
Running ahead of evolution - AI based
simulation for predicting future high-risk
SARS-CoV-2 variants

Journal Title
XX(X):1–15
©The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Jie Chen1, 2, 3, †, Zhiwei Nie2, 1, 3, †, Yu Wang1, †, Kai Wang1, †, Fan Xu1, †, Zhiheng Hu1,
Bing Zheng1, 4, Zhennan Wang1, Guoli Song1, Jingyi Zhang1, Jie Fu5, Xiansong Huang1,
Zhongqi Wang1, Zhixiang Ren1, Qiankun Wang1, 6, Daixi Li1, 7, Dongqing Wei1, 6, Bin Zhou1, 8,
Chao Yang9, Yonghong Tian10, 2, 1, 3

Abstract
The never-ending emergence of SARS-CoV-2 variations of concern (VOCs) has challenged the whole world for
pandemic control. In order to develop effective drugs and vaccines, one needs to efficiently simulate SARS-CoV-2
spike receptor binding domain (RBD) mutations and identify high-risk variants. We pretrain a large protein language
model on approximately 408 million protein sequences and construct a high-throughput screening for the prediction
of binding affinity and antibody escape. As the first work on SARS-CoV-2 RBD mutation simulation, we successfully
identify mutations in the RBD regions of 5 VOCs and can screen millions of potential variants in seconds. Our workflow
scales to 4096 NPUs with 96.5% scalability and 493.9× speedup in mixed precision computing, while achieving a peak
performance of 366.8 PFLOPS (reaching 34.9% theoretical peak) on Pengcheng Cloudbrain-II. Our method paves
the way for simulating coronavirus evolution in order to prepare for a future pandemic that will inevitably take place.
Our models are released at https://github.com/ZhiweiNiepku/SARS-CoV-2_mutation_simulation
to facilitate future related work.
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Justification

We develop a novel multi-constraint variation prediction
framework to simulate SARS-CoV-2 RBD mutations,
reaching a peak performance of 366.8 PFLOPS with 96.5%
scalability and achieving 493.9× speedup. Our method
facilitates the prediction and prioritization of future high-risk
variants for the early deployment of drugs and vaccines.

Performance attributes

Performance attribute Our submission

Category of achievement time-to-solution, scalability
Type of method used machine learning
Results reported for whole application using and except I/O
Precision reported mixed precision
System scale results measured on full-scale system
Measurement mechanism timers, FLOP count, performance modeling

Overview of the problem

Coronavirus Disease 2019 (COVID-19) has spread rapidly
to more than 200 countries or regions since December 2019.
Due to its high infectivity, there have been over 617 million
confirmed cases, including approximately 6.5 million deaths,
reported by the World Health Organization (WHO) as of
8 October 2022 (https://covid19.who.int/). In addition to
being a serious threat to human health, COVID-19 has had
a catastrophic impact on the global economy.

The virus that causes the pandemic is the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (Figure
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1a), which belongs to the genus Betacoronavirus and has
nearly 80% sequence similarity with the severe acute
respiratory syndrome coronavirus (SARS-CoV) (Lamers and
Haagmans 2022; ICTV 2020; Zhou et al. 2020).

As the pandemic enters its third year, SARS-CoV-2 has
been creating waves of infections around the world (Figure
1b,c) (Callaway et al. 2022) due to the high mutation rate
of this RNA virus. Which potential SARS-CoV-2 variants
may become the next VOCs? Do we need to develop new
vaccines to deal with new variants? In what direction will the
virus evolve? Shall we just give up as a society and hope that
the virus will finally fade away? These are the inconvenient
questions that every country on this planet must answer.

Before the current pandemic, the best-known Betacoro-
naviruses are SARS-CoV and Middle East respiratory syn-
drome coronavirus (MERS-CoV), which have relatively
more severe clinical symptoms than most coronaviruses,
which can infect humans but cause only mild symptoms (Yin
and Wunderink 2018; Drosten et al. 2003; Zaki et al. 2012;
Su et al. 2016; Lu et al. 2020). In the past two decades, the
viruses mentioned above have led to two epidemics: SARS
(2002) and MERS (2012)(Lu et al. 2020). SARS-CoV-2 can
also infect the human respiratory system, but has a much
higher infection rate than that of SARS-CoV or MERS-CoV
(Walls et al. 2020; Wrapp et al. 2020).

Three sets of proteins, including structural proteins,
nonstructural proteins, and accessory proteins, are encoded
by SARS-CoV-2 (Lamers and Haagmans 2022) (Figure 1a).
There are four main classes of structural proteins, namely,
spike protein (S), nucleocapsid protein (N), membrane
protein (M), and envelope protein (E), which support the
structure of the virus in terms of shape or function (Wu
et al. 2020; Lamers and Haagmans 2022). In particular, in
addition to their high similarity in sequences, SARS-CoV-2
and SARS-CoV have the same mechanism of infecting host
cells, that is, binding to the host entry receptor angiotensin-
converting enzyme 2 (hACE2) (Zhou et al. 2020; Wan et al.
2020; Hoffmann et al. 2020; Li et al. 2003). During infection,
the trimeric S protein is cleaved by host proteases into the
N-terminal S1 subunit and the C-terminal S2 subunit. The
receptor-binding domain (RBD) is an important component
of the S1 subunit (Figure 1a) that is responsible for binding
to ACE2, and is the primary binding target for neutralizing
antibodies (NAbs) (Belouzard et al. 2009; Wrapp et al. 2020;
Lu et al. 2015; Chi et al. 2020). Therefore, the S protein plays
a key role in viral infection and the immune evasion process
(Gallagher and Buchmeier 2001; Simmons et al. 2013).

SARS-CoV-2 continues to mutate with a high mutation
rate (Duffy 2018) and has evolved into five main variants of
concern (VOCs) as of May 2022: B.1.1.7 (Alpha), B.1.351
(Beta), P.1 (Gamma), B.1.617.2 (Delta) and B.1.1.529
(Omicron) (https://www.who.int/en/activities/tracking-
SARS-CoV-2-variants/, Figure 1b,c). These SARS-CoV-2
variants with novel spike protein mutations have created
waves of infections and reinfections across the globe (Figure
1d). It is vitally important to identify early (Obermeyer
et al.) or, even better, to predict dangerous viral mutations
that may enhance viral fitness including binding affinity,
viral infectivity, or immunity escape.

The Global Initiative on Sharing All Influenza Data
(GISAID) (https://www.gisaid.org/) (Shu and McCauley

2017) has recorded more than 13 million SARS-CoV-2
genomes submitted by scientists around the world. This
large number of genomic sequences presents an excellent
opportunity to study the spread and evolution of SARS-CoV-
2. Computational methods such as the Gillespie algorithms
can be used to simulate realistic substitution patterns of
closely related genomic large-scale datasets, e.g., simulators
targeting gene trees, ancestral recombination graphs, or
phylogenetic trees (Beiko and Charlebois 2007; Hudson
2002; Laval and Excoffier 2004; Ewing and Hermisson
2010; Rambaut and Grass 1997; Fletcher and Yang 2009;
Sipos et al. 2011; De Maio et al. 2022; Shchur et al.
2021). Deep learning (DL) models can also learn hidden
evolution patterns from the huge number of virus sequences
submitted, prioritizing future potential viral mutations that
could introduce the next VOCs (Chen et al. 2020; Mohamed
et al. 2021).

As shown in Figure 1a, the RBD region of the spike
protein is an area of concern because it has a high
mutation rate, which can significantly affect binding to
hACE2, as well as antibodies. In this work, we simulate
RBD mutations by learning, generating, screening, and fine-
tuning DL models based on pretrained protein language
models as shown in Figure 1e. A multi-constrains variation
prediction framework(MCVP) is designed to learn from
millions of RBD sequences and experimental measurements
of binding affinity between single RBD mutations and
hACE2/antibodies. MCVP utilizes active learning based on
a pretrained protein language model. This HPC-driven work
can evaluate RBD mutations based on protein expression,
binding affinity, and antibody escape to ultimately provide
assistance in the fight against SARS-CoV-2.

Current state of the art

Predictive modeling of SARS-CoV-2 variants
During the pandemic, studies have emerged with a variety of
focuses and models to predict the mutation of SARS-CoV-
2 have emerged. For example, a renewal-equation-based
model was used to describe the adaptive evolution among
multiple variants of SARS-CoV-2 including R.1, Alpha, and
Delta, and then to predict the dominant variants in Japan
before the start of the Tokyo Olympic Games (Ito et al.
2021). Furthermore, some work sought to accurately predict
the fitness of SARS-CoV-2 variants, which was used to
characterize how efficiently the virus produces infectious
progeny. A computational model named SpikePro (Pucci
and Rooman 2021) was designed to predict the fitness of
SARS-CoV-2 from the sequence and structure of the spike
protein in order to allow the identification of new dangerous
variants. PyR0 (Obermeyer et al.), a hierarchical Bayesian
multinomial logistic regression model, was developed to
infer lineage fitness, forecast future lineage proportions, and
identify mutations relevant to fitness.

DL methods have recently been shown to perform well
in predicting coronavirus mutations. Specifically, a three-
dimensional convolutional neural network (3D CNN) based
on spike dinucleotide composition representation was used
to learn the human adaptation of existing coronaviruses and
predict the adaptation of SARS-CoV-2 VOCs (Li et al. 2022).
DL language models have also been applied for protein
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Figure 1. Overview of the problem and our solution. (a) The structural diagram of SARS-CoV-2, in which the RBD on the spike
protein is an important region to which hACE2 and the majority of neutralizing antibodies bind to. (b) The approximate detection
time and places of the five VOCs (Alpha, Beta, Gamma, Delta, and Omicron). (c) Waves of infections caused by the five VOCs from
the outbreak of COVID-19 to the present. (d) The phylogenetic tree of SARS-CoV-2 VOCs and the comparison of the variation sites
of the five VOCs in the RBD regions. (e) Our methodology for simulating the viral mutation in the RBD. With the support of an HPC
optimization strategy that integrates software and hardware, a protein language model (ProtMut) is efficiently pretrained for the
generation of RBD mutations. With reference to the mutation frequency of each mutation site in the RBD in the real world, ProtMut
can generate billions of RBD variants. These variants are sequentially screened for binding affinity with hACE2, and antibody
escape capability. The screened variants are used to fine-tune the ProtMut generator. The retrained ProtMut model is more likely to
generate viral variants with better binding to hACE2, better capability for antibody escape, and stronger fitness.

prediction tasks, as common protein motifs and domains can
be analogized to words, phrases, and sentences in human
language (Ofer et al. 2021; Trifonov 2009; Strait and Dewey
1996; Yu et al. 2019). A Transformer-based discriminative
model was trained with SARS-CoV-2 genetic sequences
to predict potential mutations that may lead to enhanced
virus transmissibility (Wu et al. 2021). Motivated by the
success of masked language models such as BERT (Devlin

et al. 2018), we design a pretrained protein language model
for comprehensive variant prediction, aiming to simulate
circulating viral mutation and predict potentially risky
variants. In this work, we pretrain our protein language
model on a large-scale set of protein sequences using a
supercomputer with exascale AI/DL training capabilities and
further perform fine-tuning and multiconstraint screening
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on RBD sequences of the spike protein in SARS-CoV-2 to
generate possible future variant branches.

Large-scale language model training
The existing state-of-the-art DL language models, especially
various BERT variations (Devlin et al. 2018; Yang et al.
2019; Howard and Ruder 2018; Liu et al. 2019; Lan
et al. 2019) with Transformer as the core, have achieved
outstanding performance in many fields. Recently, some
works have emerged with a focus on transferring language
models to large-scale protein representation learning, e.g.,
ESM (Rives et al. 2021) and ProtTrans (Elnaggar et al. 2020),
which were trained on the Summit supercomputer, and
demonstrated that large-scale pretrained language models
can capture latent grammar of protein sequences to a certain
degree (Elnaggar et al. 2020).

Minibatch stochastic gradient descent has been found
to be very effective for large-scale learning (He et al.
2021). However, updating the parameters in small batches
makes the optimization unstable (Li et al. 2020). For large-
scale datasets, large-batch training with data parallelism
has found increasing popularity (?), as it can improve
data communication and hardware utilization of a model.
However, how to set the best batch size is a complex
optimization problem. Some works (Hoffer et al. 2017;
Keskar et al. 2017; Goyal et al. 2017; Osawa et al. 2022)
have reported that increasing the batch size beyond a certain
point can result in poor generalization performance.

Innovations realized

Overview of MCVP
MCVP is a heterogeneous system for simulating the effect of
the RBD mutations on the fitness of SARS-COV-2 viruses.
This system includes 1) a pretrained protein language
generative model for RBD mutation generation, 2) an RBD
and hACE2 binding affinity prediction model for selecting
RBD mutants that have higher binding affinities than the wild
type, and 3) an immune escape prediction model for selecting
RBD mutants that are more likely to evade antibody attacks.

The training and validation data for the system are
collected from various authoritative resources. We download
protein sequences from the UniRef database (Suzek
et al. 2007) for the training of the protein language
model. We download SARS-COV-2 genomes from the
GISAID database1, which includes more than twelve
million genome sequences of SARS-CoV-2 for rapidly
sharing. The S protein sequences are obtained from this
platform, then the RBD region sequences are segmented
for model fine-tuning and analyzed for the probability
of the mutation rate at each position. SARS-COV-2
VOC defining mutations are downloaded from https://cov-
lineages.org/index.html#global reports.

The workflow of MCVP We design MCVP to follow the
workflow as shown in Figure 2a. The first module of the
MCVP is a BERT-based language model, hereafter called
ProtMut. ProtMut is trained with the UniRef90 dataset,
including approximately 144 million protein sequences. All
protein sequences are chopped into lengths of 256, as the
RBD region of the spike protein S1 consists of 201 amino

acids within the location range of 331-531 (Starr et al.
2020). BERT is a bidirectional model for natural language
processing that attempts to reconstruct corrupted tokens.
For protein language modeling, 15% of each input protein
sequence is masked. During the training process, ProtMut
reconstructs the masked amino acids. The details of ProtMut
can refer to Supplemental material. At the end of the training,
ProtMut has learned protein embeddings that captured some
of the biophysical features of the protein sequences.

We use ProtMut in two ways. First, we design an
RBD-variation-generating module based on ProtMut. We
fine-tune ProtMut with RBD sequences truncated from
the spike protein sequences which were downloaded from
GISAID. Afterward, we generate new RBD mutations
by generating missing amino acids from a masked RBD
sequence selected as the starting sequence. Second, as a
protein embedding generator, ProtMut provides meaningful
vector representations of RBD mutations. These embeddings
are used as the inputs to a binding affinity prediction
model(BindTrans), and an immunity escape prediction
model (EscTrans). The above models, BindTrans and
EscTrans, are essential in selecting RBD mutations that are
more advantageous in the sense of virus fitness and survival
because of higher binding affinities and immune evasion.

We use ProtMut to generate millions of RBD mutations
with Pengcheng Cloudbrain-II. Subsequently, two DL filters
are used to screen the various generated variants of the
RBD based on region binding affinity and immunity escape
in a high-throughput manner. The in silico screening is
designed to simulate the evolution of SARS-CoV-2 in nature.
Therefore, the variants that passed this screening could
be considered as evolutionarily more advantageous. After
we have completed one round of mutation simulation, the
selected variants are used as training examples for ProtMut
to fine-tune the mutation model, which forces the model to
learn the characteristics of those variations that are more
likely to survive the evolutionary selection. By repeating this
procedure, ProtMut is guided to generate variants that were
more likely to have evolutionary advantages, thus enabling
the simulation of SARS-CoV-2 RBD mutation generation.

As shown in Figure 2b, the protein embedding generation
process started with tokenization of a protein sequence
and the addition of the positional encoding. The resulting
vectors are passed through ProtMut to create context-
aware embeddings for each amino acid, which are the last
hidden state of the Transformer’s attention stack. Then these
embeddings are concatenated and pooled along the length-
dimension to obtain a fixed-size embedding irrespective of
the length of the input protein sequence. In MCVP, two DL
predictors are developed, based on the sequence embeddings
extracted by ProtMut. The first is a binding affinity predictor
designed for forecasting changes in binding affinity between
the mutated RBD and hACE2. The second predictor can
be used to evaluate the comprehensive antibody escape
capability of the variants through antibody escape prediction.

Generation of variants A variant generation module is
designed based on the ProtMut model. Essentially, we
assume that the ProtMut model has learned the general
properties of proteins through self-supervised learning on
billions of protein sequences. Then, by fine-tuning ProtMut
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Figure 2. (a) The workflow of MCVP. It consists of four modules, including pretraining, fine-tuning, generation, and high-throughput
screening. (b) Two transfer-learning models for high-throughput screening. Three modules make up the whole processing workflow:
a feature extractor module, a feature refinement module, and a downstream task module. The protein embeddings learned by
ProtMut are further refined through the coupling of global and local features. And then neural networks are trained for two different
downstream tasks.

on millions of RBD sequences, the model is exposed to
the subtle amino acid changes in the RBD region of the
S1 proteins that are present in the GISAID submissions.
We reason that the final converged model should be able to
generate RBD like sequences that would be very likely to
new RBD mutations as long as proper constraints, e.g., virus
fitness, increased binding affinity to hACE2, and increased
antibody evasion, are satisfied.

We generate RBD variants by performing the following
steps. 1) Spike protein sequences are downloaded from the
GISAID database, and the sequences in the RBD region
are extracted. 2)Training datasets are created from the data
processed in step 1. For each VOC, we create a training
dataset using all RBD sequences from the virus genomes that
were submitted before the first appearance of that VOC. 3)
The ProtMut model is fine-tuned using the training dataset.
4) A variation probability for each position in the RBD

is calculated using the training dataset. 5) The variation
probability is used to create masks for each position in the
RBD. 6) The variant generation module is used to create
amino acids at the masked positions.

High-throughput screening Once we have generated a
large number of mutation sequences, the next step is to
simulate the selection pressure faced by viruses through
high-throughput screening. Three screening principles are
adopted to perform the progressive filtering of the generated
mutations. Since the main receptor for entering human cells
is hACE2, the affinity between the virus RBD and hACE2
is an important indicator for the viral entrance. Therefore,
future variants should maintain ideal binding affinity with
hACE2. More importantly, various studies have shown that
VOCs can escape binding to antibodies. Therefore, we
design a model to predict binding affinity and a model
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to predict the immunity escape of the variants. These two
models are built with ProtMut as the backbone and are
developed based on transfer learning.

As shown in Figure 2b and Figure S1b, we use transfer
learning for two types of downstream tasks, including
prediction of hACE2 binding and antibody binding. The
data of quantified changes (refer to Supplemental material)
of hACE2 binding and antibody binding are first processed
to obtain RBD sequences with corresponding amino acid
substitutions. Then, the RBD sequences of variants are
passed through ProtMut trained on billions of protein
sequences to obtain context-aware embeddings, in which
the latent pattern at amino-acid-level is captured. With the
assistance of the training strategy focused on Local-global
feature coupling and sparse hard sample mining (refer to
Supplemental material), our model outperforms the state-
of-the-art baseline models with significant improvements
and the hACE2 binding and antibody binding of high-
risk variants, including Alpha, Beta, Gamma, Delta, and
Omicron, can be correctly predicted. The two downstream
tasks are designed to select RBD mutations with better
binding affinity to hACE2, and stronger capability of
antibody escape.

Simulation of circulating mutations SAR-CoV-2 is con-
stantly evolving within a host. As a result of evolutionary
pressures, viruses tend to mutate to acquire stronger fit-
ness, including better binding affinity, and stronger antibody
escape capabilities. We simulate the mutation of SARS-CoV-
2 through high-throughput screening and fine-tuning. In each
round of stimulation, we use AI models to select those muta-
tions that are predicted to retain ideal binding affinity and
stronger antibody escape capabilities. The screened variants
will then be used for rounds of fine-tuning of ProtMut. These
steps complete the in silico mutational simulation of SARS-
CoV-2 RBD.

HPC strategy design
For large-scale distributed AI training, the main goals are to
optimize the throughput and speed up network convergence.
Pengcheng Cloudbrain-II possesses 4096 pieces of AI
processors with 512 server nodes. To efficiently train
the language model on such a large cluster, we adopt
multiple optimization strategies (Figure 3), reaching a peak
performance of 366.8 petaflops with mixed precision.

Operator fusion We run the training task in graph mode
and apply pattern-based operator fusion to accelerate the
training in this mode. In this work, we perform fusion
of the following operators to optimize the BERT model:
(1) We fuse multiple operators for the forward/backward
layer normalization operations and perform calculations on
multiple NPU cores. (2) We fuse the batch matmul operator
and the add operator. (3) We fuse the All-Reduce operations
for all gradients within one Transformer layer into a single
operator. These optimizations account for more than 30% of
the time consumption.

Operator replacement Operator replacement refers to the
replacement of some operators in a model with new operators
that are more amenable to online deployment. In this work,
we use fast GeLU in place the of the GeLU operator, which

is not very friendly to NPUs. Such operator replacement can
improve the model efficiency by 10% while maintaining the
accuracy performance.

Operator auto-tuning AI computing chips are usually
composed of computing units, on-chip storage, data
transmission, and other modules. The collaboration among
these modules will significantly affect the computation
patterns of operators. The Auto Tune tool of Ascend uses
reinforcement learning and genetic algorithm for tuning
particular operators by identifying the optimal tiling policies.
We use the Auto Tune tool to optimize the matmul operator,
which accounts for more than 30% of the time consumption.

Mixed precision We further improve the speed performance
by using mixed precision schedules. In dozens of layernorm
operators, we schedule a reducing sum operation to the
Ascend 910 cube core in FP16 and the other remaining
operations to the Ascend 910 vector core in FP32 to avoid
computation overflow and achieve higher performance. In
addition, the embedding and loss calculations are performed
in single precision, and the remaining operators are applied
in half precision. The optimizer is implemented with single
precision. This mixed-precision implementation greatly
reduces the training latency at the cost of potential overflow
due to the limited representation range of half precision.

How performance was measured
We perform pretraining of our ProtMut model on Pengcheng
Cloudbrain-II with the MindSpore2 AI computation frame-
work (refer to Supplemental material). The system and
environment where performance was measured are described
in detail in Supplemental material. We run tests with 8 NPUs
per NPU Pod. The tests are scaled from (1 × 8) to (512 × 8)
NPUs by powers of 2, and the largest one is assessed on (512
× 8) NPUs at full-scale. Our model reports timings, includ-
ing epoch times, mini-batch times, and time-to-solution. We
measure the full pretraining time-to-solution, scalability, and
peak performance at full-scale. We measure the FLOPS for
all precisions by using MindInsight, which is a module of
MindSpore. We collect floating-point instructions of relevant
flavors (that is, adds, mults, fused multiply adds, and tensor
core operations for FP16, FP32, and FP64) and multiply
them by corresponding weighting factors, respectively, to
transform them into FLOPS counts. The sum of all these
values for all precisions yields our overall mixed-precision
FLOPS count. In summary, the criteria used to measure the
performance of the ProtMut model are defined as follows:

• Time-to-solution, defined as the epoch times of strong
scaling.

• Mini-batch size, defined as the batch size on a single
NPU.

• Peak performance, defined as total FLOPs
per step time .

Performance results

Strong scaling performance
The strong scalability of the pretraining process is measured
in terms of the epoch times for 1 to 512 nodesof Pengcheng
Cloudbrain-II, as shown in Figure 4. For the strong scaling
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Figure 3. An overview of the employed optimization strategies. (a) Operator fusion. To reduce the redundant memory accesses
incurred by the successive execution of many small operators, we integrate multiple transdata operators into one transdata
operator. (b) Operator replacement. We replace two operators with one simplified operator to reduce the computational cost and
model size. (c) Operator auto-tuning. TBE means Tensor Boosting Engine. GA means Genetic Algorithm. We use a genetic
algorithm for tuning particular operators by identifying the optimal tiling policies. A well-designed tiling schedule can fully utilize the
computing power of the hardware. (d) Mixed precision. All parameters in the model and optimizer are stored in single precision
(32-bit), but most of the calculations in this model are performed in half precision (16-bit) to accelerate the training process. This
mixed-precision implementation greatly reduces the training latency at the cost of potential overflow due to the limited
representation range of half precision.

assessment, the total size of the problem remains the same,
i.e., the number of protein sequences used for the protein
language model pretraining is kept constant at approximately
408 million. The measured strong scaling, shown as a solid
line, almost coincides with the optimal strong scaling, shown
as a dotted line, which demonstrates that the strong scaling
performance is nearly perfect for 1 to 512 nodes. With
the performance for 1 node as the baseline, the parallel
efficiency at 512 nodes is approximately 96.46%, and
the speedup reaches about 493.9. In addition, the peak
performance reaches 366.81 PFLOPS, and the time-to-
solution is 9.1 minutes when scaled to 512 nodes in mixed-
precision, which enables rapid deployment and iteration
of variant generation models.

Weak scaling performance

As shown in Figure 5, the weak scaling performance
of pretraining the protein language model on Pengcheng
Cloudbrain-II is also assessed. Unlike the strong scaling
case, the problem size per node in the weak scaling test
is kept constant at 640 thousand protein sequences. Here,
the I/O operations are the saving of checkpoints and train
models. Even if the I/O time is included, the degradation
in performance at high node is still slight. Specifically, the
parallel efficiency for weak scaling from 1 to 512 nodes
slightly reduces from 96.73% to 95.57%, and the utilization
also remains stable, reducing from 34.99% to 33.54%. In
addition, the peak performance can reach 366.86 PFLOPS
(34.99% of Peak) when the I/O time is subtracted. In
summary, for the pretraining of the protein language model

Figure 4. Strong scaling performance of protein language
model pretraining for a constant total problem size of
approximately 408 million protein sequences. Each data point is
labeled with the PFLOPS and parallel efficiency for the
corresponding node count. The black dotted line represents the
optimal scaling performance for reference.

on Pengcheng Cloudbrain-II, the optimized model scales
well to the entire supercomputer.

In silico validation of RBD mutations of VOCs
The VOCs that have emerged to date include B.1.1.7
(Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta)
and B.1.1.529 (Omicron). Omicron, the currently most
widespread VOC, exhibits a several-fold accumulation of
variants compared with the first four VOCs, raising the
question of whether such variants originally occurred in
humans. Some studies have suggested that Omicron may
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Figure 5. Weak scaling performance of protein language
model pretraining for a constant problem size of 640 thousand
protein sequences per node. Each data points is labeled with
the PFLOPS and utilization for the corresponding node count.
Here, the I/O operations include the storage of checkpoints and
trained models.
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Figure 6. The validation scheme for RBD mutations of VOCs
and potential high-risk variants prediction. (a), (b), (c), (d) Four
VOCs before Omicron, respectively Alpha, Beta, Gamma, and
Delta, are simulated from Wild type to themselves. (e) Omicron
BA.5, a latest subvariant of Omicron, is simulated from Omicron
BA.2 to itself. (f)Potential high-risk variants prediction. Omicron
BA.5 is adopted as the reference sequence, based on the
high-throughput screening of hACE2 binding and antibody
binding, the risk factor is calculated through transmissibility,
which indicates a comprehensive degree of risk.

have evolved by accumulating mutations in a mouse host
and then jumped back into humans (Wei et al. 2021; Sun
et al. 2022). The possibility of host-jumping makes Omicron
significantly different from other VOCs in many ways, such

as its mutation profile and the molecular spectrum of its
mutations (Wei et al. 2021; Sun et al. 2022). Therefore,
considering the significant difference between the variants
before and after the appearance of Omicron, we simulate
and verify the RBD mutation process with Omicron as the
dividing line as shown in Figure 6.

For SARS-CoV-2 mutation simulation before Omicron,
we validate the predictive ability of MCVP by simulating
the mutational changes from the Wild Type3 to the four
VOCs (Alpha, Beta, Gamma, and Delta). According to the
pathogenic progression of SARS-CoV-2 (Callaway et al.
2022) based on the data from NextStrain 4, these four
VOCs have a parallel evolutionary relationship. Therefore,
the starting sequence used to verify the evolutionary route
is selected as Wild Type. The sequences used to fine-tune
the model are chosen based on when each VOC was first
detected. The first detected times and locations of the four
VOCs before Omicron are identified via Wikipedia5. We
segment the data downloaded from GISAID in accordance
with the times corresponding to each VOC. For example,
Alpha was first reported in September 2020, and we therefore
take the data from before September 2020 as the training
sequences for fine-tuning ProtMut to predict the emergence
of Alpha. Next we adopt the Wild Type as the reference
sequence for the mutation generation process. After the
RBD mutation generation and high-throughput screening,
we check the mutated sites to determine if the RBD of
Alpha has appeared in the screened RBD mutations. If it
appears, the mutation simulation from Wild Type to Alpha
is complete. Otherwise, the filtered RBD mutations are used
for iteratively fine-tuning of ProtMut until the RBD of Alpha
is generated. Following this simulation method, we have
successfully generate the RBDs of the four VOCs (Alpha,
Beta, Gamma, and Delta) from the RBD of B.1.

For simulating the evolution of Omicron, we select
Omicron BA.2 as the starting point to evolve BA.5 in
accordance with the pathogenic progression of SARS-CoV-
2 (Callaway et al. 2022). In this simulation, the sequences
of BA.2 and before BA.2 are selected to fine-tune ProtMut,
and BA.2 is used as the reference sequence at the time of
generation. Through fine-tuning and identification, BA.5 has
been generated successfully by our workflow.

Table 1 shows the proportion of remaining variants after
each round of screening. Among the above five VOCs,
the variants mutated towards Omicron BA.5 retain more
than 80% of the proportion in both the hACE binding and
antibody escape screening, which indicates that the Omicron
sublineages tend to remain stable binding affinity and have
stronger antibody escape ability.

Potential high-risk mutation prediction
By simulating the mutation of the RBD, we have
comprehensively demonstrated that MCVP can effectively
evolve out the RBDs of the known VOCs. However, the
real value of MCVP lies in its ability to predict potential
future VOCs, thus assisting targeted drug design and vaccine
development.

Omicron has been the dominant variant widely spreading
around the world. The phenomenon of intra-VOC evolution
has been significant due to the sustained transmission of
VOCs, which leading to different descendent lineages. In
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Table 1. High throughput screening of various variants

Variant 1st screening∗ 2st screening∗∗

Alpha 39.8% 2.0%
Beta 13.3% 51.3%
Gamma 45.2% 33.8%
Delta 46.7% 19.1%
Omicron BA.5 90.4% 80.2%

* Proportion after hACE2 binding screening

** Proportion after antibody binding screening

view of this, a variant tracking system, termed ”Omicron
subvariants under monitoring”, is added to remind us of
lineages that need priority attention and monitoring6. In
this tracking system, BA.5 sublineages (e.g. BF.7, BF.14,
BQ.1), BA.2 sublineages (e.g. BA.2.75, BA.2.75.2), and
BA.4 sublineage (BA.4.6) need to be focused at present7. In
order to demonstrate the potential of MCVP to predict
future high-risk variants, we simulate the mutational
process of BF.7, BF.14, BQ.1, BA.2.75.2, and BA.4.6.
As we expected, we have successfully simulated these
variants that WHO reminds public health authorities
around the world to give priority to.

More importantly, as shown in Figure 6f, we take the latest
sublineage of Omicron, i.e. BA.5, as the reference sequence,
then generate billions of variants in each round and conduct
subsequent high-throughput screening. After evaluation of
binding affinity and antibody escape capability, we use
the screened sequences to fine-tune ProtMut. After several
rounds of iterations, we select a number of potential RBD
mutations with higher risk that maintain a stable binding
affinity with hACE2 and a high antibody escape capability.
At this stage, to better evaluate potential VOCs, we adopt
PyR0 (Obermeyer et al. 2022), a hierarchical Bayesian
multinomial logistic regression model, to score the generated
variants for transmissibility. We calculate the comprehensive
risk factor based on the high-throughput screening and the
transmissibility scores of variant. A variant whose risk factor
is greater than 0 may have greater risk than Omicron BA.5,
and a variant whose risk factor is less than 0 may have less
risk. As a result, billions of variants can be evaluated
quickly.

Implications

AI models can successfully generate and
identify almost all VOCs
In our experiments, using genomic data submitted before
the appearance of each VOCs, we successfully generate
and identify all VOCs except Omicron. Given the original
Omicron spike sequences, we could also generate the
Omicron subvariants that are currently the dominant viral
variants throughout the world.

During the iterative mutation generation process, the AI
models can prioritize mutations based on their predicted
fitness, binding affinity prediction and antibody escape,
three key factors for viral infectivity. Due to their
combinatorial nature, it is impossible to experimentally

measure the binding affinity changes among all possible
RBD mutations (20201 = 3.213876× 10261) and hACE2
or antibodies. Therefore, under the assumption that the
DMS measurements of RBD single mutations might provide
reasonable constraints for the RBD to hACE2/antibody
binding affinity spaces, we approximate these binding
affinity spaces using DL models for prediction of the binding
affinities among multiple RBD mutations and hACE2 or
antibodies. These AI models are key innovations of the
whole workflow.

There are several hypotheses regarding the origin of
Omicron, including the possibility of spillover from mice
(Wei et al. 2021). The fact that our workflow could not
generate Omicron despite more than 20 rounds of iteration
implies that the mutational features of Omicron are very
different from those of other VOCs, since all other VOCs
were found after a few rounds of generation.

The simulation of SARS-CoV-2 spike mutation
is an HPC application
The strategy we used to simulate SARS-CoV-2 spike
mutation is dependent on the availability of large-scale
genome data (more than 13 million viral genomes as
provided by the GISAID database) and a large protein
language generation model.

Recent progress in Transformer-based models has enabled
the implementation of protein language models capable
of generating de novo protein sequences following the
principles of natural ones (Ferruz et al. 2022). Inspired by
these successes, we pretrain a BERT-like model to learn from
millions of viral spike proteins. Our mutation generation
workflow heavily relies on the Pengcheng Cloudbrain-
II: first, to train the protein language model; second, to
iteratively generate new mutations; and third, to evaluate the
mutations based on AI predictors of: 1)the binding affinity
between RBD and hACE2, 2)the antibody escape capability.
All the processing steps require an HPC facility, as billions
of RBD mutations must be generated in each round and
evaluated accordingly.

Simulating coronavirus evolution is a new
challenge for HPC
The COVID-19 pandemic, caused by SARS-CoV-2, is a
stark reminder that coronaviruses remain a major threat
to humanity. It is crucial to study the evolution of
Coronaviruses to be better prepared for the next pandemic.

SARS-CoV-2 has become the most sequenced virus ever
in history, with 13 million SARS-CoV-2 genomes deposited
in the GISAID database. The efficiency of simulating
these extremely large numbers of closely related genomes
to recreate potential histories of past and future virus
evolution presents a new challenge for HPC. As proof
of concept, in this study, we have initiated a small step
toward elucidating the evolution of SARS-CoV-2 VOCs by
using only RBD sequences of the SARS-CoV-2 S1 protein.
Using all genomes of SARS-CoV-2 in the future, plus other
coronavirus genomes, we will be able to perform more
reliable simulations to study the evolution of coronaviruses
in general and the dynamics of viral transmission across
animal species. Meeting the computational requirements of
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such simulations will require some of the finest HPC systems
built to date.

SARS-CoV-2 mutation is a serious threat
It has been estimated that an infected person could carry
109 to 1012 SARS-CoV-2 virions (Sender et al. 2021). Since
the initial outbreak of COVID-19, there have been 612
million infections as of September 2022 8. The potential
mutation space for SARS-CoV-2 is thus approximately
6× 1017 to 1020. The experimentally deduced spontaneous
mutation rate of SARS-CoV-2 is 1.3× 10−6 ± 0.2× 10−6

per base per infection cycle (Amicone et al. 2022), which
is heterogeneous throughout the genome. Taking all these
numbers together, it is not too difficult to conclude that
every single base mutation is being generated de-novo and
transmitted to a new host every day (Sender et al. 2021).
It is therefor extremely important to be able to simulate the
viral mutation process and rapidly identify potential VOCs,
which is essentially what we have demonstrated in this work
through the state-of-the-art AI technology combined with the
cutting-edge HPC hardware - the Pengcheng Cloudbrain-II.
Any successful prediction of future VOCs of SARS-CoV-2 is
not just good scientific research, but can prevent unnecessary
deaths.
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Supplemental material

Pretrained protein language model
The data used to pretrain our protein language model ProtMut and
the model details shown in Figure S1 are as follows:

Data There are many existing protein databases such as
BFD (Steinegger et al. 2019; Steinegger and Söding 2018),
UniRef50 (Suzek et al. 2015), UiRef90 (Suzek et al. 2015),
and UniRef100 (Suzek et al. 2015). UniRef is an abbreviation
for UniProt Reference Clusters, consisting of clustered sets of
protein sequences from the UniProt Knowledgebase (UniPro-
tKB) (Leinonen et al. 2004). The UniRef100 database combines
identical sequences and subfragments from any source organism
into a single UniRef entry. UniRef90 and UniRef50 are built by
clustering UniRef100 sequences at the 90% or 50% sequence
identity levels. Since the number of mutations accounts for approx-
imately 1% ∼ 10% of the RBD region, we take UniRef90, which
contains 144 million proteins, as the training set.

We perform the following data processing procedure: 1) we
remove all ambiguous amino acids, 2) we designated every 256
amino acids from the protein sequences as one training sequence,
and 3) we discard protein sequences with a length of less than 10. As
a result, a total of 408 million training sequences are used to pretrain
the protein language model. A tokenization process is employed to
transform any given protein sequences into a model-recognizable
format by building a vocabulary for the model, which consists of
a mapping between protein sequences and unique integer ids. We
assign an integer ID for each amino acid, plus the MASK token,
resulting in a vocabulary size of 22.

Model details Our model is based on BERT (Devlin et al. 2018).
By learning to reconstruct the corrupted tokens in the training
data, BERT becomes able to extract embedding vectors for protein
sequences. The architecture of BERT is based on the Transformer
model (Vaswani et al. 2017). The self-attention mechanism in
Transformer relies on an order-independent operation. Thus,
BERT requires explicit positional encoding. Here, we use the
learned positional encoding. To a large extent, we transfer the
configuration of the BERT-large model from natural language to
protein sequences: the number of layers is 24, the hidden layer
size is 1024, the intermediate size of the MLP block is 4096, and
the number of attention heads is 16. Thus, the total number of
parameters is 340 million. During pretraining, random tokens of
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Figure S1. (a) A protein language model, called ProtMut here, is pre-trained on the massive protein sequences. (b)
High-throughput screening design. Two deep learning models are developed based on ProtMut to achieve the identification of
high-risk variants.

each input protein sequence are masked, and the model is trained to
predict the identity of the masked tokens based on the surrounding
context. The masking probability of the input amino acids is 15%.
We treat the prediction of each masked token as a classification
problem and employ the Cross-Entropy loss function to optimize
the model. The optimizer used is Lamb (You et al. 2019) which
enables the use of very large batch size. The weight decay is 0.01.
The learning rate ranges from 1e-4 to 1e-3 for various nodes. We
used the cosine decay for the learning rate schedule.

Transfer learning models for
high-throughput screening
As shown in Figure S1b,for the hACE2 binding prediction model,
the quantified changes of binding affinity of RBD and hACE2 in the
deep mutagenesis study by Starr et al (Starr et al. 2020) are adopted.
And for the antibody binding prediction model, the antibody escape
fractions for each mutation computed by deep-sequencing counts
are used (Greaney et al. 2021). To fuse local-level relationships
between adjacent amino acids and long-range relationships between
distant amino acids, the module of feature refinement including
CNN and self-attention is designed to combine the local feature
and global feature. However, the above deep mutational scanning
data is extremely class-imbalanced. Considering the original Mean
Squared Error (MSE) or Binary Cross-Entropy (BCE) loss function
can’t handle sparse hard samples, we design multi-task focal loss
to alleviate the adverse effects of class-imbalanced and improve
the generalization of our model. The fused comprehensive features
are used for training multilayer perceptrons (MLP) for different
downstream tasks.

Applications used to measure performance
In this work, we use the UniRef90 protein dataset to pretrain
the ProtMut model. After that, we fine-tune ProtMut with RBD

sequences truncated from the Spike protein sequences downloaded
from GISAID. Finally, we iteratively fine-tune the model with
generated RBD mutations. All models are implemented in source
code using the MindSpore DL library. Since the pretraining of
the protein language model is the most computationally expensive
phase of this study, it is the focus of the performance analysis. For
protein language modeling, the architecture is based on BERT, with
approximately 340 million learnable parameters. The architecture
hyperparameters of ProtMut are shown in Table S1. Hybrid
parallelism (data parallelism and model parallelism) is adopted to
scale out to the whole cluster and improve the training performance.

Table S1. Hyperparameters of ProtMut Architecture

Hyperparameter Value

embedding size 1024
layers 24
sequence length 256
attention head nums 16
ffn hidden size 4096

System and environment where
performance was measured
We run our tests on Pengcheng Cloudbrain-II, which contains 4096
Ascend 910(Liao et al. 2019) AI processors (NPUs) and 2048
Kunpeng 920 processors. FigureS2 shows the structure diagram
of Pengcheng Cloudbrain-II AI computing system. Each NPU
provides 256 TFLOPS of half-precision (FP16) peak computing
power, 512 TFLOPS of integer precision (INT8) peak computing
power, has a maximum power consumption of 350 W, and 32 GB of
high-bandwidth storage. The general computing power is provided
by Kunpeng 920 processors based on the ARM architecture, each of
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which provides a single-precision (FP32) peak computing power of
0.98 TOPS and a double-precision (FP64) peak computing power
of 0.49 TOPS. As the entire AI computing system contains a total
of 4096 NPUs and 2048 Kunpeng 920 processors, the total peak AI
computing power is 1048 PFLOPS in half-precision or 2048 TOPS
in integer-precision, and the total peak general computing power
is 2007 TFLOPS in single-precision or 1003.5 TOPS in double-
precision.
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AI node x 8

Access switch x 5
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AI cluster
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Figure S2. AI computing system architecture. The Pengcheng
Cloudbrain-II AI supercomputer includes 4 AI computing
clusters. Each cluster contains 16 NPU Pods, which are
interconnected through high-speed through aggregation
switches. Each NPU Pod contains 8 AI computing nodes, which
are interconnected through high-speed access switches. Each
AI computing node contains 8 AI processors (NPUs) and 4
Kunpeng 920 processors. Every 4 NPUs form an inner-node
cluster, and communicate with each other through PCIe 4.0.

Pengcheng Cloudbrain-II runs the openEuler operating system.
The DL library we used here is MindSpore, which is an open
source DL training/inference framework that can be used in mobile,
edge and cloud scenarios. The host compiler is gcc 7.3.0. The
programming language is Python 3.7.5.

Single NPU Pod configuration

Figure S3. Ablation experiments on an NPU Pod. The trends of
mini-batch time and FLOPS utilization rate with different
mini-batch sizes are shown in red and green, respectively.

Larger mini-batch sizes will enable higher computational
efficiency, but could harm the learning effect. To determine the
appropriate mini-batch size per NPU, we carry out ablation
experiments on an NPU Pod (8 × 8 = 64 NPUs) of Pengcheng
Cloudbrain-II. The results in Figure S3, including mini-batch time
and FLOPS utilization rate, demonstrate that 80 is the optimal
setting, with over 36% utilization rate. Hence, in all subsequent
scaling tests, a mini-batch size configuration of 80 per NPU is used.
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