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Abstract 9 

Understanding the temporal dynamics of gene expression is crucial for developmental biology, 10 
tumor biology, and biogerontology. However, some time points remain challenging to measure 11 
in the lab, particularly during very early or very late stages in a biological process. Here we 12 
propose Sagittarius, a transformer-based model that is able to accurately simulate gene 13 
expression profiles at time points outside of the range of times measured in the lab. The key idea 14 
behind Sagittarius is to learn a shared reference space that generates simulated time series 15 
measurements, thereby explicitly modeling unaligned time points and conditional batch effects 16 
between time series and making the model widely applicable to diverse biological settings. We 17 
show the promising performance of Sagittarius when extrapolating mammalian developmental 18 
gene expression, simulating drug-induced expression at unmeasured dose and treatment times, 19 
and augmenting datasets to accurately predict drug sensitivity. We also used Sagittarius to 20 
simulate mutation profiles for early-stage cancer patients, which further enabled us to discover a 21 
gene set related to the Hedgehog signaling pathway that may be related to tumorigenesis in 22 
sarcoma patients, including PTCH1, ARID2, and MYCBP2. By augmenting experimental 23 
temporal datasets with crucial but difficult-to-measure simulated datapoints, Sagittarius enables 24 
deeper insights into the temporal dynamics of heterogeneous transcriptomic processes and can 25 
be broadly applied to biological time series extrapolation. 26 
 27 
 28 
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Main 30 

The temporal dynamics of the transcriptome are key to the study of developmental biology,1,2 31 
tumor biology,3,4 immunobiology,5,6 and pharmacogenomics.7,8 As bulk- and single-cell RNA-32 
sequencing technologies have become cheaper,4,9–11 more transcriptomic datasets include gene 33 
expression measurements at multiple time points.12–19 However, although such datasets are 34 
becoming more common, it often remains a significant challenge to measure transcriptomic 35 
profiles at very early or late stages of a biological process. For instance, senescent and extremely 36 
diseased tissue under different experimental conditions can be challenging to measure, but are of 37 
extreme interest to studies for aging and therapeutics. 38 
 39 
The underlying problem here is temporal extrapolation, where time points of interest are outside 40 
the range of time that has experimental measurements. Accurate extrapolation on a single time 41 
series is very challenging due to non-stationary features and temporal out-of-domain 42 
adaptation.20 Other works, such as Monocle,13 Slingshot,21 and Palantir,22 aim to impute 43 
pseudotime points from a single measurement of time series data, but cannot make use of recent 44 
datasets12–19 that contain measurements at multiple labeled time points to simulate novel 45 
measurements. One possible solution for the extrapolation problem is to combine sparse time 46 
series measurements from heterogeneous sequences. In particular, mouse12 and roundworm23 47 
transcriptomic time series measurements, combined with developmental human measurements, 48 
can help simulate early-stage embryonic transcriptomic profiles for human.24  There are two major 49 
challenges in effectively utilizing other sequences: unaligned measured time points and batch 50 
effects between experimental conditions. Existing methods are unable to simultaneously consider 51 
the full sequence of measured time points25,26 or take into account the temporal batch effects 52 
between time series.27–30 53 
 54 
To address these limitations we propose Sagittarius, a model that maps heterogeneous gene 55 
expression time series to the same reference space based on inferred biological age rather than 56 
the observed age, enabling multiple sparsely measured time series to jointly inform extrapolation 57 
to diverse time series. Sagittarius leverages a novel transformer-based architecture with multi-58 
head attention31 to map the heterogeneous set of time series from the irregular, unaligned, sparse 59 
measurement space to the regular reference space shared by all time series, using high-frequency 60 
embeddings of the timestamp29,32 and experimental condition labels of each time series to define 61 
the mapping. After mapping to the shared reference space, we can accurately simulate new 62 
genomic profiles at extrapolated time points, as well as simulate measurements for unmeasured 63 
combinations of experimental conditions. 64 
 65 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2022. ; https://doi.org/10.1101/2022.12.24.521845doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.24.521845
http://creativecommons.org/licenses/by-nc-nd/4.0/


We evaluated Sagittarius on three diverse applications in developmental biology, 66 
pharmacogenomics, and cancer genomics. On the Evo-devo development dataset,12 we show that 67 
Sagittarius has a Pearson correlation of 0.976 for gene expression profile extrapolation, compared 68 
to the best existing method’s correlation of 0.926. Sagittarius further enabled organ-specific 69 
transcriptomic velocity analysis that clearly illustrates the diverging tissue trajectory during 70 
development, and which we further verified with scRNA-seq datasets from Tabula Muris Senis.16 71 
To evaluate Sagittarius’s robustness to extremely sparse measurements, we next applied it to the 72 
LINCS pharmacogenomics dataset,15 where it was able to simulate drug-induced expression with 73 
a correlation of 0.89 for test cell line, drug, dose, and time perturbation experiments, although 74 
only 1.77% of possible drug and cell line combinations are measured in the dataset. Furthermore, 75 
the model’s shared reference space and simulated expression enable us to perform a novel drug 76 
repurposing task across perturbation combinations that do not share a drug or a cell line. 77 
Sagittarius obtained the best average Spearman correlation of 0.49 on two large-scale drug 78 
response datasets,33,34 as well as an average cell line Spearman correlation of 0.816 and 0.789 for 79 
cancer gene essentiality prediction on both CRISPR-35 and shRNA-based36 measurements 80 
respectively, compared to 0.261 and 0.278 using only available in vitro data. We finally applied 81 
Sagittarius to the sarcoma and thyroid carcinoma cancer types in The Cancer Genome Atlas 82 
(TCGA) dataset.37 Sagittarius was able to accurately simulate mutation profiles for patients with 83 
very long survival times, usually representing early-stage cancer patients with driver mutations 84 
that are difficult to measure in the clinic. For example, when using sarcoma patients with a post-85 
biopsy survival time longer than 37 months as test data and all other patients for training, 86 
Sagittarius had a 0.77 AUROC for simulating mutation profiles, a 12.3% improvement over 87 
existing methods. This leads us to discover a novel early-stage gene set related to the Hedgehog 88 
signaling pathway and GLI oncogene, which can potentially drive tumorigenesis in early-stage 89 
sarcoma patients. 90 
 91 

Results 92 

Overview of Sagittarius 93 

Given a heterogeneous, unaligned, sparse, and irregular time series dataset of genomic 94 
measurements, Sagittarius is able to simulate gene expression profiles for unmeasured time 95 
points (Fig. 1). After training, a user may obtain the simulated expression from Sagittarius for 96 
unmeasured time points of an experiment present in the dataset or for new combinations of 97 
experimental variables that are not present in the initial dataset, such as the human heart in Fig. 98 
1d, provided that both the human species and heart organ were measured at least once in the 99 
training dataset (Fig. 1a). 100 
 101 
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The key idea behind Sagittarius is to learn a shared reference space (Fig. 1c), which underlies all 102 
heterogeneous time series in the dataset. The common reference space addresses two main 103 
challenges: temporal extrapolation and batch effects between experimental conditions. First, the 104 
common reference space pools dynamic information from all of the sparse time series to a single, 105 
global understanding of the underlying temporal trajectory in the data. Given the complete range 106 
of biological ages that are measured by at least one time series in the dataset, this then enables 107 
accurate extrapolation for time series with measurements that only cover a subset of the dataset’s 108 
complete biological age range. Second, the compression and alignment to the common reference 109 
space (Fig. 1b,c) disentangles the experimental variables, like species and organ, from the time 110 
series representations, both facilitating a comparison based on biological age rather than 111 
measured age and enabling easy simulation of time series for unmeasured combinations of 112 
experimental variables (Fig. 1d). 113 
 114 
Sagittarius is able to infer relative time relationships between different experimental conditions, 115 
thereby leveraging measurements within a related range of one time series to simulate accurate 116 
profiles for extrapolated time points in another time series. The generative network and 117 
continuous transformer are efficient, enabling Sagittarius to simulate new observations powered 118 
by large datasets. In addition to downstream analyses such as developmentally dynamic gene 119 
modeling and tumorigenesis driver identification, Sagittarius can be applied to complex 120 
pharmacogenomic datasets containing both a dose and treatment time continuous variable, 121 
extending the common reference space into multiple temporal dimensions. This further enables 122 
drug repurposing and drug response prediction using the simulated drug-induced gene 123 
expression data from Sagittarius, extrapolating dose, treatment time, and perturbation 124 
combinations. 125 
 126 

Extrapolating heterogeneous gene expression to unmeasured time points using Sagittarius 127 

To assess the merit of our approach, we evaluated whether Sagittarius can simulate gene 128 
expression profiles for a time point later than the measured time points using gene expression 129 
time series from multiple experimental conditions. We used the Mammalian Organ Development 130 
Evo-devo time series dataset,12 which contains bulk RNA-seq data from 7 organs across 7 species, 131 
measured at a total of 91 distinct time points, where each time series ranges between 9 and 23 132 
measured time points, with the fewest measurements for chicken and the most for human. The 133 
provided time points give the developmental stage of the species, but not the aligned biological 134 
age between species. Furthermore, the ranges of development that are covered by each species 135 
differ; primates include measurements during senescence, while rhesus macaque and chicken do 136 
not contain early embryonic data. Therefore, the Evo-devo dataset can assess whether our method 137 
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can handle unaligned absolute time points as well as differing biological age ranges measured 138 
across species. 139 
 140 
To initially validate our model, we hid the last four measured time points from each species’ 141 
organ time series and provided the remainder of the Evo-devo dataset to Sagittarius as training 142 
data. After training, we then simulated gene expression vectors for each species’ organs at the 143 
four hidden time points and compared them to the measured expression vectors in the Evo-devo 144 
dataset. Sagittarius achieved an average Pearson correlation between the simulated and 145 
measured gene expression vectors of 0.976 when ranking by genes, and a Pearson correlation of 146 
0.367 when ranking by time points, with a 0.109 average root mean squared error (RMSE), 147 
compared to 0.926, 0.070, and 0.163 respectively for the best-performing comparison approach 148 
(Supplementary Fig. 1 and Methods). We attribute our improved performance to the alignment 149 
of all species in the shared reference space, enabling Sagittarius to make predictions for aging 150 
patterns in one species’s organ based on its trajectory’s similarity to other time series in the dataset 151 
that include later developmental measurements, even if they correspond to a different species 152 
and organ. 153 
 154 
To further validate Sagittarius’s improved gene expression simulation, we then subdivided our 155 
results into individual species and organs. We first noticed that our method still achieves the best 156 
performance on all organs and on 6 out of 7 species (Fig. 2). The best simulated transcriptomic 157 
profiles were from the mouse testis extrapolated time series. Importantly, after hiding the last 158 
four measured time points to use as test data for this task, the final training time point for mouse 159 
testis development is postnatal day 0. This demonstrates the benefit of the shared reference space 160 
for the time series, as other species with later developmental stages included in the dataset enable 161 
Sagittarius to effectively transfer knowledge and patterns to the later developmental stages in the 162 
mouse testis dataset. In contrast, all methods struggle on the human extrapolation task. We 163 
believe that this is because, after removing the four latest measurements for each species from the 164 
training set, the human extrapolation task involves time points that are much later 165 
developmentally than any still present in the training dataset, and is therefore the most difficult 166 
for any method to accurately simulate. Although significantly better than the next-best-167 
performing method (Fisher transform38 followed by one-sided t-test 𝑝 < 0.05 for compare-by-time 168 
Pearson correlation), Sagittarius’s second-worst performing species is chicken. We believe that 169 
this reflects the fact that chicken, the only bird species in the dataset, is less evolutionarily related 170 
to the mammalian species in the dataset,12 thereby highlighting that Sagittarius has a larger 171 
improvement over existing approaches when the species in the reference space follow more 172 
similar developmental trajectories. 173 
 174 
After finding that chicken measurements were more difficult to simulate than other, more related 175 
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species, we wanted to study how Sagittarius grouped different tissues across developmental time 176 
points. Sagittarius’s improved extrapolation performance led us to consider whether we could 177 
simulate samples for time points that would be impossible to measure experimentally and 178 
thereby gain new insights into tissue differentiation and aging. 179 
 180 

Tissue transcriptomics velocity analysis reveals organ-specific aging genes  181 

To further examine the biological insights from Sagittarius’s extrapolated expression profiles, we 182 
next simulated gene expression profiles for each mouse organ at 180 different time points. We 183 
emphasized early mouse embryonic development, so 50 of our simulated time points were earlier 184 
than any mouse measurements present in the dataset; our latest generation time point 185 
corresponded to a 63-day-old mouse, the latest measured mouse time point. By simulating early 186 
time points, we expect to observe a hypothetical trajectory that includes organogenesis, which 187 
takes place between embryonic days 6.5 and 8.5 in mouse development.39,40 That is, we expect that 188 
the earliest simulated time points result in very similar expression profiles across the different 189 
queried organs, which would not have differentiated at this stage. At later time points, we expect 190 
that the organ time series diverge according to germ layers, before finally separating by organ. 191 
We visualized the uniform manifold approximation and projection41 (UMAP) embedding of the 192 
simulated time series results (Fig. 3a,b), as well as the top principal components42 193 
(Supplementary Fig. 2). In particular, we found that the UMAP representations of the 194 
hypothetical mouse organ development diverged according to organ at later developmental 195 
stages (Fig. 3a), but generally started from a common, central location in the embedding space 196 
(Fig. 3b). This indicates that the developmental stage, rather than tissue differentiation, 197 
dominates the simulated gene expression measurements at the earliest time points, while tissue-198 
specific genes begin to separate the embeddings at later developmental stages. At later time 199 
points, we found that the simulated expression values for brain and cerebellum were more closely 200 
grouped together, as well as early expression for the heart, ovary, and testis, consistent with the 201 
ectoderm, mesoderm, and endoderm tissue germ layer classifications.12 This supports the existing 202 
biological theory that expression trajectories are most shared between organs at early 203 
developmental stages before differentiation by germ layer and finally organ,12,13,39,43,44 and shows 204 
Sagittarius’s ability to extrapolate to unmeasured early developmental stages by discerning 205 
common developmental trajectories for each organ across species. 206 
 207 
Given the increasing tissue-specific signal in Sagittarius’s simulated gene expression vectors at 208 
later time points, we then investigated which genes most contributed to the differentiation of 209 
organ trajectories during development. Excluding the heart and cerebellum, which we found to 210 
be the most developmentally distinct for many genes in Fig. 3a,b, we aimed to identify a gene 211 
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that had similar expression across all organs at early developmental time points and diverse 212 
expression patterns at later developmental time points. We found that Xrn2 expression levels 213 
significantly differed across organs at later time points (ANOVA p-value < 1e-98), although all 214 
organs were comparable at early simulated time points (ANOVA p-value > 0.05). Xrn2 is also one 215 
of 12 protein-coding genes predictive of liver cancer prognosis, where high Xrn2 expression levels 216 
indicate worse outcomes,45 and we found that the liver in particular had lower simulated 217 
expression levels than other organs at later developmental time points (Fig. 3c). 218 
  219 
We then sought to further validate Sagittarius’s organ-specific extrapolation potential using the 220 
Tabula Muris Senis single cell RNA-seq dataset.16 Although the Evo-devo dataset contains up to 221 
14 bulk measurements for each mouse organ, the latest measurement is at postpartum day 63. In 222 
contrast, the Tabula Muris Senis dataset contains measurements ranging from a 1-month-old to a 223 
30-month-old mouse. We consequently simulated transcriptomic profiles for 140 time points, 224 
beginning from postpartum day 14. We compared the Pearson correlation of the gene expression 225 
over time between the simulated profiles and the Tabula Muris Senis data, and found that for 226 
genes including Egflam, Smoc1, Slc6a2, and especially Rpl38, which previous work has suggested 227 
could regulate developmental processes in a tissue-specific way,46 Sagittarius’s simulated aging 228 
trajectory better aligned with the tissue trajectories in the Tabula Muris Senis dataset than the 229 
Evo-devo measured mouse data alone (Fig. 3d). This again shows the value of the shared 230 
reference space, which can identify patterns from species with later measured developmental 231 
time points like human and rhesus macaque to inform simulated transcriptomes for mouse aging. 232 
After applying Sagittarius to the Evo-devo dataset with the continuous time variable, we next 233 
considered whether the model could successfully extrapolate unmeasured experimental 234 
combinations in settings with multiple temporal variables. 235 
 236 

Sagittarius simulates drug-induced expression for unmeasured cell line perturbations 237 

We next sought to evaluate Sagittarius to extremely sparse multivariate data with multiple 238 
continuous temporal variables, thereby exponentially increasing the space of possible 239 
experimental settings. We applied Sagittarius to the larger, high-dimensional LINCS L1000 240 
pharmacogenomics dataset.15 In the LINCS dataset, compounds are experimentally applied to 241 
cell lines at specific doses and for a given treatment time before the gene expression vector of 978 242 
genes is measured, although only 1.77% of possible drug and cell line combinations are measured. 243 
Sagittarius models each treatment experiment in two continuous dimensions: dose and treatment 244 
time. Each cell line is never experimentally treated with many of the drugs, and the perturbations 245 
that are tested have sparse measurements over dose and time (Fig. 4a). 246 
 247 
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To validate Sagittarius’s ability to extrapolate to new perturbation experiments, we considered 248 
each dose and time combination for a single drug and cell line to make up the measured sequence 249 
for that combination. We then designed three extrapolation tasks: complete generation, 250 
combination & dose, and combination & time (Fig. 4b and Methods). For each task, we trained 251 
Sagittarius on a subset of the LINCS dataset, withholding the remaining measurements as test 252 
data. We then compared the Spearman correlation of Sagittarius’s simulated drug-induced gene 253 
expression vector to a conditional Variational Autoencoder’s (cVAE’s)25 simulated expression 254 
vector for each of our test perturbations (Fig. 4c-e). We found that Sagittarius achieved an average 255 
Spearman correlation of 0.84 per test drug for the complete generation task, relative to 0.79 for 256 
the cVAE (Fisher transform and one-sided t-test p-value < 5e-2); an average correlation of 0.922 257 
for the combination & dose task, relative to 0.876 for the cVAE (Fisher transform and one-sided 258 
t-test p-value < 5e-92); and an average correlation of 0.921 for the combination & time task, relative 259 
to 0.809 for the cVAE (Fisher transform and one-sided t-test p-value < 5e-301). This indicates that 260 
Sagittarius can simulate accurate drug-induced gene expression vectors for unmeasured drug 261 
treatment experiments at doses and times that are not contained in the training data by aligning 262 
all perturbations experiments to the shared reference space. The simulated drug-induced 263 
transcriptomic profile enables an easy, unbiased search approach to drug sensitivity markers. 264 
This can greatly increase our understanding of the molecular basis of cancer and of drug 265 
response. 266 
 267 

A drug sensitivity similarity network enables novel drug repurposing 268 

As Sagittarius can compare the dose and time effects of each drug treatment experiment in the 269 
shared reference space, we then investigated the drug-induced expression similarity of the 270 
perturbation experiments for cancer drug repurposing. For each measured treatment in the 271 
dataset, we simulated drug-induced gene expression vectors at 78 different dosages with a fixed 272 
treatment time of 6 hours. We constructed a k-nearest-neighbors (KNN) graph 𝐺!"" of 273 
perturbation experiments, weighting network edges by the similarity of Sagittarius’s simulated 274 
drug-induced expression values for the two nodes’ experiments. We next applied Louvain 275 
community detection to 𝐺!"", resulting in four large communities. We used an independent drug 276 
response dataset from Genomics of Drug Sensitivity in Cancer (GDSC)33 to identify the half-277 
maximal inhibitory concentration (IC50) for every drug and cell line perturbation combination 278 
that appeared in both the LINCS and GDSC dataset. Finally, we labeled each of our four 279 
communities in 𝐺!"" with the average IC50 of all nodes within the community that had a label in 280 
the GDSC dataset (Fig. 5a). 281 
 282 
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We found that the communities in 𝐺!"" demonstrated a pattern with respect to sensitivity, with 283 
average IC50 dosages of 1.68, 1.83, 1.90, and 2.40 uM respectively. In previous works, gene 284 
expression has been widely used to identify the drug-induced and diseased-induced gene 285 
expression signatures in drug repurposing studies,47–49 partly due to the scale at which analyses 286 
can be efficiently performed and validated. As Sagittarius can accurately simulate expression for 287 
any perturbation combinations, we next sought to apply Sagittarius to drug repurposing. To 288 
evaluate this, we investigated 𝐺!"" and found that nearby perturbation experiments in the KNN 289 
network indicate potential drug repurposing opportunities. For example, we identified the 8-290 
experiment subgraph from the most sensitive community, shown in the inset of Fig. 5a. 291 
 292 
The subnetwork’s MCF7 and A549 cell line perturbations are all also measured in the GDSC 293 
dataset, with IC50 values of 0.40, 0.89, 1.03, 0.49, 0.67, and 0.83 uM respectively. This demonstrates 294 
the network’s potential for drug repurposing: Sagittarius connects to recent work for drug 295 
repurposing based on cell-line gene expression signatures,50 as the subnetwork includes A549 296 
treated with Vorinostat, Gefitinib, and Selumetinib, each of which A549 is sensitive to; Sagittarius 297 
also connects to existing work on repurposing for similar cell lines given a drug’s mechanism of 298 
action,51 as the subnetwork includes both A549 and MCF7 treated with Gefitinib, to which they 299 
are sensitive. 300 
 301 
Importantly, as Sagittarius can simulate drug-induced expression profiles for any drug and cell 302 
line combination at any dosage and time, our network also enables drug repurposing for entirely 303 
new treatment combinations, where neither the drug nor the cell line needs to be the same as 304 
known successful therapy. The 8-perturbation subnetwork also includes PC3 treated with 305 
Pictilisib, which was colocated with the other perturbation experiments because Sagittarius 306 
simulated differential expression signatures similar to those it simulated for the other six 307 
experiments, although neither PC3 nor Pictilisib are present elsewhere in the subnetwork. 308 
Although these experiments were not present in the GDSC dataset, previous work52 found that 309 
Pictilisib inhibited proliferation of PC3 with an IC50 of 0.28 uM. Similarly, HT29 treated with 310 
Nintedanib is also placed in this subnetwork based on Sagittarius’s simulated profile, 311 
representing another unique drug and unique cell line for the sensitive subnetwork. Nintedanib 312 
was also found to have inhibited proliferation in the HT29 cell line with an IC50 of 1.40 uM,53 and 313 
was shown to have significant antitumor activity in HT29 mouse xenograft models.53,54 This 314 
implies that Sagittarius can simulate perturbation experiments to identify candidate drug 315 
repurposing targets across cell lines, cancer types, and therapeutic compounds, creating new 316 
opportunities for inexpensive and unbiased drug screening as an initial step in the precision 317 
medicine pipeline. 318 
 319 
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Augmenting drug-induced expression improves drug response prediction 320 

Given its drug repurposing potential, we next systematically evaluated Sagittarius on two large-321 
scale cell line drug response prediction datasets, GDSC and the Cancer Therapeutic Response 322 
Portal (CTRP) dataset.34 Drug-induced expression profiles have been useful for drug response 323 
prediction,55 but are expensive to measure compared to basal cell line expression, making 324 
Sagittarius’s simulated drug-induced profiles especially valuable. We constructed a fully 325 
connected neural network model to predict the GDSC IC50 label for all drug perturbations on all 326 
cell lines. We compared one version of this model trained on perturbation experiment data from 327 
Sagittarius to another version trained on the experimentally measured LINCS drug-induced 328 
expression data for perturbation combinations that also appeared in the LINCS dataset. The 329 
Sagittarius-backed network achieved an average Spearman correlation of 0.46 per cell line, 330 
compared to 0.004 for the experimentally-measured data version (Fig. 5b). In this case, the model 331 
trained only on the experimentally measured dataset had such poor performance largely because 332 
the dataset, which was the intersection of cancer drug and cell line perturbation experiments 333 
contained in both LINCS and GDSC, was extremely small, while Sagittarius was able to simulate 334 
datapoints that were not present in the measured dataset. Sagittarius most markedly improved 335 
drug response prediction for the NSCLC cell line A549, which is the second most frequently 336 
measured LINCS cell line, and for the drugs Bosutinib, Selumetinib, Vismodegib, and Olaparib, 337 
which are among the most frequently measured drugs in the LINCS dataset (Supplementary Fig. 338 
5). This shows that Sagittarius can take advantage of the many perturbation experiments to 339 
inform better predictions for each drug and cell line, even when applied to unmeasured or 340 
sparsely measured combinations. 341 
 342 
We then repeated the experiment using drug sensitivity labels from CTRP. The model trained 343 
with Sagittarius’s data had an average Spearman correlation of 0.52 per cell line, a 13.0% 344 
improvement over model trained only with the available experimentally measured data (Fig. 5c). 345 
The data from Sagittarius again had the largest benefit for the NSCLC cell line A549, as well as 346 
the prostate cancer cell line PC3, and for the drugs Neratinib and GSK-461364, which again are 347 
frequently measured in the LINCS dataset, although it struggled with the HER2-positive breast 348 
cancer cell line SKBR3, which is less frequently measured (Supplementary Fig. 6). For both GDSC 349 
and CTRP, Sagittarius was able to learn relationships between dose response curves for different 350 
drug and cell line perturbations to predict other experiments’ treatment sensitivities, confirming 351 
its ability to accurately predict drug response for new cancer drugs and cell lines. 352 
 353 
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Improved cancer-essential gene prediction using drug-induced expression 354 

In addition to drug response analysis, we also considered whether Sagittarius could predict 355 
cancer gene essentiality using drug-induced expression from the LINCS dataset. We used the 356 
Cancer Dependency Map (DepMap) dataset as labels for gene essentiality, independently 357 
considering both the DEMETER version,36 which uses short hairpin RNAs (shRNAs) to identify 358 
the genes most crucial for cell viability and proliferation, and the CERES version,35 which uses 359 
CRISPR-Cas9 essentiality screens to estimate gene dependency. We created a restricted dataset 360 
containing each cancer cell line and gene pair in the DepMap dataset for which the cell line was 361 
also present in the LINCS dataset. Then, for each cell essentiality entry in the restricted dataset, 362 
we found a candidate LINCS drug whose target matched the knocked-out gene in the cell 363 
essentiality pair, hypothesizing that the drug’s inhibitory effect on a cell line is related to the cell 364 
line’s dependency on the target gene.56 Using data from Sagittarius, we assigned each cell line 365 
and gene pair in our restricted dataset to an inferred treatment vector for the cell line and 366 
candidate drug. We trained a neural network regression model on this dataset to predict 367 
DepMap’s cell essentiality score for the drug’s target gene. We evaluated the benefit of 368 
Sagittarius’s simulated data by comparing this model to a neural network regression model 369 
trained on experimentally measured LINCS data for DepMap pairs where a candidate drug 370 
existed for the given cell line and gene.  371 
 372 
The model trained using Sagittarius’s simulated data obtained a 0.789 average Spearman 373 
correlation between the predicted and DEMETER gene essentiality scores for each cell line, 374 
relative to 0.278 for the model trained only on experimentally available data (Fig. 5d). The 375 
Sagittarius-backed model also had an average cell line Spearman correlation of 0.816 for the 376 
CERES dataset, relative to 0.261 model trained directly on the measured LINCS data (Fig. 5e). 377 
The Sagittarius data particularly improved both DEMETER and CERES predictions for well-378 
measured LINCS cell lines, such as the THP1 leukemia cell line and YAPC pancreatic cell lines 379 
(Supplementary Fig. 7), confirming Sagittarius’s ability to simulate drug response data that can 380 
identify the therapeutic potential of both a compound and a drug target gene for diverse cancer 381 
types. We attribute the strong performance across many different cancer types and drugs to the 382 
shared reference space, where dose- and treatment-time response can be compared across cancer 383 
cell lines and compounds. We therefore believe that Sagittarius’s transcriptomic profile 384 
simulation can bring benefit to future studies towards understanding the molecular basis and 385 
mechanisms of cancer drug response. 386 

Simulating mutation profiles for early-stage cancer patients 387 

Having extrapolated transcriptomic time series in one- and two-continuous dimensions, we then 388 
sought to apply Sagittarius to cancer survival time data, this time aiming to simulate somatic 389 
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mutation profiles, rather than gene expression profiles, for cancer patients. It remains very 390 
challenging to measure genomic profiles from patients with nascent tumors, as they are rarely 391 
diagnosed at this stage, and yet these initial mutations can be the most informative as to the 392 
cancer’s mechanisms and potential early-intervention therapies before other passenger mutations 393 
accumulate.57 Nevertheless, measuring genomic data at scale, and particularly data from biopsied 394 
tumor tissue, remains a significant challenge for nascent cancers.  395 
 396 
We propose a novel problem formulation where we model a cancer type as a sequence of patients, 397 
ordered by their survival time. In particular, we are interested in extrapolation to later time points 398 
in the sequence, indicating longer patient survival times, because these represent the mutation 399 
profiles of nascent tumors that are often very difficult to measure experimentally because they 400 
have not yet been diagnosed (Fig. 6a).58 We used The Cancer Genome Atlas (TCGA) dataset37 of 401 
gene mutation profiles for cancer patients from 24 cancer types. Although this formulation can 402 
help us extrapolate, it uses one time series for the entire cancer type. Therefore, it does not 403 
represent the heterogeneity within a cancer type.59,60 This problem is more severe when some 404 
patients in the sequence have censored survival times, resulting in a time point label in the 405 
sequence that is potentially very different from the patient’s actual survival time. To mitigate this 406 
issue, we propose a method to remove a patient from the cancer type sequence if their mutation 407 
profile is very different from other patients with a similar survival time. In particular, we trained 408 
a neural network to predict a patient’s survival time given their initial mutation profile, and 409 
define similarity by the gradient of the network’s loss. We then considered the trained model loss 410 
per patient and retained only the censored patients with an individual loss comparable to the 411 
most challenging observed patients in that cancer type (see Methods).61,62 For the sarcoma (SARC) 412 
cancer type, this led to the inclusion of 31 patients with a censored death event, expanding the 413 
SARC time series to 115 patients (Fig. 6b). After this filtering step, we considered all remaining 414 
censored patients’ final follow-up time to be the same as their death event time. Therefore, the 415 
remaining patients in each cancer type sequence are more similar, and represent the majority 416 
component of the cohort. We then divided the time series for a single cancer type based on patient 417 
survival into a train and test split (Fig. 6a and Methods), and evaluated the average mutation 418 
area under the receiver operating characteristic (AUROC) for the test patients. 419 
 420 
We focused on the SARC and thyroid carcinoma (THCA) cancer types as case studies, restricting 421 
the number of mutated genes we evaluated on to those most variable over time in more than one 422 
cancer type (see Methods). In the THCA case study, Sagittarius had an average test set AUROC 423 
of 0.72, a 49.0% improvement over a mean model trained solely on the observed THCA data (Fig. 424 
6c). In the SARC case study, Sagittarius had an average test set AUROC of 0.73, which was an 425 
11% improvement over a mean model trained solely on the observed SARC data (Fig. 6d). 426 
 427 
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For the model trained with k=57 SARC training patients, Sagittarius particularly improved the 428 
mutation AUROC for a test patient with an overall survival time of 76 months (Fig. 6e). Of the 429 
evaluated genes, the patient’s clinical mutation profile is positive for a mutation in LRP1B, which 430 
previous work has suggested leads to improved patient outcomes with immune checkpoint 431 
inhibitors (ICIs) in sarcoma.63 The mean method predicts the most likely mutations for a patient 432 
with a 76-month survival time as TP53, TTN, MUC16, DNAH5, and OBSCN, reflecting the most 433 
common mutations for the SARC patients with more severe disease progression and shorter 434 
survival times, and assigns 0 probability to the LRP1B mutation. Sagittarius, on the other hand, 435 
leverages cancer survival information from other cancer types as well as patterns within the 436 
SARC training data to predict TP53, TTN, RYR2, LRP1B, and ADGRV1 as the most likely 437 
mutations. ADGRV1 has been found to be mutated in approximately 45% of skin cutaneous 438 
melanomas.64 Furthermore, the correct inclusion of LRP1B in this list of likely-mutated genes 439 
indicates that Sagittarius may have learned that patients with an LRP1B mutation are associated 440 
with good ICI response for multiple cancer types,63 and can translate that knowledge to the SARC 441 
patient. 442 

Tumorigenesis in the Hedgehog signaling pathway by simulating early-stage sarcoma 443 
mutation profiles 444 

Having confirmed our ability to simulate mutation profiles for sarcoma patients with longer 445 
survival times, we retrained Sagittarius on our entire filtered dataset and then simulated gene 446 
mutation profiles for 27 early-stage sarcoma patients (Supplementary Fig. 10). On average, 447 
Sagittarius predicted that the most-likely mutations were in DNAH17, PREX1, EGFLAM, 448 
FAM47B, DSEL, ARID2, TRPM1, NLGN1, PTCH1, and MYCBP2. 449 
 450 
We found that many of these genes are related to the Hedgehog (HH) signaling pathway and 451 
improper activation of the GLI oncogene (Fig. 6f), which some previous studies have connected 452 
to improved survival outcomes in sarcoma patients.65,66 PTCH1, which has also been connected to 453 
plexiform fibromyxoma,67 basal cell carcinoma,68 and medulloblastoma,69 is a tumor suppressor 454 
gene in the HH pathway, and loss-of-function mutations in PTCH1 can lead to aberrant activation 455 
of the HH pathway and consequent tumorigenesis.69 Furthermore, studies have found that the 456 
MYC oncogene directly regulates GLI1 expression in Burkitt lymphoma cell lines,70 while the 457 
MYCBP2 gene promotes MYC degradation,71 and lymphoblastic leukemia patients have been 458 
found to have both high c-MYC expression and low MYCBP2 expression.72 Similarly, the ARID2 459 
gene directly interacts with GLI173 as a cord subunit of the SWI/SNF chromatin remodeling 460 
complex.73,74 In addition, the PREX1 gene is a member of the PI3K-Akt signaling pathway, which 461 
has been associated with GLI code regulation75 and cross-talk with the HH pathway in 462 
melanoma.68,76 The DNAH17 gene encodes a protein that makes up a subunit of the primary 463 
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cilium’s basic structure;77 in turn, the primary cilia are both positive and negative effectors of the 464 
HH signaling pathway.77,78 In addition to these molecular connections to the GLI oncogene, we 465 
found that the EGFLAM gene has been shown to induce activation of the PI3K-Akt signaling 466 
pathway79 containing PREX1. Previous studies have also found that NLGN1 was significantly 467 
enriched with the HH pathway in a study of colorectal carcinoma.80 468 
 469 
We were therefore able to identify multiple connections to the HH signaling pathway in 470 
Sagittarius’s simulated early-stage sarcoma mutation profiles, and we connected the most likely 471 
predicted mutations with recent work in sarcoma studies. Sagittarius’s reasonable simulated 472 
profiles indicate that the mutational patterns from other TCGA cancer types with more early-473 
stage measurements in the shared reference space, combined with the sarcoma-specific patterns 474 
learned by the model’s nonlinear mapping from the latent space, point to the HH signaling 475 
pathway and particularly the hyperactivation of the GLI oncogene as potentially significant 476 
sources of tumorigenesis in sarcomas. 477 
 478 

Discussion 479 

Sagittarius enables simulation of extrapolated gene expression profiles from sparse, 480 
heterogeneous experimental datasets without requiring aligned time points or batch correction 481 
between different experimental conditions. By augmenting the measured data with our 482 
simulated data, we are able to trace shared lineages between organs in a germ layer in mouse 483 
development. We can also suggest new therapeutic compounds to treat cancer cell lines by 484 
comparing simulated drug-induced expression profiles from diverse experiments, which are not 485 
limited to sharing a cell line or therapeutic compound with a known successful therapy. Finally, 486 
we can simulate early-stage cancer patients’ mutation profiles to identify potential tumorigenesis 487 
drivers in sarcoma. 488 
 489 
Although Sagittarius can extrapolate to new time points, the model still struggles when the 490 
developmental time point of interest is outside of the range of any seen developmental stages 491 
measured in the training data. We identify this limitation in the Evo-devo dataset extrapolation 492 
task, for instance, where the model performs worst on human extrapolation compared to all other 493 
species because the time points to simulate come from aging and senescent organs, while the 494 
latest measured developmental time points correspond to earlier development.12 Future work 495 
could combine Sagittarius with time series forecasting work to improve extrapolation beyond the 496 
measured developmental age range. Similarly, Sagittarius is unable to extrapolate at precise time 497 
points. The shared reference space, while enabling transfer between heterogeneous time series 498 
without requiring alignment, warps the queried and measured time points to align with 499 
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biological age. This enables an understanding of the relative trajectory over time, but does not 500 
correspond to exact time points outside of the training set. More aggressive regularization and 501 
optimization techniques enforcing the absolute difference in measured age as well as biological 502 
age could improve this. Furthermore, Sagittarius models a single time series per experimental 503 
condition in the reference space, potentially obscuring some heterogeneity within the condition 504 
itself, as we note with our cancer type time series formulation. In future work, we could introduce 505 
a hierarchical time series component to Sagittarius, explicitly modeling the heterogeneity in a 506 
single measured condition. 507 
 508 
Sagittarius is inspired by decades of work in modeling cell dynamics, including the recent works 509 
PRESCIENT81 and pseudodynamics.82 The key difference between Sagittarius and these works is 510 
that their diffusion processes specifically model cell-level lineage tracing and do not extend to 511 
genomic profile simulation. Sagittarius, on the other hand, learns a shared trajectory in the 512 
common reference space and explicitly simulates expression or mutation profiles to augment 513 
measured datasets and improve downstream analyses. 514 

Figure legend 515 

Fig. 1 Sagittarius model overview. a, Sagittarius is useful in settings with many diverse time series 516 
measurements, such as developmental gene expression data across species and organs, many 517 
combinations of which are unmeasured. The measurements in each time series are also sparse 518 
and unaligned. b, For each time series, Sagittarius computes a conditional high-frequency 519 
embedding of the measured time points and a conditional embedding of the gene expression 520 
measurements at each time point based on the species and organ. It then uses a continuous, multi-521 
head attention transformer to map the embedded time points and expression vectors to the 522 
reference space. c, The continuous transformer takes each pair of species- and organ-conditioned 523 
time and expression embeddings and learns a mapping to the regular reference space, translating 524 
from measured age to a shared biological age. d, Users can request simulated expression vectors 525 
from Sagittarius, such as the expression profile of a human 2-year-old heart that has not been 526 
measured in the original dataset (a). Sagittarius maps the request from the regular reference space 527 
back to the data space to simulate the unmeasured profile. 528 
 529 
Fig. 2 Gene expression simulation for extrapolated time points in later-stage development. a-f, 530 
Bar plots comparing the performance of Sagittarius and existing approaches when extrapolating 531 
to the four latest time points in the Evo-devo dataset. Test sequences are subdivided by species 532 
(a-c) and by organ (d-f). For Pearson correlation, comparing genes (a,d) or comparing time points 533 
(b,e), higher correlations indicate better performance; for RMSE (c,f), lower error indicates better 534 
performance. The * indicates that Sagittarius outperforms the next-best-performing model in the 535 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2022. ; https://doi.org/10.1101/2022.12.24.521845doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.24.521845
http://creativecommons.org/licenses/by-nc-nd/4.0/


metric, with significance levels of t-test p-value < 5e-2 for *, t-test p-value < 5e-3 for **, and t-test 536 
p-value < 5e-4 for ***. All t-tests are one-sided, and we use the Fisher transform for the correlation 537 
metrics to transform the values to a normal distribution. 538 
 539 
Fig. 3 Mouse transcriptomic velocity across organs. a,b, UMAP plots showing simulated mouse 540 
gene expression from E5.5 to P63 for 7 organs, colored by organ (a) and time (b). The arrows in 541 
(a) indicate the transcriptomic velocity of each organ. c, Bar plot comparing the simulated 542 
expression of Xrn2 at early development (E5.5-E8) to young mouse (P8-P63) across five organs. 543 
Xrn2 expression is not statistically different between the brain, kidney, liver, ovary, and testis 544 
organs at the early development (ANOVA p-value > 0.05), but differs between organs at the 545 
young mouse time range, particularly with lower expression levels in the liver relative to other 546 
organs (ANOVA p-value < 1e-98). d, Bar plot examining the consistency of gene expression 547 
temporal patterns between simulated data and scRNA-seq data for Egflam, Smoc1, Slc6a2, and 548 
Rpl38 in different tissues over time. Better predictions are closer to the Tabula Muris Senis dataset 549 
correlations for cell types within each tissue that are summarized by the boxes, while the star 550 
shows the Pearson correlation from Sagittarius’s simulated correlation for aging mouse tissues 551 
(140 time points beginning at P14), and the diamond shows the correlation from mouse organs 552 
measurements in the Evo-devo dataset. 553 
 554 
Fig. 4 Drug-induced gene expression simulation at unmeasured experimental combinations, 555 
doses, and times. a, The LINCS pharmacogenomic dataset contains gene expression 556 
measurements from a set of experiments where a cancer cell line is treated with a therapeutic 557 
compound. The set of measured cell lines and compounds is sparse, with less than 1.77% of 558 
possible experiments measured. The measured experiments are also only measured at select dose 559 
and treatment times, and the entire dataset includes a limited number of dose and treatment 560 
times. b, Illustration of the three extrapolation tasks we evaluate for the LINCS dataset: complete 561 
generation, where we simulate an unmeasured cell line and compound experiment at both a dose 562 
and time that are unmeasured by any experiment in the dataset; combination & dose, where we 563 
simulate an unmeasured cell line and compound experiment at a time that has been measured in 564 
the dataset but a dose that is unmeasured by all experiments; and combination & time, where we 565 
simulate an unmeasured cell line and compound experiment at a dose that has been measured in 566 
the dataset but a time that is unmeasured by all experiments. c-e, Scatter plots comparing the 567 
average Spearman correlation of simulated test combinations from Sagittarius and the existing 568 
cVAE model for each test drug on the complete generation (c), combination & dosage (d), and 569 
combination & time (e) extrapolation tasks. 570 
 571 
Fig. 5 Drug and cell line treatment efficacy simulation analysis. a, kNN network where each node 572 
represents a drug and cell line combination, with edges between the most similar drug-induced 573 
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expression effect. The four communities in the graph are shown in different colors and labeled 574 
according to the average GDSC-measured IC50 dose of that community, measured in uM. The 575 
inset shows a connected 8-node subgraph from the sensitive community, made up of the NSCLC 576 
cell line A549 treated with Selumetinib, Gefitinib, and Vorniostat; the breast cancer cell line MCF7 577 
treated with Gefitinib, MK-2206, and Palbociclib; the prostate carcinoma cell line PC3 treated with 578 
Pictilisib; and the colorectal adenocarcinoma cell line HT29, treated with Ninetedanib. b,c, Bar 579 
plot (b) and scatter plot (c) of Spearman correlation between predicted and GDSC-measured (b) 580 
or CTRP-measured (c) IC50 doses per cell line, comparing a neural network trained with imputed 581 
data from Sagittarius and a neural network trained without any imputed data. Points above the 582 
𝑦 = 𝑥 line are cell lines where Sagittarius’s imputed dataset improved the downstream prediction 583 
accuracy. d,e, Scatter plot of Spearman correlation between predicted and DepMap-measured 584 
cancer gene essentiality scores for each cancer line, with the DEMETER (d) and CERES (e) 585 
DepMap versions. All points are above the 𝑦 = 𝑥 line, meaning Sagittarius improved downstream 586 
gene essentiality prediction performance for all cell lines on both DepMap versions. 587 
 588 
Fig. 6 Early cancer patient mutation profile simulation. a, Illustration of the training and testing 589 
splits for a given cancer type in the TCGA extrapolation task, where training patients have the 590 
shortest survival times and test patients have longer survival times for that cancer type . b, Violin 591 
plot of the survival time regression model’s absolute error per patient for the SARC cancer type, 592 
divided according to the patient’s censoring label. We remove all patients with a loss above the 593 
dashed line from the dataset, and train Sagittarius only on the patients below the dashed line. c,d, 594 
Plot of the average simulated mutation profile AUROC for each of the THCA (c) and SARC (d) 595 
cancer type test splits, ordered according to the shortest survival time in that test split. e, Scatter 596 
plot comparing the per-patient simulated mutation profile AUROC from Sagittarius and the 597 
mean comparison approach for the SARC test split including patients with an observed death 598 
event more than 37 months after diagnosis. Points above the 𝑦 = 𝑥 line indicate that Sagittarius 599 
had a better simulated mutation profile than the comparison approach. f, Illustration of the ties 600 
between the GLI oncogene in the Hedgehog (HH) signaling pathway and the PTCH1, PREX1, 601 
MYCBP2, ARID2, and DNAH17 genes that Sagittarius predicted as among the most likely 602 
mutations in early-stage sarcoma patients. 603 
 604 
Supplementary Fig. 1 Gene expression simulation performance summary statistics for Evo-devo 605 
extrapolation task. a-c, Bar plot of Pearson correlation comparing genes (a), Pearson correlation 606 
comparing time points (b), and RMSE (c) of the simulated expression profile and measured 607 
expression profile when extrapolating to the last four measured timepoints from each species and 608 
organ combination in the Evo-devo dataset for Sagittarius and the comparison approaches. For 609 
Pearson correlation, comparing genes or comparing time points (a,b), higher values indicate 610 
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better performance; for RMSE (c), lower values indicate better performance. Error bars indicate 611 
standard error. 612 
 613 
Supplementary Fig. 2 Mouse transcriptomic velocity across organs. a,b, PCA plot  showing 614 
simulated mouse gene expression from E5.5 to P63 for 7 organs, colored by organ (a) and time 615 
(b). The arrows in (a) indicate the transcriptomic velocity of each organ. The first PC shows most 616 
variation with respect to time, while the second shows most variation with respect to organ. 617 
Organ annotations in (a) are added to help differentiate between organs, especially in the case of 618 
overplotting. 619 
 620 
Supplementary Fig. 3 Mouse gene expression simulation performance for Evo-devo 621 
extrapolation task. a-c, Bar plot comparing Sagittarius and existing approaches in terms of 622 
Pearson correlation comparing genes (a), Pearson correlation comparing time points (b), and 623 
RMSE (c) of the simulated mouse expression profile and measured mouse expression profile of 624 
each organ when extrapolating to the final four measured sequence time points in the Evo-devo 625 
dataset. For Pearson correlation, comparing genes or comparing time points (a,b), higher values 626 
indicate better performance; for RMSE (c), lower values indicate better performance. 627 
 628 
Supplementary Fig. 4 Time series measured in the restricted LINCS dataset. a, Heatmap 629 
indicating the drug and cell line combinations that have time series measurements included in 630 
the LINCS dataset we use after initial processing. Cell lines tend to be either relatively well-631 
measured or very sparsely measured. b, Histogram of the sequence lengths for all measured drug 632 
and cell line combinations. The length of the sequence is the number of unique dose and treatment 633 
time combinations that the therapeutic combination is measured at. 634 
 635 
Supplementary Fig. 5 LINCS measurements with the best-performing cell line and drugs for the 636 
IC50 prediction task with the GDSC dataset. a,b, Bar plot of the number of measured drug 637 
treatments per cell line (a) and cell lines treated per drug (b) in the LINCS dataset. The A549 cell 638 
line is highlighted as the cell line with the most-improved predictions from Sagittarius’s imputed 639 
dataset (a). The drugs with the most-improved predictions, Selumetinib, Bosutinib, Olaparib, and 640 
Vismodegib, are also highlighted (b). 641 
 642 
Supplementary Fig. 6 LINCS measurements with the best-performing cell line and drugs for the 643 
IC50 prediction task with the CTRP dataset. a,b, Bar plot of the number of measured drug 644 
treatments per cell line (a) and cell lines treated per drug (b) in the LINCS dataset. A549 and PC3, 645 
the cell lines for which Sagittarius’s simulated data most improves the predictions, are 646 
highlighted. SKBR3, which Sagittarius struggles on, is also highlighted (a). GSK-461364 and 647 
Neratinib are highlighted as the most-improved drugs with Sagittarius’s imputed dataset (b). 648 
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 649 
Supplementary Fig. 7 LINCS measurements with the best-performing cell lines for the gene 650 
essentiality prediction task with the DEMETER and CERES DepMap datasets. Bar plot of the 651 
number of drug treatment experiments measured in the LINCS dataset per cell line. Sagittarius’s 652 
imputed dataset provided the most benefit are A549, MDAMB231, THP1, HS578T, SKBR3, YAPC,  653 
VCAP, OCILY19, and U2OS, which are highlighted. 654 
 655 
Supplementary Fig. 8 Distribution of TCGA patients per cancer type. Comparison of patient 656 
counts if all patients are used in the analysis, patient counts if only retained patients (including 657 
all observed patients and some censored patients) are used in the analysis, and patient counts if 658 
only observed patients are used in the analysis. By construction, the number of total patients is 659 
larger than the number of retained patients, which is in turn at least as large as the number of 660 
observed patients. Retaining some censored patients according to the individual survival 661 
prediction loss could improve model power without corrupting the time series formulation. 662 
 663 
Supplementary Fig. 9 THCA censored patient analysis. Violin plot of the survival regressor’s 664 
absolute error for each THCA patient, subdivided into an observed group and a censored group. 665 
 666 
Supplementary Fig. 10 SARC training and extrapolation time point distribution. Histogram 667 
showing the measured survival time of patients in the SARC time series as the available sarcoma 668 
training data and the extrapolation time points used to simulate the expression profile of an early-669 
stage sarcoma patient. 670 
 671 
Supplementary Fig. 11 Normalized mutation rate and survival time for Sagittarius’s predicted 672 
early-stage sarcoma mutations. a-j, Bar plot of the Spearman correlation of survival time and a 673 
patient’s mutation normalized by their total mutation load for the top-10 predicted mutations in 674 
simulated early-stage sarcoma patients, DNAH17 (a), PREX1 (b), EGFLAM (c), FAM47B (d), DSEL 675 
(e), ARID2 (f), TRPM1 (g), NLGN1 (h), PTCH1 (i), and MYCBP2 (j). We show the Spearman 676 
correlation for each cancer type where at least two patients in the time series have a mutation in 677 
the gene. 678 
 679 
Supplementary Fig. 12 Normalized mutation rate and survival time for GLI mutations. a,b, Bar 680 
plot of the Spearman correlation of survival time and a patient’s mutation normalized by their 681 
total mutation load for the GLI2 (a) and GLI3 (b) genes, which are transcription factors in the 682 
Hedgehog signaling pathway. We show the Spearman correlation for each cancer type where at 683 
least two patients in the time series have a mutation in the gene. 684 
 685 
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Supplementary Fig. 13 Mutation frequency across cancer types for Sagittarius’s predicted early-686 
stage sarcoma mutations. a-j, Bar plot of the percentage of patients in each cancer type with a 687 
mutation in the DNAH17 (a), PREX1 (b), EGFLAM (c), FAM47B (d), DSEL (e), ARID2 (f), TRPM1 688 
(g), NLGN1 (h), PTCH1 (i), and MYCBP2 (j) genes. We show a percentage for each cancer type 689 
where at least one patient in the time series has a mutation in the gene. 690 
 691 
Supplementary Fig. 14 Mutation frequency across cancer types for GLI mutations. a,b, Bar plot 692 
of the percentage of patients in each cancer type with a mutation in the GLI2 (a) and GLI3 (b) 693 
genes, which are transcription factors in the Hedgehog signaling pathway. We show a percentage 694 
for each cancer type where at least one patient in the time series has a mutation in the gene. 695 
 696 

Methods 697 

We define the input heterogeneous time-series dataset as Ɗ = {(𝑥# , 𝑦# , 𝑡#)}#$1" . The 𝑥# ∈ ℝ%×' are 698 
the measured time series input for sequence 𝑖, where each measurement is 𝑀-dimensional and 699 

the time series is measured at 𝑇 timepoints; 𝑦# 	 ∈ 41, . . . , 𝐶(6
)  are the 𝐶 experimental variables for 700 

time series 𝑖, with 𝑦#,( 	 ∈ 41, . . . , 𝐶(6 for 𝐶( possible values for the 𝑗th experimental variable; 𝑡# 	 ∈701 
ℝ+	×% are the 𝐵 continuous variables for time series 𝑖, with 𝑡#,([𝑟] denoting the value of the 𝑗th 702 
continuous variable associated with the 𝑟the measurement of time series 𝑖, 𝑥#[𝑟]. In particular, 703 
𝐵 = 1 in the Evo-Devo12 and TCGA37 studies, while 𝐵 = 2 in the LINCS15 study, where we model 704 
both dose and time. We further assume that (𝑥# , 𝑦# , 𝑡#)	~	𝓧, where 𝓧 is the space of all possible 705 
measurements. Sagittarius simulates a sample (𝑥>|𝑦, 𝑡)~𝓧	for a user-specified combination of 706 
experimental and continuous variables that may not be measured in dataset Ɗ. 707 
 708 
As a first step, Sagittarius embeds the individual measured datapoints 𝑥#[𝑟] into a low-709 
dimensional generative space, conditioned on the associated experimental variables. Formally, 710 
we sample from the learned Gaussian space according to 711 

𝜇#[𝑟], 𝜎#[𝑟] = 𝑞-(𝑥#[𝑟], 𝑦#)   𝑧#[𝑟]~Ɲ(𝜇#[𝑟], 𝜎#[𝑟]), 712 
where 𝑧#[𝑟] ∈ ℝ. with 𝑑 ≪ 𝑀. For brevity, we often write these two steps jointly as 𝑧(	𝑥# 	, 𝑦#)[𝑟]. 713 
We regularize this learned Gaussian space by imposing the standard-normal prior, 𝑝(𝑧) = Ɲ(0, 𝐼). 714 
 715 
The second component of the model is a continuous transformer. In order to map time series to 716 

the shared reference space, the user defines both a temporal basis range G𝜃(
(0), 𝜃(

(1)I for each of the 717 

𝑗 = {1, . . . , 𝐵} continuous variables, as well as 𝑆 + 1, which defines the number of time points in 718 
the reference space. To learn robust and compact representations from the input time series, we 719 
choose 𝑆 such that 𝑆 + 1	 < 	𝑇. Given these parameters, Sagittarius defines the fixed temporal grid 720 
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𝑡123,( ∈ ℝ451:	𝑡123,([𝜏] 	= 	𝜃((0) + 𝜏
𝜃(
(1) − 𝜃(

(0)

𝑆
 721 

for the 𝜏th reference point 𝜏 ∈ {0, ⋯ , 𝑆}. We further define the continuous attention embedding 722 
function 723 

𝜓6,7289(𝑡#,7[𝑟])[𝑣] 	=	𝑠𝑖𝑛 T𝜔6,7,:289 𝑡#,7[𝑟] + 𝛼6,7,:289 W 724 
for the 𝑏th continuous variable at dimension 𝑣 of the continuous time embedding for each 725 
attention head ℎ, where the continuous embedding dimension 𝑉 and number of attention heads 726 
𝐻 are model hyperparameters, and 𝜔 and 𝛼 are fixed scaling and shifting terms. We further 727 
combine the embeddings for each of the continuous variables to the complete continuous 728 
embeddings 729 

𝜓6289(𝑡#[𝑟]) = ⨁7$1
+ 𝜓6,7289T𝑡#,7[𝑟]W   𝜓6289T𝑡123[𝜏]W = ⨁7$1

+ 𝜓6,7289T𝑡123,7[𝜏]W, 730 
where ⨁ indicates vector concatenation. 731 
 732 
In the transformer model framework, we define the ℎth attention head’s key for time series 𝑖 and 733 
the regular space’s query as 734 

𝑘6,#289[𝑟] 	= 	𝑓6,;289T𝑦# 	, 𝜓6289(𝑡#[𝑟])W   𝑞6289[𝜏] 	= 	𝑔6,<289 G𝜓6289T𝑡123[𝜏]WI, 735 

where both 𝑘6,#289[𝑟] and 𝑞6289[𝜏] are 𝑑=-dimensional vectors. We project the embeddings of the 736 
measured time series embeddings 𝑧(𝑥# 	, 𝑦#) to Sagittarius’s regular reference space according to 737 

𝑧123(𝑥# 	, 𝑦# , 𝑡#)[𝜏] 	= 	∑>6$1 ∑%1$1 𝑧(	𝑥# 	, 𝑦#)[𝑟]	
2?@A〈=!,#

$%&[1],D!
$%&[E]〉	/	G.'H

∑()′*1 2?@A〈=!,#
$%&[1′],D!

$%&[E]〉	/	G.'H
, 738 

producing the embeddings 𝑧123(𝑥# , 𝑦# , 𝑡#) in the regular reference space for each of the 𝑆 + 1 values 739 
of 𝜏. 740 
 741 
The decoder layer of our continuous transformer follows a very similar framework, decoding 742 
from the regular reference space back to the time points of interest. Specifically, we let 743 

𝜓6,7.29(𝑡(,7[𝑟])[𝑣] 	=	𝑠𝑖𝑛 T𝜔6,7,:.29 𝑡(,7[𝑟] + 𝛼6,7,:.29 W 744 
and 745 

𝜓6.29T𝑡([𝑟]W = ⨁7$1
+ 𝜓6,7.29T𝑡(,7[𝑟]W   𝜓6.29T𝑡123[𝜏]W = ⨁7$1

+ 𝜓6,7.29T𝑡123,7[𝜏]W. 746 
We further define 747 

𝑘6.29[𝜏] 	= 	𝑓6,;′
.29 G𝜓6.29T𝑡123[𝜏]WI   𝑞6,(.29[𝑟] 	= 	𝑔6,<′

.29 G𝑦( 	, 𝜓6.29T𝑡([𝑟]WI 748 

to be the decoding layer’s key and query values, respectively. Finally, we convert from the regular 749 
time series in the reference space back to the irregular time series with 750 

𝑧̂(T𝑥# , 𝑦# 	, 𝑡# , 𝑦( 	, 𝑡(W[𝑟] 	= 	∑>6$1 ∑4E$0 𝑧123(𝑥# 	, 𝑦# 	, 𝑡#)[𝜏]
2?@J〈=!

+$&[E],D!,,
+$&[1]〉/G.'K

∑-.′*0 2?@J〈=!
+$&[E′],D!,,

+$&[1]〉/G.'K
. 751 

If we take 𝑗 = 𝑖, then this is equivalent to encoding to and from the same sequence; if we take 𝑗	 ≠752 
𝑖, then this encodes one sequence and decodes to another. 753 
 754 
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Finally, we convert our time series 𝑧̂(T𝑥# 	, 𝑦# 	, 𝑡# 	, 𝑦( 	, 𝑡(W back from the latent embedding space to 755 
the data space, with 756 

𝑥>(T𝑥# , 𝑦# , 𝑡# 	, 𝑦( 	, 𝑡(W = 𝑝LT𝑧̂(T𝑥# 	, 𝑦# 	, 𝑡# 	, 𝑦( 	, 𝑡(W, 𝑦(W. 757 
We train our model end-to-end with the loss function ℒ(𝜉, 𝜈, 𝜐, 𝜈′, 𝜐′, 𝜃), which we denoteℒ4MN(. ) 758 
for brevity, as 759 

ℒ4MN(. ) = 𝔼AO,	,P,H∈𝓧 h𝔼(?#	,O#	,P#)~Ɗ i𝔼D/(T#|?#	,O#)j𝑙𝑜𝑔 𝑝L 	T𝑥>(|𝑥# 	, 𝑦# 	, 𝑡# 	, 𝑦( 	, 𝑡(W − 𝛽𝐷!VT𝑞-(𝑧#|𝑥# 	, 𝑦#) 	 ∥760 

𝑝(𝑧)Wpq	r , 761 

where 𝐷!V denotes the Kullback-Leibler divergence and 𝛽 is a regularization weighting 762 
hyperparameter. 763 
 764 
During model training, we train on both the reconstruction setting (𝑗 = 𝑖) and a simulation setting 765 
(𝑗 ≠ 𝑖). The specifics for each experiment are described in their respective sections. After model 766 
training, we simulate new observations for unseen combinations of experimental variables and 767 
at unmeasured time points. All we require is that, for each experimental variable 𝑦7s	, 768 
∃(𝑥# 	, 𝑦# 	, 𝑡#) 	∈ Ɗ:	𝑦#,7 = 𝑦u7. We can then produce simulated data from a source time series 𝑖, which 769 
can either be randomly chosen from the available dataset or selected specifically for the 770 
generation task. 771 
 772 

Evo-devo dataset processing 773 

The Evo-devo dataset12 contains gene expression vectors for 7 species and 7 organs measured at 774 
multiple pre- and post-natal time points. We first mapped all species' genes to their human 775 
orthologs using their provided Ensembl gene IDs and the python pybiomart package;83 if no 776 
ortholog was found, we discarded that gene. We then took the intersection of all identified human 777 
orthologs for each species as our starting gene list. This identified 5,037 common orthologs across 778 
the 7 species. The observations for each species were given as strings, which were measured in 779 
different units according to the species. As a pre-processing step, we ordered the observed 780 
timepoint labels for each species and thereafter referred to that timepoint by its position in the 781 
corresponding species’s ordered list to produce a common vocabulary. Finally, for the organ and 782 
species combination 𝑦# = [𝑠𝑝𝑒𝑐𝑖𝑒𝑠# 	, 𝑜𝑟𝑔𝑎𝑛#] ∈ {1, . . . , 7}2, we took the indexed timepoint 783 
representations 𝑡# for each measured gene expression profile from that experimental correlation 784 
to construct the time series 𝑥#. We did this for each of the 48 species and organ combinations in 785 
the dataset to produce Ɗ2:WX.2:W = {(𝑥# 	, 𝑦# , 𝑡#)}#$148 . 786 

Existing models and Evo-devo training 787 
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For all models that required hyperparameter optimization, we randomly selected 20% of the 788 
measured data to use as a validation set. We did model hyperparameter selection on one model 789 
initialization that we then used for all later initializations; we used the validation set for training 790 
termination on all model initializations. For each model, we stopped training when the validation 791 
loss had not dropped for 250 epochs and saved the model parameters with lowest validation loss. 792 
 793 
Mean: The mean baseline model, which has no hyperparameters, simply simulates data as 794 

𝑥>#[𝑡] 	= 	
1
%
∑ 𝑥#[𝑟]%
1$1 ; that is, the predicted expression for each gene at any timepoint of interest 𝑡 795 

is the average of the gene expression across all measured timepoints. 796 
 797 
Linear: The linear baseline model, which has no hyperparameters, first defines a weight 798 

𝜆#,P = 	0 if 𝑡	 < 𝑚𝑖𝑛(𝑡#); 799 

𝜆#,P = 1 if 𝑡	 > 	𝑚𝑎𝑥(𝑡#); 800 

𝜆#,P = 𝑚𝑎𝑥
1∈P#:	1ZP

| 𝑚𝑖𝑛
[∈P#:	[\P

GPX1
[X1
I} otherwise. 801 

Then, the linear model simulates expression at time 𝑡 as 802 
𝑥>#[𝑡] 	= 	 𝑚𝑎𝑥1∈P#:	1ZP

T1− 𝜆#,PW𝑥#[𝑟] 	+	 𝑚𝑖𝑛[∈P#:	[\P
𝜆#,P𝑥#[𝑠]. 803 

Note that, in the extrapolation setting, the linear baseline therefore simulates a gene expression 804 
vector identical to the expression vector of the nearest temporal measurement. 805 
 806 
Neural ODE: We learn a set of single-sequence neural ODE models28 that take observations from 807 
a single (𝑥# 	, 𝑦# 	, 𝑡#) sequence. We train 48 such models, one for each species and organ 808 
combination. As the experimental conditions 𝑦# are constant within a single sequence, we reduce 809 
the task inputs to (𝑥	, 𝑡). We computed an ODE for both the forward and backward direction of 810 
the sequence as 811 

𝑥u→[𝑟] 	= 	 𝑚𝑎𝑥[∈P#∶	[Z1
𝑥[𝑠] + ~ 𝑓L(𝑥[𝑡])𝑑𝑡

1

P$[
 812 

𝑥u←[𝑟] 	= 	 𝑚𝑖𝑛
[∈P#∶	[\1

𝑥[𝑠] + ∫ 𝑔`(𝑥[𝑡])𝑑𝑡
1
P$[ . 813 

In the case where 𝑥→s  or 𝑥←s  requires extrapolation (i.e., there is no such 𝑠 to satisfy the constraint), 814 
we set 𝑥→s[𝑟] 	= 	 𝑥u←[𝑟]. In order to empirically compute the integrals we used a step size of 𝛥P =815 
0.1 and the python torchdiffeq package.28,30 We parameterized 𝑓L(. ) and 𝑔`(. ) using a mutli-816 
layer perceptron (MLP) with two hidden layers of the same size as the input. Finally, we combine 817 
the forward and backward results to produce the final estimate 818 

𝑥>[𝑟] 	= 	 1
2
(𝑥u→[𝑟] + 𝑥u←[𝑟]). 819 

We trained the model using the Adam optimizer84 and a learning rate of 1e-3. 820 
 821 
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RNN: We learn a set of single-sequence bidirectional gated recurrent unit (GRU)27 models to learn 822 
the dynamics for a single (𝑥# 	, 𝑦# 	, 𝑡#) sequence, again reducing the problem input to (𝑥, 𝑡). We 823 
defined a time step 𝛥P = 1 between observations of interest. At each time point, we computed 824 
𝑧1 =	𝑞`(𝑥[𝑟]) for an MLP 𝑞`(. ) as the embedding for each observation in the time series, and 825 
computed 826 
𝑧̂P→ = 𝑞`T𝑝L(ℎP→)W  ℎP51→ = 𝑔-

(N1a→)(𝑧P	, ℎP→) if 𝑡 ∈ 𝑡# ; ℎP51→ = 𝑔-
(N1a→)(𝑧̂P→, ℎP→) otherwise, 827 

where ℎ0→ = 0. Similarly, we define the backward GRU as 828 
𝑧̂P← = 𝑞`′T𝑝L′(ℎP←)W  ℎP51← = 𝑔-′

(N1a←)(𝑧P	, ℎP←) if 𝑡 ∈ 𝑡# ; ℎP51← = 𝑔-′
(N1a←)(𝑧̂P←, ℎP←) otherwise, 829 

with ℎ%← = 0. Finally, we combine the forward- and backward directions to produce the simulated 830 
gene expression profile 831 

𝑥>[𝑟] 	= 	𝑝L �
1
2
(ℎ1→ + ℎ1←)� 832 

for an MLP 𝑝L(. ). 833 
 834 
We used a embedding dimension of 𝑧1→, 𝑧1←, ℎP→, ℎP← ∈ ℝ32, and used two hidden layers, each with 835 
1024 hidden neurons, for 𝑞`(. ) and 𝑝L(. ). We trained the model end-to-end with the Adam 836 
optimizer84 and a learning rate of 1e-3. 837 
 838 
mTAN: We trained a discretized multi-time attention network (mTAN)29 using the Adam 839 
optimizer84  and a learning rate of 1e-3. As the mTAN module does not handle experimental 840 
variables, for each time series (𝑥# 	, 𝑦# 	, 𝑡#) the model received the reduced input (𝑥# 	, 𝑡#). We used 841 
a latent embedding dimension of 32, a default temporal embedding dimension of 16, 8 attention 842 
heads, and 4 temporal reference points. The model learned the temporal embedding in the 843 
transformer's encoder, and fixed the temporal embedding in the transformer's decoder. 844 
 845 
cVAE: We trained a conditional variational autoencoder (cVAE)25 to learn 𝑝(𝑥#[𝑟]	|	𝑦# 	, 𝑡#[𝑟]) for 846 
the Evo-devo dataset. We trained the model using the Adam optimizer84 and a learning rate of 847 
1e-3. We used a batch size of 128 gene expression profiles, since the model takes individual 848 
measurements as input rather than full time series. We used a model latent dimension of 32 with 849 
symmetric MLPs for the encoder and decoder. We tried both 2- and 3-hidden-layer networks, 850 
each hidden layer with 1024 hidden units. We also varied the 𝛽 weight for the KL-divergence loss 851 
term with 𝛽 ∈ {0.7, 1.0}.  After a hyperparameter search, we selected the 2-hidden-layer encoder 852 
and decoder networks and set 𝛽 = 1.0. 853 
 854 
CPA: We trained a compositional perturbation autoencoder (CPA)26 using an embedding 855 
dimension of 32 and batch size of 128. In the model, we considered the time to be independent of 856 
the organ label (the covariate) and dependent on the species label (the perturbation). We used a 857 
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patience of 5, autoencoder and temporal learning rate of 1e-3 and weight decay of 1e-7, and an 858 
adversary learning rate of 1e-5 and weight decay of 1e-10.  We used an autoencoder width of 1024 859 
units and tried an autoencoder depth of both 2- and 3 hidden layers. We used an adversary width 860 
of 16 and depth of 2, with 16 adversary steps.  We also tried using both an MLP and a logarithmic 861 
sigmoid to represent the temporal curve. After hyperparameter search, we chose the 2-hidden-862 
layer autoencoder and logarithmic sigmoid temporal curve. 863 
 864 
Sagittarius: We used a latent space of dimension 𝑑 = 32, a temporal range of interest T𝜃(0), 𝜃(1)W =865 
(0, 25), and a reference time series length 𝑆 + 1 = 4. We chose 𝐻 = 8 attention heads for our 866 
transformer layers, where the temporal embedding is 8-dimensional in both the encoder and 867 
decoder. We set the key- and query dimension 𝑑= = 32 for the transformer. We used a batch size 868 
of 8 time series, and the Adam optimizer84 with a learning rate of 1e-3. Finally, we used our batch 869 
size to set 𝛽 = 0.1667 for our empirical loss ℒ4MN(. ). 870 
 871 

We used symmetric MLPs to learn 𝑞-(𝑥# 	, 𝑦#) and 𝑝L G𝑧̂(T𝑥# 	, 𝑦# 	, 𝑡# 	, 𝑦( 	, 𝑡(WI in Sagittarius’s encoder 872 

and decoder respectively. We considered both 2- and 3-hidden-layer MLP architectures, with 873 
1024 hidden units in each layer. We embedded the species and organ values for each time series 874 
into compact representations as an initial step in both the 𝑞-(. ) and 𝑝L(. ) networks; we considered 875 
either 2- or 8-dimensional embeddings for each of the species and organ labels. We also 876 
embedded the species and organ labels in the transformer encoder's key and decoder's query 877 
representations, and tried both 4- and 8-dimensional embeddings for each of the species and 878 
organ labels in the transformer. Using the validation set, we selected a 3-layer MLP for both 𝑞-(. ) 879 
and 𝑝L(. ), a 2-dimensional embedding for both the species and the organ labels in 𝑞-(. ) and 𝑝L(. ), 880 
and a 4-dimensional embedding for both the species and organ labels in the transformer modules. 881 
 882 
During training, we used the reconstruction objective for each available time series, setting 𝑗 = 𝑖 883 
for 𝑖 = 1, . . . , 48 in ℒ4MN(. ). We also included the following 4 simulation objectives during training. 884 

1. Temporal generation: we randomly selected 12 time series from our training dataset. For 885 
each of these time series, we constructed a new training input 𝑥b′̄  where we masked out 886 
an additional three time points from the sequence. The masked time points were added 887 
as a partner training sequence 𝑥c′s. 888 

2. Same-species generation: we randomly selected 12 time series from our training dataset. 889 
For each of these, we appended them as new training points 𝑥b′̄  and randomly selected 890 
another training sequence that had the same species label but different organ label, which 891 
we added to our training data as the partner sequence 𝑥c′s. 892 
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3. Same-organ generation: equivalent to the second, we randomly selected 12 time series 𝑥b′̄  893 
from the training data and paired them each with a time series 𝑥c′s that shares the organ 894 
label but has a different species label. 895 

4. Random generation: we randomly selected 12 time series 𝑥b′̄  and partner time series 𝑥u(′ 896 
from the dataset. 897 

Sagittarius was then also trained a generation objective, formulated according to the empirical 898 
version of the loss term ℒ4MN(. ), with  𝑖 = 𝑖′ and 𝑗 = 𝑗′. 899 
 900 

Evo-devo quantitative extrapolation experiment 901 

For the quantitative extrapolation experiments, we masked the latest four time points available 902 
for each time series in the Evo-devo dataset.12 We then trained all models on the unmasked 903 
portion of the dataset. This resulted in 471 measurements to use for training or validation and 192 904 
test measurements. At evaluation time, we used the models to predict the expression vectors on 905 
the masked time points and compared the simulated results from each model with the 906 
measurements in the dataset. 907 
 908 
As an initial pre-processing step, we restricted the gene expression vector of the 5,037 orthologous 909 
genes in the dataset using the Augmented Dickey-Fuller (ADF) test, which tests for stationarity. 910 
We randomly selected one species and organ time series, which was the rabbit heart time series. 911 
Based on that combination, we retained the genes for which the ADF test failed to reject the null 912 
hypothesis that the gene was non-stationary over time and discarded all of the others, using a 913 
significance threshold of p < 0.05. This resulted in 4,533 retained genes. 914 
 915 

Evo-devo dataset evaluation 916 

To evaluate the simulated gene expression vectors, we considered three metrics: root mean 917 
squared error (RMSE), average Pearson correlation comparing genes, and average Pearson 918 
correlation comparing time points. Using 𝑇# to denote the number of measurements for the 𝑖th 919 
time series, 𝑥#[𝑡] to denote the Evo-Devo dataset’s measurement for the 𝑖th time series at time 920 
point 𝑡, and 𝑥>#[𝑡] to denote the model’s simulated measurement for the 𝑖th time series at time 921 
point 𝑡, we defined the model’s test RMSE per sequence as 922 

𝑅𝑀𝑆𝐸# 	= 	�
1
4
∑ (𝑥b�[𝑡] 	−	𝑥#[𝑡])2
%#
P$%#X3

, 923 

with an overall model average test RMSE of 924 

𝑅𝑀𝑆𝐸	 = 	 1
48
∑ 𝑅𝑀𝑆𝐸#48
#$1 . 925 
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To determine whether Sagittarius was statistically better than the comparison approaches in 926 
terms of RMSE, we used the one-sided paired t-test between Sagittarius’s RMSE per sequence 927 
and the per-sequence RMSE of the comparison approach that performed best on average. 928 
 929 
For the Pearson correlation (comparing genes), and using 𝜌@2M1[W8 to denote the Pearson 930 
correlation computation, we defined the model’s test correlation (comparing genes) per 931 
sequence as 932 

𝜌#(N282[) 	= 	
d
e
∑ 𝜌@2M1[W8(𝑥b�[𝑡], 𝑥#[𝑡])
%#
P$%#X3 , 933 

with an overall model average test Pearson correlation (comparing genes) of 934 

𝜌(N282[) 	= 	 1
48
∑ 𝜌#(N282[)48
#$1 . 935 

To define the Pearson correlation (comparing time points), with 𝑥#[𝑡, 𝑔] and 𝑥b�[𝑡, 𝑔] used to 936 
denote expression of gene 𝑔 at time point 𝑡 from time series 𝑖 from the Evo-Devo-measured and 937 
model-simulated gene expression respectively, we first defined 938 

𝑥#[𝑇# − 3: 𝑇# , 𝑔] 	= [𝑥#[𝑇# − 3, 𝑔], 𝑥#[𝑇# − 2, 𝑔], 𝑥#[𝑇# − 1, 𝑔], 𝑥#[𝑇# , 𝑔]]	 939 
and 940 

𝑥b�[𝑇# − 3: 𝑇# , 𝑔] 	= 	 [𝑥b�[𝑇# − 3, 𝑔], 𝑥b�[𝑇# − 2, 𝑔], 𝑥b�[𝑇# − 1, 𝑔], 𝑥b�[𝑇# , 𝑔]]. 941 
We then defined the model’s test correlation (comparing time points) per sequence as  942 

𝜌#(P#f2[) =
1
4533

∑ 𝜌@2M1[W8(𝑥b�[𝑇# − 3: 𝑇# , 𝑔], 𝑥#[𝑇# − 3: 𝑇# , 𝑔])4533
N$1 , 943 

With an overall model average test Pearson correlation (ranked by time points) of 944 

𝜌(P#f2[) = 1
48
∑ 𝜌#(P#f2[)48
#$1 . 945 

To assess whether Sagittarius statistically outperformed the comparison approaches in terms of 946 
𝜌(N282[) and 𝜌(P#f2[), we first computed the Fisher z-transformation38 of the correlation values, 947 
defined as 948 

𝑧(𝜌) 	= 	
1
2
𝑙𝑛 �

1+ 𝜌
1− 𝜌�

 949 

for some correlation 𝜌. Then, we used the one-sided paired t-test between Sagittarius’s Fisher-950 
transformed correlation per sequence and the per-sequence Fisher-transformed correlation of 951 
the comparison approach that performed best on average. 952 
 953 

Mouse developmental analysis 954 

We trained Sagittarius using the complete Evo-devo dataset Ɗ = {(𝑥# 	, 𝑦# 	, 𝑡#)}#$148 . After training 955 

completed, we selected ƊfWa[2 = 4T𝑥( 	, 𝑦( 	, 𝑡(W6($1
7  where 𝑦[@29#2[,( = 𝑚𝑜𝑢𝑠𝑒. For each of the 7 956 

organs in the dataset, we then used Sagittarius to simulate 10 gene expression time series. We 957 
generated the observations at ranked timepoints ranging from -5 to 13 with a granularity of 0.1, 958 
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resulting in 𝑡∗ = [−5.0, −4.9, . . . , −0.1, 0.0, 0.1, . . . , 12.9, 13.0	]. For each source sequence T𝑥( 	, 𝑦( 	, 𝑡(W 959 
we then simulated the target sequence for T𝑦( 	, 𝑡⋆W with 960 

𝑥(∗ = 𝑥>(T𝑥# 	, 𝑦# 	, 𝑡# 	, 𝑦( 	, 𝑡∗W. 961 
To further smooth the results, we then computed the moving average of 𝑥(∗ to produce 962 

𝑥c∗�[𝑡] =
1

5510(55P)
∑ 𝑥(∗[𝑟]P50.5
1$0,1∈P∗   if 𝑡 < −4.5 963 

𝑥c∗�[𝑡] =
1
10
∑ 𝑥(∗[𝑟]P50.5
1$PX0.5,1∈P∗   if 𝑡 ∈ [−4.5, 12.5] 964 

𝑥c∗�[𝑡] =
1

5510(13XP)
∑ 𝑥(∗[𝑟]13
1$PX0.5,1∈P∗   if 𝑡 > 12.5, 965 

for all 𝑡 ∈ 𝑡∗. This resulted in 10 smoothed mouse gene expression time series samples for each 966 
organ in the dataset. 967 
 968 
Transcriptomic velocity: Given the smoothed samples, we next computed the UMAP41 969 
embedding 𝑧c∗� [𝑡] = 𝑈𝑀𝐴𝑃T𝑥c∗�[𝑡]W at each generated time point in each sample. We also computed 970 
the developmental velocity in the UMAP space as  971 

𝑣(∗ = 𝑥c∗�[𝑡 + 0.1] 	−	𝑥c∗�[𝑡] if 𝑡 < 13.0    𝑣(∗ = 0 if 𝑡 = 13 972 
for all 𝑡 ∈ 𝑡∗, and then further smoothed the results using moving average with a window size of 973 
1, defined as 974 

𝑣c∗�[−5] = 𝑣(∗[−5] 975 

𝑣c∗�[𝑡] 	= 	
1
2
j𝑣(∗[𝑡 − 0.1] 	+	𝑣(∗[𝑡]p if 𝑡	 ∈ [−4.9, 13]. 976 

We took the average (mean) of the velocities of each of our 10 samples to produce the unified 977 
organ velocity vector 𝑣̄(∗. Finally, we normalized the velocity embeddings and, to decrease clutter 978 
in the plot, restricted our final result to integer time indices, such that 979 

𝑣>(∗[𝑡] =
𝑣u(∗[𝑡]
�𝑣u(∗[𝑡]�

 980 

for all 𝑡 ∈ 𝑡∗ ∩ ℤ. 981 
 982 
To produce the organ development plot, we projected the 𝑧c∗�  to a grid, and defined the velocity at 983 
each grid point to be the average of the 100 velocity vectors 𝑣>(� nearest to that grid point using 984 
sklearn.neighbors.NearestNeighbors,85 weighted by their distance from the grid point. 985 
Finally, we discard the velocities with the 5% smallest magnitudes to simplify the plot. For our 986 
PCA42 analysis of the same data (Supplementary Fig. 2), we repeated these steps, using 𝑧c∗� [𝑡] 	=987 
	𝑃𝐶𝐴T𝑥c∗�[𝑡], 𝑛𝑃𝐶𝑠 = 2W. 988 
 989 
To identify genes that had a very similar expression at early developmental stages but differing 990 
expression levels in different organs at later developmental stages, we took 991 

𝑥#
(2M1jO) = 𝑥b∗�[𝑡 ∈ [−5.0, −2.5]	]   𝑥#

(jMP2) = 𝑥b∗�[𝑡 ∈ [11.5, 13.0]	] 992 
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for each simulated, smoothed time series 𝑥b∗�. Considering all 10 simulated sequences, this resulted 993 
in 250 early time points and 250 late time points per mouse organ. We then computed two 994 
ANOVA statistical tests with Bonferroni multiple testing correction, first comparing 995 
𝑥(2M1jO)[𝑔𝑒𝑛𝑒	𝑚] from each organ to measure statistical similarity at early developmental stages 996 
and then comparing 𝑥(jMP2)[𝑔𝑒𝑛𝑒	𝑚] to measure similarity at later stages. 997 
 998 
Tabula muris gene evaluation: We first generated 10 mouse gene expression vectors for each 999 
organ at time points ranging from 11 to 25, with a granularity of 0.1. Given 𝑡✵ =1000 
[11.0, 11.1, . . . , 24.9, 25.0], we simulated gene expression profiles and smoothed the results to 1001 
produce 𝑥u(✵ as when producing 𝑥u(∗. We then computed the Spearman correlation over time for 1002 
each of the genes based on the simulated data. We also computed the Spearman correlation over 1003 
time for each gene based on the measured data in the Evo-devo dataset.12 Finally, we took the 1004 
heart and aorta, kidney, and liver tissue data from the Tabula Muris Senis droplet dataset,16 which 1005 
were the three tissues that aligned with the Evo-devo organs. For each cell type in the tissue data, 1006 
we computed the average expression of that cell type at each of the measured timepoints, and 1007 
then took the Spearman correlation of the average cell type expression over time. 1008 
 1009 

LINCS dataset processing 1010 

We used the LINCS L1000 Platform level 3 pharmacogenomic dataset.15  We restricted the data to 1011 
drug and cell line combinations where the doses were measured in µM and then further restricted 1012 
measurements to doses no more than 20 µM. After this processing step, we again restricted the 1013 
dataset to include only the drug and cell line experiments, which we interpreted as “time series”, 1014 
that had more than 15 dose and time measurements. This resulted in 2,687 total time series for 1015 
our dataset, each with between 16 and 78 measurements (Supplementary Fig. 4), where over 73% 1016 
of the treatment combinations retained in the dataset had fewer than 25 measurements. Each 1017 
measurement contains 978 genes. We represented this dataset as 𝑦# = [𝑑𝑟𝑢𝑔# , 𝑐𝑒𝑙𝑙	𝑙𝑖𝑛𝑒#] and 𝑡# =1018 
[𝑑𝑜𝑠𝑒# 	, 𝑡𝑖𝑚𝑒#]. 1019 
 1020 

Existing models and LINCS training 1021 

We restricted our LINCS comparisons to the cVAE model,25 which was the only existing model 1022 
that could be applied to multiple continuous variables out-of-the-box. For Sagittarius and the 1023 
cVAE model, we randomly partitioned the data into an 80% training, 10% validation, and 10% 1024 
test split. We terminated model training when the validation loss had not decreased for at least 1025 
100 epochs and returned the model with lowest validation loss. 1026 
 1027 
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cVAE: We trained a cVAE25 using the Adam optimizer84 with a learning rate of 1e-3. We used a 1028 
symmetric MLP encoder and decoder architecture, both with 2 hidden layers of 128 units each, a 1029 
latent embedding dimension of 16, a KL-divergence weight 𝛽 = 1.0, and a batch size of 1024. 1030 
 1031 
Sagittarius: We trained Sagittarius using the Adam optimizer84 with a learning rate of 1e-3 and a 1032 
batch size of 1024. We used an 8-dimensional vector to embed both the drug and the cell line as 1033 
an initial input to Sagittarius’s expression encoder and decoder, and two hidden layers with 128 1034 
neurons each to learn 𝑞-(. ) and 𝑝L(. ). We used a latent embedding dimension 𝑑 = 16, 8 attention 1035 
heads, and 16 temporal reference points (for both time and dose). We embedded the dose into an 1036 
8-dimensional vector and time into a 4-dimensional vector using the high-frequencing 1037 
embeddings. For the transformer keys and queries, we used an 8-dimensional embedding for 1038 
both drug and cell line. Finally, we used 𝛽 = 0.25 for the KL-divergence weight in ℒ4MN(. ). 1039 
 1040 
During training, we used the reconstruction objective for each available time series, setting 𝑗 =1041 
𝑖in ℒ4MN(. ). We also included the following 3 simulation objectives during training. 1042 

1. Generate drug: we randomly selected 32 drugs from the training dataset. For each drug, 1043 
we identified two measured cell line combinations, and labeled one as  𝑥b′̄  and the other 1044 
as its partner training sequence 𝑥c′s. 1045 

2. Generate cell line: we randomly selected 32 cell lines from the training dataset. For each 1046 
cell line, we identified two measured drug combinations, and labeled one as  𝑥b′̄  and the 1047 
other as its partner training sequence 𝑥c′s. 1048 

3. Random generation: we randomly selected 16 pairs of measured combinations from the 1049 
training dataset, and labeled one as  𝑥b′̄  and the other as its partner training sequence 𝑥c′s. 1050 

Sagittarius was then also trained a generation objective, formulated according to the empirical 1051 
version of the loss term ℒ4MN(. ), with  𝑖 = 𝑖′ and 𝑗 = 𝑗′. 1052 
 1053 

LINCS quantitative simulation experiment 1054 

For the three different generation tasks we set for the LINCS dataset, we masked different 1055 
combinations of experimental and continuous variables to create our test sets. For each, we first 1056 
randomly selected 5 drug and cell line experimental combinations to remove from the training 1057 
data, requiring that both the drug and the cell line appeared at least once somewhere else in the 1058 
dataset. 1059 

1. Complete generation: For each of these experimental combinations, we also selected 3 1060 
non-zero doses and 1 non-zero time at random from each combination's measured time 1061 
series to remove from all time series in the training dataset. 1062 
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2. Combination & Dose: For each of these experimental combinations, we also randomly 1063 
selected 3 non-zero doses from those time series to remove from all time series in the 1064 
training dataset. 1065 

3. Combination & Time: For each of these experimental combinations we also randomly 1066 
selected 1 non-zero time in the time series to remove from all time series in the training 1067 
dataset. 1068 

At evaluation time, we aimed to simulate the time series for the masked experimental 1069 
combinations, doses, and times. For the complete generation task, this resulted in 2144 training 1070 
sequences with 7651 total measurements, 269 validation sequences with 924 total measurements, 1071 
and 7441 test sequences with 15,068 total measurements; for the combination & dose task, this 1072 
resulted in 2144 training sequences with 27,242 total measurements, 269 validation sequences 1073 
with 3326 total measurements, and 7377 test sequences with 14,905 total measurements; and for 1074 
the combination & time task, this resulted in 2144 training sequences with 10,417 total 1075 
measurements, 269 validation sequences with 1202 total measurements, and 7395 test sequences 1076 
with 14,966 total measurements. To evaluate the models' performance, we computed the 1077 
Spearman correlation between the measured gene expression vectors that we had removed from 1078 
the training data and the models' simulated gene expression vectors. 1079 
 1080 

LINCS quantitative extrapolation experiment 1081 

We used Spearman correlation to assess model performance for the three LINCS generation tasks. 1082 
Formally, let 𝒴6 be the set of drug and cell line treatment combinations that are masked during 1083 
training for each generation task; let 𝒯.W[26  be the set of doses that are masked during training 1084 
(note that for the combination & time task, 𝒯.W[26 = ∅); let 𝒯P#f26  be the set of treatment times that 1085 
are masked during training (so 𝒯P#f26 = ∅ for the combination & dose task). Then, define the 1086 
measurement in the LINCS dataset for treatment combination 𝑖 at dose 𝑡.W[2 and time 𝑡P#f2 as 1087 
𝑥#[𝑡.W[2 , 𝑡P#f2], and the model’s simulated measurement for the same combination, dose, and time 1088 
as 𝑥>#[𝑡.W[2 , 𝑡P#f2]. For the complete generation task, we computed the model’s overall Spearman 1089 
correlation as 1090 

𝜌fW.2j = � � � 𝜌[@2M1fM8(𝑥>#[𝑡.W[2 , 𝑡P#f2], 𝑥#[𝑡.W[2 , 𝑡P#f2]),
P1#2$∈𝒯1#2$

!P+34$	∈𝒯+34$
!O	∈𝒴!

 1091 

with 𝜌[@2M1fM8 denoting the Spearman correlation. 1092 
For the combination & dose and combination & time tasks, we computed the model’s overall 1093 
Spearman correlation as 1094 
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𝜌fW.2j =� � � � 14T𝑦# ∈ 𝒴6W ∨	T𝑡.W[2 ∈ 𝒯.W[26 W
P1#2$∈P5152$mmmmmmmmmmm⃗P+34$∈P5+34$

mmmmmmmmmmm⃗

"

#$1

1095 

∨ T𝑡P#f2 ∈ 𝒯P#f26 W6𝜌[@2M1fM8(𝑥b�[𝑡.W[2 , 𝑡P#f2], 𝑥#[𝑡.W[2 , 𝑡P#f2])�, 1096 

where 1{⋅} denotes an indicator variable. 1097 
 1098 

Drug dosage similarity network 1099 

We first trained Sagittarius on the complete LINCS dataset,15 not masking any datapoints. We 1100 
then selected 78 random distinct doses 𝑑N28 at random from the dataset, sorting them from 1101 
smallest to largest, and set the corresponding treatment time to be 𝑡N28 = [6.0]78. The randomly-1102 
selected doses ranged from 8.33e-5 to 19.9998. For each drug and cell line experimental 1103 
combination in the dataset we then computed 1104 

𝑥>#
(N28) = 𝑝LT𝑧̂#(𝑥# 	, 𝑦# 	, 𝑡# 	, 𝑦# 	, j𝑑N28, 𝑡N28pW, 1105 

thereby producing samples from each of the 𝑖 combinations at our desired dose and time, even 1106 
when these are unmeasured in the dataset. To remove the strong cell-type-specific clustering of 1107 
the generated expression vectors, we then computed the differential expression by taking 1108 

𝑥>#o[𝑟] 	= 	 𝑥>#
(N28)[𝑟] − 𝑥>#

(N28)[0]. 1109 
We then computed the average differential expression for each of the 2,687 experimental 1110 
combinations as 1111 

𝑥̄#o =
1
78
∑ 𝑥>#o[𝑟]78
1$1 ∈ ℝ978. 1112 

Given the average differential expression vectors, we computed a similarity score between 1113 
combinations 𝑖 and 𝑗 as 1114 

𝜎#,( = 1− �𝑥̄#o − 𝑥̄(o�2 1115 

𝛴#,( =𝑎𝑟𝑔 𝑚𝑖𝑛#′,(′
�𝑎𝑟𝑔 𝑚𝑎𝑥

#′′,(′′
|
𝜎#,( − 𝜎#′,(′
𝜎#′′,(′′ − 𝜎#′,(′

}� 1116 

to normalize the similarities scores to 𝛴#,( ∈ [0,1]. 1117 
 1118 
To construct an average differential expression k-nearest-neighbors (KNN) network 𝐺!"", we 1119 
defined the hyperparameters 𝑘 = 50, 𝑚 = 30, 𝜃 = 0.95. For each experimental combination 𝑖 in our 1120 
simulated dataset, we considered all edges (𝑖, 𝑗) for all combinations 𝑗, weighted by 𝑤(𝑖, 𝑗) 	= 	𝛴#,(. 1121 
We followed the following procedure for constructing 𝐺 from this fully-connected weighted 1122 
graph, where each vertex represents an experimental drug and cell line combination. 1123 

1. Remove all edges (𝑖, 𝑗) where 𝑤(𝑖, 𝑗) 	< 	𝜃. 1124 
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2. For all remaining nodes 𝑖, if 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖) 	> 	𝑘 then remove the 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖) 	− 	𝑘 edges with 1125 
lowest weights, resulting in a vertex with degree 𝑘. 1126 

3. Remove all nodes 𝑖 where 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖) 	< 	𝑚. 1127 
4. Reduce 𝐺 to its largest connected subgraph. 1128 

To further analyze 𝐺!"", we then used the Louvain community detection algorithm86 as 1129 
implemented in the Python community package87 to identify communities in 𝐺!"". To reduce 1130 
the complexity of the analysis, we then combined neighboring communities until 4 communities 1131 
remained, {𝐶1, 𝐶2, 𝐶3, 𝐶4}. We calculated the average community IC50 by taking the average of the 1132 
IC50 doses in the GDSC dataset33 for every vertex in the community that had a GDSC 1133 
measurement.  1134 
 1135 
We plotted 𝐺!"" using Cytoscape.88 We used the edge-weight spring embedded layout with 1136 
minimum, maximum, and default edge weights of 0, 1, and 0.5 respectively. We ran 200 average 1137 
iterations for each node. The spring strength parameter was set to 15, spring rest length to 45, the 1138 
disconnected spring strength to 0.05, and the disconnected spring rest length to 2000. We did not 1139 
add any spring strength to avoid collisions, and used 2 layout passes. Finally, we randomized the 1140 
graph before computing the layout. 1141 
 1142 

Drug sensitivity prediction dataset 1143 

For the drug IC50 prediction task, we randomly selected 78 different dose and time points, [𝑑⭑, 𝑡⭑], 1144 
that had been measured in the LINCS dataset. Then, given a fully-trained Sagittarius, we could 1145 
compute the transformer encoder’s average key representation 1146 

𝑘.1,9j =
1
78
∑ ⨁6$1

> 𝑘6,(.1,9j,.1⭑,P1⭑)
28978

P$1 ∈ ℝ224, 1147 

where ⨁ represents vector concatenation and 𝐻 is the number of attention heads. 1148 
 1149 
GDSC experiment: For the GDSC-based prediction, we computed 𝑘.1,9j for each GDSC33-1150 
measured combination of drug and cell line, provided that both the drug and cell line appeared 1151 
somewhere in the LINCS dataset (although not necessarily together). 1152 
 1153 
We then considered two models: one used the 𝑘.1,9j dataset produced by Sagittarius to predict 1154 
the GDSC IC50 values for that experimental combination, and had 271 datapoints; the other was 1155 
trained on the measured LINCS experimental combinations available that also appeared in the 1156 
GDSC dataset, and had 151 datapoints. We then divided the measured LINCS-GDSC dataset into 1157 

3 splits and ran 3-fold cross validation, where for each fold the test set made up 2
3
 of the data. We 1158 

similarly divided Sagittarius’s simulated dataset such that the test set for each split matched the 1159 
LINCS-GDSC dataset test split, and the rest of the data was available for training. 1160 
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 1161 
CTRP experiment: For this experiment we computed 𝑘.1,9j for each CTRP34-measured 1162 
experimental combination. We compared this dataset from Sagittarius, which had 2,929 1163 
datapoints, to the measured LINCS-CTRP intersecting dataset, which had 625 datapoints. As 1164 

before, we used 3-fold validation based on the LINCS-CTRP dataset, where 2
3
 of the dataset was 1165 

used as test for each fold, and defined folds for the Sagittarius dataset to match the LINCS-CTRP 1166 
test fold. 1167 
 1168 

Drug sensitivity prediction model and hyperparameter selection 1169 

We held out 10% of the training data for both the LINCS-based and the Sagittarius datasets to 1170 
determine the best regression model for the drug sensitivity prediction task. For both datasets, 1171 
we tried a Support Vector Regression (SVR) model with linear, polynomial, and radial-basis-1172 
function (RBF) kernels, and an MLP regression model with regularizing weight 𝛼 ∈1173 
{1𝑒 − 4, 1𝑒 − 2, 1, 10}, with all other hyperparameters maintained as the defaults in sklearn.85 1174 
We evaluated the model’s validation performance using the average Spearman correlation 1175 
between the measured IC50 labels (either from GDSC or CTRP) and the model’s predicted IC50 1176 
labels. When comparing the network performance from the LINCS-based and Sagittarius 1177 
datasets, we restricted our analysis to cell lines where at least one of the two models had a 1178 
statistically significant correlation (Spearman rank-order p-value < 0.05). 1179 
 1180 
GDSC hyperparameters: The LINCS-GDSC dataset model achieved best validation performance 1181 
with the SVR with RBF kernel; the Sagittarius dataset model achieved best validation 1182 
performance with the MLP regressor with 𝛼 = 10. 1183 
 1184 
CTRP hyperparameters: The LINCS-CTRP dataset model achieved best validation performance 1185 
with the SVR with polynomial kernel; the Sagittarius dataset model achieved best validation 1186 
performance with the MLP regressor with 𝛼 = 0.01. 1187 
 1188 
Evaluation: To evaluate the model’s performance on the drug sensitivity prediction task, we 1189 
looked at the Spearman correlation per drug. For the test drugs and cell lines with a measured 1190 
drug sensitivity 𝑠(𝑑, 𝑐) for drug 𝑑 and cell line 𝑐, and a corresponding predicted drug sensitivity 1191 
𝑠̂(𝑑, 𝑐), we defined the model’s Spearman performance for drug 𝑑 as 1192 

𝜌(𝑑) 	= 	𝜌[@2M1fM8Tj𝑠̂(𝑑, 𝑐1), 𝑠̂(𝑑, 𝑐2), . . . , 𝑠̂(𝑑, 𝑐"+)p, j𝑠(𝑑, 𝑐1), 𝑠(𝑑, 𝑐2), . . . , 𝑠(𝑑, 𝑐"+)p	W, 1193 
where j𝑐1, 𝑐2, ⋯ , 𝑐"+p are the 𝑁. cell lines that were treated with drug 𝑑 in the GDSC or CTRP 1194 
datasets. 1195 
 1196 
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Cancer gene essentiality prediction: dataset construction 1197 

For each tested gene 𝑔 and cell line 𝑐𝑙 combination in the DepMap dataset, independently 1198 
considering the DEMETER36 and CERES35 versions, we searched for all drugs 𝑑𝑟 in the LINCS 1199 
dataset15 that listed gene 𝑔 as the drug’s target. Given 78 randomly-selected doses 𝑑⭑ and times 1200 
𝑡⭑ from the set of all doses and times that had been measured in the LINCS dataset, we computed 1201 
the transformer encoder’s average key representation 1202 

𝑘.1,9j =
1
78
∑ ⨁6$1

> 𝑘6,(.1,9j,.1⭑,P1⭑)
28978

P$1 ∈ ℝ224, 1203 

where ⨁ indicates concatenation and 𝐻 = 8. This resulted in 4,216 datapoints for the DEMETER 1204 
version and 1,666 for the CERES versions. 1205 
 1206 
We also constructed a LINCS-DepMap dataset. For every gene 𝑔 and cell line 𝑐𝑙 in the DepMap 1207 
dataset, we searched for a drug 𝑑𝑟 in the LINCS dataset that listed 𝑔 as its gene target. If such a 1208 
drug existed in the dataset, we added the corresponding average measured post-treatment 1209 
expression across all tested doses and times from LINCS to the LINCS-DepMap dataset. This 1210 
resulted in 765 datapoints for the DEMETER version and 353 datapoints for the CERES version. 1211 
 1212 

Gene essentiality model hyperparameters and evaluation 1213 

For both the LINCS-DepMap dataset model and the Sagittarius dataset model, we trained an 1214 
MLP regressor using two hidden layers with 200- and 100 hidden nodes respectively, ReLU 1215 
activation functions, mean-squared-error loss, and the Adam optimizer84 with a learning rate of 1216 
1e-3. We used 5-fold cross validation, where 20% of the LINCS-DepMap dataset was used as the 1217 
test set, and we aligned the Sagittarius dataset's test set to match the LINCS-DepMap test set. We 1218 
further held out 10% of the resulting training set for each of the 5 splits to use as a validation set 1219 
for early model training termination. 1220 
 1221 
To evaluate the model, we computed the Spearman correlation for each cell line. Denoting each 1222 
tested cell line as 𝑐, with the measured tested target genes essentialities 1223 
[𝑒(𝑐, 𝑔1), 𝑒(𝑐, 𝑔2), . . . , 𝑒(𝑐, 𝑔"&)] and corresponding predicted essentiality 1224 
[𝑒̂(𝑐, 𝑔1), 𝑒̂(𝑐, 𝑔2),⋯ , 𝑒̂(𝑐, 𝑔"&)], we computed the Spearman correlation as 1225 

𝜌(𝑐) 	= 	𝜌[@2M1fM8Tj𝑒̂(𝑐, 𝑔1), 𝑒̂(𝑐, 𝑔2), . . . , 𝑒̂(𝑐, 𝑔"&)p, j𝑒(𝑐, 𝑔1), 𝑒(𝑐, 𝑔2), . . . , 𝑒(𝑐, 𝑔"&)pW. 1226 
 1227 

TCGA dataset processing 1228 

We used the TCGA Firehose legacy dataset37 mutation data. Each patient’s mutation profile is 1229 
mapped to somatic mutations from 20,501 total genes. The mutation profiles are binary vectors, 1230 
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where 1 indicates that the gene contained a mutation. We first removed all patients with nan 1231 
survival times and then restricted the dataset to the 1,000-most frequently mutated genes across 1232 
all cancer types. We then removed patients from the dataset if they had no profiled mutations 1233 
across any of the remaining 1,000 genes. If there were fewer than 12 patients remaining in a given 1234 
cancer type, we also excluded this cancer type. We constructed a time series for each cancer type 1235 
by ordering the remaining patients according to their labeled survival times, sorted from shortest 1236 
survival to longest survival. We then constructed the dataset of (𝑥# 	, 𝑦# 	, 𝑡#) where 𝑥# are the 1237 
sequence of mutation profiles for patients of cancer type 𝑦#, each with the corresponding survival 1238 
times 𝑡#. 1239 
 1240 

Time series patient filtering 1241 

In order to apply Sagittarius’s time series framework to the TCGA mutation profiles, we needed 1242 
the cancer type time series to accurately reflect cancer survival times. In particular, inclusion of 1243 
patients with a censored survival time, meaning they lost contact with the study before an 1244 
observed death event, might lead to incorrect overall survival times and relative ordering of 1245 
patients in the time series. However, excluding all patients with censored survival times would 1246 
greatly decrease the size of the dataset and limit the statistical power of the model 1247 
(Supplementary Fig. 8). 1248 
 1249 
We hypothesized that censored patients could be divided approximately into two categories. 1250 
First, some patients who lost contact with the study might die shortly afterwards, meaning their 1251 
censored survival time (the time at which they lost contact with the study) would closely reflect 1252 
their overall survival time, were it to have been observed. Second, some patients who lost contact 1253 
with the study would survive well beyond the censoring time, and therefore the censored 1254 
survival time would be substantially different from the overall survival time. The first of these 1255 
two categories could therefore be included in the time series formulation, with censored survival 1256 
time used as a proxy for overall survival time; the second category should be excluded to 1257 
maintain the integrity of the input time series. 1258 
 1259 
In order to identify censored patients belonging to the first category, where censored survival 1260 
times closely reflected overall survival times, we trained a neural network on each cancer type 1261 
individually to predict 𝑡#[𝑟] from 𝑥#[𝑟]. In this step, we also included each patient’s binary 1262 
censoring label 𝑐[𝑟], where 𝑐[𝑟] = 0 indicates that the 𝑟th patient had an observed death event. 1263 
We defined the individual patient loss as 1264 

ℒ#8.#:#.aMj(𝑥[𝑟], 𝑡[𝑟], 𝑡̂[𝑟], 𝑐[𝑟]) 	= 𝟙[𝑐[𝑟] = 0]	|𝑡̂ − 𝑡|1 	+ 𝟙[𝑐[𝑟] = 1]	𝑚𝑎𝑥(𝑡 − 𝑡̂, 0), 1265 
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thereby not penalizing the model for overestimating the survival time of a censored patient. We 1266 
further defined the empirical model loss as 1267 

ℒ`(𝑥, 𝑡, 𝑡̂, 𝑐) 	= 	
1
%
∑ ℒ#8.#:#.aMj(𝑥[𝑟], 𝑡[𝑟], 𝑡̂[𝑟], 𝑐[𝑟])%
1$1 	+ 𝜆|𝜙|22. 1268 

Using a single hidden layer with 32 neurons, we trained the regressor on each cancer type 1269 
individually with the regularizing weight 𝜆 = 0.3, stochastic gradient descent (SGD) optimizer, 1270 
and learning rate of 1e-1. We trained for up to 2,500 epochs, and selected the model epoch with 1271 
the maximal concordance index for the patients with an observed death event. 1272 
 1273 
We then leveraged techniques from Learning with Noisy Labels (LNL), where each patient’s 1274 
survival time, either observed or censored, represented a potentially noisy label for their actual 1275 
survival time. For each cancer type’s selected model, we computed the absolute error per patient 1276 
for both the observed (|𝜖W7[|) and censored (|𝜖928[|) groups. Using the scipy89 python package, we 1277 
fit a beta distribution 𝛽W7[ to |𝜖W7[| and a beta distribution 𝛽928[ to |𝜖928[|, and then computed the 1278 
probability that each patient in |𝜖W7[| and |𝜖928[| could have been generated by either 𝛽W7[or 𝛽928[. 1279 
Following previous work,61,62 if the probability that a censored patient’s absolute error was 1280 
generated by 𝛽W7[ was larger than the probability it was generated by 𝛽928[, we switched their 1281 
label to observed. Similarly, if a censored patient’s absolute error was smaller than the absolute 1282 
error for at least one observed patient, we also switched their label to observed. We discarded all 1283 
other censored patients, and retained only the observed patients and the censored patients with 1284 
a swapped label as the resulting cancer type time series. After filtering, our dataset contained 1285 
2297 cancer patients. For the SARC time series, we included 31 patients with a censored death 1286 
event to include 115 total patients; for the THCA time series, we included 2 patients with a 1287 
censored death event to include 15 total patients.  1288 
 1289 

Model hyperparameters 1290 

As in the Evo-devo dataset, the mean and linear comparison approaches did not require any 1291 
hyperparameters. For Sagittarius, we used 20% of the available data as a validation set for 1292 
hyperparameter selection and training termination. We used 𝑆 + 1 = 4 temporal reference points, 1293 
a latent dimension 𝑑 = 16, 𝐻 = 8 attention heads, an 8-dimensional cancer type embedding for 1294 
the encoder and decoder, a 2-dimensional temporal embedding for the transformer, and a 4-1295 
dimensional cancer type embedding for the transformer. We set 𝛽 = 1 and used a batch size of 2. 1296 
We tried both 1-, 2-, and 3 hidden layer symmetric MLPs for the encoder and decoder, each with 1297 
256 hidden neurons per layer. For the SARC cancer type, we selected the 2-layer MLPs based on 1298 
validation performance; for the THCA cancer type, we selected 3-layer MLPs. 1299 
 1300 
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In addition to the reconstruction task where 𝑖 = 𝑗 in ℒ4MN(. ), we trained Sagittarius with 2 1301 
simulation objectives. 1302 

1. Time generation: we randomly selected 12 cancer type time series and, for each, randomly 1303 
masked out 3 patients in the time series to produce   𝑥b′̄ . The time series made up of the 3 1304 
masked patients was its partner training sequence 𝑥c′s. 1305 

2. Cancer type generation: we randomly selected 12 pairs of cancer type time series. We 1306 
considered one of each pair to be 𝑥b′̄  and the other as its partner sequence 𝑥c′s. 1307 

Sagittarius was then also trained a generation objective, formulated according to the empirical 1308 
version of the loss term ℒ4MN(. ), with  𝑖 = 𝑖′ and 𝑗 = 𝑗′. 1309 
 1310 
Quantitative cancer patient extrapolation experiment 1311 
We defined the extrapolation task as follows. For the cancer type with 𝑁 observed patients, we 1312 
defined a training split of the 𝑘 observed patients with shortest survival time, as well as all 1313 
censored patients with a survival time shorter than the longest of the 𝑘 observed survival times, 1314 
and used the remaining 𝑁 − 𝑘 patients as the test split. We then varied 𝑘 = 1, . . . , 𝑁 − 1. For each 1315 
of the 𝑁 − 2 different test splits, we evaluated model performance with the AUROC of the 1316 
simulated mutation profiles. For this evaluation, we restricted the genes that we evaluated to 1317 
those that had a pattern with respect to survival time. Specifically, we used the augmented 1318 
Dickey-Fuller statistical test to identify the mutations for each cancer type for which we did not 1319 
reject the null hypothesis, indicating non-stationarity, with a significance threshold of p < 0.05. 1320 
We then further took the union of the genes that appeared in the non-stationary gene sets for at 1321 
least 𝛿 cancer types to create the evaluation gene set 𝛾(𝛿). We excluded any test patients that did 1322 
not have a measured mutation in any of the genes in 𝛾(𝛿). Based on the resulting number of test 1323 
patients, we used 𝛿 = 2 for THCA, resulting in 9 usable test splits, and 𝛿 = 4 for SARC, resulting 1324 
in 61 usable test splits. Then, we evaluate the model performance on cancer type 𝑦# for a test 1325 
patient with survival time 𝑡 > 𝜏, for some threshold test set threshold 𝜏, as 1326 

𝐴𝑈𝑅𝑂𝐶#(𝜏, 𝑡) 	= 	𝐴𝑈𝑅𝑂𝐶(𝑥>#[𝑡, 𝛾(𝛿)], 𝑥#[𝑡, 𝛾(𝛿)]), 1327 
where 𝑥#[𝑡, 𝛾(𝛿)] is the measured mutation profile for a patient with cancer type 𝑖 and survival 1328 
time 𝑡, restricted to the genes in set 𝛾(𝛿), and 𝐴𝑈𝑅𝑂𝐶(⋅) is the AUROC computation between two 1329 
vectors. Then we computed the model’s overall performance on the test split beginning with test 1330 
patient survival time 𝜏 as 1331 

𝐴𝑈𝑅𝑂𝐶#(𝜏) 	= 	
1

pqP,∈%#:	P#\Erp
∑ 1{(𝑡	 ≥ 𝜏) 	∧ (𝑥#[𝑡, 𝛾(𝛿)] 	≠ 0§⃗ )}	𝐴𝑈𝑅𝑂𝐶#(𝜏, 𝑡)P∈%# , 1332 

where 1{⋅} represents an indicator variable. Then, to compare the model performance across test 1333 
splits for cancer type 𝑖, we defined the overall model performance as the average of the test split 1334 
AUROCs for that cancer type, or 1335 
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𝐴𝑈𝑅𝑂𝐶# =
1

𝑇# − 1
� 𝐴𝑈𝑅𝑂𝐶#(𝜏).

E∈P5mmm⃗ [2:]

	1336 

 1337 
Early cancer patient mutation simulation 1338 
To simulate the early-stage sarcoma patient mutation profiles, we trained Sagittarius on all 1339 
available TCGA data and then simulated mutation probability profiles at 27 survival time points, 1340 
ranging from 203-283 months. Specifically, we selected the longest 27 survival times that 1341 
appeared somewhere in the initial TCGA dataset, with 1342 

𝑡	 ∈ {203.12, 204.01, 260.70, 208.23, 209.43, 210.51, 210.81, 211.01, 211.73, 212.09, 216.59, 1343 
216.75, 225.43, 229.04, 230.72, 232.00, 232.62, 233.44, 234.10, 238.11, 244.32, 1344 

244.91, 255.49, 263.07, 275.66, 281.08, 282.69} 1345 
Months (Supplementary Fig. 10). We then averaged the mutation profile predictions of the 27 1346 
time points and identified the 10 genes the model predicted as most likely to be mutated. 1347 
 1348 
Figures 1349 
Figures were created with BioRender. 1350 
 1351 

Data availability 1352 

The datasets used for this project are available at https://figshare.com/projects/Sagittarius/144771. 1353 
 1354 
Code availability 1355 

A python repository including the Sagittarius implementation and code to reproduce the results 1356 

in this paper is available at https://github.com/addiewc/Sagittarius. 1357 
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