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17  Abstract

18  Recent improvements in spatial transcriptomics technologies have enabled the
19  characterization of complex cellular mechanisms within tissue context through

20 unbiased profiling of genome-wide transcriptomes in conjunction with spatial
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21 coordinates. These technologies require a systematic analysis approach to deciphering
22  the complex tissue architecture. Here, we develop SpaSEG, an unsupervised
23 convolutional neural network-based method towards this end by jointly learning gene
24  expression similarity of spots and their spatial contiguousness via adopting a loss
25  function for spatial boundary continuity. Using several spatial transcriptomics datasets
26  generated by different platforms with varying resolutions and assayed tissue sizes, we
27  extensively demonstrate that not only can SpaSEG better identify spatial domains, but
28  also be much more computationally and memory efficient than existing methods. In
29  addition, SpaSEG is able to effectively detect genes with spatial expression patterns
30 and infer spot-wise intercellular interactions as well as cell-type colocalization within
31 the tissue section by utilizing the identified domains. Taken together, our results have
32  indicated the flexibility of SpaSEG in multiple analysis tasks in spatial transcriptomics,
33  making it as a desirable tool in facilitating the exploration of tissue architecture and the

34  knowledge of underlying biology.

35 Introduction

36  Coordinated activities of diverse cells with the spatial context in tissues that underlie
37  their communications with surroundings and sophisticated biological processes can be
38 characterized by spatial gene expression patterns. Emerging spatial transcriptomics (ST)
39 technology has allowed the unbiased profiling of genome-wide gene expressions with
40  physical capture sites (referred to as spots), offering a quantitative and spatial snapshot
41  of cellular heterogeneity across a tissue section [1-3]. Recent years have witnessed
42  considerable progress in the ST experimental methods including the imaging-based in-
43 situ transcriptomics approaches like MERFISH [4] and seqFISH[5], and the next-

44  generation sequencing (NGS)-based approaches such as Slide-seqV2 [6], 10x
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45  Genomics Visium [7], and Stereo-seq [8]. These methods have reached an astonishing
46  resolution from multicellular to single-cell or even subcellular level with varying gene
47  throughput, delivering unprecedented insights into tissue-specific function,
48  development, and pathology through elucidating tissue architectures with myriad cell

49  types[9, 10].

50 A pivotal task in ST data analysis is to identify spatial domains defined as regions in
51 the tissue section with coherence in both gene expressions and spatial dependency. The
52  identification of spatial domains serves unravelling tissue structures, facilitating the
53  characterization of cell type composition and transcriptomic profiles in the tissue
54  microenvironments [8, 11, 12]. Conventional approaches to arrange spots into distinct
55  spatial domains resort to clustering methods such as Leiden [13] that only take into
56  account gene expressions without considering localization information, usually leading
57 to the loss of spatial contiguousness. Recently, several deep learning-based and
58  statistical based methods have been developed to enhance spatial domain identification
59  through incorporating gene expression with spatial information, including SEDR [14],
60  BayesSpace [15], SpaGCN [16], stLearn [17] and Giotto [18], to name a few. Despite
61  promising performance, these methods are only applied on the ST datasets with limited
62  spots and thereby may be fragile for larger tissue section with higher capture resolution.
63  Besides, these methods performing spatial clustering is absent of considering the

64  boundary constraint of spatial domains.

65  Additionally, knowledge of biological functions associated with spatial domains
66  necessitates pinpointing genes that exhibit spatial expression variations and patterns
67  known as spatially variable genes (SVGs). A handful of methods such as trendsceek

68  [19], SpatialDE[20] and SPARK][21] have been proposed to identify SVGs by modeling
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69  spatial dependency of gene expressions and conducting correlation testing between the
70  distribution of gene expression and spatial localization. These methods apparently
71 neglected spatial domains and may obtain suspectable spatial gene expression patterns,
72 failing to fully reflect tissue-specific spatial functions. Moreover, spatial variations in
73 gene expression across spatial domains can imply spatial patterns in cell-cell
74 interactions (CCIs) in a tissue [22]. However, the majority of existing methods do not

75  present the automatic detection of CCls across whole tissue section using ST data.

76 Here, we propose SpaSEG, a simply yet powerful unsupervised convolutional neural
77  network (CNN)-based model to jointly identify spatial domains, SVGs and CCIs. In
78  brief, SpaSEG first establishes an unsupervised CNN network through learning gene
79  expression similarity in conjunction with spatial coordinates to detect spatial domains.
80 SVGs are then detected for each spatial domain to ensure spatial gene expression
81  patterns. CCls are further examined by investigating enriched expression of ligand-
82  receptor (L-R) pairs in both intra and inter spatial domains. By analyzing several
83  datasets that encompass a wide range of ST platforms, including 10x Genomics Visium,
84  Slide-seqV2, seqFISH, MERFISH, and Stereo-seq, we extensively demonstrate that
85  SpaSEG exhibits superior performance on the identification of spatial domain over the
86  existing state-of-the-art methods. We also use ST datasets of mouse embryo to examine
87  the detection of SVGs, as well as mouse brain and human breast cancer section to
88  delineate L-R pairs in normal and tumor microenvironment, respectively. Through
89  comprehensive analyses, we show that SpaSEG is computational and memory efficient
90 as well as applicable for diverse ST platforms and analysis tasks, serving as a desirable
91  tool to explore tissue architecture and cellular characterization for different size of

92  tissue section at varying resolutions.
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93  Results

94  Overview of SpaSEG

95  SpaSEG starts with raw spatial transcriptomic data preprocessing through low-quality
96  genes and poor spots removal, gene measure normalization and log-transformation, as
97  well as principal component analysis (PCA) and z-score scaling, leading to a d-
98  dimensional feature vector s, € R% for each spot n (Fig. 1a). SpaSEG then converts
99  the low-dimensional representation of spots with spatial coordinates to an image-like
100  tensor, where spots are analogous to image pixels while the corresponding d -
101 dimensional feature vectors to image channels. Accordingly, the spatial domain
102  identification problem can be regarded as the pixel-wise image segmentation problem

103 in an unsupervised fashion.

104  SpaSEG responsible for spatial domain identification is a CNN-based network model
105  that consists of a batch normalization layer, two stacking convolutional modules and a
106  refinement module (Fig.1b). The network model yields a response representation y; €
107 R? for each spot i. To initialize model parameters, we first pre-train the model using
108  the mean squared error (MSE) loss between s, and y, for all spots. Then, the
109  softmax likelithood p, and the related pseudo-label ¢, for each spot n can be
110  obtained, and thus the classic cross entropy loss Lgeo is applied in the subsequent
111  training iterations. To encourage continuity of neighboring spots, we additionally
112 calculate L1-norm of boundary gradients for each spot with its spatial location as
113 domain boundary constraint loss Lgp,, inspired by the previous study [23]. To this end,
114 we optimize the joint loss of the weighted sum of Lo, and Lg,, for progressively

115  enhancing spot classification during iterative learning while preserving spatial
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116  dependency and continuity (Supplementary Figure 1). Finally, spots that present similar
117  gene expression and spatially continuous coordinates are clustered into the same
118  domain, and the detection of SVGs and CCls based on the identified domains are further
119  investigated (Fig.1c). We also showcase the capability of SpaSEG to integrated analysis
120  of multiple tissue sections, thus helping to discover spatial domains in different tissue

121 samples.

122 SpaSEG improves spatial domain identification on the human dorsolateral

123 prefrontal cortex dataset

124  To evaluate the performance of SpaSEG on spatial domain identification, we first
125 downloaded the publicly available dataset of the 10x Genomics Visium human
126 dorsolateral prefrontal cortex (DLPFC) [12] and used as a benchmark. This manually
127  annotated dataset is composed of 12 sections that cover six neuron layers and white
128  matter with the number of spots ranging from 3460 to 4789 (Supplementary Table 1).
129  To compare with SpaSEG, we chose a commonly used non-spatial clustering method
130  Leiden plus five recently published state-of-the-art methods, including stLearn, Giotto,
131 SpaGCN, BayesSpace, and SEDR. Apart from qualitative visualization analysis, two
132 widely used evaluation metrics of adjusted rand index (ARI) [24] and normalized
133 mutual information (NMI) [25] were employed to quantitatively assess performance of

134  these methods.

135  SpaSEG outperformed the competitive methods for the identification of spatial domains
136  on the 12 DLPFC sections in terms of its highest values of ARI (0.53240.058; mean
137 % s.d.) and NMI (0.644+£0.020) (Fig. 2a and Supplementary Table 3,4) while requiring
138  the least running time and memory usage except for Leiden partially due to its lack of

139  leveraging spatial information during clustering (Supplementary Figure 2,
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140  Supplementary Table 5, 6). SpaSEG also yielded the neatest spatial domains with
141  clear boundaries to depict the tissue structures of all 12 sections in the comparison of
142  other methods (Supplementary Figure 3). As a representative example of section
143 151673 (Fig. 2b), we observed that spatial domains unraveled by SpaSEG (ARI=0.554)
144  had the best consistency with the manual annotations in spite of failure to detect the
145  thinnest layer 4 separately (Fig.2c). Interestingly, this failure also took place in all other
146 methods, plausibly because of the small number of spots in the layer 4 that may have
147  gene expressions similar to the adjacent layer. All methods struggled discerning layers
148 4 and 5. Although being able to obtain comparable clustering accuracies and promising
149  layer structures, SpaGCN (ARI=0.457) and BayesSpace (ARI=0.546) appeared to
150  improperly separate the white matter into two domains with ragged boundaries, while
151  SEDR (ARI=0.522) incorrectly merged the layers 4, 5 and 6 into a single layer. The
152  spatial domains detected by Leiden, stLearn and Giotto massively mixed many
153  unexpected outliers, leading to the rough tissue structures and the poorest clustering

154  ARI values 0f 0.335, 0.306 and 0.291, respectively.

155  SpaSEG displays high robustness on diverse ST platform datasets and high

156  scalability on large tissue section with high resolution

157  Next, we sought to test whether SpaSEG was robust to identify spatial domains on the
158  datasets generated by different ST platforms such as Slide-seqV2, Stereo-seq,
159  MERFISH, and seqFISH. Considering the above results regarding clustering accuracy
160 and concordance of identified spatial domains with manual annotations, we only
161  compared SpaSEG with SpaGCN and BayesSpace, as well as Leiden serving as a

162  baseline method in the following experiments.

163 We first applied SpaSEG on the mouse hemibrain Stereo-seq data [8]. This image-based
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164  cell segmentation dataset has 50140 segmented cells (i.e., spots) and 25879 genes. As
165  expected, SpaSEG can well uncover spatial regions of mouse hemibrain in comparison
166  with Leiden and SpaGCN (Fig. 3a). BayesSpace did not successfully perform spatial
167  clustering on this dataset because of the excessive large number of spots. Moreover, the
168  LISI values displayed that SpaSEG reached significant more accuracy than Leiden
169  (p<2.2e-16, Mann-Whitney U test) except for SpaGCN (Fig.3d). However, SpaSEG
170  can clearer outline many cell-type spatial localizations than SpaGCN (Fig.3a),
171 including neuroprotective astrocyte 2 types in thalamus, granule cells of dentate gyrus
172 (GN DQG), excitatory glutamatergic neurons from CAl (EX CAl), and excitatory

173 glutamatergic neurons from CA3 (EX CA3).

174  Then, we examined the scalability and efficiency of SpaSEG on large tissue section
175  with high resolution. To achieve this, we analyzed an unreported whole adult mouse
176  brain spatial transcriptomic data generated by Stereo-seq [8]. To facilitate our analysis
177  at different resolution levels, we aggregated transcripts of the same gene into non-
178  overlapping bin areas that covered corresponding DNB spots. These bins were of sizes
179  in 10 pm diameter (bin20; 20x20 DNB sites; equivalent to ~1 medium mammal cell
180  size), 25 um diameter (bin50; 50x50 DNB sites), 50 pm diameter (bin100; 100x100
181  DNB sites), and 100 pm diameter (bin200; 200x200 DNB sites). As a result, we
182  obtained four binned Stereo-seq ST datasets with the number of bins from 5420 to
183 526716 (Supplementary Table 7). The annotation of whole mouse brain from Allen
184  Reference Atlas [26] is used as the reference and we choose resolution bin50 as a
185  representative in our study. SpaSEG can well characterize the structures of the whole
186  adult mouse brain such as cortex layers and hippocampus (including DG-sp, CA3sp or
187  CAlsp subfields) at all four resolution levels (Fig.3b, Supplement Figure 4). In contrast,

188  Leiden mixed the domains with other spots at bin20 and bin50 resolution levels, neither
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189  uncovering clear cortex layers at bin100 resolution nor separating DG-sp and CA3sp at
190  bin200. SpaGCN was not able to handle Stereo-seq data at bin20 resolution due to the
191  substantial number of bins (526716) and running out of memory. Neither it yielded
192  continuous and neat spatial domains nor uncover DG-sp and CA3sp separately at
193  resolution levels of bin50, bin100, and bin200. BayesSpace cannot successfully
194  perform spatial domain identification for Stereo-seq data at high resolution levels of
195  bin20, bin50, and bin100 because of large number of bins. The LISI values of resolution
196  bin 50 demonstrated that SpaSEG identifying spatial domain was significant more
197  accurate than Leiden, SpaGCN (p<2.2e-16, Mann-Whitney U test; Fig.3d). Moreover,
198  SpaSEG took 12.1 minutes to perform spatial domain identification for the bin20 data
199 (2.5 times faster than Leiden) while 4.2 minutes with only 3.5G memory for the bin50
200  data, 26 times extraordinary faster and 35 times fewer memory usage than SpaGCN
201  that suffered from considerable computational burden and took 110 minutes and 122.4G

202  memory (Supplementary Table 7).

203  We next used the mouse hippocampus Slide-seqV?2 data with 53208 spots and 23264
204  genes at 10 um diameter resolution that can capture gene expressions at cellular level
205  [6] (Supplementary Table 8). The annotation of hippocampus structures from the Allen
206  Reference Atlas was employed as reference [26] (Fig. 3c). As expected, SpaSEG can
207  better outline the topology of the tissue based on the identified neat spatial domains and
208  sharp boundaries than that of Leiden, SpaGCN and BayesSpace (Fig.3c). For example,
209 in addition to different cortical layers, SpaSEG was also able to clearly delineate the
210  pyramidal layer of Ammon’s horn and the granule cell layer of the dentate gyrus. More
211  specifically, SpaSEG successfully depicted subfields of Ammon’s horn such as CAl
212 (CAlso,CAlsp,and CAlsr) and CA3 (CA3so, CA3sp, and CA3sr), as well as subfields

213  of dentate gyrus including DG-mo, DG-sg, and DG-po. Spatial domains for CA2 were
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214  not uncovered separately partly due to the few spots with gene expression similar to
215  nearby domains. Owing to the lack of manual annotation on this dataset, we calculated
216  the local inverse Simpson’s index (LISI) to measure the clustering performance. As a
217  result, SpaSEG reached a significantly lower LISI value than other three methods
218  (p<2.2e-16, Mann-Whitney U test; Fig 2d), suggesting its highest accuracy for spatial

219  domains detection with high resolution data.

220  We then utilized the mouse hypothalamic preoptic region data generated by MERFISH
221  [4]. This annotated dataset contains 4975 single cells (i.e., spots) and 160 genes.
222 SpaSEG achieved the ARI value of 0.46, which was higher than all other methods of
223 Leiden (0.38), SpaGCN (0.26) and BayesSpace (0.33) (Fig. 2e. Moreover, SpaSEG also
224  can delineate the spatial distribution of cell classes with spatial dependency such as
225  ependymal, inhibitory, excitatory, mature OD, and mural, which were agreement to the
226  annotations. We further employed the mouse organogenesis seqFISH data [5]. This
227  dataset consists of 19416 single cells and 351 genes with a total of 22 cell types
228  annotated. Compared to Leiden, SpaGCN and BayesSpace, SpaSEG yielded the highest
229  ARI value of 0.46 (Fig. 2f). SpaSEG can better depict the spatial distribution of cell
230  classes than other method, including three germ layers of ectoderm, mesoderm and
231  endoderm, which were in consistent with the original study and known anatomy [27].
232 These results demonstrated that SpaSEG had the high accuracy for spatially clustering

233  imaging-based in-sifu transcriptomic data.

234  SpaSEG can successfully detect spatially variable genes (SVGs)

235  Next, we applied SpaSEG to detect SVGs for the validation of the identified spatial
236  domain. Similar to previous study [16], we first examined the detected SVGs for each

237  domain in the DLPFC section 151673 originally with 3639 spots and 33538 genes.
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238  SpaSEGQG finally detected 143 SVGs with low false discovery rate (FDR)-adjusted P
239  values (<0.05), of which 126 genes were specifically expressed highly in domain 0,
240  while the rest 17 genes were in the remaining domains (Supplementary Table 10). The
241 Gene Ontology (GO) term enrichment analysis indicated the most SVGs enriched in
242  domain 0 were significant related to white matter such as central nervous system
243  myelination, neural myelin sheath, and structural constituent of myelin sheath
244  (Supplementary Figure 5d). SpaSEG detected single representative genes for each of
245  neuronal layers and white matter. For example, PLP1, CNP, GFAP, CRYAB, TF, MOBP
246  gene was enriched in domain 0 (white matter), CAMK2NI, ENC1, HPCALI, HOPX in
247  domain 2(layer2, 3), NEFL, NEFM, SNCG in domain 3(layer 3), PCP4, TMSBI0),
248  TUBB2A in domain 4(layer 4, 5) and MALATI was in domain 6(layer 1) (Fig.4a, b,
249  Supplementary Figure 5a). By contrast, SpaGCN detected only 67 SVGs while
250  SpatialDE and SPARK can totally detect 3661 and 3187 SVGs, respectively
251 (Supplementary Figure 5c). However, SVGs detected by Spatial DE and SPARK did not
252  necessarily show domain specificity. The Moran’s I values and Geary’s C values for
253  SVGs detected by SpaSEG were significantly lower than that detected by Spatial DE
254  (p<2.2e-16, Mann-Whitney U test) and SPARK (p<2.2e-16, Mann-Whitney U test) but
255  showed no significant difference against that detected by SpaGCN (p=0.07,0.01
256  Supplementary Figure 5b). These results suggested that SpaSEG can detected more
257  domain-specific SVGs than SpaGCN, SpatialDE and SPARK while maintained the
258  similar accuracy against SpaGCN in spite of being slightly inferior to SpaGCN in terms
259  of the Moran’s I value and Geary’s C value. These results demonstrated that SpaSEG

260  outperforms SpaGCN in identifying spatial patterns for genes.

261  Then, we applied SpaSEG to detect SVGs on the unannotated mouse embryo Stereo-

262  seq data with 72944 spots (bin50, 25 um diameter per spot) and 28879 genes. Based
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263  on the 30 identified spatial domains (Fig.4c), SpaSEG detected a total of 490 SVGs that
264  was more than SpaGCN (n=458) (mean of Moran’s I for SpaSEG 0.361 and mean of
265 Geary’s C = 0.616, Fig.4d, e). These results demonstrated that SpaSEG outperforms
266  SpaGCN in identifying spatial patterns for genes. Of particular interest in the following
267  analyses were domain 1 (brain), domain 4 (epidermis), and domain 7 (cartilage
268  primordium/bone), which were associated with 178 SVGs, 18 SVGs, and 18 SVGs
269  respectively (Supplementary Table 11-13). These SVGs showed transcriptionally
270  distinct patterns that distinguished the three spatial domains (Fig.4h). We further select
271  top 5 genes that were highly expressed for each domain. For example, top 5 SVGs
272 highly expressed in domain 1 contains brain development associated genes of Nnat,
273 Tubala, Mapt, and brain marker genes Stmn2, Tubb2a, and top 5 SVGs in domain 4 of
274  Krtl0,Krtl5,Krt77, Lor, Krtdap, and top 5 SVGs in domain 7 of lbsp, Collal, Colla2,
275  Sparc, Serpinhl (Fig.4f). We also depicted spatial expression for each of top 2 SVGs
276  that demonstrate strong spatial patterns in corresponding spatial domain (Fig.4g). GO
277  enrichment analysis of the SVGs showed that a total 457 GO terms and 40 Kyoto
278  Encyclopedia of Genes and Genomes (KEGQG) pathways were enriched in cluster 1
279  (brain), of which many of these GO terms and KEGG paths are associated with the
280  development of the nervous system (Fig.41), for example, growth cone (GO 0030426),
281  site of polarized growth (GO 0030427), distal axon (GO 0150034). In cluster 4
282  (epidermis), 18 SVGs are selected (q value < 0.05 and p value < 0.05) for the
283  enrichment analysis, a total 72 GO terms and 11 KEGG pathways were enriched and
284  most of these GO terms and KEGG pathways are related to keratin and epidermal cells,
285  (Fig.4i) such as intermediate filament (GO 0005882), intermediate filament
286  cytoskeleton (GO 0045111), keratin filament (GO 0045095). While in cluster 7

287  (cartilage primordium/bone), the most significant GO terms and KEGG paths are
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288  related to collagen and cartilage or bone development (Fig.4i), collagen-containing
289  extracellular matrix (GO 0062023), fibrillar collagen trimer (GO 0005583), banded
290  collagen fibril (GO 0098643). In addition, SpaSEG is also capable to identified fine
291  structure of mouse embryos and we further analysis the spatial variable genes in toes.
292  Several representative marker genes are identified (Fig.4j), such as Krt10 (skin tissue),
293 Dcn (connective tissue), Col2al (cartilage primordium). These results demonstrate that
294  SpaSEG could effectively and accurately identify spatial variable based on our spatial

295  segmentation results.

296

297  SpaSEG facilitates the investigation of ligand-receptor interactions

298  Most of cell-cell interactions and crosstalks are mediated by ligand-receptor (LR)
299 interactions [ref]. To facilitate the exploration of putative intercellular interaction across
300 the entire tissue section, we proposed a method to conduct LR interaction analysis by
301 leveraging the spatial domains identified by SpaSEG and the co-expressions of the
302  ligands and receptors. Here we applied the LR interaction analysis on the adult mouse
303  brain Stereo-seq data at bin200 resolution with spatial domains identified by SpaSEG
304  (Fig.5a). In order to further validate the accuracy of our clustering result, we first
305 analyzed the SVGs in cortex (Fig.5d) and found that Lamp5, Nrgn are specifically
306  enriched in cluster 5 (cortex layer 2/3), Pvalb gene in cluster 16 (cortex layer 4 or 5)
307 and 7bhrl in cluster 7 (cortex layer 5/6). Region specific SVGs are also found in
308  hippocampus (Fig.5e), such as Tmem54, Pantrl in cluster 4 (CA1/2), Hpca and Ddn in
309  cluster 17 (CA3) and Wipf3 in cluster 11 (DG). A total of 267 significant ligand-receptor
310  pairs are first identified by CellPhoneDB (Supplementary Table 14), of which a large

311 number of LR interactions are enriched in cortex area as showed in the overall LR score
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312  heatmap (Fig.5b). The cell types are annotated by cell2location according to the max
313  confidential spot-level cell type deconvolution score and we observed that the
314  deconvolution result could well depict the analogy of the adult mouse brain (Fig. 5c).
315 Then we calculated the Spearman -correlations between spot-wise cell type
316  deconvolution scores with its corresponding LR scores, in which a positive correlation
317  suggests as the colocalization of LR pairs with specific cell types. We found a majority
318  of cell types between cortex, hippocampus and amygdala displayed highly positive
319  correlations, including cell types of Astrocytes and Excitatory neuros that suggested
320 their well colocalization in spatial context of the tissue (Fig. 5f). For example, the ligand
321 1134 (Interleukin-34) and receptor Csflr are highly active in the cortex, hippocampus
322 and amygdala (cluster 5,7,8,9,10,12,16), which corresponding to the conclusion that
323 1134 identified as a tissue-specific ligand of Csf-1 receptor (Csflr) is mainly expressed
324  in brain cerebral cortex (Fig. 5f, g). Our result also shows that Cholecystokinin (Cck)
325 and its receptor Cckbr are enriched in cortex, hippocampus, amygdala and piriform
326  cortex [28]. Meanwhile, we find that Bdnf Sortl and Bdnf Ntrk2 are enriched in cortex
327  and hippocampus [29], which may be related to increased or decreased volume of the

328  hippocampus.

329  SpaSEG enables to elucidate the ligand-receptor interactions in Invasive ductal

330 carcinoma

331  To further validate our LR interaction results identified by SpaSEG, we analyzed a
332  breast cancer sample originally published in BayesSpace [15] with tumor regions being
333 annotated by the pathologist (Fig. 6a). The sample was an estrogen receptor-positive
334  (ER"), progesterone receptor-negative (PR"), human epidermal growth factor receptor

335 (HER)2-amplified (HER2") invasive ductal carcinoma (IDC). The dataset was
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336  generated by 10x Genomics Visium, leading to a total of 4727 spots in tissue and 36601
337 genes with a median of 2964 genes per spot. To allow cell2location for cell type
338  mapping at spot level, we downloaded a published breast cancer scRNA-seq dataset as
339  the reference that comprised 16 primary tumors [30] (11 ER" and 5 HER2") with cell

340  types being annotated.

341  Spatial clusters obtained by applying SpaSEG were able to accurately distinguish
342  regions among invasive carcinoma (cluster 0, 2,3, 8 and 9), carcinoma in situ (cluster
343  6), and benign hyperplasia (cluster 2) as well as non-tumor tissue (cluster 1,5 and 7),
344  which were strong accordance with histopathological annotations (Fig. 6b). Cell types
345 mapping using cell2location showed that, compared to other clusters, predominant
346  proportions of cancer cells resided at invasive tumor regions (cluster 0, 2,3, 8 and 9)
347  while non-tumor regions (cluster 1,5 and 7) were enriched for more immune-related
348  cells than other regions such as B cells, cancers associated fibroblasts (CAFs), T cells,
349  and plasmablasts (Fig. 6d and 6f). These findings indicated that SpaSEG can well
350 capture the inter- and intra-tumor heterogeneities at molecular level. Spatially co-
351  expressed LR pairs and its corresponding potential interaction cell types are showed in
352  Figure 6e. By conducting cell-cell interaction analysis, we observed many interactions
353 around the immune-invasive areas, especially between cluster 5 and cluster 0,4,3,9
354  (Fig.6c), and found colocalizations of cell types such as B cells and T cells,
355 macrophages and T cells, CAFs and T cells (Fig. 6e) For example, ligand PTPRC
356 secreted by T cells is an essential regulator in mediating T- and B-cell antigen
357  processing by targeting the CD22 receptor in B cells [31, 32], playing a major role in
358 adaptive immune response. T cells communicated with dendritic cells (DCs) through
359 ligand PTPRC and receptor MRC1 [32, 33] (Fig. 6g, h). The mannose receptor (MRC1)

360 expressed on DCs acts as a direct regulator of CD8+ T-cell activity by interacting with
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361 CD45[34, 35], which will result in the up-regulation of cytotoxic T-lymphocyte—
362  associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. The cytokine
363 macrophage migration inhibitory factor (MIF) which constitutively found in
364  macrophage sustains pro-inflammatory function and cell proliferation. And its receptor
365 CD74 is also found in T-cells as previous literatures indicates and MIF_CD74 (Fig. 6g,
366  h) shows significant high Spearman correlation with T cells in our study. In addition,
367 we also detected that Galectin-9 (LGALS9 secreted by macrophages, monocytes)
368  served as a ligand for immune checkpoints HAVCR2[30, 36, 37] (Fig. 6 e, g, h) (highly
369  correlated with NKT cells, CD4+, CD8 T cells) and contributes to anti-cancer immune
370  suppression by killing cytotoxic T lymphocytes and impairing the activity of natural
371 killer (NK) cells[38], which is a promising target for immunotherapy. Apart from the
372 active immune cell-cell interaction in TME, crosstalk between stromal cells and
373 immune cells is also of great importance for angiogenesis, tumor invasion and
374  metastasis. We detected that CAF ligand CXCL12 and its cognate T cell receptor
375 (CXCR4/CXCR3) (Fig. 6g, h) are among the top ranked cell types for CXCL12
376 CXCR4/CXCR3 pairs [39, 40], of which the CAF mainly promotes tumor growth by
377  the secretion of SDF-1. Besides, CAF associated LR pairs like TIMP1 FGFR2,
378 C3_C3ARI [41, 42] (Fig. 6g, h) could also be observed. And the endothelial cells
379  derived gene VEGFB, PDGFB, ACKR1 that could induce new blood vessel formation
380 and stimulate cell proliferation and migration via interaction with NRP1 [43], LRP1

381  and the chemokine ligand CCLS5.

382  Therefore, it is significant to understand the cell-cell interactions between macrophages
383  and other immune cells and the factors that enhance existing anticancer treatments.
384  These results proved that SpaSEG could be served as a handful tool for LR analysis in

385  pathology, suggesting potential patterns of most likely cell-cell interactions.
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386  Discussion

387  Identification of spatial domain is a significant process in spatial transcriptomic data
388 analyses. SpaSEG harmoniously integrated gene expression information and spatial
389  coordinates into one three-dimensional matrix as model input. Through feeding the
390 input data to the convolutional neural network, SpaSEG learns the gene expression
391  similarity and spatial contiguity simultaneously with the optimization of the gene
392  expression similarity loss and the spatial continuity loss and ultimately identifies
393  separate spatial domains. In our study, we firstly demonstrate its strong ability in
394  differentiating distinct layers and superior performance relative to existing alternatives
395 in DLPFC benchmarking dataset. To further validate the utility of SpaSEG in ST data
396  of diverse resolutions, we artificially simulated four datasets representing different
397 levels of resolution by utilizing the adult mouse brain data generated by Stereo-seq,
398  SpaSEG could uniformly profile significant functional regions, such as Cerebral Cortex
399 layers (CTX), Thalamus (TH), Hypothalamus (HY) and HPF (hippocampal formation
400  areas) [44]. Although SEDR also performed clustering analysis on mouse olfactory bulb
401  data from Stereo-seq and exhibited its efficacy to handle high resolution data, it suffers
402  from high computational burden in constructing graphs for such high throughput and

403  high-resolution spatial omics data [14].

404

405  In our work, we have also demonstrated the utility of SpaSEG in detecting spatial
406  variable genes based on our clustering result. For fair and comprehensive comparison,
407  we analyze two separate SVG detection methods: SpaGCN [16]and SpatialDE [45].
408  The former one takes spatial information into consideration when identifying SVGs,

409  while the other one detects SVGs without the guidance of spatial domains. SpaSEG


https://doi.org/10.1101/2022.11.16.516728
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516728; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

410  1identified 490 SVGs compared to SpaGCN (458 SVGs) in total in sample 151673.
411  More specifically, there are about half of the SVGs enriched in white matter that are
412  only detected by our methods while SpaGCN not, although both methods have many
413  overlapping SVGs. Besides, there are more than 4000 SVGs identified by SpatialDE.
414  However, many of them failed to exhibit spatial patterns. Thus, SpaSEG could serve as
415  apotential tool for researchers to discover novel marker genes. In addition, our research
416  has also shown the ability of SpaSEG in dissecting the spatial cell-cell interaction in
417  adult mouse brain and IDC. The clustering results of SpaSEG in IDC and MB are
418  concordant with the manual annotation from pathologist and the reference panel from
419  Allen Mouse Brain Atlas respectively. More concretely, the heatmap of L-R pairs
420  indicates that the most active regions in mouse brain are cerebral cortexes and
421  hippocampus, which corresponds to previous studies [46]. Moreover, SpaSEG could
422  spatially visualize the distribution of immune cell in IDC through deconvolution and
423  further research could be undertaken to study the tumor microenvironment between the
424 tumor cells and macrophage, T cells and B cells, etc in molecular level through L-R

425  analysis.

426

427  Histology images are a new modality along with the ST data and the tissue
428  morphological features have a strong connection with the corresponding gene
429  expression around the specific spot [47, 48]. Recent studies such as SpaGCN and
430  stLearn have made efforts to incorporate histological images into their algorithms but
431  they are unable to achieve the finest clustering results, as demonstrated in our study.
432  One possible reason could be that there are no obvious morphological features among

433  the adjacent layers in DLPFC. Besides, the artifacts such as batch effects in the process
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434  of Hematoxylin and Eosin (HE) staining and noise(quality) control of the H&E images
435  have a great influence on the final results. Our future research direction may lie in the
436 development of robust algorithms that seamlessly incorporate both modalities’
437  information together to achieve optimal performance. Another utility of H&E images
438 s resolution enhancement in ST data. While our work mainly focused on ST data from
439 10X genomics and Stereo-seq, the former one usually has lower resolution and
440  sensitivity, which limits their usefulness in studying detailed expression patterns and
441  uncovering comprehensive tissue anatomical structure. Recent works have
442  demonstrated the applicability of histological images in inferring accurate full-
443  transcriptome spatial gene expression at the same resolution as the image data (XFuse
444 [49]), which could be further used as a data enhancement approach for pre-processing
445  step of the low-resolution ST data. Further research could be undertaken to explore how

446  the imputed ST data would be used to train our algorithm and improve the clustering

447  accuracy.

448  In conclusion, this work presents SpaSEG, an efficient and scalable unsupervised deep
449  learning algorithm for ST data clustering. The results of our study also indicate the
450  applicability of our algorithm in various downstream analyses, such as SVGs
451  1identification, cell-cell interaction and trajectory inference. Therefore, we believe that

452  SpaSEG could serve as a valuable tool to benefit ST data analysis in the future.

453  Methods

454  Data preprocessing:

455  SpaSEG takes transcriptome-wide gene expression profile with spatial coordinates as

456  inputs. Genes expressed in less than five spots or bins are excluded for all datasets. We
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457  also eliminate poor spots with fewer than 200 expressed genes. The reserved raw gene
458  counts per spot are further normalized using the library size, and scaled by log-
459  transformation. Principal component analysis (PCA) is then performed on the gene
460  expression datainan N X M matrix with N spotsand M genes, and top d PCs per
461  spot were subsequently extracted. The optimal value d € {15,50, 100}, varies from 15
462  to 100, depending on different sequencing platforms (Supplementary Table 9). These
463  PCs are able to explain the sufficient variability in the data and mitigate the
464  computational intension, as well as yield the best spatial clustering performance
465  (Supplementary Figure 1). We further perform z-score normalization such that each

466  PC has zero mean and unit variance.
467  Conversion of spatial gene expression data into image-like tensor

468  To enable SRT data analysis through SpaSEG, we convert the gene expression data with
469  spatial information into an image-like tensor. In this tensor, a spot n in the SRT array
470 atrow i and column j was represented as a feature vector of s?]- € R%, where d is
471  the number of extracted PCs. As a result, an d-channel image-like tensor X =
472 {S{fj}ﬁ=1 € R¥*XWXd s created, where N is the number of spots, H and W are the
473 height and width of the SRT array, i€{1,2,..,H}, j€{12,,..,W}. For
474 simplification, we denote the image-like tensor by X = {s,}N_; unless otherwise

475  specification.
476  SpaSEG model development

477  SpaSEG architecture. Relying on convolutional neural network (CNN) architecture, our
478  model starts with a batch normalization layer, followed by two convolutional blocks

479 and a refinement module consecutively (Fig. 1b). Each convolutional block is
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480  composed of a 3 X 3 (kernel size) convolutional layer, a batch normalization layer,
481 and a leaky ReLU activation layer (intermediate parameter ¢ = 0.2). The two
482  convolution modules have u and v output channels, respectively. Finally, the
483  refinement module consists of only a 1 X 1 convolutional layer and a batch
484  normalization layer, yielding k output channels. It should be noted that the output size
485  of each convolutional layer in SpaSEG is maintained the same as input. For

486  simplification, we set u, v and k be equal to d in all experiments.

487  Formally, given the SRT data of a tissue slice that was represented by an image-like

488  tensor X = {s,}N_,, the feature representation of spot n can be learned by

489 Yn = fo(sn) (1)
490 where fg(*) is the SpaSEG network with the trainable parameter @ that can be
491 updated during an iterative training process, y, = [V, ¥2, ..., v¥] € R¥. Then, the
492 pseudo-label for spot n can be given by
493 ¢, = argmaxyt, t =1,2,..,k (2)
t

494 Loss Function. We treat the spatial domain identification as spot-wise classification
495 problem, where the class label of each spot can be viewed as a segment. To train
496 SpaSEG, we first consider the most commonly used cross entropy loss with L2-
497 norm regularization over pseudo-label as follows.
498 Lseg = = Xn=1 Zi=11(cp = ) log(pp) + All0113 (3)

_(1,if x is true t_ oyt vk oyt . o
499 where 1(x) = {O, otherwise * Pn =€ n/yXk e¥n, and A is regularization

500 parameter that controls the L2-norm regularization penalty and we set it to 0.00001
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in our experiments.

To encourage the class label to be the same as those of spatially adjacent spots, we
follow the previous work [23] to introduce a spatial-smoothness loss function that
considers the horizontal and vertical differences of feature representations, which

is defined as

W-1H-1

Lspa = Z Z ||Yi+1,j - Yi,j”1 + ||Yi,j+1 - Yi,j”1

i=1 j=1
Consequently, the overall loss is then given by
Loveranl = aﬁseg + ﬁ['spa

where a and [ are weighting factors for segmentation and spatial smoothness,

which are set to be 0.4 and 0.7, respectively.
SpaSEG training

Rather than randomly initializing parameters of SpaSEG that usually yields unstable
results, we pre-train SpaSEG using MSE loss defined as Ly, = % N_ilsn — yall3

during the first 400 training epochs to initialize the model parameters. this iterative
process could stabilize the model performance and reinforce the entire algorithm to
update the model in a desirable direction. In the subsequent epochs, feature
representation y,, and the corresponding pseudo-label ¢, for each spot was obtained.
SpaSEG then calculates and backpropagates the overall loss Lyyeran to update the
model parameters. This process is repeated until either the number of iterations exceeds

the pre-defined maximum, or a minimum number of unique class labels is attained.
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521  Otherwise, if the model failed to achieve the minimum number of class labels, an
522  optional refinement process is proposed to enhance the final segmentation result from
523  SpaSEG. In this process, the mean of the image-like tensor {sX}N_, for each cluster
524  along the d-channel are calculated, where k is the cluster label assigned by SpaSEG.
525  Then the pairwise Euclidian distances are calculated between the clusters, denoted as
526 D;; and i,j is the cluster labels. While the candidate spots that are spatially
527  separatable among the clusters will be relabeled according to the smallest D; ;. We
528  employed Adam optimizer with the default parameters §; = 0.9 and S, = 0.999 as
529  optimization method for the backpropagation. The learning rate was set to 0.002 and
530 the total number of epochs were set to 2100. Those optimal values for the hyper-
531  parameters of SpaSEG were determined via a combination of grid search and manual

532  tuning such that the best performance can be achieved.

533  Spatial variable gene detection

534  In order to identify spatially variable genes (SVGs) that have high expression in each
535  spatial cluster, we combined the cluster results with pre-processing datasets. For each
536  cluster, Scanpy implementation of the Wilcoxon rank-sum test was used to identify
537  SVGs (adjusted p value < 0.05). To further confirm that the SVGs have abundant
538  expression, we added three conditions, this refers to SpaGCN's method of identifying

539 SVG:

540 1) In the target cluster, count the ratio of gene expression spots to total spot;

541  2) For outside the target cluster, the percentage of spots expressing genes within the

542  target cluster and outside the clusters;

543  3) Expression fold change in target cluster and outside clusters.
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And then we drew the spatial pattern map of each SVG expression on the tissue, which

are identified that SVGs are truly enriched in target cluster.

And further discovering the functions with SVGs, we did GO and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways enrichment analysis of SVGs by

clusterProfiler package in R software.

Cell type deconvolution

Each spatial spot was annotated to a specific cell type deconvoluted from spatial data
and corresponding single cell reference datasets. The deconvolution of cell types was
implemented using cell2location [50], which is a Bayesian model for spatial mapping
of cell types. Given the complementary information from spatial resolved
transcriptomic data and single-cell RNA sequence, we applied this Bayesian model to
infer different cell types in different spatial locations. The training hyperparameters
defined manually are selected depending on the cell number of a spot and RNA
detection sensitivity. The cell type corresponding to the maximum score of each spot is

regarded as the cell type of the spot in this research.

Ligand-receptor interaction

The cellular interactions mediated by protein-protein interactions are significant for
understanding tissue structures and functions. Firstly, we randomly permuted the

SpaSEG cluster labels of all spots to create a null distribution for each L-R pair in each
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565  pairwise comparison between two clusters by using cellphoneDB. Then the significant

566  interacting pairs were used to analysis ligand-receptor interactions between the clusters.

567  With the prior of significant L-R pairs, we calculated the expression of spatially co-

568  expressed L-R pairs using:

L R _ XLk . XRk

ij t J

n
570 Ep, R, = Z«/Xik' Xﬁk
i=1

571  where x; and X; represents the gene expression vector of spot i and spot j,

569 e

572  respectively. E;; represents the value of L-R pair in all spots. If one of the ligands and
573  receptors in a spot is zero (not expressed), the co-expression value of the spot is zero.
574 By calculating the geometric mean of gene expression values, we know that the
575  geometric mean of each receptor ligand is large when the expression of each receptor
576  ligand is similar, and the geometric mean is small when the expression difference is
577  large. We calculated Spearman correlations between cell-type score and L-R score,

578  which represents the corresponding L-R pairs expression in related cell type.

579  Data description

580 We applied SpaSEG to ST datasets with different resolutions generated by various
581  platforms, such as 10X genomics, Stereo-Seq, MERFISH, SeqFISH, Slide-SeqV2. The
582  DLPFC dataset generated by Visium platform contains 12 slice and each consists of
583  around 4000 spots [12]. These 12 sections are all manually annotated and are used to

584  benchmark our algorithm. For the Stereo-seq data, we artificially divided the expression
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585 matrix into non-overlapping bins covering an area of XxX DNB, with
586 X €(20,50,100,200) and the transcripts of the same gene are aggregated within each
587  bin. Specifically, the raw matrix of adult mouse coronal brain sample [8] contains
588 27,279 genes, which was divided into bin20(526,716 spots with 10 um diameter),
589  bin50(84,724 spots with 25 um diameter), bin100(21,368 spots with 50 pum diameter)
590  and bin200(5,420 spots with 100 um diameter). The MERFISH sample (animal id =
591 1, Bregma = -0.24) was collected from a female mouse with no treatment performed in
592  the hypothalamic preoptic region [51], this sample data contains 6412 spots and
593 measured 161 genes expression values. The mouse hippocampus data from Slide-
594  seqV2[6] (id: Puck 200115 08) consists of 53208 spots and measured 23264 genes.
595  The sagittal sections of the seqFISH[27] sample was collected from 8-12 somite-stage
596 embryos (Embryonic days (E)8.5-E8.75) and contains 19416 locations and 351
597  barcoded genes are measured. The mouse embryo dataset [8] with 76453 spots and
598 27009 genes collected from E15.5 embryos that was from pregnant C57BL/6J female
599  mice, produced by Stereo-seq have been deposited to CNGB Nucleotide Sequence
600  Archive. We aggregated the raw bin 1 matrix into the final bin 50 matrix and assigned
601  coordinates for each bin. The IDC (invasive ductal carcinoma) [15] data was
602  downloaded from 10X Genomics, which was stained for nuclei with DAPI and anti-
603  CD3. There are totally 4,727 spots detected under tissue. The mean reads per spot is
604  40,795. The median genes per spots is 2,964. The IDC sample approximately include a
605 median of 21 cells per spot.

606
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607  Data availability

608  The DLPFC dataset is publicly available at http://research.libd.org/spatial LIBD/. The

609 MERFISH sample data could be downloaded from

610  https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248. The Slide-seqV2 data

611  could be accessible at Single Cell Portal (broadinstitute.org). The seqFISH data can be

612  downloaded from https://content.cruk.cam.ac.uk/ijmlab/SpatialMouseAtlas2020/. The

613 IDC data is publicly available at

614  https://www.10xgenomics.com/resources/datasets/invasive-ductal-carcinoma-stained-

615  with-fluorescent-cd-3-antibody-1-standard-1-2-0. The mouse embryo bin50 could be

616  down form https://db.cngb.org/search/project/CNP0001543 .

617

618  Comparison with state-of-arts methods and evaluation.

619  To demonstrate the superior performance in spatial transcriptomics data clustering, we
620 chose a commonly used non-spatial clustering method Leiden plus five recently
621  published state-of-the-art methods, including stLearn, Giotto, SpaGCN, BayesSpace,
622 and SEDR (Supplementary Table 2). To evaluate the effectiveness of SpaSEG in
623  integrating multiple tissue sections, two commonly used algorithms in sScRNA-seq data

624  batch correction, Harmony and LIGER are utilized to compare with SpaSEG.

625  Leiden. Leiden is a popular tool for single cell transcriptomics data clustering integrated
626  in Scanpy. The data preprocessing step is the same as SpaSEG and we ran sc.tl.leiden

627  in Scanpy and tune the resolution parameter to give us desirable number of clusters.
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628  stLearn. stLearn is the first algorithm simultaneously integrating H&E information and
629  spatial transcriptomics data and allows various downstream analysis like cell-cell
630 interaction and trajectory inference. We ran the data processing with filtering gene at
631  least expressing in 1 cell and setting the number of principal components to 15, then
632  we follow the clustering pipeline of stLearn(version: 0.3.2) with the guidance of official

633  tutorial https://stlearn.readthedocs.io/en/latest/.

634  Giotto. Giotto is a toolbox for spatial data integrative analysis by utilizing hidden
635  Markov random field (HMRF) model. We follow the online tutorial of Giotto(version:

636  1.0.4): https:/github.com/RubD/Giotto_site and set the expression_threshold

637 parameter to 1 in filterGiotto function and set Avg = ‘yes’, perc cells > 3,
638  mean_expr _det>0.4 in gene metadata function when preparing data for dimensional
639  reduction. The spatial neighborhood network is created with the default parameters and

640  the number of ground truth clusters is employed for HMRF model clustering.

641  SEDR. SEDR uses a deep autoencoder to construct latent gene representation and a
642  variational graph autoencoder to embed spatial information. We ran SEDR code

643  indicated on the github repository: https://github.com/JinmiaoChenLab/SEDR with

644  default parameter settings.

645  SpaGCN. SpaGCN utilizes a graph convolutional network that combines gene
646  expression, spatial location and histology in spatial transcriptomics data analysis. We

647  follow the official tutorial of SpaGCN: https://github.com/jianhuupenn/SpaGCN

648  (version: 1.2.0) and set the min_cell to 3 when filtering genes, alpha to 1, beta to 49
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649  when calculating adjacent matrix with histology image available. The learning rate and

650  max training epoch were set to 0.05 and 200, respectively.

651  BayesSpace. BayesSpace performs spatial clustering by introducing a spatial prior and
652  encouraging neighboring spots to belong to the same cluster. We ran BayesSpace

653  (version:1.2.1) followed by https://github.com/edward130603/BayesSpace. Top 200

654  highly variable genes are selected to perform PCA and we set q to the number of PCA

655  and d to the desirable cluster number, nrep to 50000 and gamma to 3, respectively.
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Figure legend

Figure 1. Overview of SpaSEG. a. Spatial transcriptomics data preprocessing and data
preparation step for SpaSEG. b. SpaSEG takes the image-like low dimensional feature
vector as input, then spot-wise labels are assigned through iterative unsupervised CNN
model training with gene similarity loss and spatial continuity loss. ¢. Biological
application and downstream analysis for SpaSEG, including spatial domain

identification, spatial variable detection, spatial ligand receptor detection.
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785  Figure 2. Algorithms comparison in 10X DLPFC. a, The average ARI, NMI score
786 among 12 DLPFC slices between SpaSEG and the other spatial methods. b, Annotated
787  ground truth for sample 151673. ¢, Spatial domain results for SpaSEG and other spatial
788  clustering methods in sample 151673.
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789

790  Figure 3. Robustness and scalability of SpaSEG in different spatial platforms. a,
791  from left to right, the segmented Stereo-seq mouse brain cellbin annotation in the
792  original paper. The cell composition between the annotation and SpaSEG clusters in
793  two specific zoomed-in areas. SpaSEG cell segmentation results. SpaGCN clustering
794  results. Leiden clustering results. b, from left to right. Annotated mouse brain coronal
795  sections from Allen Brain Atlas. The clustering results of SpaSEG, SpaGCN and leiden
796  respectively in Stereo-seq MB bin50 data. ¢, The LISI score calculated from SpaSEG,
797  SpaGCN and Leiden spatial clustering labels in MB cellbin, MB bin50 and Slideseq2
798  datasets. d, from left to right. The annotated structure of mouse hippocampus from
799  Allen Brain Atlas. Spatial domain results of SpaSEG, SpaGCN, Leiden and BayesSpace
800 in SlideseqV2. e, from left panel to right panel. The annotated celltype spatial
801  distribution of mouse hypothalamic preoptic region in the original paper. Spatial
802  clustering results of SpaSEG, SpaGCN, Leiden and BayesSpace in MERFISH dataset.
803 f. from left panel to right panel. The spatial map of cell composition during mouse
804  organogenesis in seqFISH data. Spatial clustering results of SpaSEG, SpaGCN, Leiden

805 and BayesSpace in the forementioned dataset. Astr: Astrocyte; Endo: Endothelial; IMO:
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OD Immature; MO: OD Mature; ASTs: Anterior somitic tissues; CMs: Cardiomyocytes;
CM: Cranial mesoderm; DE: Definitive endoderm; HPs: Haematoendothelial
progenitors; IM: Intermediate mesoderm; LPM: Lateral plate mesoderm; MMM:
Mixed mesenchymal mesoderm; PM: Presomitic mesoderm; SM: Splanchnic

mesoderm.
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813  Figure 4. Spatial clusters and SVGs detected in the DLPFC slices and Mouse
814  embryo. a, Spatial expression pattern of the DLPFC’s SVGs detected SpaSEG. b,
815  Bubble map of spatially differential genes obtained by SpaSEG in DLPFC (151673). ¢,
816  Spatial domain results for SpaSEG spatial clustering methods in mouse embryo. d,
817 Moran’s I and Geary’s C values for SVGs detected by SpaSEG(n=490) and SVGs
818  detected by SpaGCN (n=458). e, Venn diagram for SVGs detected by SpaSEG and
819  SpaGCN in the mouse embryo data. f, Violin plot of spatially differential genes
820  obtained by SpaSEG in mouse embryonic. g, spatial expression of mouse embryo’s
821  brain, epidermis, cp. h, Spatial expression heatmap of the SVGs in the mouse embryo’s
822  brain, epidermis and cp. i, GO pathway enrichment analysis of mouse embryo’s brain,

823  epidermis, cp. j, spatially clusters of mouse toe and spatial expression of mouse toe.
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824

825  Figure 5. Cell-cell interaction analysis of the adult mouse brain. a, The workflow
826  of cell-cell interaction. b, The result of SpaSEG clustering. ¢, Spatial expression of all
827  significant L-R pairs. d, Spatially variable gene expression of zoomed-in cortex (cluster
828 5,7,12,16). The top5S SVGs and SpaSEG clustering for cortex are shown. e, Spatially
829  variable gene expression of hippocampus (cluster 4, 7, 11) based on SpaSEG clustering.

830 f, The Spearman correlation of cell type scores and L-R expression values. The
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831  Spearman correlation values are represented by color. P values are represented by circle
832  size. g, Significant L-R pairs of cortex area and hippocampus. h, A subset of cell types

833  inthe cortex and hippocampus, the proportions of which are estimated by cell2location.
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835  Figure 6. Cell-cell interaction analysis of IDC. a, The raw image of the IDC sample.

834

836 b, The result of SpaSEG clustering. ¢, Spatial expression of all significant L-R pairs. d,

837  The distribution of dominant cell types corresponding to the maximum score. e, The
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838  Spearman correlation of cell type scores and L-R expression values. The Spearman

839  correlation values are represented by color. P values are represented by circle size. f,

840  Proportion of 29 cell types in each cluster. g. Significant L-R pairs of immune area and

841  cancer area. h, Spatial distribution of a subset of immune cells (T cells CD8+, NKT

842  cells, Macrophage and DCs) and stromal cells (CAFs MSC iCAF-like and Endothelial

843  ACKRI).
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