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Summary

Glyceollins, a family of phytoalexin induced in legume species, play essential roles in
responding to environmental stresses and in human health. However, little is known about the
genetic basis and selection of glyceollin induction.

We employed a metabolite-based genome-wide association (mGWA) approach to identify
candidate genes involved in glyceollin induction from genetically diverse and understudied
wild soybeans subjected to soybean cyst nematode stress.

Eight SNPs on chromosomes 3, 9, 13, 15, and 20 showed significant association with
glyceollin induction. Six genes close to one of the significant SNPs (ss715603454) on
chromosome 9 fell into two clusters, and they encode enzymes in the glycosyltransferase class

within the phenylpropanoid pathway. Transcription factors (TFs) genes, such as MYB and

WRKY were also found within the linkage disequilibrium of the significant SNPs on
chromosome 9. Epistasis and a strong selection signal were detected on the four significant
SNPs on chromosome 9.

e Gene clusters and transcription factors may play important roles in regulating glyceollin
induction in wild soybeans. Additionally, as major evolutionary factors, epistatic interactions
and selection may influence glyceollin variation in natural populations.

Keywords

Epistasis, Gene cluster, nGWAS, phytoalexin, Plant and human health, Selection, Transcription

factors, Wild soybean.

Abbreviations list:

bp base pair

BLINK bayesian-information and linkage-
disequilibrium iteratively nested keyway

dpi days post infection
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FDR false discovery rate
Fig. (Figs) figure (figures)
LD linkage disequilibrium
LOD logarithm of the odds
Mbp megabase pair
mGWAS metabolite-based genome-wide association
study
SNP single nucleotide polymorphism
pm micromolar
ug/g microgram/gram
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Introduction

Plants produce diverse specialized metabolites (also known as secondary metabolites or
phytochemicals), which play a vital role in adapting to changing environments. Phytoalexins are
specialized metabolites synthesized de novo in response to various biotic and abiotic stresses.
Examples include indole alkaloid camalexin in Arabidopsis, phenolic aldehyde gossypol in cotton,
phenylpropanoid stilbenes in grapevines, isoflavonoid-derived glyceollins in legume, and
momilactones and phytocassanes terpenoids in rice (Donnez et al., 2011, Jahan et al., 2019, Jeandet
et al., 2002, Jeandet et al., 2020, Saga et al., 2012, Wang et al., 2009, Yamamura et al., 2015).
Isoflavonoids have become a research hot spot due to their various pharmacological properties and
essential roles in plant defense. The major isoflavones in soybeans are genistein, daidzein, and
glycitein, and they make up about 50%, 40%, and 10%, respectively, of the total isoflavone content.
Trace amounts of glyceollins are induced transiently with abiotic and biotic stresses (Jahan et al.,
2019, Subramanian et al., 2006). They have multiple effects, including fostering symbiosis
between soybean and Bradyrhizobium japonicum and inhibiting the growth of various microbes
(Graham and Graham, 1996, Subramanian et al., 2006). Moreover, they have anti-cancer,
antioxidant, and neuroprotective properties (Bamji and Corbitt, 2017, Kim et al.,, 2012,
Nwachukwu et al., 2013, Seo et al., 2018). However, studies on glyceollins are mainly focused on

their medicinal properties, while little is known about how their induction is regulated.

Phytoalexins have been considered the target of natural selection due to their activities in biotic
and abiotic stress responses in natural environments (Miyamoto et al., 2016, Pichersky and Gang,
2000, Qi et al., 2004). Therefore, in our study, we chose wild soybean (Glycine soja), a wild
relative of soybean (Glycine max), to delineate genetic basis and evolution of glyceollin
accumulation resulting from biotic stress, i.e., soybean cyst nematode (SCN), the most devastating
soybean pest worldwide (Tylka and Marett, 2021). Wild soybeans thrive in diverse habitats and
harbor much higher, underexplored genetic diversity than cultivated soybean (Zhang et al., 2019).
Hence, it is an ideal system to understand the genetic basis and evolution of glyceollin variation.
Eventually, the essential genes identified in wild soybean can be used for metabolic engineering
or in a breeding program to develop nutrition-rich biofortified soybean cultivars as they exhibit

similar genome size and content with small reproductive isolation (Singh and Hymowitz, 1999).
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85

86 A metabolic gene cluster is a group of (two or more) genomically co-localized and potentially
87  coregulated non-homologous genes that encode enzymes involved in a particular metabolic
88  pathway (Niitzmann et al., 2016, Topfer et al., 2017). They have been a common phenomenon
89  since the early days of microbial genetics (Koonin, 2009, Rocha, 2008, Zheng et al., 2002).
90 However, gene clusters in plant metabolic pathways have been discovered only recently, even
91  though microbes and plants are both extremely rich sources of metabolic diversity. A study by
92  Chaeetal. (2014) on metabolic gene clusters in Arabidopsis, soybean, sorghum, and rice suggested
93  that approximately one-third of all the metabolic genes in Arabidopsis, soybean, and sorghum, and
94  one-fifth in rice were rich in gene clusters across primary and specialized metabolic pathways
95  (Chae et al., 2014). There is compelling evidence indicating that the highly plastic plant genome
96 itself generates metabolic gene clusters via gene duplication, neofunctionalization, divergence, and
97  genome reorganization instead of horizontal gene transfer from microbes (Osbourn and Field,
98  2009). This suggests that plants rewire their genome to gain new adaptive functions driven by the
99  need to survive in distinct environments. Systematic mining and functional validation of the
100  candidate genes in such clusters will facilitate the discovery of new enzymes and chemistries that
101  render pathway prediction. Moreover, metabolic gene clusters are likely to be located within
102 dynamic chromosomal regions, and thus, many identified so far may be due to recent evolution
103 (Field et al., 2011, Matsuba et al., 2013, Qi et al., 2004). If so, investigation of these clusters can
104  provide insights into their evolutionary history. The vast and diverse array of specialized
105  metabolites that are produced through multi-step metabolic pathways play an important role in
106  plant adaptation to various ecological niches. However, the occurrence, prevalence, and evolution
107  of such gene clusters in plants are largely unknown. Thus, the study of plant metabolic gene
108  clusters has implications for molecular biology and evolutionary genomics (Chavali and Rhee,

109 2018, Niitzmann et al., 2016, Takos and Rook, 2012, Yeaman and Whitlock, 2011).

110  Due to the extraordinary metabolic diversity, to date, less than 50 plant-specialized metabolic
111 pathways have been biochemically and genetically identified (Niitzmann et al., 2016).
112 Metabolomic GWAS (mGWAS) offers an effective approach to understand the genetic basis of
113 metabolites and their associated traits (Chan et al., 2010, Chan et al., 2011, Luo, 2015,
114  Riedelsheimer et al., 2012). mGWAS allows the identification of common polymorphic regions

115  controlling complex metabolic traits by substantially increasing association panel and genome-
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116  wide molecular markers. Besides elucidating genetic architecture, mGWAS can also be used to
117  infer gene functions (Luo, 2015). Hence, mGWAS provides a comprehensive approach to
118  discovering candidate genes. Thus far, it has been used to uncover the genetic basis of variations
119  of a number of different metabolites. For example, Chen et al. (2014) carried out a rice mGWAS
120 study that identified 36 candidate genes influencing the variation of metabolites with physiological

121 and nutritional importance (Chen et al., 2014).
122

123 The isoflavonoid pathway has been relatively well studied (Sukumaran et al., 2018). However, it
124  is still not clear how glyceollin induction is regulated. This study is the first to employ genomic
125 and evolutionary approaches to understand the genetic basis and selection of glyceollin induction.
126  Our study provides a fundamental basis for the long-term goal of developing glyceollin-fortified
127  soybean cultivars that would improve plant and human health to meet current and future global
128  challenges. In this study, we aim to address these three questions: (1) What is the genetic basis of
129  wvariation in glyceollin induction by SCN? (2) Are there any gene clusters and transcription factors
130  involved in glyceollin variation? (3) Are epistatic interactions and natural selection important

131  evolutionary factors influencing the variation of glyceollin induction?
132

133 Materials and Methods

134 Plant materials

135 A total of 264 accessions of wild soybean, Glycine soja, from a wide geographic range, originally
136  collected from China, Japan, Russia, and South Korea, were utilized (Table S1). The seeds of these
137  ecotypes were obtained from the USDA national germplasm resources laboratory

138 (https://www.ars-grin.gov/).
139
140  Plant preparation, SCN inoculation, and sample collection

141  Seed preparation, germination, transplanting, and soybean cyst nematode (SCN, Heterodera
142 glycines Ichinohe, HG type 1.2.5.7) inoculation were performed following a previously developed
143 protocol (Zhang et al., 2017a, Zhang et al., 2017b, Zhang and Song, 2017). Whole root tissues

144  were collected and weighed five days post-infection (dpi). The 5 dpi time point was chosen because
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145  our previous study suggested a significant inhibition in SCN development in a resistant genotype
146  compared to normal growth in a susceptible genotype (Zhang et al., 2017a, Zhang et al., 2017b).
147  All samples were flash frozen in liquid nitrogen and stored at -80 °C. Four biological replicates

148  per wild soybean genotype were used, eventually a total of 1,020 samples.
149
150  Metabolite extraction and quantification

151  We employed the extraction method of metabolites from root tissue described in Strauch et al.,
152 (2015). The metabolite profiling was provided by the service from David H. Murdock Research
153  Institute at the North Carolina Research Campus. Peaks that were consistently detected in at least
154  three biological replicates within each genotype were used for downstream analyses. Each
155 metabolite was confirmed using pure standard compounds, including daidzein, daidzein-d6, and
156  glyceollin. Due to the low concentrations of these compounds and the small sample masses of the

157  wild soybean root samples that had been collected, we used a signal-to-noise ratio of =10 for the

158  measurement of the peaks for glyceollin and daidzein. Our method successfully measured daidzein
159  (ng/groot) and glyceollin (unitless) in 264 accessions of wild soybean G. soja roots quantitatively
160  and semi-quantitatively, respectively. Following method development, optimization, and analyses
161  of the test samples, calibration curves were designed using at least six different concentrations of
162  daidzein, created in triplicate to quantify known concentrations of daidzein and glyceollin. A
163 second-degree polynomial was derived from the known concentrations of the standard curve
164  samples and the mass spectrometer response (daidzein/internal standard) from the standard curve
165 data. The resulting polynomial was used to calculate the concentrations of daidzein in the
166  experimental samples. Low, medium, and high QC (quality control) samples were created to assess
167  the accuracy of the calculations. We used the ratio of glyceollin (unitless) to daidzein (ug/g root)
168  (GVSD) as our phenotypic trait. This phenotype henceforth is denoted GVSD.

169
170  Genotypic data

171  Genotype data for the 264 accessions were obtained from SoySNP50K (Song et al., 2013), which
172 included 32,976 genome-wide single nucleotide polymorphic markers (SNPs) with a minor allele

173  frequency (MAF) of at least 5%.
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174  Metabolite-based genome-wide association study (mGWAS) and linkage disequilibrium

175 estimation

176  Our genome-wide association analysis was conducted on GVSD (a ratio of glyceollin mean to
177  daidzein mean) in response to SCN infection on all 264 ecotypes using the BLINK algorithm
178  implemented in the GAPIT R package (2.0) (Tang et al., 2016). To minimize false-positive
179  associations, we controlled population structure among genotypes with four principal components.
180  Heritability estimate and SNP effect were calculated by running GWAS applying CMLM and
181  MLM methods, respectively, implemented in the GAPIT R package (2.0) (Tang et al., 2016).

182

183 A conventional Manhattan plot was generated using the gqgman R package to visualize the SNPs
184  (Turner, 2014). In addition to the genome-wide significant threshold, we also calculated the
185  chromosome-wide Bonferroni thresholds using independent SNPs estimated on each chromosome
186  following the method of Li and Ji (2005) (Li and Ji, 2005). Linkage disequilibrium (LD) was
187  calculated across the panel with the TASSEL program, version 5 [6], for the significant SNPs
188  identified from the GWAS analysis. LD was measured using squared correlation R-squared (1?) of
189 0.2 (upper right in the LD plot) and p-value < 0.05 (the lower left in the LD plot). A pairwise LD
190  was generated following the R function described by Shin et al. (2006) (Shin et al., 2006). Genes
191  within LD blocks containing significant SNPs were identified as potential sources of candidates

192  for further analyses.
193
194  Identification of candidate genes

195  For extensive gene mining of our identified gene pool, we used an array of bioinformatics tools.
196  Such an approach can improve the accuracy of candidate gene and gene cluster predictions and
197  resolve inconsistencies among the bioinformatics tools (Chavali and Rhee, 2018). Specifically, a
198  pairwise linkage disequilibrium (LD) analysis was initially used for potential candidate gene
199 identification. Then, genes in each LD block were examined as potential candidate genes, and their
200  annotations were obtained from the Phytozome v13 database (Goodstein et al., 2011). Afterward,
201  a GO enrichment analysis of the identified candidate genes was performed using ShinyGO v0.66:
202  Gene Ontology Enrichment Analysis (p-value cutoff (FDR, false discovery rate) = 0.05) (Ge et al.,
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203 2020), Soybase GO Enrichment Data (Grant et al., 2010). To investigate the involvement of these
204  potential candidate genes in metabolic pathways, a database search was performed through an
205  annotation file from Phytozome v13 (Goodstein et al., 2011), Soybase (Grant et al., 2010), SoyCyc
206  10.0 Soybean Metabolic Pathway (Hawkins et al., 2021), and Pathview databases (Luo et al., 2017).
207  Finally, a PMN plant metabolic cluster viewer was applied to categorize enzymes into classes

208  (signature or tailoring) and metabolic domains (Hawkins et al., 2021).

209

210  Analysis of epistatic interactions

211  For any significant SNPs uncovered in the GWAS analysis, it is useful to test whether, beyond
212 their direct effects, they also exhibited interactive effects on GVSD. To accomplish this, we first
213 produced numerically formatted genotypes, in which the homozygous genotype index value is 1
214  and -1 and the heterozygous 0. This allows us to test for epistasis for each pairwise combination
215  in a simple general linear model with 1 degree of freedom for the additive effects of each of the
216  two SNPs and their interaction. We included the first four principal components from the GAPIT
217  analysis in the model to be consistent with the GWAS scan, where these components were used to
218  adjust for structural relatedness (see below). The significance of all interactions was evaluated with
219  the sequential Bonferroni procedure. To illustrate the interactions of SNP pairs, we also calculated
220  regressions of GVSD on each SNP, but at each of the three genotypes (using the -1, 0, and 1 index
221  values) of the second SNP involved in the significant interaction.

222

223  Extended haplotype homozygosity analyses

224 To test allele-specific selection patterns of the identified significant SNPs, we analyzed extended
225  haplotype homozygosity (EHH, (Sabeti et al., 2002)) for each significant SNP. The EHH analysis
226  was conducted in SELSCAN v.1.2.0a (Szpiech and Hernandez, 2014) with default parameters, and
227  only SNPs with MAF > 0.05 was used in this analysis.

228  Results

229  Genomic dissection of glyceollin accumulation upon biotic induction

230  We identified a total of eight significant SNPs, with four located on chromosome 9 and the others
231  on chromosomes 3, 13, 15, and 20 (Fig. 1a, Table 1). These SNPs were identified based on both

232 genome-wide Bonferroni threshold of 5.104 and chromosome-wide Bonferroni thresholds that
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233 varied narrowly from 3.79 to 3.82 among the 20 chromosomes (3.803 on chromosome 9) (Figs
234 1a,b, Table S2). The manhattan and Q-Q (quantile-quantile) plots are shown in Fig.1a,b,c. The
235  four significant SNPs on chromosome 9 are located close to each other within a 535 kb region

236  (Table S2). The broad-sense heritability (4°) was estimated 35% (Table S2).

237  Linkage disequilibrium analysis and candidate gene identification

238  Weidentified a total of 666 possible candidate genes within the linkage disequilibrium (LD) blocks
239  of the eight significant SNPs (soybean reference genome Glycine max Wm82.a2.v1) (Goodstein
240  etal., 2011, Zhou et al., 2015). The LD block on chromosome 9 showed the strongest LD with a
241  long range compared to the others (Figs 2b, S1, S2). We considered r>>0.2 as a cutoff for our LD
242  analysis, where 12 is the extent of allelic association between a pair of sites (Weir, 1990). Candidate
243 gene Glyma.09G 128200 shows the highest level of LD near the significant SNPs on chromosome
244 9 compared to the LD block for the rest of the significant SNPs on this chromosome (Figs 2b, S1).
245  The functional annotation of the candidate genes within this block is biosynthetic enzymes
246  involved in isoflavonoid pathway, as well as regulatory genes such as WRKY and MYB
247  transcription factors (Tables 1, S3, and S4), which may indicate their transcriptional level

248  involvement in glyceollin induction in response to SCN stress (Colinas and Goossens, 2018).

249  We also found putative genes encoding enzymes involved in the specialized metabolic pathways
250  within the LD blocks of the significant SNPs on chromosomes 3, 13, 15, and 20. The enriched GO
251  category includes flavonoid biosynthesis pathway, phenylpropanoid metabolic process, linamarin
252 biosynthesis, and terpenoid biosynthesis (Table S5). Apart from the biosynthetic enzymes on these
253  chromosomes, we also found transcription factor genes, such as WRKY, MYB, and NAC (Table
254 S5).

255

256  Metabolic gene clusters identification

257  We were particularly interested in the candidate genes in the branch from daidzein to glyceollin in
258  the isoflavonoid biosynthesis pathway (Lozovaya et al., 2007). We found that the identified
259  candidate genes on chromosome 9 are clustered together, and they fell into two clusters. Both of
260 these two clusters belong to tailoring enzyme glycosyltransferase within phenylpropanoid

261  specialized metabolic domain. And six genes are within the branch of isoflavonoid biosynthesis
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262  pathway. Two of these six genes, Glyma.09G 127200 and Glyma.09G127300, are called cluster 1,
263  while the rest four (Glyma.09G127700, Glyma.09G128200, Glyma.09G128300, and
264  Glyma.09G128400) are called cluster 2 (Table S3).

265

266  Further investigation of annotation of these candidate genes within the gene clusters (Table S4),
267  we found Glyma.09G127200 gene encodes a glucosyltransferase that may act on 4'-methoxy
268  isoflavones biochanin A, formononetin, 4'-hydroxy isoflavones genistein, and daidzein substrates.
269  However, the enzyme does not act on isoflavanones, flavones, flavanones, flavanols, or coumarins
270  (Koster and Barz, 1981). Within the same cluster, Glyma.09G127300 has similar annotations and
271  functions as Glyma.09G127200. Interestingly, the four genes within cluster 2 have a similar
272 functional annotation as Glyma.09G127200 and Glyma.09G127300 in cluster 1, and all these four
273  genes encode isoenzymes (Table S4). Such a link between these two gene clusters indicates their
274  proximity in the metabolic pathway.

275

276  Epistatic interactions among all significant SNPs

277  The results of the epistasis tests for each of the 28 pairwise combinations of the eight significant
278  SNPs are shown in Table 2. Three probabilities, all associated with the SNP on chromosome 20,
279  were not estimable (Table 2). Among the remaining 25 SNP pairs, 20 show statistical significance.
280  Particularly noticeable is the high significance for all interactions of the SNPs on chromosomes 3,
281 13, and 15. Three of the six pairs among the four SNPs on chromosome 9, all involving
282  ss715603462, also are statistically significant. In general, therefore, this is evidence for substantial
283  epistasis among these SNPs affecting GVSD.

284

285  These epistatic interactions of the SNP pairs are illustrated in Fig. 3 for each of the four chosen
286  combinations. For example, in panel a (Fig. 3a), it can be seen that regression slopes of GVSD on
287  ss715603454 are close to 0 for ss71585948 CC genotype but are positive for TC and especially
288  TT genotypes. In panel d (Fig. 3d), regression slopes of GVSD on ss715603471 are negative for
289  ss715603462 AA and GA genotypes but positive for GG genotypes. With no epistasis, these slopes
290  would be expected to be roughly parallel, but in fact, they diverge considerably from parallelism
291  in these four examples.

292
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293  Significant SNPs exhibited extended haplotype homozygosity

294  The extended homozygosity analysis (EHH) analyses revealed allele-specific EHH values of the
295  significant SNPs (ss715603454, ss715603455, ss715603462, and ss715603471) on chromosomes
296 9 (Fig. 4). For example, T allele of ss715603454 showed much higher EHH value than G allele.
297  Alleles of significant SNPs on the other chromosomes showed compatible EHH values (Fig. 4).
298

299  Discussion

300 Metabolic gene clusters in glyceollin induction

301  Gene clusters have been reported to play important roles in phytochemical diversity in Arabidopsis,
302  sorghum, soybean, and rice (Chae et al., 2014). However, their roles in regulating metabolic
303  variation in wild species are relatively less investigated. Even though the isoflavonoid biosynthesis
304 pathway is relatively well studied, the genetic regulation of glyceollin induction is unclear.
305  Particularly, the contribution, prevalence, and occurrence of gene clusters in plant metabolic
306  diversity are largely unclear. Our mGWAS results suggest there are two gene clusters with
307  functionally related but non-homologous genes, which may involve in glyceollin induction in wild
308 soybean. Thus far, these are the first reported plausible gene clusters involved in glyceollin
309  accumulation induced by biotic stimuli. These gene clusters suggest that glyceollin may be
310  synthesized where the enzyme-encoding genes are adjacent to each other on the same chromosome
311  (Chavali and Rhee, 2018). Physical clustering of genes with similar functions can facilitate co-
312  inheritance of alleles with favorable combinations and their coordinated regulations at chromatin
313  level (Chu et al., 2011, Osbourn, 2010a). Besides, such clusters incline to locate in the sub-
314  telomeric regions (Gierl and Frey, 2001, Qi et al., 2004, Sakamoto et al., 2004), near the ends of
315  chromosomes that are known to harbor mutations. For example, an examination of the complete
316 genome sequence revealed that the maize DIMBOA cluster is located close to the end of
317  chromosome 4 (Farman, 2007, Jonczyk et al., 2008). Thus, identifying the positions of the genes
318 can contribute to inferences of possible mechanisms underlying chemical diversity in natural
319  populations.

320

321  Tailoring  enzymes, such as  methyltransferases,  glycosyltransferases, CYPs,
322 dehydrogenases/reductases, and acyltransferases are responsible for modifying the chemical

323 backbone of specialized metabolites (Osbourn, 2010b). The gene clusters we found are associated
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324  with tailoring or regulating glycosyltransferase enzymes. A common defense mechanism of plants
325 involves glycosylation of secondary metabolites by involving these enzymes (Mylona et al., 2008).
326  Therefore, the clustering of the genes encoding glycosyltransferase on chromosome 9 indicates the
327  formation of stress-induced (i.e., SCN stress in our study) protective compounds. For example, the
328  cyclic hydroxamic acid (DIBOA) in maize (Frey et al., 1997, Gierl and Frey, 2001), the triterpene
329  avenacin in oat (Field and Osbourn, 2008, Mugford et al., 2009, Qi et al., 2004, Qi et al., 2006),
330 and two gene clusters associated with diterpene (momilactone and phytocassane) synthesis in rice,
331  which may be pre-formed or synthesized after stress induction for plant defense. Disruption of
332 such gene clusters may compromise pest and disease resistance and lead to the accumulation of
333 toxic pathway intermediates (Chu et al., 2011). In the multi-step plant specialized metabolic
334  pathways, rapid adaptation to a particular environmental niche could result in highly diverse and
335 rapidly evolving metabolic gene clusters (Osbourn and Field, 2009). Hence, the level of
336  conservation of the identified gene clusters in this study across different Glycine soja genotypes
337  can shed light on evolutionary insight of these clusters (Field and Osbourn, 2008). Synthetic
338  biology and functional genetics can further help investigate the organization and contribution of
339 these clusters in metabolite diversity, as well as decipher the mechanism of adaptive evolution and
340  genome plasticity (Chu et al., 2011, Osbourn, 2010b).

341

342 Plausible transcriptional factors in glyceollin induction

343  Advancement of genetics, genomics, and bioinformatic approaches facilitate the prediction and
344  identification of a large number of genes, including transcription factors associated with plant-
345  specialized metabolic pathways (Anarat-Cappillino and Sattely, 2014, Moore et al., 2019).
346  However, the transcriptional regulators of specialized metabolism are less well characterized
347  (Shoji and Yuan, 2021). The regulation of highly diverse plant specialized metabolic pathways is
348  dynamic given the ever-changing environment. Such regulation generally occurs at transcription
349  level, and thus, it requires coordinated regulation often mediated by transcription factors (TFs)
350  (Colinas and Goossens, 2018, Shoji, 2019). For instance, MYB and basic helix-loop-helix (bHLH)
351 TF family genes were reported to regulate anthocyanin and related flavonoid biosynthetic
352  pathways in a wide range of species (Chezem and Clay, 2016). Moreover, significant
353  modifications of these regulatory genes give rise to the vast diversity in plant specialized

354  metabolism (Huang et al., 2018, Springer et al., 2019).
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355

356 It is possible that transcription factors, such as MYB and WRKY TFs on chromosome 9, may
357  influence glyceollin induction. This indicates regulation of glyceollin induction with SCN stress
358  may involve a highly complex interplay among multiple genes and pathways. Previous studies
359  reported that gene families of transcription factors, such as NAC, MYB, bHLH, and WRKY,
360 exhibited conservative patterns among Arabidopsis, cotton, grapevine, maize, and rice (Ibraheem
361 etal, 2015, Ogawa et al., 2017, Saga et al., 2012, Xu et al., 2004, Yamamura et al., 2015, Zheng
362 etal., 2006). These plant species produce various phytoalexins, such as indole alkaloids, terpenoid
363 aldehydes, stilbenoids, = deoxyanthocyanidins, @ and momilactones/ phytocassanes,
364  respectively. This gives rise to the question of whether these TFs are as diversified as the metabolic
365  pathways, or they maintain conservative patterns among species. The investigation of TFs binding
366  promoter regions can give insights if the pathways are co-opted into stress-inducible regulation by
367  the respective TFs (Jahan et al., 2019). The homology of TFs among different plant species can
368  help metabolic engineering a wide variety of crop plants to produce phytoalexins in greater
369  amounts.

370

371  In addition to enzyme-encoding genes, TF genes can also be found as gene clusters. For example,
372 the gene cluster of TF ERF (jasmonate (JA)- responsive ethylene response factor) consists of five
373  ERF genes in tomato (Cérdenas et al., 2016, Thagun et al., 2016), while eight in potato (Cardenas
374  etal., 2016), two clusters of ten and five in tobacco (Kajikawa et al., 2017), five in C. roseus (Singh
375 etal., 2020), four in Calotropis gigantea (Singh et al., 2020), and four in Glesemium sempervirens
376  (Singh et al., 2020). Besides, TFs involved in plant specialized metabolism can be found in arrays
377  (Shoji and Yuan, 2021, Zhou et al., 2016). So, it is possible that the TFs we identified are located
378 in the same genomic neighborhood as arrays or biosynthetic gene clusters (BGCs). The co-
379  regulation hypothesis of gene clusters poses that clustering of TFs can help coregulate genes in a
380  pathway. Although co-regulation also exists between un-clustered metabolic pathways, clustering
381  may accelerate the recruitment of genes into a regulon (Smit and Lichman, 2022, Wisecaver et al.,
382 2017).

383

384  Epistasis and plausible selection on glyceollin induction
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385  Metabolic traits have been reported to have low heritability due to environmental effects on their
386  accumulations (Rowe et al., 2008). Recent studies have shown strong epistatic interactions of
387  genes influencing variation of plant specialized metabolites, which may impact fitness in the field
388  (Brachi et al., 2015, Kerwin et al., 2015, Kerwin et al., 2017). For example, numerous epistatic
389 interactions influence the highly complex genetic architecture responsible for Arabidopsis
390 metabolism (Kliebenstein, 2001, Kliebenstein et al., 2001). Moreover, a mixture of positive and
391 negative epistatic interactions can help identify significant QTLs located within a biosynthetic
392  pathway (Rowe et al., 2008). Compared to expression regulations, the power of epistasis in
393  metabolomics is that they can better indicate the interconnectedness of metabolites within the
394  metabolic pathway (Arita, 2004, Fell and Wagner, 2000, Jeong et al., 2000). The widespread
395 interactive effects found among our identified significant SNPs affecting targeted metabolic traits
396 may be a consequence of the interconvertibility between daidzein and glyceollin.

397

398  Genes containing causal variation for plant defensive compounds may influence field fitness and
399  thus are likely under natural selection (Kroymann, 2011). For example, Benderoth et al. (2006)
400  detected positive selection in glucosinolate diversification in Arabidopsis thaliana and its relatives
401  (Benderoth et al., 2006). Prasad et al. (2012) showed positive selection for a mutation on a
402  metabolic pathway gene could enhance resistance to herbivory in natural populations of a rocky
403  mountain cress species (Prasad et al., 2012). We detected strong signals of selection on the SNPs
404  significantly associated with glyceollin phenotypes with EHH and LD analyses (Figs 4, 2b, and
405  S1). For example, the LD surrounding the significant SNP ss715603454 that is next to the
406  identified gene clusters is more extensive, suggesting strong selection in this region (Figs 2b, S1).
407  Meanwhile, the two alleles of this significant SNP, G and T, showed different EHH values, with
408 T exhibiting much longer haplotype homozygosity. This indicates that this T allele may be under
409  recent positive selection. Interestingly, the T allele is significantly associated with higher induction
410  of glyceollin and has a higher frequency in South Korea (Fig. 2¢,d). The allele-specific EHH
411  pattern and their geographic distribution may be due to heterogeneous selection pressure in nature.
412

413  Perspectives and future directions of our study

414  Plant specialized metabolites exhibit extreme quantitative and qualitative variation. Therefore,

415  high-throughput metabolite profiling, such as LC-MS analysis coupled with GWAS (as applied
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416  here) can help better understand the genetic contributions to metabolic diversity in natural
417  populations. A common assumption is that biological variables or traits should show a normal
418  distribution, and skewed data may indicate measurement error. However, the scenario is different
419  in metabolomics, especially in secondary metabolism. For instance, a ratio of two related
420  compounds, rather than their separate values, may provide a comprehensive understanding of the
421  underlying enzymatic process (Byrne et al., 1996, Chan et al., 2011, Kliebenstein, 2001,
422  Kliebenstein et al., 2001, Kliebenstein, 2007, McMullen et al., 1998, Petersen et al., 2012, Prasad
423  etal, 2012, Yencho et al., 1998). We used a ratio of glyceollin and daidzein concentrations as the
424  phenotypic trait for our association study. The use of a metabolic ratio also may produce: (1) a
425  reduction in the variability of the data collected for the biological replicates and thus increase
426  statistical power and (2) a reduction in overall noise in the dataset by canceling out systemic
427  experimental errors. Most importantly for our purposes, the glyceollin to daidzein metabolite ratio
428  is correlated to the corresponding reaction rate under optimal steady-state assumptions, as this
429  metabolite pair is connected in the phenylpropanoid biosynthetic pathway (Petersen et al., 2012,
430  Suhre etal., 2011).

431

432 The natural world has a lot to offer in tackling diseases and global food scarcity. There is a need
433 to develop new medicines and future value-increased food by unlocking the uncharted gene pools
434  of wild plants. Our chosen study system crop wild relative of soybean poses much higher and
435  underexplored genetic diversity than its domesticated descendants. Given that glyceollin is
436  produced in trace amounts, it is an exciting challenge to define the plant metabolic gene clusters
437  and transcriptional regulators in the glyceollin biosynthesis pathway. Besides complex cancer
438  treatment and therapies, the rise of different types of tumors and tumor subtypes urges the need
439  for new drugs. Along with glyceollin’s role in plant defense, it has been well-documented for anti-
440  cancer activities. Our follow-up studies will apply transcriptomics and functional validation of the
441  candidate genes, which can expand our focus to explore associations of genes in clusters to
442  understand their involvement in regulating glyceollin biosynthesis at the systems level. As
443  phytochemical variation can be caused by both structural genes and their expression differences,
444 it will be interesting to explore the role of pathway-specific regulators (i.e., transcription factors)

445  in glyceollin induction (Osbourn, 2010b). Our results suggest that improving our fundamental
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446  knowledge of plant specialized metabolic gene clusters and regulators will facilitate metabolic

447  engineering with improved metabolic traits for sustainable agriculture and novel pharmaceuticals.
448
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807  Figure legends

808  Fig. 1 GWAS of Glyceollin induction with SCN stress: A genome-wide (a) and chromosome-
809  wide (b) Manhattan plots, with thresholds of 5.104 and 3.803, respectively; (¢) quantile-quantile
810  (QQ) plot. Significant SNPs are found on chromosomes 3, 9, 13, 15 and 20 at a 5% genome-wide
811  threshold, the probability of 7.86x10 resulted in a threshold of 5.01 (solid red line in the genome-
812  wide Manhattan plot) (a). The 5% chromosome-wide LOD threshold resulted in significant p-
813  values of 1.57x10* (threshold 3.803, solid blue line) (b).

814

815  Fig. 2 An LD decay measured as R square for pairwise markers and plotted against their distance
816  (a) and LD plot for chromosome 9 for significant SNPs. The black diagonal denotes LD between
817  each site and itself (b). Geographic range of the alleles of significant SNPs close to the gene
818  clusters on chromosome 9 (c¢). Allele frequency in each population. Allele frequency in different
819  geographic regions for a significant SNP was generated using JMP®, Version 15. SAS Institute
820  Inc., Cary, NC, 1989-2021. (d).

821

822  Fig. 3 Epistatic interactions of the SNP pairs for each of four chosen combinations. Regression
823  slopes of GVSD on ss715603454 are close to 0 for ss715603454 CC genotypes but are positive
824  for TC and especially TT genotypes (a). Regression slopes of GVSD on ss715603462 are close to
825 0 for ss715585948 CC genotypes but are negative for TC and especially TT genotypes (b).
826  Regression slopes of GVSD on ss715615975 are close to 0 for ss715585948 TT genotypes but are
827  negative for TC and especially CC genotypes (¢). Regression slopes of GVSD on ss715603471
828  are negative in sign for ss715603462 AA and GA genotypes, but positive in sign for GG genotypes
829  (d).

830

831  Fig.4 Allele-specific Extended Haplotype Homozygosity (EHH) for four significant SNPs on

832  chromosomes 9.

833

Page 31 of 38


https://doi.org/10.1101/2022.12.17.520864
http://creativecommons.org/licenses/by-nc-nd/4.0/

834

835
836
837

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.17.520864; this version posted December 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Tables
Table 1. Identification of significant SNPs and functional annotation of the plausible candidate
genes.
Significant Chromosome Functional annotation of associated genes
SNP
ss715585948 GmO03 WRKY family transcription factor family protein
Zinc fingers superfamily protein
ss715603454 Gm09 UDP-glucosyl transferase 88A1
RING/U-box superfamily protein, RING/FYVE/PHD zinc
$s715603455 GmO09 ) )
finger superfamily protein
ss715603462 GmO09 WRKY family transcription factor family protein
MYB domain
38715603471 Gm09 Zinc fingers superfamily protein
Cytochrome P450 enzyme family
Zinc finger, RING-type; Transcription factor
jumonji/aspartyl beta-hydroxylase
ss715615975 Gml3 bZIP transcription factor
RING/U-box superfamily protein, RING/FYVE/PHD zinc
finger superfamily protein
Zinc fingers superfamily protein
NAC transcription factors
Cytochrome P450 enzyme family
ss715620269 Gml5 RING/U-box superfamily protein, RING/FYVE/PHD zinc

finger superfamily protein
WRKY family transcription factor family protein
MYB domain
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ss715636844 Gm20 UDP-Glycosyltransferase superfamily protein
UDP-glucosyl transferase 85A2
hydroxy methylglutaryl CoA reductase 1
Cytochrome P450, family 71, subfamily B, polypeptide 34
cytochrome p450 79a2
RING/U-box superfamily protein, RING/FYVE/PHD zinc
finger superfamily protein

Zinc fingers superfamily protein

838
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Table 2 Epistasis for the eight significant SNPs.

Ch9a Ch9b Ch9c Chod Ch13 Ch15 Ch20

Ch3 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*  0.002*
Ch9a 0.10 0.053 0.007* <0.001* <0.001*  0.907
Ch9b 0.012 0.006* <0.001* <0.001*  0.835
Ch9c <0.000* <0.001* <0.001* n.e.
Chod <0.001* <0.001*  n.e.
Ch13 <0.001*  n.e.
Ch15 0.001*

Shown are the probabilities for each pairwise interaction of SNPs. * = P < 0.05 from

sequential Bonferroni tests. n.e. = not estimable. Ch3 =ss715585948, Ch9a = ss715603454, Ch9b
= 88715603455, Ch9c = ss715603462, Ch9d = ss715603471, Ch13 = ss715615975, Chl5 =
$8715620269, Ch20 = ss715636844
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