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Abstract

Circadian rhythms are ubiquitous in biology, from the molecular to behavioral levels. There is growing
interest in understanding the functional implications of circadian oscillations in different cells and
systems, including the brain. The prefrontal cortex (PFC) is heavily involved in myriad processes,
including working memory, cognition, stress responses, and fear associated behaviors. Many PFC
associated behaviors are time-of-day dependent, yet how time-of-day impacts the basic function of
neurons in the PFC is not known. Here we use patch-clamp electrophysiology to record from layer 2/3
pyramidal neurons in the prelimbic (pl) PFC of male and female C57BL/6J mice at 4 separate bins of
zeitgeber time (ZT): 0-4, 6-10, 12-16, and 18-22. We measured changes in membrane properties,
inhibitory and excitatory inputs, ion channel function, and action potential kinetics. We demonstrate that
the activity of pIPFC neurons, their inhibitory inputs, and action potential dynamics are regulated by
time-of-day. Further, we show that in males postsynaptic K* channels play a central role in mediating
these rhythms, suggesting the potential for an intrinsic gating mechanism mediating information
throughput. These key discoveries in PFC physiology demonstrate the importance of understanding

how daily rhythms contribute to the mechanisms underlying the basic functions of PFC circuitry.
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Introduction

Rhythms in life are found at many different time scales in nearly all phyla. From annual rhythms
in hibernation and reproduction, to daily rhythms in sleep-wake cycles, to ultradian rhythms such as
variations in heart rate, to rhythms in coordinated brain activity (Helm et al. 2013; Kértner and Geiser
2000; Yaniv and Lakatta 2015; M. H. Hastings, Reddy, and Maywood 2003). They are also present at
nearly all levels of organization, from the behavior of groups of organisms to gene and protein
expression at the cellular level (Jagannath et al. 2017; Landgraf et al. 2016; J. W. Hastings 2007).
Given their ubiquity in nature and involvement in countless biological processes, understanding the
functional significance of these rhythms is critical. However, while major strides have been made in
understanding how these rhythms impact cellular function in the suprachiasmatic nucleus (SCN), as
well as in some peripheral organs such as the liver, there remains a paucity of information about the
functional impact of circadian clocks in other brain regions, beyond identifying that circadian rhythms
are present (Abe et al. 2002; Albrecht and Stork 2017; Sato et al. 2020; Weaver 1998). This is a major
gap in our knowledge, considering that circadian rhythms in behaviors are well documented, and shown
to be critical in both health and disease.

The PFC serves as a critical component in cognition, emotional systems involved in fear learning
and extinction, stress responses, and learning and memory, all of which are impacted by daily rhythms
(Woodruff et al. 2018; McCarthy and Welsh 2012; Popoli et al. 2012; Sotres-Bayon, Cain, and LeDoux
2006; Miller and Cohen 2001). In addition, clock gene expression has been documented in the
prefrontal cortex (PFC) (Chun et al. 2015). The prelimbic area (pl) of the PFC is divided into six distinct
layers, each with distinct inputs and projections. Specifically, layer 2/3 plays a major role in working
memory and behavioral plasticity and is involved in stress and depressive behaviors (Yuen et al. 2009;
Zaitsev et al. 2012; Radnikow and Feldmeyer 2018; Moorman et al. 2015). The PFC is comprised of a
wide array of cell types, including excitatory pyramidal neurons, which impact behavior by relaying
information to other brain regions that are under clear circadian control, such as the amygdala and
hippocampus, and inhibitory interneurons, such as the parvalbumin (PV+) and neuropeptide Y (NPY)

containing neurons (Kawaguchi and Kubota 1997; Radnikow and Feldmeyer 2018; Vertes 2006; Saffari
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et al. 2016). On whole, the function, synaptic inputs and intrinsic physiological characterizations of
these neurons are heterogeneous throughout the PFC.

pIPFC pyramidal neurons receive excitatory glutamatergic and inhibitory GABAergic presynaptic
input, with findings suggesting these are differentially regulated in male and female mice (Popoli et al.
2012; Saffari et al. 2016; Andrade et al. 2012; de Velasco et al. 2015; Pena-Bravo et al. 2019).
Excitatory inputs onto these neurons are plastic and environmental factors such as stress, learning and
memory, can lead to long-lasting potentiation of glutamatergic inputs onto these neurons through
increased NMDAR and AMPAR mediated currents (Yuen et al. 2009; Laroche, Jay, and Thierry 1990).
Over activation of pIPFC neurons is detrimental to normal behavioral function, and inhibitory inputs,
which arise from the numerous inhibitory interneurons throughout the PFC, serve to mitigate the
excitability of PFC neurons (Ferguson and Gao 2018). The majority of PFC pyramidal neurons are
intrinsically quiescent at rest and regulate information throughput via a wide array of ion channels,
including cyclic-nucleotide-gate non-selective cation (HCN) channels, and calcium (Ca*") and
potassium (K*) channels known to mediate postsynaptic throughput of excitatory and inhibitory currents
(Kalmbach and Brager 2020; Zaitsev et al. 2012; Deng et al. 2019; Workman et al. 2015). In the SCN,
changes in sodium (Na*), K*, and Ca?* ion channel function mediate daily rhythms in the spontaneous
activity, and action potential dynamics of neurons (Bano-Otalora et al. 2021). How these channels
might impact daily rhythms in PFC function and the gating of information throughput is unknown.

Given the importance of understanding how daily rhythms impact PFC function, and our
previously documented effects of circadian desynchronization on PFC structure (Karatsoreos et al.
2011), here we rigorously tested how time-of-day alters a wide range of neurophysiological properties
in plPFC pyramidal neurons. The data presented here thoroughly demonstrate that time-of-day clearly
impacts the basal activity of these neurons. Second, we show that inhibitory and excitatory synaptic
inputs fluctuate throughout the day in a sex dependent manner. Lastly, we identify that K* channels
may serve, in part, as a mechanism to regulate daily changes in information throughput in pIPFC

pyramidal neurons.
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Results
Resting membrane potential of prelimbic layer 2/3 pyramidal neurons is rhythmic in male mice.

The regional and cell specific heterogeneity in electrophysiological properties of PFC pyramidal
neurons has been described in multiple species (Zaitsev et al. 2012; van Aerde and Feldmeyer 2015;
Piette et al. 2021). Layer 2/3 pyramidal neurons of the pIPFC were identified visually by anatomical
location (Figure 1A; left). Pyramidal neurons were identified by shape and lucifer yellow (LY; 0.2%)
was added to the patch pipette for confirmation of an apical dendrite (Figure 1A; right).

To test our hypothesis that time-of-day impacts the basal electrophysiological properties of
pyramidal neurons, we performed whole-cell patch clamp techniques and measured RMP, membrane
capacitance (Cm), and membrane resistance (Rm) at ZT bins: 0-4, 6-10, 12-16, and 18-22 in male and
female mice (Figure 1B-E). For RMP there was a main effect of time (no effect of sex) and
interestingly, within group post-hoc analysis revealed that pIPFC pyramidal neurons in male mice are
more depolarized at ZT6-10 (light period), when compared to 12-16 and 18-22 (dark period). Post-hoc
analysis did not reveal a time-of-day effect on RMP in female mice (Figure 1C). We did not observe an
interaction between sex and time in any of our measures; however, there was a main effect of sex on
Rm (Figure 1E). Together, these data demonstrate that the RMP of pIPFC pyramidal neurons in male

mice changes throughout the light/dark (LD) cycle.

A

o Male
o Female
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Figure 1. Time-of-day changes in membrane potential of layer 2/3 mPFC pyramidal neurons.
(A) Image of mPFC slice (left; scale 1TmM) and layer 2/3 pyramidal neuron backfilled with lucifer
yellow (LY, right; scale 10 uM). (B) Representative traces of current clamp recordings from male
mice at each ZT bin. (C) Mean and individual data points for membrane potential (RMP) at ZT0-
4, 6-10, 12-16, and 18-22 in male (bluish green circles) and female (vermillian diamonds) mice
(D) Mean membrane capacitance (Cm) and (E) resistance (Rm) binned by ZT. Error bars
represent + 95% CI. N-values for number of cells inset on bars. Two-way ANOVA for main
effects and interaction with a within group Tukey post-hoc analysis for ZT bin, * p < 0.05, ***p <

0.001. Exact p-values, mouse N-values, and analysis in Figure 1 — source data 1.

sEPSC activity on pIPFC pyramidal neurons is time-of-day dependent

Glutamatergic pyramidal neurons are the predominant cell-type in the pIPFC, project to extra-
PFC cortical, subcortical and limbic regions, and interconnect within the PFC (Le Merre, Ahrlund-
Richter, and Carlén 2021). We hypothesized that basal excitatory glutamatergic release contributes to
daily changes in RMP and predicted that the number and/or strength of excitatory inputs are highest
during the light period, when pIPFC pyramidal neurons are depolarized (Figure 1B, C). To test whether
time-of-day alters excitatory inputs we used the whole-cell voltage-clamp configuration (Vi = -70mV) to
record SEPSCs in pIPFC pyramidal neurons from male and female mice at ZT0-4, 6-10, 12-16, and 18-
22 (Figure 2A-E). There was a main effect of ZT time on sEPSC frequency, but not amplitude, and
post-hoc analysis demonstrated that in male mice the frequency of excitatory inputs was increased
during the dark period, when RMP is hyperpolarized, an effect counter to our hypothesis (Figure 1B
and 2A-C). Further, we observed clear sex differences on both sEPSC frequency and amplitude
(Figure 2D, E). These data suggest that time-of-day impacts the number of excitatory inputs

(frequency), but not their strength (amplitude) in male and female mice.
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Figure 2. Excitatory synaptic inputs onto pIPFC pyramidal neurons are time-of-day dependent and
differ by sex. (A) Representative traces of SEPSC voltage clamp recordings from male mice at each
ZT bin. (B, D) Mean and individual data points for sEPSC frequency and (C, E) amplitude at ZT0-4,
6-10, 12-16, and 18-22 or combined (respectively) in male (bluish green circles) and female
(vermillian diamonds). (F) Representative traces of sIPSC voltage clamp recordings from male mice
at each ZT bin. (G, 1) Mean and individual data points for sIPSC frequency and (H, J) amplitude at
ZT0-4, 6-10, 12-16, and 18-22 or combined (respectively) in male and female. Error bars represent +
95%CI. N-values for number of cells inset on bars. Two-way ANOVA for main effects (including D, E,
I and J) and interaction, with a within group Tukey post-hoc analysis for ZT bin, *p < 0.05, **p < 0.01,

***n < 0.001. Exact p-values and analysis in Figure 2 — source data 1.
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Time-of-day does not alter sIPSCs in male or female mice

Changes in RMP can be a consequence of intrinsic and/or synaptic properties. Our results on
sEPSC frequency and amplitude (Figure 2A-E) in the pIPFC suggest that excitatory synaptic inputs are
not the primary driver of the daily changes in RMP illustrated in Figure 1 and required further
investigation to identify the mechanism underlying time-of-day changes in resting state. To investigate
the contrast between daily changes in RMP and excitatory inputs, we predicted that if synaptic signaling
is a primary mediator of time-of-day changes in RMP then inhibitory inputs should be robust and
highest during the dark period ZT bins. GABAergic interneurons make up a small portion of PFC
neurons, but are highly involved in the regulation of pyramidal neurons and relay information between
different regions within the PFC (Saffari et al. 2016). To determine if inhibitory inputs contribute to the
diurnal tone of pyramidal neurons, we recorded (s) inhibitory postsynaptic currents (IPSCs; Vhoid = -
70mV) using a cesium chloride internal solution at ZT 0-4, 6-10, 12-16, and 18-22 (Figure 2F-H). We
did not observe a significant difference in sIPSC frequency or amplitude in male or female mice (Figure
2F-J), but noted a trend in increased amplitude during the dark period in male mice (Figure 2F, H).
Overall, these data do not support the notion that spontaneous synaptic inputs are the primary regulator
of daily rhythms in neuronal resting state in pIPFC pyramidal neurons, suggesting that a postsynaptic

mechanism may regulate daily rhythms in these neurons.

mIPSCs onto pIPFC pyramidal neurons are time-of-day dependent

Our central goal was to identify the mechanism(s) by which daily rhythms impact information
throughput of pIPFC pyramidal neurons. Given that we did not observe daily changes of RMP in female
mice, and there was a main effect of sex on membrane resistance (Figure 1C, E), sEPSC frequency,
and amplitude (Figure 2D, E) — all without an interaction between sex and ZT bin — we proceeded with
our mechanistic investigation by separating male and females into independent groups.

Although we did not observe an effect of ZT bin on sIPSC frequency or amplitude in male mice,
when ZT bins were combined into light period and dark period, we uncovered a significant impact of the

LD cycle on sIPSC amplitude (Figure 3B). To further investigate whether time-of-day impacts the
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presynaptic or postsynaptic components of inhibitory inputs, we measured mIPSCs by bath applying
the voltage-gated sodium channel blocker tetrodotoxin, which isolates the synapse from upstream
activity by inhibiting action potential firing. We observed no effect on mIPSC frequency, which is
typically associated with presynaptic neurotransmitter release, in male mice (Figure 3A, C). Although
we did not observe changes in decay tau or holding current, the time-of-day effect on IPSC amplitude
persisted in this configuration, and this increase in amplitude of inhibitory inputs is consistent with the
hyperpolarized RMP we observed during the dark period in male mice (Figure 1C and 3A, D-F).
Notably, in female mice there was no LD effect on sIPSC amplitude (Figure 3H), but we did observe an
increase in mIPSC frequency and amplitude during the latter part of the light period (ZT 6-10; Figure
3G, I-J) although there was no effect on other potential postsynaptic measures, such as decay tau and

holding current (Figure 3K, L).
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Figure 3. Strength of inhibitory synaptic inputs onto pIPFC pyramidal neurons are time-of-day
dependent in male and female mice. (A) Representative traces of mIPSC voltage clamp recordings
from male and (G) female mice at each ZT bin. (B, H) Mean sIPSC amplitude in LD cycle (unpaired
student t-test; yellow fill = light period, charcoal fill = dark period) and (C, 1) mIPSC frequency, (D, J)
amplitude, (E, K) decay tau, and (F, L) holding current (l1o) at ZT0-4, 6-10, 12-16, and 18-22 in
male (circles) and female (diamonds) mice. Error bars represent + 95%CI. One-way ANOVA with
Tukey post-hoc analysis for ZT bin, *p < 0.05, **p < 0.01. N-values for number of cells inset on bars,

exact p-values, mouse N-values, and analysis in Figure 3 — source data 1.
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Time-of-day impact on current voltage relationship in pIPFC pyramidal neurons of female mice
Although mIPSCs were enhanced during the latter portion of the light period (ZT6-10) in female
mice, we had not observed any convincing evidence of cell endogenous daily rhythms in the physiology
of pIPFC pyramidal neurons in these mice. To investigate any potential daily changes in postsynaptic
properties we used a potassium (K*) gluconate internal solution and measured the current-voltage (I-V)
relationship in these neurons by performing a voltage-step inactivation protocol in which neurons held
at -70mV were depolarized to 30mV and hyperpolarized in 10mV steps to a final MP of -120mV (Figure
4A, B). We analyzed the delayed steady-state current density (current density = (Itota1)/(Cm)) during the
hyperpolarized (from -120 mV to -70mV (K1); Figure 4A-C) and depolarized state (0 mV to 30mV (K2);
Figure 4A, B, E), as well as daily changes in normalized conductance (g) calculated as the slope of the
K1 and K2 steady-state current normalized to cell capacitance: gnormalized = ((lviz— lvr1) / (VH2 —
VH1))/(Cm), at different ZT bins (Figure 4D, F). We observed a main time-of-day effect on current
density and normalized conductance for the K1 hyperpolarized voltage steps, although there was no
main effect at the K2 depolarized voltage steps (Figure 4B-F). Together, these data demonstrate that
female mice do display daily rhythms in postsynaptic membrane properties, but they are not robust

enough to alter resting state (Figure 1C-E).
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Figure 4. Time-of-day impact on membrane conductance and currents in female mice. (A) Current-
voltage trace (top, dashed line represents steady state current averaged for analysis) after voltage-
step protocol (bottom). (B) Averaged |-V voltage-step relationship from -120mV to 30mV for ZT0-4
and 18-22 (normalized to cell capacitance) with a K* internal solution. (C, E) Current density and (D,
F) conductance of K1 and K2 currents (respectively) at ZT0-4, 6-10, 12-16, and 18-22 in female
mice. K1 and K2 represent hyperpolarized and depolarized currents (respectively). Error bars
represent = 95%CI. Two-way (C, E) or One-way (D, F) ANOVA with Tukey post-hoc analysis for ZT

bin. **p < 0.01. N-values for number of cells inset on bars, exact p-values and analysis in Figure 4 —

source data 1.

Time-of-day impact on current voltage relationship in pIPFC pyramidal neurons of male mice

Given that synaptic inputs are rhythmic in male and female mice, but only male mice display
daily rhythms in RMP, we hypothesized that changes in postsynaptic ionic currents, as measured by
the I-V relationship, may play a role in setting the functional tone of pIPFC pyramidal neurons in male
mice. As in Figure 4, we analyzed the I-V relationship by running a voltage-step protocol (Figure 5A,
B). In male mice the |-V relationship demonstrated a clear inward rectifying current at lower holding
voltages and a delayed rectifying current at depolarizing voltages, resulting in a larger current density
early in the dark period (ZT12-16) in both the hyperpolarized (Figure 5A-C) and depolarized state
(Figure 5A, B, D). This effect translated into higher normalized cell conductance late in the light period
and early in the dark period (Figure 5l, J).

Since ionic conductance was highest at ZT12-16, the same ZT bin that RMP was most
hyperpolarized, we predicted that this increase involved ion channel activity that results in a net
negative current. Further, in the hyperpolarized state, the current density at each ZT began to converge
near our calculated reversal potential for K*. To determine if daily changes in current density and
normalized cell conductance was dependent on K* channel activity, we utilized a K* free Cs*-based
internal recording solution to block outward K* currents. This preparation completely abolished the time-

of-day effect on current density at lower holding voltages, but not in the depolarized state (Figure 5E-
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H). Further, the time-of-day effect on normalized cell conductance was blocked when calculated at the
presented voltages with a main effect of Cs* on overall conductance in the depolarized state (Figure
51,J). Of particular note, blockade of outward K* currents via internal Cs™ appeared to have little effect
at ZT0-4, suggesting minimal K* channel activity at this ZT bin (Figure 5C,G). Together, these data
demonstrate that ion channel activity is time-of-day dependent in pIPFC pyramidal neurons and K*

channels contribute to daily rhythms in their cellular conductance.
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Figure 5. Membrane conductances are mediated by K+ channels in males

(A) Voltage-step protocol (fop left) and representative voltage-step traces of I-V relationship at ZT 0-
4 (left) and 12-16 (right) in male mice. (B) Averaged I-V relationship for ZT0-4 and 12-16 (normalized
to cell capacitance) with a K* internal solution. (C) Current density of K1 and (D) K2 I-V relationships
at ZT0-4, 6-10, 12-16, and 18-22. (E) Representative voltage-step traces of (F) I-V relationship at ZT
0-4 (left) and 12-16 (right) with a Cs+ internal solution. (G) Current density of Cs1 and (H) Cs2 I-V
relationships at each ZT bin. (I) Comparison each ZT bin for K1 and Cs1, and (J) K2 and Cs2
normalized cell conductance. Two-way ANOVA for main effects and interaction, with a within group
Tukey post-hoc analysis for ZT bin, voltage, and internal solution. Error bars represent £ 95%CI and
N-values for recorded cells are inset in bars. *p < 0.05, **p < 0.01, ***p < 0.001. Exact p-values,

mouse N-values, and analysis in Figure 5 — source data 1.

211
212 Time-of-day alters excitability of pIPFC pyramidal neurons

213 To understand the functional implications of daily rhythms in RMP and postsynaptic ion channel
214  function for information throughput, we tested how time-of-day impacts action potential dynamics. We
215  utilized a 10 pA current injection protocol to evoke action potentials at ZT0-4, 6-10, 12-16, and 18-22
216  and observed a main effect of time for membrane potential threshold of action potential firing, with post-
217  hoc analysis revealing an increased threshold for firing late in the dark period (ZT18-22) when

218  compared to ZT6-10 in male mice (Figure 6A-C). Consistent with the null effect of time on RMP in

219  female mice, there was no effect of time on action potential threshold (Figure 6C). Further, although
220  there was no effect on amount of current needed to elicit an action potential (rheobase), once rheobase
221  was reached, subsequent current injections evoked action potential firing at a lower frequency during
222 the dark period (Figure 6D, E). Although we did not observe a time-of-day effect on action potential
223 amplitude or half-width in male mice (Figure 6F-G), decay tau was reduced at ZT18-22, a component
224 of action potential firing that is modulated to a large extent by K* channels (Figure 6E). These data

225  suggest that pIPFC pyramidal neurons are not only more hyperpolarized during the light period, but are
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226  functionally more difficult activate, requiring larger depolarizations to elicit action potentials and relay

227 information downstream.
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228

Figure 6. Time-of-day differences in action potential dynamics. (A) Representative trace of current
step recording with maximal AP firing highlighted at ZT6-10 (top; yellow) and 18-22 (bottom, black)
and (B) individual evoked APs in male mice. (C) Mean AP threshold (D) Rheobase, (E) evoked firing
rate (from rheobase; male mice), (F) amplitude, (G) half width, and (H) decay tau at each ZT bin in
male and female mice. Error bars represent + 95%CI. Two-way ANOVA for main effects and
interaction, with a within group Tukey post-hoc analysis for ZT bin and/or current injection. *p <0.05,

**p <0.01. Number of cells included in for each bar. Exact p-values, mouse N-values, and analysis in

Figure 6 — source data 1.
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Discussion

The suprachiasmatic nucleus (SCN) is the central circadian clock in mammals and regulates
daily changes in gene expression and activity throughout the brain (M. H. Hastings, Reddy, and
Maywood 2003). However, it has become clear that numerous brain regions also display endogenous
daily rhythms. A major hypothesis in the field is that these extra-SCN clocks and the SCN operate
synergistically to drive daily rhythms in nearly all components of physiology and behavior, which is why
their disruption has numerous physiological and psychological consequences, including exacerbated
metabolic and mood disorders (Otsuka et al. 2020; McCarthy and Welsh 2012; Morris et al. 2015;
Bechtold, Gibbs, and Loudon 2010; Karatsoreos 2012). While there have been several well executed
studies that demonstrate the importance of circadian rhythms on neurophysiological function in the
hippocampus and brainstem, none have included the PFC, and all have largely focused on extracellular
field recordings (Chaudhury, Wang, and Colwell 2005; Loh et al. 2015; Paul et al. 2020; Chrobok et al.
2021; McMartin et al. 2021). Thus, previous studies have not shed light on the fundamental
electrophysiological processes at the cellular level that are affected by time-of-day.

In this study we present four main findings. First, layer 2/3 pIPFC pyramidal neurons in male
mice are hyperpolarized during the early portion of the dark period when compared to the latter portion
of the light period. Second, time-of-day impacts excitatory and inhibitory inputs onto pIPFC pyramidal
neurons, with clear sex differences in excitatory inputs. Third, we demonstrate that male mice display
distinct changes in ion channel activity and action potential kinetics, with male mice having an
increased action potential firing threshold and decreased decay tau during portions of the dark period.
Fourth, we identify that changes in K* channel activity serves as a potential mechanism underlying
time-of-day changes in the RMP and action potential firing rates of pIPFC pyramidal neurons. By
identifying the intrinsic properties and synaptic inputs of pIPFC pyramidal neurons, these findings allow
us to better understand the relationship between circadian rhythms, PFC circuitry and its associated
behaviors.

Changes in PFC function underly numerous psychiatric disorders including bipolar, post-

traumatic stress disorder (PTSD), attention deficit disorder, and deficits in learning and memory (Popoli
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et al. 2012; Sotres-Bayon, Cain, and LeDoux 2006; Miller and Cohen 2001; Xu et al. 2019). There is
growing evidence of links between circadian rhythms and PFC function (Otsuka et al. 2020; Woodruff et
al. 2018; Hou et al. 2022; Harkness et al. 2021). Previous work from our group has demonstrated that
extracellular lactate (a functional output of neural metabolism) shows circadian rhythms in the medial
(m) PFC, and that environmental circadian disruption alters the morphology of medial mPFC neurons
and affects PFC mediated behaviors (Wallace et al. 2020; Karatsoreos et al. 2011). However, the
studies presented here are the first to explore whether cell autonomous activity and synaptic inputs
onto PFC neurons are rhythmic.

Our finding that the resting state of pIPFC neurons is more hyperpolarized during the dark period,
when the animals are awake and active, suggests that these neurons are less active and require a
higher degree of information input before eliciting a response and sending downstream signals to other
brain regions. On the surface, it seems counter-intuitive that pIPFC pyramidal neurons would be more
inactive during the dark period, when these animals are active and engaging with their environment,
than the light (inactive) period. A functional hypothesis for this finding is that stronger gating during the
wake period serves as a necessary mechanism for selective informational throughput in response to
environmental stimuli. Information filtering is paramount to having a proper behavioral output, and too
low of a threshold may result in overactivation as the animal engages with its environment. For
example, pharmacological studies have demonstrated that activation of the pIPFC with neurotensin
agonists or the sodium channel activator veratrine lead to anxiogenic behaviors, likely through
increased glutamate release (Li, Chang, and Xi 2021; Petrie et al. 2004; Saitoh et al. 2014). Notably,
we discovered a large increase in excitatory inputs onto these neurons during the active period. This is
in line with other studies demonstrating that in layer 2/3 cortical neurons, excitatory inputs are
increased during spontaneous wakefulness and sleep deprivation occurring during the light (inactive)
period (Liu et al. 2010). While it seems contradictory that these neurons simultaneously receive more
excitatory inputs and become more hyperpolarized, it is aligned with the proposal that these neurons

require stronger gating mechanisms during the active period, as more information is being sent to these
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neurons and it is critical that these incoming stimuli are somewhat filtered so only the strongest signals
are relayed further downstream.

Neurophysiological sex differences in the PFC, and their respective behavioral outputs, are well
documented and partly attributed to differences in synaptic signaling (Andrade et al. 2012; de Velasco
et al. 2015). While exploring the effects of time-of-day on these fundamental properties of PFC cells, we
fully embraced inclusion of both males and females, given the significant work demonstrating that
inclusion of both sexes (particularly inclusion of females) can reveal important new concepts and
understanding about brain function (Shansky and Murphy 2021). While not designed explicitly as a sex-
differences study, our results demonstrate that female mice had less excitatory inputs than males, yet
these inputs resulted in much larger postsynaptic currents, likely due to sex differences in glutamate
receptor expression and basal release (Perry et al. 2021). There are also sex differences in response to
environmental and pharmacological stressors, which are due in part to circulating sex hormones (Yuen,
Wei, and Yan 2016). For example, when compared to male rats, females in proestrus display a lower
threshold for impaired working memory after PFC injections of benzodiazepine inverse agonists that
activate the stress system, but this effect does not persist during estrus, when circulating estrogen
levels are lower (Shansky et al. 2004). Further, gonadal hormones underly sex differences in mPFC
dendritic growth, microglia activity, and astrocyte morphology in response to stress (Bollinger et al.
2019). It should be noted that there is a report that basal PFC glutamate release is higher in females,
which seems opposite to our findings, but is likely due to experimental differences, as these studies
differ in species, PFC layers, electrophysiological solutions, and time-of-day (Pena-Bravo et al. 2019).
We speculate that if the underlying mechanisms that mediate information throughput and plasticity are
fundamentally different in males and females, and the basal tone of excitatory inputs is relatively low in
females, then time-of-day changes in information filtering may not be as crucial to optimal pIPFC
function in female mice.

GABAergic interneurons are highly involved in PFC function and relay information between
multiple regions of the PFC (Saffari et al. 2016; Hu, Gan, and Jonas 2014; Anderson et al. 2021). In the

hippocampus, GABAergic inputs onto CA1 pyramidal neurons regulate action potential firing frequency
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in response to current injections, with a higher inhibitory tone during the light cycle (Fusilier et al. 2021;
Albers et al. 2017). Significantly, we found that in the pIPFC there was no effect of sex or time-of-day
on spontaneous inhibitory inputs. This suggests that presynaptic inhibitory and excitatory inputs are not
the primary regulator of resting state or information throughput in layer 2/3 pIPFC pyramidal neurons.
Instead, this supports the notion that basal inhibitory tone remains relatively constant throughout the
24h day and, in male mice, a postsynaptic cell endogenous mechanism is responsible for maintaining
proper information filtering when these neurons are challenged by the large increase of excitatory
signals that come in during the active period.

Although the frequency and amplitude of spontaneous inhibitory inputs did not change when
probed by individual ZT bins, further investigation revealed that when grouped by the light/dark cycle,
the strength (amplitude) of inhibitory inputs was stronger during the dark (active) period, specifically in
male mice. GABA receptors interact with postsynaptic ion channels and there are sex differences in the
expression of GABA receptor subunits, as well as how they interact with ion channels. For example, the
steroid hormone progesterone increases the expression of the GABAa receptor subunit a1 in the PFC
of rodents, and in humans, alcoholism is suggested to result in larger decreases of cortical GABA(A)
receptor subunits in females than males (Andrade et al. 2012; Janeczek et al. 2020). After investigating
GABAergic signaling localized at the synapse and isolated from upstream activity, we confirmed that
inhibitory postsynaptic currents are stronger early in the dark period in male mice. Interestingly, female
mice displayed a large increase in inhibitory inputs and strength late in the light period, a finding that
requires future studies to fully understand its functional implications.

In total, our findings point toward a postsynaptic mechanism underlying daily changes in the
physiology of layer 2/3 pIPFC pyramidal neurons and previous work has shown that sleep deprivation
can alter the intrinsic excitability of layer 5 PFC pyramidal neurons (Yan et al. 2011). This prompted us
to explore how time-of-day impacts intrinsic postsynaptic properties such as ionic currents and overall
conductance. At hyperpolarized voltage steps below the reversal potential of K*, time-of-day did have a
modest impact the conductance and current density of plPFC pyramidal neurons in female mice

between the transition from the dark to light period. However, at depolarizing voltages greater than the
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mean RMP and action potential threshold there was no time-of-day effect. This further supports the
notion that while physiological daily rhythms do exist in pIPFC pyramidal neurons of female mice, they
have little impact on overall resting state and information throughput in response to electrical activity
and synaptic inputs. In contrast, there was a large effect on the current density and conductance of
pyramidal neurons in male mice. Specifically, when these neurons were hyperpolarized below the
equilibrium potential for K*, we discovered that current density increased throughout the light period,
peaking between the late period and early dark period. This effect translated into an overall increase in
conductance, and given that conductance was highest around the beginning of the active period, when
these neurons are most hyperpolarized, we presumed that this was due to an increased number of
open K* channels and the outflow of K* cations (outward current). Consistent with this prediction, when
we replaced K* with Cs™ in our internal recording solution (to block K* channel mediated outward
currents), the time-of-day effect on current density and conductance was completely abolished at
voltages near or below the K* equilibrium potential. Although internal Cs™ was not sufficient to block the
time-of-day effect on current density at depolarized voltage greater than the K* equilibrium potential, it
greatly reduced overall current density and conductance. Moreover, previous studies demonstrate that
internal Cs™ is not sufficient to block the inward K* currents expected at voltages above the K*
equilibrium potential (Adelman and Senft 1966).

To understand the functional relevance of these postsynaptic changes in ion channel function
and resting state, it was necessary to determine how time-of-day impacts action potential dynamics as
action potential firing is a functional measure for information throughput. Notably, this measure changes
with time-of-day in the hippocampus, and in response to sleep deprivation in the PFC (Fusilier et al.
2021; Yan et al. 2011). Action potentials are dependent on voltage-gated ion channels, and changes in
K* channel activity can alter action potential firing threshold and kinetics. Consistent with our
interpretation that, in male mice, there is a stronger gating mechanism to filter incoming signals during
the active period, we discovered that the threshold for action potential firing was increased during the
active period. These data suggest that layer 2/3 pIPFC pyramidal neurons are not only more

hyperpolarized during the light period, but are functionally more difficult to activate, requiring much
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larger depolarizations to elicit action potentials and relay information downstream. Though somewhat
speculative, this could affect a wide range of behaviors, including emotionality, a notion supported by
work demonstrating that pharmacological activation of pIPFC neurons induces anxiogenic activity in
mice, and acute stress enhances glutamatergic transmission in the PFC (Yuen et al. 2009; Li, Chang,
and Xi 2021; Saitoh et al. 2014). Further, alcohol is a common drug of abuse in those suffering from
PFC associated affective pathologies, and in vivo electrophysiology studies show that alcohol preferring
rats have higher baseline neural firing in the PFC (Linsenbardt and Lapish 2015).

Combined, we believe this work demonstrates the importance of understanding how daily
rhythms impact neural function, which is necessary to fully grasp the relationships between brain and
behavior. It is critical to recognize that the mPFC is heterogeneous at the anatomical and physiological
levels, with consequences for behavior (Moorman et al. 2015). Our work suggests that even when
looking at the fundamental properties of cellular function in the mPFC, perhaps we need to add
heterogeneity at the temporal level as well. To fully appreciate the relationship between brain, behavior,
and daily rhythms, future studies are required to determine how these rhythms impact communication
with extra- (such as the hippocampus and amygdala) and intra- (such as the infralimbic) PFC regions.
Additionally, future studies are necessary to determine exactly which ion channels are mediating daily
changes in PFC function and how environmental factors that alter whole-animal physiology and
behavior, such as circadian disruption, may impact these circuits. Given the impact of time-of-day on
neuronal function in the PFC, the work presented here also has significant implications for incorporating
time-of-day into the application of pharmacological and behavioral interventions for mental health

disorders, and opens the door to similar questions in brain regions outside the PFC.
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Methods
Animals

All animal procedures and experiments were approved by the University of Massachusetts
Ambherst Institutional Care and Use Committee in accordance with the U.S. Public Health Service Policy
on Humane Care and Use of Laboratory Animals and the National Institutes of Health Guide for the
Care and Use of Laboratory Animals. Male and female wild-type mice (Charles River, Wilmington, MA,
USA) on a C57BL/6J background were used for these studies. All mice were group-housed in light
boxes at 25°C, under a 12/12-hr light/dark (LD) cycle, with food and water available ad libitum. Light
box LD cycles were offset so that experiments from each ZT bin occurred at the same time each day.
Mice ages 10-16 weeks were used for these studies. For electrophysiology studies mice were

anesthetized in a chamber with isoflurane before euthanasia by decapitation.

Brain slice electrophysiology

Two mice were simultaneously euthanized 1-hr prior to their ZT bin (i.e., mice were euthanized at
ZT23 for recording bin ZT0-4). After euthanasia, brains were immediately removed and the forebrain
was blocked while bathing in a 0-4°C oxygenated N-methyl-D-glucamine (NMDG) - 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES) cutting solution composed of (mM): 92 NMDG, 2.5 KCI, 1.25
NaH2PO., 30 NaHCO3, 3 sodium pyruvate, 2 thiourea, 20 HEPES, 10 MgSOs, 0.5 CaCl., 25 glucose,
20 sucrose. Cutting solution was brought to pH 7.4 with ~17mL of 5M HCI (Ting et al. 2018). The
forebrains were mounted adjacent to each other and sectioned simultaneously on a vibratome
(VT1200S, Leica Biosciences, Buffalo Grove, IL, USA) with a sapphire knife (Delaware Diamond
Knives, Wilmington, DE, USA) yielding roughly three slices containing the PFC from each (250-um) per
mouse. Slices were transferred and allowed to recover for 30-45 min in room temperature recording
artificial cerebrospinal fluid (aCSF) solution composed of (mM): 124 NaCl, 3.7 KClI, 2.6 NaH,PO4, 26
NaHCOs3, 2 CaCl,, 2 MgSO0s, 10 glucose. aCSF had a final pH of 7.3-7.4, osmolarity of 307-310
mOsmos, and was continuously bubbled using 95% 02/5% CO0,. For recordings, brain slices were

transferred to a perfusion chamber containing aCSF maintained at 34-37°C with a flow rate of 1mL/min.
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Neurons were visualized using an upright microscope (Zeiss Axoskop 2, Oberkochen, Germany).
Recording electrodes were back-filled with experiment-specific internal solutions as follows (mM):
Current-clamp and spontaneous (s) excitatory postsynaptic currents (EPSCs); 125 K-gluconate, 10
KCI, 10 NaCl, 5 HEPES, 10 EGTA, 1 MgClz, 3 NaATP and 0.25 NaGTP (liquid-junction potential (LJP)
= ~14.5 mV). Voltage-clamp spontaneous inhibitory postsynaptic currents (sIPSCs); 140 CsCl, 5 MgCla,
1 EGTA, 10 HEPES, 3 NaATP, and 0.25 NaGTP (LJP = ~4.2 mV). All internal solutions were brought to
pH 7.3 using KOH (current-clamp and EPSC) or CsOH (IPSC) at 301-304 mOsm. EPSCs were
recorded in the presence of the GABA receptor antagonist bicuculline (30 uM). sIPSCs were recorded
in the presence the competitive a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate
receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 uM), the selective N-Methyl-d-
aspartate (NMDA) receptor antagonist (2R)-amino-5-phosphonovaleric acid (APV; 50 uM), and the
glycine antagonist strychnine (2 uM). Miniature (m) IPSCs had the addition of the voltage-gated sodium
channel (VGSC) blocker tetrodotoxin (TTX; 1 uM). Patch electrodes with a resistance of 3-5MQ were
guided to neurons with an MPC-200-ROE controller and MP285 mechanical manipulator (Sutter
Instruments, Novato, CA, USA). Patch-clamp recordings were collected through a UPC-10 USB dual
digital amplifier and Patchmaster NEXT recording software (HEKA Elektronik GmbH, Reutlingen,
Germany). All voltage-clamp recordings were obtained at Vu=-70mV. Current clamp voltage-step
protocols were performed from the cell endogenous resting membrane potential, and used 500ms 10pA
steps from -100pA to +190pA. Voltage clamp current-step protocols were performed from Vy= -70mV,
and used 10mV steps from -120mV to +30mV. All compounds were obtained from Tocris Cookson,
Cayman Chemical, and Sigma Aldrich.

Individual recording locations were plotted (with neurons outside of the target area excluded
from analysis) as well as to qualitatively confirm an equal distribution of recording sites between
Zeitgeber (ZT) bins 0-4, 6-10, 12-16, and 18-22 (Figure 1 — figure supplement 1A-D). A small
percentage (~20%) of all recorded neurons had unique characteristics in resting membrane properties,
spontaneous excitatory postsynaptic currents (SEPSCs), and action potential dynamics that were

independent of time-of-day (hereafter Type Il neurons; Figure 1 - figure supplement 2A-l). Most
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notably, compared to Type | (most abundant) neurons, Type Il neurons (less abundant) displayed a
much higher action potential velocity and hyperpolarizing decay current (Figure 1 - figure supplement
2A, B). They also had a more depolarized resting membrane potential (RMP) and decreased action
potential firing threshold (Figure 1 - figure supplement 2E, F). Due to these clear qualitative and
quantitative differences independent of ZT bin, and that they represented a small proportion of recorded

neurons, we excluded the far less abundant Type Il neurons from analysis in our following experiments.

Statistical Analysis

For sEPSCs, only neurons with holding currents not exceeding 100pA at Vy= -70mV for the 10-
min control period (input resistance > 70 MQ) were studied further. Neurons were not considered for
further analysis if series resistance exceeded 50MQ or drifted >10% during baseline. Rheobase was
calculated as the first current step to elicit an action potential and action potential dynamics (threshold,
decay tau, and half-width) were obtained from the first evoked action potential to avoid variance in ion
channel function due to repeated action potential firing. G*Power 3.0 software (Franz Faul, Uni Kiel,
Germany) was used to conduct our power analysis, for a p value of <0.05 with 90% power. Adequate
sample sizes were based upon expected effect sizes from similar experiments. Raw data files were
analyzed in the Patchmaster NEXT software or converted using ABF Utility (Synaptosoft) for analysis in
Clampfit (Molecular Devices, San Jose, CA, USA). N-values for analysis and presented in figures
represent individual cells. To control for biological variability between groups N = 4-8 mice per group
(see figure source data). Statistical comparison of effects between each time-period was made using a
full model two-way ANOVA (column, row, and interaction effects) for comparison of the current-voltage
relationships and comparing the interaction and main effect of time and sex or internal solution. For all
experiments, error bars are presented as mean + 95% confidence interval (Cl). Statistics were

calculated using Prism 9 (Graphpad Software, San Diego, CA, USA).
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Figure 1 — figure supplement 1. Recording map for layer 2/3 pIPFC pyramidal neurons.
Coronal sections of forebrain showing individual recording sites from majority of neurons that
were imaged at (A) ZT0-4, (B) 6-10, (C) 12-16 and (D) 18-22 for basal membrane property,
sEPSC, and evoked action potential experiments in male (bluish green outline) and female
(vermillian outline) mice. Stars filled with black represent ‘Type I’ neurons included for analysis

and red stars represent Type Il/lll neurons excluded from analysis.
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Figure 1 — figure supplement 2. Categories and distinct physiological characteristics of pIPFC
neurons. (A) Representative evoked action potential traces and phase plot diagram of first five
action potentials (bottom) illustrating differences in velocity, trajectory, and amplitude in Type |
and (B) Type Il neurons. (C) Comparison of membrane resistance (Rm), (D) membrane
capacitance (Cm), (E) resting membrane potential (RMP), (F) action potential (AP) threshold,
(G) sEPSC frequency (Freq), and (H) sEPSC amplitude (Amp). (I) Percentage of recorded cells
displaying Type | or Type Il characteristics (combined among all ZT bins; calculated by n values
from AP threshold ). Error bars represent £ 95%CI. Unpaired student t-test, * p< 0.05, ** p<

0.01, ***p< 0.001. Exact p-values and analysis in Figure 1 — supplemental source data 1.
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