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Abstract

Participant-specific, functionally-defined brain areas are usually mapped with functional localizers and
estimated by making contrasts between responses to single categories of input. Naturalistic stimuli
engage multiple brain systems in parallel, provide more ecologically plausible estimates of real-world
statistics, and are friendly to special populations. The current study shows that cortical functional
topographies in individual participants can be estimated with high fidelity from naturalistic stimuli.
Importantly, we demonstrate that robust, individualized estimates can be obtained even when
participants watched different movies, were scanned with different parameters/scanners, and were
sampled from different institutes across the world. Our results create a foundation for future studies that
allow researchers to estimate a broad range of functional topographies based on naturalistic movies and
a normative database, making it possible to integrate high-level cognitive functions across datasets from

laboratories worldwide.
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Introduction

Category-selective functional topographies are a prominent and consistent feature of lateral occipital,
ventral temporal, and lateral temporal visual cortices (Downing et al., 2001; Epstein et al., 1999;
Grill-Spector & Weiner, 2014; Kanwisher et al., 1997). Category-selective topographies are mostly
similar across individuals but are idiosyncratic in terms of their precise conformation and location (Zhen
et al., 2015, 2017). Because of these idiosyncrasies, category-selective topographies and areas are
typically mapped in each individual using a functional localizer fMRI scan (Fedorenko et al., 2010; Saxe
et al., 2006). Functional localizers map individualized topographies with simple contrasts between
responses to different categories, such as contrasting responses to faces versus objects to localize
face-selective areas.

We reported an alternative approach to map category-selective topographies using fMRI data
collected while participants view a naturalistic movie (Guntupalli et al., 2016; Haxby et al., 2011; Jiahui
et al., 2020). With this approach, movie-viewing and functional localizer data are collected in a
normative sample, and new participants need only be scanned during movie viewing. Movie data are
used to calculate transformation matrices using hyperalignment (Feilong et al., 2018, 2021, 2021,
Guntupalli et al., 2016, 2018; Haxby et al., 2011; Jiahui et al., 2020) that afford projecting the localizer
data from the normative sample into the idiosyncratic cortical topography of new participants. Using this
hyperalignment procedure, we can estimate the idiosyncratic details of individual topographies with
high fidelity based on localizer data from the normative sample. Unlike functional localizers, naturalistic
stimuli (e.g., movies) evoke a rich variety of brain states and engage multiple brain systems in parallel.
This makes it possible to efficiently map multiple functional topographies using data from a single
movie and avoid the time and cost of running multiple localizers. Compared to controlled localizers,
movies better simulate real-world cognition and better engage participants’ attention (Vanderwal et al.,
2015, 2017, 2019), contributing to more ecologically valid and higher-quality maps. In addition, movies
are more friendly and engaging for special populations, such as young children.

In previous work, we used response hyperalignment (RHA) to predict functional topographies in
new participants. RHA requires that all participants watch the same movie to obtain time-locked
responses to the same stimuli. It is often important, however, to tailor the movie to meet the specific
needs of participants in different experiments. For example, participants from different countries may
prefer movies that reflect their diverse backgrounds and are in their native languages (e.g., Hanke et al.,
2016; Sengupta et al., 2016); movies for infants and young children are differently structured from those
for adults (e.g., Vanderwal et al., 2015). Thus, it is unrealistic to limit all participants from diverse

populations and backgrounds to watch the same movie. Additionally, experimenters may need to shorten
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or edit the stimuli to fit their data collection schedule. Finally, participants are often scanned with
different parameters from one experiment to another, at different institutes across the world, and with
different scanner models. Due to these factors, it is impractical to expect two laboratories to acquire the
same movie scans across individuals.

Here, we test whether connectivity hyperalignment (CHA; Guntupalli et al., 2018) can be used to
map category-selective functional topographies. CHA, in contrast to RHA, affords calculation of
transformation matrices using stimuli that are not the same for normative and index participants. We
analyzed four different data sets collected with three different movies, three different scanners, and two
different types of functional localizers that used dynamic or static stimuli. We first demonstrated that
CHA based on participants’ connectomes that were calculated using their responses to movies was able
to generate high-fidelity maps of category-selective topographies within datasets that were equivalent to
maps estimated using RHA. Then, critically, we showed that cross-dataset predictions that used
connectomes calculated from different movies for the normative and index brains were as good as those
from participants in the same dataset. This means that different laboratories can use different movies to
derive functional topographies from a normative sample.

In summary, we demonstrate that a target participant’s individualized category-selective
topography can be accurately estimated using connectivity hyperalignment, regardless of whether
different movies are used to calculate the connectome and regardless of other data collection parameters.
Movies engage multiple cognitive domains in parallel, such as visual perception, audition, language
comprehension, theory of mind, and social interaction. In addition to estimating different functional
topographies from a single movie, our approach allows us to estimate topographies from different
movies. We provide a novel alternative for future data collection that can save time and money using

rich and efficient movie scans.

Results

High-fidelity prediction with connectivity hyperalignment

We predicted category-selective topographies by projecting other participants’ functional localizer data
into each participant’s native cortical topography using a new, enhanced CHA algorithm. For each
participant, we calculated transformation matrices based on functional connectivity estimated during
movie-viewing in an iterative way (see Materials and Methods). These transformation matrices resample
fMRI data from others’ brains into a given participant’s cortex. We then projected the functional
localizer data for all other participants into the given participant’s native cortical space and calculated

independent functional contrasts based on that participant’s own localizer data and based on other
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participants’ localizer data projected into that participant’s cortex. We also estimated functional
topographies by projecting others’ localizer data into that participant’s cortex based on high-performing
surface-based anatomical alignment as a control analysis. We calculated the correlations between
topographies based on participants’ own localizer contrasts and on other participants’ data. Because the
localizer task comprises several scanning runs, we calculated the reliability of the localizer across runs
with Cronbach’s alpha to provide an estimate of the noise ceiling for these correlations. We repeated this
procedure for all participants.

We tested the estimation of visual category-selective functional topographies (faces, bodies,
scenes, and objects) in four different datasets using three different movies, localizers with static or
dynamic stimuli, different scanning sequence parameters, and three different scanner models (see
Materials and Methods).

Category-selective topographies estimated with CHA recovered the idiosyncrasies of
individuals’ topographies, capturing fine details of the individual-specific configuration and extent. By
contrast, topographies estimated with anatomical alignment generated highly blurred maps that were
essentially the same for all participants, losing individual-specific idiosyncratic features (Figure 1A).

The superior performance of CHA-based estimation over anatomical-alignment-based estimation
was consistent across participants, visual stimulus categories, and datasets. In all four category-selective
topographies and in all four datasets, correlations between estimations based on hyperalignment and
their own localizer data were significantly higher than the correlations between estimations based on
anatomical alignment and each participant’s own localizer (Fisher z-transformed, p < 0.001, Bonferroni
corrected). We compared these correlations between topographies estimated from a participant’s own
localizer data and those from other participants’ data to the reliability of the localizer, calculated with
Cronbach’s alpha. Predictions made with hyperalignment were close to and sometimes even exceeded
the reliability values (Figure 1B), which indicate that the predicted category-selective topographies from
other participants’ data using hyperalignment were as precise and sometimes even better than the
topographies estimated with their own localizer data.

Estimates using CHA to calculate transformation matrices were also equivalent to estimates
using RHA (Figure S2A). RHA, however, requires that all subjects watch the same movie, whereas
CHA can use connectivity matrices derived from responses to different movies, potentially making our
new approach more flexible. Next we tested the validity of estimating topographies using transformation
matrices that were based on functional connectivities calculated from responses to different movies for

the test participant and other participants.
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Figure 1. Predicting individual category-selective topographies using connectivity hyperalignment.
A. Face-selective topographies (faces-vs-all) and zoomed-in views of an example participant estimated
from this participant’s own localizer (Own Localizer), and other participants’ localizers using
connectivity hyperalignment (CHA), and surface anatomical alignment (AA). B. Scatter plots display

the Pearson correlation coefficients between estimated face-selective topographies based on own
localizer data and other participants’ localizer data in individual participants in four different datasets.
The y-axis corresponds to correlations between each target participant’s own localizer-based
face-selective topographies and face-selective topographies estimated from other participants using
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CHA. The x-axis corresponds to correlations between each target participant’s own localizer-based
face-selective topographies and face-selective topographies estimated from other participants with
surface-based anatomical alignment. C. Bar plots show the mean correlations across participants in four
datasets and for all four category-selective topographies. Black bars stand for the mean Cronbach’s
alphas across participants. Error bars indicate +1 standard error of the mean. Category topographies
were defined based on contrasts between the target category and all other categories.

Connectivity hyperalignment enables cross-movie predictions

Experimental design considerations and constraints can make using the same stimulus across all studies
and participants inadvisable, and datasets are often collected under diverse conditions. Here, we aim to
test whether connectivity-based hyperalignment can predict category-selective topographies in new
individuals even if their connectomes are estimated from data collected while they watched a different
movie. Using this method, participants across datasets without matched time-locked functional series
can benefit from those who have functional localizer data but were scanned with different naturalistic
stimuli.

We estimated category-selective topographies for each participant in each dataset from
participants in the other dataset that used the same type of localizer (dynamic or static) by calculating
transformation matrices based on functional connectivities measured while watching different movies.
We also estimated topographies based on anatomical alignment. The cross-movie predictions using
connectivity hyperalignment outperformed predictions based on anatomical alignment and were nearly
as precise as within-movie predictions (Figure 2A). The superior performance was consistent across
datasets and categories (p < 0.001 for all comparisons, Figure 2B) and in all individual participants
(Figure S3). Similarly, accuracies of these predictions matched and sometimes even exceeded the
reliability measures of their own localizer runs (Figure 2B).

Cross-movie predictions of cortical topographies based on different localizer types (static to
dynamic or dynamic to static) produced lower correlations than did cross-movie predictions based on the
same localizer type (Figure S2B), consistent with previous reports showing significant differences
between topographies estimated by static and dynamic localizers, especially in superior temporal and

frontal cortices (Fox et al., 2009; Pitcher et al., 2011).
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Figure 2. Predicting category-selective topographies using connectivity profiles across movies. A.
Scatter plots of Pearson correlation coefficients for individual participants in four different datasets and
for four categories. Values on the y-axis stand for correlations between each target participant’s own
localizer-based topographies and topographies estimated from other participants in the same movie
using CHA. Values on the x-axis stand for correlations between each target participant’s own
localizer-based topographies and topographies estimated from participants in another dataset based on
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cross-movie CHA. B. Bar plots display the mean Pearson correlation coefficients () and Cronbach’s
alphas across participants in all four datasets for all four categories. Error bars stand for +1 standard
error of the mean. S to B: Sraiders to Budapest, B to S: Budapest to Sraiders, R to F: Raiders to Forrest,
F to R: Forrest to Raiders.

To demonstrate how hyperalignment increased prediction performance for individual participants
from a different dataset, we plotted topographies estimated using hyperalignment and anatomical
alignment, as well as from their own localizer runs (Figure 3, Figure S4 & 5). Topographies between

datasets recovered similar idiosyncratic features as the topographies predicted within datasets.
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Figure 3. Sample contrast maps and enlarged views of the ventral temporal cortex. Contrast maps
for face-selective topographies (faces-vs-all) and their zoomed-in views of the ventral temporal cortex
were plotted in four sample participants in A. Budapest, B. Sraiders, C. Forrest, and D. Raiders. In all
four subplots, in the left-most panel, faces-vs-all maps were plotted on the sample participants’ own
cortical surfaces. The next two columns display maps estimated from other participants’ data. In the
right two columns, the first column presents predicted face-selective topographies from participants in
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the same dataset using CHA. The next column presents face-selective topographies from participants in
another dataset (cross-movie CHA). The zoomed-in panels are displayed accordingly with the
whole-brain map. The colorbar is the same as that in Figure 1. S to B: Sraiders to Budapest, B to S:
Budapest to Sraiders, R to F: Raiders to Forrest, F to R: Forrest to Raiders

To further examine the topographies predicted using different datasets and compare the
prediction performances to reliability measures, we calculated local correlations between maps
estimated from each participant’s own localizer runs and those estimated from other participants’ runs
with a searchlight analysis. We also calculated Cronbach's alpha across localizer runs in each
searchlight. Generally, searchlights in the high-level visual areas and with strong category-selectivity
(e.g., ventral temporal cortex, lateral temporal cortex) showed the highest mean correlation values,
which often exceeded 0.8 (Figure 4, Figure S6 & 8). The lower mean correlations in other cortices (e.g.,

sensorimotor cortex) reflect low reliabilities of the localizer runs.
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Figure 4. Searchlight analysis of Cronbach’s alphas and prediction performances. A, B, C & D.
The left-most column presents Cronbach’s alphas of the own-localizer-based face-selective topographies
in each dataset using a searchlight analysis (15 mm radius). The next two columns present local
correlations (correlation maps) using the searchlight analysis between face-selective maps estimated
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from participants’ own localizers and from other participants based on within-movie and between-movie
CHA (HA, top row) and surface alignment (AA, bottom row). Histogram plots present Cronbach’s
alphas (dark gray) and coefficients for the correlation maps above (estimated with CHA in color, with
AA in light gray). The left and right hemisphere histograms were plotted separately. B to S: Budapest to
Sraiders, S to B: Sraiders to Budapest, R to F: Raiders to Forrest, F to R: Forrest to Raiders

Discussion

In this study, using four datasets that contain three different movies, two different types of functional
localizers, and collected with three different scanners, we showed that individualized category-selective
topographies can be estimated with high fidelity using CHA. Unlike RHA, which requires the same
“time-locked” response time series in the normative sample and new participants, CHA affords the
calculation of transformation matrices based on responses to completely different movies. By showing
that CHA based on participants’ connectomes calculated using their responses to different movies
generated high-fidelity mappings that were as good as those using RHA with participants in the same
dataset, we demonstrated that CHA is able to effectively predict topographies across diverse situations.
This study opens new possibilities connecting independent public and in-lab datasets for future data
analysis so that researchers can derive multiple topographies at once for each individual with excellent
performance based on the naturalistic movie data and the localizer data from another normative dataset.
Our results also provide a novel alternative for new data collection to take better advantage of
naturalistic stimuli.

We used a new, enhanced CHA in this study that optimized our previous CHA algorithm with
iterative steps. In each step, transformation matrices to each index brain were calculated from other
participants’ brains and the matrices were applied to both the movie and the localizer data. We gradually
increased the number of connectivity targets to form a denser representation of connectivity profiles.
The iterations improved the prediction performance step by step, and at the final step (step 6) in this
analysis, the enhanced CHA generated comparable performance with RHA (Figure S9). In addition, this
study is based on the new optimized 1-step hyperalignment procedure (Jiahui et al., 2020). The classic
hyperalignment method (2-step), builds a common information model space at the initial step that is
based on all normative group participants, then projects information encoded in idiosyncratic
representational spaces to the common model space, and lastly projects the information back to the
individual participant’s space based on the transpose of the transformation matrices from the former
step. Different from the 2-step method, the 1-step method directly projects the data for each normative
sample brain to the index participant’s space without the intermediate step of building a common

information model space. This method requires fewer steps and is free from the accumulation of errors
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across steps. The 1-step method consistently improved the prediction performances across all conditions
and datasets (Figure S10). This method is particularly useful for estimating information encoded in each
individual’s brain space.

The within-movie and cross-movie CHA predictions generated highly similar topographies
(Figure 3). This result raises a fascinating question of whether different movie inputs estimate similar
fine-grained connectivity profiles in the brain. Previous studies reported that the coarse-grained
connectome (based on coarse parcellations) varies across separate cognitive tasks (e.g., Shine et al.,
2016; Telesford et al., 2016), and that naturalistic movies yield the most condition-specific functional
atlases among other classic cognitive tasks (Salehi et al., 2020). In the Budapest and Sraiders datasets,
the same group of participants watched the Grand Budapest Hotel and Raiders of the Lost Ark in
different sessions in the same 3T scanner. We built connectivity profiles for each participant separately
for the two movies and correlated the two fine-grained connectomes in each searchlight. Results showed
that the two fine-grained connectomes based on different movies were very similar in most of the brain
regions (> 0.8, Figure S11A & B). We split each movie into two halves (Run 1-3/Run 4-5 for
Budapest; Run 1-2/Run 3-4 for Sraiders) and averaged the connectome similarities across split halves
over searchlights and participants. We found that the across-movie connectome similarities for split
halves were high (» > 0.74), and the within-movie similarities were even higher in both datasets (» >
0.85, Figure S11C). Our analysis showed that although the fine-grained connectome was affected by the
input naturalistic stimulus content, it was nonetheless highly stable. This result suggested the brain may
undergo shared cognitive processes across different movie free-viewing tasks. It could be because
featured movies sample a broad range of real-life statistics, and the rich information elicits overall
similar representations and connectivities when the entire time series is considered.

The four datasets in our study included two types of category-selective localizers (dynamic and
static). The dynamic localizer used short video clips for each category and the traditional static localizer
used still images. For all categories, the dynamic localizer elicited stronger and broader
category-selective activations than the static localizer, and the searchlight analysis showed that the
dynamic localizer had higher reliabilities across the cortex, especially in regions that were selectively
responsive to the target category. Due to differences between topographies activated by the dynamic and
the static localizers, predictions across localizer types generated lower correlations than those within
localizer types. For example, for the face-selective topographies, the dynamic localizer activated more
areas than the static localizer (e.g., in superior temporal and frontal cortices). In the ventral temporal
cortex, especially in the right hemisphere, both dynamic and static localizers performed well in the

cross-localizer-type predictions. But in cortical areas where the static localizer did not match the
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dynamic localizer, predictions from the same dynamic localizer always outperformed the predictions
from a different static localizer (Figure S6 & S8). The low correlations were not because the prediction
method failed but reflected the difference in the topographies activated by different types of localizers.
In summary, our study demonstrated that accurate predictions of individualized
category-selective topographies can be achieved with high fidelity using CHA across different
naturalistic movie contents, across different scanners, and across different scanning parameters.
Compared to traditional functional localizers, naturalistic stimuli are more ecologically valid, engaging
multiple cognitive systems in parallel, and more friendly to participants. Our method not only can be
applied directly to current public and in-lab datasets, but has the important potential to allow researchers
to derive a broad range of topographies based on naturalistic movies and a normative database in the
future. By building such a database that comprises various high-quality topographies and naturalistic
stimuli, our study opens the gate to new research possibilities that could integrate high-level cognitive

functions across datasets from laboratories worldwide.
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Materials and Methods
Datasets

The Budapest Dataset

The Budapest dataset included twenty participants (mean age 27.2 years, 10 females) for this analysis.
These participants were scanned while watching both Grand Budapest Hotel and Raiders of the Lost Ark
and were a subset of the dataset in (Jiahui et al., 2020). The Grand Budapest Hotel dataset contained
five movie runs (~50 min, each part lasting 9—13 min each) and four dynamic localizer runs. Before
entering the scanner, participants watched the first part of the movie (~45 min) outside. The rest of the
movie was divided into five parts (each part lasting 9—13 min, ~50 min in total) and participants watched
each part/run with audio. The dynamic localizer data were collected in a separate scanning section
(Pitcher et al., 2011). This dataset comprised four blocked-designed runs (3.9 min each), and each run
comprised 10 blocks (18 s each), two per category (faces, bodies, scenes, objects, and scrambled
objects). Each block comprised six 3s-long video clips in random order. Participants did a one-back task
during the localizer scan to maintain attention.

All scans in the Grand Budapest Hotel dataset were acquired using a 3 T S Magnetom Prisma
MRI scanner with a 32 channel head coil at the Dartmouth Brain Imaging Center. BOLD images were
acquired in an interleaved fashion using gradient-echo echo-planar imaging with pre-scan normalization,
fat suppression, multiband (i.e., simultaneous multi-slice; SMS) acceleration factor of 4 (using blipped
CAIPIRINHA), and no in-plane acceleration (i.e., GRAPPA acceleration factor of one): TR/TE =
1000/33 ms, flip angle = 59 °, resolution = 2.5 mm?® isotropic voxels, matrix size = 96 x 96, FoV = 240 x
240 mm, 52 axial slices with full brain coverage and no gap, anterior—posterior phase encoding. See

more details in (Visconti di Oleggio Castello et al., 2020).

The Sraiders Dataset

The same participants were included for analysis in the Sraiders dataset as in the Budapest dataset. The
movie Raiders of the Lost Ark was split into eight parts (~15 min each), and the first four parts were
watched outside of the scanner prior to the scanning (~56 min). The later four parts were watched in the
scanner (57 min) with audio (Nastase, 2018). The Sraiders dataset and the Budapest dataset shared the
same dynamic localizer data. The Sraiders dataset was collected with the same scan protocols as the

Budapest dataset (Feilong et al., 2022; Nastase, 2018).

The Forrest Dataset
This dataset contains scans from fifteen adults (mean age 29.4 years, 6 females). Participants were
scanned at the Otto-von-Guericke University in Germany and were native German speakers (Hanke et

al., 2016; Sengupta et al., 2016). The dataset is publicly available at http://www.studyforrest.org/ (Hanke
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et al., 2014). A shortened version of the movie Forrest Gump was divided into eight parts with each part

lasting approximately 15 min. Participants watched each part/run in the scanner with audio (Hanke et al.,
2016). A category-selective localizer using still images was included in this dataset. This static localizer
comprised four runs (5.2 min each). Each run comprised two 16 s blocks for each of the six categories
(human faces, human bodies without heads, small objects, houses and outdoor scenes that include nature
and street scenes, and phase scrambled images). In each block, 16 images from one category were
displayed (900 ms display + 100 ms intertrial interval each). Participants were asked to do a one-back
task to maintain attention.

Scanning was carried out using a whole-body 3 T Philips Achieva dStream MRI scanner
equipped with a 32 channel head coil. Data were collected with gradient-echo, 2 s repetition time (TR),
30 ms echo time (TE), 90° flip angle, 1943 Hz/px bandwidth, and parallel acquisition with sensitivity
encoding (SENSE) reduction factor 2. Each volume comprised 35 axial slices with anterior-to-posterior
phase-encoding direction that were collected in ascending order, which mostly covered the entire brain.
Each slice was 3.0 mm thick with a 10% inter-slice gap, and had a 240 mm x 240 mm field-of-view
comprising 80 x 80 3 mm isotropic voxels. More acquisition parameters can be found in Hanke et al.

(2016) and Sengupta et al. (2016).

The Raiders Dataset

A subset of nine participants from the original eleven participants (7 men, mean age = 24.8 years)
participated in the face and object study at Dartmouth in (Haxby et al., 2011) and were included in this
dataset. The audio-visual movie Raiders of the Lost Ark was split into eight parts (~15 min each),
similarly to those used in the Sraiders Dataset. Participants watched all eight parts in the scanner with
audio (one part / per run). The Raiders dataset contains a static localizer that was similarly designed as
in the Forrest dataset.

Brain images were acquired using a 3T Philips Intera Achieva scanner with an eight-channel
head coil at Dartmouth College. For the movie study, whole brain volumes of 413 mm thick sagittal
images (TR =2.5 s, TE = 35 ms, Flip angle = 90°, 80 x 80 matrix, FOV =240 mm X 240 mm,
resolution = 0.938 mm X 0.938 mm X 1.0 mm) were obtained in an interleaved slice order. For more

details see (Haxby et al., 2011).

MRI Preprocessing

All datasets were preprocessed with fMRIPrep (Esteban et al., 2019), using version 20.1.1 for the
Budapest dataset, 20.2.0 for the Sraiders dataset, 20.1.1 for the Forrest dataset, and 20.1.1 for the

Raiders dataset. After fMRIPrep, functional data were projected onto a standard cortical surface aligned
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to the fsaverage template (Fischl et al., 1999) based on cortical folding patterns. The datasets were

further preprocessed following (Feilong et al., 2018; Jiahui et al., 2020). The datasets were resampled to
a cortical mesh with 18,742 vertices across both hemispheres (approximately 3 mm vertex spacing;
20,484 vertices before removing non-cortical vertices). Six motion parameters and their derivatives,
global signal, framewise displacement (Power et al., 2014), six principal components from cerebrospinal
fluid and white matter (Behzadi et al., 2007), and polynomial trends up to second order were regressed

out from both movie and localizer data for each run independently.

Searchlight Hyperalignment

Connectivity Hyperalignment (Step One)

Each participant’s connectivity profile was built based on that participant’s movie data. We first defined
the connectivity seeds and targets. In this analysis, the connectivity seeds were the same as the surface
cortical vertices. The connectivity targets were defined using a sparser cortical surface with 642 vertices
in each hemisphere before removing the medial wall. We then centered a 13 mm searchlight on each of
these vertices and computed the average time series for the searchlight over vertices from the denser
cortical model. The mean time series was assigned to the center vertex to serve as the connectivity
target. For each hemisphere, the connectivity profile was calculated as the correlation between the
connectivity seeds in this hemisphere and the whole-brain 1175 connectivity targets. The connectivity
profile of each participant was normalized to zero mean and unit variance for each connectivity seed
before hyperalignment.

We used an optimized hyperalignment method that directly transforms one participant’s
connectivity profile to another participant’s cortical space, without the interim step of projecting the
connectome into a common model space (Jiahui et al., 2020). In detail, for each 15 mm searchlight, a
participant’s patterns of connectivity to targets were aligned to another participant’s connectivity
patterns using the Procrustes transformation. The transformation matrices from each searchlight in a

hemisphere were then aggregated into a single transformation matrix for each pair of participants.

Response Hyperalignment

Response hyperalignment was applied with the same steps as the connectivity hyperalignment. The only
difference is that instead of using connectivity profiles in each searchlight for each participant, we
directly used the response pattern of the movie (time points of the movie x vertices in the searchlight) to
align a pair of participants. In this method, response patterns in a pair of participants must be from
neural responses to the same movie. Due to this restriction, response hyperalignment was only applied to

participants from the same dataset.
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Advanced Connectivity Hyperalignment

Using dense connectivity targets (e.g., using all 18742 vertices on the surface) with anatomically-aligned
data usually generates poor functional correspondence across participants (Busch et al., 2021). It is,
however, beneficial to include more targets for calculating connectivity patterns after the first iteration
of connectivity hyperalignment and repeated iterations to lead to a better solution by gradually aligning
the information at finer scales.

We used six steps to further improve the connectivity hyperalignment method. Step 1 was the
initial connectivity hyperalignment step as described above that was based on the raw anatomically
aligned movie data. The resultant transformation matrices were applied to those movie runs, and the
hyperaligned data were then used in step 2 to calculate new connectivity patterns and calculate new
transformation matrices. We repeated this procedure iteratively six times and derived transformation
matrices for each step. In steps 1, 2, and 3, 642 x 2 (icoorder3, before removing the medial wall)
connectivity targets were defined with 13 mm searchlights. In step 4 and 5, 2562 x 2 (icoorder 4, before
removing the medial wall) connectivity targets were used with 7 mm searchlights to calculate target
mean time series. In the final step 6, all 18742 vertices were included as separate connectivity targets,
using each vertex’s time series rather than calculating the mean in a searchlight. Each step of this

advanced connectivity hyperalignment algorithm increased the prediction performance (Figure S7).

Predicting individual contrast maps

Estimating contrast maps from each participant s own localizer data

We estimated each participant’s category-selective maps by calculating the unthresholded GLM
univariate contrasts using his/her own localizer data in each run and averaging the t-values across all the
localizer runs. We included face-, body-, scene-, and object-selective maps in the analysis. The contrast
maps in each category were calculated based on the contrast of the target category vs. all the other
categories. For example, the face-selective map was calculated using faces vs. all the other categories in

the localizer data (e.g., bodies, objects).

Estimati I 7 v Partici, ’ izer

Transformation matrices from each participant to a target participant derived from hyperalignment were
applied to the localizer runs of all other participants to project their localizer data into that target
participant’s cortical anatomy. These hyperaligned localizer runs and anatomical surface aligned
localizer runs were used separately for GLM univariate analysis for each run in each other participant,
and then averaged across the t-maps from all runs and all other participants to estimate the target

participant’s contrast maps for each category.
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In summary, each participant’s category-selective map was estimated based on that target participant’s
own localizer data and on all other participants’ localizer data that was projected into that participant’s
cortical space using hyperalignment and anatomical surface alignment (see Fig. S1). After obtaining
these estimated maps, we calculated correlations between the target participant’s category-selective
maps based on his/her own localizer data and the maps estimated from other participants’ data
(hyperaligned or anatomically-aligned). We also calculated Cronbach’s alpha values (Feilong et al.,
2018; Jiahui et al., 2020, 2022) across the multiple runs to measure the reliability of the
category-selective maps for each participant and compared the correlations to the reliability values. To
measure the local estimation performance and compare that to local reliabilities, we calculated

correlations and Cronbach’s alphas in searchlights with a radius of 15 mm.
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Figure S1. Schematic data analysis procedures. In the enhanced CHA analysis, transformation
matrices derived from projecting connectome based on the movie data in each training participant’s
cortical space to the target participant’s space were applied to each training participant’s localizer runs.
These steps were iterated six times, and in each step, the connectome and the localizer data were both
updated. The original localizer runs were used to calculate category-selective topographies for each
training participant and averaged across runs and participants to obtain the surface alignment predicted
topography for the target participant. The localizer runs hyperaligned after all iteration steps were used
to obtain CHA predicted topographies with similar procedures. Outside of this loop, each target
participant’ own original localizer runs were used to obtain this participant’s own localizer estimated

topographies.
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Figure S2. CHA predictions. A. Scatter plots of Pearson correlation coefficients using CHA and RHA
for individual participants within four different datasets for the face-selective topography. Values on the
y-axis stand for correlations between each target participant’s own localizer-based topographies and
topographies estimated from other participants in the same dataset using RHA. Values on the y-axis
stand for correlations between each target participant’s own localizer-based topographies and
topographies estimated from other participants in the same dataset using CHA. B. Bar plots display the
mean Pearson correlation coefficients () and Conbach’s alphas across participants in all four datasets
for all four categories. Error bars stand for +1 standard error of the mean. The abbreviations are the same
in all figures, including this one. S to B: Sraiders to Budapest, F to B: Forrest to Budapest, R to B:
Raiders to Budapest, B to S: Budapest to Sraiders, F to S: Forrest to Sraiders, R to S: Raiders to
Sraiders, R to F: Raiders to Forrest, B to F: Budapest to Forrest, S to F: Sraiders to Forrest, F to R:
Forrest to Raiders, B to R: Budapest to Raiders, S to R: Sraiders to Raiders
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Figure S3. Prediction performances for each individual participant. Prediction performance
(Pearson r) for the face-selective topography for each individual participant using RHA, CHA,

cross-movie CHA, and AA in all four datasets. Black dots stand for individual participants’ Cronbach’s
alphas of their own face-selective topographies across localizer runs. Dashed lines are the mean values
across participants.
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Figure S4. Sample contrast maps and enlarged views of the ventral temporal cortex. Contrast maps
for face-selective topographies (faces-vs-all) and their enlarged views of the ventral temporal cortex
were plotted in sample participants in A. Budapest, B. Sraiders, C. Forrest, and D. Raiders. In all five
subplots for the whole-brain maps, the faces-vs-all maps were plotted on the sample participants’ own
cortical surfaces (left single panel). The second column presents predicted face-selective topographies
from participants in the same dataset using connectivity hyperalignment (top) and surface alignment
(bottom). The next three columns present face-selective topographies from participants in another
dataset with the same (second column) and a different type (the last two columns) of localizers. In the
four right columns, the top row presents the map using hyperalignment (HA), and the bottom row
presents the map using surface alignment (AA). The enlarged panels were displayed accordingly with
the whole-brain map. The color bar was the same as that in Figure 1.


https://doi.org/10.1101/2022.11.21.517253
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.21.517253; this version posted November 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

To Budapest To Sraiders
A Others’ Localizer B Others’ Localizer
ithin-Movie ) o) o ithin-Movie o o o
Within-Movie CHA StoB FtoB RtoB Within-Movie CHA Bto S FtoS Rto S
Bodies EaWaich VoS Vs Vi Bodies TR A TR, A Wa
D D CHED T o CPREED &) (065D (&
Own Localizer ) o R . - Own Localizer i o N P e . T
T ae, | e CaD Cah e CahddaD Cmh&ad T o s BTG CaDGED Canda Candad T
OB e ine O e e,
;—::) = e e e e e - _ﬁ; . 2 A= SR RS SR SRS SR
e u:(_:) . . n e D Cg™ & a s
é," "4 »lg — P D 2 ; (‘ -] =) e »iw —~ P& & ;
BOCaD Caa el Gl CAGaD EHGaD il (ol
eI VR e e 'e$vSvVve e
> 9, 3 N p oy T A, . \ A V.
oy DB BB o, BDODBED O M
nlocalzer .o cg CEDGE" CEbEGET CabEar I '—j/:\_ B ﬁ% S aSdaD T
< < “%
:k Hs - h a-» e @ e
g € e M ¢S,
-_—GaD GG Riam> Cmedéam
O P W e W W e
Objects A\ [ A /8 v \ / Objects 7\ LT ™\ LT
[ o' 1 18 " \, N »
Own Localizer S = ey o - Own Localizer - ™ P - T
" o da Ca&a Tl e & TR £ - iy S e =l =OCGaD &
DG
- @ 9o @ . SRS 9 @ , )\ ﬂ" .\ - - v - w - w
\ .' N «, \ % N \“!’ \'\/’
= M = M 4 e L g - : B < : h - < g
Bl CEnla® Ca =l 2 e GG Gl -
. B ERN N FaS B EAN N - e N e e v e
To Forrest To Raiders
c Others’ Localizer D Others’ Localizer
Within-Movie CHA RtoF BtoF StoF Within-Movie CHA FtoR BtoR StoR
. p- # N S5 N . ¢ R A T s
Bodies Y Y \ W Bodies Ve Y YL Y
Own Localizer e e B ‘*”': . Ownlocazer  © >& E ) E284& .
- Sl eadad Calad Cadad = - - aeD (ada> (aaa> CaGaD
) ;‘5 g} / / \ D& =) i
o o (e we e e e e e & @ P (@ P L e L (e
G o> n n D . . -
& 3K 7 - D&, V&S # Q/Q ’ 9;& g &y & . \\t _ :\t . _:,\:‘ 3 ’ :/\:g 3 g
e EmD el b =Yy G oty (OmeeGagy moCa® (O
& K PRV JE FEE L PRE L @ & 3E SR8 3K DEE 3K SNV 3K 9
Scenes (oD M '9 ‘:f 9::" Scenes
Own Localizer a4 - > e T Own Localizer
? > b > CER SRS &S T —\ y—~
EDEEY 4 G , A D2
AT (@il (e @ e @ e .
L »e ; “‘& el
> G Sl
9 @ e
Objects \ / / 2\ o o e Objects \ 4 \ £ W L
! ) a0 Y LY 3 A ( \ DE €
Own Localizer o o - o * b - Own Logalizer L ~ ) : - < : _ -
-l - el CEaw — Ol ) ST b e 4 e >
 # N L
LTS @ e (@ P (e Y- e 2R _=gN B RN S SN SR B
Camd D ) ) y_alev g ) )
[0 & Rl . YA RYS @ ied v RYS = M
~ . ~ - - - . ~ > ~,
=l DD D G B B laD (ElaD (ERa (e B
. v - v - o A S - v~ L~

Figure S5. Sample contrast maps of body-, scene-, and object-selective topographies. Contrast maps
of the other three categories were plotted in participants in A. Budapest, B. Sraiders, C. Forrest, and D.
Raiders. In all five subplots for the whole-brain maps, the map estimated from their own localizer runs
were plotted on the sample participant (left single panel). The other columns present predicted
topographies from participants in the same dataset using connectivity hyperalignment (top) and surface
alignment (bottom).
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Figure S6. Searchlight correlations. A, B, C & D. The left-most column shows the Cronbach’s alphas
of the own localizer-based face-selective topographies in each dataset using a searchlight analysis (15
mm radius). The next four columns show local correlations (correlation maps) using the searchlight
analysis between the face-selective maps estimated from other participants based on within-movie
(second column, top row) and between-movie (the next three columns, top row) CHA and surface

alignment (A A, bottom row).
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Figure S7. Distribution of correlation coefficients in major cortices. Histogram plots of local
Cronbach’s alphas (dark gray) and local correlation coefficients between face-selective topographies
estimated from own and others’ localizers across the cortex (HA in color, light gray for AA) in major
cortices (ventral temporal, dorsal temporal, occipital, frontal, and parietal) in the four datasets (see
Figure 4 for the whole brain maps and distributions). The left and right hemisphere histograms were
plotted separately in each cortical parcel.
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Figure S8. Searchlight analysis results for other categories. A, B, C & D. The left-most column
shows the Cronbach’s alphas of the own localizer-based topographies in each dataset using a searchlight
analysis (15 mm radius). The next four columns show local correlations (correlation maps) using the
searchlight analysis between the category-selective maps estimated from other participants based on
within-movie (second column, top row) and between-movie (the next three columns, top row) CHA and

surface alignment (AA, bottom row).
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Figure S9. Advanced CHA improved prediction performances. A. In each subplot, each line with
dots showed the improvement of the mean correlation across participants between the category-selective
maps estimated from each participant’s own localizer runs and those estimated from participants’ data in
other datasets from step 1 to step 6 using our new advanced iterative connectivity hyperalignment
algorithm. Horizontal dotted lines are the mean Cronbach’s alphas (gray) and the mean performance
using RHA (colored). B, C, and D had the same layout as A with participants in Sraiders, Forrest, and
Raiders dataset as the prediction target.
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Figure S10. Predictions based on the 1-step and the 2-step methods. Bar plots display the mean
Pearson correlation coefficients (7) and Conbach’s alphas across participants in all four datasets for all
four categories. Bars with solid outlines stand for results based on the 1-step method, and bars with
dashed outlines are based on the 2-step method. Error bars stand for +1 standard error of the mean.
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Figure S11. Similarities between fine-grained connectivities in two different movie-viewing tasks.
A. For each participant in the Budapest and the Sraiders dataset, connectomes that described the
connectivity between each target in the searchlight and each vertex on the cortex were calculated for
each dataset and correlated across the two datasets. This whole-brain map shows the mean correlations
across participants. B. Histogram plots of the correlation coefficients in A in the left and the right
hemisphere. C. The two datasets were split into two halves, and similarities of the fine-grained
connectivity between the two halves within and across the two movies were calculated following the
same procedures above. This plot shows the mean correlations across participants and searchlights.
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