
 

1 

Title: Redefining normal breast cell populations using long noncoding RNAs 
 
Authors 
Mainá Bitar1, Isela Sarahi Rivera1,2, Isabela Pimentel de Almeida1, Wei Shi1, Kaltin Ferguson3, 
Jonathan Beesley1, Sunil R Lakhani3,4, Stacey L Edwards1*, Juliet D French1* 
 
Affiliations 

1 Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia. 
2 School of Biomedical Science and Institute of Health and Biomedical Innovation, Faculty of 
Health, Queensland University of Technology, Brisbane, 4001, Australia. 
3 UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, 
4029, Australia. 
4 Pathology Queensland, The Royal Brisbane & Women’s Hospital, Brisbane, 4006, Australia. 

* These two authors contributed equally to this work 
 
Correspondence:  
Juliet.French@qimrberghofer.edu.au 
Maina.Bitar@qimrberghofer.edu.au 
+ 61 7 3362 0222 
 
Keywords: 
mammary epithelial, long noncoding RNA, lncRNA, normal breast, stem cell, breast cancer, 
subtype, single-cell, transcriptome 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2022. ; https://doi.org/10.1101/2022.09.06.506112doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506112
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

ABSTRACT 
Single-cell RNAseq has allowed unprecedented insight into gene expression across different cell 
populations in normal tissue and disease states. However, almost all studies rely on annotated 
gene sets to capture gene expression levels and sequencing reads that do not align to known 
genes are discarded. Here, we discover thousands of long noncoding RNAs (lncRNAs) expressed 
in human mammary epithelial cells and analyze their expression in individual cells of the normal 
breast. The human mammary epithelium is a highly dynamic tissue, composed of three main cell 
populations, basal, luminal progenitor and luminal mature cells, that can originate different 
subtypes of breast cancer. We show that lncRNA expression alone can discriminate between 
luminal and basal cell types and define subpopulations of both compartments. Clustering cells 
based on lncRNA expression identified additional basal subpopulations, compared to clustering 
based on annotated gene expression, suggesting that lncRNAs can provide an additional layer of 
information to better distinguish breast cell subpopulations. In contrast, breast-specific lncRNAs 
poorly distinguish brain cell populations, highlighting the need to annotate tissue-specific 
lncRNAs prior to expression analyses. Overall, our results suggest that lncRNAs are an unexplored 
resource for new biomarker and therapeutic target discovery in the normal breast and breast 
cancer subtypes. 
 
INTRODUCTION 
Breast cancer is characterized by multiple subtypes, each with distinct molecular features and 
clinical outcomes. One of the major factors defining these molecular features is their cell-of-
origin. Delineating the different cell subpopulations in the normal breast is therefore critical for 
understanding breast cancer etiology. Breast tumors develop from epithelial cells of the 
mammary gland, which comprise an inner layer of secretory luminal cells and an outer layer of 
basal cells with myoepithelial characteristics. Three main epithelial cell populations are known to 
compose the breast epithelium: basal, luminal progenitor and luminal mature cells 1. While there 
is evidence for additional subpopulations, including a bipotent progenitor 2, the individual 
lineages are predominantly self-maintained 1,3. However, the full cellular spectrum and how 
these contribute to the different subtypes of breast cancer remains to be determined.  
 
Single-cell transcriptomics is allowing us to exploit differential gene expression as a means to 
define cell types and states. Recent surveys of gene expression in the normal human breast 
epithelium at single-cell level have discovered new cell types and mapped the trajectory of 
mammary epithelial lineages 4-7. Like most single-cell RNA sequencing (scRNAseq) analyses, these 
studies only assess the expression of annotated genes, represented in curated databases such as 
GENCODE and Ensembl, and sequencing reads that do not map to these regions are lost in the 
analysis. Since the vast majority of the long noncoding RNAs (lncRNAs) are currently unannotated 
8, the expression of lncRNAs in scRNAseq data remains largely unexplored. 
 
LncRNAs are a diverse class of RNA transcripts >200 nucleotides long that lack protein-coding 
potential. In general, lncRNAs display exquisite tissue- and cell type-specific expression and have 
been implicated in almost all biological processes. Many lncRNAs regulate nearby gene 
expression through epigenetic, transcriptional or post-transcriptional mechanisms 9. LncRNAs 
can also function as molecular scaffolds for protein complexes or promote phase separation of 
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functional subcellular domains 10. LncRNAs also play crucial roles in organ development and 
establishment of cell lineages by stem-cell fate determination 11. Many lncRNAs are directly 
implicated in human disease, functioning for example in cancer-related pathways that influence 
phenotypes such as apoptosis, cell growth, invasion and genomic instability. Here, we discovered 
>13,600 new lncRNAs expressed in the human breast epithelium and surveyed their expression 
across epithelial cell subpopulations in very high resolution. We show that lncRNA expression 
alone can distinguish different cell subpopulations and different cancer subtypes, revealing 
several novel markers of potential relevance for breast cancer. 
 
RESULTS 
Assembly of the normal human breast transcriptome 
We obtained normal breast tissue from five healthy women undergoing reduction mammoplasty 
(Table S1), selected epithelial cells based on the absence of CD31, CD45 and CD140b markers 
(Table S1) and sorted these cells into basal, luminal progenitor and luminal mature populations, 
according to their levels of EpCAM and CD49f (Table S1). Bulk strand-specific RNA sequencing 
was performed on each sorted population at high depth, to allow accurate transcript assembly 
and assignment, even for genes with very low expression levels 12. On average ~50M reads were 
sequenced per cell population per sample (Table S2). Base call accuracy surpassed 99.99% after 
trimming and correction (Tables S3 and S4). De novo assembly of transcripts and discovery of 
lncRNAs were conducted using an in-house pipeline (Fig. 1a, Fig. S1 and File S1), which, according 
to the metrics defined in a recent benchmarking study 13, performed >10% better than the best-
ranked assembly tool (Table S5; File S1). 
 
The initial assembly contained >1M preliminary transcripts (Fig. 1b) and covered one-third of the 
human genome (Table S5). Completeness was assessed with BUSCO 14, confirming the presence 
of >99% of the conserved eukaryotic orthologs (Table S5). We optimized the initial assembly with 
TransRate 15, filtering transcripts with lower scores. The optimized assembly contained 627,743 
high-quality transcripts (average contig length of 826 nucleotides and N50 of 1,383; Fig. 1b and 
Table S5). To ensure the authenticity of the assembled monoexonic transcripts, we set a strict 
expression level cut-off (3 fragments per kilobase per million, FPKM), six times the minimum 
required for multiexonic transcripts (File S1). Approximately 95% of multiexonic (~85,000) and 
60% of monoexonic (~300,000) transcripts were retained after enforcing minimum expression 
support. The complete transcriptome of the normal breast epithelium consisted of 384,182 
coding and noncoding transcripts (File S1). 
 
Discovery and annotation of lncRNAs in human breast epithelium 
We used ezLncPred 16 to run multiple predictors (CNCI, CPAT, CPC2 and PLEK) and detected 
coding potential in ~20% (83,034) of the transcripts (Fig. 1b, Table S6). In parallel, we used FEELnc 
17 to classify transcripts as lncRNAs, a machine learning-based algorithm which performs equal to 
or better than GENCODE and NONCODE consortia classifiers 18,19. FEELnc identified 30,722 
lncRNA candidates (Fig. 1b), 90% of which were supported by two or more ezLncPred predictors 
(Table S6). To minimize false positives, we filtered out the 10% unsupported lncRNA candidates, 
then discarded candidates with >75% overlap to annotated protein-coding transcripts on the 
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same strand. The final set of curated lncRNAs contained 18,364 transcripts (Fig. 1b), which we 
will refer to as normal breast lncRNAs (NB-lncRNAs). 
 

 
Fig.1 Identification of NB-lncRNAs from human breast epithelium. 
a Schematic of the bulk RNAseq and de novo assembly experimental design. Strand-specific RNAseq libraries were 
prepared from total RNA extracted from FACS sorted breast epithelial cells. A multistep computational pipeline was 
designed for transcriptome assembly and compared with state-of-the-art tools, showing higher performance. Each 
main stem (A-D) is described in greater detail in Fig. S1. b Number of assembled transcripts passing each filtering 
step, from raw transcriptome assembly to identification of NB-lncRNAs. c-g UCSC genome browser (hg38) diagram 
showing NB-lncRNAs (purple) and GENCODE-annotated protein-coding (blue) or noncoding genes (green). Rampage-
detected transcription start sites (TSS) and enhancer elements are shown as black boxes. 
 
We tested the performance of our transcript reconstruction strategy by assessing the full-length 
read support and transcription start site (TSS) of the assembled NB-lncRNAs. Using public 
RAMPAGE data of normal breast samples 20 and in-house RAMPAGE data of breast cell lines 
(BT549, MCF10A, MDAMB231 and SUM149), we confirmed the TSS of 10% (1,810) of the NB-
lncRNAs (Fig. 1c). Additionally, full-length transcripts from public long-read sequencing of MCF7 
and MCF10A and in-house long-read sequencing of SUM149 breast cells confirmed the exon 
structure of 7% (1,310) of the NB-lncRNAs (Fig. 1d). Overall, we confirmed critical features of 
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>15% (2,863) of NB-lncRNAs (Table S7 and File S1), in agreement with previously reported 
observations (e.g. 21,22). From the 18,364 NB-lncRNAs, 3,642 (20%) coincide with GENCODE-
annotated transcripts and 1,116 with ncRNAs from our in-house compilation of public databases 
(Table S8; File S2). GENCODE-annotated NB-lncRNAs include 535 antisense genes, 388 intergenic 
lncRNAs and 100 pseudogenes (Table S9). In total, >85% of the NB-lncRNAs are novel genes or 
known lncRNAs and the remaining are noncoding isoforms of annotated protein-coding genes 
(Table S9). Notably, transcripts of >100 breast cancer-related genes from lncRNAfunc 23, 
Lnc2Cancer 24 and a study by Diermeier et al 25 were recovered as NB-lncRNAs (Table S9; File S3). 
 
Many lncRNAs act by regulating the expression of nearby protein-coding genes. We characterized 
regulatory NB-lncRNAs by reciprocal sequence overlap, identifying transcripts originating from 
known enhancer elements (enhancer-derived lncRNAs, elncRNAs), promoter regions (promoter-
associated noncoding RNAs, pancRNAs) or terminal untranslated ends (terminus-associated 
lncRNAs, TALRs) of annotated genes. In total, we detected 349 NB-elncRNAs, 1,968 NB-pancRNAs 
and 825 NB-TALRs. Details are provided in the Supplementary Material (File S3; Table S10) and 
examples of each class are shown in Figs. 1e-g. 
 
Bulk expression of NB-lncRNAs in normal breast epithelium 
We investigated the expression patterns of the NB-lncRNAs in the sorted breast cell populations 
used for the de novo assembly. On average, 10,000-12,000 transcripts are expressed at >1 TPM 
in each sample, with 65-75% being expressed in samples of the same cell population from all five 
individuals (Table S11). Over one-third of the expressed transcripts are common to the three cell 
populations and, as expected, the two luminal cell populations share nearly four times more 
expressed transcripts with each other than with the basal population. Considering only 
transcripts expressed at >1 TPM in at least 75% of the individuals, we found 6,371 NB-lncRNAs in 
luminal mature cells, 5,922 in luminal progenitor cells and 4,577 in basal cells. From these, 
respectively 1,424 (22%), 957 (16%) and 752 (16%) are unique to each cell population and these 
population-specific transcript sets are enriched (p-values of overlap <= 7.2e-62) in NB-lncRNAs 
located nearby annotated markers of the respective cell population 26 (Figs 2a-c). These results 
provide evidence that expression of population-specific NB-lncRNAs may be related to annotated 
marker gene activity in the corresponding cell types. 
 
FEELnc identifies the closest annotated genes to the novel lncRNAs and predicts the most likely 
mRNA-lncRNA partners based on the lncRNA class 17. Among the FEELnc-assigned partners of the 
population-specific NB-lncRNAs for luminal mature, luminal progenitor and basal cells, 
respectively 27, 34 and 31 are established markers (File S2) of normal breast cell populations 
(Tables S8 and S11). FEELnc-assigned partners of population-specific NB-lncRNAs in the basal cell 
population include known basal markers, such as ACTA2, CCND2, DKK3, ITGA6, SPARC, TP63 and 
VIM (Figs. S2a-c). Similarly, in the luminal mature and luminal progenitor cell populations, 
partners of several population-specific NB-lncRNAs are established marker genes, including 
luminal mature markers AKT1, ANKRD30A, IGF1R, PRLR and SYTL2 and luminal progenitor 
markers CD24, CD44, KIT, LTF, PROM1, SAA2 and SLPI (Figs. S2a-c). Notably, several NB-lncRNAs 
are expressed in both luminal populations (but not in basal cells), for example DN34862C1G1I1, 
an antisense transcript of ELF3 which is a general marker of luminal cells 27. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2022. ; https://doi.org/10.1101/2022.09.06.506112doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506112
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

 
 
Fig. 2 Cell population-specific NB-lncRNAs target protein-coding markers of the same cell type. 
a FEELnc-assigned partners of NB-lncRNAs specifically expressed in each of the three main epithelial cell populations 
[i.e. luminal mature (top, blue), luminal progenitor (middle, green) and basal (bottom, orange)] were compared with 
previously reported markers of cell types, showing significant overrepresentation of the corresponding type. 
Enrichment was confirmed based on the p-value obtained for Fisher’s exact tests. b Similar analyses were performed 
using an in-house dataset of known markers of several normal breast cell types, also showing a higher proportion of 
the population-specific NB-lncRNA partners are characteristic of the corresponding cell type. c Heatmaps of gene 
expression confirm the NB-lncRNAs as population-specific. 
 
NB-lncRNA expression distinguishes the main breast epithelial cell types in scRNAseq data 
To explore the ability of NB-lncRNAs to distinguish normal breast cell subpopulations, we 
quantified the expression of NB-lncRNAs using published scRNAseq data of 867 cells from 3 
donors, with >1.5M reads per cell 6. Using flow cytometry, Nguyen et al sorted cells from the 
luminal and basal populations before performing scRNAseq (File S4). On average, each cell 
expressed close to 900 NB-lncRNAs, with over one-third expressing at least 1,000 NB-lncRNAs. 
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Eight clusters were obtained after filtering, normalizing and clustering cells with Seurat (Fig. 3a; 
L-clusters L0 to L7, where L stands for lncRNA). Based on flow cytometry labels provided in 
Nguyen et al 6, three L-clusters were predominantly luminal and five predominantly basal, 
characterized by at least 70% of the cells having the corresponding label (Fig. 3a and Table S12). 
The existence of multiple clusters for each cell type indicated the presence of subpopulations, 
but as L-clusters were defined based on NB-lncRNA expression only, we could not further 
characterize them according to protein-coding markers. To circumvent this, we re-clustered the 
cells based on the expression of GENCODE-annotated genes, characterized the resulting clusters 
(Fig. 3b; A-clusters, where A stands for annotated) and used this information to label L-clusters. 
Correspondence between A-clusters and L-clusters was inferred based on the number of cells 
they shared (Table S12 and Fig. S2). 
 

 
Fig. 3 NB-lncRNAs and GENCODE-annotated genes can distinguish breast epithelial cell types. 
a Uniform manifold approximation projection (UMAP) of normal breast cells, clustered based on NB-lncRNAs 
expression, quantified on Fluidigm scRNAseq data (L-clusters). Cells are color-coded for clusters, which are 
numbered according to cell counts. b UMAP of normal breast cells, clustered based on GENCODE-annotated gene 
expression, quantified on Fluidigm scRNAseq data (A-clusters). c Heatmap showing the top ten Seurat-assigned 
markers for each L-cluster. d Heatmap showing the top ten Seurat-assigned markers for each A-cluster. e Heatmap 
showing Seurat-assigned markers for A-clusters previously reported in the literature. 
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Characterization of A-clusters based on known protein markers 
Eight A-clusters, also corresponding to three predominantly luminal and five predominantly basal 
cell populations, were obtained (A0 to A7, Fig. 3b and Table S12). In agreement with Nguyen et 
al 6, the expression of ~5,000 annotated genes was detected per cell. Seurat uses gene expression 
patterns to define a set of markers for each cluster with the FindAllMarkers function (Table S13). 
We plotted the top ten most significant Seurat-assigned markers of L-clusters (Fig. 3c) and A-
clusters (Fig. 3d) to assess how well they distinguish clusters. For A-clusters, we also plotted 
markers previously defined in the literature (Table S8 and Fig. 3e) and observed that Seurat-
assigned markers define the cell populations better than literature markers. 
 
We first assessed the identity of A-clusters based on the expression of frequently used protein-
coding antigens (Table S12 and File S4 28). Detection of the main keratin immunohistochemistry 
marker genes (i.e. KRT5, KRT6 and KRT14 for myoepithelial and KRT8 and KRT18 for luminal cell 
types) and other relevant protein-coding marker genes (MME and CD44 for basal and EPCAM, 
MUC1, PROM1 and KIT for luminal cell types) by Seurat generally coincided with the 
correspondent FACS labels (Table S12). Physiological characteristics of both luminal and basal 
cells were also considered. For example, the sets of Seurat-assigned markers of clusters A0 and 
A6 were the most significantly enriched for EMT-related genes and genes characteristic of 
claudin-low status (enrichment p-values < 4.0 e-35; Tables S8 and S12), two hallmarks of basal 
cells 29-31. Cells in the luminal compartment are known to have shortened telomeres, which elicit 
DNA repair 32. Markers of clusters A2 and A4 were the most significantly enriched on genes 
involved in telomere maintenance and markers of cluster A4 on DNA repair genes (enrichment 
p-values < 8.0e-03; Tables S8 and S12). 
 
To differentiate luminal progenitors from luminal mature subpopulations, we used the annotated 
gene markers obtained by Pal et al 26 based on scRNAseq of normal mammary glands. When 
compared to Seurat-assigned markers of each A-cluster, these markers unequivocally 
(enrichment p-values < 1.0e-10) characterized clusters A0, A3 and A6 as basal, clusters A1 and A4 
as luminal progenitor and cluster A2 as luminal mature (Table S12). Both luminal progenitor 
clusters (A1 and A4) also express higher levels of H2B genes, shown to have short-term 
repopulating potential in mice 33. In addition, progenitor cluster A1 is associated with highest 
expression of luminal alveolar and hormone-sensing markers (e.g. EHF, S100A6), whereas A4 has 
high expression of KIT, which is a hallmark of ductal progenitors and cluster A2 has a classical 
mature ductal cell signature (FOXA1high and ELF5low) and hormone-sensing characteristics 
(highest expression of AREG, CITED1, LY6D and PRLR) 34-36. Notably, all three luminal clusters are 
devoid of ESR1 and PGR expression. 
 
We completed the annotation of A-clusters comparing Seurat-assigned markers with an in-house 
dataset comprising 359 markers from the literature (Tables S12 and S8, File S2 and Fig. 3e). Based 
on the overlap between these gene lists, we confirmed cluster A0 as basal with strong 
myoepithelial signature (45% of the known markers), clusters A1 and A4 as luminal progenitor 
(25% and 28% of the known markers) and cluster A2 as luminal mature (13% of the known 
markers). Clusters A3 and A6 have basal origins and the highest number of breast stem-cell 
markers identified by Seurat (12 and 16 known markers respectively, or 37% and 31% with 
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enrichment p-values < 1.0e-10). Markers in both clusters include JAG1, ITGB1 and YBX1, while 
cluster A3 also expresses high levels of CD44, ZEB1 and others and cluster A6 of GNG11, TCF4 
and others. Clusters A5 and A7 remained undefined, with no known markers in the list generated 
by Seurat. Additional investigation showed evidence of cell death occurring in both of these 
clusters (based on mitochondrial gene markers, File S4) and traced cells to basal origins 
(correspondence p-values 0.01 and 2.0e-11, respectively). 
 
Further characterization of subpopulations represented by L-clusters 
We labeled each cell according to the A-cluster they were assigned to and characterized L-
clusters based on their cell composition (Fig. S2 and Table S12). More than 95% of the cells in 
cluster L0 are in luminal progenitor cluster A1. Cluster L1 is predominantly basal, with ~90% of its 
cells in cluster A0. Cluster L2 has ~80% of its cells in cluster A4 (luminal progenitor) and ~15% in 
cluster A2 (luminal mature). Cluster L3 represents a heterogeneous progenitor population, with 
~65% of its cells in cluster A6 and ~30% in cluster A3 (both of which have high numbers of stem-
cell markers). Cluster L4 has ~90% of its cells in cluster A2 (luminal mature). Cluster L5 is a mixed 
population with comparable portions of cells in clusters A1 (~15%), A3 (~25%), A6 (~15%) and A7 
(~20%). Clusters L6 and L7 are mainly (respectively ~70% and ~90%) formed by cells of cluster A0 
(basal). In summary, luminal clusters obtained based on GENCODE-annotated gene expression 
were replicated using NB-lncRNAs expression, while the heterogeneous basal cluster A0 is 
subdivided into three clusters L1, L6 and L7. Doubling Seurat’s resolution parameter for A-clusters 
subdivided cluster A0 in two cell subpopulations, one mainly (>80%) represented by cluster L1 
and another by clusters L6 and L7. The subpopulation that forms cluster L1 is marked by the 
expression of myoepithelial genes, such as hemidesmosome components (COL17A1, LAMA3 and 
LAMC1) and actin-binding genes (CALD1, MYLK and SVIL). The other subpopulation had more 
diverse markers, including genes with roles in vascularization and innervation (e.g. F3, PDGFA, 
SFRP1, SOD2 and TNC) and wound healing (CAV1 and PLAU), which are characteristic of the 
stroma. Cluster L5 is a mixed cluster which contains cells from different compartments and may 
represent a subpopulation of intermediate progenitor cells. Stem-like clusters A3 and A6 are 
merged into cluster L3, which congregates nearly twice as many stem-cell marker genes than any 
other cluster. 
 
Using Seurat we identified many NB-lncRNAs as potential biomarkers (Tables S13 and S14). 
Examples of luminal markers are: (i) DN86902C0G3I1 (cluster L0), transcribed from ERO1A, a 
gene that promotes metastatic colonization in breast cancer 37; (ii) DN574858C0G1I1 (cluster L2) 
antisense to the STAT3 activator SIX4 and (iii) DN91892C0G2I1 (cluster L4), intronic to ZEB1 (Fig. 
4a). Examples of basal markers are (iv) DN690057C0G1I1 (cluster L1), intergenic to breast 
progenitor marker YBX1; (v) DN21900C0G1I1 (cluster L6), intergenic to quiescence-regulator 
SATB2 and (vi) DN87246C0G1I6/FOXG1-AS1 (cluster L7), antisense transcript of proliferation-
related gene FOXG1 (Fig. 4b). Examples of NB-lncRNAs that regulate or are co-regulated with 
protein-coding genes are general basal marker NCF4-AS1 (DN1070C0G3I1; clusters L1, L6, L7), 
and general luminal marker AC005077.7 (DN262C0G1I12; clusters L0, L2 and L4). Both NB-
lncRNAs mirror the expression of their protein-coding counterparts (Figs. 4c, d), suggesting 
functional relationships. 
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Fig. 4 Seurat-assigned markers identified candidate NB-lncRNA biomarkers. 
a Expression patterns of three identified NB-lncRNA luminal markers in L-clusters. b Expression patterns of three 
identified NB-lncRNA basal markers in L-clusters. c, d Upper panels: UCSC genome browser (hg38) diagrams showing 
NB-lncRNAs (purple), GENCODE-annotated protein-coding (blue) or noncoding genes (green). Lower panels: 
Expression patterns of NB-lncRNAs in L-clusters (left) and correlated protein-coding genes in A-clusters (right), 
showing examples of co-expression between coding and noncoding genes at single-cell level. 
 
LncRNA expression better defines breast subpopulations than protein-coding genes  
We compared the expression pattern of lncRNAs and protein-coding genes at single-cell level. To 
minimize bias, we simultaneously quantified protein-coding genes, annotated lncRNAs and NB-
lncRNAs. First, we analyzed genes with ubiquitous (defined as detectable expression in >1/3 of 
the cells) or restricted (<1/3 of the cells) expression patterns and investigated differences 
between NB-lncRNAs and protein-coding genes. More than 25% of the protein-coding genes 
were ubiquitously expressed in normal breast cells, but only 6% of the annotated lncRNAs and 
<1% of the NB-lncRNAs (Fig. 5a, Table S15 and File S4). On average, protein-coding genes were 
expressed in ~140 cells, while annotated lncRNAs were expressed in ~30 and NB-lncRNAs in ~15 
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(Fig. 5b). In agreement with their expected biological function, the set of ubiquitously expressed 
protein-coding genes is enriched in known housekeeping genes (47%, p-value ~0; Table S15). 
Accordingly, protein-coding genes nearest or co-expressed with the 121 ubiquitously expressed 
NB-lncRNAs were also enriched for known housekeeping genes (46% with p-value 5.4e-31 and 
35% with p-value 9.6e-19; Table S15) e.g. GAPDH, HSPA5, IAH1, MKLN1, PSMD7, SYNCRIP and 
TIMM44. Analysis of genes with restricted expression showed the median cellular expression of 
NB-lncRNAs was nearly twice that of protein-coding genes (p-value < 1.9e-06; Fig. 5c). 
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Fig. 5 NB-lncRNAs have compartmentalized expression levels, which are higher at cell-level. 
a Proportion of NB-lncRNAs (purple) or GENCODE-annotated noncoding (green) or protein-coding (blue) genes with 
restricted (darker) versus widespread (lighter) expression patterns. b Boxplot of the number of cells in which NB-
lncRNAs (purple) or GENCODE-annotated noncoding (green) or protein-coding (blue) genes are expressed, from the 
total 741 cells. On average, NB-lncRNAs are expressed in ~15 cells, GENCODE-annotated noncoding genes in ~30 
cells and GENCODE-annotated protein-coding genes in ~140 cells. c Boxplots of the median expression of NB-
lncRNAs (purple) or GENCODE-annotated noncoding (green) or protein-coding (blue) genes per cell (in TPMs), 
showing NB-lncRNAs have higher cell-level expression. d UMAP showing normal breast cell clusters obtained based 
on NB-lncRNA gene expression (L-clusters), with their corresponding cluster specificity index (CSI). e UMAP showing 
normal breast cell clusters obtained based on GENCODE-annotated gene expression (A-clusters), with their 
corresponding CSI. f Dotplots showing the difference in CSI for corresponding clusters in ‘d’ and ‘e’. Dots were 
colored according to the represented L-cluster or A-cluster, bold horizontal lines mark the average CSI for each gene 
set and the p-value (0.016; Fisher’s exact test) shows the difference was significant. g Increase in normalized global 
SI levels, obtained as the normalized average of the CSIs of all clusters, as resolution is increased. 
 
Since NB-lncRNAs have a more restricted expression, we expected them to better define breast 
epithelial subpopulations than protein-coding genes. To test this, we first calculated the 
specificity index (SI) of each transcript in each cluster, which is their median expression in each 
cell of that cluster divided by the sum of their median expression in all clusters (based on 38). We 
then defined the cluster specificity index (CSI) as the average SI of all transcripts in each cluster. 
CSIs for L-clusters were always higher than for the corresponding A-cluster (Figs. 5d-f; p-value 
0.016), indicating that NB-lncRNA expression is more subpopulation-specific. For comparison, we 
re-clustered cells based on the expression of ~23,000 GENCODE-annotated genes that are neither 
protein-coding or confirmed lncRNAs (referred to as O-clusters, where O stands for other 
noncoding transcripts) and observed an overall decrease in CSI of correspondent clusters (Fig. S3; 
p-value 0.4). This confirmed that higher cluster specificity is a characteristic of NB-lncRNAs. 
 
We reasoned that, having higher cluster specificity could be a reflection of restricted NB-lncRNAs 
having compartmentalized expression within clusters, being limited to a subset of cells. To assess 
this, we enforced overclustering of normal breast cells, by increasing the resolution parameter in 
the FindClusters function of Seurat. Consistent with our hypothesis, increasing the number of 
clusters increased the specificity index of NB-lncRNAs but not of protein-coding genes. Indeed, 
gradually varying the resolution from 0.2 to 1.0 resulted in an 59% global increase in the global 
normalized SI of NB-lncRNAs, while for protein-coding genes the increase was of only 11% (Fig. 
5g). Additionally, 30% of the NB-lncRNAs but only 13% of the protein-coding genes became more 
cluster-specific (i.e. had higher global normalized SI) as resolution was increased. 
 
NB-lncRNAs poorly define cell populations in the human brain 
As the expression patterns of NB-lncRNAs confirmed their high cell subpopulation-specificity, we 
reasoned they would also be tissue-specific. To assess this, we tested their ability to cluster brain 
cells into defined subpopulations, using Fluidigm scRNAseq data derived for 466 cells isolated 
from healthy human brain samples (File S2 39). Cells were sequenced at nearly twice the average 
depth of the normal breast cells (~3M versus ~1.6M reads). We first clustered cells based on the 
expression of GENCODE-annotated genes, obtaining clusters consistent with those in Darmanis 
et al 39 (Fig. 6a). Notably, we retrieved several important markers of immunoreactive microglia 
(e.g. CD74, CCL4, AIF-1, ALOX5AP), cortical cells (e.g. HSF2, NEUROD6) and brain development 
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(e.g. IGFBPL1, FABP7, LMO3). We then used the expression of NB-lncRNAs for cell clustering. On 
average, ~1,100 NB-lncRNAs were expressed per brain cell, but this did not result in a successful 
clustering of the different brain cell subpopulations (Fig. 6b). In fact, although NB-lncRNAs 
expression could coarsely group cell types, the clustering failed to unambiguously discern 
subpopulations of oligodendrocyte precursor cells (OPCs), microglia and endothelial cells and to 
distinguish fetal quiescent from fetal replicating cells (Table S16). Overall, clustering based on 
NB-lncRNAs expression performed poorly compared with clustering based on GENCODE-
annotated genes expression, despite considerably higher sequencing depth, suggesting lncRNA 
discovery should be performed on similar samples a priori, to improve scRNAseq clustering. 
 
NB-lncRNA gene expression defines a subpopulation of breast stem-cells 
We used three methods to ascertain which L-cluster most likely harbors breast stem-cells. (i) 
Protein-coding gene expression at the cell level was used to calculate the average expression of 
putative stem-cell markers in human and mouse mammary tissue (ATXN1, BMI1, CD1D, GNG11, 
ID4, INPP5D, ITGB1, ITGB3, JAG1, MME, PARD3B, PROCR, TCF4 and ZEB1; Table S17) per L-cluster 
(Fig. 7a). (ii) We assessed the expression of genes involved in the three main pathways associated 
with stemness in a number of tissues: Notch, Hedgehog and Wnt signaling (Fig. S4). (iii) The 
Single-Cell ENTropy (SCENT) method 40 was used to estimate the differentiation potency of each 
cell, based on how efficiently signaling can diffuse through a gene interaction network given the 
cell gene expression profile. Conceptually, cells with higher differentiation potency express more 
connected genes, which results in higher entropy (i.e. the SR value in SCENT). We modified the 
gene interaction network of SCENT including annotated lncRNAs based on correlation data 
obtained from LncRNAs2Pathways 41. SR values were calculated using cell-level annotated gene 
expression averaged across L-clusters (Fig. 7b and Table S17). All three methods confirmed 
cluster L3 as having the highest degree of stemness. Cluster L3 is a mix of ~65% cluster A6 and 
~30% cluster A3 (both of which were shown to express high levels of stem-cell markers during A-
cluster characterization; Fig. 3b).
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Fig. 7 NB-lncRNAs define a stem-like cell subpopulation in the normal breast epithelium. 
a Heatmap of the average expression of genes with experimentally confirmed stem-cell properties across the L-
clusters. Genes were selected for their reported capacity of repopulating mammary fat pads, originating both basal 
and luminal compartments. Expression was measured at cell level and averaged across cells allocated to the same 
L-cluster. b The SCENT method was used to calculate the signaling entropy level (SR value) of each cell. Cells in the 
same L-cluster were plotted together, with the average for each cluster represented by dots. The dashed red line 
was placed at the highest average (cluster L3). c Monocle plots with cells distributed along a differentiation 
trajectory, with branch points representing cell lineages. Cells were colored either by Seurat-assigned L-clusters 
(upper) or by SR value (lower). d Slingshot trajectories showing the placement of lineages on top of the UMAP of L-
clusters obtained with Seurat. Cluster L3 was defined as the root state, based on its higher stemness. 
 
We used Monocle to visualize the diffusion of signaling entropy along the mammary epithelial 
cell hierarchy (Fig. 7c). The placement of clusters and branch points broadly confirmed cell 
lineages. The branch containing L3, defined as root, which radiates through basal cluster L1 to a 
bough of more differentiated basal clusters (L5 and L6 in one arm and L7 on a separate arm) and 
another bough which bifurcates into a luminal progenitor cluster L2 on one side and luminal 
clusters L0 and L4 on the other side. The placement of clusters L0 and L4 in the same branch may 
reflect their observed higher proliferative rates, hormone-sensitivity or other characteristics. 
Being confident that the distribution of SR values along the cell hierarchy recapitulated the 
mammary differentiation process, we used Slingshot to infer corresponding trajectories, defining 
cluster L3 as the root state (Fig. 7d). Consistent with other studies 6,42, the results confirmed the 
existence of a cell population with characteristics of a common progenitor for basal and luminal 
cell types. The cell hierarchy suggests differences between the basal L-clusters which subdivided 
from cluster A0, with clusters L1 closer to L3 and clusters L6 and L7 to L5, which appears to act 
as an intermediate progenitor. Indeed, cluster L5 is formed by cells with diverse gene expression 
profiles and markers of both basal and luminal cell types. Cluster L5 is also a precursor to luminal 
clusters L0 on one branch and L2 and L4 on another, confirming observations made with 
Monocle. 
 
NB-lncRNAs also define breast cell subpopulations in 10x Genomics scRNAseq data 
As the 10x Genomics platform has surpassed Fluidigm as the method of choice for scRNAseq, we 
wanted to ensure our results were transferable and not dependent on the higher depth and 
sequencing strategy of the Fluidigm platform. We detected the expression of >200 NB-lncRNAs 
and >1,800 annotated genes per cell, on average. Using CellRanger, we clustered 10x Genomics 
scRNAseq data (also obtained from 6) into cell subpopulations, based on either NB-lncRNA 
expression, GENCODE-annotated gene expression or a merge of both gene sets (Figs. 8a-c). 
Seven, ten and twelve clusters were obtained respectively, and we confirmed that NB-lncRNA 
expression alone has successfully segregated cells into subpopulations, revealing specific markers 
(Fig. S5a). We followed the same strategy used with the Fluidigm data to characterize clusters 
based on known protein-coding markers (Table S8) and define cluster correspondence. The cell 
type-dependent structure was broadly retained between clustering experiments. Differences 
were observed in the number of clusters characterized by breast stem markers (Figs. 8a-c, Fig. 
S5b), including CD44, GNG11, TCF4 and YBX1. Notably, these clusters were not marked by keratin 
genes and their epithelial origin could not be confirmed. 
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While clustering based on GENCODE-annotated genes resulted in two putative stem-like clusters, 
combining their expression with that of NB-lncRNAs resulted in three. Moreover, the luminal 
progenitor population was further subdivided, creating another additional cluster. To investigate 
how NB-lncRNA expression could be contributing to the emergence of the additional clusters, we 
re-clustered cells based on GENCODE-annotated genes alone, increasing the resolution 
parameter in Seurat. While forced overclustering also resulted in the subdivision of the luminal 
population into three clusters, no additional putative stem-like clusters were observed (Fig. S5c). 
This suggested NB-lncRNAs might be involved in stemness and in differentiating stem-cell states 
in the normal human breast. 
 

 
 
Fig. 8 NB-lncRNAs also discern normal breast cell subpopulations on 10x Genomics scRNAseq. 
a UMAP of normal breast cells, clustered based on NB-lncRNAs expression, quantified on 10x Genomics scRNAseq 
data. Cells are color-coded for clusters, which are numbered according to cell counts. b UMAP of normal breast cells, 
clustered based on GENCODE-annotated gene expression, quantified on 10x Genomics scRNAseq data. Cluster labels 
are based on the presence of known markers of cell subpopulations in the list of Seurat-assigned markers. c UMAP 
of normal breast cells, clustered based on the expression of GENCODE-annotated genes and NB-lncRNAs, quantified 
on 10x Genomics scRNAseq data. 
 
Correlations between NB-lncRNAs and breast cancer  
To establish links between NB-lncRNAs and breast cancer, we assessed their expression levels in 
tumor samples of different molecular subtypes from The Cancer Genome Atlas (TCGA 43 with 
subtypes defined as per 44). TCGA RNAseq data was remapped to the human transcriptome 
supplemented with the NB-lncRNAs and gene expression was re-quantified. Significant 
correlations (Pearson correlation p-values < 0.05) were observed between NB-lncRNA expression 
profiles in TCGA subtypes and L-clusters, especially luminal cluster L4 and basal cluster L1 (Table 
S18). Furthermore, expression of Seurat-assigned NB-lncRNA markers for L-clusters successfully 
stratified TCGA samples into basal and luminal molecular subtypes (Fig. 9a) to a greater extent 
than Seurat-assigned markers of A-clusters (Fig. 9b). This indicated a relevant contribution of NB-
lncRNA gene expression to the molecular classification of breast tumor subtypes.  
 
To further explore the correlation of NB-lncRNAs with breast cancer subtypes, we derived lists of 
NB-lncRNA markers for each TCGA breast cancer subtype, using an in-house method based on 
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MGFR 45, with bootstrapping. Among the identified NB-lncRNA markers (Table S18), there were 
28 experimentally-supported lncRNAs with established correlations with breast cancer 23-25 
(Table S9; overlap p-value < 0.001), including LINC01089, MEG3, HOXB-AS1, HOXC-AS1 and 
TTC39A-AS1 (Table 1; which also contains known breast cancer-related lncRNAs found as markers 
of L-clusters). There were also many novel NB-lncRNAs identified as subtype-specific (e.g. Fig. 9c; 
Table S18). For example, MGFR-assigned Her2+ subtype marker DN6969C1G3I1 overlaps an 
annotated gene (ENSG00000244468) previously listed as one of the most highly expressed 
lncRNAs in breast cancer 46. 
 
To assess the performance of our strategy, we used the same method to generate protein-coding 
gene marker lists for each subtype and compared these to markers obtained by Wu et al 47, 
confirming significant correspondence (p-values of overlaps < 0.002; Table S18). We then 
assessed the correspondence between the MGFR-assigned NB-lncRNAs markers and protein-
coding markers of TCGA breast cancer subtypes 47, by listing all annotated genes within 500kb of 
each NB-lncRNA marker and overlapping these with the markers from Wu et al (Table S18). With 
the exception of the luminal B subtype, the sets of annotated genes nearby NB-lncRNA markers 
were enriched (overlap p-values < 0.02) in reported protein-coding markers of the corresponding 
breast cancer subtype 47. Genes nearby NB-lncRNA markers of the luminal B subtype were 
enriched in reported luminal A markers, likely reflecting the similarities between these two 
subtypes. Indeed, there was a significant overlap (p-value < 0.01) between genes near MGFR-
assigned NB-lncRNA markers and reported subtype markers when both luminal breast cancer 
subtypes were considered together. 
 
We also assessed the overlap between MGFR-assigned NB-lncRNAs markers of each cancer 
subtype and Seurat-defined markers of normal breast cell subpopulations (Table S18). We found 
significant overlaps (p-values < 0.001) between markers of basal-like tumors and basal cluster L6, 
Her2+ and both luminal tumors and basal cluster L1 and luminal mature cluster L4 Markers of 
normal-like tumors were strongly (overlap p-values < 0.005) correlated with all clusters, except 
L5. Finally, we used the expression levels of 100 MGFR-assigned NB-lncRNA markers (the 20 most 
frequently assigned to each subtype) to generate a PCA plot of TCGA samples (Fig. 9d). The 
expression of NB-lncRNA markers successfully distinguished molecular subtypes of breast cancer, 
with the two first principal components separating them as well as the expression of previously 
known markers (Fig. 9d) 47. Biomarkers of special interest include the NB-lncRNAs that most 
contributed with the first principal component to distinguish breast cancer subtypes (Table S18). 
For example, MGFR-assigned basal cancer subtype marker DN37008C0G1I10 is a novel isoform 
of LINC01956 (located near EN1; Fig. 9c) which is part of a reported triple-negative breast cancer 
module 48. 
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Table 1.  
Annotated lncRNA Cell subpopulation(s) NB-lncRNA(s) 

CARMN General basal DN405 
LINC01094 Basal DN19901 
MEG3 Basal DN4816 
MAGI2-AS3 Basal DN935 
HOTAIRM1 Basal DN4816, DN126378 
SNHG29 General luminal DN1842 
DANCR Luminal mature DN1852 
ZFHX4-AS1 Luminal mature DN53411 
LINC00993 Luminal mature DN4775 
LINC01151 Luminal DN20235 
LINC01089 Luminal progenitor DN11934 
SNHG15 Stem-like DN141 
GAS5 Stem-like, intermediate 

progenitor 
 

DN798 

Annotated lncRNA TCGA subtype(s) NB-lncRNA(s) 

FOXP4-AS1 Basal DN8672 
RP11-132A1.4 Basal DN98035 
SBF2-AS1 Basal, Her2+ DN13758 
HOXC-AS1 Her2+ DN30804 
LINC01133 Her2+ DN3404, DN364571 
MNX1-AS1 Her2+ DN87774 
OIP5-AS1 Her2+ DN167605, DN733 
RP11-206M11.7 Her2+ DN6969 
RP11-390F4.3 Her2+ DN64622 
ST8SIA6-AS1 Her2+ DN68716 
EPB41L4A-AS1 Luminal A DN17927 
HOXB-AS3 Luminal A DN12537 
LINC00993 Luminal A DN839C 
PCAT18 Luminal A DN38481 
TTC39A-AS1 Luminal A, Luminal B DN58767 
LINC01089 Luminal B DN11934 
MAFG-AS1 Luminal B DN5534 
HOTAIRM1 Normal-like DN126378 
MEG3 Normal-like DN4816 
SNHG18 Normal-like DN14445 

 
Table 1 Annotated NB-lncRNAs markers of normal breast cell subpopulations (top) or TCGA breast cancer subtypes 
(bottom). Top: Seurat-assigned NB-lncRNA markers with previous annotation, experimental evidence and 
established links with breast cancer are listed with the corresponding normal breast cell subpopulation for which 
they are markers and short identifiers. Bottom: MGFR-assigned NB-lncRNA markers with previous annotation, 
experimental evidence and established links with breast cancer are listed with the corresponding breast cancer 
subtype for which they are markers and short identifiers. Full identifiers are available in Table S18. 
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Fig. 9 NB-lncRNA expression can differentiate between breast cancer subtypes in TCGA. 
a The expression of Seurat-assigned NB-lncRNA markers of L-clusters separates the main subtypes of TCGA breast 
cancer tumors in a two-dimension PCA plot. b To a lesser degree, the expression of Seurat-assigned GENCODE-
annotated markers of A-clusters separates different subtypes of TCGA breast cancer tumors in a two-dimension PCA 
plot. c NB-lncRNAs are markers of specific breast cancer subtypes. Four selected NB-lncRNAs are shown with their 
genomic context (upper; UCSC genome browser diagram) and expression levels (lower; boxplots of TPMs in TCGA 
samples of each subtype). d In-house NB-lncRNA markers of TCGA breast cancer subtypes can separate all subtypes 
of breast cancer in a two-dimensional PCA plot. e For comparison, known breast cancer protein-coding markers 
separate subtypes with comparable performance. 
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DISCUSSION 
Single-cell RNAseq has allowed unprecedented insight into gene expression across different cell 
populations in normal tissue and disease states. However, almost all studies rely on annotated 
gene sets to capture gene expression levels, discarding sequencing reads that do not align to 
known genes. Here, we comprehensively annotated lncRNAs expressed in human mammary 
epithelial cells, prior to quantitating the transcriptomes of individual cells from healthy breast 
tissue. On average, we observed ~900 expressed NB-lncRNAs per cell, compared with ~5,000 
annotated genes. For comparison, when we used the same method to assess the set of confirmed 
annotated lncRNAs from GENCODE, the average count of expressed genes per cell was ~1,300. 
We can attribute this increase in number (compared with NB-lncRNA) to annotated lncRNAs 
having higher and/or more widespread expression, making them easier to be experimentally 
detected. Nevertheless, the number of detected lncRNAs is much lower than annotated genes in 
general, which may reflect the more compartmentalized nature of noncoding transcripts. 
 
The expression of NB-lncRNAs alone could discriminate between luminal and basal cell 
populations and define subpopulations of both cell types. In the luminal compartment, we 
observed two luminal progenitor and one luminal mature subpopulation (L0, L2, L4), similar to 
clustering based on the expression of annotated genes (A1, A2, A4). Two A-clusters (A5 and A7) 
were defined by a high prevalence of dead cells, based on the presence of mitochondrial markers. 
As the NB-lncRNAs gene set does not contain mitochondrial genes, the absence of dead cells was 
expected in L-clusters. Indeed, cluster A5 was virtually absent from the clustering based on NB-
lncRNA expression. A subset of cells from cluster A7 was present in basal cluster L7. Despite the 
absence of Seurat-defined breast epithelial markers, cluster A7 had basal characteristics (e.g. 
high expression of CAV1, ITGB1 and TAGLN), therefore, the resulting L-cluster may have 
incorporated these cells based on their basal gene expression. 
 
In the basal compartment, while the expression of GENCODE-annotated genes clustered most 
cells in one heterogeneous cluster of basal cells (A0), NB-lncRNA expression divided the same 
cells in three subpopulations (L1, L6, L7). This suggests that NB-lncRNA expression may provide 
an additional layer of information, distinguishing cell subpopulations which annotated genes 
cannot discriminate. The relevance of this distinction is reflected in the reconstruction of cell 
hierarchies (Fig. 7d), where myoepithelial cluster L1 is derived from stem-like cluster L3 and a 
separate lineage emerges from cluster L3 including the intermediate progenitor cluster L5 and 
basal clusters L6 and L7. When we enforced overclustering of A-clusters, A0 subdivided into two 
cell pools, one predominantly found in cluster L1 and a second predominantly found in clusters 
L6 and L7. Notably, cells that form L6 could not be separated from the cells that form L7 based 
on annotated gene expression alone, even at extremely high resolution. It is important to note, 
however, that these clusters do not necessarily reflect different cell types but may represent 
differential cell states or subpopulations of the same cell type that are responding to 
environmental stimuli. Another difference between A-clusters and L-clusters is that, in the latter, 
two subpopulations with high prevalence of breast stem-cell markers (A3 and A6) were combined 
into one cluster (L3), which appeared to be the most stem-like population. 
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Despite the ability of NB-lncRNAs to cluster subpopulations of mammary epithelial cells, they 
only poorly distinguish brain cell types, suggesting that the set of lncRNAs expressed in the breast 
are substantially different from those in the brain. This highlights the need to comprehensively 
annotate lncRNAs across different tissues and cell types, in a similar way to the annotation of 
enhancers, which is being performed in a cell type-specific manner. This will be particularly 
relevant for minor cell populations, which are underrepresented in complex tissues. We suggest 
that comprehensive transcriptome reconstruction should precede scRNAseq analyses and tissue-
specific lncRNAs should be incorporated into the gene set used for clustering. In support of this, 
in this study alone, we identified >13,600 lncRNAs not found in existing databases, representing 
nearly 75% of the recovered long noncoding transcriptome of the normal human breast. Several 
NB-lncRNAs were identified as markers of specific clusters and annotated lncRNAs were also 
amongst Seurat-assigned markers when only annotated genes were considered (File S4). Lab-
based experiments will be required to establish the role of lncRNAs in defining cell types and 
establishing cell states. 
  
Previous studies have shown that the expression of protein-coding genes in the different breast 
cancer subtypes reflects their cell-of-origin. For NB-lncRNAs, we confirmed their expression 
profiles in normal cell subpopulations to be significantly correlated with breast cancer subtypes 
in TCGA. Moreover, we found Seurat-assigned markers of L-clusters to significantly overlap with 
the in-house-derived breast cancer NB-lncRNA markers. NB-lncRNA markers of basal-like breast 
tumors were enriched in markers of basal cluster L6. This may be a reflection of underlying 
characteristics of basal-like tumors which we observed in cells that form cluster L6, for example 
higher rates of EMT and a claudin-low profile, which are known hallmarks of basal-like tumors 
29,31. Interestingly, all basal L-clusters had gene expression profiles reminiscent of claudin-low 
type tumors, according to the Genefu classification tool. NB-lncRNA markers of both luminal 
breast tumor subtypes were enriched in markers of luminal mature cluster L4, which is consistent 
with previous observations 49, but were also enriched in markers of the basal cluster L1. 
 
To test the capacity of NB-lncRNAs as markers of breast cancer subtypes, we assessed their 
expression in TCGA samples and derived gene signatures of the different subtypes. We confirmed 
the NB-lncRNA cancer markers correlated with previously reported protein-coding markers of 
each subtype and showed their ability to discriminate between breast cancer subtypes. Several 
lncRNAs previously implicated in breast cancer (lncRNAfunc 23, Lnc2Cancer 24 and the Diermeier 
et al study 25) were also assigned as markers in our study, including oncogenes MEG3 and 
LINC01089 and mammary tumor associated RNA 18 (MaTAR18/TTC39A-AS1). TTC39A-AS1 was 
also previously found to be a marker of normal luminal mature subpopulations 26 and we 
identified it as a marker of luminal A and B cancer subtypes. Attesting to the relevance of NB-
lncRNAs for future research, ASO-mediated knockdown of TTC39A-AS1 led to impaired branch 
development in mammary organoids 25. 
 
In summary, combining tissue-specific lncRNA discovery and single-cell transcriptomics has 
unraveled new markers of mammary epithelial cell populations and breast cancer subtypes. The 
fact that a subset of NB-lncRNAs are present in the human breast in both healthy and disease 
states may further support biomarker discovery and help detect tumorigenesis at the earliest 
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stages. Importantly, although most of our study was performed using Fluidigm scRNAseq data, 
we observed similar clustering using scRNAseq data generated with the 10x Genomics 
technology, despite the lower sequencing depth. As 10x Genomics has the fastest growing 
platform for scRNAseq, this represents an untapped resource for transcriptomics, especially for 
the study of lncRNAs. Incorporating this novel information could lead to novel diagnostic tools 
and targets for treatment in a range of cancer types and other complex diseases. 
 
 
MATERIALS AND METHODS 
Samples, cell sorting and RNA sequencing 
Breast tissue samples donated to the Brisbane Breast Bank were obtained from five healthy 
donors who had breast reduction surgery (Table S1; 50). Reduction mammoplasty samples were 
processed as described previously 51. In brief, samples were enriched for epithelial cell 
populations and suspensions were stained with a lineage marker antibody combination (anti-
CD31, anti-CD45 and anti-CD140b; Table S1) designed to exclude endothelial, hematopoietic, and 
leukocyte cells. The remaining lineage-negative cell superpopulation was sorted into basal 
(EpCAMlow/CD49fhi), luminal progenitor (EpCAMhi/CD49fhi), and luminal (EpCAMhi/CD49flow) cell 
types. Total RNA was extracted and ribodepleted with the Illumina Ribo-Zero Plus rRNA depletion 
kit. High-quality RNA (RIN ≥ 9.0, measured in Agilent 4200 Tapestation) was sent to NovogeneAIT 
Genomics (Singapore) for 150 paired end short-read total RNA sequencing, performed on the 
Illumina Novoseq 6000 platform. Each sample was sequenced across 2-3 lanes, yielding 30.6-
67.3M read pairs (average of 49.9M). Base call accuracy for every sample was between 99.95-
99.99% (average Phred-scale quality between 37 and 39). More details on sequencing quality and 
general metrics are given in File S1 and Tables S1-4. 
 
Transcriptome assembly 
We designed a multistep computational pipeline for lncRNA discovery from bulk RNAseq based 
on de novo transcript assembly (Figs. 1a and S1 and File S1). The pipeline is subdivided in 3 main 
steps: (1) pre-processing of reads to remove contaminants (e.g. adapters and reads from 
ribosomal RNAs) and assess low-frequency k-mers correcting sequencing errors, (2) de novo 
assembly of transcripts and (3) identification of noncoding transcripts and lncRNAs. Additionally, 
quality control routines were implemented at every step of the pipeline to ensure the overall 
quality of the assembly met the highest standards (Table S5). All scripts used in the pipeline are 
deposited in GitHub (Script File 1). 
 
In step 1, reads were corrected with Rcorrector v.1 52 and ‘uncorrectable’ reads subsequently 
removed by FUR-PE v.2016. Adaptors were removed by Trimmomatic v.0.36 53 and ribosomal 
RNA reads filtered by BBduk v.2019. Strandness of the RNAseq library was confirmed by RSeQC 
v.2.6.4 54. Next, in step 2, we combined reads from all cell populations as input for Trinity v.2.8.4 
12, keeping the normalized read coverage at 50 to prevent fragmented transcripts. Completeness 
of the initial assembly was confirmed using BUSCO v.20161119 14. TransRate v.1.0.3 15 was used 
to assess assembly quality and as a filtering tool, selecting high-quality transcripts based on 
features such as read support and quality of base calling. Transcripts were also filtered by explicit 
read support, using FPKM measures. To differentiate unspliced transcripts from sequencing 
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noise, we enforced a strict read support of 3 FPKM for monoexonic transcripts, relaxing the cut-
off to 0.5 FPKM for multiexonic transcripts. We have previously shown that lncRNAs expressed 
at ~0.5 FPKM are experimentally confirmed with an 80% success rate 55. In step 3, we identified 
noncoding transcripts candidates. Four programs (CPAT, CNCI, CPC2 and PLEK, all run through 
ezLncPred v.1.0 16) were used to predict the coding potential of transcripts. We considered all 
transcripts with no coding potential detected by at least two different tools to be true positives. 
In parallel, we submitted the assembled transcripts to FEELnc v.0.2 17 for classification. 
Transcripts were aligned to the GENCODE human genome (version GRCh38) with Minimap2 
v.2.16 56. Both GENCODE-annotated protein-coding and confirmed lncRNA genes were supplied 
to train the machine learning algorithm of FEELncfilter, which filtered non-lncRNA transcripts and 
transcripts shorter than 200 nucleotides. The FEELnccodpot module was used to compute a coding 
potential score and assign a confidence level to potential ORFs. The FEELncclassifier module was 
then used to detect the nearest annotated transcript and further classify the lncRNAs based on 
genomic position respective to protein-coding genes. Finally, we filtered out lncRNAs identified 
by FEELnc for which lack of coding potential was not confirmed by ezLncPred, obtaining the set 
of normal breast lncRNAs (named NB-lncRNAs). 
 
Annotation of NB-lncRNAs in the human genome 
We used Gmap v2020-09-12 57 to align NB-lncRNAs to the reference genome and create a bed-
type file of coordinates. Aligned NB-lncRNAs were intersected by Bedtools v.2.29.0 with the 
GENCODE GRCh38 transcriptome and matches with minimum overlap of 75% and on the same 
strand were removed from the final set of NB-lncRNAs, unless the GENCODE transcript was 
annotated as a lncRNA (Script File 2). The same method was used to intersect NB-lncRNAs with 
the in-house database of known lncRNAs (File S2 and Table S8). 
 
Expression of NB-lncRNAs in the main mammary epithelial cell types 
To assess the expression of NB-lncRNAs in the bulk RNAseq samples we used Salmon v.1.3.0 58 
(Script File 3). We then filtered transcripts by expression, requiring at least 1 TPM (transcript per 
million), to obtain the lists of NB-lncRNAs expressed in each sample. Transcripts present in at 
least 75% of the replicates of each cell type (i.e. four out of five samples for the luminal mature 
and basal types and three out of four samples for the luminal progenitor type) were deemed 
‘consistently expressed’. From the consistently expressed, those present in only one of the three 
populations are referred to as ‘uniquely consistently expressed’, or population-specific. We then 
compared the FEELnc-assigned protein-coding partners of these population-specific NB-lncRNAs 
with the list of 359 markers retrieved from the literature (Table S8). 
 
Long-read and TSS support for NB-lncRNAs 
Publicly available long-reads from MCF7 and MCF10A cells (PRJEB44348 and PRJNA522784, File 
S1 59) obtained by direct RNA sequencing in the Oxford Nanopore Technologies platform were 
obtained through the SRA portal (https://www.ncbi.nlm.nih.gov/sra). In total, there were 32.7M 
MCF7 reads of 829 nucleotides and nearly 320,000 MCF10A reads of 971 nucleotides. 
Additionally, we generated 33.1M long-reads from SUM149 breast cancer cells at an average 
length of 1,184 nucleotides. Total RNA was sent for long-read cDNA sequencing by PromethION 
to the Garvan Institute Nanopore Sequencing Facility (Australia). All long-reads were aligned to 
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NB-lncRNAs using standalone BLAT v.35 60, forcing no gaps in high-scoring blocks and with 
minimum sequence identity of 80% (-maxGap=0 -minIdentity=80), set to account for the 
characteristically lower accuracy of long-reads. BLAT was allowed to run in each file for 300 CPU 
hours. Nearly 3.6M MCF10A transcripts, 1.7 billion MCF7 transcripts and 4 billion SUM149 
transcripts aligned to NB-lncRNAs. Alignments were further filtered for a minimum of 70% 
reciprocal coverage and a maximum of 10% indels at aligned regions, in either sequence. To 
confirm the TSSs of assembled transcripts, public RAMPAGE data of normal breast (ENCODE 
entries ENCSR909QWB and ENCSR598TAK, File S1) were obtained from the ENCODE project 
database (https://www.encodeproject.org/rampage). In-house RAMPAGE libraries were 
sequenced as 150bp paired-end reads, demultiplexed using the icetea library in R 61. 
Demultiplexed RAMPAGE libraries and RNAseq libraries were aligned to the reference genome 
(GENCODE GRCh38) supplemented with the NB-lncRNAs using STAR v.2.7.1a 62. RAMPAGE peaks 
were called using the call_peaks script in GRIT v2.0.4. 
 
Clustering single cells using different gene sets 
Data from a C1 Fluidigm scRNAseq experiment containing 867 cells was obtained from the SRA 
database (PRJNA450409, File S4 6). Authors collected samples from reduction mammoplasties 
performed in age-matched caucasian females at post-pubertal and pre-menopausal stage. No 
information on their parity and menstrual status was available. Sequencing reads were aligned 
to the references with Bowtie2 v.2.2.9 63 and analyzed with RSEM v.1.3.1 64, using the single-cell-
prior option, to obtain matrices of transcript counts (Script File 4). The same process was 
repeated with different references: (i) the entire annotated human transcriptome (GENCODE 
GRCh38), (ii) the set of NB-lncRNA transcripts, (iii) a subset of ‘(i)’ depleted of protein-coding 
genes and annotated lncRNAs and (iv) a merge of ‘(i)’ and ‘(ii)’. RSEM count matrices were 
imported to Seurat v.4.0.4 65 using Melange v.0.1.0. We then performed quality control, 
excluding cells with less than 900 detected features when protein-coding genes were considered 
or 300 cells otherwise (File S4), as well as excluding all genes not detected in at least three cells 
after filtering. Normalization was performed using the LogNormalize function with a scale factor 
of 10,000. Principal component analysis was performed considering the 2,000 most variable 
features defined with FindVariableFeatures using the variance-stabilizing transformation (vst) 
method. Before proceeding, we defined the dimensionality and resolution for each experiment 
after assessing Seurat’s ‘straw’ and ‘elbow’ plots and ClusTree v.0.4.4 66 clustering trees (Fig. S6). 
Specific parameters selected for each clustering experiment are shown in File S4. Following 
dimensionality reduction, clustering was performed using FindNeighbors and FindClusters and 
visualized with the Uniform Manifold Approximation and Projection (UMAP, File S2) method. 
Clustering of 10x Genomics data from the same reference 6 was performed in a similar way, 
except counts were obtained with the CellRanger count module. The command-lines used to run 
Seurat and the accessory tools are contained in Script File 5. 
 
Clustering brain cells based on NB-lncRNA expression 
The transcriptomes of 466 brain cells were obtained from the SRA database (PRJNA281204, File 
S2 39). Cells were clustered using the protocol described above, with at least 300 genes required 
per cell and a minimum of three cells expressing each gene. For comparison, we also clustered 
cells using the expression of GENCODE-annotated genes, raising the minimum number of 
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required genes per cell to 900. We used labels provided by the authors and the marker genes 
listed in the original publication to characterize the cell subpopulations in each cluster 39. 
 
Cluster specificity index 
An in-house method (Script File 6) was used to compute gene expression averages across cells in 
each cluster (with R v.3.6.2). Briefly, specificity indices for each transcript were computed using 
TSPEX v.0.6.1, a package offering twelve distinct tissue-specificity metrics 67. After consideration, 
we selected the TSI 38 as our preferred metric of specificity. The TSI defines specificity as the 
median expression of each transcript in each cluster divided by the sum of the medians in all 
clusters: 𝑇𝑆𝐼 ! =

" !
∑"!#1 " !

 . 

Cluster specificity indices (CSI) were then computed by averaging the specificity indices of all 
transcripts per cluster and multiplying the resulting number by a factor of 100, for easier 
interpretation. 
 
Cluster stemness 
Teschendorff and Enver developed a method named Single-Cell ENTropy (SCENT) to quantify the 
potency of single cells 40. We used SCENT to calculate the signaling entropy (SR) of cells which is 
a measure of gene expression promiscuity based on a gene interaction network. To account for 
the contributions of lncRNAs, we replaced the in-built protein-coding gene interaction network 
of SCENT with an in-house coding <-> noncoding network based on LncRNAs2Pathways 41 data. 
Details on how we obtained information from LncRNAs2Pathways, formatted the network and 
incorporated into SCENT are available in File S5. Cell-level SR scores were calculated based on 
gene expression matrices and averaged to yield cluster-level SR scores for L-clusters (Script File 
7). Cluster-level SR values were interpreted as a measure of stemness (i.e. the higher the value, 
the more likely for a cluster to harbor stem-like cell subpopulations). Additionally, we used 
Monocle v.2.18.0 68 to analyze the distribution signaling entropy along reconstructed cell 
hierarchies (Script File 8). Monocle applies a negative binomial model to test for differential 
expression using the same gene expression matrix (of raw counts) provided to Seurat. After 
normalizing the data and filtering for extreme RNA numbers, we used Monocle’s 
reduceDimensions and orderCells functions to perform dimensionality reduction with the 
DDRTree method and sort cells along the inferred trajectory, coloring by cell-level SR value. 
 
Differentiation trajectories in the mammary epithelium 
Being confident that the obtained cell hierarchies recapitulated the mammary differentiation 
process, we used Slingshot v.1.8.0 69 to plot trajectories, based on Seurat clustering and manually 
assigning the root state to cluster L3 (Script File 9). 
 
NB-lncRNA signatures to discern breast cancer subtypes 
We used an in-house pipeline (Script File 10) to map RNAseq reads from TCGA 43 to the GENCODE 
human transcriptome supplemented with NB-lncRNAs. Briefly, we used Trimmomatic v.6.36 to 
remove sequence contaminants, STAR v.2.7.1a 62 for sequence alignment and RSEM v.1.3.1 64 to 
estimate read counts per transcript, adding TPM values to compute gene expression levels. 
Subtypes were assigned to each TCGA sample according to the classification in Netanely et al 44. 
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Bulk expression was defined as the average across all samples of each subtype for TCGA data and 
average pseudobulk expression for normal breast cell clusters. Correlation tests between bulk 
expression profiles of A-clusters or L-clusters and TCGA subtypes were based on Pearson 
coefficients and associated p-values, calculated in R. The Genefu package v.2.22.1 70 was used to 
compare bulk expression profiles of annotated genes in clusters with molecular subtypes of 
breast cancer defined by either the ‘PAM50’ or the ‘ClaudinLow’ panels. 
 
To find markers of each breast cancer subtype, MGFR (Marker Gene Finder in RNAseq data) 
v.1.16.0 45 was run independently 500 times with sets of twelve TCGA samples (three samples 
per subtype) in a bootstrap manner (Script File 11). Each run resulted in a list of candidate 
markers and the 300 most frequently retrieved genes were selected for the final set of subtype 
markers. We repeated the same process for GENCODE-annotated genes and NB-lncRNAs 
separately. To assess the performance of the method, we compared the marker lists obtained 
for annotated genes with previously published marker lists 47, calculating the significance of the 
overlap with Fisher's exact tests (using the GeneOverlap R function, Script File 12). The top 20 
most frequent (from the 300) NB-lncRNA markers were used to generate PCA plots and assess 
their ability to discern between different TCGA subtypes. 
 
Statistical analyses and data plotting 
When two sets of annotated genes were being compared for enrichment, we used the 
GeneOverlap function of R, with background defined as the total number of annotated genes 
(unless otherwise stated) and used Fisher's exact test to define significance. R was also used to 
assess normality of datasets, perform T-tests, Wilcoxon tests and calculate Pearson correlations 
and compute their associated p-values. To calculate the average, median, sum, minimum and 
maximum values of any set of values, we used an in-house script. We used R functions ggplot, 
heatmap and prcomp to plot most graphs, including boxplots, bar plots, pie charts, heatmaps and 
PCA plots. Unless otherwise specified, R v.4.0.2 was used. The main accessory scripts are 
provided in Script File 12. 
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Supplementary Figure Legends 
Fig.S1 Computational pipeline for the identification of NB-lncRNAs. 
Details on the multistep computational pipeline designed for de novo transcriptome assembly. 
Each main step (A-D) is expanded from Fig. 1a to show the intermediate steps and the tools used 
to perform each task. The approximate number of transcripts left after each filtering routine is 
shown as boxes in grayscale. 
 
Fig. S2 Correspondence between L-clusters and A-clusters, based on cell composition. 
Cluster correspondence was defined based on the cell composition of each A-cluster (left) and L-
cluster (right). Corresponding clusters are connected with black lines. a Cells in cluster A0 are 
spread in clusters L1, L6 and L7. b Cells in clusters A1, A2 and A4 are mostly (>80%) assigned to 
respectively clusters L0, L4 and L2. c Most cells in clusters A3 and A6 are combined into cluster 
L3. d Smaller proportions (15-25%) of cells from clusters A1, A3, A6 and A7 are combined into 
cluster L5. 
 
Fig. S3 Higher cluster specificity is a characteristic of NB-lncRNAs. 
a UMAP showing normal breast cell clusters obtained based on gene expression of annotated 
genes which are not protein-coding or confirmed lncRNAs (O-clusters), with their corresponding 
cluster specificity index (CSI). b UMAP showing normal breast cell clusters obtained based on 
GENCODE-annotated gene expression (A-clusters), with their corresponding CSI. c Dotplots 
showing the difference in CSI for corresponding clusters in ‘a’ and ‘b’. Dots were colored 
according to the represented O-cluster or A-cluster, bold horizontal lines mark the average CSI 
for each gene set and the p-value (0.4; Fisher’s exact test) shows the difference is not significant. 
As the CSIs of O-clusters were not normally distributed (according to the Shapiro-Wilk test), a 
Wilcoxon rank test was performed instead of a t-test. 
 
Fig. S4 Notch, Hedgehog and Wnt signaling pathways are activated in cluster L3. 
As a method to determine the L-cluster most likely harboring normal breast stem-cells, we 
assessed the expression of genes involved in the three main pathways associated with breast 
stemness, a Notch, b Hedgehog and c Wnt signaling. Based on the summarized gene expression, 
shown as the bottom row in each heatmap, cluster L3 was the one with highest overall expression 
of the genes of interest for each pathway. 
 
Fig. S5 Seurat-assigned NB-lncRNA markers for cell clusters of 10x Genomics scRNAseq data. 
a Expression patterns of identified NB-lncRNA markers for specific cell subpopulations in clusters 
computed for 10x Genomics scRNAseq data based on NB-lncRNA expression (Fig. 8a). b Forced 
overclustering of 10x Genomics scRNAseq data based on expression of GENCODE-annotated 
genes also resulted in the subdivision of the luminal population into three clusters, but no 
additional stem-like clusters were observed. c Known (Table S8) markers of stem cells in each of 
the clusters labeled as “putative stem-like” in Fig. 8a-c. 
 
Fig. S6 Clustering trees showing the relationships between clusters at various resolutions. 
Clustering trees generated with ClusTree v.0.4.4 66 for clustering experiments based on the 
expression of a NB-lncRNAs or b GENCODE-annotated genes. 
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