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ABSTRACT

RNA profiling technologies at single-cell resolutions, including single-cell and single-nuclei RNA
sequencing (scRNA-Seq and snRNA-Seq, schRNA-Seq for short), can help characterize the
composition of tissues and reveal cells that influence key functions in both healthy and disease
tissues. However, the use of these technologies is operationally challenging because of high costs
and stringent sample-collection requirements. Computational deconvolution methods that infer
the composition of bulk-profiled samples using scnRNA-Seq-characterized cell types can broaden
scnRNA-Seq applications, but their effectiveness remains controversial. We produced the first
systematic evaluation of deconvolution methods on datasets with either known or scnRNA-Seg-
estimated compositions. Our analyses revealed biases that are common to scnRNA-Seq 10X
Genomics assays and illustrated the importance of accurate and properly controlled data
preprocessing and method selection and optimization. Moreover, our results suggested that
concurrent RNA-Seq and scnRNA-Seq profiles can help improve the accuracy of both scnRNA-
Seq preprocessing and the deconvolution methods that employ them. Indeed, our proposed
method, Single-cell RNA Quantity Informed Deconvolution (SQUID), combined RNA-Seq
transformation and dampened weighted least-squares deconvolution approaches to consistently
outperform other methods in predicting the composition of cell mixtures and tissue samples.
Furthermore, our analysis suggested that only SQUID could identify outcomes-predictive cancer
cell subclones in pediatric acute myeloid leukemia and neuroblastoma datasets, suggesting that
deconvolution accuracy improvements are vital to enabling its applications in the life sciences.

INTRODUCTION

Single-cell and single-nuclei RNA-sequencing (scnRNA-Seq) technologies have revolutionized
our ability to quantify cell types and cell states in healthy and disease tissues. schnRNA-Seq
technologies generate cell-type specific transcriptomes, with individual cells labeled, enumerated,
and molecularly characterized. This, in turn, allows for comparing the cell composition of tissues
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and for associating changes in tissue cell-type abundances and both their molecular and clinical
parameters. Examples include schnRNA-Seq assays that helped identify programs for tissue
development! and regeneration? and associated patient outcomes with tumor subclones?.
scnRNA-Seq assays helped reveal immune-cell-type composition differences that may dictate
responses to immune checkpoint inhibition therapies?, identified tumor subclones that acquired
drug resistance during treatments®, and identified cancer cells that adapted to evade targeted
therapies®. scnRNA-Seq assays are increasingly enabling research to identify therapeutic targets
and diagnostic biomarkers in efforts to improve therapies for cancer and other diseases.

While scnRNA-Seq assays can provide cell-type-specific information at unprecedented
resolutions, their implementation is associated with challenges that prevent their widespread
adoption in clinical settings. These challenges include the high cost of library preparation and
sequencing, and the stringent requirements for sample collection, processing, and storage.
Namely, the current cost of sScnRNA-Seq assays is 10-30-fold greater than the cost of bulk RNA
sequencing (RNA-Seq), which effectively prevents their adoption at scales previously seen for
RNA-Seq. Importantly, specialized facilities for sample collection and tissue processing are
required for accurate profiling and these are not readily available at most hospitals or academic
institutions. For example, accurate scCRNA-Seq profiles require fresh tissue dissociation and cell
suspension generation at carefully controlled temperatures. Moreover, tissue preservation and
cell sorting are known to alter scnRNA-Seq estimates, with some commonly used methods shown
to introduce bias by selectively depleting genes and cell types”®.

RNA-Seq is less challenging to implement in clinical settings, but it only provides mean gene
expression abundance estimates across cell types. Recently, computational deconvolution
methods were proposed to infer cell-type abundances from RNA-Seq profiles using either
reference matrices composed of cell-type-specific gene expression signatures!®!? or scnRNA-
Seq data from the same tissue type®*>, In various benchmarking efforts, we and others have
shown that multiple factors, including data transformation, data normalization, and the
composition of the reference matrix can impact the performance of deconvolution methods?'®.
However, given the potential impact of sScnRNA-Seq-based deconvolution on advances in the life
sciences, there remains a need to systematically compare and quantify the absolute accuracies
of deconvolution methods.

Here, we evaluated deconvolution methods in 8 datasets of concurrent bulk RNA-Seq and
ScNRNA-Seq profiles (see Table S4). These datasets included cell mixtures, where cell type
abundances and expression profiles are known with high accuracy and that could be used to
guantify both deconvolution and scRNA-Seq expression estimates, as well as tissues that allow
comparing the effects of common preservation protocols. When evaluating deconvolutions of bulk
RNA-Seq profiles, accuracy was determined by comparing deconvolution-predicted cell
abundances to gold-standard estimates, where gold-standard estimates were derived from either
validated counts of the composing cells or the analyses of scnRNA-Seq profiles. Surprisingly, our
results suggested that some methods consistently produced the most accurate cell-abundance
estimates, irrespective of datasets or data processing.

We hypothesized that concurrent RNA-Seq and scnRNA-Seq profiling could be used to not only
evaluate deconvolution methods but also improve deconvolution accuracy. To test this, we
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developed the R package Single-cell RNA Quantity Informed Deconvolution (SQUID), which
combines bulk RNA-Seq transformation and dampened weighted least squares deconvolution
approaches. Analyses of SQUID accuracy suggested that methods that harness the power of
concurrent RNA-Seq and scnRNA-Seq profiling can consistently outperform other methods in
predicting the composition of cell mixtures and tissue samples. Finally, to evaluate the benefit of
improved deconvolution accuracy for applications in cancer research, we concurrently profiled
pediatric acute myeloid leukemia (AML) and neuroblastoma samples by RNA-Seq and scRNA-
Seq and tested whether deconvolution methods can predict risk, based on the abundance of
potential high-risk cancer subclones in diagnostic samples. Our results indicated that only SQUID
subclone-abundance estimates were predictive of outcomes in RNA-Seq-profiled AML and
neuroblastoma diagnostic samples. Thus, we concluded that SQUID’s deconvolution-accuracy
improvement is key to enabling its potential applications in diagnostic protocols for these cancers.

METHODS

Deconvolution benchmarking framework

For those scnRNA-Seq datasets for which no metadata or cell label information was available,
cells were clustered together in an unsupervised fashion using Monocle3. Specifically, we
sequentially applied the “preprocess_cds” (num_dim = 100, norm_method = "log", method =
"PCA", scaling = TRUE), “reduce_dimension” (max_components = 2, umap.metric = "cosine",
umap.fast_sgd = FALSE, preprocess_method = 'PCA") and “cluster_cells” (k = 20, resolution =
NULL, partition_qgval = 0.05, num_iter = 1) functions; see our GitHub repository for detailed code,
functions, and parameters. During quality control and preprocessing, we removed cells with
extreme mitochondrial or ribosomal content (top 0.5% and bottom 0.5%) and we kept detectable
genes that were expressed in at least 10 cells or 1% of the cells in any of the clusters. Next,
cluster-specific gene expression profiles were obtained by averaging raw gene expression values
across all cells from a given cluster, and cluster-specific markers were obtained using the
FindAllIMarkers function from Seurat v4.0.4 with the threshold of log2(1.5) and using a Wilcoxon
test on TMM normalized scnRNA-Seq data. Gold standard abundance estimates were obtained
either as the sum of individual cells or nuclei present in each cluster or by immunohistochemistry/
Fluorescence-activated Cell Sorting (FACSymphony) cell counts; see Figure 1 for a schematic
representation of the benchmarking framework.

We refer to cell clusters as cell types throughout the manuscript, even when no annotations are
available. Cell-type specific gene signatures were used to establish reference matrices for the
deconvolution of their matching bulk RNA-Seq data using CIBERSORT!!¢, FARDEEP?’, RLR*,
and NNLS?®°. Alternatively, deconvolution of bulk RNA-Seq data was performed with Ordinary
Least Squares regression (OLS), dampened weighted least squares (DWLS)**, and MuSiC*®,
which directly use the scnRNA-Seq data as the reference. Of note, MuSiC was tested in two
different ways: (1) using the markers found by FindAllMarkers described above and (2) without
including any prior marker information (markers = NULL). We used OLS, and OLS with a non-
negativity constraint (NNLS) as naive deconvolution tools to benchmark all other methods.
Performance was quantified by calculating the Pearson correlation coefficient and root mean
squared error (RMSE) between the cell-type proportions observed by deconvolution and the
expected cell-type proportions that were either known or derived from scnRNA-Seq.
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Deconvolution with ordinary least squares regression (OLS)

OLS was used to solve a simple set of linear equations that seeks to find the optimal composition
P of a set of mixtures with bulk RNA profiles Z to minimize the difference between the observed
bulk RNA-Seq profiles and the abundance-weighted sums of the expression profiles of composing
cell types X. Namely, given bulk expression profiles {z; € Z} of each mixture, and expression
estimates for each cell type j {xj € X}, we sought to identify p;; € P across all mixtures i and cell
types j to minimize the difference between the bulk RNA-Seq profile and the mean expression of
profiles of the composing cells (Equation 1).

argminY;(z; — ¥; pijxj)z for mixture i and cell type j Equation 1
P

Transforming and deconvolving bulk RNA-Seq profiles with SQUID

We present SQUID, a conversion-dampened weighted least squares strategy to transform and
deconvolve bulk RNA-Seq data into scnRNA-Seq vector spaces. SQUID was intended to test the
potential of using concurrent RNA-Seq and scnRNA-Seq profiling to improve deconvolution
accuracy. Similar to Bisque?°, SQUID learns a transformation function of bulk RNA-Seq profiles
Z to the concurrent pseudobulk profiles Z, where pseudobulk scnRNA-Seq profiles are estimated
as mean abundance across cells and samples. Then, the bulk RNA-Seq expression profile of
each gene g with non-zero expression in both the bulk and scnRNA-Seq profiles is mapped to its
pseudobulk profile according to Equation 2, where Z;; and z,; are the pseudobulk and bulk
profiles of gene g in sample i, respectively. The coefficient a, and constant b, form the linear
transformation for each gene g.

argmin )}; (ﬁg'i — (agzg,i + bg))2 Equation 2
a,b

This linear transformation was applied to all bulk RNA-Seq profiles to transform them to scnRNA-
Seq space. This transformation minimizes the deviation between a sample’s pseudobulk and bulk
RNA-Seq profiles by mapping the bulk RNA-Seq expression profile of each gene to the magnitude
and deviation of pseudobulk scnRNA-Seq values. Equation 2 also applies when converting bulk
RNA-Seq profiles with no concurrent scnRNA-Seq profiles. However, when testing deconvolution
by SQUID on our datasets, which included concurrent bulk RNA-Seq and scnRNA-Seq profiles
for each sample, we used a left-one-out strategy. Namely, the linear transformation was optimized
using all but one sample and was then used to transform the bulk RNA-Seq profile of the
remaining sample. This transformed profile was then used to predict the composition of the
sample with a dampened weighted least squares strategy like DWLS. Deconvolution
performance was determined using cell counts for our cell mixtures and estimates from single-
cell profiles for patient samples with concurrent bulk and scnRNA-Seq profiles (gold standard).
We note that cell counts are the most accurate and unbiased estimates for our cell mixtures, and
single-cell estimates are our only estimates for the true composition of patient samples.
Comparisons of SQUID and other deconvolution method accuracy without cross validation are
given in Supplementary Figures S2-6.

We note that the proposed linear transformation in Equation 2 is not unique. Indeed, Bisque
proposed an alternative transformation that could be used more generally (Equation 3). We tested
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this formulation and found that it performed equivalently to the formulation given in Equation 2.
Namely, Ietg denote the average expression estimate of gene g in pseudobulk profiles Z and z
the average expression of this gene in all bulk RNA-Seq profiles—including the matching and
other bulk RNA-Seq and profiles Z, and let 65 and o, denote their respective standard deviations.
Then the transformed profile for gene g in sample i (Z,;) is given in Equation 3. Note that this
formulation does not require RNA-Seq and scnRNA-Seq profiling to be concurrent.

- _ =~ E — H
Zgi =24+ % (24,0 — Zg) Equation 3

Following transformation using Equations 2 or 3, SQUID adopts a simplification of DWLS’s
strategy to deconvolve transformed bulk profiles. SQUID doesn’t require signature gene
selections, and instead uses all genes with nonzero expression in both the transformed bulk and
scnRNA-Seq profiles. The objective function is identical to the one employed by OLS (Equation
1), however, here, the SQUID process seeks to identify p;; € P that minimizes the discrepancy

between transformed bulk RNA-Seq profiles Z and the abundance-weighted sums of the
expression profiles of composing cell types X. Consequently, following the iterative process
proposed by Tsoucas et al., SQUID minimizes this dampened weighted discrepancy until
convergence is reached at iteration [, so that ||[P® — P¢-D|| < 0.01.14

A five-step approach to determine the number of clusters in scRNA-Seq data

For those datasets for which no metadata was available, we performed the following five-step
iterative process.

(1) Use Monocle3 clustering (see Figure S1A), which does an internal log transformation and
library size normalization, to assign initial labels to all cells in each scRNA-Seq dataset.

(2) Compute a mean expression profile per cluster using log-transformed and library-size
normalized data from Monocle3.

(3) Compute all pairwise Pearson correlations across the mean expression profiles.

(4) Combine all non-overlapping cluster pairs with the highest correlation where Pearson
correlation r>= 0.95 (see Figure S1B).

(5) Modify the clustering information inside the metadata file (that we labeled as “phenoDataC”).

Cell mixture construction

Tissue culture. MCF7 cells were purchased from the Tissue Culture Core at Baylor College of
Medicine. BT474, T47D, and THP1 cells were purchased from ATCC; Jurkat (J32) cells were a
gift from Dr. Andras Heczey; hMSC cells were purchased from Lonza (PT-2501). MCF7 cells were
cultured in DMEM with 10% FBS; T47D cells were cultured in RPMI with 10% FBS; BT474 cells
were cultured in DMEM with 10% FBS and 15ug/ml insulin; Thpl and Jurkat cells were cultured
in RPMI with 10% FBS and 1% L-glutamine; hMSCs were cultured using the MSCGM BulletKit
from Lonza. All cell lines were cultured with 1% penicillin-streptomycin (ThermoFisher Scientific)
and maintained at 37°C in a humidified incubator with 5% CO.. All cell lines were confirmed to be
free of mycoplasma contamination by DNA staining with Hoechst (ThermoFisher Scientific) or
Syto 82 (ThermoFisher Scientific). DMEM, RPMI, and L-glutamine were purchased from
ThermoFisher Scientific, and FBS and bovine insulin were purchased from Sigma.
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Mixture assay. Adherent cells were harvested in a proliferative state. Cells were washed in PBS,
trypsinized, collected, and resuspended in HBSS (ThermoFisher Scientific) with 10% FBS.
Suspension cells were collected during the log growth phase and resuspended in HBSS with 10%
FBS. All cells were maintained on ice after harvest and counted on a Countess Il FL (Life
Technologies). Viability was high for all cell lines, and the average of three counts was used to
calculate cell concentrations. Per mixture, 16K cells were submitted for SCRNA-Seq, 500K cells
were prepared for bulk RNA sequencing, and 50K cells were prepared for flow cytometry.

Bulk RNA isolation and sequencing. Cell pellets of approximately 500K cells were prepared in
triplicates and flash frozen at the time of the experiment. RNA was extracted using the Qiagen
RNeasy Plus mini kit with a genomic DNA elimination column (74104). RNA quality was confirmed
based on RIN, and 150bp paired-end mRNA libraries were prepared by Novogene (Sacramento,
California, USA), who also sequenced libraries at a depth of 20M reads per sample on the
NovaSeq 6000 platform (lllumina).

Single-cell RNA library preparation and sequencing. Single-cell samples were submitted to
the Baylor College of Medicine Single Cell Genomics Core immediately after preparation. Per
sample, 16K cells were loaded, with an expected return of 10K cells. Single-cell gene expression
libraries were prepared according to the Chromium NextGEM Single Cell Gene Expression 3v3.1
kit (10x Genomics). Briefly, cells, reverse transcription reagents, gel beads containing barcoded
oligonucleotides, and oil were loaded on a Chromium controller (10x Genomics) to generate
single-cell GEMs (Gel Bead-In-Emulsion). Full-length cDNA was synthesized and barcoded within
each GEM. Subsequently, GEMs were broken, and cDNA was pooled. Following cleanup using
Dynabeads MyOne Silane Beads, cDNA was amplified by PCR. The amplified product was
fragmented prior to end-repair, A-tailing, and adaptor ligation. Final libraries were generated by
amplification. Sequencing of single-cell libraries was performed by the Genomics and RNA
Profiling Core at Baylor College of Medicine. To reach an estimated 20K reads per cell, samples
were sequenced at a depth of 200M reads on the NovaSeq 6000 platform (lllumina).

Flow cytometry. Immediately after cell collection, a portion of each cell suspension was stained
with Hoechst (10uM in HBSS) or Syto 82 (5uM in HBSS) for 10 minutes at 37°C. After staining,
cells were washed and resuspended in HBSS containing 10% FBS. Stained cells were counted
twice, and staining efficiency was assessed using Countess Il FL. Staining efficiency was nearly
100% in all cell lines, and viability remained high. Count averages were used to calculate the
number of cells added to each mixture, and 50K cells were targeted for each flow sample. All flow
samples were prepared and analyzed in triplicate. For each of the six mixtures (1-6), three flow
samples (1A-1C, 2A-2C, etc.) containing one Hoechst-stained cell line (either T47D, BT474, or
MCF7), one Syto 82-stained cell line (either Jurkat, THP1, or hMSC), and four unstained cell lines
at identical proportions were generated. Single-stained cells from these samples represented the
proportion of that cell line in the corresponding mixture. This strategy (Figure S7) was developed
to avoid spectral overlap and to increase our ability to accurately quantify positive cells. For each
cell line, unstained and single-stained samples were used as controls to set voltages and define
positive and negative gates. Flow cytometry was performed on a FACSymphony (BD
Biosciences). Forward and side scatter areas were compared to select cells and exclude debris.
Then, forward scatter height and area were compared to select single cells and exclude doublets.
Single cells were sub-gated using positive and negative cut-offs for Hoechst (405nm laser, BV421
channel) and Syto 82 (561nm laser, PE channel). Gates were set independently for each cell line
due to large differences in cell sizes and to maximize the number of single-stained cells. Once
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set, these gates were applied universally to all mixtures. Comparison of BV421 and PE areas
demonstrated few double-positive cells and three distinct populations: unstained cells, BV421-
positive cells, and PE-positive cells. Data were exported and analyzed using FlowJo v10.8.0 (BD
Biosciences). Average flow proportions were compared to expected cell counts and showed a
high correlation.

Pediatric AML and neuroblastoma profiling

Paired diagnosis-relapse samples from 6 Pediatric AML patients that were enrolled in AAML1031
were profiled by CITE-Seq, including scRNA-Seq (Immunai), labeling RNAs with a 10x
Geonomics Chromium controller and sequencing with lllumina Novaseq 600. In total, we profiled
a total of 15,857 genes in 27,687 cells, with an average of 4,644 UMIs and 1,432 gene features
per cell (RNA only). Cells with mitochondrial gene content above 10% and fewer than 500 UMIs
were excluded. AML samples were treated with RNAlater and profiled using Illumina Novaseq
600 with 25M reads per sample. Similarly, patients in the NB1 dataset were profiled by bulk RNA-
Seq with lllumina Novaseq 600 with 25M reads per sample.

RESULTS

To quantify absolute deconvolution performance, we established a framework based on
concurrent bulk RNA-Seq and scRNA-Seq or snRNA-Seq data across different human and
murine tissues. In parallel, we evaluated the impact of RNA-Seq and schRNA-Seq data
normalization strategies on deconvolution performance (Figure 1). While concurrent RNA-Seq
and scnRNA-Seq assays can be used to evaluate deconvolution accuracy, they lack controls for
both true composition and cell-type expression estimates. Namely, divergent estimates from the
two assays cannot be resolved, and technical analysis errors may not be identified due to missing
information. Consequently, accurate and fully resolved deconvolution-strategy evaluations
require fully characterized datasets, where the expression profiles and composition of each cell
type are known with high degrees of accuracy. To accomplish this, we developed a solid tumor
model that includes multiple solid-tumor cell types, immune cells, and lower-abundance stem
cells. We then generated and concurrently profiled cell mixtures that conform to this model by
flow cytometry, RNA-Seq, and scRNA-Seq. Here, we present the results of our efforts to evaluate
deconvolution methods on cell mixtures and tissue samples and evaluate whether improved
deconvolution accuracy can benefit its potential applications in diagnosing cancer patients.

Cell mixtures characterization

We established six in vitro cell mixtures that are composed of varying proportions of cells from 3
breast cancer lines (T47D, BT474, MCF7), monocytes (Thpl), lymphocytes (Jurkat), and stem
cells (hMSC). Mixture composition was recorded based on input cell counts. Cells from each cell
line, and cells from each mixture were profiled by bulk RNA-Seq in triplicates. Cell mixtures were
profiled by flow cytometry in triplicates to independently evaluate their composition (Figure 2A,
Supplemental Table 1). The proportions of breast cancer cell lines varied across mixtures, with
some mixtures composed of predominantly one cell type (e.g., 66% of Mixture 1 were T47D cells)
and others having a balanced composition (e.g., Mixture 4). Monocytes and lymphocytes
accounted for 15% of the mixtures, and hMSC abundances varied from 0.5% to 2% (Figure 2B,
Supplemental Table S1). See Methods for detailed experimental descriptions.
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UMAP analysis of mixture sScCRNA-Seq profiles verified the existence of 6 clusters with biomarkers
that correspond to their 6 composing cell types (Figure 2C, Supplemental Table S2). We
confirmed breast-cancer cell type identities by integrating 7 SCRNA-Seq profiles of breast-cancer
cell samples? including T47D, BT474, MCF7, and 4 cell lines that were not used in our mixtures
(BT483, AU565, HCC70, DU4475); see Figure 2D. Cellular composition estimates based on
absolute cell counts that were determined during mixture assembly showed high correlations with
composition estimates by flow cytometry and scRNA-Seq: r=0.97 and r=0.96 respectively, Figures
2E and 2F. However, the correlation between estimates by flow cytometry and scRNA-Seq
clusters was significantly lower (r=0.92, p<0.05 by Fisher’s transformation). This suggested that
composition estimates by cell counts are the most accurate, and flow cytometry and scRNA-Seq
introduce independent errors to composition estimates. Overall, however, these results confirmed
the mixture composition as estimated by cell counting and demonstrated that it is reflected in
scRNA-Seq data with good accuracy. Note that the accuracy of scRNA-Seqg-derived expression
estimates of individual cell types was not as good as the corresponding mixture composition
estimates. Specifically, Pearson correlation of the profiles of the predicted T47D, BT474, and
MCF7 cells and their respective bulk RNA-Seq profiles were r=0.53, r=0.53, and r=0.55,
respectively; Jurkat and Thpl had Pearson correlations of r=0.66 and r=0.63, respectively;
hMSCs, which were the least abundant cells in each mixture, were correlated at r=0.16 with their
bulk profiles. Moreover, restricting comparisons to the top expressed genes did not improve these
correlations (Table S3).

Cell mixtures reveal differences in deconvolution accuracy

To evaluate the effects of expression-estimate inaccuracies on the quality of deconvolution, we
tested the accuracy of OLS in predicting mixture composition from its bulk profiles and using either
scRNA-Seq or bulk-derived expression profile estimates for each cell type. Our results suggested
that OLS can estimate mixture composition with high accuracy when input expression profile
estimates are accurate. Namely, using bulk RNA-Seq profiles of each cell type, OLS composition
predictions had Pearson correlations of r=0.95 with mixture composition estimates by cell counts
(Figure 2G). However, when using scRNA-Seg-based expression estimates for each cell type,
this correlation declined to r=0.78 (Figure 2H). Note that the correlation r=0.78 is significant at
p<1E-5, suggesting that, overall, OLS can predict composition in our mixtures using scRNA-Seq-
based expression estimates. However, its deconvolution accuracy using scRNA-Seg-based
expression estimates was significantly lower than when using bulk RNA-Seg-based expression
estimates. As expected, hMSC composition estimates were the least accurate (Figure 2H).

Having confirmed the quality and validity of the in vitro cell mixtures and associated data, we used
our benchmarking framework to evaluate deconvolution methods on these data (Figure 3A). We
observed substantial differences in performance (i.e., predicted abundances versus gold
standard) between methods, with DWLS outperforming the other 5 methods, irrespective of the
bulk RNA-Seq and scRNA-Seqg normalization strategy. Overall, normalization of the bulk RNA-
Seq data with TPM resulted in better performance compared to TMM, LogNormalize, or when no
normalization was applied. Normalization of the scRNA-Seqg-derived reference matrix had a lower
impact on deconvolution accuracy. All methods performed poorly in predicting the abundance of
hMSC cells (Figure 3B). All methods also underestimated the fraction of Jurkat cells in several
mixtures, but this was most pronounced for CIBERSORT and NNLS. In addition, MuSiC
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underestimated the fraction of THP1 cells. Together, these observations demonstrated that, in an
ideal setting, with concordant scRNA-Seq and bulk RNA-Seq, deconvolution with DWLS leads to
the most accurate cell-type abundance estimates.

Variable deconvolution accuracy across human tissues

We studied 7 human and murine tissue datasets with concurrent RNA-Seq and scnRNA-Seq
profiles. DWLS outperformed the other methods in 6/7 datasets with higher Pearson correlation
coefficients and lower RMSE (Figures 4A and 4B). The absolute performance of all methods was
very high in the remaining dataset (Brain, see Figures 4A and 4B). Despite DWLS outperforming
the other methods, its absolute performance differed substantially across datasets. DWLS
performance was high in the fresh kidney, AML, NB1, and brain datasets, but lower in the NB2,
breast cancer, and synapse datasets, with average Pearson correlation coefficients above 0.67
and below 0.4, respectively. The choice of data normalization method impacted deconvolution
performance in a subset of datasets, but the impact on performance was typically modest, and
none of the normalization methods consistently performed better or worse across datasets.

Single-cell storage procedures impact deconvolution accuracy

Procedures to store single-cell suspensions are known to alter cell type abundance estimates by
scRNA-Seq’. To evaluate the impact of cell storage procedures on deconvolution accuracy we
compared deconvolution performance on two datasets—mouse kidney and human breast
cancer—with concurrent bulk profiles and technical replicate scRNA-Seq profiles of single-cell
suspensions derived from alternative tissue preservation methods. The kidney dataset included
scRNA-Seq profiles of methanol fixed, cryopreserved, and fresh tissues??, and the breast cancer
dataset included profiles of fresh and cryopreserved tissues?*24. We applied deconvolution on the
matching bulk RNA-Seq data using DWLS and FARDEEP—these methods performed relatively
well in our tests—and compared predicted cell type abundances to the gold standard in each of
the scRNA-Seq datasets. Both DWLS and FARDEEP showed good performance when
comparing observed cell type abundances to those in the fresh and methanol-fixed kidney tissues
but both performed poorly when compared to the gold standard for cryopreserved scRNA-Seq
dataset (Figure 3C). We note that while the overall deconvolution accuracy for the breast cancer
dataset was lower than that of the kidney dataset, there remained a significant difference in
performance between fresh suspensions and cryopreserved suspensions (Figure S2). Because
of the variability in deconvolution accuracy, we included a comparison of all deconvolution and
normalization methods for the kidney dataset (Figures 4C and S5). We note that while the
normalization choice had a relatively small impact on deconvolution accuracy for the kidney
dataset, normalization had a strong effect on the performance of each tested method for the
breast cancer dataset (Figures 4A and S2).

Transformation of bulk RNA-Seq data with SQUID improves deconvolution accuracy

DWLS consistently outperformed other deconvolution methods in our tests. However, its accuracy
was poor in several datasets, limiting its potential applications. Note that lower accuracy may be
due to method-independent factors, including physically different cellular compositions between
scnRNA-Seq and bulk RNA-Seq samples, and technical differences in sample processing that
results in diverging estimates. Most importantly, deconvolution accuracy is dependent on accurate
gene expression estimates, and—as is the case for our cell mixtures—scnRNA-Seqg-derived gene
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expression profiles may be imprecise. Indeed, we showed that OLS-based deconvolution using
bulk RNA-Seq profiles of each cell type (Figure 2G) produced more accurate results than
deconvolution using scRNA-Seqg-derived profiles (Figure 2H) on our cell mixtures. Similarly,
deconvolution with DWLS using bulk RNA-Seq profiles of each cell type was in excellent
agreement with mixture composition as estimated by cell counts (Figure 5A), and its performance
declined when using scRNA-Seq-derived profiles (Figure 5B). We note that the same was
observed when estimating mixture abundances using either scRNA-Seq analysis or flow
cytometry. However, in all cases, deconvolution with DWLS was more accurate than OLS.
Relative to cell-count estimated mixture abundances, DWLS and OLS predictions had r=0.98 and
RMSE=0.04 vs. r=0.95 and RMSE=0.06 when using bulk RNA-Seq profiles, and r=0.93 and
RMSE=0.08 vs. r=0.78 and RMSE=0.12 when using scRNA-Seq-derived profiles, respectively.
Based on these observations, we attempted to further improve DWLS performance by
transforming bulk RNA-Seq profiles to scRNA-Seq vector spaces. This approach, which we
coined ‘SQUID’, employed linear bulk RNA-Seq transformation followed by dampened weighted
least squares and further improved deconvolution accuracy (r=0.95 and RMSE=0.06, Figure 5C).

To systematically test the benefit of bulk transformation and deconvolution with SQUID, we
compared the performance of SQUID, DWLS, and OLS for our cell mixtures, as well as for
pediatric AML, NB1, NB2, Synapse (ROSMAP brain), breast cancer, and kidney datasets using
a leave-one-out cross-validation strategy. Namely, iteratively, concurrent RNA-Seq and scnRNA-
Seq profiles of all but one of the samples were used to predict the composition of the remaining
sample based on its bulk RNA-Seq profile (Figure 5D). Our results suggested consistently and
significantly improved prediction accuracies with SQUID. Comparisons of SQUID accuracy with
the other methods, including DWLS, CIBERSORT, FARDEEP, RLR, NNLS, and MuSiC, without
cross validation—analogous to Figure 4 comparisons—are given in Figures S2-6.

Deconvolution of pediatric AML and neuroblastoma dataset with SQUID

To assess the utility of deconvolution on bulk RNA-Seq of clinical samples we focused on profiles
of pediatric AML and neuroblastoma samples. Large-scale clinical and bulk RNA-Seq profiles are
available for both these tumor types from the TARGET consortium, including the profiles of 181
pediatric AML* and 161 neuroblastoma® patient samples. We profiled paired diagnostic pre-
treatment and relapse samples for 6 AML patients using concurrent RNA-Seq and scRNA-Seq
assays, and we profiled the expression of 14 neuroblastoma samples using bulk RNA-Seq; note
that we previously reported on the scRNA-Seq profiles of the 14 neuroblastomas?’ and used it
here to evaluate deconvolution accuracy (the NB1 dataset). Pre-treatment AML samples were
expected to be enriched for chemosensitive cancer cells, while relapse AML samples were
expected to be enriched for chemoresistant cancer cells®. We used predicted cell types and
expression profiles from these scRNA-Seq data to deconvolve RNA-Seq profiles of TARGET AML
and neuroblastoma diagnostic samples.

Paired diagnostic-relapse pediatric AML samples were collected to identify chemoresistant tumor
subclones. After integration and clustering (Figure 6A), we sought to identify AML subclones
(clusters) that are present before treatment and expand at relapse. We found one AML cluster
that included diagnostic and relapse cells from at least half of the patients and expanded at
relapse. We refer to this subclone as the AML expanding subclone, or AML-X for short (Figure
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6B). We used SQUID, DWLS, CIBERSORTX, and OLS to predict the composition of TARGET
AML samples from chemotherapy trials AAMLO3PL1 (40 patients), AAML0531 (171 patients), and
CCG-2961 (24 patients). We then used the predicted abundance of AML-X cells in each
diagnostic sample to predict patient outcomes by survival analysis. Note that AAMLO3P1 and
AAMLO531 patients were treated with a variety of chemotherapy and CD33-inhibitor
combinations, and the earlier CCG-2961 patients were treated by combinations of chemotherapy
and anthracyclines. Abundance estimates by DWLS, CIBERSORTX, and OLS were not predictive
of outcomes, however, cell-type abundance estimates by SQUID suggested that diagnostic
samples whose composition included at least 5% AML-X cells had significantly worse outcomes
(p=1.90E-3, Kaplan—Meier estimator, Figure 6C). SQUID composition estimates were also the
only ones that were predictive of survival by Cox regression (p=6E-4, compared to p=0.07,
p=0.41, and p=0.68 using DWLS, CIBERSORTX, and OLS, respectively). Note AML-X cells
accounted for ~10% of the AML cells in the three scRNA-Seqg-profiled diagnostic samples with
AML-X cells; this composition estimate was consistent with SQUID estimates in TARGET
diagnostic samples after accounting for tumor purity. The most upregulated genes in AML-X were
MALAT1, NEAT1, and ZEB2 (Figure 6D). The long non-coding RNAs NEAT1 and MALAT1 co-
localize in Chr11Q13.1, are co-expressed in pediatric AML, and are predicted to transcriptionally
co-inhibit hundreds of genes?®*. Their common targets were significantly downregulated in AML-
X (Figure 6E). Moreover, NEAT1 has been previously implicated with chemoresistance in
cancer®!, and both NEAT1 and MALAT1 have been associated with poor prognosis in childhood
leukemia®. In addition, MALAT1 has been shown to post-transcriptionally upregulate ZEB2 in
cancer®?2* and ZEB2 was the third most upregulated gene in AML-X.

To identify neuroblastoma cell clusters that are associated with outcomes, we integrated sScCRNA-
Seq data across the 14 neuroblastoma samples from the NB1 dataset and identified 15 cell
clusters (Figure 6F). Each cluster was tested for patient outcomes prediction based on abundance
estimates by SQUID, DWLS, CIBERSORTX, and OLS using TARGET RNA-Seq data. The target
dataset includes profiles of 161 samples from 69 clinical trials where patients were treated by
combinations of a variety of chemotherapies and other therapies including GD2 and thymidylate-
synthase inhibitors. In total, two cell clusters were identified to be predictive of outcomes using
SQUID abundance estimates (Figure 6G, Cluster NB-s1 at p=1.4E-3 and Cluster NB-s2 at
p=1.0E-2, Kaplan—Meier estimator). No cluster was predictive of outcomes using estimates from
other survival methods: DWLS, CIBERSORTX, and OLS abundance estimates for NB-s1 were
predictive of survival at p=0.23, p=0.95, and p=0.99, and for NB-s2 at p=0.34, 0.93 and p=0.99,
respectively. Notably, among the top 5 most upregulated genes in cluster NB-s1 were HRAS,
SEMASD, and H3F3B (Figure 6H). RAS pathway mutations have previously been identified in
relapsed neuroblastomas®®. More recently, upregulation of H3F3B has been associated with the
alternative lengthening of telomeres (ALT) phenotype in neuroblastoma, which is associated with
poor outcomes®®. Moreover, tumors harboring RAS pathway mutations in combination with
telomere maintenance mechanisms were shown to have extremely poor survival rates®. In cluster
NB-s2, we observed the upregulation of 6 members of the semaphorin family, including SEMA3D
(Figure 61). SEMA3D upregulation has been documented in metastatic neuroblastomas and was
shown to affect neuroblastoma cell migration®,
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DISCUSSION

Profiling technologies at single-cell resolutions are enabling efforts to characterize the cellular
composition of complex tissues. Single-cell resolution RNA profiling technologies, including 10X
Genomics platforms, are used to characterize the transcriptomes of individual cells, which, in turn,
can be used to identify these cell types in past and future assays. Consequently, ongoing large-
scale efforts, including The Human Cell Atlas®, single-cell tumor immune atlas*’, and single-cell
Atlas in Liver Cancer*, are mapping out healthy and disease tissues and characterizing the
transcriptomes of their composing cell types. These efforts are building resources that promise to
improve our understanding of intercellular dependencies between healthy and diseased cells and
to enable comparisons of tissues at high resolutions. Single-cell atlases promise to help interpret
future single-cell assays and help maximize knowledge gained from RNA-Seq profiles. RNA-Seq
profiles remain by far the most frequently used type of molecular data collected in the biological
and health sciences, and they account for more publicly available molecular datasets than any
other data type. Because of the technical and financial challenges associated with scnRNA-Seq,
RNA-Seq is likely to remain the most frequently used assay for the foreseeable future.
Consequently, computational deconvolution of bulk transcriptomes could serve as an alternative
for scRNA-Seq to enumerate cell types in complex tissues, including tumor biopsies.

Deconvolution methods that use scnRNA-Seq profiles to predict the composition of bulk-profiled
samples are expected to play major roles in analyses based on single-cell atlases. However, their
absolute accuracy remains unstudied, and their potential users face multiple unaddressed
challenges. First and foremost, current deconvolution methods are heuristics that always produce
composition estimates irrespective of accuracy. Most methods do not provide accuracy
evaluations and efforts to evaluate accuracy will have limited success without assay-specific
guality controls, which are not always available. Other challenges include the lack of guidance for
choosing technical parameters in data analysis, including the choice of methods and parameters
for data normalization, data harmonization, and clustering. These choices dictate the accuracy of
scnRNA-Seq analysis and its use for deconvolution. In summary, the deconvolution of RNA-Seq
profiles based on scnRNA-Seq data will benefit from reliable accuracy evaluation and guidance
for selecting analysis parameters and methods.

Here, we produced comparative performance analyses of deconvolution methods based on
constructed cell mixtures with known cell abundances and expression profiles, and based on
concurrent scnRNA-Seq and bulk RNA-Seq data across a variety of tissue types. Our analyses
of cell-mixtures samples suggested that current sScRNA-Seq assays using the 10x Genomics
platform can produce excellent sample-composition estimates, but these assays may produce
relatively poor transcriptome characterizations for each identified cell type and particularly for rare
cell types. Moreover, our results suggested that scRNA-Seq assays tend to under-sample
adherent cells when non-adherent cells are present. We showed that when given accurate cell-
type expression profiles, direct approaches like OLS for predicting cell-type abundances from bulk
profiles produced excellent results (Figure 2G). However, deconvolution using scnRNA-Seq-
derived profiles using the same approach produced poor cell-type abundance estimates (Figure
2H). We note that other deconvolution methods, including MuSiC, DWLS, and SQUID had
substantially more accurate abundance estimates than OLS.
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Our results suggested that accurate evaluations and performance of scnRNA-Seg-based
deconvolution methods for any given context will greatly benefit from the collection of concurrent
scnRNA-Seq and bulk RNA-Seq data. Namely, bulk RNA-Seq profiles allowed us to produce
upper bounds on the accuracy of deconvolution methods that rely on the corresponding scnRNA-
Seq assays, and the integration of concurrent bulk RNA-Seq in the deconvolution process with
SQUID improved deconvolution accuracy for all datasets. In addition, we observed substantial
and consistent performance differences that were associated with library preparation methods,
as well as analysis and deconvolution methods. Namely, comparisons of related datasets—e.g.,
our two neuroblastoma datasets—suggested that datasets with few scnRNA-Seq profiles lead to
worse deconvolution accuracy. We note that while the choice of scnRNA-Seq normalization
methods influenced deconvolution methods performance in some datasets, the best choices
varied across datasets and deconvolution methods. For example, while LogNormalize led to good
performance for most deconvolution methods in our cell-mixture scRNA-Seq data, it was
associated with reduced DWLS accuracy (Figure 3A). Overall, TPM normalization produced some
of the most consistent results. However, the resolution of scnRNA-Seq clustering had a greater
influence on deconvolution success. Namely, high clustering resolutions could lead to reduced
deconvolution accuracy when multiple cell clusters share the same cell type and have highly
similar transcriptomes, while low cluster resolutions could lead to heterogenous cell clusters that
are not associated with specific cell types. In both cases, cell-type specific deconvolution marker
genes were difficult to identify and had limited cell-type selectivity. To resolve this, we opted to
either merge clusters with similar transcriptomes, or select resolutions to optimize the accuracy
of OLS deconvolution of concurrent RNA-Seq profiles. Both approaches lead to dramatic
improvements in deconvolution accuracy for all methods.

We developed a deconvolution strategy with substantially improved accuracy using concurrent
scnNRNA-Seq and bulk RNA-Seq profiles. Jew et al. suggested that the transformation of bulk
RNA-Seq profiles to scnRNA-Seq space could improve the accuracy of RNA-Seq deconvolution,
and their proposed method Bisque?® combined RNA-Seq transformation and NNLS to predict the
composition of RNA-Seq profiled samples based on scnRNA-Seq profiles. In our tests, Bisque
was outperformed by other deconvolution methods, including DWLS, CIBERSORT, and
FARDEEP. However, by combining RNA-Seq transformation with the dampened weighted least
squares strategy employed by DWLS, we were able to dramatically improve deconvolution
accuracy. Indeed, our proposed strategy (SQUID) outperformed all other strategies on all
datasets with or without cross validation (Figure 5 and Figures S2-6, respectively), and when
estimating cell abundances based on IHC, cell counts, flow cytometry, or scnRNA-Seq analyses.

To investigate the effects of tissue preservation methods on deconvolution accuracy, we
evaluated deconvolution methods using scRNA-Seq profiles of matched suspensions derived
from methanol fixed, cryopreserved, or fresh tissues. We showed that deconvolution based on
scRNA-Seq profiles of fresh and methanol-fixed tissues can perform with good accuracy, but
performance based on matched cryopreserved samples was markedly worse. These results are
in line with observations made by Denisenko et al. that cryopreservation resulted in the loss of
proximal tubule (epithelial) cell types, while methanol fixation maintained cellular composition’.
Consequently, cryopreservation distorted abundance estimates, leading to a poor correlation
between the predicted and expected cell type abundances. Interestingly, while not as accurate
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as using fresh or methanol-fixed profiles, SQUID predictions based on profiles of cryopreserved
samples were dramatically more accurate than other deconvolution methods. This was due, in
part, to its employment of RNA-Seq transformation, which transformed bulk profiles to mirror cell-
type depletions observed in sScRNA-Seq profiles. Thus, while SQUID reduced the discrepancy
between the concurrent profiles, it did not fully correct scRNA-Seq inaccuracies. We argued that
because scRNA-Seq profiles can include inaccuracies, frameworks to evaluate deconvolution
need to include datasets where both expression profiles and cell-type abundances are fully
characterized, as in our mixture data.

Finally, we showed that improved deconvolution accuracy may be necessary for enabling its
applications in cancer diagnostics. To evaluate this, we produced concurrent RNA-Seq and
scRNA-Seq profiles for pediatric AML and neuroblastoma samples and analyzed RNA-Seq
profiles and clinical annotations from TARGET-profiled samples. We identified a potentially
chemoresistant pediatric AML subclone by comparing scRNA-Seq profiles of matching diagnosis
and relapse samples, and we generated subclone characterizations for neuroblastoma. We
showed that only SQUID-predicted tumor subclone abundances in diagnostic samples were
predictive of patient outcomes. Interestingly, while composition estimates by other methods failed
to associate subclone abundances and patient outcomes in these datasets, the significance of
outcomes predictions based on abundance estimates by DWLS, CIBERSORTX, and OLS
mirrored their estimated accuracy in our benchmark. Namely, DWLS-predicted abundance
estimates for our candidate high-risk subclones were the most predictive of outcomes while OLS
estimates were the least predictive.

In summary, we identified key prerequisites and provided guidance to produce accurate
deconvolution of RNA-Seq profiled tissues based on a scnRNA-Seq dataset. We found that
scnRNA-Seg-based composition estimates are often inaccurate for cryopreserved tissues, that
expression normalization methods should be selected in context-specific manner, and that cell
clustering resolution should be carefully calibrated. Our analyses suggested that, albeit at a
marginally higher cost than scnRNA-Seq profiles alone, concurrent RNA-Seq and scnRNA-Seq
profiles could be used to optimize normalization and clustering, evaluate the accuracy of
deconvolution methods, and improve deconvolution accuracy. Taken together, our results
suggested that RNA-Seq deconvolution using scnRNA-Seq data can produce accurate cell-type
abundance estimates and that atlases of concurrent RNA-Seq and scnRNA-Seq profiles could be
used to reevaluate the compositions of other RNA-Seq datasets.

FIGURES

Figure 1. We benchmarked data normalizations and deconvolution approaches in datasets with
concurrent bulk RNA-Seq and scnRNA-Seq profiles (*). Cells were clustered in an unsupervised
fashion (**). Gold standard abundance estimates (***) for each cell type were obtained by either
aggregating cells or nuclei in each scnRNA-Seq cluster, immunohistochemistry, fluorescence-
activated cell sorting, or cell counts. Deconvolution methods used either full scnRNA-Seq
expression profiles or cluster-specific biomarkers to predict cell-type abundances based on bulk
RNA-Seq profiles. Deconvolution accuracies in each sample were assessed by comparing
predicted abundances from bulk RNA-Seq and gold standard estimates.
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Figure 2. Cell mixture design, characterization, and analysis by OLS. (A) Breast cancer cells
(BT474, T47D, and MCF7), leukemia cells (THP1 and Jurkat), and human mesenchymal stem
cells (hMSCs) were used to generate six populations of mixed cells (cell mixtures). Each cell line
was profiled individually by bulk RNA-Seq in triplicates, and each mixture was profiled by bulk
RNA-Seq and flow cytometry in triplicates as well as by a 10x genomics Chromium controller. (B)
Cell mixtures were composed of varying proportions of cancer cells, with leukemia cells
accounting for 15% and hMSC accounting for 0.5% (M1 and M4) to 2% (M3 and M6) of each
mixture. (C) The clusters derived from scRNA-Seq data corresponded to composing cell types,
as identified by cell-type biomarkers. (D) The integration of SCRNA-Seq profiles of our mixtures
(in gray) and scRNA-Seq profiles of BT474, T47D, MCF7, BT483, AU565, HCC70, and DU4475
(Gambardella et. al., 2022) revealed a significant overlap between profiles of BT474, T47D, and
MCF7 cells, while negative controls, including BT483, AU565, HCC70, and DU4475, clustered
separately. (E) Cell counts at the time of mixture generation were significantly correlated with
cellular composition estimates by flow cytometry (r=0.97) and (F) by scRNA-Seq analysis
(r=0.96). However, the correlation between the estimates by flow cytometry and scRNA-Seq was
significantly lower (r=0.92, p<0.05, Fisher’'s transformation). (G) Ordinary least squares
regression (OLS) using bulk RNA-Seq profiles of composing cell types estimated the composition
of our mixtures with high accuracy (r=0.95). (H) OLS deconvolution abundance estimates using
cell-type expression profiles from scRNA-Seq analysis were also accurate (r=0.72, p<1E-4) but
significantly worse (p<1E-5, Fisher’s transformation).

Figure 3. The accuracy of cell-mixture deconvolution. (A) The impact of RNA-Seq and scRNA-
Seq normalization strategies and the choice of deconvolution methods on deconvolution
accuracy, as assessed by Pearson correlation and root mean square error (RMSE); darker and
larger circles represent higher Pearson and lower RMSE values, respectively. (B) Deconvolution
results for the normalization strategy with the lowest RMSE; axes are in logio scales. Each
scatterplot contains 36 data points corresponding to 6 cell lines in 6 mixtures, with gold standard
abundance estimates based on cell counts and predicted abundances based on deconvolution.

Figure 4. Deconvolution accuracy on concurrently profiled tissues. (A) The impact of bulk RNA-
Seq and scRNA-Seq normalization strategies on the accuracy of deconvolution methods, as
assessed by Pearson correlation and root mean square error (RMSE); darker and larger circles
represent stronger correlations and smaller errors, respectively. (B) Numerical visualizations of
deconvolution accuracies in cell mixtures and tissues across normalization strategies, as
assessed by Pearson correlation (top) and RMSE (bottom). (C) The effects of profiling
cryopreserved, fresh, and methanol-preserved cold-dissociated kidney samples on the
accuracies of deconvolution by DWLS and FARDEEP.

Figure 5. Mixture deconvolution with transformed RNA-Seq data. (A) DWLS deconvolved the
composition of our mixtures with near-perfect accuracy when given the bulk RNA-Seq expression
profiles of each cell type (r=0.98, RMSE=0.04), and (B) with high accuracy when using cell-type
expression estimates from scRNA-cluster profiles (r=0.93, RMSE=0.08). (C) SQUID
deconvolution accuracy, relative to cell counts, when using cell-type expression estimates from
scRNA-cluster profiles (r=0.95, RMSE=0.06) was significantly better than DWLS (p<2E-4,
Fisher’s transformation). (D) Deconvolution accuracies of concurrent RNA-Seq and scnRNA-Seq
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profiled tissues using SQUID, DWLS, and OLS, as assessed by Pearson correlation and root
mean square error (RMSE).

Figure 6. SQUID-predicted cell-type abundances identified outcomes-predictive subclones in
pediatric AML and neuroblastoma diagnostic biopsies. (A) Clusters identified in sScRNA-Seq
profiles of paired diagnostic and relapse samples from 6 pediatric AML patients included the
cluster AML-X. (B) AML-X cells were present in the diagnostic biopsies of 3 patients and their
abundance increased at relapse. (C) SQUID-predicted AML-X abundances in TARGET-profiled
diagnostic AML biopsies were predictive of patient outcomes. (D) The cancer IncRNAs MALAT1
and NEAT1 and (E) their direct targets were upregulated in AML-X and were predicted to regulate
chemoresistance in AML. (F) Clusters identified in scCRNA-Seq profiles of neuroblastoma samples
included NB-s1 and NB-s2. (G) SQUID-predicted abundances of both NB-s1 and NB-s2 in
TARGET-profiled diagnostic biopsies were predictive of patient outcomes. (H) Upregulated genes
in NB-s1 included SEMA3D and HRAS, and upregulated genes in NB-s2 (l) included SEMA3D
and other semaphorin family members.

SUPPLEMENTARY FIGURES

Figure S1. (A) UMAP of merged scRNA-Seq profiles of the 6 cell mixtures with 21 clusters
predicted using default parameters revealed groups of adjacent clusters. (B) The expression
profiles of some clusters were significantly correlated, and supervised bi-clustering using a 2000-
marker gene set identified cliques of correlated clusters that were also adjacent in the UMAP.
Merging 3 cluster cligues, shown as regrouped clusters (top), reduced the total number of clusters
to 6. (C) Deconvolution using the original 21 clusters, and (D) the reduced set of 6 clusters
produced markedly different deconvolution accuracy evaluations. Here, the gold standard was
estimated from scRNA-Seq analysis for fairness since there is no 1-to-1 mapping between 21
clusters and 6 cell types. Accuracy was evaluated using Pearson correlations (P) and RMSE (E).

Figure S2. Matched breast cancer samples were profiled fresh or after cryopreservation by
scRNA-Seq. Confirming our observations from the analysis of kidney samples (Figure 4C), the
accuracy of tested deconvolution methods was lower when using profiles of cryopreserved
tissues. However, SQUID composition estimates were the most accurate based on fresh profiles
and were nearly unaffected by tissue preservation.

Figure S3. Analogous to Figure 4A, deconvolution accuracy on concurrently profiled tissues
suggested that DWLS outperforms other published methods irrespective of normalization.
However, SQUID estimates were the most accurate on every dataset. Note that accuracy
estimates reported in Figure 5 were based on cross-validation test errors, while estimates
reported here and in Figure 4 did not use cross validation.

Figure S4. Analogous to Figure 4B, normalization strategies altered deconvolution accuracy
estimates, but the top-performing methods outperformed other methods in nearly all tests,
irrespective of normalization. In particular, the accuracy of SQUID estimates was nearly
unaffected by the normalization strategy used.

Figure S5. Analogous to Figure 4C, deconvolution accuracies were estimated for fresh,
methanol-fixed, and cryopreservation after warm and cold dissociation of kidney tissues.
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Deconvolution accuracy was lower for profiles of cryopreserved kidney tissues than for profiles of
fresh or methanol-preserved tissues. However, SQUID’s accuracy was high irrespective of the
tissue preservation technique used.

Figure S6. Analogous to Figure 3B, we present a detailed comparison between predicted
abundance estimates by deconvolution and gold standard abundance estimates for the
normalization strategy with the lowest RMSE for each dataset; axes are in logio scale.

SUPPLEMENTARY TABLES

Table S1. The composition of each of the 6 cell mixtures, based on cell counts, compared to
estimates based on flow cytometry and scRNA-Seq analysis.

Table S2. Cell-type specific biomarkers for cell lines used in the 6 cell mixtures.
Table S3. RNA-Seq and scRNA-Seq estimated expression profiles for cell mixtures and cell lines.

Table S4. Datasets used to evaluate deconvolution accuracy. Annotations include methods for
setting the gold-standard composition, quality of deconvolution, sample types, cell or nuclei
counts, UMI counts, and the number of samples in each dataset.

Table S5. Predicted abundance and clinical annotations of pediatric AML and neuroblastoma
TARGET patients that were used to evaluate the outcomes-predictive value of subclone
abundances in diagnostic samples.
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Cell mixture setup and deconvolution by ordinary least squares regression (OLS)
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DWLS deconvolution accuracy after bulk transformation with SQUID
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Deconvolution of large-scale pediatric AML and NB RNA-Seq datasets
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