG could uniformly profile significant functional regions, such as Cerebral Cortex 398 

layers (CTX), Thalamus (TH), Hypothalamus (HY) and HPF (hippocampal formation 399 

areas) [44]. Although SEDR also performed clustering analysis on mouse olfactory bulb 400 

data from Stereo-seq and exhibited its efficacy to handle high resolution data, it suffers 401 

from high computational burden in constructing graphs for such high throughput and 402 

high-resolution spatial omics data [14]. 403 

 404 

In our work, we have also demonstrated the utility of SpaSEG in detecting spatial 405 

variable genes based on our clustering result. For fair and comprehensive comparison, 406 

we analyze two separate SVG detection methods: SpaGCN  [16]and SpatialDE [45]. 407 

The former one takes spatial information into consideration when identifying SVGs, 408 

while the other one detects SVGs without the guidance of spatial domains. SpaSEG 409 
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identified 490 SVGs compared to SpaGCN (458 SVGs) in total in sample 151673. 410 

More specifically, there are about half of the SVGs enriched in white matter that are 411 

only detected by our methods while SpaGCN not, although both methods have many 412 

overlapping SVGs. Besides, there are more than 4000 SVGs identified by SpatialDE. 413 

However, many of them failed to exhibit spatial patterns. Thus, SpaSEG could serve as 414 

a potential tool for researchers to discover novel marker genes. In addition, our research 415 

has also shown the ability of SpaSEG in dissecting the spatial cell-cell interaction in 416 

adult mouse brain and IDC. The clustering results of SpaSEG in IDC and MB are 417 

concordant with the manual annotation from pathologist and the reference panel from 418 

Allen Mouse Brain Atlas respectively. More concretely, the heatmap of L-R pairs 419 

indicates that the most active regions in mouse brain are cerebral cortexes and 420 

hippocampus, which corresponds to previous studies [46]. Moreover, SpaSEG could 421 

spatially visualize the distribution of immune cell in IDC through deconvolution and 422 

further research could be undertaken to study the tumor microenvironment between the 423 

tumor cells and macrophage, T cells and B cells, etc in molecular level through L-R 424 

analysis. 425 

 426 

Histology images are a new modality along with the ST data and the tissue 427 

morphological features have a strong connection with the corresponding gene 428 

expression around the specific spot [47, 48]. Recent studies such as SpaGCN and 429 

stLearn have made efforts to incorporate histological images into their algorithms but 430 

they are unable to achieve the finest clustering results, as demonstrated in our study. 431 

One possible reason could be that there are no obvious morphological features among 432 

the adjacent layers in DLPFC. Besides, the artifacts such as batch effects in the process 433 
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of Hematoxylin and Eosin (HE) staining and noise(quality) control of the H&E images 434 

have a great influence on the final results. Our future research direction may lie in the 435 

development of robust algorithms that seamlessly incorporate both modalities’ 436 

information together to achieve optimal performance. Another utility of H&E images 437 

is resolution enhancement in ST data. While our work mainly focused on ST data from 438 

10X genomics and Stereo-seq, the former one usually has lower resolution and 439 

sensitivity, which limits their usefulness in studying detailed expression patterns and 440 

uncovering comprehensive tissue anatomical structure. Recent works have 441 

demonstrated the applicability of histological images in inferring accurate full-442 

transcriptome spatial gene expression at the same resolution as the image data (XFuse 443 

[49]), which could be further used as a data enhancement approach for pre-processing 444 

step of the low-resolution ST data. Further research could be undertaken to explore how 445 

the imputed ST data would be used to train our algorithm and improve the clustering 446 

accuracy. 447 

In conclusion, this work presents SpaSEG, an efficient and scalable unsupervised deep 448 

learning algorithm for ST data clustering. The results of our study also indicate the 449 

applicability of our algorithm in various downstream analyses, such as SVGs 450 

identification, cell-cell interaction and trajectory inference. Therefore, we believe that 451 

SpaSEG could serve as a valuable tool to benefit ST data analysis in the future. 452 

Methods 453 

Data preprocessing:  454 

SpaSEG takes transcriptome-wide gene expression profile with spatial coordinates as 455 

inputs. Genes expressed in less than five spots or bins are excluded for all datasets. We 456 
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also eliminate poor spots with fewer than 200 expressed genes. The reserved raw gene 457 

counts per spot are further normalized using the library size, and scaled by log-458 

transformation. Principal component analysis (PCA) is then performed on the gene 459 

expression data in an 𝑁 × 𝑀 matrix with 𝑁 spots and 𝑀 genes, and top 𝑑 PCs per 460 

spot were subsequently extracted. The optimal value 𝑑 ∈ {15, 50, 100}, varies from 15 461 

to 100, depending on different sequencing platforms (Supplementary Table 9). These 462 

PCs are able to explain the sufficient variability in the data and mitigate the 463 

computational intension, as well as yield the best spatial clustering performance 464 

(Supplementary Figure 1). We further perform 𝓏-score normalization such that each 465 

PC has zero mean and unit variance.  466 

Conversion of spatial gene expression data into image-like tensor 467 

To enable SRT data analysis through SpaSEG, we convert the gene expression data with 468 

spatial information into an image-like tensor. In this tensor, a spot 𝑛 in the SRT array 469 

at row 𝑖 and column 𝑗 was represented as a feature vector of 𝐬𝑖,𝑗
𝑛 ∈ ℝ𝑑, where 𝑑 is 470 

the number of extracted PCs. As a result, an 𝑑 -channel image-like tensor 𝐗 =471 

{𝐬𝑖,𝑗
𝑛 }𝑛=1

𝑁 ∈ ℝ𝐻×𝑊×𝑑 is created, where 𝑁 is the number of spots, 𝐻 and 𝑊 are the 472 

height and width of the SRT array, 𝑖 ∈ {1, 2, … , 𝐻} , 𝑗 ∈ {1,2, , … , 𝑊} . For 473 

simplification, we denote the image-like tensor by 𝐗 = {𝐬𝑛}𝑛=1
𝑁   unless otherwise 474 

specification. 475 

SpaSEG model development 476 

SpaSEG architecture. Relying on convolutional neural network (CNN) architecture, our 477 

model starts with a batch normalization layer, followed by two convolutional blocks 478 

and a refinement module consecutively (Fig. 1b). Each convolutional block is 479 
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composed of a 3 × 3 (kernel size) convolutional layer, a batch normalization layer, 480 

and a leaky ReLU activation layer (intermediate parameter 𝛼 = 0.2 ). The two 481 

convolution modules have 𝑢  and 𝑣  output channels, respectively. Finally, the 482 

refinement module consists of only a 1 ×  1 convolutional layer and a batch 483 

normalization layer, yielding 𝑘 output channels. It should be noted that the output size 484 

of each convolutional layer in SpaSEG is maintained the same as input. For 485 

simplification, we set 𝑢, 𝑣 and 𝑘 be equal to 𝑑 in all experiments.  486 

Formally, given the SRT data of a tissue slice that was represented by an image-like 487 

tensor 𝐗 = {𝐬𝑛}𝑛=1
𝑁 , the feature representation of spot 𝑛 can be learned by 488 

𝐲𝑛 = 𝑓𝚯(𝐬𝑛) (1) 489 

where 𝑓𝚯(∙) is the SpaSEG network with the trainable parameter 𝚯 that can be 490 

updated during an iterative training process, 𝐲𝑛 = [𝑦𝑛
1, 𝑦𝑛

2, … , 𝑦𝑛
𝑘] ∈ ℝ𝑘. Then, the 491 

pseudo-label for spot 𝑛 can be given by 492 

𝑐𝑛 = argmax
𝑡

𝑦𝑛
𝑡 , 𝑡 = 1,2, … , 𝑘 (2)  493 

Loss Function. We treat the spatial domain identification as spot-wise classification 494 

problem, where the class label of each spot can be viewed as a segment. To train 495 

SpaSEG, we first consider the most commonly used cross entropy loss with L2-496 

norm regularization over pseudo-label as follows. 497 

ℒseg = − ∑ ∑ 𝕀(𝑐𝑛 = 𝑡) log(𝑝𝑛
𝑡 )𝑘

𝑡=1
𝑁
𝑛=1 + 𝜆‖𝚯‖2

2 (3) 498 

where 𝕀(𝑥) = {
1, if 𝑥 is true
0, otherwise

 , 𝑝𝑛
𝑡 = 𝑒𝑦𝑛

𝑡
∑ 𝑒𝑦𝑛

𝑡𝑘
𝑡=1⁄  , and 𝜆  is regularization 499 

parameter that controls the L2-norm regularization penalty and we set it to 0.00001 500 
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in our experiments. 501 

To encourage the class label to be the same as those of spatially adjacent spots, we 502 

follow the previous work [23] to introduce a spatial-smoothness loss function that 503 

considers the horizontal and vertical differences of feature representations, which 504 

is defined as 505 

ℒspa = ∑ ∑‖𝐲𝑖+1,𝑗 − 𝐲𝑖,𝑗‖
1

+ ‖𝐲𝑖,𝑗+1 − 𝐲𝑖,𝑗‖
1

𝐻−1

𝑗=1

𝑊−1

𝑖=1

 506 

Consequently, the overall loss is then given by  507 

ℒoverall = 𝛼ℒseg + 𝛽ℒspa 508 

where 𝛼 and 𝛽 are weighting factors for segmentation and spatial smoothness, 509 

which are set to be 0.4 and 0.7, respectively. 510 

SpaSEG training 511 

Rather than randomly initializing parameters of SpaSEG that usually yields unstable 512 

results, we pre-train SpaSEG using MSE loss defined as ℒpre =
1

𝑁
∑ ‖𝐬𝑛 − 𝐲𝑛‖2

2𝑁
𝑛=1  513 

during the first 400 training epochs to initialize the model parameters. this iterative 514 

process could stabilize the model performance and reinforce the entire algorithm to 515 

update the model in a desirable direction. In the subsequent epochs, feature 516 

representation 𝐲𝑛 and the corresponding pseudo-label 𝑐𝑛 for each spot was obtained. 517 

SpaSEG then calculates and backpropagates the overall loss ℒoverall  to update the 518 

model parameters. This process is repeated until either the number of iterations exceeds 519 

the pre-defined maximum, or a minimum number of unique class labels is attained. 520 
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Otherwise, if the model failed to achieve the minimum number of class labels, an 521 

optional refinement process is proposed to enhance the final segmentation result from 522 

SpaSEG. In this process, the mean of the image-like tensor {𝒔𝑛
𝑘}𝑛=1

𝑁  for each cluster 523 

along the 𝑑-channel are calculated, where 𝑘 is the cluster label assigned by SpaSEG. 524 

Then the pairwise Euclidian distances are calculated between the clusters, denoted as 525 

𝐷𝑖,𝑗  and 𝑖 , 𝑗  is the cluster labels. While the candidate spots that are spatially 526 

separatable among the clusters will be relabeled according to the smallest 𝐷𝑖,𝑗 . We 527 

employed Adam optimizer with the default parameters 𝛽1 = 0.9 and 𝛽2 = 0.999 as 528 

optimization method for the backpropagation. The learning rate was set to 0.002 and 529 

the total number of epochs were set to 2100. Those optimal values for the hyper-530 

parameters of SpaSEG were determined via a combination of grid search and manual 531 

tuning such that the best performance can be achieved. 532 

Spatial variable gene detection 533 

In order to identify spatially variable genes (SVGs) that have high expression in each 534 

spatial cluster, we combined the cluster results with pre-processing datasets. For each 535 

cluster, Scanpy implementation of the Wilcoxon rank-sum test was used to identify 536 

SVGs (adjusted p value < 0.05). To further confirm that the SVGs have abundant 537 

expression, we added three conditions, this refers to SpaGCN's method of identifying 538 

SVG:  539 

1) In the target cluster, count the ratio of gene expression spots to total spot; 540 

2) For outside the target cluster, the percentage of spots expressing genes within the 541 

target cluster and outside the clusters; 542 

3) Expression fold change in target cluster and outside clusters. 543 
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And then we drew the spatial pattern map of each SVG expression on the tissue, which 544 

are identified that SVGs are truly enriched in target cluster. 545 

And further discovering the functions with SVGs, we did GO and Kyoto Encyclopedia 546 

of Genes and Genomes (KEGG) pathways enrichment analysis of SVGs by 547 

clusterProfiler package in R software. 548 

 549 

Cell type deconvolution 550 

Each spatial spot was annotated to a specific cell type deconvoluted from spatial data 551 

and corresponding single cell reference datasets. The deconvolution of cell types was 552 

implemented using cell2location [50], which is a Bayesian model for spatial mapping 553 

of cell types. Given the complementary information from spatial resolved 554 

transcriptomic data and single-cell RNA sequence, we applied this Bayesian model to 555 

infer different cell types in different spatial locations. The training hyperparameters 556 

defined manually are selected depending on the cell number of a spot and RNA 557 

detection sensitivity. The cell type corresponding to the maximum score of each spot is 558 

regarded as the cell type of the spot in this research. 559 

 560 

Ligand-receptor interaction 561 

The cellular interactions mediated by protein-protein interactions are significant for 562 

understanding tissue structures and functions. Firstly, we randomly permuted the 563 

SpaSEG cluster labels of all spots to create a null distribution for each L-R pair in each 564 
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pairwise comparison between two clusters by using cellphoneDB. Then the significant 565 

interacting pairs were used to analysis ligand-receptor interactions between the clusters. 566 

With the prior of significant L-R pairs, we calculated the expression of spatially co-567 

expressed L-R pairs using: 568 

𝒆𝑖,𝑗
𝐿𝑘_𝑅𝑘 = √𝐱𝑖

𝐿𝑘 ∙  𝐱𝑗
𝑅𝑘 569 

𝐸𝐿𝑘_𝑅𝑘
=  ∑ √𝐱𝑛

𝐿𝑘 ∙  𝐱𝑛
𝑅𝑘

𝑛

𝑖=1

 570 

where 𝐱𝑖  and 𝐱𝑗  represents the gene expression vector of spot 𝑖  and spot 𝑗 , 571 

respectively. 𝐸𝑖,𝑗 represents the value of L-R pair in all spots. If one of the ligands and 572 

receptors in a spot is zero (not expressed), the co-expression value of the spot is zero. 573 

By calculating the geometric mean of gene expression values, we know that the 574 

geometric mean of each receptor ligand is large when the expression of each receptor 575 

ligand is similar, and the geometric mean is small when the expression difference is 576 

large. We calculated Spearman correlations between cell-type score and L-R score, 577 

which represents the corresponding L-R pairs expression in related cell type. 578 

Data description 579 

We applied SpaSEG to ST datasets with different resolutions generated by various 580 

platforms, such as 10X genomics, Stereo-Seq, MERFISH, SeqFISH, Slide-SeqV2. The 581 

DLPFC dataset generated by Visium platform contains 12 slice and each consists of 582 

around 4000 spots [12]. These 12 sections are all manually annotated and are used to 583 

benchmark our algorithm. For the Stereo-seq data, we artificially divided the expression 584 
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matrix into non-overlapping bins covering an area of X×X DNB, with 585 

X∈(20,50,100,200) and the transcripts of the same gene are aggregated within each 586 

bin. Specifically, the raw matrix of adult mouse coronal brain sample [8] contains 587 

27,279 genes, which was divided into bin20(526,716 spots with 10 𝜇𝑚  diameter), 588 

bin50(84,724 spots with 25 𝜇𝑚 diameter), bin100(21,368 spots with 50 𝜇𝑚 diameter) 589 

and bin200(5,420 spots with 100 𝜇𝑚 diameter). The MERFISH sample (animal id = 590 

1, Bregma = -0.24) was collected from a female mouse with no treatment performed in 591 

the hypothalamic preoptic region [51], this sample data contains 6412 spots and 592 

measured 161 genes expression values. The mouse hippocampus data from Slide-593 

seqV2[6] (id: Puck_200115_08) consists of 53208 spots and measured 23264 genes. 594 

The sagittal sections of the seqFISH[27] sample was collected from 8-12 somite-stage 595 

embryos (Embryonic days (E)8.5-E8.75) and contains 19416 locations and 351 596 

barcoded genes are measured. The mouse embryo dataset [8] with 76453 spots and 597 

27009 genes collected from E15.5 embryos that was from pregnant C57BL/6J female 598 

mice, produced by Stereo-seq have been deposited to CNGB Nucleotide Sequence 599 

Archive. We aggregated the raw bin 1 matrix into the final bin 50 matrix and assigned 600 

coordinates for each bin. The IDC (invasive ductal carcinoma) [15] data was 601 

downloaded from 10X Genomics, which was stained for nuclei with DAPI and anti-602 

CD3. There are totally 4,727 spots detected under tissue. The mean reads per spot is 603 

40,795. The median genes per spots is 2,964. The IDC sample approximately include a 604 

median of 21 cells per spot. 605 

 606 
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Data availability 607 

The DLPFC dataset is publicly available at http://research.libd.org/spatialLIBD/. The 608 

MERFISH sample data could be downloaded from 609 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248. The Slide-seqV2 data 610 

could be accessible at Single Cell Portal (broadinstitute.org). The seqFISH data can be 611 

downloaded from https://content.cruk.cam.ac.uk/jmlab/SpatialMouseAtlas2020/. The 612 

IDC data is publicly available at  613 

https://www.10xgenomics.com/resources/datasets/invasive-ductal-carcinoma-stained-614 

with-fluorescent-cd-3-antibody-1-standard-1-2-0. The mouse embryo bin50 could be 615 

down form https://db.cngb.org/search/project/CNP0001543 . 616 

 617 

Comparison with state-of-arts methods and evaluation.  618 

To demonstrate the superior performance in spatial transcriptomics data clustering, we 619 

chose a commonly used non-spatial clustering method Leiden plus five recently 620 

published state-of-the-art methods, including stLearn, Giotto, SpaGCN, BayesSpace, 621 

and SEDR (Supplementary Table 2). To evaluate the effectiveness of SpaSEG in 622 

integrating multiple tissue sections, two commonly used algorithms in scRNA-seq data 623 

batch correction, Harmony and LIGER are utilized to compare with SpaSEG. 624 

Leiden. Leiden is a popular tool for single cell transcriptomics data clustering integrated 625 

in Scanpy. The data preprocessing step is the same as SpaSEG and we ran sc.tl.leiden 626 

in Scanpy and tune the resolution parameter to give us desirable number of clusters. 627 
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stLearn. stLearn is the first algorithm simultaneously integrating H&E information and 628 

spatial transcriptomics data and allows various downstream analysis like cell-cell 629 

interaction and trajectory inference. We ran the data processing with filtering gene at 630 

least expressing in 1 cell and setting the number of principal components to 15, then 631 

we follow the clustering pipeline of stLearn(version: 0.3.2) with the guidance of official 632 

tutorial https://stlearn.readthedocs.io/en/latest/. 633 

Giotto. Giotto is a toolbox for spatial data integrative analysis by utilizing hidden 634 

Markov random field (HMRF) model. We follow the online tutorial of Giotto(version: 635 

1.0.4): https://github.com/RubD/Giotto_site and set the expression_threshold 636 

parameter to 1 in filterGiotto function and set hvg = yyes’, perc_cells > 3, 637 

mean_expr_det>0.4 in gene_metadata function when preparing data for dimensional 638 

reduction. The spatial neighborhood network is created with the default parameters and 639 

the number of ground truth clusters is employed for HMRF model clustering. 640 

SEDR. SEDR uses a deep autoencoder to construct latent gene representation and a 641 

variational graph autoencoder to embed spatial information. We ran SEDR code 642 

indicated on the github repository: https://github.com/JinmiaoChenLab/SEDR with 643 

default parameter settings. 644 

SpaGCN. SpaGCN utilizes a graph convolutional network that combines gene 645 

expression, spatial location and histology in spatial transcriptomics data analysis. We 646 

follow the official tutorial of SpaGCN: https://github.com/jianhuupenn/SpaGCN 647 

(version: 1.2.0) and set the min_cell to 3 when filtering genes, alpha to 1, beta to 49 648 
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when calculating adjacent matrix with histology image available. The learning rate and 649 

max training epoch were set to 0.05 and 200, respectively. 650 

BayesSpace. BayesSpace performs spatial clustering by introducing a spatial prior and 651 

encouraging neighboring spots to belong to the same cluster. We ran BayesSpace 652 

(version:1.2.1) followed by https://github.com/edward130603/BayesSpace. Top 200 653 

highly variable genes are selected to perform PCA and we set q to the number of PCA 654 

and d to the desirable cluster number, nrep to 50000 and gamma to 3, respectively. 655 
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 776 

Figure legend 777 

Figure 1. Overview of SpaSEG. a. Spatial transcriptomics data preprocessing and data 778 

preparation step for SpaSEG. b. SpaSEG takes the image-like low dimensional feature 779 

vector as input, then spot-wise labels are assigned through iterative unsupervised CNN 780 

model training with gene similarity loss and spatial continuity loss. c. Biological 781 

application and downstream analysis for SpaSEG, including spatial domain 782 

identification, spatial variable detection, spatial ligand receptor detection. 783 

 784 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516728
http://creativecommons.org/licenses/by/4.0/


Figure 2. Algorithms comparison in 10X DLPFC. a, The average ARI, NMI score 785 

among 12 DLPFC slices between SpaSEG and the other spatial methods. b, Annotated 786 

ground truth for sample 151673. c, Spatial domain results for SpaSEG and other spatial 787 

clustering methods in sample 151673. 788 

 789 

Figure 3. Robustness and scalability of SpaSEG in different spatial platforms. a, 790 

from left to right, the segmented Stereo-seq mouse brain cellbin annotation in the 791 

original paper. The cell composition between the annotation and SpaSEG clusters in 792 

two specific zoomed-in areas. SpaSEG cell segmentation results. SpaGCN clustering 793 

results. Leiden clustering results. b, from left to right. Annotated mouse brain coronal 794 

sections from Allen Brain Atlas. The clustering results of SpaSEG, SpaGCN and leiden 795 

respectively in Stereo-seq MB bin50 data. c, The LISI score calculated from SpaSEG, 796 

SpaGCN and Leiden spatial clustering labels in MB cellbin, MB bin50 and Slideseq2 797 

datasets. d, from left to right. The annotated structure of mouse hippocampus from 798 

Allen Brain Atlas. Spatial domain results of SpaSEG, SpaGCN, Leiden and BayesSpace 799 

in SlideseqV2. e, from left panel to right panel. The annotated celltype spatial 800 

distribution of mouse hypothalamic preoptic region in the original paper. Spatial 801 

clustering results of SpaSEG, SpaGCN, Leiden and BayesSpace in MERFISH dataset. 802 

f. from left panel to right panel. The spatial map of cell composition during mouse 803 

organogenesis in seqFISH data. Spatial clustering results of SpaSEG, SpaGCN, Leiden 804 

and BayesSpace in the forementioned dataset. Astr: Astrocyte; Endo: Endothelial; IMO: 805 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516728
http://creativecommons.org/licenses/by/4.0/


OD Immature; MO: OD Mature; ASTs: Anterior somitic tissues; CMs: Cardiomyocytes; 806 

CM: Cranial mesoderm; DE: Definitive endoderm; HPs: Haematoendothelial 807 

progenitors; IM: Intermediate mesoderm; LPM: Lateral plate mesoderm; MMM: 808 

Mixed mesenchymal mesoderm; PM: Presomitic mesoderm; SM: Splanchnic 809 

mesoderm. 810 

 811 

 812 
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Figure 4. Spatial clusters and SVGs detected in the DLPFC slices and Mouse 813 

embryo. a, Spatial expression pattern of the DLPFC’s SVGs detected SpaSEG. b, 814 

Bubble map of spatially differential genes obtained by SpaSEG in DLPFC (151673). c, 815 

Spatial domain results for SpaSEG spatial clustering methods in mouse embryo. d, 816 

Moran’s I and Geary’s C values for SVGs detected by SpaSEG(n=490) and SVGs 817 

detected by SpaGCN (n=458). e, Venn diagram for SVGs detected by SpaSEG and 818 

SpaGCN in the mouse embryo data. f, Violin plot of spatially differential genes 819 

obtained by SpaSEG in mouse embryonic. g, spatial expression of mouse embryo’s 820 

brain, epidermis, cp. h, Spatial expression heatmap of the SVGs in the mouse embryo’s 821 

brain, epidermis and cp. i, GO pathway enrichment analysis of mouse embryo’s brain, 822 

epidermis, cp.  j, spatially clusters of mouse toe and spatial expression of mouse toe. 823 
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 824 

Figure 5. Cell-cell interaction analysis of the adult mouse brain. a, The workflow 825 

of cell-cell interaction. b, The result of SpaSEG clustering. c, Spatial expression of all 826 

significant L-R pairs. d, Spatially variable gene expression of zoomed-in cortex (cluster 827 

5, 7, 12, 16). The top5 SVGs and SpaSEG clustering for cortex are shown. e, Spatially 828 

variable gene expression of hippocampus (cluster 4, 7, 11) based on SpaSEG clustering. 829 

f, The Spearman correlation of cell type scores and L-R expression values. The 830 
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Spearman correlation values are represented by color. P values are represented by circle 831 

size. g, Significant L-R pairs of cortex area and hippocampus. h, A subset of cell types 832 

in the cortex and hippocampus, the proportions of which are estimated by cell2location. 833 

 834 

Figure 6. Cell-cell interaction analysis of IDC. a, The raw image of the IDC sample. 835 

b, The result of SpaSEG clustering. c, Spatial expression of all significant L-R pairs. d, 836 

The distribution of dominant cell types corresponding to the maximum score. e, The 837 
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Spearman correlation of cell type scores and L-R expression values. The Spearman 838 

correlation values are represented by color. P values are represented by circle size. f, 839 

Proportion of 29 cell types in each cluster. g. Significant L-R pairs of immune area and 840 

cancer area. h, Spatial distribution of a subset of immune cells (T cells CD8+, NKT 841 

cells, Macrophage and DCs) and stromal cells (CAFs MSC iCAF-like and Endothelial 842 

ACKR1). 843 
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