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Summary  30 

• Glyceollins, a family of phytoalexin induced in legume species, play essential roles in 31 

responding to environmental stresses and in human health. However, little is known about the 32 

genetic basis and selection of glyceollin induction.  33 

• We employed a metabolite-based genome-wide association (mGWA) approach to identify 34 

candidate genes involved in glyceollin induction from genetically diverse and understudied 35 

wild soybeans subjected to soybean cyst nematode stress.  36 

• Eight SNPs on chromosomes 3, 9, 13, 15, and 20 showed significant association with 37 

glyceollin induction. Six genes close to one of the significant SNPs (ss715603454) on 38 

chromosome 9 fell into two clusters, and they encode enzymes in the glycosyltransferase class 39 

within the phenylpropanoid pathway. Transcription factors (TFs) genes, such as MYB and 40 

WRKY were also found within the linkage disequilibrium of the significant SNPs on 41 

chromosome 9. Epistasis and a strong selection signal were detected on the four significant 42 

SNPs on chromosome 9.  43 

• Gene clusters and transcription factors may play important roles in regulating glyceollin 44 

induction in wild soybeans. Additionally, as major evolutionary factors, epistatic interactions 45 

and selection may influence glyceollin variation in natural populations.  46 

 47 

Keywords  48 

Epistasis, Gene cluster, mGWAS, phytoalexin, Plant and human health, Selection, Transcription 49 

factors, Wild soybean. 50 

 51 

Abbreviations list:  52 

bp  base pair 

BLINK bayesian-information and linkage-

disequilibrium iteratively nested keyway 

dpi days post infection 
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FDR false discovery rate 

Fig. (Figs) figure (figures) 

LD linkage disequilibrium 

LOD logarithm of the odds 

Mbp megabase pair 

mGWAS metabolite-based genome-wide association 

study 

SNP single nucleotide polymorphism 

μm micromolar 

μg/g microgram/gram 
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Introduction  55 

Plants produce diverse specialized metabolites (also known as secondary metabolites or 56 

phytochemicals), which play a vital role in adapting to changing environments. Phytoalexins are 57 

specialized metabolites synthesized de novo in response to various biotic and abiotic stresses. 58 

Examples include indole alkaloid camalexin in Arabidopsis, phenolic aldehyde gossypol in cotton,  59 

phenylpropanoid stilbenes in grapevines, isoflavonoid-derived glyceollins in legume,  and 60 

momilactones and phytocassanes terpenoids in rice (Donnez et al., 2011, Jahan et al., 2019, Jeandet 61 

et al., 2002, Jeandet et al., 2020, Saga et al., 2012, Wang et al., 2009, Yamamura et al., 2015). 62 

Isoflavonoids have become a research hot spot due to their various pharmacological properties and 63 

essential roles in plant defense. The major isoflavones in soybeans are genistein, daidzein, and 64 

glycitein, and they make up about 50%, 40%, and 10%, respectively, of the total isoflavone content. 65 

Trace amounts of glyceollins are induced transiently with abiotic and biotic stresses (Jahan et al., 66 

2019, Subramanian et al., 2006). They have multiple effects, including fostering symbiosis 67 

between soybean and Bradyrhizobium japonicum and inhibiting the growth of various microbes 68 

(Graham and Graham, 1996, Subramanian et al., 2006). Moreover, they have anti-cancer, 69 

antioxidant, and neuroprotective properties (Bamji and Corbitt, 2017, Kim et al., 2012, 70 

Nwachukwu et al., 2013, Seo et al., 2018). However, studies on glyceollins are mainly focused on 71 

their medicinal properties, while little is known about how their induction is regulated.   72 

 73 

Phytoalexins have been considered the target of natural selection due to their activities in biotic 74 

and abiotic stress responses in natural environments (Miyamoto et al., 2016, Pichersky and Gang, 75 

2000, Qi et al., 2004). Therefore, in our study, we chose wild soybean (Glycine soja), a wild 76 

relative of soybean (Glycine max), to delineate genetic basis and evolution of glyceollin 77 

accumulation resulting from biotic stress, i.e., soybean cyst nematode (SCN), the most devastating 78 

soybean pest worldwide (Tylka and Marett, 2021). Wild soybeans thrive in diverse habitats and 79 

harbor much higher, underexplored genetic diversity than cultivated soybean (Zhang et al., 2019). 80 

Hence, it is an ideal system to understand the genetic basis and evolution of glyceollin variation. 81 

Eventually, the essential genes identified in wild soybean can be used for metabolic engineering 82 

or in a breeding program to develop nutrition-rich biofortified soybean cultivars as they exhibit 83 

similar genome size and content with small reproductive isolation (Singh and Hymowitz, 1999). 84 
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 85 

A metabolic gene cluster is a group of (two or more) genomically co-localized and potentially 86 

coregulated non-homologous genes that encode enzymes involved in a particular metabolic 87 

pathway (Nützmann et al., 2016, Töpfer et al., 2017). They have been a common phenomenon 88 

since the early days of microbial genetics (Koonin, 2009, Rocha, 2008, Zheng et al., 2002). 89 

However, gene clusters in plant metabolic pathways have been discovered only recently, even 90 

though microbes and plants are both extremely rich sources of metabolic diversity. A study by 91 

Chae et al. (2014) on metabolic gene clusters in Arabidopsis, soybean, sorghum, and rice suggested 92 

that approximately one-third of all the metabolic genes in Arabidopsis, soybean, and sorghum, and 93 

one-fifth in rice were rich in gene clusters across primary and specialized metabolic pathways 94 

(Chae et al., 2014). There is compelling evidence indicating that the highly plastic plant genome 95 

itself generates metabolic gene clusters via gene duplication, neofunctionalization, divergence, and 96 

genome reorganization instead of horizontal gene transfer from microbes (Osbourn and Field, 97 

2009). This suggests that plants rewire their genome to gain new adaptive functions driven by the 98 

need to survive in distinct environments. Systematic mining and functional validation of the 99 

candidate genes in such clusters will facilitate the discovery of new enzymes and chemistries that 100 

render pathway prediction. Moreover, metabolic gene clusters are likely to be located within 101 

dynamic chromosomal regions, and thus, many identified so far may be due to recent evolution 102 

(Field et al., 2011, Matsuba et al., 2013, Qi et al., 2004). If so, investigation of these clusters can 103 

provide insights into their evolutionary history. The vast and diverse array of specialized 104 

metabolites that are produced through multi-step metabolic pathways play an important role in 105 

plant adaptation to various ecological niches. However, the occurrence, prevalence, and evolution 106 

of such gene clusters in plants are largely unknown. Thus, the study of plant metabolic gene 107 

clusters has implications for molecular biology and evolutionary genomics (Chavali and Rhee, 108 

2018, Nützmann et al., 2016, Takos and Rook, 2012, Yeaman and Whitlock, 2011).   109 

Due to the extraordinary metabolic diversity, to date, less than 50 plant-specialized metabolic 110 

pathways have been biochemically and genetically  identified (Nützmann et al., 2016). 111 

Metabolomic GWAS (mGWAS) offers an effective approach to understand the genetic basis of 112 

metabolites and their associated traits (Chan et al., 2010, Chan et al., 2011, Luo, 2015, 113 

Riedelsheimer et al., 2012). mGWAS allows the identification of common polymorphic regions 114 

controlling complex metabolic traits by substantially increasing association panel and genome-115 
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wide molecular markers. Besides elucidating genetic architecture, mGWAS can also be used to 116 

infer gene functions (Luo, 2015). Hence, mGWAS provides a comprehensive approach to 117 

discovering candidate genes. Thus far, it has been used to uncover the genetic basis of variations 118 

of a number of different metabolites. For example, Chen et al. (2014) carried out a rice mGWAS 119 

study that identified 36 candidate genes influencing the variation of metabolites with physiological 120 

and nutritional importance  (Chen et al., 2014).  121 

 122 

The isoflavonoid pathway has been relatively well studied (Sukumaran et al., 2018). However, it 123 

is still not clear how glyceollin induction is regulated. This study is the first to employ genomic 124 

and evolutionary approaches to understand the genetic basis and selection of glyceollin induction. 125 

Our study provides a fundamental basis for the long-term goal of developing glyceollin-fortified 126 

soybean cultivars that would improve plant and human health to meet current and future global 127 

challenges. In this study, we aim to address these three questions: (1) What is the genetic basis of 128 

variation in glyceollin induction by SCN? (2) Are there any gene clusters and transcription factors 129 

involved in glyceollin variation? (3) Are epistatic interactions and natural selection important 130 

evolutionary factors influencing the variation of glyceollin induction?   131 

 132 

Materials and Methods 133 

Plant materials 134 

A total of 264 accessions of wild soybean, Glycine soja, from a wide geographic range, originally 135 

collected from China, Japan, Russia, and South Korea, were utilized (Table S1). The seeds of these 136 

ecotypes were obtained from the USDA national germplasm resources laboratory 137 

(https://www.ars-grin.gov/).  138 

 139 

Plant preparation, SCN inoculation, and sample collection 140 

Seed preparation, germination, transplanting, and soybean cyst nematode (SCN, Heterodera 141 

glycines Ichinohe, HG type 1.2.5.7) inoculation were performed following a previously developed 142 

protocol (Zhang et al., 2017a, Zhang et al., 2017b, Zhang and Song, 2017). Whole root tissues 143 

were collected and weighed five days post-infection (dpi). The 5 dpi time point was chosen because 144 
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our previous study suggested a significant inhibition in SCN development in a resistant genotype 145 

compared to normal growth in a susceptible genotype (Zhang et al., 2017a, Zhang et al., 2017b).  146 

All samples were flash frozen in liquid nitrogen and stored at -80 °C. Four biological replicates 147 

per wild soybean genotype were used, eventually a total of 1,020 samples.   148 

 149 

Metabolite extraction and quantification 150 

We employed the extraction method of metabolites from root tissue described in Strauch et al., 151 

(2015). The metabolite profiling was provided by the service from David H. Murdock Research 152 

Institute at the North Carolina Research Campus. Peaks that were consistently detected in at least 153 

three biological replicates within each genotype were used for downstream analyses. Each 154 

metabolite was confirmed using pure standard compounds, including daidzein, daidzein-d6, and 155 

glyceollin. Due to the low concentrations of these compounds and the small sample masses of the 156 

wild soybean root samples that had been collected, we used a signal-to-noise ratio of ≥10 for the 157 

measurement of the peaks for glyceollin and daidzein. Our method successfully measured daidzein 158 

(μg/g root) and glyceollin (unitless) in 264 accessions of wild soybean G. soja roots quantitatively 159 

and semi-quantitatively, respectively. Following method development, optimization, and analyses 160 

of the test samples, calibration curves were designed using at least six different concentrations of 161 

daidzein, created in triplicate to quantify known concentrations of daidzein and glyceollin. A 162 

second-degree polynomial was derived from the known concentrations of the standard curve 163 

samples and the mass spectrometer response (daidzein/internal standard) from the standard curve 164 

data. The resulting polynomial was used to calculate the concentrations of daidzein in the 165 

experimental samples. Low, medium, and high QC (quality control) samples were created to assess 166 

the accuracy of the calculations. We used the ratio of glyceollin (unitless) to daidzein (μg/g root) 167 

(GVSD) as our phenotypic trait. This phenotype henceforth is denoted GVSD.   168 

 169 

Genotypic data 170 

Genotype data for the 264 accessions were obtained from SoySNP50K (Song et al., 2013), which 171 

included 32,976 genome-wide single nucleotide polymorphic markers (SNPs) with a minor allele 172 

frequency (MAF) of at least 5%.  173 
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Metabolite-based genome-wide association study (mGWAS) and linkage disequilibrium 174 

estimation 175 

Our genome-wide association analysis was conducted on GVSD (a ratio of glyceollin mean to 176 

daidzein mean) in response to SCN infection on all 264 ecotypes using the BLINK algorithm 177 

implemented in the GAPIT R package (2.0) (Tang et al., 2016). To minimize false-positive 178 

associations, we controlled population structure among genotypes with four principal components. 179 

Heritability estimate and SNP effect were calculated by running GWAS applying CMLM and 180 

MLM methods, respectively, implemented in the GAPIT R package (2.0) (Tang et al., 2016).  181 

 182 

A conventional Manhattan plot was generated using the qqman R package to visualize the SNPs 183 

(Turner, 2014). In addition to the genome-wide significant threshold, we also calculated the 184 

chromosome-wide Bonferroni thresholds using independent SNPs estimated on each chromosome 185 

following the method of Li and Ji (2005) (Li and Ji, 2005). Linkage disequilibrium (LD) was 186 

calculated across the panel with the TASSEL program, version 5 [6], for the significant SNPs 187 

identified from the GWAS analysis. LD was measured using squared correlation R-squared (r2) of 188 

0.2 (upper right in the LD plot) and p-value < 0.05 (the lower left in the LD plot). A pairwise LD 189 

was generated following the R function described by Shin et al. (2006) (Shin et al., 2006). Genes 190 

within LD blocks containing significant SNPs were identified as potential sources of candidates 191 

for further analyses.  192 

 193 

Identification of candidate genes 194 

For extensive gene mining of our identified gene pool, we used an array of bioinformatics tools. 195 

Such an approach can improve the accuracy of candidate gene and gene cluster predictions and 196 

resolve inconsistencies among the bioinformatics tools (Chavali and Rhee, 2018). Specifically, a 197 

pairwise linkage disequilibrium (LD) analysis was initially used for potential candidate gene 198 

identification. Then, genes in each LD block were examined as potential candidate genes, and their 199 

annotations were obtained from the Phytozome v13 database (Goodstein et al., 2011). Afterward, 200 

a GO enrichment analysis of the identified candidate genes was performed using ShinyGO v0.66: 201 

Gene Ontology Enrichment Analysis (p-value cutoff (FDR, false discovery rate) = 0.05) (Ge et al., 202 
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2020), Soybase GO Enrichment Data (Grant et al., 2010). To investigate the involvement of these 203 

potential candidate genes in metabolic pathways, a database search was performed through an 204 

annotation file from Phytozome v13 (Goodstein et al., 2011), Soybase (Grant et al., 2010), SoyCyc 205 

10.0 Soybean Metabolic Pathway (Hawkins et al., 2021), and Pathview databases (Luo et al., 2017). 206 

Finally, a PMN plant metabolic cluster viewer was applied to categorize enzymes into classes 207 

(signature or tailoring) and metabolic domains (Hawkins et al., 2021). 208 

 209 

Analysis of epistatic interactions 210 

For any significant SNPs uncovered in the GWAS analysis, it is useful to test whether, beyond 211 

their direct effects, they also exhibited interactive effects on GVSD. To accomplish this, we first 212 

produced numerically formatted genotypes, in which the homozygous genotype index value is 1 213 

and -1 and the heterozygous 0. This allows us to test for epistasis for each pairwise combination 214 

in a simple general linear model with 1 degree of freedom for the additive effects of each of the 215 

two SNPs and their interaction. We included the first four principal components from the GAPIT 216 

analysis in the model to be consistent with the GWAS scan, where these components were used to 217 

adjust for structural relatedness (see below). The significance of all interactions was evaluated with 218 

the sequential Bonferroni procedure. To illustrate the interactions of SNP pairs, we also calculated 219 

regressions of GVSD on each SNP, but at each of the three genotypes (using the -1, 0, and 1 index 220 

values) of the second SNP involved in the significant interaction.   221 

 222 

Extended haplotype homozygosity analyses 223 

To test allele-specific selection patterns of the identified significant SNPs, we analyzed extended 224 

haplotype homozygosity (EHH, (Sabeti et al., 2002)) for each significant SNP. The EHH analysis 225 

was conducted in SELSCAN v.1.2.0a (Szpiech and Hernandez, 2014) with default parameters, and 226 

only SNPs with MAF > 0.05 was used in this analysis.  227 

Results 228 

Genomic dissection of glyceollin accumulation upon biotic induction 229 

We identified a total of eight significant SNPs, with four located on chromosome 9 and the others 230 

on chromosomes 3, 13, 15, and 20 (Fig. 1a, Table 1). These SNPs were identified based on both 231 

genome-wide Bonferroni threshold of 5.104 and chromosome-wide Bonferroni thresholds that 232 
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varied narrowly from 3.79 to 3.82 among the 20 chromosomes (3.803 on chromosome 9) (Figs 233 

1a,b, Table S2). The manhattan and Q-Q (quantile-quantile)  plots are shown in Fig.1a,b,c. The 234 

four significant SNPs on chromosome 9 are located close to each other within a 535 kb region 235 

(Table S2). The broad-sense heritability (h2) was estimated 35% (Table S2).  236 

Linkage disequilibrium analysis and candidate gene identification 237 

We identified a total of 666 possible candidate genes within the linkage disequilibrium (LD) blocks 238 

of the eight significant SNPs (soybean reference genome Glycine max Wm82.a2.v1) (Goodstein 239 

et al., 2011, Zhou et al., 2015). The LD block on chromosome 9 showed the strongest LD with a 240 

long range compared to the others (Figs 2b, S1, S2). We considered r2>0.2 as a cutoff for our LD 241 

analysis, where r2 is the extent of allelic association between a pair of sites (Weir, 1990). Candidate 242 

gene Glyma.09G128200 shows the highest level of LD near the significant SNPs on chromosome 243 

9 compared to the LD block for the rest of the significant SNPs on this chromosome (Figs 2b, S1). 244 

The functional annotation of the candidate genes within this block is biosynthetic enzymes 245 

involved in isoflavonoid pathway, as well as regulatory genes such as WRKY and MYB 246 

transcription factors (Tables 1, S3, and S4), which may indicate their transcriptional level 247 

involvement in glyceollin induction in response to SCN stress (Colinas and Goossens, 2018). 248 

We also found putative genes encoding enzymes involved in the specialized metabolic pathways 249 

within the LD blocks of the significant SNPs on chromosomes 3, 13, 15, and 20. The enriched  GO 250 

category includes flavonoid biosynthesis pathway, phenylpropanoid metabolic process, linamarin 251 

biosynthesis, and terpenoid biosynthesis (Table S5). Apart from the biosynthetic enzymes on these 252 

chromosomes, we also found transcription factor genes, such as WRKY, MYB, and NAC (Table 253 

S5). 254 

 255 

Metabolic gene clusters identification 256 

We were particularly interested in the candidate genes in the branch from daidzein to glyceollin in 257 

the isoflavonoid biosynthesis pathway (Lozovaya et al., 2007). We found that the identified 258 

candidate genes on chromosome 9 are clustered together, and they fell into two clusters. Both of 259 

these two clusters belong to tailoring enzyme glycosyltransferase within phenylpropanoid 260 

specialized metabolic domain. And six genes are within the branch of isoflavonoid biosynthesis 261 
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pathway. Two of these six genes, Glyma.09G127200 and Glyma.09G127300, are called cluster 1, 262 

while the rest four (Glyma.09G127700, Glyma.09G128200, Glyma.09G128300, and 263 

Glyma.09G128400) are called cluster 2 (Table S3).  264 

 265 

Further investigation of annotation of these candidate genes within the gene clusters (Table S4), 266 

we found Glyma.09G127200 gene encodes a glucosyltransferase that may act on 4'-methoxy 267 

isoflavones biochanin A,  formononetin, 4'-hydroxy isoflavones genistein, and daidzein substrates. 268 

However, the enzyme does not act on isoflavanones, flavones, flavanones, flavanols, or coumarins 269 

(Köster and Barz, 1981). Within the same cluster, Glyma.09G127300 has similar annotations and 270 

functions as Glyma.09G127200. Interestingly, the four genes within cluster 2 have a similar 271 

functional annotation as Glyma.09G127200 and Glyma.09G127300 in cluster 1, and all these four 272 

genes encode isoenzymes (Table S4). Such a link between these two gene clusters indicates their 273 

proximity in the metabolic pathway.  274 

 275 

Epistatic interactions among all significant SNPs 276 

The results of the epistasis tests for each of the 28 pairwise combinations of the eight significant 277 

SNPs are shown in Table 2. Three probabilities, all associated with the SNP on chromosome 20, 278 

were not estimable (Table 2). Among the remaining 25 SNP pairs, 20 show statistical significance. 279 

Particularly noticeable is the high significance for all interactions of the SNPs on chromosomes 3, 280 

13, and 15. Three of the six pairs among the four SNPs on chromosome 9, all involving 281 

ss715603462, also are statistically significant. In general, therefore, this is evidence for substantial 282 

epistasis among these SNPs affecting GVSD.   283 

 284 

These epistatic interactions of the SNP pairs are illustrated in Fig. 3 for each of the four chosen 285 

combinations. For example, in panel a (Fig. 3a), it can be seen that regression slopes of GVSD on 286 

ss715603454 are close to 0 for ss71585948 CC genotype but are positive for TC and especially 287 

TT genotypes. In panel d (Fig. 3d), regression slopes of GVSD on ss715603471 are negative for 288 

ss715603462 AA and GA genotypes but positive for GG genotypes. With no epistasis, these slopes 289 

would be expected to be roughly parallel, but in fact, they diverge considerably from parallelism 290 

in these four examples.   291 

 292 
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Significant SNPs exhibited extended haplotype homozygosity  293 

The extended homozygosity analysis (EHH) analyses revealed allele-specific EHH values of the 294 

significant SNPs (ss715603454, ss715603455, ss715603462, and ss715603471) on chromosomes 295 

9 (Fig. 4). For example, T allele of ss715603454 showed much higher EHH value than G allele. 296 

Alleles of significant SNPs on the other chromosomes showed compatible EHH values (Fig. 4).  297 

 298 

Discussion 299 

Metabolic gene clusters in glyceollin induction 300 

Gene clusters have been reported to play important roles in phytochemical diversity in Arabidopsis, 301 

sorghum, soybean, and rice (Chae et al., 2014). However, their roles in regulating metabolic 302 

variation in wild species are relatively less investigated. Even though the isoflavonoid biosynthesis 303 

pathway is relatively well studied, the genetic regulation of glyceollin induction is unclear. 304 

Particularly, the contribution, prevalence, and occurrence of gene clusters in plant metabolic 305 

diversity are largely unclear. Our mGWAS results suggest there are two gene clusters with 306 

functionally related but non-homologous genes, which may involve in glyceollin induction in wild 307 

soybean. Thus far, these are the first reported plausible gene clusters involved in glyceollin 308 

accumulation induced by biotic stimuli. These gene clusters suggest that glyceollin may be 309 

synthesized where the enzyme-encoding genes are adjacent to each other on the same chromosome 310 

(Chavali and Rhee, 2018). Physical clustering of genes with similar functions can facilitate co-311 

inheritance of alleles with favorable combinations and their coordinated regulations at chromatin 312 

level (Chu et al., 2011, Osbourn, 2010a). Besides, such clusters incline to locate in the sub-313 

telomeric regions (Gierl and Frey, 2001, Qi et al., 2004, Sakamoto et al., 2004), near the ends of 314 

chromosomes that are known to harbor mutations. For example, an examination of the complete 315 

genome sequence revealed that the maize DIMBOA cluster is located close to the end of 316 

chromosome 4 (Farman, 2007, Jonczyk et al., 2008). Thus, identifying the positions of the genes 317 

can contribute to inferences of possible mechanisms underlying chemical diversity in natural 318 

populations.  319 

 320 

Tailoring enzymes, such as methyltransferases, glycosyltransferases, CYPs, 321 

dehydrogenases/reductases, and acyltransferases are responsible for modifying the chemical 322 

backbone of specialized metabolites (Osbourn, 2010b). The gene clusters we found are associated 323 
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with tailoring or regulating glycosyltransferase enzymes. A common defense mechanism of plants 324 

involves glycosylation of secondary metabolites by involving these enzymes (Mylona et al., 2008). 325 

Therefore, the clustering of the genes encoding glycosyltransferase on chromosome 9 indicates the 326 

formation of stress-induced (i.e., SCN stress in our study) protective compounds. For example, the 327 

cyclic hydroxamic acid (DIBOA) in maize (Frey et al., 1997, Gierl and Frey, 2001), the triterpene 328 

avenacin in oat (Field and Osbourn, 2008, Mugford et al., 2009, Qi et al., 2004, Qi et al., 2006), 329 

and two gene clusters associated with diterpene (momilactone and phytocassane) synthesis in rice, 330 

which may be pre-formed or synthesized after stress induction for plant defense. Disruption of 331 

such gene clusters may compromise pest and disease resistance and lead to the accumulation of 332 

toxic pathway intermediates (Chu et al., 2011). In the multi-step plant specialized metabolic 333 

pathways, rapid adaptation to a particular environmental niche could result in highly diverse and 334 

rapidly evolving metabolic gene clusters (Osbourn and Field, 2009). Hence, the level of 335 

conservation of the identified gene clusters in this study across different Glycine soja genotypes 336 

can shed light on evolutionary insight of these clusters (Field and Osbourn, 2008). Synthetic 337 

biology and functional genetics can further help investigate the organization and contribution of 338 

these clusters in metabolite diversity, as well as decipher the mechanism of adaptive evolution and 339 

genome plasticity (Chu et al., 2011, Osbourn, 2010b). 340 

 341 

Plausible transcriptional factors in glyceollin induction 342 

Advancement of genetics, genomics, and bioinformatic approaches facilitate the prediction and 343 

identification of a large number of genes, including transcription factors associated with plant-344 

specialized metabolic pathways (Anarat-Cappillino and Sattely, 2014, Moore et al., 2019). 345 

However, the transcriptional regulators of specialized metabolism are less well characterized 346 

(Shoji and Yuan, 2021). The regulation of highly diverse plant specialized metabolic pathways is 347 

dynamic given the ever-changing environment. Such regulation generally occurs at transcription 348 

level, and thus, it requires coordinated regulation often mediated by transcription factors (TFs) 349 

(Colinas and Goossens, 2018, Shoji, 2019). For instance, MYB and basic helix-loop-helix (bHLH) 350 

TF family genes were reported to regulate anthocyanin and related flavonoid biosynthetic 351 

pathways in a wide range of species (Chezem and Clay, 2016). Moreover, significant 352 

modifications of these regulatory genes give rise to the vast diversity in plant specialized 353 

metabolism (Huang et al., 2018, Springer et al., 2019).  354 
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 355 

It is possible that transcription factors, such as MYB and WRKY TFs on chromosome 9, may 356 

influence glyceollin induction. This indicates regulation of glyceollin induction with SCN stress 357 

may involve a highly complex interplay among multiple genes and pathways. Previous studies 358 

reported that gene families of transcription factors, such as NAC, MYB, bHLH, and WRKY, 359 

exhibited conservative patterns among Arabidopsis, cotton, grapevine, maize, and rice (Ibraheem 360 

et al., 2015, Ogawa et al., 2017, Saga et al., 2012, Xu et al., 2004, Yamamura et al., 2015, Zheng 361 

et al., 2006). These plant species produce various phytoalexins, such as indole alkaloids, terpenoid 362 

aldehydes, stilbenoids, deoxyanthocyanidins, and momilactones/ phytocassanes, 363 

respectively. This gives rise to the question of whether these TFs are as diversified as the metabolic 364 

pathways, or they maintain conservative patterns among species. The investigation of TFs binding 365 

promoter regions can give insights if the pathways are co-opted into stress-inducible regulation by 366 

the respective TFs (Jahan et al., 2019). The homology of TFs among different plant species can 367 

help metabolic engineering a wide variety of crop plants to produce phytoalexins in greater 368 

amounts.  369 

 370 

In addition to enzyme-encoding genes, TF genes can also be found as gene clusters. For example,  371 

the gene cluster of TF ERF (jasmonate (JA)- responsive ethylene response factor) consists of five 372 

ERF genes in tomato (Cárdenas et al., 2016, Thagun et al., 2016), while eight in potato (Cárdenas 373 

et al., 2016), two clusters of ten and five in tobacco (Kajikawa et al., 2017), five in C. roseus (Singh 374 

et al., 2020), four in Calotropis gigantea (Singh et al., 2020), and four in Glesemium sempervirens 375 

(Singh et al., 2020). Besides, TFs involved in plant specialized metabolism can be found in arrays 376 

(Shoji and Yuan, 2021, Zhou et al., 2016). So, it is possible that the TFs we identified are located 377 

in the same genomic neighborhood as arrays or biosynthetic gene clusters (BGCs). The co-378 

regulation hypothesis of gene clusters poses that clustering of TFs can help coregulate genes in a 379 

pathway. Although co-regulation also exists between un-clustered metabolic pathways, clustering 380 

may accelerate the recruitment of genes into a regulon (Smit and Lichman, 2022, Wisecaver et al., 381 

2017). 382 

 383 

Epistasis and plausible selection on glyceollin induction 384 
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Metabolic traits have been reported to have low heritability due to environmental effects on their 385 

accumulations (Rowe et al., 2008). Recent studies have shown strong epistatic interactions of 386 

genes influencing variation of plant specialized metabolites, which may impact fitness in the field 387 

(Brachi et al., 2015, Kerwin et al., 2015, Kerwin et al., 2017). For example, numerous epistatic 388 

interactions influence the highly complex genetic architecture responsible for Arabidopsis 389 

metabolism (Kliebenstein, 2001, Kliebenstein et al., 2001). Moreover, a mixture of positive and 390 

negative epistatic interactions can help identify significant QTLs located within a biosynthetic 391 

pathway (Rowe et al., 2008). Compared to expression regulations, the power of epistasis in 392 

metabolomics is that they can better indicate the interconnectedness of metabolites within the 393 

metabolic pathway (Arita, 2004, Fell and Wagner, 2000, Jeong et al., 2000). The widespread 394 

interactive effects found among our identified significant SNPs affecting targeted metabolic traits 395 

may be a consequence of the interconvertibility between daidzein and glyceollin.  396 

 397 

Genes containing causal variation for plant defensive compounds may influence field fitness and 398 

thus are likely under natural selection (Kroymann, 2011). For example, Benderoth et al. (2006) 399 

detected positive selection in glucosinolate diversification in Arabidopsis thaliana and its relatives 400 

(Benderoth et al., 2006). Prasad et al. (2012) showed positive selection for a mutation on a 401 

metabolic pathway gene could enhance resistance to herbivory in natural populations of a rocky 402 

mountain cress species (Prasad et al., 2012). We detected strong signals of selection on the SNPs 403 

significantly associated with glyceollin phenotypes with EHH and LD analyses (Figs 4, 2b, and 404 

S1). For example, the LD surrounding the significant SNP ss715603454 that is next to the 405 

identified gene clusters is more extensive, suggesting strong selection in this region (Figs 2b, S1). 406 

Meanwhile, the two alleles of this significant SNP, G and T, showed different EHH values, with 407 

T exhibiting much longer haplotype homozygosity. This indicates that this T allele may be under 408 

recent positive selection. Interestingly, the T allele is significantly associated with higher induction 409 

of glyceollin and has a higher frequency in South Korea (Fig. 2c,d). The allele-specific EHH 410 

pattern and their geographic distribution may be due to heterogeneous selection pressure in nature.  411 

 412 

Perspectives and future directions of our study 413 

Plant specialized metabolites exhibit extreme quantitative and qualitative variation. Therefore, 414 

high-throughput metabolite profiling, such as LC-MS analysis coupled with GWAS (as applied 415 
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here) can help better understand the genetic contributions to metabolic diversity in natural 416 

populations. A common assumption is that biological variables or traits should show a normal 417 

distribution, and skewed data may indicate measurement error. However, the scenario is different 418 

in metabolomics, especially in secondary metabolism. For instance, a ratio of two related 419 

compounds, rather than their separate values, may provide a comprehensive understanding of the 420 

underlying enzymatic process (Byrne et al., 1996, Chan et al., 2011, Kliebenstein, 2001, 421 

Kliebenstein et al., 2001, Kliebenstein, 2007, McMullen et al., 1998, Petersen et al., 2012, Prasad 422 

et al., 2012, Yencho et al., 1998). We used a ratio of glyceollin and daidzein concentrations as the 423 

phenotypic trait for our association study. The use of a metabolic ratio also may produce: (1) a 424 

reduction in the variability of the data collected for the biological replicates and thus increase 425 

statistical power and (2) a reduction in overall noise in the dataset by canceling out systemic 426 

experimental errors. Most importantly for our purposes, the glyceollin to daidzein metabolite ratio 427 

is correlated to the corresponding reaction rate under optimal steady-state assumptions, as this 428 

metabolite pair is connected in the phenylpropanoid biosynthetic pathway (Petersen et al., 2012, 429 

Suhre et al., 2011).  430 

 431 

The natural world has a lot to offer in tackling diseases and global food scarcity. There is a need 432 

to develop new medicines and future value-increased food by unlocking the uncharted gene pools 433 

of wild plants. Our chosen study system crop wild relative of soybean poses much higher and 434 

underexplored genetic diversity than its domesticated descendants. Given that glyceollin is 435 

produced in trace amounts, it is an exciting challenge to define the plant metabolic gene clusters 436 

and transcriptional regulators in the glyceollin biosynthesis pathway. Besides complex cancer 437 

treatment and therapies, the rise of different types of tumors and tumor subtypes urges the need 438 

for new drugs. Along with glyceollin’s role in plant defense, it has been well-documented for anti-439 

cancer activities. Our follow-up studies will apply transcriptomics and functional validation of the 440 

candidate genes, which can expand our focus to explore associations of genes in clusters to 441 

understand their involvement in regulating glyceollin biosynthesis at the systems level. As 442 

phytochemical variation can be caused by both structural genes and their expression differences, 443 

it will be interesting to explore the role of pathway-specific regulators (i.e., transcription factors) 444 

in glyceollin induction (Osbourn, 2010b). Our results suggest that improving our fundamental 445 
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knowledge of plant specialized metabolic gene clusters and regulators will facilitate metabolic 446 

engineering with improved metabolic traits for sustainable agriculture and novel pharmaceuticals.  447 
 448 
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Figure legends 807 

Fig. 1 GWAS of Glyceollin induction with SCN stress: A genome-wide (a) and chromosome- 808 

wide (b) Manhattan plots, with thresholds of 5.104 and 3.803, respectively; (c) quantile-quantile 809 

(QQ) plot. Significant SNPs are found on chromosomes 3, 9, 13, 15 and 20 at a 5% genome-wide 810 

threshold, the probability of 7.86×10-6 resulted in a threshold of 5.01 (solid red line in the genome-811 

wide Manhattan plot) (a). The 5% chromosome-wide LOD threshold resulted in significant p-812 

values of 1.57×10-4 (threshold 3.803, solid blue line) (b). 813 

 814 

Fig. 2 An LD decay measured as R square for pairwise markers and plotted against their distance 815 

(a) and LD plot for chromosome 9 for significant SNPs. The black diagonal denotes LD between 816 

each site and itself (b). Geographic range of the alleles of significant SNPs close to the gene 817 

clusters on chromosome 9 (c). Allele frequency in each population. Allele frequency in different 818 

geographic regions for a significant SNP was generated using JMP®, Version 15. SAS Institute 819 

Inc., Cary, NC, 1989–2021. (d). 820 

 821 

Fig. 3 Epistatic interactions of the SNP pairs for each of four chosen combinations.  Regression 822 

slopes of GVSD on ss715603454 are close to 0 for ss715603454 CC genotypes but are positive 823 

for TC and especially TT genotypes (a). Regression slopes of GVSD on ss715603462 are close to 824 

0 for ss715585948 CC genotypes but are negative for TC and especially TT genotypes (b). 825 

Regression slopes of GVSD on ss715615975 are close to 0 for ss715585948 TT genotypes but are 826 

negative for TC and especially CC genotypes (c).  Regression slopes of GVSD on ss715603471 827 

are negative in sign for ss715603462 AA and GA genotypes, but positive in sign for GG genotypes 828 

(d). 829 

 830 

Fig. 4  Allele-specific Extended Haplotype Homozygosity (EHH) for four significant SNPs on 831 

chromosomes 9. 832 

  833 
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Tables 834 

Table 1. Identification of significant SNPs and functional annotation of the plausible candidate 835 

genes.  836 

 837 

Significant 

SNP 

Chromosome Functional annotation of associated genes 

ss715585948 Gm03 WRKY family transcription factor family protein 

Zinc fingers superfamily protein 

ss715603454 Gm09 UDP-glucosyl transferase 88A1 

RING/U-box superfamily protein, RING/FYVE/PHD zinc 

finger superfamily protein 

WRKY family transcription factor family protein 

MYB domain 

Zinc fingers superfamily protein 

Cytochrome P450 enzyme family 

Zinc finger, RING-type; Transcription factor 

jumonji/aspartyl beta-hydroxylase 

ss715603455 Gm09 

ss715603462 Gm09 

ss715603471 Gm09 

ss715615975 Gm13 bZIP transcription factor 

RING/U-box superfamily protein, RING/FYVE/PHD zinc 

finger superfamily protein 

Zinc fingers superfamily protein 

NAC transcription factors 

Cytochrome P450 enzyme family 

ss715620269 Gm15 RING/U-box superfamily protein, RING/FYVE/PHD zinc 

finger superfamily protein 

WRKY family transcription factor family protein 

MYB domain 
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ss715636844 Gm20 UDP-Glycosyltransferase superfamily protein 

UDP-glucosyl transferase 85A2 

hydroxy methylglutaryl CoA reductase 1 

Cytochrome P450, family 71, subfamily B, polypeptide 34 

cytochrome p450 79a2 

RING/U-box superfamily protein, RING/FYVE/PHD zinc 

finger superfamily protein 

Zinc fingers superfamily protein 

  838 
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Table 2 Epistasis for the eight significant SNPs.   839 

  840 

 Ch9a Ch9b Ch9c Ch9d Ch13 Ch15 Ch20 

Ch3 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* 0.002* 

Ch9a  0.10 0.053 0.007* <0.001* <0.001* 0.907 

Ch9b   0.012 0.006* <0.001* <0.001* 0.835 

Ch9c    <0.000* <0.001* <0.001* n.e. 

Ch9d     <0.001* <0.001* n.e. 

Ch13      <0.001* n.e. 

Ch15       0.001* 

 841 

Shown are the probabilities for each pairwise interaction of SNPs. * = P < 0.05 from  842 

sequential Bonferroni tests. n.e. = not estimable. Ch3 = ss715585948, Ch9a = ss715603454, Ch9b 843 

= ss715603455, Ch9c = ss715603462, Ch9d = ss715603471, Ch13 = ss715615975, Ch15 = 844 

ss715620269, Ch20 = ss715636844 845 

 846 

 847 

 848 

 849 

  850 
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Figures 851 

Fig. 1 852 

 853 

 854 
 855 

 856 

 857 

 858 

 859 

  860 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.17.520864doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520864
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 36 of 38 
 

Fig. 2 861 
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Fig. 3 874 
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Fig. 4 879 
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