bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Graph-based algorithms for phase-type distributions

Tobias Rgikjer!, Asger Hobolth? and Kasper Munch?*

1. Affiliation. Email: tobiasroikjer@gmail.com
2. Department of Mathematics, Aarhus University. Email: asger@math.au.dk
ORC-ID: 0000-0003-4056-1286
3. Bioinformatics Research Center, Aarhus University. Email: kaspermunch@birc.au.dk
ORC-ID: 0000-0003-2880-6252

*. Corresponding author

March 12, 2022

Statements and Declarations:
The authors did not receive support from any organization for the submitted work. The authors
have no relevant financial or non-financial interests to disclose.

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Phase-type distributions model the time until absorption in continuous or discrete-time Markov
chains on a finite state space. The multivariate phase-type distributions have diverse and important
applications by modeling rewards accumulated at visited states. However, even moderately-sized
state spaces make the traditional matrix-based equations computationally infeasible. State spaces
of phase-type distributions are often very large but sparse, with only a few transitions from a state.
This sparseness makes a graph-based representation of the phase-type distribution more natural
and efficient than the traditional matrix-based representation. In this paper, we develop graph-
based algorithms for analyses of phase-type distributions. In addition to algorithms for state-space
construction, reward transformation, and moments calculation, we give algorithms for the marginal
distribution functions of multivariate phase-type distributions and for the state probability vector
of the underlying Markov chains of both time-homogeneous and time-inhomogeneous phase-type
distributions. The algorithms are available as a numerically stable and memory-efficient open-
source software package written in C named ptdalgorithms. This library exposes all methods in
the programming languages C and R. We demonstrate with a classic problem from population ge-
netics how ptdalgorithms serves as a much faster, much simpler, and completely general modeling
alternative.

Key words: Phase-type distributions, computational statistics, moments, distribution, graph-
based algorithms.

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1 Introduction

A discrete phase-type distribution is the time until absorption in a discrete-time Markov chain
on a finite state space. A (continuous) phase-type distribution is the time until absorption in
a time-continuous Markov jump process on a finite state space. Phase-type distributions find
many uses in statistical modeling, such as in physics, telecommunication, and queuing theory (e.g.
Aalen (1995); Faddy and McClean (1999); Acal et al. (2019)). Recently, phase-type distributions
have been applied in population genetics to model the coalescence process, which describes the
genealogical relationship among DNA sequences (Hobolth et al., 2019). The solid theoretical foun-
dation of phase-type distributions (e.g. Bladt and Nielsen (2017)) allows for elegant matrix-based
formulations and mathematical proofs. However, computations using matrix-based formulations
become infeasible even for systems with just thousands of states. One such example is the basic
coalescence model (see Section 3 in (Hobolth et al., 2021)), where the number of states grows
exponentially fast in the square root of the sample size.

In most models of real-world phenomena, states are sparsely connected, and a graph-based
description is thus more natural and much more efficient than a matrix-based representation.
In this article, we use a graph-based approach to develop efficient algorithms for computing the
moments, probability distribution, state probability vector, and reward transformations for phase-
type distributions. Working with phase-type distributions as graphs has several advantages. First,
the state-space can be constructed iteratively, making it easy to build models for very complex
phenomena. Second, as the phase-type distribution is not stored as a matrix, its representation
requires much less memory. Third, the moments and distributions are computed orders of mag-
nitude faster than using matrix operations. These advances are made by constructing algorithms
for phase-type distributions that apply directly to the graph structure.

We present efficient graph-based algorithms for generalized iterative state-space construction,
for reward transformation for positive or zero rewards, for computation of the exact marginal
and joint moments of multivariate phase-type distributions, for computation of the distribution
functions, and for computation of the state probability vector of the Markov process at any given
time for both time-homogeneous and time-inhomogeneous distributions. The algorithms apply
to both continuous and discrete phase-type distributions. The algorithms are written in C with
methods exposed as an open-source library, named ptdalgorithms, in C and R. The library is
available at GitHub and is easily installed and compiled using only this R code:

library(devtools)
devtools::install_github("TobiasRoikjer/PtDAlgorithms")

Here, we present the theoretical principles and probabilistic interpretation of our algorithms with
brief code examples. The full documentation of the package is available at the GitHub website,
and as R man pages of the ptdalgorithms R package.

2 Graph-based algorithms for phase-type distributions

2.1 Graph-representation of a phase-type distribution

In our matrix description of a continuous phase-type distributions, we follow Section 3 of Bladt

and Nielsen (2017). We assume p transient states with the initial distribution oy, ¢ = 1,..., p, with
a potential defect ag = 1 — le «;. Let a be the vector of initial distribution with entries «;.

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The instantaneous sub-intensity matrix (the rate matrix excluding absorbing states) is denoted S
and the Green matrix (the expected waiting time in state j if the Markov chain begins in state)
is U = (—S)~!. The cumulative distribution function is given by:

F.(t)=1—-aee, t>0,

where 5t is the matrix exponential of the matrix St.

In our description of phase-type distributions as a weighted directed graph, we follow the
standard notation found in e.g. Frydenberg (1990); Younes and Simmons (2004). A directed
graph G is a tuple G = (V, E)) where V is a set of vertices and E is a set of ordered pairs of
vertices. An edge from a vertex v € V to z € V is denoted (v — z) € E. The set of edges (v — z)
for all z € V are referred to as the out-going edges of v and the set of edges (u — v) for allu € V
as the in-going edges of v. For any pair of vertices connected by an edge (u — v), u is referred to
as a parent of v, and v as a child of u. The set of children of a vertex v is denoted children(v)
and the set of parents is denoted parents(v). Note that, if the graph has cycles, a parent of a
vertex may also be a child of the same vertex.

A weighted directed graph associates each edge with a real-valued weight function, W: E — R
that represent the transition rate between two states. The weight of an edge (v — z) € E is
denoted w(v — z) € R and the sum of weights of out-going edges for a vertex v is denoted:

Ay = Z w(v — z) (1)

z€children(v)

For a weighted directed graph to correspond to a valid phase-type distribution defined by the
sub-intensity matrix, all weights are strictly positive real numbers corresponding to exponential
or geometric rates. There can be no self-loops. A vertex with no outgoing edges must exist,
representing an absorbing state. Finally, all vertices must have a path to an absorbing vertex with
a strictly positive probability.

As the algorithms are iterative, we consider the graph to be mutable, and we can add vertices,
add or remove edges, and change the weight of an edge. Notation-wise, we will often use a prime
symbol to denote a transformation or change to a phase-type distribution or graph, i.e., G’ would
stem from the graph G with a list of transformations applied to it, and denote the updated graph.
This update of G will be designated as G < G’ in the algorithms.

2.2 State-space construction

We represent the state-space as an iteratively constructed graph. Iterative construction greatly
simplifies the specification of large and complex state spaces because they can be specified from
simple rules governing transitions between states. Our construction algorithm iteratively visits
each vertex in the graph once and independently of any other vertices. The iterative construction
is possible because of the Markov property of phase-type distributions: For any state, all outgoing
transitions and their rate can be specified knowing only the current state. The construction
algorithm is shown in Algorithm-2.1. An example state-space construction is shown in fig. 1
alongside an example of the R code needed to generate the state-space.

Our algorithm requires an efficient lookup data structure that represents a one-to-one bijection
between a state and a vertex in the graph. In ptdalgorithms we use an AVL tree to map a state
to a vertex. We use a vector of integers to describe each state, but any representation of a state
with an equivalence relation and an ordering (< relation) can be used.

4

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

While the algorithms are independent of the underlying data structure, the asymptotic com-
plexities of the algorithms stated in this article assume that all children of a vertex v can be merged
to all of its parents in quadratic time in the number of vertices, either by updating the weight of
the edge or by adding a new edge from the parent to the child. This requires that the addition of
new edges and updates of weight are both constant-time operations. In ptdalgorithms, we store
the edges in an ordered linked list, and we can merge two ordered linked lists in linear time by
comparing them element-wise in their sorted order. For O(|V]) parents, we perform O(|V|) merges
each in time O(2|V|), and therefore in quadratic time, where |V| denotes the cardinality (number
of entries) of the set V.

For modeling convenience, ptdalgorithms supports parametrization of edges, allowing edge
weights to be updated after construction of the state space. This feature is useful for exploring
the effect of different model parameter values (see ptdalgorithms documentation).

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

state_vector_length <- 2

graph <- create_graph(state_vector_length)
Lag starting_vertex <- vertex_at(graph, 1)

initial_state <- c(2, 0)

7/ 1 2 4 add_edge(
1 ¥ 2 ¥ starting_vertex,

1 create_vertex(graph, initial_state),
1
1 index <- 2
/ 4

P 4 L) while (index <= vertices_length(graph)) {

\ 1| 4 ? vertex <- vertex_at(graph, index)

b state <- vertex$state

if (state[1] > @) {
Rabbit jump left to right
child_state <- c(state[1] - 1, state[2] + 1)
add_edge(
c vertex,

1. @ 2. @.1 Imd_or‘_create_vertex(gr‘aph, child_state),
~A,)
N # Left island flooding
re@ child_state <- c(@, state[2])
add_edge(

vertex,

find_or_create_vertex(graph, child_state),
2

)

: : }
’) i és::tfbewi[:]j:m:)rgght to left
child_state <- c(state[1] + 1, state[2] - 1)

w 00 W [0
vertex,
- find_or_create_vertex(graph, child_state),
1
08 80 ®0)

Right island flooding
child_state <- c(state[1], 0)

5. V 1 r] 6. add_edge(
. .@ vertex,
find_or_create_vertex(graph, child_state),
W)
}
.Ij r.@ @) index <- index + 1

Figure 1: Example state-space construction. In this model, rabbits jump between two islands
with a rate of 1. The two islands are flooded at rates 2 and 4, drowning all rabbits on the flooded
island. The absorbing state is when all rabbits have drowned. (A) shows the state-space with
transitions. (B) shows the R code that generates the state-space. States are encoded as vectors
of two integers that represent the numbers of rabbits on each island. We iteratively construct the
state-space by adding vertices and edges. Vertices are visited in the order they are added to the
graph. We do not label absorbing states explicitly, as they are simply vertices with no outgoing
edges. The special starting vertex goes to the initial state with two rabbits on the left island with a
probability of 1. The graph keeps a record of its vertices and their matching state, and the function
find or_create_vertex only creates vertices for states that do not exist. (C) the state-space after
each iteration of the while loop. The index variable enumerates the visited states shown with
bold outline, while vertices_length(graph) returns the number of states currently added to the
graph. Once these are equal, the state-space construction is completed.

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Algorithm 2.1 General state-space generation algorithm

Let V' be the set of vertices in the graph, visited be a subset of these vertices, and E be the set
of edges in the graph. Let W be a function from E — R, the weights of the edges. Let f be a
bijection between a state and a vertex by some data structure, and f~! be the inverse function
mapping from a vertex to a state. Denote the starting vertex as S. The following two functions
are user defined: TRANSITIONS(state) returns the set of states that state can transition to.
RATE(state_from, state_to) returns the transition rate from state_from to state_to.

function GENERATESTATESPACE(TRANSITIONS, RATE)
V « {s}
unvisited < {S}
E<+0
W0
while unvisited # () do
v <— any entry from unvisited
unvisited < unvisited \ {v}
for state € TRANSITIONS(f~!(v)) do
if f does not contain state then
Add new vertex z
V +—Vu{z}
unvisited < unvisited U {z}
f <« fU{state — z}
end if
z < f(state)
E+— EU{(v—2)}
W+ WU{(v—z)— RATE(f"}(v), [1(2))}
end for
end while
return Graph (V, F) and weight function W
end function

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.3 Reward transformation of a phase-type graph

We can assign a real-valued strictly positive or zero reward to each state, and the waiting time
in each state is scaled with this reward. The phase-type distribution is no longer the time until
absorption but rather the accumulated reward until absorption (eqn. 2). If all rewards assigned
to all states are one, the phase-type distribution is unchanged. Let 7 be a phase-type distributed
stochastic variable with p transient states, 7 ~ PH, (e, S), and let {X;} be the underlying Markov
jump process. We are interested in the reward-transformed variable

Y = /OTT(ngt, (2)

where 7 = (r(1),...,7(p)) is a vector of non-negative rewards. Theorem 3.1.33 in Bladt and
Nielsen (2017) state that Y is also phase-type distributed, and they provide matrix formulas for
computing the sub-intensity rate matrix of the reward-transformed variable. In this section we
derive the corresponding graph-based construction.

Consider the reward-transformation where a strictly positive reward r, > 0 is assigned to
state k and where the rewards assigned to all other states remain unchanged, i.e. r;, =1, ¢ # k.
The reward-transformed sub-intensity matrix is then obtained by scaling row k in the rate matrix
by the inverse of 7y

S' = SA(1)r).

In the directed weighted graph, this corresponds to multiplying the weight of all outgoing edges
from vertex k by 1/7y.

Now consider the alternative reward-transformation with a zero reward r;, = 0 assigned to only
state k so that r; = 1, 7 # k. In this case, we need to remove the vertex for state k from the graph
and update the edges and their weights accordingly. The transition matrix of the Markov chain
embedded in the graph has entries

qij :SZJ/AM Z#j? and qn:Oa

where s;; is the intensity from state i to j, represented by the weight of edge (i — j), and where
A; is the sum of the out-going weights from 7. The transition probability from state i # k to state
j # k for the embedded Markov chain with state k removed is

Dij = qij + ik -

The waiting time in each state of the reward-transformed Markov jump process must remain the
same, and therefore the intensity from state i to state j must be s;j = \ipij. The sub-intensity
matrix for the Markov jump process with state k removed therefore has entries
/ Skj

Sij = Aibij = Ni(Qij + Qingrj) = sij + Sik)_k-
In terms of graph-operations this means that if edge (i — j) already exists (if s;; > 0), we should
add s;,sk;/ Ak to the weight of that edge. If the graph does not have edge (i — j) (if s;; = 0), then
we add it to the graph with weight s;;sy;/A;. The resulting algorithm is shown in Algorithm 2.2
and an example reward transformation is shown in Figure 2.

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A _ B 5
/Q /@
A 012 025 0'25\ c A 012 028 0'25\ C
O TS O =5
0.08 0.08 +0.12*1/2
O O

D D

Figure 2: Reward transformation with zero reward. (A) Original graph. (B) Graph after
reward transformation assigning a zero reward to state B and a 1 reward to states A, C and D in
accordance with Algorithm 2.2. Red vertices and edges are removed in the transformation. Green
edges are added or updated.

Algorithm 2.2 Reward transformation in a graph

function REWARDTRANSFORM VERTEX (V)
if v =S or v is absorbing then
return
end if
if 7(v) # 0 then
for z € children(v) do
Scale weight w(v — z) by 1/r(v)
end for
else
for u € parents(v) do
Remove edge (u — v)
for z € children(v) do
if edge (u — z) exists then
Increment weight w(u — z) by Mw(u — V)
else if u # z then ’

Add edge (u — z) with weight Mw(u — V)
end if ’
end for
end for

end if
end function

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.4 Moments

The higher-order moments of reward-transformed phase-type distributions are determined by
matrix-based equations (e.g. Theorem 8.1.5, Bladt and Nielsen (2017))

E[r*] = Kla(U A(r))¥e.

The expectation is thus
E[r] = aUA(r)e,

and the second moment is

E[r?] = 2aUA(r)U A (r)e.

By the associative property of matrix multiplication, we can first compute the part A(r)UA(r)e,
which gives us a column vector that we can write as A(r’)e. This implies that by using a different
vector of rewards, the second moment can be computed the same way as the first moment. By
induction, we find a new set of rewards such that:

E[r*] = a(klUA(r'))e = E[7],

where 7' is a new phase-type distribution with the same state-space as 7, but with different rewards.
For example, for the second moment, we can identify a new reward vector r’ such that:

E[r?] = 2aU A(r)UA(r)e.
——_— ——
A(rh)e

In the sections below, we will use this property to construct an algorithm for all moments as well
as an algorithm for all joint moments.

Any rewarded phase-type distribution can be normalized such that the intensities for each
state sum to 1 by also adjusting the rewards for each state so that the reward divided by the
total intensity remains the same. This normalization exposes the embedded Markov process and
thus allows the expected accumulated reward at each state to be expressed simply as the expected
number of visits to each state scaled by its reward.

In our graph-based formulation of rewarded phase-type distributions, both the reward and
transition rate contribute to the weight of each edge. However, in normalizing the distribution, we
need to associate all vertices v € V' with a separate scalar, z,, that represents the rescaled reward:

1
Ty = —
Ay
Once the edge weights are rescaled to sum to 1:
_>
w/(V — Z) = —w(v)\ Z)’

the rescaled reward, z,, ensures that the accumulated reward remains the same. At the starting
vertex and the absorbing vertices, x is set to 0.

Acyclic phase-type distributions often appear and constitute an important special case. For
acyclic phase-type distributions (Cumani, 1982) the sub-intensity matrix can be reorganized into
an upper triangular matrix. In our graph-formulation, the such graphs have a topological ordering,
which allow us to compute the expectations by simple recursions. Let v and z be vertices and let

10

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

E[7|v] be the expected accumulated reward until absorption given a start at the vertex v. For the
normalized graph, this gives us the recursion known from first-step analysis of Markov Chains:

Efrfv]=2,+ > w(v—z)E[rlz]

zé&children(v)

Since we have a single starting vertex, the expectation of the phase-type distribution is:
E[r] = E[r]8]

The topological ordering of vertices allows the recursion to be computed using dynamic program-
ming, and we can compute k’th moment in quadratic time in the number of vertices O(|V|*k).
This is not possible if the state-space has cycles since the recursion will then not have an end.
However, as we show below, we can transform the graph for any cyclic phase-type distribution into
a graph for an acyclic phase-type distribution with the same states.

2.5 Constructing an acyclic graph representation

We can manipulate the graph for a cyclic phase-type distribution to produce a graph for an
acyclic phase-type distribution with the same states in such a way that the expected time and
accumulated rewards until absorption remain the same. Once constructed, we can compute the
expectation recursively as described above. Algebraically, we find a phase-type distribution such
that:

UA(r)e=U'A(r")e

where S§' = (—U’)! constitutes an upper-triangular matrix. This matrix can be found by Gaussian
elimination of the system of linear equations expressed as —Se = A(r)e. Gaussian elimination
of sparse matrices by graph theory is a well-studied problem. In ptdalgorithms we apply this
technique directly on the graph. We will assume below that the phase-type distribution have
been normalized as described above, as this allows for a probabilistic interpretation of graph
manipulations.

We first index each vertex arbitrarily to {1,2,...,|V|}, with the constraint that the starting
vertex with no in-going edges, S, has index 1, and the absorbing vertices have the highest indices.
The algorithm we will describe visits all vertices in indexing order. We refer to the transformed
graph after visiting the vertex with index i as G, and the initial graph is therefore denoted G©),
The algorithm ensures three invariants for each vertex ¢ visited:

1. The vertex has no in-going edges from a vertex with a higher index.
2. The expected accumulated rewards until absorption, starting at any vertex, is preserved
3. The sum of weights for all outgoing edges remains 1 (but 0 for the absorbing vertex).
Algebraically, this means that
UFDA (e =UDA(rD)e

where U® is the Green matrix for the phase-type distribution given by the graph G, and r®
are new associated rewards. As i has no in-going edges from a vertex j where j > ¢, the graph
has a topological ordering and is acyclic once all vertices have been visited. We will later show

11

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

that we only need to perform this relatively expensive computation once to compute any number
of moments.

We first show how we can remove an in-going and an outgoing edge of a vertex without changing
the expectation. Let v and z describe vertices, with an associated index. Let E[7|v] be the expected
accumulated reward until absorption given that we start at vertex v. The recursion to compute
this expectation, as described in section 2.4, applies but will not end for a graph with cycles.

E[r|v] =z, + Z w(v — z)E[7|z]

z€children(v)

However, we can expand the recursion, bridging the immediate child:

Erfv] =2+ Y wv—z) |z, + > w(z— z)E[r|z)]

z1 €children(v) zp€children(zy)

and produce the equivalent equation:

E[r|v] = | v + Z w(v — 2z1)x, |+ Z Z w(v — z1)w(z — z9)E[7|z9] |,

z1 €children(v) zy €children(v) \ zz€children(zy)

This reveals that we can remove the edge (v — z;) without changing E[7|v] if we increase the
re-scaled reward w, of v to x, +), cehildren(v) w(v — z1)x,,, and if weights of edges from v to all
zy € children(z;) are changed to w(v — z1)w(z; — z3). We can thus remove a vertex, v, from a
state-path if we increase the reward of any parents by the in-going weight multiplied by z,, and
add or update edges from each parent to all children of v by the product of the edge weights.

In the situation where vertex v is also a child of vertex z, the above procedure would create a
self-loop that needs to be resolved. We can remove a self-loop with weight w(v — v) and retain
the expectation if we increase the re-scaled reward, z, to z! = z,/w(v — v), and scale all other
out-going edges by %

By our three invariants, once we visit the vertex with index 4, v;, all children of vertex v;
will have a higher index because all vertices with indexes lower than ¢ have been visited. At this
stage, not all parents of v; have an index smaller than 7, but redirecting edges from parents with
a larger index establishes the three invariants at vertex 7. From the equation above, the expected
accumulated reward until absorption is kept, and by induction, we end up with an acyclic graph
once all vertices are visited. The algorithm is shown in algorithm 2.3 and lets us build an acyclic
graph in O(|V|?) time. A worked example of the algorithm is shown in fig. 3.

The algorithm can now compute the expected accumulated reward recursively using dynamic
programming in O(]V|?) time on the acyclic graph. In ptdalgorithms we improve the empirical
running time of the acyclic construction by indexing vertices by topological ordering if one exists
or by some ordering by the strongly connected components. We show in the section below that
we only need to construct the new acyclic graph once.

To see the correspondence between the acyclic graph construction and Gauss elimination, note
how the system of equations —Se = A(r)e corresponds to the example graph show in fig. 3 when

-1 06 0
S=1(0 -1 05
10 0

12

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and r = (5,2,5). We can write the system of equations as:

Ty =54+0.6-T;
TB:2+05TC
TC:5+TA

where T) = E[7|A] is the expectation starting in state A and similarly for 73 and Tz. The zero
expectation starting at the absorbing state, Ty, does not appear in the equations. Gauss elimination
makes use of three different operations: The first is ”Swap positions of rows”. In our algorithm
the appropriate ordering is maintained by visiting vertices in index order. The second is ”Add
to one row a scalar multiple of another” (insert one equation in another). This corresponds to
the graph operations removing an edge to a parent with higher index. E.g.. in fig. 3 step 1., the
removal of edge (C — A) and updates of edges (C — B) and (C — D) corresponds to inserting the
first equation in the third. The third operation is ”Multiply a row by a non-zero scalar” (remove
multiple instances of a variable in an equation). This corresponds to the graph operations removing
a self-loop. E.g., in fig. 3 step 4., the removal of self-loop (C — C) and update of edge (C — D)
corresponds to isolating T¢ in the equation Tz = 11.2+ 0.3 - T. Once all vertices have been visited
and the graph is acyclic, the system has an upper triangular form:

TA:5+O6TB
Ty =2+0.5-Tg
TC:]_67

and can be solved by back-substitution. This is done by recursion in topological order on graph
at the end of algorithm 2.3.

2.6 Computing higher-order moments in quadratic time

Identifying the operations required to convert a cyclic graph to an acyclic one with the same
expected rewards until absorption is O(]V|?) in complexity but only O(|V'|?) updates of the scalars
x are required. The edge-weights of the resulting acyclic graph are independent of rewards. This
means that once the normalized acyclic graph is constructed and its edge weights are known, it can
be re-constructed for an alternative set of rewards using only O(|V|?) updates of scalars . Because
higher-order moments of phase-type distributions are just expectations with different rewards, as
described above, this property allows us to compute any number of moments in O(|V|?) time.

In the conversion to an acyclic graph, scalars x associated with vertices are updated in a series
of increments. In the implementation of algorithm algorithm 2.3, we save this list of updates
rather than applying them directly. The resulting list of update functions is at most O(|V|?)
long as we visit each vertex at most once and update the scalars of at most |V| parents. In
our implementation of algorithm 2.3, we similarly save the update functions producing the initial
rescaled rewards x for the normalized phase-type distribution and the update functions used to
compute the expectation on the acyclic graph using dynamic programming (both O(|V'|?) long).
From this list of instructions, the expectation can be computed in O(|V|?) time. The acyclic graph
and list of update functions is only created the first time the user calls a moment function in the
ptdalgorithms library. All subsequent moment computations run in O(|V|?) time.

13

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.7 Multivariate distributions

Instead of assigning a single real-valued reward for each state, we can assign a vector of real-valued
rewards for each state. The outcome of the phase-type distribution is now a vector of positive
real numbers. Such a distribution is described in Chapter 8 of Bladt and Nielsen (2017) as the
multivariate phase-type distribution and is defined as:

Y ~ MPH*(a, S, R),

where R is now a matrix of rewards, such that each row is the accumulated reward earned at the
state with that index. A single column of R represents a univariate phase-type distribution as
described above. This means that the marginal moments of a multivariate phase-type distribution,
Y;, can be computed using the graph algorithms already described and still requires only a single
computation of the acyclic graph.

The joint distribution of a multivariate phase-type distribution represents the conditional out-
come of marginal phase-type distributions. Joint moments are also well defined as matrix-based
formulations (Theorem 8.1.5 Bladt and Nielsen (2017)), and e.g., the first cross-moment is:

and thereby the covariance is
Cov(Y;,Y;) =aU(R,;)U(R;)e+aU(R;)U(R;)e —aU(R,;)eaU(R,)e.

All joint moments can be computed from the same constructed acyclic graph in quadratic time.
Computing the covariance matrix of £ rewards can thus be done in O(|V [3+£2|V|?) time. The utility
functions expectation, variance, covariance, and moments functions provided by ptdalgorithms
can be used for the multivariate phase-type distributions.

14

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 3: Ayclic graph construction. Example conversion of a normalized graph to acyclic
form using algorithm 2.3. Visited vertices are colored grey. Removed edges are colored red and
new or updated edges are colored green. The saved parameterized vertex updates are: step 2:
To < To + x4, step 3: o + xc - 0.6, step 4: xc < 1o + X0 - (17—10.6 —1).

15

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Algorithm 2.3 Expected accumulated rewards until absorption

1: function EXPECTEDACCUMULATEDREWARDS(Graph (V, E))

2: Initialize property x, = r, for all v e V

3: Uniquely index vertices i, € {1,2,...,|V|} matching order in list V'
4: for ve V do > Set rates of non-absorbing to 1
5: for z € children(v) do

6: w(v—2z) w(v—2z)/A\

7: Ty — Ty + 2y - (1A, — 1)

8: end for

9: end for

10: for ve V do

11: for u € parents(v) where i, > i, do

12: for z € children(v) do

13: if edge (u — z) exists then

14: Increment weight w(u — z) by w(u — v)w(v — z)
15: else

16: Add edge (u — z) with weight w(u — v)w(v — z)
17 end if

18: end for

19: Ty Ty + 24 - w(w — V)

20: Remove edge (u — v)

21: if edge (u — u) exists then > Rate must be 1, no self loops
22: $u<—xu+xu-<m—l)

23: for z € children(u) do

24: w(u — z) + %

25: end for

26: Remove edge (u — u)

27: end if

28: end for

29: end for
30: for v € V in inverse order do
31: for z € children(v) do
32: Ty — Ty +w(V = 2)2,
33 end for
34 end for
35 return x
36: end function

16

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.8 Discrete phase-type distributions

A discrete phase-type distribution is the number of jumps in a discrete Markov chain until the
absorbing state is entered. States have a total transition probability of 1, and the state-space is
traditionally represented by a sub-transition matrix, T', of rates between non-absorbing states.
The initial distribution is 7. As for the continuous phase-type distributions, the expectation is
E[r] = wUe, but here the Green matrix is defined as U = —(T' — I)~L.

Our graph representation for continuous phase-type distributions directly accommodates un-
rewarded discrete phase-type distributions. We do not represent self-transitions as self-loops,
(v — v), as these are not compatible with our graph algorithms. Instead, we represent self-
transitions by the missing transition rate, 1 — A,. After normalization of the graph, the sum of
outgoing weights sum to one and the rescaled reward, z,, is equal to the geometric expectation of
consecutive visits to the state (i.e., the transition to v and immediate self-transitions).

In the normalized discrete phase-type distribution, the sub-transition matrix, T', has a diag-
onal of zero and T' — I thus shares the properties of the sub-intensity matrix, S, of continuous
distributions: a diagonal of -1 and row sums for non-absorbing states of zero. We can thus apply
our moment algorithm in (algorithm 2.3) to discrete phase-type distributions as well.

Rewarded discrete phase-type distributions and multivariate discrete phase-type distributions
have been described thoroughly in Navarro (2019). We can translate the matrix-based reward
transformation algorithm from Theorem 5.2 in Navarro (2019) into one operating on the acyclic
graph generated in algorithm 2.3. We do this by augmenting the acyclic graph to ensure that a visit
to vertex v accumulates an integer reward r,. Consider a vertex v with reward r, € N. We augment
the graph with a new sequence of connected auxiliary vertices, Hy — Hy — --- — H,. 1 — v, each
connected by a single edge with weight 1. The last auxiliary vertex has an edge with weight 1
to the vertex v and the edge (v — Hj) has weight equal to the self-transition rate. By further
redirecting all in-going edges to v to Hyjinstead, we ensure that each visit to the vertex v, results
in r, jumps in the unrewarded discrete phase-type distribution. Reward transformation of zero
rewards can be done using the algorithm for the continuous phase-type distribution.

Higher-order moments are well defined for rewarded discrete phase-type distributions (see
proposition 5.7 in Navarro (2019). The first moment is:

E[r] =wUA(r)e
and the second moment is:
E[r?] = 2rUA(r)UA(r)e — U A(r?)e

As for the continuous phase-type distribution, we can construct a multivariate discrete phase-type
distribution by associating a vector of zero or positive integers as rewards to each vertex. The
moment generating function is well defined for multivariate discrete phase-type distributions by
matrix-equations (section 5.2.4 in Navarro (2019)). For example, the first cross moment is:

ElY}Y;]| = tUA(r;) UA(rj)e + tUA(r;) UA(r;)e — nUA(r;) A(rj)e

Although the the moments of discrete phase-type distributions are defined differently from those of
continuous phase-type distributions, terms involving U still have the form U A(r)e from the right-
hand side, which reduces to a single vector of rewards UA(r)e = A(r’')e = r’. These rewards
correspond to the row sums of the Green matrix computed for the previous moment, as described
for continuous phase-type distributions in section 2.4. This allows the O(|V|?) computation of
higher order moments as described for continuous phase-type distributions in section 2.6.

17

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.9 Distribution function of discrete phase-type distributions

The probability mass function (PMF) of a discrete phase-type distribution at time ¢ describes
the probability of the Markov Chain entering the absorbing state exactly at jump t. A defective
distribution, i.e., one where the initial probability vector does not sum to 1, will have a non-zero
probability at ¢ = 0. Likewise, the cumulative distribution function (CDF) describes, for time ¢,
the probability that the Markov Chain has entered the absorbing vertex at jump t or before. In
matrix form, the CDF is given by:

1—nT'e

The Markov Chain embedded in the acyclic graph allow us to express the PMF of the discrete
phase-type distribution as a recursion on ¢ (Eisele, 2006). In our graph, we represent the probability
of staying at vertex v after ¢ jumps as a vertex-property v.q and compute the recursion as:

v.g = Z ug-wlu—v)+ (1= A)vg

u€Eparents(v)

for ¢ > 0. In the base-case t = —1 v.q is zero for all vertices except the starting vertex where
S.¢ = 1. Using dynamic programming, we can find the PMF (and thereby the CDF) at time
t by first computing the PMF at time 0,1,...,t — 1. To compute the CDF at time ¢, we sum
over the PDF at times 0,1,...,¢t. The asymptotic complexity of the computation to time ¢ is
O(t|V'|?), which is both orders of magnitude faster and more memory efficient than matrix-based
computations, which require t — 1 matrix multiplications or inversion of the matrix in order to
diagonalize it.

We note that, although computationally intractable, the joint distribution function of multi-
variate discrete phase-type distributions can also be described by such a recursive algorithm by
replacing the scalar v.q with an array of accumulated rewards that are incremented at each time
step.

2.10 Distribution function for continuous phase-type distributions

Using the matrix formulation of continuous phase-type distributions, computing the CDF requires
exponentiation of the sub-intensity matrix. However, a continuous phase-type distribution can be
approximated, with arbitrary precision, by a discrete phase-type distribution (Bobbio et al., 2004).
The number of discrete steps occupying each state has a geometric expectation that approximates
the exponential expectation of the continuous distribution. This allows us to efficiently compute
the PDF, the CDF, and the probability of occupying each state at any time, using algorithm-
2.4. The precision is determined by the size of discrete steps, which in turn is controlled by
the granularity parameter. A granularity of 1000 implies that each time unit of the continuous
distribution is divided into 1000 discrete steps. As the graph representations used for discrete and
continuous phase-type distributions are identical, we can simply divide all outgoing weights by
this granularity.

To verify the numerical accuracy of this approach, we compared it to the matrix exponential of a
phase-type distribution with 1000 fully connected states. Transition rates were sampled randomly
in the interval [0, 1], and each graph vertex thus had an average total outgoing rate of 500. With a
granularity of 10,000, the average self-loop probability is thus 0.95. We computed the cumulative
distribution function for times (0,0.01,0.02,...,1.00) using both algorithm-2.4 and the matrix
exponential 1 — aeS'e and the ptdalgorithms package. The average absolute and maximum
difference were 0.00003 and 0.0002, respectively.

18

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.11 Time-inhomogeneous discrete phase-type distributions

The algorithms presented so far have assumed that the phase-type distributions are time-homogeneous,
i.e., that the rates between states are constant in time. The alternative time-inhomogeneous phase-
type distributions are also well-described using matrix-based equations (Albrecher and Bladt,
2019). Although time-inhomogeneous phase-type distributions are not the focus of this paper,
we note that our algorithm for computing the distribution function (algorithm-2.4) can be ap-
plied to produce the distribution and state probability vector of a time-inhomogeneous phase-type
distribution. This is achieved by changing edge weights at each time step (using the function
graph update weights parameterized in ptdalgorithms) in effect allowing the edge weight or
the existence of an edge to be a time-dependent variable. Having computed the probability distri-
bution in this way, we can compute all moments of unrewarded time-inhomogeneous phase-type
distributions and the expectation of rewarded time-inhomogeneous phase-type distributions.

Because algorithm 2.4 computes the probability of standing at each vertex at any given time
step, we can compute the accumulated waiting time in each state by some time ¢, a(t). This allows
us to compute the expectation of a reward-transformed truncated distribution as the dot product
r - a(t). In models where the state-space changes at only at one or a few points in time, this
provides an efficient means to compute the expectation as the sum of expectations of truncated
time-homogeneous distributions.

3 Empirical running time

Here we describe the empirical running time of state-space construction, moment computation,
and computation of the cumulative distribution in the rabbit island model shown in fig. 1. All
experiments are done on a MacBook Pro with an i7 processor using a single core.

Although all features of the ptdalgorithms library are exposed as R functions, the similar C
API offers an efficient alternative for the generation of very large state spaces. In fig. 4A, we show
the time it takes to construct the state space for different numbers of rabbits using both the R and
C APIs. For 1000 rabbits, where the system has more than half a million states, we can construct
the state-space compute the expectation in two minutes (not shown). Figure 4B shows the time
used to construct the acyclic moment graph, compared to the matrix inversion required by the
matrix formulation. Figure 4C shows the time it takes to compute 100 moments or cross-moments
(E.g., a 10x10 covariance matrix) once the moment graph is constructed. Figure 4D shows the
time it takes to compute the CDF until 0.99.

4 An application in population genetics

To demonstrate the capabilities of ptdalgorithms, we feature an example from the field of pop-
ulation genetics. In a recent paper (Kern and Hey, 2017), the authors describe and implement
a method for the exact computation of what, in population genetics, is known as the joint site
frequency spectrum (JSFS) for an isolation-with-migration (IM) model. A site frequency spectrum
(SES) is simply the number of single-base genetic variants shared by 1...n — 1 among n DNA
sequences sampled from a population. The JSFS tabulates the variants shared by i sequences in
one population and j in another. This JSFS matrix can be obtained empirically and reflects joint
effects of the population size, the migration rate between the two populations, and the time since
the two populations shared a common ancestral population (fig. 5A).

19

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

API Representation
74 — C —— graph
— R 4 —— matrices

seconds
»
1
seconds

———
04
T T T T T T T T T T T T T
0 100 200 300 400 500 600 0 50 100 150 200 250
rabbits rabbits
L L
T T T T T T T T T T T T T T T
0 25000 50000 75000 100000125000 150000 175000 0 5000 10000 15000 20000 25000 30000
vertices vertices

1.0 4 Representation b Representation
—— graph 144 — graph

seconds
seconds

T T T T T T T T T T T
50 100 150 200 25 50 75 100 125 150 175 200

rabbits rabbits
L L
T T T T T T T T T T T T T T
0 5000 10000 15000 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
vertices vertices

Figure 4: Empirical running time experiments: (A) Running time in seconds to construct
the rabbit example state-space from fig. 1. The x-axis is the number of starting rabbits. The blue
curve is with an implementation in C, the red curve is the implementation in R. (B) Running time
in seconds to build the list of variable changes to compute the moments in the rabbit example
state-space from fig. 1. The x-axis is the number of vertices. The blue curve is the time to build
the list of variable increments to compute moments. Red curve is time to "naively” invert the
state-space matrix using solve in R. (C) Running time in seconds to compute 100 moments after
computing the moment graph once fig. 1. The x-axis is the number of vertices. (D) Running time
in seconds to find the distribution until 0.99 CDF. With granularity 10000 fig. 1. The x-axis is the
number of vertices.

20

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A genetic variant that appears in three samples from population one and four samples from
population two, arose from a mutation on a genealogical lineage with three and four descendants
in populations one and two. Knowing the mutation rate, the JSFS is given by the expected
length of branches with different numbers of descendants in each population. The Coalescent
models the length of such ancestral branches (Kingman, 1982), and formulated as a continuous
phase-type distribution, states may represent ancestral lineages with particular numbers (i,7) of
descendants in each population. The initial state represents ¢ and j individual lineages, each with
a single descendant. The absorbing state is reached when all lineages have found a single common
ancestor.

The IM model is not time-homogeneous as it changes from two separate populations to a single
shared one at time 7. With ptdalgorithms, we can easily model this using one time-homogeneous
continuous phase-type distribution truncated at time 7" and another representing the system after
time T, as described in section 2.11. The first represents the stage with two populations, and the
second is the stage with one shared population.

The expected length of genealogical branches with ¢ and j descendants from the two populations
is readily computed after appropriately reward-transforming the two phase-type distributions.
With seven samples from each population, the two state spaces have 123,135 and 2,999 states.
Using their software built and optimized for this specific purpose, Kern and Hay computed the
JSFS in 15 minutes using 12 cores. For comparison, the state space construction and computation
of JSES takes only 35 seconds on a single core using ptdalgorithms (fig. 5B). This is particularly
noteworthy considering that ptdalgorithms is a general purpose library not tailored to this specific
problem. The code for construction of the model and computing the JSFS is available with
ptdalgorithms on GitHub.

5 Conclusion

In this paper, we have presented a new open-source library called ptdalgorithms written in C that
implements graph-based algorithms for constructing and transforming unrewarded and rewarded
continuous and discrete phase-type distributions and for computing their moments and distribution
functions. The computation of moments extends to multivariate phase-type distributions and we
provide some additional support for time-inhomogeneous phase-type distributions. The library
has a native interface in two programming languages C and R. Some of the methods presented in
this paper build on previously published graph-based matrix manipulation, but to our knowledge,
this is the first time these graph-based approaches have been applied to phase-type distributions
and published as an accessible software package.

The straightforward iterative construction of state spaces lends itself to powerful modeling
and our algorithms allow the computation of moments and distributions for huge state spaces.
The general multivariate phase-type distributions allow marginal expectations and the covariance
between events to be studied easily. As ptdalgorithms include functions for converting between
graph and matrix representations, our library may serve as a plug-in in a multifaceted modeling
and inference process. We hope that this package will enable users to easily and accessibly model
many different complex phenomena in natural sciences, including population genetics.

21

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Ancestral population
3

A ~ -

N3 T2 7
Past 5
&1 © - 6
0

o -

0 2 3 5
Population 2

< -

4
T

© -

N1 N2 3
B _-
-2
M1 h _-

-1

o -

Present M2 -
1 1 1 [1 1 1 1 -0
Population 1 Population 2 0 1 2 3 4 5 6 7

Figure 5: The exact joint site frequency spectrum of an isolation-with-migration model:
(A) The isolation-with-migration model. One ancestral population is split in two at time T, after
which the descendant populations are only connected by migration at rates M1 and M2 in each
direction. Scaled population sizes are N1, N2, and N3. In the example genealogy, the red branch
has two descendants in population one and one descendant in population two. The blue branch
has two descendants in population two and none in population one. The insert matrix shows the
entries in the JSFS that the two example of branches contribute to. (B) Exact joint site frequency
spectrum. Population-scaled parameters are N1=2, N2=1, N3=4, M1=0.005, M2=2, T=3). Each
(4,7) cell shows the expected length of branches with i descendants from population one and j
descendants from population two.

22

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References

0. O. Aalen. Phase type distributions in survival analysis. Scandinavian journal of statistics, pages
447-463, 1995.

C. Acal, J. E. Ruiz-Castro, A. M. Aguilera, F. Jiménez-Molinos, and J. B. Roldan. Phase-type dis-
tributions for studying variability in resistive memories. Journal of Computational and Applied
Mathematics, 345:23-32, 2019.

H. Albrecher and M. Bladt. Inhomogeneous phase-type distributions and heavy tails. Journal of
Applied Probability, 56(4):1044-1064, 2019.

M. Bladt and B. F. Nielsen. Matrix-exponential distributions in applied Probability, volume 81.
Springer, 2017.

A. Bobbio, A. Horvath, and M. Telek. The scale factor: a new degree of freedom in phase-type
approximation. Performance Evaluation, 56(1-4):121-144, 2004.

A. Cumani. On the canonical representation of homogeneous markov processes modelling failure-
time distributions. Microelectronics Reliability, 22(3):583-602, 1982.

K.-T. FEisele. Recursions for compound phase distributions. Insurance: Mathematics and
Economics, 38(1):149-156, 2006.

M. Faddy and S. McClean. Analysing data on lengths of stay of hospital patients using phase-type
distributions. Applied Stochastic Models in Business and Industry, 15(4):311-317, 1999.

M. Frydenberg. The chain graph Markov property. Scandinavian Journal of Statistics, pages
333-353, 1990.

A. Hobolth, A. Siri-Jegousse, and M. Bladt. Phase-type distributions in population genetics.
Theoretical population biology, 127:16-32, 2019.

A. Hobolth, M. Bladt, and L. N. Andersen. Multivariate phase-type theory for the site frequency
spectrum. Journal of Mathematical Biology, 2021.

A. D. Kern and J. Hey. Exact calculation of the joint allele frequency spectrum for isolation with
migration models. Genetics, 207(1):241-253, 2017.

J. F. Kingman. On the genealogy of large populations. Journal of applied probability, 19(A):
27-43, 1982.

A. C. Navarro. Order statistics and multivariate discrete phase-type distributions. 2019.

H. L. Younes and R. G. Simmons. Solving generalized semi-Markov decision processes using
continuous phase-type distributions. In AAAI, volume 4, page 742, 2004.

23

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484077; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Algorithm 2.4 The distribution function of a discrete phase-type distribution

1: Initialize the number of jumps to ¢t = —1

2: Initialize the property v.q = 0 for all vertices v € V', and let S.¢ = 1. Let v.q be the current
probability of standing at the vertex v at time ¢

3: Assume out-going weights summing to a value less than or equal to 1

4: Let cdf[] be a an array of the cumulative distribution function such that the entry 0 corresponds
to the start at no jumps, t = 0.

5. Let pmf[] be an array of the probability mass function.

6: Initialize cdf[—1] = 0 and pmf[—1] =0

7. function STEPDPH(V, E)

8: for veV do

9: V. < V.q

10: end for

11: for ve V do

12: for z € children(v) do

13: z.q < z.q+vr-wlv—z)

14: V.q < v.g—v.r-w(v— z)

15: end for

16: end for

17: t+—t+1
18: cdfft] < cdfft — 1]
19: for ve V do

20: if children(v) = () then
21: cdfft] < cdfft] + v.q
22: v.g+ 0

23: end if

24: end for

25: pdf[t] < cdfft] — cdf[t — 1]

26: end function

27:

28: function DISTRIBUTIONFUNCTION(Graph (V, E), t)
29: while 1 < ¢ do

30: STEPDPH(V, E)
31: 1+ 1+1
32: end while

33: end function

24

https://doi.org/10.1101/2022.03.12.484077
http://creativecommons.org/licenses/by-nc-nd/4.0/

