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ABSTRACT

Single-cell RNAseq has allowed unprecedented insight into gene expression across different cell
populations in normal tissue and disease states. However, almost all studies rely on annotated
gene sets to capture gene expression levels and sequencing reads that do not align to known
genes are discarded. Here, we discover thousands of long noncoding RNAs (IncRNAs) expressed
in human mammary epithelial cells and analyze their expression in individual cells of the normal
breast. The human mammary epithelium is a highly dynamic tissue, composed of three main cell
populations, basal, luminal progenitor and luminal mature cells, that can originate different
subtypes of breast cancer. We show that IncRNA expression alone can discriminate between
luminal and basal cell types and define subpopulations of both compartments. Clustering cells
based on IncRNA expression identified additional basal subpopulations, compared to clustering
based on annotated gene expression, suggesting that IncRNAs can provide an additional layer of
information to better distinguish breast cell subpopulations. In contrast, breast-specific IncRNAs
poorly distinguish brain cell populations, highlighting the need to annotate tissue-specific
IncRNAs prior to expression analyses. Overall, our results suggest that IncRNAs are an unexplored
resource for new biomarker and therapeutic target discovery in the normal breast and breast
cancer subtypes.

INTRODUCTION

Breast cancer is characterized by multiple subtypes, each with distinct molecular features and
clinical outcomes. One of the major factors defining these molecular features is their cell-of-
origin. Delineating the different cell subpopulations in the normal breast is therefore critical for
understanding breast cancer etiology. Breast tumors develop from epithelial cells of the
mammary gland, which comprise an inner layer of secretory luminal cells and an outer layer of
basal cells with myoepithelial characteristics. Three main epithelial cell populations are known to
compose the breast epithelium: basal, luminal progenitor and luminal mature cells 1. While there
is evidence for additional subpopulations, including a bipotent progenitor 2, the individual
lineages are predominantly self-maintained 3. However, the full cellular spectrum and how
these contribute to the different subtypes of breast cancer remains to be determined.

Single-cell transcriptomics is allowing us to exploit differential gene expression as a means to
define cell types and states. Recent surveys of gene expression in the normal human breast
epithelium at single-cell level have discovered new cell types and mapped the trajectory of
mammary epithelial lineages #”. Like most single-cell RNA sequencing (scRNAseq) analyses, these
studies only assess the expression of annotated genes, represented in curated databases such as
GENCODE and Ensembl, and sequencing reads that do not map to these regions are lost in the
analysis. Since the vast majority of the long noncoding RNAs (IncRNAs) are currently unannotated
8 the expression of IncRNAs in scRNAseq data remains largely unexplored.

LncRNAs are a diverse class of RNA transcripts >200 nucleotides long that lack protein-coding
potential. In general, IncRNAs display exquisite tissue- and cell type-specific expression and have
been implicated in almost all biological processes. Many IncRNAs regulate nearby gene
expression through epigenetic, transcriptional or post-transcriptional mechanisms °. LncRNAs
can also function as molecular scaffolds for protein complexes or promote phase separation of
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functional subcellular domains . LncRNAs also play crucial roles in organ development and
establishment of cell lineages by stem-cell fate determination 1. Many IncRNAs are directly
implicated in human disease, functioning for example in cancer-related pathways that influence
phenotypes such as apoptosis, cell growth, invasion and genomic instability. Here, we discovered
>13,600 new IncRNAs expressed in the human breast epithelium and surveyed their expression
across epithelial cell subpopulations in very high resolution. We show that IncRNA expression
alone can distinguish different cell subpopulations and different cancer subtypes, revealing
several novel markers of potential relevance for breast cancer.

RESULTS

Assembly of the normal human breast transcriptome

We obtained normal breast tissue from five healthy women undergoing reduction mammoplasty
(Table S1), selected epithelial cells based on the absence of CD31, CD45 and CD140b markers
(Table S1) and sorted these cells into basal, luminal progenitor and luminal mature populations,
according to their levels of EpCAM and CD49f (Table S1). Bulk strand-specific RNA sequencing
was performed on each sorted population at high depth, to allow accurate transcript assembly
and assignment, even for genes with very low expression levels 2. On average ~50M reads were
sequenced per cell population per sample (Table S2). Base call accuracy surpassed 99.99% after
trimming and correction (Tables S3 and S4). De novo assembly of transcripts and discovery of
IncRNAs were conducted using an in-house pipeline (Fig. 1a, Fig. S1 and File S1), which, according
to the metrics defined in a recent benchmarking study '3, performed >10% better than the best-
ranked assembly tool (Table S5; File S1).

The initial assembly contained >1M preliminary transcripts (Fig. 1b) and covered one-third of the
human genome (Table S5). Completeness was assessed with BUSCO !4, confirming the presence
of >99% of the conserved eukaryotic orthologs (Table S5). We optimized the initial assembly with
TransRate , filtering transcripts with lower scores. The optimized assembly contained 627,743
high-quality transcripts (average contig length of 826 nucleotides and N50 of 1,383; Fig. 1b and
Table S5). To ensure the authenticity of the assembled monoexonic transcripts, we set a strict
expression level cut-off (3 fragments per kilobase per million, FPKM), six times the minimum
required for multiexonic transcripts (File S1). Approximately 95% of multiexonic (~85,000) and
60% of monoexonic (~300,000) transcripts were retained after enforcing minimum expression
support. The complete transcriptome of the normal breast epithelium consisted of 384,182
coding and noncoding transcripts (File S1).

Discovery and annotation of IncRNAs in human breast epithelium

We used ezLncPred ® to run multiple predictors (CNCI, CPAT, CPC2 and PLEK) and detected
coding potential in ~20% (83,034) of the transcripts (Fig. 1b, Table S6). In parallel, we used FEELnc
7 to classify transcripts as IncRNAs, a machine learning-based algorithm which performs equal to
or better than GENCODE and NONCODE consortia classifiers 181°. FEELnc identified 30,722
IncRNA candidates (Fig. 1b), 90% of which were supported by two or more ezLncPred predictors
(Table S6). To minimize false positives, we filtered out the 10% unsupported IncRNA candidates,
then discarded candidates with >75% overlap to annotated protein-coding transcripts on the
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same strand. The final set of curated IncRNAs contained 18,364 transcripts (Fig. 1b), which we
will refer to as normal breast IncRNAs (NB-IncRNAs).
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Fig.1 Identification of NB-IncRNAs from human breast epithelium.

a Schematic of the bulk RNAseq and de novo assembly experimental design. Strand-specific RNAseq libraries were
prepared from total RNA extracted from FACS sorted breast epithelial cells. A multistep computational pipeline was
designed for transcriptome assembly and compared with state-of-the-art tools, showing higher performance. Each
main stem (A-D) is described in greater detail in Fig. S1. b Number of assembled transcripts passing each filtering
step, from raw transcriptome assembly to identification of NB-IncRNAs. ¢-g UCSC genome browser (hg38) diagram
showing NB-IncRNAs (purple) and GENCODE-annotated protein-coding (blue) or noncoding genes (green). Rampage-
detected transcription start sites (TSS) and enhancer elements are shown as black boxes.

We tested the performance of our transcript reconstruction strategy by assessing the full-length
read support and transcription start site (TSS) of the assembled NB-IncRNAs. Using public
RAMPAGE data of normal breast samples ?° and in-house RAMPAGE data of breast cell lines
(BT549, MCF10A, MDAMB231 and SUM149), we confirmed the TSS of 10% (1,810) of the NB-
IncRNAs (Fig. 1c). Additionally, full-length transcripts from public long-read sequencing of MCF7
and MCF10A and in-house long-read sequencing of SUM149 breast cells confirmed the exon
structure of 7% (1,310) of the NB-IncRNAs (Fig. 1d). Overall, we confirmed critical features of
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>15% (2,863) of NB-IncRNAs (Table S7 and File S1), in agreement with previously reported
observations (e.g. *'?2). From the 18,364 NB-IncRNAs, 3,642 (20%) coincide with GENCODE-
annotated transcripts and 1,116 with ncRNAs from our in-house compilation of public databases
(Table S8; File S2). GENCODE-annotated NB-IncRNAs include 535 antisense genes, 388 intergenic
IncRNAs and 100 pseudogenes (Table S9). In total, >85% of the NB-IncRNAs are novel genes or
known IncRNAs and the remaining are noncoding isoforms of annotated protein-coding genes
(Table S9). Notably, transcripts of >100 breast cancer-related genes from IncRNAfunc %,
Lnc2Cancer 2* and a study by Diermeier et al > were recovered as NB-IncRNAs (Table S9; File S3).

Many IncRNAs act by regulating the expression of nearby protein-coding genes. We characterized
regulatory NB-IncRNAs by reciprocal sequence overlap, identifying transcripts originating from
known enhancer elements (enhancer-derived IncRNAs, elIncRNAs), promoter regions (promoter-
associated noncoding RNAs, pancRNAs) or terminal untranslated ends (terminus-associated
IncRNAs, TALRs) of annotated genes. In total, we detected 349 NB-elncRNAs, 1,968 NB-pancRNAs
and 825 NB-TALRs. Details are provided in the Supplementary Material (File S3; Table S10) and
examples of each class are shown in Figs. le-g.

Bulk expression of NB-IncRNAs in normal breast epithelium

We investigated the expression patterns of the NB-IncRNAs in the sorted breast cell populations
used for the de novo assembly. On average, 10,000-12,000 transcripts are expressed at >1 TPM
in each sample, with 65-75% being expressed in samples of the same cell population from all five
individuals (Table S11). Over one-third of the expressed transcripts are common to the three cell
populations and, as expected, the two luminal cell populations share nearly four times more
expressed transcripts with each other than with the basal population. Considering only
transcripts expressed at >1 TPM in at least 75% of the individuals, we found 6,371 NB-IncRNAs in
luminal mature cells, 5,922 in luminal progenitor cells and 4,577 in basal cells. From these,
respectively 1,424 (22%), 957 (16%) and 752 (16%) are unique to each cell population and these
population-specific transcript sets are enriched (p-values of overlap <= 7.2e-62) in NB-IncRNAs
located nearby annotated markers of the respective cell population 26 (Figs 2a-c). These results
provide evidence that expression of population-specific NB-IncRNAs may be related to annotated
marker gene activity in the corresponding cell types.

FEELnc identifies the closest annotated genes to the novel IncRNAs and predicts the most likely
mRNA-IncRNA partners based on the IncRNA class *”. Among the FEELnc-assigned partners of the
population-specific NB-IncRNAs for luminal mature, luminal progenitor and basal cells,
respectively 27, 34 and 31 are established markers (File S2) of normal breast cell populations
(Tables S8 and S11). FEELnc-assigned partners of population-specific NB-IncRNAs in the basal cell
population include known basal markers, such as ACTA2, CCND2, DKK3, ITGA6, SPARC, TP63 and
VIM (Figs. S2a-c). Similarly, in the luminal mature and luminal progenitor cell populations,
partners of several population-specific NB-IncRNAs are established marker genes, including
luminal mature markers AKT1, ANKRD30A, IGFI1R, PRLR and SYTL2 and luminal progenitor
markers CD24, CD44, KIT, LTF, PROM1, SAA2 and SLPI (Figs. S2a-c). Notably, several NB-IncRNAs
are expressed in both luminal populations (but not in basal cells), for example DN34862C1G1l1,
an antisense transcript of ELF3 which is a general marker of luminal cells 7.
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Fig. 2 Cell population-specific NB-IncRNAs target protein-coding markers of the same cell type.

a FEELnc-assigned partners of NB-IncRNAs specifically expressed in each of the three main epithelial cell populations
[i.e. luminal mature (top, blue), luminal progenitor (middle, green) and basal (bottom, orange)] were compared with
previously reported markers of cell types, showing significant overrepresentation of the corresponding type.
Enrichment was confirmed based on the p-value obtained for Fisher’s exact tests. b Similar analyses were performed
using an in-house dataset of known markers of several normal breast cell types, also showing a higher proportion of
the population-specific NB-IncRNA partners are characteristic of the corresponding cell type. ¢ Heatmaps of gene
expression confirm the NB-IncRNAs as population-specific.

NB-IncRNA expression distinguishes the main breast epithelial cell types in scRNAseq data

To explore the ability of NB-IncRNAs to distinguish normal breast cell subpopulations, we
guantified the expression of NB-IncRNAs using published scRNAseq data of 867 cells from 3
donors, with >1.5M reads per cell ®. Using flow cytometry, Nguyen et al sorted cells from the
luminal and basal populations before performing scRNAseq (File S4). On average, each cell
expressed close to 900 NB-IncRNAs, with over one-third expressing at least 1,000 NB-IncRNAs.
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Eight clusters were obtained after filtering, normalizing and clustering cells with Seurat (Fig. 3a;
L-clusters LO to L7, where L stands for IncRNA). Based on flow cytometry labels provided in
Nguyen et al ®, three L-clusters were predominantly luminal and five predominantly basal,
characterized by at least 70% of the cells having the corresponding label (Fig. 3a and Table S12).
The existence of multiple clusters for each cell type indicated the presence of subpopulations,
but as L-clusters were defined based on NB-IncRNA expression only, we could not further
characterize them according to protein-coding markers. To circumvent this, we re-clustered the
cells based on the expression of GENCODE-annotated genes, characterized the resulting clusters
(Fig. 3b; A-clusters, where A stands for annotated) and used this information to label L-clusters.
Correspondence between A-clusters and L-clusters was inferred based on the number of cells
they shared (Table S12 and Fig. S2).
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Fig. 3 NB-IncRNAs and GENCODE-annotated genes can distinguish breast epithelial cell types.

a Uniform manifold approximation projection (UMAP) of normal breast cells, clustered based on NB-IncRNAs
expression, quantified on Fluidigm scRNAseq data (L-clusters). Cells are color-coded for clusters, which are
numbered according to cell counts. b UMAP of normal breast cells, clustered based on GENCODE-annotated gene
expression, quantified on Fluidigm scRNAseq data (A-clusters). ¢ Heatmap showing the top ten Seurat-assigned
markers for each L-cluster. d Heatmap showing the top ten Seurat-assigned markers for each A-cluster. e Heatmap
showing Seurat-assigned markers for A-clusters previously reported in the literature.
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Characterization of A-clusters based on known protein markers

Eight A-clusters, also corresponding to three predominantly luminal and five predominantly basal
cell populations, were obtained (A0 to A7, Fig. 3b and Table S12). In agreement with Nguyen et
al 8, the expression of ~5,000 annotated genes was detected per cell. Seurat uses gene expression
patterns to define a set of markers for each cluster with the FindAlIMarkers function (Table S13).
We plotted the top ten most significant Seurat-assigned markers of L-clusters (Fig. 3c) and A-
clusters (Fig. 3d) to assess how well they distinguish clusters. For A-clusters, we also plotted
markers previously defined in the literature (Table S8 and Fig. 3e) and observed that Seurat-
assigned markers define the cell populations better than literature markers.

We first assessed the identity of A-clusters based on the expression of frequently used protein-
coding antigens (Table S12 and File S4 28). Detection of the main keratin immunohistochemistry
marker genes (i.e. KRT5, KRT6 and KRT14 for myoepithelial and KRT8 and KRT18 for luminal cell
types) and other relevant protein-coding marker genes (MME and CD44 for basal and EPCAM,
MUC1, PROM1 and KIT for luminal cell types) by Seurat generally coincided with the
correspondent FACS labels (Table S12). Physiological characteristics of both luminal and basal
cells were also considered. For example, the sets of Seurat-assigned markers of clusters AO and
A6 were the most significantly enriched for EMT-related genes and genes characteristic of
claudin-low status (enrichment p-values < 4.0 e-35; Tables S8 and S12), two hallmarks of basal
cells 2%-3%, Cells in the luminal compartment are known to have shortened telomeres, which elicit
DNA repair 32. Markers of clusters A2 and A4 were the most significantly enriched on genes
involved in telomere maintenance and markers of cluster A4 on DNA repair genes (enrichment
p-values < 8.0e-03; Tables S8 and S12).

To differentiate luminal progenitors from luminal mature subpopulations, we used the annotated
gene markers obtained by Pal et al %® based on scRNAseq of normal mammary glands. When
compared to Seurat-assigned markers of each A-cluster, these markers unequivocally
(enrichment p-values < 1.0e-10) characterized clusters AO, A3 and A6 as basal, clusters Al and A4
as luminal progenitor and cluster A2 as luminal mature (Table S12). Both luminal progenitor
clusters (A1 and A4) also express higher levels of H2B genes, shown to have short-term
repopulating potential in mice 33. In addition, progenitor cluster Al is associated with highest
expression of luminal alveolar and hormone-sensing markers (e.g. EHF, S100A6), whereas A4 has
high expression of KIT, which is a hallmark of ductal progenitors and cluster A2 has a classical
mature ductal cell signature (FOXA1Me" and ELF5°%) and hormone-sensing characteristics
(highest expression of AREG, CITED1, LY6D and PRLR) 343%. Notably, all three luminal clusters are
devoid of ESR1 and PGR expression.

We completed the annotation of A-clusters comparing Seurat-assigned markers with an in-house
dataset comprising 359 markers from the literature (Tables S12 and S8, File S2 and Fig. 3e). Based
on the overlap between these gene lists, we confirmed cluster AO as basal with strong
myoepithelial signature (45% of the known markers), clusters Al and A4 as luminal progenitor
(25% and 28% of the known markers) and cluster A2 as luminal mature (13% of the known
markers). Clusters A3 and A6 have basal origins and the highest number of breast stem-cell
markers identified by Seurat (12 and 16 known markers respectively, or 37% and 31% with
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enrichment p-values < 1.0e-10). Markers in both clusters include JAG1, ITGB1 and YBX1, while
cluster A3 also expresses high levels of CD44, ZEB1 and others and cluster A6 of GNG11, TCF4
and others. Clusters A5 and A7 remained undefined, with no known markers in the list generated
by Seurat. Additional investigation showed evidence of cell death occurring in both of these
clusters (based on mitochondrial gene markers, File S4) and traced cells to basal origins
(correspondence p-values 0.01 and 2.0e-11, respectively).

Further characterization of subpopulations represented by L-clusters

We labeled each cell according to the A-cluster they were assigned to and characterized L-
clusters based on their cell composition (Fig. S2 and Table S12). More than 95% of the cells in
cluster LO are in luminal progenitor cluster Al. Cluster L1 is predominantly basal, with ~90% of its
cells in cluster AO. Cluster L2 has ~80% of its cells in cluster A4 (luminal progenitor) and ~15% in
cluster A2 (luminal mature). Cluster L3 represents a heterogeneous progenitor population, with
~65% of its cells in cluster A6 and ~30% in cluster A3 (both of which have high numbers of stem-
cell markers). Cluster L4 has ~90% of its cells in cluster A2 (luminal mature). Cluster L5 is a mixed
population with comparable portions of cells in clusters Al (~15%), A3 (~25%), A6 (~15%) and A7
(~20%). Clusters L6 and L7 are mainly (respectively ~70% and ~90%) formed by cells of cluster A0
(basal). In summary, luminal clusters obtained based on GENCODE-annotated gene expression
were replicated using NB-IncRNAs expression, while the heterogeneous basal cluster AO is
subdivided into three clusters L1, L6 and L7. Doubling Seurat’s resolution parameter for A-clusters
subdivided cluster AO in two cell subpopulations, one mainly (>80%) represented by cluster L1
and another by clusters L6 and L7. The subpopulation that forms cluster L1 is marked by the
expression of myoepithelial genes, such as hemidesmosome components (COL17A1, LAMA3 and
LAMCI1) and actin-binding genes (CALD1, MYLK and SVIL). The other subpopulation had more
diverse markers, including genes with roles in vascularization and innervation (e.g. F3, PDGFA,
SFRP1, SOD2 and TNC) and wound healing (CAV1 and PLAU), which are characteristic of the
stroma. Cluster L5 is a mixed cluster which contains cells from different compartments and may
represent a subpopulation of intermediate progenitor cells. Stem-like clusters A3 and A6 are
merged into cluster L3, which congregates nearly twice as many stem-cell marker genes than any
other cluster.

Using Seurat we identified many NB-IncRNAs as potential biomarkers (Tables S13 and S14).
Examples of luminal markers are: (i) DN86902C0G3I1 (cluster LO), transcribed from EROI1A, a
gene that promotes metastatic colonization in breast cancer 37; (ii) DN574858C0G1I1 (cluster L2)
antisense to the STAT3 activator SIX4 and (iii) DN91892C0G2I1 (cluster L4), intronic to ZEB1 (Fig.
4a). Examples of basal markers are (iv) DN690057C0G1I1 (cluster L1), intergenic to breast
progenitor marker YBX1; (v) DN21900COG1I1 (cluster L6), intergenic to quiescence-regulator
SATB2 and (vi) DN87246C0G116/FOXG1-AS1 (cluster L7), antisense transcript of proliferation-
related gene FOXG1 (Fig. 4b). Examples of NB-IncRNAs that regulate or are co-regulated with
protein-coding genes are general basal marker NCF4-AS1 (DN1070C0G3I1; clusters L1, L6, L7),
and general luminal marker AC005077.7 (DN262C0G1112; clusters LO, L2 and L4). Both NB-
IncRNAs mirror the expression of their protein-coding counterparts (Figs. 4c, d), suggesting
functional relationships.
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Fig. 4 Seurat-assigned markers identified candidate NB-IncRNA biomarkers.

a Expression patterns of three identified NB-IncRNA luminal markers in L-clusters. b Expression patterns of three
identified NB-IncRNA basal markers in L-clusters. ¢, d Upper panels: UCSC genome browser (hg38) diagrams showing
NB-IncRNAs (purple), GENCODE-annotated protein-coding (blue) or noncoding genes (green). Lower panels:
Expression patterns of NB-IncRNAs in L-clusters (left) and correlated protein-coding genes in A-clusters (right),
showing examples of co-expression between coding and noncoding genes at single-cell level.

LncRNA expression better defines breast subpopulations than protein-coding genes

We compared the expression pattern of IncRNAs and protein-coding genes at single-cell level. To
minimize bias, we simultaneously quantified protein-coding genes, annotated IncRNAs and NB-
IncRNAs. First, we analyzed genes with ubiquitous (defined as detectable expression in >1/3 of
the cells) or restricted (<1/3 of the cells) expression patterns and investigated differences
between NB-IncRNAs and protein-coding genes. More than 25% of the protein-coding genes
were ubiquitously expressed in normal breast cells, but only 6% of the annotated IncRNAs and
<1% of the NB-IncRNAs (Fig. 5a, Table S15 and File S4). On average, protein-coding genes were
expressed in ~140 cells, while annotated IncRNAs were expressed in ~30 and NB-IncRNAs in ~15
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(Fig. 5b). In agreement with their expected biological function, the set of ubiquitously expressed
protein-coding genes is enriched in known housekeeping genes (47%, p-value ~0; Table S15).
Accordingly, protein-coding genes nearest or co-expressed with the 121 ubiquitously expressed
NB-IncRNAs were also enriched for known housekeeping genes (46% with p-value 5.4e-31 and
35% with p-value 9.6e-19; Table S15) e.g. GAPDH, HSPA5, IAH1, MKLN1, PSMD7, SYNCRIP and
TIMM44. Analysis of genes with restricted expression showed the median cellular expression of
NB-IncRNAs was nearly twice that of protein-coding genes (p-value < 1.9e-06; Fig. 5c).

FIGURE 5
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Fig. 5 NB-IncRNAs have compartmentalized expression levels, which are higher at cell-level.

a Proportion of NB-IncRNAs (purple) or GENCODE-annotated noncoding (green) or protein-coding (blue) genes with
restricted (darker) versus widespread (lighter) expression patterns. b Boxplot of the number of cells in which NB-
IncRNAs (purple) or GENCODE-annotated noncoding (green) or protein-coding (blue) genes are expressed, from the
total 741 cells. On average, NB-IncRNAs are expressed in ~15 cells, GENCODE-annotated noncoding genes in ~30
cells and GENCODE-annotated protein-coding genes in ~140 cells. ¢ Boxplots of the median expression of NB-
IncRNAs (purple) or GENCODE-annotated noncoding (green) or protein-coding (blue) genes per cell (in TPMs),
showing NB-IncRNAs have higher cell-level expression. d UMAP showing normal breast cell clusters obtained based
on NB-IncRNA gene expression (L-clusters), with their corresponding cluster specificity index (CSl). e UMAP showing
normal breast cell clusters obtained based on GENCODE-annotated gene expression (A-clusters), with their
corresponding CSI. f Dotplots showing the difference in CSI for corresponding clusters in ‘d’ and ‘e’. Dots were
colored according to the represented L-cluster or A-cluster, bold horizontal lines mark the average CSI for each gene
set and the p-value (0.016; Fisher’s exact test) shows the difference was significant. g Increase in normalized global
Sl levels, obtained as the normalized average of the CSls of all clusters, as resolution is increased.

Since NB-IncRNAs have a more restricted expression, we expected them to better define breast
epithelial subpopulations than protein-coding genes. To test this, we first calculated the
specificity index (SI) of each transcript in each cluster, which is their median expression in each
cell of that cluster divided by the sum of their median expression in all clusters (based on 38). We
then defined the cluster specificity index (CSl) as the average S| of all transcripts in each cluster.
CSls for L-clusters were always higher than for the corresponding A-cluster (Figs. 5d-f; p-value
0.016), indicating that NB-IncRNA expression is more subpopulation-specific. For comparison, we
re-clustered cells based on the expression of ~23,000 GENCODE-annotated genes that are neither
protein-coding or confirmed IncRNAs (referred to as O-clusters, where O stands for other
noncoding transcripts) and observed an overall decrease in CSI of correspondent clusters (Fig. S3;
p-value 0.4). This confirmed that higher cluster specificity is a characteristic of NB-IncRNAs.

We reasoned that, having higher cluster specificity could be a reflection of restricted NB-IncRNAs
having compartmentalized expression within clusters, being limited to a subset of cells. To assess
this, we enforced overclustering of normal breast cells, by increasing the resolution parameter in
the FindClusters function of Seurat. Consistent with our hypothesis, increasing the number of
clusters increased the specificity index of NB-IncRNAs but not of protein-coding genes. Indeed,
gradually varying the resolution from 0.2 to 1.0 resulted in an 59% global increase in the global
normalized Sl of NB-IncRNAs, while for protein-coding genes the increase was of only 11% (Fig.
5g). Additionally, 30% of the NB-IncRNAs but only 13% of the protein-coding genes became more
cluster-specific (i.e. had higher global normalized Sl) as resolution was increased.

NB-IncRNAs poorly define cell populations in the human brain

As the expression patterns of NB-IncRNAs confirmed their high cell subpopulation-specificity, we
reasoned they would also be tissue-specific. To assess this, we tested their ability to cluster brain
cells into defined subpopulations, using Fluidigm scRNAseq data derived for 466 cells isolated
from healthy human brain samples (File S2 3°). Cells were sequenced at nearly twice the average
depth of the normal breast cells (~3M versus ~1.6M reads). We first clustered cells based on the
expression of GENCODE-annotated genes, obtaining clusters consistent with those in Darmanis
et al * (Fig. 6a). Notably, we retrieved several important markers of immunoreactive microglia
(e.g. CD74, CCL4, AIF-1, ALOX5AP), cortical cells (e.g. HSF2, NEUROD6) and brain development
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(e.g. IGFBPL1, FABP7, LMO3). We then used the expression of NB-IncRNAs for cell clustering. On
average, ~1,100 NB-IncRNAs were expressed per brain cell, but this did not result in a successful
clustering of the different brain cell subpopulations (Fig. 6b). In fact, although NB-IncRNAs
expression could coarsely group cell types, the clustering failed to unambiguously discern
subpopulations of oligodendrocyte precursor cells (OPCs), microglia and endothelial cells and to
distinguish fetal quiescent from fetal replicating cells (Table S16). Overall, clustering based on
NB-IncRNAs expression performed poorly compared with clustering based on GENCODE-
annotated genes expression, despite considerably higher sequencing depth, suggesting IncRNA
discovery should be performed on similar samples a priori, to improve scRNAseq clustering.

NB-IncRNA gene expression defines a subpopulation of breast stem-cells

We used three methods to ascertain which L-cluster most likely harbors breast stem-cells. (i)
Protein-coding gene expression at the cell level was used to calculate the average expression of
putative stem-cell markers in human and mouse mammary tissue (ATXN1, BMI1, CD1D, GNG11,
ID4, INPP5D, ITGB1, ITGB3, JAG1, MME, PARD3B, PROCR, TCF4 and ZEB1; Table S17) per L-cluster
(Fig. 7a). (ii) We assessed the expression of genes involved in the three main pathways associated
with stemness in a number of tissues: Notch, Hedgehog and Wnt signaling (Fig. S4). (iii) The
Single-Cell ENTropy (SCENT) method %° was used to estimate the differentiation potency of each
cell, based on how efficiently signaling can diffuse through a gene interaction network given the
cell gene expression profile. Conceptually, cells with higher differentiation potency express more
connected genes, which results in higher entropy (i.e. the SR value in SCENT). We modified the
gene interaction network of SCENT including annotated IncRNAs based on correlation data
obtained from LncRNAs2Pathways %. SR values were calculated using cell-level annotated gene
expression averaged across L-clusters (Fig. 7b and Table S17). All three methods confirmed
cluster L3 as having the highest degree of stemness. Cluster L3 is a mix of ~65% cluster A6 and
~30% cluster A3 (both of which were shown to express high levels of stem-cell markers during A-

cluster characterization; Fig. 3b).
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Fig. 7 NB-IncRNAs define a stem-like cell subpopulation in the normal breast epithelium.

a Heatmap of the average expression of genes with experimentally confirmed stem-cell properties across the L-
clusters. Genes were selected for their reported capacity of repopulating mammary fat pads, originating both basal
and luminal compartments. Expression was measured at cell level and averaged across cells allocated to the same
L-cluster. b The SCENT method was used to calculate the signaling entropy level (SR value) of each cell. Cells in the
same L-cluster were plotted together, with the average for each cluster represented by dots. The dashed red line
was placed at the highest average (cluster L3). ¢ Monocle plots with cells distributed along a differentiation
trajectory, with branch points representing cell lineages. Cells were colored either by Seurat-assigned L-clusters
(upper) or by SR value (lower). d Slingshot trajectories showing the placement of lineages on top of the UMAP of L-
clusters obtained with Seurat. Cluster L3 was defined as the root state, based on its higher stemness.

We used Monocle to visualize the diffusion of signaling entropy along the mammary epithelial
cell hierarchy (Fig. 7c). The placement of clusters and branch points broadly confirmed cell
lineages. The branch containing L3, defined as root, which radiates through basal cluster L1 to a
bough of more differentiated basal clusters (L5 and L6 in one arm and L7 on a separate arm) and
another bough which bifurcates into a luminal progenitor cluster L2 on one side and luminal
clusters LO and L4 on the other side. The placement of clusters LO and L4 in the same branch may
reflect their observed higher proliferative rates, hormone-sensitivity or other characteristics.
Being confident that the distribution of SR values along the cell hierarchy recapitulated the
mammary differentiation process, we used Slingshot to infer corresponding trajectories, defining
cluster L3 as the root state (Fig. 7d). Consistent with other studies ®%?, the results confirmed the
existence of a cell population with characteristics of a common progenitor for basal and luminal
cell types. The cell hierarchy suggests differences between the basal L-clusters which subdivided
from cluster AO, with clusters L1 closer to L3 and clusters L6 and L7 to L5, which appears to act
as an intermediate progenitor. Indeed, cluster L5 is formed by cells with diverse gene expression
profiles and markers of both basal and luminal cell types. Cluster L5 is also a precursor to luminal
clusters LO on one branch and L2 and L4 on another, confirming observations made with
Monocle.

NB-IncRNAs also define breast cell subpopulations in 10x Genomics scRNAseq data

As the 10x Genomics platform has surpassed Fluidigm as the method of choice for scRNAseq, we
wanted to ensure our results were transferable and not dependent on the higher depth and
sequencing strategy of the Fluidigm platform. We detected the expression of >200 NB-IncRNAs
and >1,800 annotated genes per cell, on average. Using CellRanger, we clustered 10x Genomics
scRNAseq data (also obtained from ©) into cell subpopulations, based on either NB-IncRNA
expression, GENCODE-annotated gene expression or a merge of both gene sets (Figs. 8a-c).
Seven, ten and twelve clusters were obtained respectively, and we confirmed that NB-IncRNA
expression alone has successfully segregated cells into subpopulations, revealing specific markers
(Fig. S5a). We followed the same strategy used with the Fluidigm data to characterize clusters
based on known protein-coding markers (Table S8) and define cluster correspondence. The cell
type-dependent structure was broadly retained between clustering experiments. Differences
were observed in the number of clusters characterized by breast stem markers (Figs. 8a-c, Fig.
S5b), including CD44, GNG11, TCF4 and YBX1. Notably, these clusters were not marked by keratin
genes and their epithelial origin could not be confirmed.
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While clustering based on GENCODE-annotated genes resulted in two putative stem-like clusters,
combining their expression with that of NB-IncRNAs resulted in three. Moreover, the luminal
progenitor population was further subdivided, creating another additional cluster. To investigate
how NB-IncRNA expression could be contributing to the emergence of the additional clusters, we
re-clustered cells based on GENCODE-annotated genes alone, increasing the resolution
parameter in Seurat. While forced overclustering also resulted in the subdivision of the luminal
population into three clusters, no additional putative stem-like clusters were observed (Fig. S5c).
This suggested NB-IncRNAs might be involved in stemness and in differentiating stem-cell states
in the normal human breast.

FIGURE 8
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Fig. 8 NB-IncRNAs also discern normal breast cell subpopulations on 10x Genomics scRNAseq.

a UMAP of normal breast cells, clustered based on NB-IncRNAs expression, quantified on 10x Genomics scRNAseq
data. Cells are color-coded for clusters, which are numbered according to cell counts. b UMAP of normal breast cells,
clustered based on GENCODE-annotated gene expression, quantified on 10x Genomics scRNAseq data. Cluster labels
are based on the presence of known markers of cell subpopulations in the list of Seurat-assigned markers. ¢ UMAP
of normal breast cells, clustered based on the expression of GENCODE-annotated genes and NB-IncRNAs, quantified
on 10x Genomics scRNAseq data.

Correlations between NB-IncRNAs and breast cancer

To establish links between NB-IncRNAs and breast cancer, we assessed their expression levels in
tumor samples of different molecular subtypes from The Cancer Genome Atlas (TCGA ** with
subtypes defined as per %*). TCGA RNAseq data was remapped to the human transcriptome
supplemented with the NB-IncRNAs and gene expression was re-quantified. Significant
correlations (Pearson correlation p-values < 0.05) were observed between NB-IncRNA expression
profiles in TCGA subtypes and L-clusters, especially luminal cluster L4 and basal cluster L1 (Table
S$18). Furthermore, expression of Seurat-assigned NB-IncRNA markers for L-clusters successfully
stratified TCGA samples into basal and luminal molecular subtypes (Fig. 9a) to a greater extent
than Seurat-assigned markers of A-clusters (Fig. 9b). This indicated a relevant contribution of NB-
IncRNA gene expression to the molecular classification of breast tumor subtypes.

To further explore the correlation of NB-IncRNAs with breast cancer subtypes, we derived lists of
NB-IncRNA markers for each TCGA breast cancer subtype, using an in-house method based on
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MGFR #°, with bootstrapping. Among the identified NB-IncRNA markers (Table S18), there were
28 experimentally-supported IncRNAs with established correlations with breast cancer 232°
(Table S9; overlap p-value < 0.001), including LINC0O1089, MEG3, HOXB-AS1, HOXC-AS1 and
TTC39A-AS1 (Table 1; which also contains known breast cancer-related IncRNAs found as markers
of L-clusters). There were also many novel NB-IncRNAs identified as subtype-specific (e.g. Fig. 9c;
Table S18). For example, MGFR-assigned Her2* subtype marker DN6969C1G3I1 overlaps an
annotated gene (ENSG00000244468) previously listed as one of the most highly expressed
IncRNAs in breast cancer .

To assess the performance of our strategy, we used the same method to generate protein-coding
gene marker lists for each subtype and compared these to markers obtained by Wu et al ¥/,
confirming significant correspondence (p-values of overlaps < 0.002; Table S18). We then
assessed the correspondence between the MGFR-assigned NB-IncRNAs markers and protein-
coding markers of TCGA breast cancer subtypes %/, by listing all annotated genes within 500kb of
each NB-IncRNA marker and overlapping these with the markers from Wu et al (Table $S18). With
the exception of the luminal B subtype, the sets of annotated genes nearby NB-IncRNA markers
were enriched (overlap p-values < 0.02) in reported protein-coding markers of the corresponding
breast cancer subtype #’. Genes nearby NB-IncRNA markers of the luminal B subtype were
enriched in reported luminal A markers, likely reflecting the similarities between these two
subtypes. Indeed, there was a significant overlap (p-value < 0.01) between genes near MGFR-
assigned NB-IncRNA markers and reported subtype markers when both luminal breast cancer
subtypes were considered together.

We also assessed the overlap between MGFR-assigned NB-IncRNAs markers of each cancer
subtype and Seurat-defined markers of normal breast cell subpopulations (Table S18). We found
significant overlaps (p-values < 0.001) between markers of basal-like tumors and basal cluster L6,
Her2* and both luminal tumors and basal cluster L1 and luminal mature cluster L4 Markers of
normal-like tumors were strongly (overlap p-values < 0.005) correlated with all clusters, except
L5. Finally, we used the expression levels of 100 MGFR-assigned NB-IncRNA markers (the 20 most
frequently assigned to each subtype) to generate a PCA plot of TCGA samples (Fig. 9d). The
expression of NB-IncRNA markers successfully distinguished molecular subtypes of breast cancer,
with the two first principal components separating them as well as the expression of previously
known markers (Fig. 9d) #’. Biomarkers of special interest include the NB-IncRNAs that most
contributed with the first principal component to distinguish breast cancer subtypes (Table S18).
For example, MGFR-assigned basal cancer subtype marker DN37008C0G1/10 is a novel isoform
of LINC01956 (located near EN1; Fig. 9¢) which is part of a reported triple-negative breast cancer
module 8,
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Table 1.

Annotated IncRNA  Cell subpopulation(s) NB-IncRNA(s)
CARMN General basal DN405
LINC01094 Basal DN19901
MEG3 Basal DN4816
MAGI2-AS3 Basal DN935
HOTAIRM1 Basal DN4816, DN126378
SNHG29 General luminal DN1842
DANCR Luminal mature DN1852
ZFHX4-AS1 Luminal mature DN53411
LINC00993 Luminal mature DN4775
LINCO1151 Luminal DN20235
LINC0O1089 Luminal progenitor DN11934
SNHG15 Stem-like DN141

GAS5 Stem-like, intermediate DN798

progenitor

Annotated IncRNA TCGA subtype(s) NB-IncRNA(s)
FOXP4-AS1 Basal DN8672
RP11-132A1.4 Basal DN98035
SBF2-AS1 Basal, Her2* DN13758
HOXC-AS1 Her2* DN30804
LINCO1133 Her2* DN3404, DN364571
MNX1-AS1 Her2* DN87774
OIP5-AS1 Her2* DN167605, DN733
RP11-206M11.7 Her2* DN6969
RP11-390F4.3 Her2* DN64622
ST8SIA6-AS1 Her2* DN68716
EPB41L4A-AS1 Luminal A DN17927
HOXB-AS3 Luminal A DN12537
LINC00993 Luminal A DN839C
PCAT18 Luminal A DN38481
TTC39A-AS1 Luminal A, Luminal B DN58767
LINC01089 Luminal B DN11934
MAFG-AS1 Luminal B DN5534
HOTAIRM1 Normal-like DN126378
MEG3 Normal-like DN4816
SNHG18 Normal-like DN14445

Table 1 Annotated NB-IncRNAs markers of normal breast cell subpopulations (top) or TCGA breast cancer subtypes
(bottom). Top: Seurat-assigned NB-IncRNA markers with previous annotation, experimental evidence and
established links with breast cancer are listed with the corresponding normal breast cell subpopulation for which
they are markers and short identifiers. Bottom: MGFR-assigned NB-IncRNA markers with previous annotation,
experimental evidence and established links with breast cancer are listed with the corresponding breast cancer
subtype for which they are markers and short identifiers. Full identifiers are available in Table S18.
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FIGURE 9
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Fig. 9 NB-IncRNA expression can differentiate between breast cancer subtypes in TCGA.

a The expression of Seurat-assigned NB-IncRNA markers of L-clusters separates the main subtypes of TCGA breast
cancer tumors in a two-dimension PCA plot. b To a lesser degree, the expression of Seurat-assigned GENCODE-
annotated markers of A-clusters separates different subtypes of TCGA breast cancer tumors in a two-dimension PCA
plot. ¢ NB-IncRNAs are markers of specific breast cancer subtypes. Four selected NB-IncRNAs are shown with their
genomic context (upper; UCSC genome browser diagram) and expression levels (lower; boxplots of TPMs in TCGA
samples of each subtype). d In-house NB-IncRNA markers of TCGA breast cancer subtypes can separate all subtypes
of breast cancer in a two-dimensional PCA plot. e For comparison, known breast cancer protein-coding markers
separate subtypes with comparable performance.


https://doi.org/10.1101/2022.09.06.506112
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.06.506112; this version posted October 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

DISCUSSION

Single-cell RNAseq has allowed unprecedented insight into gene expression across different cell
populations in normal tissue and disease states. However, almost all studies rely on annotated
gene sets to capture gene expression levels, discarding sequencing reads that do not align to
known genes. Here, we comprehensively annotated IncRNAs expressed in human mammary
epithelial cells, prior to quantitating the transcriptomes of individual cells from healthy breast
tissue. On average, we observed ~900 expressed NB-IncRNAs per cell, compared with ~5,000
annotated genes. For comparison, when we used the same method to assess the set of confirmed
annotated IncRNAs from GENCODE, the average count of expressed genes per cell was ~1,300.
We can attribute this increase in number (compared with NB-IncRNA) to annotated IncRNAs
having higher and/or more widespread expression, making them easier to be experimentally
detected. Nevertheless, the number of detected IncRNAs is much lower than annotated genes in
general, which may reflect the more compartmentalized nature of noncoding transcripts.

The expression of NB-IncRNAs alone could discriminate between luminal and basal cell
populations and define subpopulations of both cell types. In the luminal compartment, we
observed two luminal progenitor and one luminal mature subpopulation (LO, L2, L4), similar to
clustering based on the expression of annotated genes (A1, A2, A4). Two A-clusters (A5 and A7)
were defined by a high prevalence of dead cells, based on the presence of mitochondrial markers.
As the NB-IncRNAs gene set does not contain mitochondrial genes, the absence of dead cells was
expected in L-clusters. Indeed, cluster A5 was virtually absent from the clustering based on NB-
IncRNA expression. A subset of cells from cluster A7 was present in basal cluster L7. Despite the
absence of Seurat-defined breast epithelial markers, cluster A7 had basal characteristics (e.g.
high expression of CAV1, ITGB1 and TAGLN), therefore, the resulting L-cluster may have
incorporated these cells based on their basal gene expression.

In the basal compartment, while the expression of GENCODE-annotated genes clustered most
cells in one heterogeneous cluster of basal cells (AQ), NB-IncRNA expression divided the same
cells in three subpopulations (L1, L6, L7). This suggests that NB-IncRNA expression may provide
an additional layer of information, distinguishing cell subpopulations which annotated genes
cannot discriminate. The relevance of this distinction is reflected in the reconstruction of cell
hierarchies (Fig. 7d), where myoepithelial cluster L1 is derived from stem-like cluster L3 and a
separate lineage emerges from cluster L3 including the intermediate progenitor cluster L5 and
basal clusters L6 and L7. When we enforced overclustering of A-clusters, AO subdivided into two
cell pools, one predominantly found in cluster L1 and a second predominantly found in clusters
L6 and L7. Notably, cells that form L6 could not be separated from the cells that form L7 based
on annotated gene expression alone, even at extremely high resolution. It is important to note,
however, that these clusters do not necessarily reflect different cell types but may represent
differential cell states or subpopulations of the same cell type that are responding to
environmental stimuli. Another difference between A-clusters and L-clusters is that, in the latter,
two subpopulations with high prevalence of breast stem-cell markers (A3 and A6) were combined
into one cluster (L3), which appeared to be the most stem-like population.
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Despite the ability of NB-IncRNAs to cluster subpopulations of mammary epithelial cells, they
only poorly distinguish brain cell types, suggesting that the set of IncRNAs expressed in the breast
are substantially different from those in the brain. This highlights the need to comprehensively
annotate IncRNAs across different tissues and cell types, in a similar way to the annotation of
enhancers, which is being performed in a cell type-specific manner. This will be particularly
relevant for minor cell populations, which are underrepresented in complex tissues. We suggest
that comprehensive transcriptome reconstruction should precede scRNAseq analyses and tissue-
specific IncRNAs should be incorporated into the gene set used for clustering. In support of this,
in this study alone, we identified >13,600 IncRNAs not found in existing databases, representing
nearly 75% of the recovered long noncoding transcriptome of the normal human breast. Several
NB-IncRNAs were identified as markers of specific clusters and annotated IncRNAs were also
amongst Seurat-assigned markers when only annotated genes were considered (File S4). Lab-
based experiments will be required to establish the role of IncRNAs in defining cell types and
establishing cell states.

Previous studies have shown that the expression of protein-coding genes in the different breast
cancer subtypes reflects their cell-of-origin. For NB-IncRNAs, we confirmed their expression
profiles in normal cell subpopulations to be significantly correlated with breast cancer subtypes
in TCGA. Moreover, we found Seurat-assigned markers of L-clusters to significantly overlap with
the in-house-derived breast cancer NB-IncRNA markers. NB-IncRNA markers of basal-like breast
tumors were enriched in markers of basal cluster L6. This may be a reflection of underlying
characteristics of basal-like tumors which we observed in cells that form cluster L6, for example
higher rates of EMT and a claudin-low profile, which are known hallmarks of basal-like tumors
2931 "Interestingly, all basal L-clusters had gene expression profiles reminiscent of claudin-low
type tumors, according to the Genefu classification tool. NB-IncRNA markers of both luminal
breast tumor subtypes were enriched in markers of luminal mature cluster L4, which is consistent
with previous observations #°, but were also enriched in markers of the basal cluster L1.

To test the capacity of NB-IncRNAs as markers of breast cancer subtypes, we assessed their
expression in TCGA samples and derived gene signatures of the different subtypes. We confirmed
the NB-IncRNA cancer markers correlated with previously reported protein-coding markers of
each subtype and showed their ability to discriminate between breast cancer subtypes. Several
IncRNAs previously implicated in breast cancer (IncRNAfunc 23, Lnc2Cancer %4 and the Diermeier
et al study 2°) were also assigned as markers in our study, including oncogenes MEG3 and
LINC01089 and mammary tumor associated RNA 18 (MaTAR18/TTC39A-AS1). TTC39A-AS1 was
also previously found to be a marker of normal luminal mature subpopulations 26 and we
identified it as a marker of luminal A and B cancer subtypes. Attesting to the relevance of NB-
IncRNAs for future research, ASO-mediated knockdown of TTC39A-AS1 led to impaired branch
development in mammary organoids 2°.

In summary, combining tissue-specific INncRNA discovery and single-cell transcriptomics has
unraveled new markers of mammary epithelial cell populations and breast cancer subtypes. The
fact that a subset of NB-IncRNAs are present in the human breast in both healthy and disease
states may further support biomarker discovery and help detect tumorigenesis at the earliest


https://doi.org/10.1101/2022.09.06.506112
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.06.506112; this version posted October 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

stages. Importantly, although most of our study was performed using Fluidigm scRNAseq data,
we observed similar clustering using scRNAseq data generated with the 10x Genomics
technology, despite the lower sequencing depth. As 10x Genomics has the fastest growing
platform for scRNAseq, this represents an untapped resource for transcriptomics, especially for
the study of IncRNAs. Incorporating this novel information could lead to novel diagnostic tools
and targets for treatment in a range of cancer types and other complex diseases.

MATERIALS AND METHODS

Samples, cell sorting and RNA sequencing

Breast tissue samples donated to the Brisbane Breast Bank were obtained from five healthy
donors who had breast reduction surgery (Table S1; *°). Reduction mammoplasty samples were
processed as described previously °!. In brief, samples were enriched for epithelial cell
populations and suspensions were stained with a lineage marker antibody combination (anti-
CD31, anti-CD45 and anti-CD140b; Table S1) designed to exclude endothelial, hematopoietic, and
leukocyte cells. The remaining lineage-negative cell superpopulation was sorted into basal
(EpCAM'°%/CD49f"), luminal progenitor (EpCAMM/CD49f"), and luminal (EpCAMM/CD49f°%) cell
types. Total RNA was extracted and ribodepleted with the lllumina Ribo-Zero Plus rRNA depletion
kit. High-quality RNA (RIN > 9.0, measured in Agilent 4200 Tapestation) was sent to NovogeneAIT
Genomics (Singapore) for 150 paired end short-read total RNA sequencing, performed on the
Illumina Novoseq 6000 platform. Each sample was sequenced across 2-3 lanes, yielding 30.6-
67.3M read pairs (average of 49.9M). Base call accuracy for every sample was between 99.95-
99.99% (average Phred-scale quality between 37 and 39). More details on sequencing quality and
general metrics are given in File S1 and Tables S1-4.

Transcriptome assembly

We designed a multistep computational pipeline for IncRNA discovery from bulk RNAseq based
on de novo transcript assembly (Figs. 1a and S1 and File S1). The pipeline is subdivided in 3 main
steps: (1) pre-processing of reads to remove contaminants (e.g. adapters and reads from
ribosomal RNAs) and assess low-frequency k-mers correcting sequencing errors, (2) de novo
assembly of transcripts and (3) identification of noncoding transcripts and IncRNAs. Additionally,
quality control routines were implemented at every step of the pipeline to ensure the overall
guality of the assembly met the highest standards (Table S5). All scripts used in the pipeline are
deposited in GitHub (Script File 1).

In step 1, reads were corrected with Rcorrector v.1 >? and ‘uncorrectable’ reads subsequently
removed by FUR-PE v.2016. Adaptors were removed by Trimmomatic v.0.36 >3 and ribosomal
RNA reads filtered by BBduk v.2019. Strandness of the RNAseq library was confirmed by RSeQC
v.2.6.4 %, Next, in step 2, we combined reads from all cell populations as input for Trinity v.2.8.4
12 keeping the normalized read coverage at 50 to prevent fragmented transcripts. Completeness
of the initial assembly was confirmed using BUSCO v.20161119 4. TransRate v.1.0.3 > was used
to assess assembly quality and as a filtering tool, selecting high-quality transcripts based on
features such as read support and quality of base calling. Transcripts were also filtered by explicit
read support, using FPKM measures. To differentiate unspliced transcripts from sequencing
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noise, we enforced a strict read support of 3 FPKM for monoexonic transcripts, relaxing the cut-
off to 0.5 FPKM for multiexonic transcripts. We have previously shown that IncRNAs expressed
at ~0.5 FPKM are experimentally confirmed with an 80% success rate >°. In step 3, we identified
noncoding transcripts candidates. Four programs (CPAT, CNCI, CPC2 and PLEK, all run through
ezLncPred v.1.0 ®) were used to predict the coding potential of transcripts. We considered all
transcripts with no coding potential detected by at least two different tools to be true positives.
In parallel, we submitted the assembled transcripts to FEELnc v.0.2 7 for classification.
Transcripts were aligned to the GENCODE human genome (version GRCh38) with Minimap2
v.2.16 >¢. Both GENCODE-annotated protein-coding and confirmed IncRNA genes were supplied
to train the machine learning algorithm of FEELNcsiter, Wwhich filtered non-IncRNA transcripts and
transcripts shorter than 200 nucleotides. The FEELNCcodpot module was used to compute a coding
potential score and assign a confidence level to potential ORFs. The FEELnCassifier module was
then used to detect the nearest annotated transcript and further classify the IncRNAs based on
genomic position respective to protein-coding genes. Finally, we filtered out IncRNAs identified
by FEELnc for which lack of coding potential was not confirmed by ezLncPred, obtaining the set
of normal breast IncRNAs (named NB-IncRNAs).

Annotation of NB-IncRNAs in the human genome

We used Gmap v2020-09-12 >’ to align NB-IncRNAs to the reference genome and create a bed-
type file of coordinates. Aligned NB-IncRNAs were intersected by Bedtools v.2.29.0 with the
GENCODE GRCh38 transcriptome and matches with minimum overlap of 75% and on the same
strand were removed from the final set of NB-IncRNAs, unless the GENCODE transcript was
annotated as a IncRNA (Script File 2). The same method was used to intersect NB-IncRNAs with
the in-house database of known IncRNAs (File S2 and Table S8).

Expression of NB-IncRNAs in the main mammary epithelial cell types

To assess the expression of NB-IncRNAs in the bulk RNAseq samples we used Salmon v.1.3.0 %8
(Script File 3). We then filtered transcripts by expression, requiring at least 1 TPM (transcript per
million), to obtain the lists of NB-IncRNAs expressed in each sample. Transcripts present in at
least 75% of the replicates of each cell type (i.e. four out of five samples for the luminal mature
and basal types and three out of four samples for the luminal progenitor type) were deemed
‘consistently expressed’. From the consistently expressed, those present in only one of the three
populations are referred to as ‘uniquely consistently expressed’, or population-specific. We then
compared the FEELnc-assigned protein-coding partners of these population-specific NB-IncRNAs
with the list of 359 markers retrieved from the literature (Table S8).

Long-read and TSS support for NB-IncRNAs

Publicly available long-reads from MCF7 and MCF10A cells (PRJIEB44348 and PRINA522784, File
S1 >°) obtained by direct RNA sequencing in the Oxford Nanopore Technologies platform were
obtained through the SRA portal (https://www.ncbi.nlm.nih.gov/sra). In total, there were 32.7M
MCF7 reads of 829 nucleotides and nearly 320,000 MCF10A reads of 971 nucleotides.
Additionally, we generated 33.1M long-reads from SUM149 breast cancer cells at an average
length of 1,184 nucleotides. Total RNA was sent for long-read cDNA sequencing by PromethION
to the Garvan Institute Nanopore Sequencing Facility (Australia). All long-reads were aligned to
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NB-IncRNAs using standalone BLAT v.35 ©°, forcing no gaps in high-scoring blocks and with
minimum sequence identity of 80% (-maxGap=0 -minldentity=80), set to account for the
characteristically lower accuracy of long-reads. BLAT was allowed to run in each file for 300 CPU
hours. Nearly 3.6M MCF10A transcripts, 1.7 billion MCF7 transcripts and 4 billion SUM149
transcripts aligned to NB-IncRNAs. Alignments were further filtered for a minimum of 70%
reciprocal coverage and a maximum of 10% indels at aligned regions, in either sequence. To
confirm the TSSs of assembled transcripts, public RAMPAGE data of normal breast (ENCODE
entries ENCSR909QWB and ENCSR598TAK, File S1) were obtained from the ENCODE project
database (https://www.encodeproject.org/rampage). In-house RAMPAGE libraries were
sequenced as 150bp paired-end reads, demultiplexed using the icetea library in R 6.
Demultiplexed RAMPAGE libraries and RNAseq libraries were aligned to the reference genome
(GENCODE GRCh38) supplemented with the NB-IncRNAs using STAR v.2.7.1a 62. RAMPAGE peaks
were called using the call_peaks script in GRIT v2.0.4.

Clustering single cells using different gene sets

Data from a C1 Fluidigm scRNAseq experiment containing 867 cells was obtained from the SRA
database (PRINA450409, File S4 ©). Authors collected samples from reduction mammoplasties
performed in age-matched caucasian females at post-pubertal and pre-menopausal stage. No
information on their parity and menstrual status was available. Sequencing reads were aligned
to the references with Bowtie2 v.2.2.9 %3 and analyzed with RSEM v.1.3.1 4, using the single-cell-
prior option, to obtain matrices of transcript counts (Script File 4). The same process was
repeated with different references: (i) the entire annotated human transcriptome (GENCODE
GRCh38), (ii) the set of NB-IncRNA transcripts, (iii) a subset of ‘(i) depleted of protein-coding
genes and annotated IncRNAs and (iv) a merge of ‘(i) and ‘(ii)’. RSEM count matrices were
imported to Seurat v.4.0.4 ® using Melange v.0.1.0. We then performed quality control,
excluding cells with less than 900 detected features when protein-coding genes were considered
or 300 cells otherwise (File S4), as well as excluding all genes not detected in at least three cells
after filtering. Normalization was performed using the LogNormalize function with a scale factor
of 10,000. Principal component analysis was performed considering the 2,000 most variable
features defined with FindVariableFeatures using the variance-stabilizing transformation (vst)
method. Before proceeding, we defined the dimensionality and resolution for each experiment
after assessing Seurat’s ‘straw’ and ‘elbow’ plots and ClusTree v.0.4.4 % clustering trees (Fig. S6).
Specific parameters selected for each clustering experiment are shown in File S4. Following
dimensionality reduction, clustering was performed using FindNeighbors and FindClusters and
visualized with the Uniform Manifold Approximation and Projection (UMAP, File S2) method.
Clustering of 10x Genomics data from the same reference ® was performed in a similar way,
except counts were obtained with the CellRanger count module. The command-lines used to run
Seurat and the accessory tools are contained in Script File 5.

Clustering brain cells based on NB-IncRNA expression

The transcriptomes of 466 brain cells were obtained from the SRA database (PRINA281204, File
S2 39). Cells were clustered using the protocol described above, with at least 300 genes required
per cell and a minimum of three cells expressing each gene. For comparison, we also clustered
cells using the expression of GENCODE-annotated genes, raising the minimum number of
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required genes per cell to 900. We used labels provided by the authors and the marker genes
listed in the original publication to characterize the cell subpopulations in each cluster 3.

Cluster specificity index

An in-house method (Script File 6) was used to compute gene expression averages across cells in
each cluster (with R v.3.6.2). Briefly, specificity indices for each transcript were computed using
TSPEX v.0.6.1, a package offering twelve distinct tissue-specificity metrics . After consideration,
we selected the TSI 28 as our preferred metric of specificity. The TSI defines specificity as the
median expression of each transcript in each cluster divided by the sum of the medians in all

clusters: TSI ; = =

X i
Cluster specificity indices (CSI) were then computed by averaging the specificity indices of all
transcripts per cluster and multiplying the resulting number by a factor of 100, for easier

interpretation.

Cluster stemness

Teschendorff and Enver developed a method named Single-Cell ENTropy (SCENT) to quantify the
potency of single cells 4°. We used SCENT to calculate the signaling entropy (SR) of cells which is
a measure of gene expression promiscuity based on a gene interaction network. To account for
the contributions of IncRNAs, we replaced the in-built protein-coding gene interaction network
of SCENT with an in-house coding <-> noncoding network based on LncRNAs2Pathways #! data.
Details on how we obtained information from LncRNAs2Pathways, formatted the network and
incorporated into SCENT are available in File S5. Cell-level SR scores were calculated based on
gene expression matrices and averaged to yield cluster-level SR scores for L-clusters (Script File
7). Cluster-level SR values were interpreted as a measure of stemness (i.e. the higher the value,
the more likely for a cluster to harbor stem-like cell subpopulations). Additionally, we used
Monocle v.2.18.0 % to analyze the distribution signaling entropy along reconstructed cell
hierarchies (Script File 8). Monocle applies a negative binomial model to test for differential
expression using the same gene expression matrix (of raw counts) provided to Seurat. After
normalizing the data and filtering for extreme RNA numbers, we used Monocle’s
reduceDimensions and orderCells functions to perform dimensionality reduction with the
DDRTree method and sort cells along the inferred trajectory, coloring by cell-level SR value.

Differentiation trajectories in the mammary epithelium

Being confident that the obtained cell hierarchies recapitulated the mammary differentiation
process, we used Slingshot v.1.8.0 ®° to plot trajectories, based on Seurat clustering and manually
assigning the root state to cluster L3 (Script File 9).

NB-IncRNA signatures to discern breast cancer subtypes

We used an in-house pipeline (Script File 10) to map RNAseq reads from TCGA 3 to the GENCODE
human transcriptome supplemented with NB-IncRNAs. Briefly, we used Trimmomatic v.6.36 to
remove sequence contaminants, STAR v.2.7.1a %2 for sequence alignment and RSEM v.1.3.1 % to
estimate read counts per transcript, adding TPM values to compute gene expression levels.
Subtypes were assigned to each TCGA sample according to the classification in Netanely et al **.
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Bulk expression was defined as the average across all samples of each subtype for TCGA data and
average pseudobulk expression for normal breast cell clusters. Correlation tests between bulk
expression profiles of A-clusters or L-clusters and TCGA subtypes were based on Pearson
coefficients and associated p-values, calculated in R. The Genefu package v.2.22.1 7% was used to
compare bulk expression profiles of annotated genes in clusters with molecular subtypes of
breast cancer defined by either the ‘PAM50’ or the ‘ClaudinLow’ panels.

To find markers of each breast cancer subtype, MGFR (Marker Gene Finder in RNAseq data)
v.1.16.0 % was run independently 500 times with sets of twelve TCGA samples (three samples
per subtype) in a bootstrap manner (Script File 11). Each run resulted in a list of candidate
markers and the 300 most frequently retrieved genes were selected for the final set of subtype
markers. We repeated the same process for GENCODE-annotated genes and NB-IncRNAs
separately. To assess the performance of the method, we compared the marker lists obtained
for annotated genes with previously published marker lists 47, calculating the significance of the
overlap with Fisher's exact tests (using the GeneOverlap R function, Script File 12). The top 20
most frequent (from the 300) NB-IncRNA markers were used to generate PCA plots and assess
their ability to discern between different TCGA subtypes.

Statistical analyses and data plotting

When two sets of annotated genes were being compared for enrichment, we used the
GeneOverlap function of R, with background defined as the total number of annotated genes
(unless otherwise stated) and used Fisher's exact test to define significance. R was also used to
assess normality of datasets, perform T-tests, Wilcoxon tests and calculate Pearson correlations
and compute their associated p-values. To calculate the average, median, sum, minimum and
maximum values of any set of values, we used an in-house script. We used R functions ggplot,
heatmap and prcomp to plot most graphs, including boxplots, bar plots, pie charts, heatmaps and
PCA plots. Unless otherwise specified, R v.4.0.2 was used. The main accessory scripts are
provided in Script File 12.

Data Availability
Raw sequence files were deposited at the SRA under the identifier SUB11631006.

Code Availability

All the computational scripts used in this work (Script Files 1-12) are available through GitHub at
the Functional Genetics Laboratory page, under the repository named ‘NB-IncRNAs’:
https://github.com/FunctionalGeneticsLab/NB-IncRNAs.
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Supplementary Figure Legends

Fig.S1 Computational pipeline for the identification of NB-IncRNAs.

Details on the multistep computational pipeline designed for de novo transcriptome assembly.
Each main step (A-D) is expanded from Fig. 1a to show the intermediate steps and the tools used
to perform each task. The approximate number of transcripts left after each filtering routine is
shown as boxes in grayscale.

Fig. S2 Correspondence between L-clusters and A-clusters, based on cell composition.

Cluster correspondence was defined based on the cell composition of each A-cluster (left) and L-
cluster (right). Corresponding clusters are connected with black lines. a Cells in cluster AO are
spread in clusters L1, L6 and L7. b Cells in clusters A1, A2 and A4 are mostly (>80%) assigned to
respectively clusters LO, L4 and L2. ¢ Most cells in clusters A3 and A6 are combined into cluster
L3. d Smaller proportions (15-25%) of cells from clusters A1, A3, A6 and A7 are combined into
cluster L5.

Fig. S3 Higher cluster specificity is a characteristic of NB-IncRNAs.

a UMAP showing normal breast cell clusters obtained based on gene expression of annotated
genes which are not protein-coding or confirmed IncRNAs (O-clusters), with their corresponding
cluster specificity index (CSI). b UMAP showing normal breast cell clusters obtained based on
GENCODE-annotated gene expression (A-clusters), with their corresponding CSIl. ¢ Dotplots
showing the difference in CSI for corresponding clusters in ‘@’ and ‘b’. Dots were colored
according to the represented O-cluster or A-cluster, bold horizontal lines mark the average CSI
for each gene set and the p-value (0.4; Fisher’s exact test) shows the difference is not significant.
As the CSls of O-clusters were not normally distributed (according to the Shapiro-Wilk test), a
Wilcoxon rank test was performed instead of a t-test.

Fig. S4 Notch, Hedgehog and Wnt signaling pathways are activated in cluster L3.

As a method to determine the L-cluster most likely harboring normal breast stem-cells, we
assessed the expression of genes involved in the three main pathways associated with breast
stemness, a Notch, b Hedgehog and ¢ Wnt signaling. Based on the summarized gene expression,
shown as the bottom row in each heatmap, cluster L3 was the one with highest overall expression
of the genes of interest for each pathway.

Fig. S5 Seurat-assigned NB-IncRNA markers for cell clusters of 10x Genomics scRNAseq data.

a Expression patterns of identified NB-IncRNA markers for specific cell subpopulations in clusters
computed for 10x Genomics scRNAseq data based on NB-IncRNA expression (Fig. 8a). b Forced
overclustering of 10x Genomics scRNAseq data based on expression of GENCODE-annotated
genes also resulted in the subdivision of the luminal population into three clusters, but no
additional stem-like clusters were observed. ¢ Known (Table S8) markers of stem cells in each of
the clusters labeled as “putative stem-like” in Fig. 8a-c.

Fig. S6 Clustering trees showing the relationships between clusters at various resolutions.

Clustering trees generated with ClusTree v.0.4.4 ® for clustering experiments based on the
expression of a NB-IncRNAs or b GENCODE-annotated genes.
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