

The rubber tree kinome: genome-wide characterization and insights into coexpression patterns associated with abiotic stress responses

Lucas Borges dos Santos^{a,*}, Alexandre Hild Aono^{a,*}, Felipe Roberto Francisco^a, Carla Cristina da Silva^a, Livia Moura Souza^{a,b}, Anete Pereira de Souza^{a,c,**}

^a *Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil*

^b *São Francisco University (USF), Itatiba, Brazil*

^c *Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil*

*The authors contributed equally

**Corresponding author

Email addresses: lugesst@gmail.com (Lucas Borges dos Santos), alexandre.aono@gmail.com (Alexandre Hild Aono), felipe.roberto.francisco@gmail.com (Felipe Roberto Francisco), silvacbio@yahoo.com.br (Carla Cristina da Silva), livia.souza@usf.edu.br (Livia Moura Souza), anete@unicamp.br (Anete Pereira de Souza)

Abstract

The protein kinase (PK) superfamily constitutes one of the largest and most conserved protein families in eukaryotic genomes, comprising core components of signaling pathways in cell regulation. Despite its remarkable relevance, only a few kinase families have been studied in *Hevea brasiliensis*. A comprehensive characterization and global expression analysis of the PK superfamily, however, is currently lacking. In this study, we identified and characterized the entire set of PKs, also known as the kinome, present in the Hevea genome. A total of 1,809 PK genes were identified using the current reference genome assembly at the scaffold level, and 1,379 PK genes were identified using the latest chromosome-level assembly and combined into a single set of 2,842 PKs. These proteins were further classified into 20 different groups and 122 families, exhibiting high compositional similarities among family members and with two phylogenetically close species (*Manihot esculenta* and *Ricinus communis*). Different RNA-sequencing datasets were employed to identify tissue-specific expression patterns and potential correspondences between different rubber tree genotypes. In addition, coexpression networks under several abiotic stress conditions, such as cold, drought and latex overexploitation, were employed to elucidate associations between families and tissues/stresses. Through the joint investigation of tandemly duplicated kinases, transposable elements, gene expression patterns, and coexpression events, we provided insights into the understanding of the cell regulation mechanisms in response to several conditions, which can often lead to a significant reduction in rubber yield.

Keywords: Coexpression networks, *Hevea brasiliensis*, kinase family, RNA-Sequencing, tandem duplications, transposable elements

1 1. Introduction

2 Rubber is one of the world's major commodities and is extensively used in various industrial
3 and domestic applications, yielding more than 40 billion dollars annually (Board, 2018). The
4 major source of latex for rubber production is *Hevea brasiliensis* (Hbr), commonly referred to as
5 rubber tree, a perennial native plant from the Amazon rainforest belonging to the *Euphorbiaceae*
6 family (Priyadarshan and Goncalves, 2003). Although the warm and humid weather in the
7 Amazon region offers a favorable climate for Hbr growth and propagation, large-scale cultivation
8 of Hbr is unviable due to the incidence of a highly pathogenic fungus, *Pseudocercospora ulei*
9 (Hora Júnior et al., 2014). Thus, rubber tree plantations were transferred to other countries and
10 regions, which could not offer optimal conditions for the development of tropical crops due to
11 the low temperatures during winter, dry periods, and elevated wind incidence (Hoa et al., 1998).
12 Exposure to these new abiotic stresses often leads to a significant reduction in latex production
13 in most Hbr wild varieties, which has stimulated the development of breeding programs with a
14 focus on stress-tolerant cultivars (Priyadarshan and Goncalves, 2003; Pushparajah, 1983).

15 Different types of abiotic stresses may trigger several physiological responses in susceptible
16 rubber tree genotypes and often impact their survival, growth and productivity, depending on
17 the age and vigor of the affected plant (Kuruvilla et al., 2017). In general, cold and drought
18 stresses result in the inhibition of photosynthesis and chlorophyll degradation (Devakumar et al.,
19 2002). Water deficit may affect the plant growth and canopy architecture of trees, and its impact
20 during tapping seasons tends to be more severe due to the deviation of resources (carbon and
21 water) caused by wounding stress (Devakumar et al., 1999; Kunjet et al., 2013). Cold damage
22 leads to a decrease in membrane permeability (Meti et al., 2003; Sevillano et al., 2009), together
23 with photosynthesis inhibition, causing more critical injuries to the plant, such as the wilting
24 and yellowing of leaves, interveinal chlorosis, darkening of the green bark, reduction of latex
25 flow and dieback of shoots (Meti et al., 2003).

26 The ability to sense and adapt to adverse conditions relies on the activation of complex
27 signaling networks that protect plants from potential damage caused by these environmental
28 changes (Kovtun et al., 2000). Protein kinases (PKs) comprise one of the most diverse protein
29 superfamilies in eukaryotic organisms (Liu et al., 2015) and act as key components in stimulus

30 perception and signal transduction through a chain of phosphorylation events, resulting in the
31 activation of genes and several cellular responses (Colcombet and Hirt, 2008). The expansion of
32 this family underlies several mechanisms of gene duplication throughout the evolutionary his-
33 tory of eukaryotes, including chromosomal and whole-genome duplication, tandem duplication
34 in linked regions and retroposition events, leading to more specialized or novel gene functions
35 (Zhang, 2003).

36 In the rubber tree, several kinase families have been characterized, including the mitogen-
37 activated protein kinase (MAPK) (Jin et al., 2017), calcium-dependent protein kinase (CDPK)
38 (Xiao et al., 2017; Zhu et al., 2018b), CDPK-related protein kinase (CPK) (Xiao et al., 2017),
39 and sucrose non-fermenting 1-related protein kinase 2 (SnRK2) (Guo et al., 2017). These stud-
40 ies revealed contrasting expression patterns of the kinase families among tissues, in addition
41 to the elevated expression of the SnRK2 and CPK families in laticifers in response to ethy-
42 lene, ABA, and jasmonate stimulation (Guo et al., 2017; Zhu et al., 2018b), suggesting their
43 potential participation during several developmental and stress-responsive processes. However,
44 the comprehensive identification and characterization of rubber tree PKs has not yet been per-
45 formed and would greatly benefit plant science research to promote a better understanding of
46 the molecular mechanisms underlying the stress response.

47 In this study, we investigated the kinase diversity present in the Hbr genome through a
48 thorough characterization of its PKs, including the subfamily classification and the prediction
49 of several protein properties, such as molecular weight, subcellular localization, and biological
50 functions. The rubber tree kinome, defined as the complete repertoire of PKs, was estimated
51 using a combined analysis with the two major genome assemblies of rubber tree and comparative
52 analyses with cassava (*Manihot esculenta* (Mes)) and castor plant (*Ricinus communis* (Rco))
53 kinomes. Furthermore, RNA sequencing (RNA-Seq) data from different Hbr genotypes were
54 used to identify expression patterns of the kinase subfamilies, followed by the construction of
55 gene coexpression networks for control and abiotic stress conditions. Our study provides broad
56 resources for future functional investigations and valuable insights into the major components
57 associated with cell adaptation in response to environmental stresses.

58 **2. Material and methods**

59 *2.1. Data acquisition*

60 Sequence and annotation files of Hbr, Mes, and Rco were downloaded from the NCBI (Geer
61 et al., 2010) and Phytozome v.13 (Goodstein et al., 2012) databases. We selected the latest
62 genomes of cassava v.7.1 (Bredeson et al., 2016) and castor plant v.0.1 (Chan et al., 2010), as
63 well as two major genomes of the rubber tree: the latest chromosome-level genome (Liu et al.,
64 2020b) (Hb_chr) and the reference scaffold-level assembly (Tang et al., 2016) (Hb_scaf), under
65 accession numbers PRJNA587314 and PRJNA310386 in GenBank, respectively. The same data
66 analysis procedures for PK identification and characterization were applied to Hbr, Mes and
67 Rco.

68 *2.2. Kinome Definition*

69 The hidden Markov models (HMMs) of the two typical kinase domains, Pkinase (PF00069)
70 and Pkinase_Tyr (PF07714), were retrieved from the Pfam database (El-Gebali et al., 2019).
71 To select putative proteins having one or more kinase domains, protein sequences were aligned
72 to each HMM profile using HMMER v.3.3 (Finn et al., 2011) (E-value of 1.0E-10). We retained
73 only sequences covering at least 50% of the respective domain and the longest isoform.

74 The Hbr kinome was created as a combination of putative PKs identified from two different
75 genomic datasets: Hb_chr and Hb_scaf. To avoid redundancy, we combined the sets using
76 CD-HIT v.4.8.1 software (Fu et al., 2012) with the following selection criteria: (i) for proteins
77 present in both sets as a single copy, the longest sequence was retained, and the other one was
78 discarded; and (ii) when putative duplications were present, i.e., there were protein clusters
79 with significant similarities in both Hb_chr and Hb_scaf, and all proteins from the largest set
80 were retained. For pairwise comparisons, we set a minimum sequence identity threshold of 95%
81 and a maximum length difference of 75%.

82 *2.3. Kinase characterization and phylogenetic analyses*

83 The PKs were classified into groups and subfamilies according to the HMMs of each family
84 built from four plant model species (*Arabidopsis thaliana*, *Chlamydomonas reinhardtii*, *Oryza*
85 *sativa*, and *Physcomitrella patens*) and supported among 21 other plant species (Lehti-Shiu

86 and Shiu, 2012). The classification was further validated through phylogenetic analyses. The
87 domain sequences from all PKs were aligned using Muscle v.8.31 (Edgar, 2004), and a phylo-
88 genetic tree was constructed for each kinase dataset using the maximum likelihood approach
89 in FastTree v.2.1.10 software (Price et al., 2010) with 1,000 bootstraps and default parameters
90 through CIPRES gateway (Miller et al., 2011). The resulting dendograms were visualized and
91 plotted using the statistical software R (Ihaka and Gentleman, 1996) together with the ggtree
92 (Yu et al., 2017) and ggplot2 (Villanueva and Chen, 2019) packages.

93 For each PK, we obtained the following characteristics: (a) gene location and intron num-
94 ber, according to the GFF annotation files; (b) molecular weight and isoelectric point with
95 ExPASy (Gasteiger et al., 2003); (c) subcellular localization prediction using CELLO v.2.5 (Yu
96 et al., 2006) and LOCALIZER v.1.0.4 (Sperschneider et al., 2017) software; (d) the presence
97 of transmembrane domains using TMHMM Server v.2.0 (Krogh et al., 2001); (e) the presence
98 of N-terminal signal peptides with SignalP Server v.5.0 (Armenteros et al., 2019); and (f) gene
99 ontology (GO) term IDs using Blast2GO software (Conesa and Götz, 2008) together with the
100 SwissProt Viridiplantae protein dataset (Consortium, 2019).

101 2.4. *Duplication events in the rubber tree kinome*

102 We determined duplication events of the PK superfamily in Hbr based on the physical loca-
103 tion of PK genes and their compositional similarities assessed through comparative alignments
104 with the Hbr genome using the BLASTn algorithm (Altschul et al., 1990). Tandem duplications
105 were defined as PK pairs separated by a maximum distance of 25 kb on the same chromosome
106 and with the following: (i) a minimum similarity identity of 95%; (ii) an E-value cutoff of
107 1.0E-06; and (iii) a 75% minimum sequence length coverage. The chromosomal location of pu-
108 tative tandemly duplicated PK genes was illustrated using MapChart v.2.32 (Voorrips, 2002),
109 and synteny relationships of the PKs were visualized using Circos software v.0.69 (Krzywinski
110 et al., 2009).

111 2.5. *Transposable element search*

112 We searched for transposable elements (TEs) in the Hbr genome using TE data of 40 plant
113 species obtained from the PlanNC-TE v3.8 database (Pedro et al., 2018). For this purpose, we

114 performed a comparative alignment between the TEs retrieved and the *H. brasiliensis* reference
115 chromosomes using BLASTn (Altschul et al., 1990) for short sequences (blastn-short) with the
116 following parameters: (i) minimum coverage of 75%; (ii) word size of 7; and (iii) an E-value
117 cutoff of 1.0E-10. We selected TEs located within a 100 kb window from Hbr PK genes. The
118 chromosomal localization of TEs was illustrated using MapChart v.2.32 (Voorrips, 2002).

119 *2.6. RNA-Seq data collection*

120 Several publicly available Hbr RNA-Seq experiments were collected from the NCBI Sequence
121 Read Archive (SRA) database (Leinonen et al., 2010). The samples consisted of a wide range
122 of tissues and comprised various genotypes. In total, we obtained 129 samples from 10 studies
123 (Cheng et al., 2018; Deng et al., 2018; Lau et al., 2016; Li et al., 2016; Mantello et al., 2019;
124 Montoro et al., 2018; Rahman et al., 2019; Sathik et al., 2018; Tan et al., 2017; Tang et al., 2016)
125 that evaluated control and stress conditions (cold, drought, latex overexploitation, jasmonate,
126 and ethylene treatments).

127 *2.7. Expression analysis*

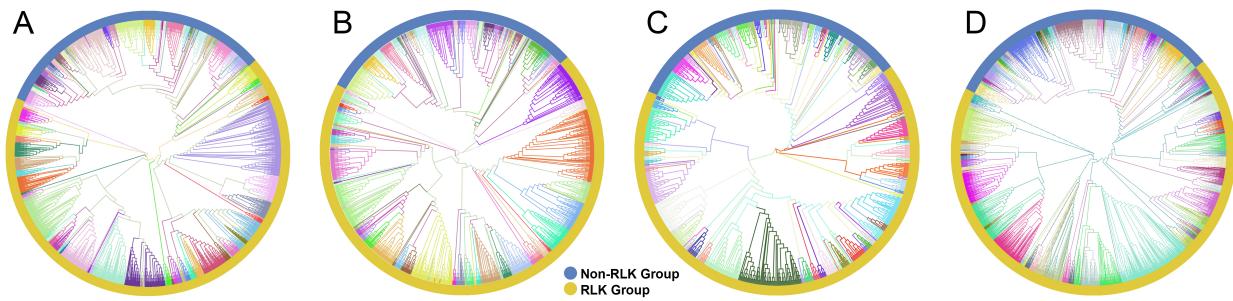
128 The raw sequence data were submitted to a sequence quality control assessment using the
129 FastQC tool (Andrews, 2010), following a low-quality read filtering and adapter removal step
130 using Trimmomatic software v.0.39 (Bolger et al., 2014). After removing adapter sequences, we
131 retained only reads larger than 30 bp and bases with Phred scores above 20. The corresponding
132 coding sequences (CDSs) from Hb_chr and Hb_scaf were used as a reference for the quantification
133 step using Salmon software v.1.1.0 (Patro et al., 2017) with the k-mer length parameter set to
134 31. The expression values of each PK transcript were normalized using the transcript per million
135 (TPM) metric, and samples containing biological replicates were combined by defining the mean
136 value among replicates. To visualize the expression of each kinase subfamily among different
137 tissues and cultivars, we generated two heatmap figures for control and stressed samples using
138 the R package pheatmap (Kolde and Kolde, 2015).

139 *2.8. Coexpression network construction*

140 Two coexpression networks of Hbr PK subfamilies, corresponding to control and abiotic
141 stress situations, were modeled and visualized using the R package igraph (Csardi et al., 2006)

142 with the minimum Pearson correlation coefficient set to 0.7. To assess the structure of each
143 network and specific subfamily attributes, we estimated the hub scores of each PK subfamily
144 from Kleinberg's hub centrality scores (Kleinberg, 1999) and edge betweenness values from the
145 number of geodesics passing through each edge (Brandes, 2001).

146 **3. Results**


147 *3.1. Genome-wide identification, classification and characterization of PKs*

148 Based on the established pipeline, we identified 2,842 typical putative PK genes in Hbr
149 (Supplementary Table S1a), 1,531 in Mes (Supplementary Table S1b), and 863 in Rco (Sup-
150 plementary Table S1c). The rubber tree kinome resulted from a combination of 1,206 (42.43%)
151 proteins from the Hb_scaf dataset and 1,636 (57.57%) from Hb_chr. Interestingly, we also iden-
152 tified several PKs containing multiple kinase domains in all three datasets (191, 91, and 44
153 in Hbr, Mes and Rco, respectively) (Supplementary Tables S2). Typical PKs were defined as
154 protein sequences presenting high similarity to a given kinase domain with minimum coverage
155 of 50%. The atypical PKs of Hbr (728), Mes (230), and Rco (95) were removed from subsequent
156 analyses.

157 Typical Hbr, Mes, and Rco PKs were further classified into groups and subfamilies based on
158 the HMM profiles of 127 kinase subfamilies defined by Lehti-Shiu and Shiu (2012). The PK do-
159 main classification was validated by phylogenetic analyses (Supplementary Figs. S1-S2). Thus,
160 PKs were grouped into 20 major groups: PKs A, G and C (AGC), Aurora (Aur), budding unin-
161 hibited by benzimidazoles (BUB), calcium- and calmodulin-regulated kinases (CAMK), casein
162 kinase 1 (CK1), cyclin-dependent, mitogen-activated, glycogen synthase, and CDC-like kinases
163 (CMGC), plant-specific, inositol-requiring enzyme 1 (IRE1), NF- κ B-activating kinase (NAK),
164 NIMA-related kinase (NEK), Pancreatic eIF-2 α kinase (PEK), Receptor-like kinase (RLK)-
165 Pelle, *Saccharomyces cerevisiae* Scy1 kinase (SCY1), Serine/threonine kinase (STE), Tyrosine
166 kinase-like kinase (TKL), Tousled-like kinases (TLK), Threonine/tyrosine kinase (TTK), Unc-
167 51-like kinase (ULK), Wee1, Wee2, and Myt1 kinases (WEE), and with no lysine-K (WNK).
168 We also identified 72 PKs in Hbr (2.5%), 30 in Mes (2.0%), and 22 in Rco (2.5%) that did
169 not cluster in accordance with any subfamily classification and were placed in the “Unknown”

170 category (Supplementary Tables S3).

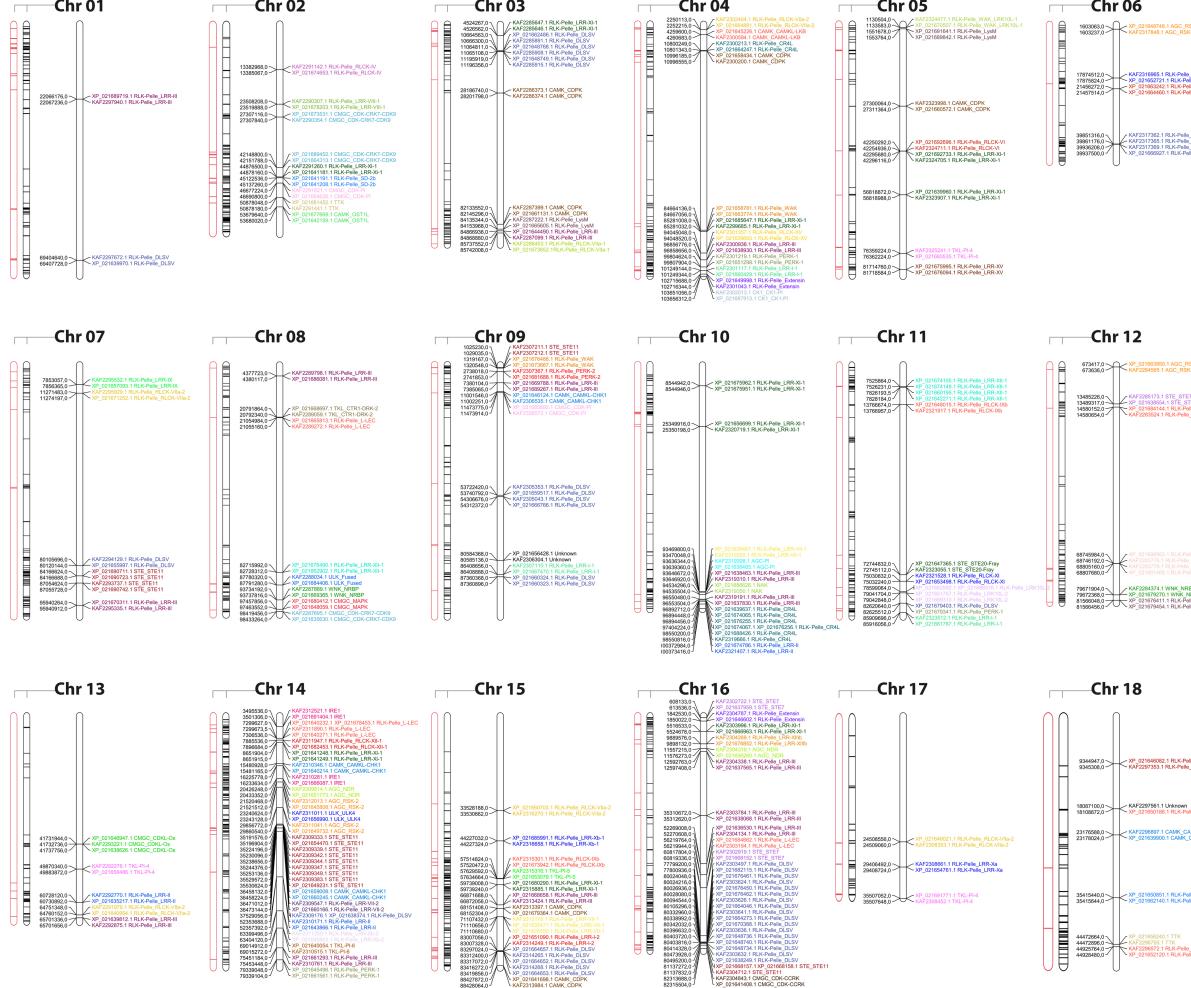
171 The RLK-Pelle was the most highly represented group in all three species, as evidenced in
172 Fig. 1, and was divided into 59 different subfamilies, accounting for 65.5%, 68.1%, 65.2% of all
173 rubber tree, cassava, and castor plant PKs, respectively, followed by the CMGC (6.4% in Hbr,
174 5.9% in Mes, 7.5% in Rco), CAMK (5.9% in Hbr, 6.5% in Mes, 6.5% in Rco), TKL (4.9% in
175 Hbr, 4.9% in Mes, 5.6% in Rco) and others (Supplementary Table S4).

Fig. 1. Phylogenetic analyses of putative typical protein kinases (PKs) identified in the *Hevea brasiliensis* (Hbr), *Manihot esculenta* (Mes), and *Ricinus communis* (Rco) genomes. (A) Phylogenetic tree constructed with 2,842 Hbr PKs organized into 123 subfamilies. (B) Phylogenetic tree of the 1,531 Mes PKs organized into 123 subfamilies. (C) Phylogenetic tree of the 863 Rco PKs organized into 125 subfamilies. (D) Phylogenetic tree of all Hbr, Mes, and Rco PKs. Kinase subfamilies are represented by different branch colors.

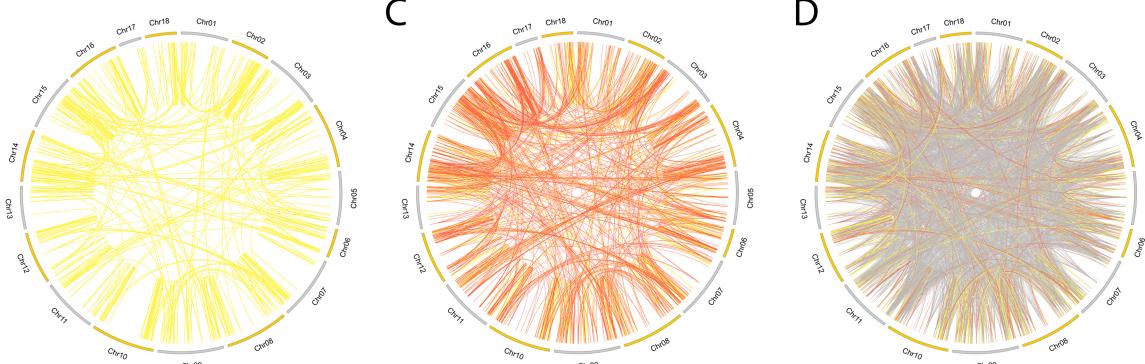
176 We investigated the chromosomal positions, intron distribution and structural properties of
177 Hbr, Mes, and Rco PKs using several approaches (Supplementary Tables S5-S7). Hbr and Mes
178 PK genes were distributed along all Hbr and Mes chromosomes (Supplementary Fig. S3) with
179 a higher concentration within the subtelomeric regions. Most PK genes contained at least 1
180 intron, and only 284 (10.0%), 229 (14.9%), and 140 (16.2%) intronless genes were found in Hbr,
181 Mes, and Rco, respectively.

182 Most interestingly, the protein characteristics of all three kinomes were highly comparable.
183 Several PKs had predicted transmembrane domains (45.6% in Hbr, 50.5% in Mes, and 48.2%
184 in Rco) and N-terminal signal peptides (29.6%, 37.3%, and 33.5%, respectively). Similarly, the
185 distribution of molecular weights and isoelectric points was relatively uniform (Supplementary
186 Fig. S4). Moreover, the subcellular localization predictions performed with the selected soft-
187 ware were mostly on the plasma membrane, cytoplasm and nucleus (Supplementary Fig. S5),
188 in accordance with the enriched “cellular component” GO category (Supplementary Tables S8;
189 Supplementary Fig. S5).

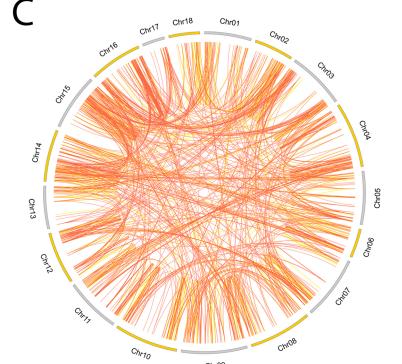
190 Finally, we investigated the domain composition of PKs based on the complete set of con-

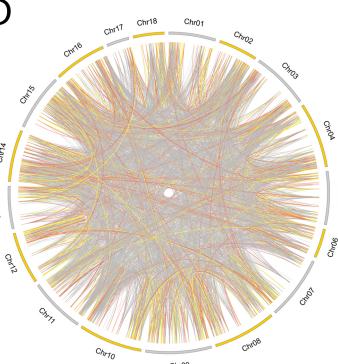

191 served domains present in the Pfam database. In total, we identified 1,472 PKs containing
192 additional conserved domains in Hbr (52.8%), 827 in Mes (54.0%) and 442 in Rco (51.2%)
193 (Supplementary Tables S9-S10). Interestingly, this observation comprises a significant portion
194 of members from groups CAMK (58.0% in Hbr, 61.6% in Mes, and 64.3% in Rco), RLK-Pelle
195 (63%, 65.5%, and 63.9%, respectively), and TKL (48.2%, 48%, and 52%).

196 *Kinase duplication events in H. brasiliensis*


197 To examine the expansion of PK subfamilies, tandemly duplicated kinase genes were iden-
198 tified based on their physical localization on Hbr chromosomes, and protein similarities were
199 assessed through comparative alignments. Taken together, we found that 339 of the 2,842
200 Hbr PK genes (~11.9%) were arranged in clusters of highly similar gene sequences among the
201 18 reference chromosomes, which are likely to represent tandem duplication events (TDEs)
202 of the kinase superfamily in rubber tree (Fig. 2A). These genes were dispersed in 145 sepa-
203 rate clusters and comprised members of 63 kinase subfamilies (Supplementary Tables S11-S12).
204 Chromosome 14 showed the highest number of TDEs (19), containing 47 PK genes. In con-
205 trast, chromosome 1 contained the least number of TDEs (2). We found that for many kinase
206 subfamilies, a large portion of their members originated from TDEs. A total of 100%, 100%,
207 and 75% of TTK, ULK_Fused, and CMGC_CDKL-Os members were tandemly organized, while
208 other subfamilies, such as RLK-Pelle_DLSV, showed the largest absolute number of TDEs (45)
209 distributed across 9 chromosomes, although it accounted for only 16.8% (45/268) of its total
210 size.

211 Segmental duplication events were estimated based on sequence similarities between two or
212 more PKs separated by a genomic window larger than 100 kb or present in different chromo-
213 somes. Genomic correspondences increased as the sequence similarity decreased (Fig. 2D). In
214 total, we identified 858 kinase correspondences with compositional similarity greater than 90%,
215 1,673 for 75% and 10,121 for 50%. To further investigate potential biological processes associ-
216 ated with duplicated kinase genes, we performed a functional annotation pipeline on tandemly
217 duplicated PKs and selected GO terms related to the “biological process” category (Supple-
218 mentary Fig. S6). The findings were very consistent with those resulting from the analysis
219 performed using the complete set of Hbr PKs (Supplementary Fig. S7).


A


B

C

D

Fig. 2. (A) Kinase distribution along *Hevea brasiliensis* chromosomes. For each chromosome, from left to right: (i) transposable elements located within a 100 kb window around kinase genes are highlighted in red; (ii) all genes with kinase domains are highlighted in black; and (iii) tandemly duplicated kinase genes are colored and labeled according to the kinase subfamily classification. (B) Potential segmental duplication events in the *H. brasiliensis* genome considering similarities greater than 90% (yellow); (C) 75% (orange); and (D) 50% (gray).

220 *Transposable elements in H. brasiliensis genome*

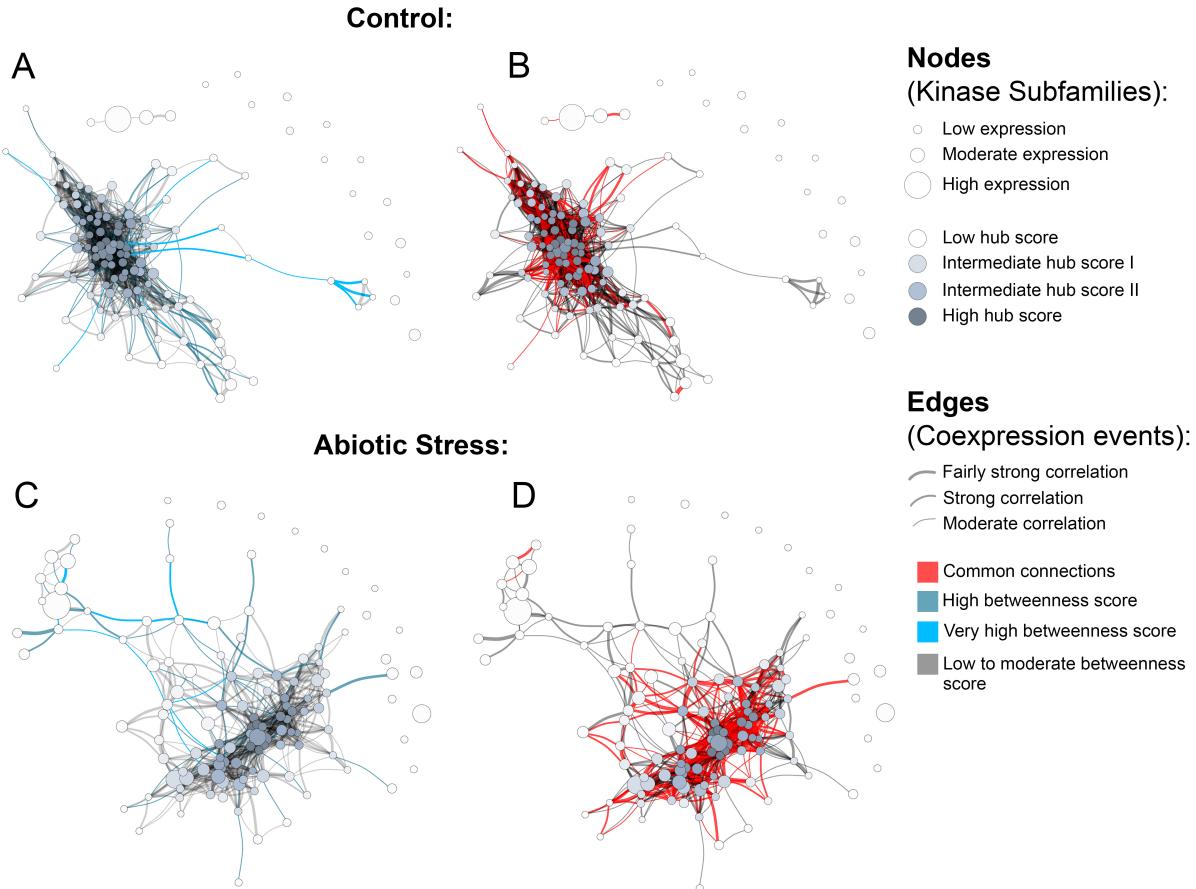
221 We predicted TEs near Hbr PK genes using a comprehensive database that combined data
222 from overlapping regions of TE features and several classes of noncoding RNAs (ncRNAs).
223 Overall, the percentage of TEs associated with PK genes in the rubber tree was reduced (23.7%)
224 when compared to overlapping ncRNAs (76.3%) (Supplementary Table S13). Out of the 8,457
225 annotated TEs in the reference genome, 88% were classified as long terminal repeat (LTR)
226 retrotransposons. These elements appeared to be associated (within a 100 kb genomic window)
227 with 362 (12.7%) kinase genes (Fig. 2A, Supplementary Table S14), of which 56 (15.5%) were
228 tandemly duplicated. Nearly 73.2% of these duplicated genes were members of the RLK-Pelle
229 group.

230 *Expression patterns of PK subfamilies*

231 We analyzed the expression levels of 118 kinase subfamilies among 129 samples related to
232 control and different abiotic stress conditions (Supplementary Table S15). The resulting dataset
233 comprised transcriptomic data of 14 different cultivars from a wide variety of tissues and or-
234 gans, including leaf, petiole, bark, latex, seed, male and female flowers, in early and mature
235 developmental stages. After filtering out low-quality reads and removing adapter sequences,
236 we mapped the filtered reads to the complete set of CDS sequences in Hb_chr and Hb_scaf ref-
237 erence genomes separately and further generated a subset of the quantifications corresponding
238 to PK genes present in the Hbr kinome. The results were normalized to TPM values (Supple-
239 mentary Tables S16-S17), and 3 samples presenting significantly low quantifications were ex-
240 cluded (Hb_Bark_3001_normal_rep1, Hb_Latex_712_normal_rep2, Hb_Latex_2025_normal_rep1).
241 For cases where replicates were present, the expression values were averaged.

242 For both control and stress heatmaps (Supplementary Figs. S8-S9, respectively), samples
243 belonging to the same tissues were clustered together based on Euclidean distance measures.
244 In general, we observed similar patterns of expression of each kinase subfamily within samples
245 of a given tissue; however, specific experimental conditions of each RNA-Seq dataset may have
246 influenced the expression levels, leading to inconsistent patterns in some cases. From left to
247 right in the heatmap containing all experiments (Supplementary Fig. S10), there were 5 major

248 clusters separated into the following categories: (i) latex; (ii) leaf and seed tissues; (iii) bark,
249 root, male and female flowers; (iv) leaf; and (v) samples from latex and petiole.


250 Interestingly, several subfamilies were highly expressed in nearly all samples, including
251 AGC_PKA-PKG, TKL-Pl-1, RLK-Pelle_LRR-VIII-1, RLK-Pelle_RLCK-IXa, and Aur. There-
252 fore, distinctions in PK expression between leaf and latex samples were clear. Latex and
253 bark tissues presented lower expression in most subfamilies; however, we detected a few cases
254 where the expression in latex and bark was significantly higher than that in leaves, such as
255 STE_STE-Pl and RLK-Pelle_LRR-VIII-1. Additionally, we found a small number of subfam-
256 ilies with elevated expression in bark (TKL-Pl-7 and ULK_ULK4), but we did not observe
257 cohesive clustering of this tissue. Overall, in the analysis of the expression levels under abiotic
258 stress conditions, the number of subfamilies that presented moderately high (dark orange) and
259 high (red) expression apparently increased when compared to control samples (highlighted in
260 blue).

261 *Coexpression networks in response to abiotic stresses*

262 The quantification analysis revealed different expression profiles of PK subfamilies among
263 different tissues, genotypes and conditions. To expand our understanding of how these proteins
264 interact under exposure to abiotic conditions, we further investigated potential relationships
265 between kinase subfamilies by constructing coexpression networks based on the expression data
266 described above. Using the Hbr PK set, two independent networks were constructed: one for
267 control and one for abiotic stress conditions. For each network, we used the following conven-
268 tions: (i) kinase subfamilies were represented by separate nodes; (ii) the node size corresponded
269 to the mean gene expression value; (iii) the edges represented coexpression events determined
270 by pairwise expression correlations between subfamilies with a minimum Pearson correlation
271 coefficient of 0.7; and (iv) the edge thickness corresponded to the degree of correlation, from
272 moderate (minimum PCC of 0.7) to fairly strong (minimum PCC of 0.9) correlations.

273 We observed a different number of edges between networks (1,162 in control and 704 in
274 stress). Moreover, we found 15 elements in each network that were disconnected from the main
275 core (i.e., kinase subfamilies with no significant correlation in expression); however, they were
276 related to different subfamilies in each network (Fig. 3). Figs. 3B and 3D highlight the red

277 correlation similarities between control and stress coexpression networks, while edges in dark
 278 gray represent connections unique for each condition.

Fig. 3. Coexpression networks for *H. brasiliensis* (Hbr) kinase subfamilies. (A) Hbr control network with betweenness values highlighted in light blue. (B) Hbr control network indicating edge similarities (red) with the Hbr stress network. (C) Hbr abiotic-stress network with betweenness values highlighted in light blue. (D) Hbr abiotic stress network indicating edge similarities (red) with the Hbr control network.

279 To obtain an overview of the most influential subfamilies in PK processes, we first cal-
 280 culated hub centrality scores within each network, which are represented by the node col-
 281 ors in Fig. 3 (Supplementary Tables S18). Elevated hub scores (highlighted in dark gray
 282 in Fig. 3) indicated PK subfamilies with a significant number of connections. Interest-
 283 ingly, out of the 10 subfamilies with the highest hub scores (ranging from 0.85 to 1) in the
 284 Hbr control network, eight belonged to members of the RLK-Pelle group (RLK-Pelle_L-LEC,
 285 RLK-Pelle_RLCK-V, RLK-Pelle_RLCK-VIIa-2, RLK-Pelle_LRR-I-1, RLK-Pelle_LysM, RLK-
 286 Pelle_SD-2b, RLK-Pelle_DLSV, and RLK-Pelle_RLCK-VIIa-1), while the others were CAMK-
 287 CDPK and CK1_CK1-Pl. In contrast, under adverse conditions, the hub scores of the top

288 10 subfamilies varied from 0.752 to 1; only 6 of them were members of the RLK-Pelle group
289 (RLK-Pelle_RLCK-X, RLK-Pelle_PERK-1, RLK-Pelle_LysM, RLK-Pelle_SD-2b, RLK-Pelle_L-
290 LEC, RLK-Pelle_RLCK-VIIa-1), while the others were CAMK_CDPK, TKL-Pl-4, STE_STE7,
291 and CK1_CK1-Pl.

292 Ultimately, we investigated network structural weaknesses by measuring edge betweenness
293 centrality scores among kinase subfamily interactions (edges) within each network (Supplemen-
294 tary Tables S19). The edges presenting elevated betweenness values (colored in light blue in
295 Fig. 3) indicated relationships sustained by few connections possibly related to a greater flow
296 of interaction into the complex system modeled. Overall, under adverse conditions, PK sub-
297 families tended to arrange into a less cohesive network architecture, as evidenced by the large
298 number of scattered connections. Through betweenness measures, we observed that other in-
299 fluential subfamily pairs of the control network were RLK-Pelle_LRR-XII-1/RLK-Pelle_RLCK-
300 XVI, RLK-Pelle_LRR-VII-3/RLK-Pelle_RLCK-XVI, and RLK-Pelle_CR4L/RLK-Pelle_LRR-
301 Xb-1, in contrast to the ones found during abiotic stress situations: RLK-Pelle_RLCK-Os/TKL-
302 Pl-6, CAMK_CAMK1-DCAMKL/RLK-Pelle_RLCK-Os, and RLK-Pelle_RLCK-V/TKL-Pl-6.

303 4. Discussion

304 In the last decades, an increasing number of initiatives have been established to produce a
305 high-quality reference genome for the rubber tree (Liu et al., 2020b; Pootakham et al., 2017;
306 Rahman et al., 2013; Tang et al., 2016). However, the high complexity of the Hbr genome intro-
307 duces many challenges that have hampered the ability to obtain contiguous genomic sequences
308 and complete gene annotation (English et al., 2012; Pootakham et al., 2017). Although the
309 most recent version of the Hbr genome (Liu et al., 2020b) provided the assembly of contiguous
310 sequences for chromosomes for the first time, there is still a lack of knowledge about its gene
311 content and functional implications, highlighting the need for efforts to profile and fully char-
312 acterize important protein families, such as PKs. Here, we established a combined approach to
313 generate a comprehensive and diverse kinase database for Hbr. Joining two independent rubber
314 tree genomic resources (Liu et al., 2020b; Tang et al., 2016) and comparing them with kinomes
315 from two other members of the *Euphorbiaceae* family (Mes and Rco) enabled an in-depth

316 investigation of the rubber tree kinome, supplying a large and reliable reservoir of data.

317 Plant kinomes have been studied in several other species, including 942 members in *A.*
318 *thaliana* (Zulawski et al., 2014), 2,166 in soybean (Liu et al., 2015), 1,168 in grapevine (Zhang,
319 2003), and 1,210 in sorghum (Aono et al., 2021). In this study, we identified 2,842 PKs in the
320 rubber tree, a considerably larger size when compared to 1,531 in cassava and 863 in castor
321 bean. Although the rubber tree possesses a large genome (1.47 Gb), which is nearly 3-4.5
322 times larger than the cassava (495 Mb) and castor bean (320 Mb) genomes (Bredeson et al.,
323 2016; Chan et al., 2010; Tang et al., 2016), the large kinome size in Hbr resulted from the
324 combination of two sources of PKs related to different rubber tree genotypes (Reyan7-33-97
325 and GT1) (Liu et al., 2020b; Tang et al., 2016). When analyzing the two Hbr PK sets separately,
326 we found a much smaller number of PKs in each of them (1,809 and 1,379), placing the Hbr
327 kinome in the range of other plant species. The discrepancy found between the two sources of
328 data reinforces the differences in completeness among genome assemblies that could potentially
329 mislead further genomic investigations, especially considering the elevated heterozygosity levels
330 and the high amount of repetitive elements in the rubber tree genome (Gouvêa et al., 2010; Lau
331 et al., 2016). Additionally, a recent study showed that the number of PKs in sugarcane was
332 significantly decreased on the allelic level when compared to those found for all allele copies
333 of a given gene (Aono et al., 2021), demonstrating that the redundancy in PK datasets may
334 contribute to the overestimation of kinome sizes.

335 Similar to the results of other kinome studies (Aono et al., 2021; Ferreira-Neto et al., 2021;
336 Liu et al., 2020a, 2015; Wei et al., 2014; Yan et al., 2018; Zhu et al., 2018a; Zulawski et al.,
337 2014), RLK-Pelle was the most pronounced group in Hbr, Mes and Rco kinomes. Considering
338 the diverse functions of PKs (Lehti-Shiu and Shiu, 2012), the role of the group in the Hbr stress
339 response was remarkable. One notable feature that was observed across Hbr PKs was the large
340 diversity in domain configuration. Most PKs (56.9%) in rubber tree had two or more functional
341 domains incorporated with them, similar to what has been observed in cassava (59.2%), castor
342 bean (55%), soybean (56.5%) (Liu et al., 2015), and pineapple (50.7%) (Zhu et al., 2018a). Ex-
343 tracellular domains (ECDs) were evidenced by the following: (i) the large diversity of additional
344 domains in PK genes; (ii) the detection of signal peptides and transmembrane regions; and (iii)

345 the wide range of subcellular localizations predicted (Supplementary Fig. S5). PKs combined
346 with ECDs may broaden the scope of functionality within signaling networks by sensing new
347 extracellular signals and their aggregation to existing response networks (Gish and Clark, 2011;
348 Lehti-Shiu and Shiu, 2012).

349 Our comparative analyses of the PKs of the three *Euphorbiaceae* species revealed a high
350 degree of similarity in their kinase subfamily compositions, protein characteristics and gene
351 organization (Supplementary Figs. S2-S4). Our integrative approach allowed us to corroborate
352 the validity of the Hbr kinome, which was composed of different data sources and had evident
353 resemblances with closely related phylogenetic species. However, Mes was more similar to Hbr
354 in kinome size than Rco. This pattern of gene expansion within the *Euphorbiaceae* clade was
355 also observed in other gene families, including the SWEET and SBP-box families (Cao et al.,
356 2019; Li et al., 2019). Phylogenetic studies indicated that *Hevea* and *Manihot* underwent a
357 whole-genome duplication event before their divergence approximately 36 million years ago
358 (MYA), while the *Ricinus* lineage diverged from other Euphorbia members approximately 60
359 MYA (Bredeson et al., 2016; Shearman et al., 2020). In this sense, the increase in the PK
360 superfamily size could be partly attributed to the expansion of several gene families throughout
361 duplication events during their evolutionary history (Lehti-Shiu and Shiu, 2012).

362 Indeed, our analysis suggested that segmental duplications mostly accounted for Hbr kinome
363 expansion (Fig. 2B), with ~58.9% of PKs displaying more than 75% compositional similarities.
364 Tandem duplication events, on the other hand, seemed to contribute to the expansion of the PK
365 superfamily to a lesser extent and were restricted to a few subfamilies (Supplementary Table
366 S11), accounting for the generation of nearly 11.9% of PK genes in Hbr. This observation
367 was within the range of what has been reported for other higher plants, such as 10.6% in
368 soybean (Liu et al., 2015), 12.5% in pineapple (Zhu et al., 2018a), and 14.8% in strawberry
369 (Liu et al., 2020a). Among the tandemly duplicated PKs, the most pronounced subfamilies
370 were RLK-Pelle_DLSV, with 45 of its members associated with tandem duplication (~16.8%).
371 RLK-Pelle_LRR-III with 28 (~26.2%), RLK-Pelle_LRR-XI-1 with 20 (16%), STE_STE11 with
372 18 (~13.7%), and CAMK_CDPK with 12 (12.2%).

373 Tandemly duplicated kinases have been associated with stress responses (Freeling, 2009),

374 which is of great interest for molecular breeding. Additionally, in rubber tree research, different
375 initiatives have brought to light the importance of PKs in the configuration and maintenance of
376 economically important traits, including not only resistance to different types of stress (Duan
377 et al., 2010; Jin et al., 2017; Mantello et al., 2019; Venkatachalam et al., 2010) but also plant
378 performance in the field (Bini et al., 2022; Francisco et al., 2021). Together with these findings,
379 recent contributions have pinpointed the role of TEs beyond Hbr genomic organization, sug-
380 gesting a potential influence on the configuration of desirable rubber tree traits (Francisco et al.,
381 2021; Wu et al., 2020). We also identified a considerable number of PKs (15.5%) associated
382 with TEs.

383 It has been well established that TEs are abundant in the rubber tree genome, and the
384 proportion of TE types found in our study was similar to those found by other authors (Liu
385 et al., 2020b; Tang et al., 2016; Wu et al., 2020). Responsible for major changes in the genetic
386 architecture (e.g., rearrangements, duplication, gene breaking, and the origin of new genes)
387 (Bennetzen, 2005; Flagel and Wendel, 2009; Lisch, 2013), TEs are usually neutral. However,
388 such elements possess mutagenic potential due to epigenetic mechanisms and are able to alter
389 regulatory networks and confer genetic adaptations, leading to important phenotypic variations
390 (Lisch, 2013; Wei and Cao, 2016; Wu et al., 2020); this has currently received great attention
391 in genetic improvement programs for several species (Domínguez et al., 2020; Lee et al., 2006;
392 Wang et al., 2020). In Hbr, Wu et al. (2020) showed that TEs located in gene regulatory
393 regions in Hbr were involved in latex production through cis regulation, which would explain
394 the differential gene expression among contrasting genotypes. The incidence of PKs close to
395 TEs pinpoints the importance of such elements on PK functionality, as already demonstrated
396 by other studies describing TE-mediated regulation in kinases Fan et al. (2019); Zayed et al.
397 (2007).

398 Similar to PKs, which are especially active during abiotic stress (Jaggi, 2018; Morris, 2001),
399 TEs are related to plant adaptations throughout evolution (Casacuberta and González, 2013;
400 Dubin et al., 2018; Lisch, 2013; Naito et al., 2009; Negi et al., 2016). We found an association
401 between TEs and specific kinase subfamilies, such as those present in the RLK-Pelle group and
402 most abundant in the Hbr kinome. Given the important activity of this group in response

403 to abiotic stresses, these findings provided insights into rubber tree genetic adaptation (Zhu
404 et al., 2018b). As expected due to the occurrence of duplication events caused by TEs (Flagel
405 et al., 2008; Flagel and Wendel, 2009; Morgante et al., 2005), we also observed an association
406 of these elements with tandemly duplicated PKs, enabling the elucidation of diverse biological
407 mechanisms favoring stress resistance.

408 Differentially expressed gene (DEG) analyses are based on statistical tests performed on gene
409 expression quantifications measured under certain conditions, contrasting physiological contexts
410 and different stimuli, enabling the evaluation of increased gene expression (Casassola et al.,
411 2013; Costa-Silva et al., 2017). Although we did not perform such an analysis of Hbr PKs due
412 to the different experiments and datasets employed, it was possible to visualize a distinct overall
413 expression profile for subfamily expression across the samples employed, illustrating putative
414 molecular mechanisms adopted by PK subfamilies to overcome stress conditions (Mantello et al.,
415 2019). The subfamilies CAMP_AMPK, CMGC_PITthe, CK1_CK1, RLK-Pelle_LRR-XIIb, and
416 RLK-Pelle_URK-2 exhibited more pronounced expression in samples under stress conditions,
417 as already reported in other studies (Hawley et al., 2005; Saito et al., 2019). CAMP_AMPK
418 has been described as an important energy regulator in eukaryotes, coordinating metabolic
419 activities in the cytosol with those in mitochondria and plastids, possibly allocating energy
420 expenditure to overcome these adversities (Hawley et al., 2005; Roustan et al., 2016; Suzuki
421 et al., 2012). Although members of the CK1 subfamily were highly conserved in eukaryotes and
422 involved in various cellular, physiological and developmental processes, their functions in plant
423 species are still poorly understood (Saito et al., 2019). Studies indicated that CK1 members in
424 *A. thaliana* are involved in several processes related to the response to environmental stimuli,
425 such as regulation of stomatal opening (Zhao et al., 2016), signaling in response to blue light
426 (Tan et al., 2013), organization and dynamics of cortical microtubules (Ben-Nissan et al., 2008),
427 and ethylene production (Tan and Xue, 2014).

428 As a complementary approach to elucidate different patterns in the expression of PK sub-
429 families in control and abiotic stress-related samples, we employed gene coexpression networks.
430 Through a graph representation of the PK subfamily interactions in these two different groups
431 of samples, we estimated coexpression patterns inherent to each network, inferring functional

432 implications through network topology. Even with a common set of interactions (Fig. 3B and
433 3D), it is possible to note fewer associations in the network modeled with stress samples (a loss
434 of ~40%), which highlights the different molecular mechanisms of PKs under stress conditions.

435 In a complex network structure, nodes with the largest number of connections (high degree)
436 are called hubs, which are elements recognized as critical to network maintenance (Barabasi
437 and Oltvai, 2004). Therefore, PK subfamilies with the highest hub scores are considered to
438 be important regulators over the set of biological mechanisms affected by PKs (Azuaje, 2014;
439 Barabasi and Oltvai, 2004; Van Dam et al., 2018), which provides additional insights into key
440 mechanisms over PKs' action (Vandereyken et al., 2018).

441 In both networks modeled, we found that the CAMK_CDPK subfamily had the highest hub
442 score, suggesting the importance of calcium signals over Hbr PK activities, as already reported
443 in soybean (Liu et al., 2015). Members of the RLK-Pelle group were also identified as hubs
444 in both networks, reinforcing the primary and secondary metabolic functions of this group
445 (Bolhassani et al., 2021). Additionally, TKL-Pl-4 was among the hubs in the stress-related
446 network, corroborating the already described upregulation of members of this subfamily in
447 stress conditions (Yan et al., 2017) and reinforcing the potential of biological inferences over
448 the network structure.

449 Another measure evaluated in the modeled networks was edge betweenness scores. In a
450 complex network structure, edges with high betweenness indicate points of vulnerability in the
451 network structure, i.e. connections that, if removed, have a larger probability of causing network
452 separation. In the networks modeled for PK subfamily interactions, identifying such edges can
453 identify indicators of subfamilies mediating a significant amount of mechanisms over a larger
454 set of PKs. Different connections were identified in the networks. Interestingly, the two highest
455 betweenness values for the control network (RLK-Pelle_LRR-XII-1/RLK-Pelle_RLCK-XVI and
456 RLK-Pelle_LRR-VII-3/RLK-Pelle_RLCK-XVI edges) were disrupted in the stress-associated
457 network. The RLK-Pelle_RLCK-XVI subfamily did not have any connection in the stress
458 network, showing a change in the interaction of this subfamily under stress. RLCK members
459 have already been shown to be related to plant growth and vegetative development (Gao and
460 Xue, 2012; Yan et al., 2018), which is directly impacted by stress.

461 Additionally, in the stress-related network, we found that the PK subfamily pairs RLK-
462 Pelle_RLCK-Os—TKL-Pl-6, CAMK_CAMK1-DCAMKL—RLK-Pelle_RLCK-Os, and RLK-Pelle_RLCK-
463 V—TKL-Pl-6 had the largest betweenness scores. All these subfamilies presented a similar
464 number of connections in the control network; however, they were not considered vulnerability
465 points. This result indicated that under stress, established connections may become sensitive
466 and cause network breaks in more adverse conditions. The interaction of RLK-Pelle_RLCK
467 members and CAMK_CAMK1-DCAMKL and TKL-Pl-6 corroborates the previously described
468 CAMK_CAMK1-DCAMKL induction during stress (Liu et al., 2015) and the downregulation
469 of TKL-Pl-6 expression during stress (Yan et al., 2017).

470 Given the importance of rubber trees, the rising demand for latex production, and the
471 elevated complexity of the Hbr genome (Board, 2018; Tang et al., 2016), providing resources
472 for understanding stress responses is of great interest for Hbr breeding programs (Priyadarshan
473 and Goncalves, 2003). Our work provided a rich and large reservoir of data for Hbr research. In
474 the first study to profile the complete set of PKs in Hbr, we combined different data sources to
475 provide a wider PK characterization, taking advantage of the resources available and contrasting
476 our results with two phylogenetically close species. From a set of 2,842 PKs classified into
477 20 groups and distributed along all Hbr chromosomes, our findings demonstrated the high
478 diversity and scope of functionality of Hbr PKs. Additionally, we provided different insights
479 across stress responses in rubber trees through the association of tandemly duplicated PKs,
480 TEs, gene expression patterns, and coexpression events.

481 **Acknowledgements**

482 This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado
483 de São Paulo, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and
484 the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Computational
485 Biology Programme). LBS received an undergraduate fellowship from FAPESP (2019/19340-2);
486 AA received a PhD fellowship from FAPESP (2019/03232-6); and FF received a PhD fellowship
487 from FAPESP (2018/18985-7).

488 **Author contributions**

489 LBS, AA and FF performed all analyses and wrote the manuscript. AS, CS and LMS
490 conceived of the project. All authors reviewed, read and approved the manuscript.

491 **References**

- 492 Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment
493 search tool. *J. Mol. Biol.* 215, 403–410.
- 494 Andrews, S., 2010. Fastqc: a quality control tool for high throughput sequence data. version
495 0.11. 2. Website: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>.
- 496 Aono, A.H., Pimenta, R.J.G., Garcia, A.L.B., Correr, F.H., Hosaka, G.K., Carrasco, M.M.,
497 Cardoso-Silva, C.B., Mancini, M.C., Sforça, D.A., Dos Santos, L.B., et al., 2021. The wild
498 sugarcane and sorghum kinomes: Insights into expansion, diversification, and expression
499 patterns. *Front. Plant Sci.* 12, 668623.
- 500 Armenteros, J.J.A., Tsirigos, K.D., Sønderby, C.K., Petersen, T.N., Winther, O., Brunak, S.,
501 von Heijne, G., Nielsen, H., 2019. Signalp 5.0 improves signal peptide predictions using deep
502 neural networks. *Nat. Biotechnol.* 37, 420–423.
- 503 Azuaje, F.J., 2014. Selecting biologically informative genes in co-expression networks with a
504 centrality score. *Biol. Direct* 9, 1–23.
- 505 Barabasi, A.L., Oltvai, Z.N., 2004. Network biology: understanding the cell's functional orga-
506 nization. *Nat. Rev. Genet.* 5, 101–113.
- 507 Ben-Nissan, G., Cui, W., Kim, D.J., Yang, Y., Yoo, B.C., Lee, J.Y., 2008. Arabidopsis casein
508 kinase 1-like 6 contains a microtubule-binding domain and affects the organization of cortical
509 microtubules. *Plant Physiol.* 148, 1897–1907.
- 510 Bennetzen, J.L., 2005. Transposable elements, gene creation and genome rearrangement in
511 flowering plants. *Curr. Opin. Genet. Dev.* 15, 621–627.

- 512 Bini, K., Saha, T., Radhakrishnan, S., Ravindran, M., Uthup, T.K., 2022. Development of
513 novel markers for yield in *Hevea brasiliensis* Muell. Arg. based on candidate genes from
514 biosynthetic pathways associated with latex production. *Biochem. Genet.*, 1–29.
- 515 Board, M.R., 2018. Natural rubber statistics 2018. (Kuala Lumpur: Malaysian Rubber Board).
- 516 Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for illumina
517 sequence data. *Bioinformatics* 30, 2114–2120.
- 518 Bolhassani, M., Niazi, A., Tahmasebi, A., Moghadam, A., 2021. Identification of key genes
519 associated with secondary metabolites biosynthesis by system network analysis in *valeriana*
520 *officinalis*. *J. Plant Res.* 134, 625–639.
- 521 Brandes, U., 2001. A faster algorithm for betweenness centrality. *J. Math. Soc.* 25, 163–177.
- 522 Bredeson, J.V., Lyons, J.B., Prochnik, S.E., Wu, G.A., Ha, C.M., Edsinger-Gonzales, E.,
523 Grimwood, J., Schmutz, J., Rabbi, I.Y., Egesi, C., et al., 2016. Sequencing wild and cultivated
524 cassava and related species reveals extensive interspecific hybridization and genetic diversity.
525 *Nat. Biotechnol.* 34, 562–570.
- 526 Cao, Y., Liu, W., Zhao, Q., Long, H., Li, Z., Liu, M., Zhou, X., Zhang, L., 2019. Integrative
527 analysis reveals evolutionary patterns and potential functions of sweet transporters in
528 Euphorbiaceae. *Int. J. Biol. Macromol.* 139, 1–11.
- 529 Casacuberta, E., González, J., 2013. The impact of transposable elements in environmental
530 adaptation. *Mol. Ecol.* 22, 1503–1517.
- 531 Casassola, A., Brammer, S.P., Chaves, M.S., Martinelli, J.A., Grando, M.F., Denardin, N.,
532 2013. Gene expression: a review on methods for the study of defense-related gene differential
533 expression in plants.
- 534 Chan, A.P., Crabtree, J., Zhao, Q., Lorenzi, H., Orvis, J., Puiu, D., Melake-Berhan, A., Jones,
535 K.M., Redman, J., Chen, G., et al., 2010. Draft genome sequence of the oilseed species
536 *ricinus communis*. *Nat. Biotechnol.* 28, 951–956.

- 537 Cheng, H., Chen, X., Fang, J., An, Z., Hu, Y., Huang, H., 2018. Comparative transcriptome
538 analysis reveals an early gene expression profile that contributes to cold resistance in *hevea*
539 *brasiliensis* (the para rubber tree). *Tree Physiol.* 38, 1409–1423.
- 540 Colcombet, J., Hirt, H., 2008. *Arabidopsis MAPKs*: a complex signalling network involved in
541 multiple biological processes. *Biochem. J.* 413, 217–226.
- 542 Conesa, A., Götz, S., 2008. *Blast2GO*: a comprehensive suite for functional analysis in plant
543 genomics. *Int. J. Plant Genomics* 2008.
- 544 Consortium, U., 2019. Uniprot: a worldwide hub of protein knowledge. *Nucleic Acids Res.* 47,
545 D506–D515.
- 546 Costa-Silva, J., Domingues, D., Lopes, F.M., 2017. Rna-seq differential expression analysis: An
547 extended review and a software tool. *PLoS One* 12, e0190152.
- 548 Csardi, G., Nepusz, T., et al., 2006. The igraph software package for complex network research.
549 *Int. J. Complex Syst.* 1695, 1–9.
- 550 Deng, X., Wang, J., Li, Y., Wu, S., Yang, S., Chao, J., Chen, Y., Zhang, S., Shi, M., Tian,
551 W., 2018. Comparative transcriptome analysis reveals phytohormone signalings, heat shock
552 module and ROS scavenger mediate the cold-tolerance of rubber tree. *Sci. Rep.* 8, 1–16.
- 553 Devakumar, A., Prakash, P.G., Sathik, M., Jacob, J., 1999. Drought alters the canopy archi-
554 tecture and micro-climate of *hevea brasiliensis* trees. *Trees* 13, 161–167.
- 555 Devakumar, A., Sathik, M.M., Sreelatha, S., Thapliyal, A., Jacob, J., 2002. Photosynthesis in
556 mature trees of *hevea brasiliensis* experiencing drought and cold stresses concomitant with
557 high light in the field. *Indian J. Nat. Rubb. Res.* 15, 1–13.
- 558 Domínguez, M., Dugas, E., Benchouaia, M., Leduque, B., Jiménez-Gómez, J.M., Colot, V.,
559 Quadrana, L., 2020. The impact of transposable elements on tomato diversity. *Nat. Commun.*
560 11, 1–11.

- 561 Duan, C., Rio, M., Leclercq, J., Bonnot, F., Oliver, G., Montoro, P., 2010. Gene expres-
562 sion pattern in response to wounding, methyl jasmonate and ethylene in the bark of hevea
563 brasiliensis. *Tree Physiol.* 30, 1349–1359.
- 564 Dubin, M.J., Scheid, O.M., Becker, C., 2018. Transposons: a blessing curse. *Curr. Opin. Plant*
565 *Biol.* 42, 23–29.
- 566 Edgar, R.C., 2004. Muscle: multiple sequence alignment with high accuracy and high through-
567 put. *Nucleic Acids Res.* 32, 1792–1797.
- 568 El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M.,
569 Richardson, L.J., Salazar, G.A., Smart, A., et al., 2019. The pfam protein families database
570 in 2019. *Nucleic Acids Res.* 47, D427–D432.
- 571 English, A.C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J., Qin, X., Muzny, D.M., Reid,
572 J.G., Worley, K.C., et al., 2012. Mind the gap: upgrading genomes with pacific biosciences
573 RS long-read sequencing technology. *PLoS One* 7, e47768.
- 574 Fan, Y., Bazai, S.K., Daian, F., Arechederra, M., Richelme, S., Temiz, N.A., Yim, A., Haber-
575 mann, B.H., Dono, R., Largaespada, D.A., et al., 2019. Evaluating the landscape of gene
576 cooperativity with receptor tyrosine kinases in liver tumorigenesis using transposon-mediated
577 mutagenesis. *J. Hepatol.* 70, 470–482.
- 578 Ferreira-Neto, J.R.C., Borges, A.N.d.C., da Silva, M.D., Morais, D.A.d.L., Bezerra-Neto, J.P.,
579 Bourque, G., Kido, E.A., Benko-Iseppon, A.M., 2021. The cowpea kinome: Genomic and
580 transcriptomic analysis under biotic and abiotic stresses. *Front. Plant Sci.* , 945.
- 581 Finn, R.D., Clements, J., Eddy, S.R., 2011. Hmmer web server: interactive sequence similarity
582 searching. *Nucleic Acids Res.* 39, W29–W37.
- 583 Flagel, L., Udall, J., Nettleton, D., Wendel, J., 2008. Duplicate gene expression in allopolyploid
584 gossypium reveals two temporally distinct phases of expression evolution. *BMC Biol.* 6, 1–9.
- 585 Flagel, L.E., Wendel, J.F., 2009. Gene duplication and evolutionary novelty in plants. *New*
586 *Phytol.* 183, 557–564.

- 587 Francisco, F.R., Aono, A.H., Da Silva, C.C., Gonçalves, P.S., Junior, E.J.S., Le Guen, V.,
588 Fritsche-Neto, R., Souza, L.M., de Souza, A.P., 2021. Unravelling rubber tree growth by
589 integrating GWAS and biological network-based approaches. *Front. Plant Sci.* 12.
- 590 Freeling, M., 2009. Bias in plant gene content following different sorts of duplication: tandem,
591 whole-genome, segmental, or by transposition. *Annu. Rev. Plant Biol.* 60, 433–453.
- 592 Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W., 2012. CD-HIT: accelerated for clustering the next-
593 generation sequencing data. *Bioinformatics* 28, 3150–3152.
- 594 Gao, L.L., Xue, H.W., 2012. Global analysis of expression profiles of rice receptor-like kinase
595 genes. *Mol. Plant* 5, 143–153.
- 596 Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A., 2003. Expasy:
597 the proteomics server for in-depth protein knowledge and analysis. *Nucl. Acids Res.* 31,
598 3784–3788.
- 599 Geer, L.Y., Marchler-Bauer, A., Geer, R.C., Han, L., He, J., He, S., Liu, C., Shi, W., Bryant,
600 S.H., 2010. The NCBI biosystems database. *Nucleic Acids Res.* 38, D492–D496.
- 601 Gish, L.A., Clark, S.E., 2011. The RLK/pelle family of kinases. *Plant J.* 66, 117–127.
- 602 Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks,
603 W., Hellsten, U., Putnam, N., et al., 2012. Phytozome: a comparative platform for green
604 plant genomics. *Nucleic Acids Res.* 40, D1178–D1186.
- 605 Gouvêa, L.R.L., Rubiano, L.B., Chioratto, A.F., Zucchi, M.I., Gonçalves, P.d.S., 2010. Genetic
606 divergence of rubber tree estimated by multivariate techniques and microsatellite markers.
607 *Genet. Mol. Biol.* 33, 308–318.
- 608 Guo, D., Li, H.L., Zhu, J.H., Wang, Y., An, F., Xie, G.S., Peng, S.Q., 2017. Genome-wide
609 identification, characterization, and expression analysis of SnRK2 family in hevea brasiliensis.
610 *Tree Genet. Genomes* 13, 1–12.

- 611 Hawley, S.A., Pan, D.A., Mustard, K.J., Ross, L., Bain, J., Edelman, A.M., Frenguelli, B.G.,
612 Hardie, D.G., 2005. Calmodulin-dependent protein kinase kinase- β is an alternative upstream
613 kinase for amp-activated protein kinase. *Cell Metab.* 2, 9–19.
- 614 Hoa, T., Tuy, L., Duong, P., Phuc, L., Truong, V., 1998. Selection of hevea clones for the
615 1998–2000 planting recommendation in Vietnam, in: *Proc. IRRDB Symposium on Natural*
616 *Rubber*, pp. 164–177.
- 617 Hora Júnior, B.T.d., de Macedo, D.M., Barreto, R.W., Evans, H.C., Mattos, C.R.R., Maffia,
618 L.A., Mizubuti, E.S., 2014. Erasing the past: a new identity for the damoclean pathogen
619 causing south American leaf blight of rubber. *PLoS One* 9, e104750.
- 620 Ihaka, R., Gentleman, R., 1996. R: a language for data analysis and graphics. *J. Comput.*
621 *Graph. Stat.* 5, 299–314.
- 622 Jaggi, M., 2018. Recent advancement on map kinase cascade in biotic stress, in: *Molecular*
623 *Aspects of Plant-Pathogen Interaction*. Springer, New York, pp. 139–158.
- 624 Jin, X., Zhu, L., Yao, Q., Meng, X., Ding, G., Wang, D., Xie, Q., Tong, Z., Tao, C., Yu,
625 L., et al., 2017. Expression profiling of mitogen-activated protein kinase genes reveals their
626 evolutionary and functional diversity in different rubber tree (*hevea brasiliensis*) cultivars.
627 *Genes* 8, 261.
- 628 Kleinberg, J.M., 1999. Hubs, authorities, and communities. *ACM Comput. Surv. (CSUR)* 31,
629 5–es.
- 630 Kolde, R., Kolde, M.R., 2015. Package “pheatmap”. *R Package* 1, 790.
- 631 Kovtun, Y., Chiu, W.L., Tena, G., Sheen, J., 2000. Functional analysis of oxidative stress-
632 activated mitogen-activated protein kinase cascade in plants. *Proc. Natl. Acad. Sci.* 97,
633 2940–2945.
- 634 Krogh, A., Larsson, B., Von Heijne, G., Sonnhammer, E.L., 2001. Predicting transmembrane
635 protein topology with a hidden Markov model: application to complete genomes. *J. Mol.*
636 *Biol.* 305, 567–580.

- 637 Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J.,
638 Marra, M.A., 2009. Circos: an information aesthetic for comparative Genomics. *Genome*
639 *Res.* 19, 1639–1645.
- 640 Kunjet, S., Thaler, P., Gay, F., Chuntuma, P., Sangkhasila, K., Kasemsap, P., 2013. Effects
641 of drought and tapping for latex production on water relations of *hevea brasiliensis* trees.
642 *Agric. Nat. Resour.* 47, 506–515.
- 643 Kuruvilla, L., Sathik, M.M., Thomas, M., Luke, L.P., Sumesh, K., 2017. Identification and val-
644 idation of cold responsive micrornas of *hevea brasiliensis* using high throughput sequencing.
645 *J. Crop Sci. Biotechnol.* 20, 369–377.
- 646 Lau, N.S., Makita, Y., Kawashima, M., Taylor, T.D., Kondo, S., Othman, A.S., Shu-Chien,
647 A.C., Matsui, M., 2016. The rubber tree genome shows expansion of gene family associated
648 with rubber biosynthesis. *Sci. Rep.* 6, 1–14.
- 649 Lee, J.K., Park, J.Y., Kim, J.H., Kwon, S.J., Shin, J.H., Hong, S.K., Min, H.K., Kim, N.S.,
650 2006. Genetic mapping of the Isaac-CACTA transposon in maize. *Theor. Appl. Genet.* 113,
651 16–22.
- 652 Lehti-Shiu, M.D., Shiu, S.H., 2012. Diversity, classification and function of the plant protein
653 kinase superfamily. *Philos. Trans. R. Soc. B: Biol. Sci.* 367, 2619–2639.
- 654 Leinonen, R., Sugawara, H., Shumway, M., Collaboration, I.N.S.D., 2010. The sequence read
655 archive. *Nucleic Acids Res.* 39, D19–D21.
- 656 Li, D., Zeng, R., Li, Y., Zhao, M., Chao, J., Li, Y., Wang, K., Zhu, L., Tian, W.M., Liang, C.,
657 2016. Gene expression analysis and snp/indel discovery to investigate yield heterosis of two
658 rubber tree f1 hybrids. *Sci. Rep.* 6, 1–12.
- 659 Li, J., Gao, X., Sang, S., Liu, C., 2019. Genome-wide identification, phylogeny, and expression
660 analysis of the SBP-box gene family in Euphorbiaceae. *BMC Genom.* 20, 1–15.
- 661 Lisch, D., 2013. How important are transposons for plant evolution? *Nat. Rev. Genet.* 14,
662 49–61.

- 663 Liu, H., Qu, W., Zhu, K., Cheng, Z.M.M., 2020a. The wild strawberry kinome: identification,
664 classification and transcript profiling of protein kinases during development and in response
665 to gray mold infection. *BMC Genom.* 21, 1–14.
- 666 Liu, J., Chen, N., Grant, J.N., Cheng, Z.M., Stewart Jr, C.N., Hewezi, T., 2015. Soybean
667 kinome: functional classification and gene expression patterns. *J. Exp. Bot.* 66, 1919–1934.
- 668 Liu, J., Shi, C., Shi, C.C., Li, W., Zhang, Q.J., Zhang, Y., Li, K., Lu, H.F., Shi, C., Zhu, S.T.,
669 et al., 2020b. The chromosome-based rubber tree genome provides new insights into spurge
670 genome evolution and rubber biosynthesis. *Mol. Plant* 13, 336–350.
- 671 Mantello, C.C., Boatwright, L., da Silva, C.C., Scaloppi, E.J., de Souza Goncalves, P., Bar-
672 bazuk, W.B., de Souza, A.P., 2019. Deep expression analysis reveals distinct cold-response
673 strategies in rubber tree (*hevea brasiliensis*). *BMC Genom.* 20, 1–20.
- 674 Meti, S., Meenattoor, J., Mondal, G., Chaudhuri, D., 2003. Impact of cold weather condition
675 on the growth of *hevea brasiliensis* clones in northern west bengal. *Indian J. Nat. Rubber*
676 *Res.* 16, 53–59.
- 677 Miller, M.A., Pfeiffer, W., Schwartz, T., 2011. The cipres science gateway: a community
678 resource for phylogenetic analyses, in: *Proceedings of the 2011 TeraGrid Conference: Extreme*
679 *Digital Discovery*, pp. 1–8.
- 680 Montoro, P., Wu, S., Favreau, B., Herlinawati, E., Labrune, C., Martin-Magniette, M.L.,
681 Pointet, S., Rio, M., Leclercq, J., Ismawanto, S., et al., 2018. Transcriptome analysis in
682 *hevea brasiliensis* latex revealed changes in hormone signalling pathways during ethephon
683 stimulation and consequent tapping panel dryness. *Sci. Rep.* 8, 1–12.
- 684 Morgante, M., Brunner, S., Pea, G., Fengler, K., Zuccolo, A., Rafalski, A., 2005. Gene dupli-
685 cation and exon shuffling by helitron-like transposons generate intraspecies diversity in maize.
686 *Nat. Genet.* 37, 997–1002.
- 687 Morris, P.C., 2001. Map kinase signal transduction pathways in plants. *New Phytol.* 151, 67–89.

- 688 Naito, K., Zhang, F., Tsukiyama, T., Saito, H., Hancock, C.N., Richardson, A.O., Okumoto,
689 Y., Tanisaka, T., Wessler, S.R., 2009. Unexpected consequences of a sudden and massive
690 transposon amplification on rice gene expression. *Nature* 461, 1130–1134.
- 691 Negi, P., Rai, A.N., Suprasanna, P., 2016. Moving through the stressed genome: emerging
692 regulatory roles for transposons in plant stress response. *Front. Plant Sci.* 7, 1448.
- 693 Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., 2017. Salmon provides fast
694 and bias-aware quantification of transcript expression. *Nat. Methods* 14, 417–419.
- 695 Pedro, D.L.F., Lorenzetti, A.P.R., Domingues, D.S., Paschoal, A.R., 2018. PlaNC-TE: a com-
696 prehensive knowledgebase of non-coding RNAs and transposable elements in plants. *Database*
697 2018.
- 698 Pootakham, W., Sonthirod, C., Naktang, C., Ruang-Areerate, P., Yoocha, T., Sangsrakru, D.,
699 Theerawattanasuk, K., Rattanawong, R., Lekawipat, N., Tangphatsornruang, S., 2017. De
700 novo hybrid assembly of the rubber tree genome reveals evidence of paleotetraploidy in hevea
701 species. *Sci. Rep.* 7, 1–15.
- 702 Price, M.N., Dehal, P.S., Arkin, A.P., 2010. Fasttree 2—approximately maximum-likelihood
703 trees for large alignments. *PLoS One* 5, e9490.
- 704 Priyadarshan, P., Goncalves, P.d.S., 2003. Hevea gene pool for breeding. *Genet. Resour. Crop*
705 *Evol.* 50, 101–114.
- 706 Pushparajah, E., 1983. Problems and potentials for establishing hevea under difficult environ-
707 mental conditions. *Planter.*
- 708 Rahman, A.Y.A., Usharraj, A.O., Misra, B.B., Thottathil, G.P., Jayasekaran, K., Feng, Y.,
709 Hou, S., Ong, S.Y., Ng, F.L., Lee, L.S., et al., 2013. Draft genome sequence of the rubber
710 tree *hevea brasiliensis*. *BMC Genom.* 14, 1–15.
- 711 Rahman, S.N.A., Bakar, M.F.A., Singham, G.V., Othman, A.S., 2019. Single-nucleotide poly-
712 morphism markers within MVA and MEP pathways among *hevea brasiliensis* clones through
713 transcriptomic analysis. *3 Biotech* 9, 1–10.

- 714 Roustan, V., Jain, A., Teige, M., Ebersberger, I., Weckwerth, W., 2016. An evolutionary
715 perspective of AMPK–TOR signaling in the three domains of life. *J. Exp. Bot.* 67, 3897–
716 3907.
- 717 Saito, A.N., Matsuo, H., Kuwata, K., Ono, A., Kinoshita, T., Yamaguchi, J., Nakamichi, N.,
718 2019. Structure–function study of a novel inhibitor of the casein kinase 1 family in *arabidopsis*
719 *thaliana*. *Plant Direct* 3, e00172.
- 720 Sathik, M.M., Luke, L.P., Rajamani, A., Kuruvilla, L., Sumesh, K., Thomas, M., 2018. De
721 novo transcriptome analysis of abiotic stress-responsive transcripts of *hevea brasiliensis*. *Mol.*
722 *Breed.* 38, 1–17.
- 723 Sevillano, L., Sanchez-Ballesta, M.T., Romojaro, F., Flores, F.B., 2009. Physiological, hor-
724 monal and molecular mechanisms regulating chilling injury in horticultural species. posthar-
725 vest technologies applied to reduce its impact. *J. Sci. Food Agric.* 89, 555–573.
- 726 Shearman, J.R., Pootakham, W., Tangphatsornruang, S., 2020. The bpm 24 rubber tree
727 genome, organellar genomes and synteny within the family euphorbiaceae. *Rubber Tree*
728 *Genome* 55.
- 729 Sperschneider, J., Catanzariti, A.M., DeBoer, K., Petre, B., Gardiner, D.M., Singh, K.B.,
730 Dodds, P.N., Taylor, J.M., 2017. Localizer: subcellular localization prediction of both plant
731 and effector proteins in the plant cell. *Sci. Rep.* 7, 1–14.
- 732 Suzuki, N., Koussevitzky, S., Mittler, R., Miller, G., 2012. ROS and redox signalling in the
733 response of plants to abiotic stress. *Plant Cell Environ.* 35, 259–270.
- 734 Tan, D., Hu, X., Fu, L., Kumpeangkeaw, A., Ding, Z., Sun, X., Zhang, J., 2017. Compar-
735 ative morphology and transcriptome analysis reveals distinct functions of the primary and
736 secondary laticifer cells in the rubber tree. *Sci. Rep.* 7, 1–17.
- 737 Tan, S.T., Dai, C., Liu, H.T., Xue, H.W., 2013. *Arabidopsis* casein kinase1 proteins CK1. 3
738 and CK1. 4 phosphorylate cryptochrome2 to regulate blue light signaling. *Plant Cell* 25,
739 2618–2632.

- 740 Tan, S.T., Xue, H.W., 2014. Casein kinase 1 regulates ethylene synthesis by phosphorylating
741 and promoting the turnover of acs5. *Cell Rep.* 9, 1692–1702.
- 742 Tang, C., Yang, M., Fang, Y., Luo, Y., Gao, S., Xiao, X., An, Z., Zhou, B., Zhang, B., Tan,
743 X., et al., 2016. The rubber tree genome reveals new insights into rubber production and
744 species adaptation. *Nat. Plants* 2, 1–10.
- 745 Van Dam, S., Vosa, U., van der Graaf, A., Franke, L., de Magalhaes, J.P., 2018. Gene co-
746 expression analysis for functional classification and gene–disease predictions. *Brief. Bioinfor-
747 matics* 19, 575–592.
- 748 Vandereyken, K., Van Leene, J., De Coninck, B., Cammue, B.P., 2018. Hub protein controversy:
749 taking a closer look at plant stress response hubs. *Front. Plant Sci.* 9, 694.
- 750 Venkatachalam, P., Geetha, N., Priya, P., Thulaseedharan, A., 2010. Identification of a differ-
751 entially expressed thymidine kinase gene related to tapping panel dryness syndrome in the
752 rubber tree (*hevea brasiliensis* muell. arg.) by random amplified polymorphic dna screening.
753 *Int. J. Plant Biol.* 1, e7.
- 754 Villanueva, R.A.M., Chen, Z.J., 2019. ggplot2: elegant graphics for data analysis.
- 755 Voorrips, R., 2002. Mapchart: software for the graphical presentation of linkage maps and
756 QTLs. *J. Hered.* 93, 77–78.
- 757 Wang, J., Lu, N., Yi, F., Xiao, Y., 2020. Identification of transposable elements in conifer and
758 their potential application in breeding. *Evol. Bioinform.* 16, 1176934320930263.
- 759 Wei, K., Wang, Y., Xie, D., 2014. Identification and expression profile analysis of the protein
760 kinase gene superfamily in maize development. *Mol. Breed.* 33, 155–172.
- 761 Wei, L., Cao, X., 2016. The effect of transposable elements on phenotypic variation: insights
762 from plants to humans. *Sci. China Life Sci.* 59, 24–37.
- 763 Wu, S., Guyot, R., Bocs, S., Droc, G., Oktavia, F., Hu, S., Tang, C., Montoro, P., Leclercq,
764 J., 2020. Structural and functional annotation of transposable elements revealed a potential

- 765 regulation of genes involved in rubber biosynthesis by TE-Derived siRNA interference in
766 *Hevea brasiliensis*. *Int. J. Mol. Sci.* 21, 4220.
- 767 Xiao, X.H., Yang, M., Sui, J.L., Qi, J.Y., Fang, Y.J., Hu, S.N., Tang, C.R., 2017. The
768 calcium-dependent protein kinase (CDPK) and CDPK-related kinase gene families in *hevea*
769 *brasiliensis*—comparison with five other plant species in structure, evolution, and expression.
770 *FEBS Open Bio* 7, 4–24.
- 771 Yan, J., Li, G., Guo, X., Li, Y., Cao, X., 2018. Genome-wide classification, evolutionary
772 analysis and gene expression patterns of the kinome in *gossypium*. *PLoS One* 13, e0197392.
- 773 Yan, J., Su, P., Wei, Z., Nevo, E., Kong, L., 2017. Genome-wide identification, classification,
774 evolutionary analysis and gene expression patterns of the protein kinase gene family in wheat
775 and *Aegilops tauschii*. *Plant Mol. Biol.* 95, 227–242.
- 776 Yu, C.S., Chen, Y.C., Lu, C.H., Hwang, J.K., 2006. Prediction of protein subcellular localiza-
777 tion. *Proteins: Struct. Funct. Bioinform.* 64, 643–651.
- 778 Yu, G., Smith, D.K., Zhu, H., Guan, Y., Lam, T.T.Y., 2017. *ggtree*: an r package for visual-
779 ization and annotation of phylogenetic trees with their covariates and other associated data.
780 *Methods Ecol. Evol.* 8, 28–36.
- 781 Zayed, H., Xia, L., Yerich, A., Yant, S.R., Kay, M.A., Puttaraju, M., McGarry, G.J., Wiest,
782 D.L., McIvor, R.S., Tolar, J., et al., 2007. Correction of dna protein kinase deficiency by
783 spliceosome-mediated rna trans-splicing and sleeping beauty transposon delivery. *Mol. Ther.*
784 15, 1273–1279.
- 785 Zhang, J., 2003. Evolution by gene duplication: an update. *Trends in ecology & evolution* 18,
786 292–298.
- 787 Zhao, S., Jiang, Y., Zhao, Y., Huang, S., Yuan, M., Zhao, Y., Guo, Y., 2016. Casein kinase1-
788 like protein2 regulates actin filament stability and stomatal closure via phosphorylation of
789 actin depolymerizing factor. *The Plant Cell* 28, 1422–1439.

- 790 Zhu, K., Liu, H., Chen, X., Cheng, Q., Cheng, Z.M.M., 2018a. The kinome of pineapple:
791 catalog and insights into functions in crassulacean acid metabolism plants. *BMC plant Biol.*
792 18, 1–16.
- 793 Zhu, L., Jin, X., Xie, Q., Yao, Q., Wang, X., Li, H., 2018b. Calcium-dependent protein
794 kinase family genes involved in ethylene-induced natural rubber production in different *hevea*
795 *brasiliensis* cultivars. *Int. J. Mol. Sci.* 19, 947.
- 796 Zulawski, M., Schulze, G., Braginets, R., Hartmann, S., Schulze, W.X., 2014. The *arabidopsis*
797 kinome: phylogeny and evolutionary insights into functional diversification. *BMC Genom.*
798 15, 1–15.

799 **Supplementary Tables**

- 800 **Table S1a.** Kinase domain annotation of 3,188 *H. brasiliensis* protein kinases.
- 801 **Table S1b.** Kinase domain annotation of 1,531 *M. esculenta* protein kinases.
- 802 **Table S1c.** Kinase domain annotation of 863 *R. communis* protein kinases.
- 803 **Table S2a.** *H. brasiliensis* kinase domain organization of 191 protein kinases containing mul-
804 tiple kinase domains.
- 805 **Table S2b.** *M. esculenta* kinase domain organization of 91 protein kinases containing multiple
806 kinase domains.
- 807 **Table S2c.** *R. communis* kinase domain organization of 44 protein kinases containing multiple
808 kinase domains.
- 809 **Table S3a.** Subfamily classification of *H. brasiliensis* protein kinases.
- 810 **Table S3b.** Subfamily classification of *M. esculenta* protein kinases.
- 811 **Table S3c.** Subfamily classification of *R. communis* protein kinases.
- 812 **Table S4.** The number of kinase genes in different subfamilies.
- 813 **Table S5a.** Characterization of *H. brasiliensis* protein kinases.
- 814 **Table S5b.** Characterization of *M. esculenta* protein kinases.
- 815 **Table S5c.** Characterization of *R. communis* protein kinases.
- 816 **Table S6a.** *H. brasiliensis* 2,842 kinase gene localizations and intron quantities.

- 817 **Table S6b.** *M. esculenta* 1,531 kinase gene localizations and intron quantities.
- 818 **Table S6c.** *R. communis* 863 kinase gene localizations and intron quantities.
- 819 **Table S7.** Chromosomal position estimation of 1,636 *H. brasiliensis* kinase genes.
- 820 **Table S8a.** Gene Ontology (GO) annotations for the 2,842 *H. brasiliensis* protein kinases.
- 821 **Table S8b.** Gene Ontology (GO) annotations for the 1,531 *M. esculenta* protein kinases.
- 822 **Table S8c.** Gene Ontology (GO) annotations for the 863 *R. communis* protein kinases.
- 823 **Table S9a.** Domain annotation of *H. brasiliensis* protein kinases.
- 824 **Table S9b.** Domain annotation of *M. esculenta* protein kinases.
- 825 **Table S9c.** Domain annotation of *R. communis* protein kinases.
- 826 **Table S10a.** Domain organization of *H. brasiliensis* protein kinases.
- 827 **Table S10b.** Domain organization of *M. esculenta* protein kinases.
- 828 **Table S10c.** Domain organization of *R. communis* protein kinases.
- 829 **Table S11.** Tandemly duplicated kinase genes across the *H. brasiliensis* genome.
- 830 **Table S12.** Pairs of tandemly duplicated kinases correspondences in the *H. brasiliensis* genome.
- 832 **Table S13.** Number of *H. brasiliensis* protein kinases near transposable elements.
- 833 **Table S14.** Description of *H. brasiliensis* kinase genes associated with transposable elements.
- 834 **Table S15.** *H. brasiliensis* RNA-Seq experiment organization (retrieved from the SRA database).
- 835 **Table S16.** *H. brasiliensis* kinase transcripts per million (TPM) values across samples.
- 836 **Table S17.** *H. brasiliensis* kinase quantifications across subfamilies.
- 837 **Table S18a.** Related information of the *H. brasiliensis* kinase subfamily control coexpression network.
- 839 **Table S18b.** Related information of the *H. brasiliensis* kinase subfamily stress coexpression network.
- 841 **Table S19a.** Edge betweenness values calculated across the *H. brasiliensis* kinase subfamily control network.
- 843 **Table S19b.** Edge betweenness values calculated across the *H. brasiliensis* kinase subfamily stress network.

845 **Supplementary Figures**

846 **Fig. S1.** Phylogenetic analysis of 2,842 *H. brasiliensis* putative typical kinase proteins with
847 1,000 bootstrap replicates. Each protein is represented by a unique branch tip, and branch
848 colors represent the kinase subfamily classification.

849 **Fig. S2.** Phylogenetic analysis of 2,842 *H. brasiliensis*, 1,531 *M. esculenta*, and 863 *R. communis*
850 putative typical kinase proteins with 1,000 bootstrap replicates. Each protein is represented
851 by a unique branch tip, and branch colors represent the kinase subfamily classification.

852 **Fig. S3.** Chromosomal positions of (A) 2,842 PK genes identified in *H. brasiliensis* and 1,531
853 PK genes identified in *M. esculenta*.

854 **Fig. S4.** (A) Molecular weight and (B) isoelectric point (pI) distribution of *H. brasiliensis*
855 (Hbr), *M. esculenta* (Mes), and *R. communis* (Rco) protein kinases.

856 **Fig. S5.** Subcellular localization predictions of (1) *H. brasiliensis*, (2) *M. esculenta*, and (3)
857 *R. communis* protein kinases using LOCALIZER software (A), CELLO software (B), and Gene
858 Ontology terms (C).

859 **Fig. S6.** Gene Ontology (GO) categories (biological process) of 339 tandemly duplicated *H.*
860 *brasiliensis* protein kinases.

861 **Fig. S7.** Gene Ontology (GO) categories (biological process) of (A) 2,842 *H. brasiliensis*
862 protein kinases (PKs), (B) 1,531 *M. esculenta* PKs, and (C) 863 *R. communis* PKs.

863 **Fig. S8.** RNA expression profiles of *H. brasiliensis* protein kinases among 42 samples under
864 control conditions. Sample IDs (columns) and subfamily names (rows) were clustered based on
865 Euclidean distances.

866 **Fig. S9.** RNA expression profiles of *H. brasiliensis* protein kinases among 37 samples under
867 abiotic stress conditions (cold, drought, jasmonate and ethylene treatments). Sample IDs
868 (bottom) and subfamily names (right) were clustered based on Euclidean distances.

869 **Fig. S10.** RNA expression profiles of *H. brasiliensis* PKs among all 79 samples under control
870 and stress conditions.