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Abstract

Understanding the temporal dynamics of gene expression is crucial for developmental biology,
tumor biology, and biogerontology. However, some time points remain challenging to measure
in the lab, particularly during very early or very late stages in a biological process. Here we
propose Sagittarius, a transformer-based model that is able to accurately simulate gene
expression profiles at time points outside of the range of times measured in the lab. The key idea
behind Sagittarius is to learn a shared reference space that generates simulated time series
measurements, thereby explicitly modeling unaligned time points and conditional batch effects
between time series and making the model widely applicable to diverse biological settings. We
show the promising performance of Sagittarius when extrapolating mammalian developmental
gene expression, simulating drug-induced expression at unmeasured dose and treatment times,
and augmenting datasets to accurately predict drug sensitivity. We also used Sagittarius to
simulate mutation profiles for early-stage cancer patients, which further enabled us to discover a
gene set related to the Hedgehog signaling pathway that may be related to tumorigenesis in
sarcoma patients, including PTCHI1, ARID2, and MYCBP2. By augmenting experimental
temporal datasets with crucial but difficult-to-measure simulated datapoints, Sagittarius enables
deeper insights into the temporal dynamics of heterogeneous transcriptomic processes and can
be broadly applied to biological time series extrapolation.
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Main

The temporal dynamics of the transcriptome are key to the study of developmental biology,'?
tumor biology,®* immunobiology,> and pharmacogenomics.”® As bulk- and single-cell RNA-
sequencing technologies have become cheaper,**!! more transcriptomic datasets include gene
expression measurements at multiple time points.!>?* However, although such datasets are
becoming more common, it often remains a significant challenge to measure transcriptomic
profiles at very early or late stages of a biological process. For instance, senescent and extremely
diseased tissue under different experimental conditions can be challenging to measure, but are of

extreme interest to studies for aging and therapeutics.

The underlying problem here is temporal extrapolation, where time points of interest are outside
the range of time that has experimental measurements. Accurate extrapolation on a single time
series is very challenging due to non-stationary features and temporal out-of-domain
adaptation.?? Other works, such as Monocle,®®* Slingshot,? and Palantir,? aim to impute
pseudotime points from a single measurement of time series data, but cannot make use of recent
datasets'>!” that contain measurements at multiple labeled time points to simulate novel
measurements. One possible solution for the extrapolation problem is to combine sparse time
series measurements from heterogeneous sequences. In particular, mouse!?> and roundworm?
transcriptomic time series measurements, combined with developmental human measurements,
can help simulate early-stage embryonic transcriptomic profiles for human.? There are two major
challenges in effectively utilizing other sequences: unaligned measured time points and batch
effects between experimental conditions. Existing methods are unable to simultaneously consider
the full sequence of measured time points®2¢ or take into account the temporal batch effects

between time series.27-30

To address these limitations we propose Sagittarius, a model that maps heterogeneous gene
expression time series to the same reference space based on inferred biological age rather than
the observed age, enabling multiple sparsely measured time series to jointly inform extrapolation
to diverse time series. Sagittarius leverages a novel transformer-based architecture with multi-
head attention’! to map the heterogeneous set of time series from the irregular, unaligned, sparse
measurement space to the regular reference space shared by all time series, using high-frequency
embeddings of the timestamp?32 and experimental condition labels of each time series to define
the mapping. After mapping to the shared reference space, we can accurately simulate new
genomic profiles at extrapolated time points, as well as simulate measurements for unmeasured

combinations of experimental conditions.
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66 We evaluated Sagittarius on three diverse applications in developmental biology,
67  pharmacogenomics, and cancer genomics. On the Evo-devo development dataset,'? we show that
68  Sagittarius has a Pearson correlation of 0.976 for gene expression profile extrapolation, compared
69 to the best existing method’s correlation of 0.926. Sagittarius further enabled organ-specific
70 transcriptomic velocity analysis that clearly illustrates the diverging tissue trajectory during
71 development, and which we further verified with scRNA-seq datasets from Tabula Muris Senis.®
72  To evaluate Sagittarius’s robustness to extremely sparse measurements, we next applied it to the
73 LINCS pharmacogenomics dataset,'> where it was able to simulate drug-induced expression with
74  a correlation of 0.89 for test cell line, drug, dose, and time perturbation experiments, although
75  only 1.77% of possible drug and cell line combinations are measured in the dataset. Furthermore,
76  the model’s shared reference space and simulated expression enable us to perform a novel drug
77  repurposing task across perturbation combinations that do not share a drug or a cell line.
78  Sagittarius obtained the best average Spearman correlation of 0.49 on two large-scale drug
79  response datasets,®3* as well as an average cell line Spearman correlation of 0.816 and 0.789 for
80 cancer gene essentiality prediction on both CRISPR-* and shRNA-based* measurements
81  respectively, compared to 0.261 and 0.278 using only available in vitro data. We finally applied
82  Sagittarius to the sarcoma and thyroid carcinoma cancer types in The Cancer Genome Atlas
83  (TCGA) dataset.’” Sagittarius was able to accurately simulate mutation profiles for patients with
84  very long survival times, usually representing early-stage cancer patients with driver mutations
85  that are difficult to measure in the clinic. For example, when using sarcoma patients with a post-
86  biopsy survival time longer than 37 months as test data and all other patients for training,
87  Sagittarius had a 0.77 AUROC for simulating mutation profiles, a 12.3% improvement over
88  existing methods. This leads us to discover a novel early-stage gene set related to the Hedgehog
89  signaling pathway and GLI oncogene, which can potentially drive tumorigenesis in early-stage
90  sarcoma patients.

91

92  Results
93  Overview of Sagittarius

94  Given a heterogeneous, unaligned, sparse, and irregular time series dataset of genomic
95 measurements, Sagittarius is able to simulate gene expression profiles for unmeasured time
96  points (Fig. 1). After training, a user may obtain the simulated expression from Sagittarius for
97  unmeasured time points of an experiment present in the dataset or for new combinations of
98  experimental variables that are not present in the initial dataset, such as the human heart in Fig.
99  1d, provided that both the human species and heart organ were measured at least once in the

100  training dataset (Fig. 1a).

101
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102  The key idea behind Sagittarius is to learn a shared reference space (Fig. 1c), which underlies all
103  heterogeneous time series in the dataset. The common reference space addresses two main
104  challenges: temporal extrapolation and batch effects between experimental conditions. First, the
105  common reference space pools dynamic information from all of the sparse time series to a single,
106  global understanding of the underlying temporal trajectory in the data. Given the complete range
107  of biological ages that are measured by at least one time series in the dataset, this then enables
108  accurate extrapolation for time series with measurements that only cover a subset of the dataset’s
109  complete biological age range. Second, the compression and alignment to the common reference
110  space (Fig. 1b,c) disentangles the experimental variables, like species and organ, from the time
111  series representations, both facilitating a comparison based on biological age rather than
112  measured age and enabling easy simulation of time series for unmeasured combinations of
113  experimental variables (Fig. 1d).

114

115  Sagittarius is able to infer relative time relationships between different experimental conditions,
116 thereby leveraging measurements within a related range of one time series to simulate accurate
117  profiles for extrapolated time points in another time series. The generative network and
118  continuous transformer are efficient, enabling Sagittarius to simulate new observations powered
119 by large datasets. In addition to downstream analyses such as developmentally dynamic gene
120 modeling and tumorigenesis driver identification, Sagittarius can be applied to complex
121  pharmacogenomic datasets containing both a dose and treatment time continuous variable,
122  extending the common reference space into multiple temporal dimensions. This further enables
123  drug repurposing and drug response prediction using the simulated drug-induced gene
124  expression data from Sagittarius, extrapolating dose, treatment time, and perturbation
125  combinations.

126

127  Extrapolating heterogeneous gene expression to unmeasured time points using Sagittarius

128  To assess the merit of our approach, we evaluated whether Sagittarius can simulate gene
129  expression profiles for a time point later than the measured time points using gene expression
130  time series from multiple experimental conditions. We used the Mammalian Organ Development
131  Evo-devo time series dataset,'? which contains bulk RNA-seq data from 7 organs across 7 species,
132  measured at a total of 91 distinct time points, where each time series ranges between 9 and 23
133  measured time points, with the fewest measurements for chicken and the most for human. The
134  provided time points give the developmental stage of the species, but not the aligned biological
135  age between species. Furthermore, the ranges of development that are covered by each species
136  differ; primates include measurements during senescence, while rhesus macaque and chicken do

137  not contain early embryonic data. Therefore, the Evo-devo dataset can assess whether our method
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138  can handle unaligned absolute time points as well as differing biological age ranges measured
139  across species.

140

141 To initially validate our model, we hid the last four measured time points from each species’
142  organ time series and provided the remainder of the Evo-devo dataset to Sagittarius as training
143  data. After training, we then simulated gene expression vectors for each species’ organs at the
144  four hidden time points and compared them to the measured expression vectors in the Evo-devo
145  dataset. Sagittarius achieved an average Pearson correlation between the simulated and
146  measured gene expression vectors of 0.976 when ranking by genes, and a Pearson correlation of
147  0.367 when ranking by time points, with a 0.109 average root mean squared error (RMSE),
148  compared to 0.926, 0.070, and 0.163 respectively for the best-performing comparison approach
149  (Supplementary Fig. 1 and Methods). We attribute our improved performance to the alignment
150  of all species in the shared reference space, enabling Sagittarius to make predictions for aging
151  patternsin one species’s organ based on its trajectory’s similarity to other time series in the dataset
152  that include later developmental measurements, even if they correspond to a different species
153  and organ.

154

155  To further validate Sagittarius’s improved gene expression simulation, we then subdivided our
156  results into individual species and organs. We first noticed that our method still achieves the best
157  performance on all organs and on 6 out of 7 species (Fig. 2). The best simulated transcriptomic
158  profiles were from the mouse testis extrapolated time series. Importantly, after hiding the last
159  four measured time points to use as test data for this task, the final training time point for mouse
160  testis development is postnatal day 0. This demonstrates the benefit of the shared reference space
161  for the time series, as other species with later developmental stages included in the dataset enable
162  Sagittarius to effectively transfer knowledge and patterns to the later developmental stages in the
163  mouse testis dataset. In contrast, all methods struggle on the human extrapolation task. We
164  believe that this is because, after removing the four latest measurements for each species from the
165  training set, the human extrapolation task involves time points that are much later
166  developmentally than any still present in the training dataset, and is therefore the most difficult
167  for any method to accurately simulate. Although significantly better than the next-best-
168  performing method (Fisher transform® followed by one-sided t-test p < 0.05 for compare-by-time
169  Pearson correlation), Sagittarius’s second-worst performing species is chicken. We believe that
170  this reflects the fact that chicken, the only bird species in the dataset, is less evolutionarily related
171 to the mammalian species in the dataset,'? thereby highlighting that Sagittarius has a larger
172  improvement over existing approaches when the species in the reference space follow more
173  similar developmental trajectories.

174

175  After finding that chicken measurements were more difficult to simulate than other, more related
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176  species, we wanted to study how Sagittarius grouped different tissues across developmental time
177  points. Sagittarius’s improved extrapolation performance led us to consider whether we could
178  simulate samples for time points that would be impossible to measure experimentally and
179  thereby gain new insights into tissue differentiation and aging.

180

181  Tissue transcriptomics velocity analysis reveals organ-specific aging genes

182  To further examine the biological insights from Sagittarius’s extrapolated expression profiles, we
183  next simulated gene expression profiles for each mouse organ at 180 different time points. We
184  emphasized early mouse embryonic development, so 50 of our simulated time points were earlier
185 than any mouse measurements present in the dataset; our latest generation time point
186  corresponded to a 63-day-old mouse, the latest measured mouse time point. By simulating early
187  time points, we expect to observe a hypothetical trajectory that includes organogenesis, which
188  takes place between embryonic days 6.5 and 8.5 in mouse development.**#° That is, we expect that
189  the earliest simulated time points result in very similar expression profiles across the different
190  queried organs, which would not have differentiated at this stage. At later time points, we expect
191  that the organ time series diverge according to germ layers, before finally separating by organ.
192  We visualized the uniform manifold approximation and projection* (UMAP) embedding of the
193  simulated time series results (Fig. 3ab), as well as the top principal components®
194  (Supplementary Fig. 2). In particular, we found that the UMAP representations of the
195  hypothetical mouse organ development diverged according to organ at later developmental
196  stages (Fig. 3a), but generally started from a common, central location in the embedding space
197  (Fig. 3b). This indicates that the developmental stage, rather than tissue differentiation,
198  dominates the simulated gene expression measurements at the earliest time points, while tissue-
199  specific genes begin to separate the embeddings at later developmental stages. At later time
200  points, we found that the simulated expression values for brain and cerebellum were more closely
201  grouped together, as well as early expression for the heart, ovary, and testis, consistent with the
202  ectoderm, mesoderm, and endoderm tissue germ layer classifications.!? This supports the existing
203  Dbiological theory that expression trajectories are most shared between organs at early
204  developmental stages before differentiation by germ layer and finally organ,!2133434 and shows
205  Sagittarius’s ability to extrapolate to unmeasured early developmental stages by discerning
206  common developmental trajectories for each organ across species.

207

208  Given the increasing tissue-specific signal in Sagittarius’s simulated gene expression vectors at
209 later time points, we then investigated which genes most contributed to the differentiation of
210  organ trajectories during development. Excluding the heart and cerebellum, which we found to
211 be the most developmentally distinct for many genes in Fig. 3a,b, we aimed to identify a gene
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212  that had similar expression across all organs at early developmental time points and diverse
213  expression patterns at later developmental time points. We found that Xrn2 expression levels
214 significantly differed across organs at later time points (ANOVA p-value < 1e-98), although all
215  organs were comparable at early simulated time points (ANOVA p-value > 0.05). Xrn2 is also one
216 of 12 protein-coding genes predictive of liver cancer prognosis, where high Xrn2 expression levels
217  indicate worse outcomes,” and we found that the liver in particular had lower simulated
218  expression levels than other organs at later developmental time points (Fig. 3c).

219

220  We then sought to further validate Sagittarius’s organ-specific extrapolation potential using the
221  Tabula Muris Senis single cell RNA-seq dataset.’® Although the Evo-devo dataset contains up to
222 14 bulk measurements for each mouse organ, the latest measurement is at postpartum day 63. In
223  contrast, the Tabula Muris Senis dataset contains measurements ranging from a 1-month-old to a
224  30-month-old mouse. We consequently simulated transcriptomic profiles for 140 time points,
225  beginning from postpartum day 14. We compared the Pearson correlation of the gene expression
226  over time between the simulated profiles and the Tabula Muris Senis data, and found that for
227  genes including Egflam, Smocl, Slc6a2, and especially Rpl38, which previous work has suggested
228  could regulate developmental processes in a tissue-specific way,* Sagittarius’s simulated aging
229  trajectory better aligned with the tissue trajectories in the Tabula Muris Senis dataset than the
230 Evo-devo measured mouse data alone (Fig. 3d). This again shows the value of the shared
231  reference space, which can identify patterns from species with later measured developmental
232  time points like human and rhesus macaque to inform simulated transcriptomes for mouse aging.
233  After applying Sagittarius to the Evo-devo dataset with the continuous time variable, we next
234  considered whether the model could successfully extrapolate unmeasured experimental
235  combinations in settings with multiple temporal variables.

236

237  Sagittarius simulates drug-induced expression for unmeasured cell line perturbations

238  We next sought to evaluate Sagittarius to extremely sparse multivariate data with multiple
239  continuous temporal variables, thereby exponentially increasing the space of possible
240  experimental settings. We applied Sagittarius to the larger, high-dimensional LINCS L1000
241  pharmacogenomics dataset.!> In the LINCS dataset, compounds are experimentally applied to
242 cell lines at specific doses and for a given treatment time before the gene expression vector of 978
243  genesis measured, although only 1.77% of possible drug and cell line combinations are measured.
244  Sagittarius models each treatment experiment in two continuous dimensions: dose and treatment
245  time. Each cell line is never experimentally treated with many of the drugs, and the perturbations
246  that are tested have sparse measurements over dose and time (Fig. 4a).

247
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248  To validate Sagittarius’s ability to extrapolate to new perturbation experiments, we considered
249  each dose and time combination for a single drug and cell line to make up the measured sequence
250 for that combination. We then designed three extrapolation tasks: complete generation,
251  combination & dose, and combination & time (Fig. 4b and Methods). For each task, we trained
252  Sagittarius on a subset of the LINCS dataset, withholding the remaining measurements as test
253  data. We then compared the Spearman correlation of Sagittarius’s simulated drug-induced gene
254  expression vector to a conditional Variational Autoencoder’s (cVAE’s)® simulated expression
255  vector for each of our test perturbations (Fig. 4c-e). We found that Sagittarius achieved an average
256  Spearman correlation of 0.84 per test drug for the complete generation task, relative to 0.79 for
257  the cVAE (Fisher transform and one-sided t-test p-value < 5e-2); an average correlation of 0.922
258  for the combination & dose task, relative to 0.876 for the cVAE (Fisher transform and one-sided
259  t-test p-value <5e-92); and an average correlation of 0.921 for the combination & time task, relative
260  to 0.809 for the cVAE (Fisher transform and one-sided t-test p-value < 5e-301). This indicates that
261  Sagittarius can simulate accurate drug-induced gene expression vectors for unmeasured drug
262  treatment experiments at doses and times that are not contained in the training data by aligning
263  all perturbations experiments to the shared reference space. The simulated drug-induced
264  transcriptomic profile enables an easy, unbiased search approach to drug sensitivity markers.
265  This can greatly increase our understanding of the molecular basis of cancer and of drug
266  response.

267

268 A drug sensitivity similarity network enables novel drug repurposing

269  As Sagittarius can compare the dose and time effects of each drug treatment experiment in the
270  shared reference space, we then investigated the drug-induced expression similarity of the
271  perturbation experiments for cancer drug repurposing. For each measured treatment in the
272  dataset, we simulated drug-induced gene expression vectors at 78 different dosages with a fixed
273  treatment time of 6 hours. We constructed a k-nearest-neighbors (KNN) graph Ggyy of
274  perturbation experiments, weighting network edges by the similarity of Sagittarius’s simulated
275  drug-induced expression values for the two nodes’ experiments. We next applied Louvain
276  community detection to Gk, resulting in four large communities. We used an independent drug
277  response dataset from Genomics of Drug Sensitivity in Cancer (GDSC)* to identify the half-
278  maximal inhibitory concentration (ICs) for every drug and cell line perturbation combination
279  that appeared in both the LINCS and GDSC dataset. Finally, we labeled each of our four
280  communities in Ggyy With the average ICso of all nodes within the community that had a label in
281  the GDSC dataset (Fig. 5a).

282
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283  We found that the communities in Ggyy demonstrated a pattern with respect to sensitivity, with
284  average ICso dosages of 1.68, 1.83, 1.90, and 2.40 uM respectively. In previous works, gene
285  expression has been widely used to identify the drug-induced and diseased-induced gene
286  expression signatures in drug repurposing studies,**° partly due to the scale at which analyses
287  can be efficiently performed and validated. As Sagittarius can accurately simulate expression for
288  any perturbation combinations, we next sought to apply Sagittarius to drug repurposing. To
289  evaluate this, we investigated Ggyy and found that nearby perturbation experiments in the KNN
290  network indicate potential drug repurposing opportunities. For example, we identified the 8-
291  experiment subgraph from the most sensitive community, shown in the inset of Fig. 5a.

292

293  The subnetwork’s MCF7 and A549 cell line perturbations are all also measured in the GDSC
294  dataset, with ICso values of 0.40, 0.89, 1.03, 0.49, 0.67, and 0.83 uM respectively. This demonstrates
295  the network’s potential for drug repurposing: Sagittarius connects to recent work for drug
296  repurposing based on cell-line gene expression signatures,® as the subnetwork includes A549
297  treated with Vorinostat, Gefitinib, and Selumetinib, each of which A549 is sensitive to; Sagittarius
298  also connects to existing work on repurposing for similar cell lines given a drug’s mechanism of
299  action,’! as the subnetwork includes both A549 and MCF7 treated with Gefitinib, to which they
300  are sensitive.

301

302  Importantly, as Sagittarius can simulate drug-induced expression profiles for any drug and cell
303  line combination at any dosage and time, our network also enables drug repurposing for entirely
304  new treatment combinations, where neither the drug nor the cell line needs to be the same as
305  known successful therapy. The 8-perturbation subnetwork also includes PC3 treated with
306  Pictilisib, which was colocated with the other perturbation experiments because Sagittarius
307 simulated differential expression signatures similar to those it simulated for the other six
308  experiments, although neither PC3 nor Pictilisib are present elsewhere in the subnetwork.
309  Although these experiments were not present in the GDSC dataset, previous work>? found that
310  Pictilisib inhibited proliferation of PC3 with an ICso of 0.28 uM. Similarly, HT29 treated with
311 Nintedanib is also placed in this subnetwork based on Sagittarius’s simulated profile,
312  representing another unique drug and unique cell line for the sensitive subnetwork. Nintedanib
313  was also found to have inhibited proliferation in the HT29 cell line with an ICso of 1.40 uM,* and
314  was shown to have significant antitumor activity in HT29 mouse xenograft models.>>** This
315  implies that Sagittarius can simulate perturbation experiments to identify candidate drug
316  repurposing targets across cell lines, cancer types, and therapeutic compounds, creating new
317  opportunities for inexpensive and unbiased drug screening as an initial step in the precision
318  medicine pipeline.

319
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320  Augmenting drug-induced expression improves drug response prediction

321  Given its drug repurposing potential, we next systematically evaluated Sagittarius on two large-
322  scale cell line drug response prediction datasets, GDSC and the Cancer Therapeutic Response
323  Portal (CTRP) dataset.** Drug-induced expression profiles have been useful for drug response
324  prediction,® but are expensive to measure compared to basal cell line expression, making
325  Sagittarius’s simulated drug-induced profiles especially valuable. We constructed a fully
326  connected neural network model to predict the GDSC ICso label for all drug perturbations on all
327  cell lines. We compared one version of this model trained on perturbation experiment data from
328  Sagittarius to another version trained on the experimentally measured LINCS drug-induced
329  expression data for perturbation combinations that also appeared in the LINCS dataset. The
330  Sagittarius-backed network achieved an average Spearman correlation of 0.46 per cell line,
331  compared to 0.004 for the experimentally-measured data version (Fig. 5b). In this case, the model
332  trained only on the experimentally measured dataset had such poor performance largely because
333  the dataset, which was the intersection of cancer drug and cell line perturbation experiments
334  contained in both LINCS and GDSC, was extremely small, while Sagittarius was able to simulate
335  datapoints that were not present in the measured dataset. Sagittarius most markedly improved
336  drug response prediction for the NSCLC cell line A549, which is the second most frequently
337  measured LINCS cell line, and for the drugs Bosutinib, Selumetinib, Vismodegib, and Olaparib,
338  which are among the most frequently measured drugs in the LINCS dataset (Supplementary Fig.
339  5). This shows that Sagittarius can take advantage of the many perturbation experiments to
340  inform better predictions for each drug and cell line, even when applied to unmeasured or
341  sparsely measured combinations.

342

343  We then repeated the experiment using drug sensitivity labels from CTRP. The model trained
344  with Sagittarius’s data had an average Spearman correlation of 0.52 per cell line, a 13.0%
345  improvement over model trained only with the available experimentally measured data (Fig. 5c).
346  The data from Sagittarius again had the largest benefit for the NSCLC cell line A549, as well as
347  the prostate cancer cell line PC3, and for the drugs Neratinib and GSK-461364, which again are
348  frequently measured in the LINCS dataset, although it struggled with the HER2-positive breast
349  cancer cell line SKBR3, which is less frequently measured (Supplementary Fig. 6). For both GDSC
350 and CTRP, Sagittarius was able to learn relationships between dose response curves for different
351  drug and cell line perturbations to predict other experiments’ treatment sensitivities, confirming
352  its ability to accurately predict drug response for new cancer drugs and cell lines.

353
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354  Improved cancer-essential gene prediction using drug-induced expression

355  In addition to drug response analysis, we also considered whether Sagittarius could predict
356  cancer gene essentiality using drug-induced expression from the LINCS dataset. We used the
357  Cancer Dependency Map (DepMap) dataset as labels for gene essentiality, independently
358 considering both the DEMETER version,* which uses short hairpin RNAs (shRNAs) to identify
359  the genes most crucial for cell viability and proliferation, and the CERES version,* which uses
360  CRISPR-Cas9 essentiality screens to estimate gene dependency. We created a restricted dataset
361  containing each cancer cell line and gene pair in the DepMap dataset for which the cell line was
362  also present in the LINCS dataset. Then, for each cell essentiality entry in the restricted dataset,
363 we found a candidate LINCS drug whose target matched the knocked-out gene in the cell
364  essentiality pair, hypothesizing that the drug’s inhibitory effect on a cell line is related to the cell
365  line’s dependency on the target gene.>® Using data from Sagittarius, we assigned each cell line
366 and gene pair in our restricted dataset to an inferred treatment vector for the cell line and
367 candidate drug. We trained a neural network regression model on this dataset to predict
368 DepMap’s cell essentiality score for the drug’s target gene. We evaluated the benefit of
369  Sagittarius’s simulated data by comparing this model to a neural network regression model
370  trained on experimentally measured LINCS data for DepMap pairs where a candidate drug
371  existed for the given cell line and gene.

372

373  The model trained using Sagittarius’s simulated data obtained a 0.789 average Spearman
374  correlation between the predicted and DEMETER gene essentiality scores for each cell line,
375  relative to 0.278 for the model trained only on experimentally available data (Fig. 5d). The
376  Sagittarius-backed model also had an average cell line Spearman correlation of 0.816 for the
377  CERES dataset, relative to 0.261 model trained directly on the measured LINCS data (Fig. 5e).
378  The Sagittarius data particularly improved both DEMETER and CERES predictions for well-
379  measured LINCS cell lines, such as the THP1 leukemia cell line and YAPC pancreatic cell lines
380  (Supplementary Fig. 7), confirming Sagittarius’s ability to simulate drug response data that can
381  identify the therapeutic potential of both a compound and a drug target gene for diverse cancer
382  types. We attribute the strong performance across many different cancer types and drugs to the
383  shared reference space, where dose- and treatment-time response can be compared across cancer
384  cell lines and compounds. We therefore believe that Sagittarius’s transcriptomic profile
385  simulation can bring benefit to future studies towards understanding the molecular basis and

386  mechanisms of cancer drug response.

387  Simulating mutation profiles for early-stage cancer patients

388  Having extrapolated transcriptomic time series in one- and two-continuous dimensions, we then

389  sought to apply Sagittarius to cancer survival time data, this time aiming to simulate somatic
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390 mutation profiles, rather than gene expression profiles, for cancer patients. It remains very
391  challenging to measure genomic profiles from patients with nascent tumors, as they are rarely
392  diagnosed at this stage, and yet these initial mutations can be the most informative as to the
393  cancer’s mechanisms and potential early-intervention therapies before other passenger mutations
394  accumulate.’” Nevertheless, measuring genomic data at scale, and particularly data from biopsied
395  tumor tissue, remains a significant challenge for nascent cancers.

396

397  We propose a novel problem formulation where we model a cancer type as a sequence of patients,
398  ordered by their survival time. In particular, we are interested in extrapolation to later time points
399  in the sequence, indicating longer patient survival times, because these represent the mutation
400  profiles of nascent tumors that are often very difficult to measure experimentally because they
401  have not yet been diagnosed (Fig. 6a).”® We used The Cancer Genome Atlas (TCGA) dataset” of
402  gene mutation profiles for cancer patients from 24 cancer types. Although this formulation can
403  help us extrapolate, it uses one time series for the entire cancer type. Therefore, it does not
404  represent the heterogeneity within a cancer type.®® This problem is more severe when some
405  patients in the sequence have censored survival times, resulting in a time point label in the
406  sequence that is potentially very different from the patient’s actual survival time. To mitigate this
407  issue, we propose a method to remove a patient from the cancer type sequence if their mutation
408  profile is very different from other patients with a similar survival time. In particular, we trained
409  a neural network to predict a patient’s survival time given their initial mutation profile, and
410  define similarity by the gradient of the network’s loss. We then considered the trained model loss
411  per patient and retained only the censored patients with an individual loss comparable to the
412  most challenging observed patients in that cancer type (see Methods).¢¢2 For the sarcoma (SARC)
413  cancer type, this led to the inclusion of 31 patients with a censored death event, expanding the
414  SARC time series to 115 patients (Fig. 6b). After this filtering step, we considered all remaining
415  censored patients’ final follow-up time to be the same as their death event time. Therefore, the
416  remaining patients in each cancer type sequence are more similar, and represent the majority
417  component of the cohort. We then divided the time series for a single cancer type based on patient
418  survival into a train and test split (Fig. 6a and Methods), and evaluated the average mutation
419  area under the receiver operating characteristic (AUROC) for the test patients.

420

421  We focused on the SARC and thyroid carcinoma (THCA) cancer types as case studies, restricting
422  the number of mutated genes we evaluated on to those most variable over time in more than one
423  cancer type (see Methods). In the THCA case study, Sagittarius had an average test set AUROC
424  0of0.72, a 49.0% improvement over a mean model trained solely on the observed THCA data (Fig.
425  6c). In the SARC case study, Sagittarius had an average test set AUROC of 0.73, which was an
426  11% improvement over a mean model trained solely on the observed SARC data (Fig. 6d).

427
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428  For the model trained with k=57 SARC training patients, Sagittarius particularly improved the
429  mutation AUROC for a test patient with an overall survival time of 76 months (Fig. 6e). Of the
430  evaluated genes, the patient’s clinical mutation profile is positive for a mutation in LRP1B, which
431  previous work has suggested leads to improved patient outcomes with immune checkpoint
432  inhibitors (ICIs) in sarcoma.®® The mean method predicts the most likely mutations for a patient
433  with a 76-month survival time as TP53, TTN, MUC16, DNAHS5, and OBSCN, reflecting the most
434  common mutations for the SARC patients with more severe disease progression and shorter
435  survival times, and assigns 0 probability to the LRP1B mutation. Sagittarius, on the other hand,
436  leverages cancer survival information from other cancer types as well as patterns within the
437  SARC training data to predict TP53, TTN, RYR2, LRP1B, and ADGRV1 as the most likely
438  mutations. ADGRV1 has been found to be mutated in approximately 45% of skin cutaneous
439  melanomas.® Furthermore, the correct inclusion of LRP1B in this list of likely-mutated genes
440  indicates that Sagittarius may have learned that patients with an LRP1B mutation are associated
441  with good ICI response for multiple cancer types,® and can translate that knowledge to the SARC
442  patient.

443  Tumorigenesis in the Hedgehog signaling pathway by simulating early-stage sarcoma
444  mutation profiles

445  Having confirmed our ability to simulate mutation profiles for sarcoma patients with longer
446  survival times, we retrained Sagittarius on our entire filtered dataset and then simulated gene
447  mutation profiles for 27 early-stage sarcoma patients (Supplementary Fig. 10). On average,
448  Sagittarius predicted that the most-likely mutations were in DNAH17, PREX1, EGFLAM,
449  FAM47B, DSEL, ARID2, TRPM1, NLGN1, PTCH1, and MYCBP2.

450

451  We found that many of these genes are related to the Hedgehog (HH) signaling pathway and
452  improper activation of the GLI oncogene (Fig. 6f), which some previous studies have connected
453  toimproved survival outcomes in sarcoma patients.®>* PTCH1, which has also been connected to
454  plexiform fibromyxoma,* basal cell carcinoma,® and medulloblastoma,® is a tumor suppressor
455  genein the HH pathway, and loss-of-function mutations in PTCH1 can lead to aberrant activation
456  of the HH pathway and consequent tumorigenesis.®” Furthermore, studies have found that the
457  MYC oncogene directly regulates GLI1 expression in Burkitt lymphoma cell lines,” while the
458  MYCBP2 gene promotes MYC degradation,” and lymphoblastic leukemia patients have been
459  found to have both high c-MYC expression and low MYCBP2 expression.”? Similarly, the ARID2
460  gene directly interacts with GLI17 as a cord subunit of the SWI/SNF chromatin remodeling
461  complex.”>” In addition, the PREX1 gene is a member of the PI3K-Akt signaling pathway, which
462  has been associated with GLI code regulation” and cross-talk with the HH pathway in
463  melanoma.®” The DNAH17 gene encodes a protein that makes up a subunit of the primary
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464  cilium’s basic structure;”” in turn, the primary cilia are both positive and negative effectors of the
465 HH signaling pathway.”””8 In addition to these molecular connections to the GLI oncogene, we
466  found that the EGFLAM gene has been shown to induce activation of the PI3K-Akt signaling
467  pathway” containing PREX1. Previous studies have also found that NLGN1 was significantly
468  enriched with the HH pathway in a study of colorectal carcinoma.®

469

470  We were therefore able to identify multiple connections to the HH signaling pathway in
471  Sagittarius’s simulated early-stage sarcoma mutation profiles, and we connected the most likely
472  predicted mutations with recent work in sarcoma studies. Sagittarius’s reasonable simulated
473  profiles indicate that the mutational patterns from other TCGA cancer types with more early-
474  stage measurements in the shared reference space, combined with the sarcoma-specific patterns
475  learned by the model’s nonlinear mapping from the latent space, point to the HH signaling
476  pathway and particularly the hyperactivation of the GLI oncogene as potentially significant
477  sources of tumorigenesis in sarcomas.

478

479 Discussion

480  Sagittarius enables simulation of extrapolated gene expression profiles from sparse,
481  heterogeneous experimental datasets without requiring aligned time points or batch correction
482  between different experimental conditions. By augmenting the measured data with our
483  simulated data, we are able to trace shared lineages between organs in a germ layer in mouse
484  development. We can also suggest new therapeutic compounds to treat cancer cell lines by
485  comparing simulated drug-induced expression profiles from diverse experiments, which are not
486  limited to sharing a cell line or therapeutic compound with a known successful therapy. Finally,
487  we can simulate early-stage cancer patients’ mutation profiles to identify potential tumorigenesis
488  drivers in sarcoma.

489

490  Although Sagittarius can extrapolate to new time points, the model still struggles when the
491  developmental time point of interest is outside of the range of any seen developmental stages
492  measured in the training data. We identify this limitation in the Evo-devo dataset extrapolation
493  task, for instance, where the model performs worst on human extrapolation compared to all other
494  species because the time points to simulate come from aging and senescent organs, while the
495  latest measured developmental time points correspond to earlier development.!? Future work
496  could combine Sagittarius with time series forecasting work to improve extrapolation beyond the
497  measured developmental age range. Similarly, Sagittarius is unable to extrapolate at precise time
498  points. The shared reference space, while enabling transfer between heterogeneous time series
499  without requiring alignment, warps the queried and measured time points to align with
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500  Dbiological age. This enables an understanding of the relative trajectory over time, but does not
501 correspond to exact time points outside of the training set. More aggressive regularization and
502  optimization techniques enforcing the absolute difference in measured age as well as biological
503  age could improve this. Furthermore, Sagittarius models a single time series per experimental
504  condition in the reference space, potentially obscuring some heterogeneity within the condition
505 itself, as we note with our cancer type time series formulation. In future work, we could introduce
506  a hierarchical time series component to Sagittarius, explicitly modeling the heterogeneity in a
507  single measured condition.

508

509  Sagittarius is inspired by decades of work in modeling cell dynamics, including the recent works
510  PRESCIENT® and pseudodynamics.®? The key difference between Sagittarius and these works is
511  that their diffusion processes specifically model cell-level lineage tracing and do not extend to
512  genomic profile simulation. Sagittarius, on the other hand, learns a shared trajectory in the
513  common reference space and explicitly simulates expression or mutation profiles to augment

514  measured datasets and improve downstream analyses.

515  Figure legend

516  Fig.1Sagittarius model overview. a, Sagittarius is useful in settings with many diverse time series
517  measurements, such as developmental gene expression data across species and organs, many
518  combinations of which are unmeasured. The measurements in each time series are also sparse
519  and unaligned. b, For each time series, Sagittarius computes a conditional high-frequency
520 embedding of the measured time points and a conditional embedding of the gene expression
521  measurements at each time point based on the species and organ. It then uses a continuous, multi-
522  head attention transformer to map the embedded time points and expression vectors to the
523  reference space. ¢, The continuous transformer takes each pair of species- and organ-conditioned
524  time and expression embeddings and learns a mapping to the regular reference space, translating
525  from measured age to a shared biological age. d, Users can request simulated expression vectors
526  from Sagittarius, such as the expression profile of a human 2-year-old heart that has not been
527  measured in the original dataset (a). Sagittarius maps the request from the regular reference space
528  back to the data space to simulate the unmeasured profile.

529

530  Fig. 2 Gene expression simulation for extrapolated time points in later-stage development. a-f,
531  Bar plots comparing the performance of Sagittarius and existing approaches when extrapolating
532  to the four latest time points in the Evo-devo dataset. Test sequences are subdivided by species
533  (a-c) and by organ (d-f). For Pearson correlation, comparing genes (a,d) or comparing time points
534 (b,e), higher correlations indicate better performance; for RMSE (c,f), lower error indicates better
535  performance. The * indicates that Sagittarius outperforms the next-best-performing model in the
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536  metric, with significance levels of t-test p-value < 5e-2 for ¥, t-test p-value < 5e-3 for **, and t-test
537  p-value <5e-4 for ***. All t-tests are one-sided, and we use the Fisher transform for the correlation
538  metrics to transform the values to a normal distribution.

539

540  Fig. 3 Mouse transcriptomic velocity across organs. a,b, UMAP plots showing simulated mouse
541  gene expression from E5.5 to P63 for 7 organs, colored by organ (a) and time (b). The arrows in
542  (a) indicate the transcriptomic velocity of each organ. ¢, Bar plot comparing the simulated
543  expression of Xrn2 at early development (E5.5-E8) to young mouse (P8-P63) across five organs.
544  Xrn2 expression is not statistically different between the brain, kidney, liver, ovary, and testis
545  organs at the early development (ANOVA p-value > 0.05), but differs between organs at the
546  young mouse time range, particularly with lower expression levels in the liver relative to other
547  organs (ANOVA p-value < 1e-98). d, Bar plot examining the consistency of gene expression
548  temporal patterns between simulated data and scRNA-seq data for Egflam, Smocl, Slc6a2, and
549  Rpl38 in different tissues over time. Better predictions are closer to the Tabula Muris Senis dataset
550  correlations for cell types within each tissue that are summarized by the boxes, while the star
551  shows the Pearson correlation from Sagittarius’s simulated correlation for aging mouse tissues
552 (140 time points beginning at P14), and the diamond shows the correlation from mouse organs
553  measurements in the Evo-devo dataset.

554

555  Fig. 4 Drug-induced gene expression simulation at unmeasured experimental combinations,
556  doses, and times. a, The LINCS pharmacogenomic dataset contains gene expression
557  measurements from a set of experiments where a cancer cell line is treated with a therapeutic
558  compound. The set of measured cell lines and compounds is sparse, with less than 1.77% of
559  possible experiments measured. The measured experiments are also only measured at select dose
560 and treatment times, and the entire dataset includes a limited number of dose and treatment
561  times. b, Illustration of the three extrapolation tasks we evaluate for the LINCS dataset: complete
562  generation, where we simulate an unmeasured cell line and compound experiment at both a dose
563  and time that are unmeasured by any experiment in the dataset; combination & dose, where we
564  simulate an unmeasured cell line and compound experiment at a time that has been measured in
565  the dataset but a dose that is unmeasured by all experiments; and combination & time, where we
566  simulate an unmeasured cell line and compound experiment at a dose that has been measured in
567  the dataset but a time that is unmeasured by all experiments. c-e, Scatter plots comparing the
568  average Spearman correlation of simulated test combinations from Sagittarius and the existing
569  cVAE model for each test drug on the complete generation (c), combination & dosage (d), and
570  combination & time (e) extrapolation tasks.

571

572  Fig.5Drug and cell line treatment efficacy simulation analysis. a, KNN network where each node
573  represents a drug and cell line combination, with edges between the most similar drug-induced
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574  expression effect. The four communities in the graph are shown in different colors and labeled
575  according to the average GDSC-measured ICso dose of that community, measured in uM. The
576  inset shows a connected 8-node subgraph from the sensitive community, made up of the NSCLC
577  cell line A549 treated with Selumetinib, Gefitinib, and Vorniostat; the breast cancer cell line MCF7
578  treated with Gefitinib, MK-2206, and Palbociclib; the prostate carcinoma cell line PC3 treated with
579  Pictilisib; and the colorectal adenocarcinoma cell line HT29, treated with Ninetedanib. b,c, Bar
580  plot (b) and scatter plot (c) of Spearman correlation between predicted and GDSC-measured (b)
581  or CTRP-measured (c) ICs doses per cell line, comparing a neural network trained with imputed
582  data from Sagittarius and a neural network trained without any imputed data. Points above the
583  y = xline are cell lines where Sagittarius’s imputed dataset improved the downstream prediction
584  accuracy. d,e, Scatter plot of Spearman correlation between predicted and DepMap-measured
585  cancer gene essentiality scores for each cancer line, with the DEMETER (d) and CERES (e)
586  DepMap versions. All points are above the y = x line, meaning Sagittarius improved downstream
587  gene essentiality prediction performance for all cell lines on both DepMap versions.

588

589  Fig. 6 Early cancer patient mutation profile simulation. a, [llustration of the training and testing
590  splits for a given cancer type in the TCGA extrapolation task, where training patients have the
591  shortest survival times and test patients have longer survival times for that cancer type . b, Violin
592  plot of the survival time regression model’s absolute error per patient for the SARC cancer type,
593  divided according to the patient’s censoring label. We remove all patients with a loss above the
594  dashed line from the dataset, and train Sagittarius only on the patients below the dashed line. ¢,d,
595  Plot of the average simulated mutation profile AUROC for each of the THCA (c) and SARC (d)
596  cancer type test splits, ordered according to the shortest survival time in that test split. e, Scatter
597  plot comparing the per-patient simulated mutation profile AUROC from Sagittarius and the
598  mean comparison approach for the SARC test split including patients with an observed death
599  event more than 37 months after diagnosis. Points above the y = x line indicate that Sagittarius
600 had a better simulated mutation profile than the comparison approach. f, Illustration of the ties
601  between the GLI oncogene in the Hedgehog (HH) signaling pathway and the PTCH1, PREX1,
602 MYCBP2, ARID2, and DNAHI17 genes that Sagittarius predicted as among the most likely
603  mutations in early-stage sarcoma patients.

604

605  Supplementary Fig. 1 Gene expression simulation performance summary statistics for Evo-devo
606  extrapolation task. a-c, Bar plot of Pearson correlation comparing genes (a), Pearson correlation
607  comparing time points (b), and RMSE (c) of the simulated expression profile and measured
608  expression profile when extrapolating to the last four measured timepoints from each species and
609  organ combination in the Evo-devo dataset for Sagittarius and the comparison approaches. For
610  Pearson correlation, comparing genes or comparing time points (a,b), higher values indicate
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611  Dbetter performance; for RMSE (c), lower values indicate better performance. Error bars indicate
612  standard error.

613

614  Supplementary Fig. 2 Mouse transcriptomic velocity across organs. a,b, PCA plot showing
615 simulated mouse gene expression from E5.5 to P63 for 7 organs, colored by organ (a) and time
616  (b). The arrows in (a) indicate the transcriptomic velocity of each organ. The first PC shows most
617  variation with respect to time, while the second shows most variation with respect to organ.
618  Organ annotations in (a) are added to help differentiate between organs, especially in the case of
619  overplotting.

620

621  Supplementary Fig. 3 Mouse gene expression simulation performance for Evo-devo
622  extrapolation task. a-c, Bar plot comparing Sagittarius and existing approaches in terms of
623  Pearson correlation comparing genes (a), Pearson correlation comparing time points (b), and
624  RMSE (c) of the simulated mouse expression profile and measured mouse expression profile of
625  each organ when extrapolating to the final four measured sequence time points in the Evo-devo
626  dataset. For Pearson correlation, comparing genes or comparing time points (a,b), higher values
627  indicate better performance; for RMSE (c), lower values indicate better performance.

628

629  Supplementary Fig. 4 Time series measured in the restricted LINCS dataset. a, Heatmap
630 indicating the drug and cell line combinations that have time series measurements included in
631  the LINCS dataset we use after initial processing. Cell lines tend to be either relatively well-
632 measured or very sparsely measured. b, Histogram of the sequence lengths for all measured drug
633  and cell line combinations. The length of the sequence is the number of unique dose and treatment
634  time combinations that the therapeutic combination is measured at.

635

636  Supplementary Fig. 5 LINCS measurements with the best-performing cell line and drugs for the
637 ICso prediction task with the GDSC dataset. a,b, Bar plot of the number of measured drug
638  treatments per cell line (a) and cell lines treated per drug (b) in the LINCS dataset. The A549 cell
639  lineis highlighted as the cell line with the most-improved predictions from Sagittarius’s imputed
640  dataset (a). The drugs with the most-improved predictions, Selumetinib, Bosutinib, Olaparib, and
641  Vismodegib, are also highlighted (b).

642

643  Supplementary Fig. 6 LINCS measurements with the best-performing cell line and drugs for the
644  ICso prediction task with the CTRP dataset. a,b, Bar plot of the number of measured drug
645  treatments per cell line (a) and cell lines treated per drug (b) in the LINCS dataset. A549 and PC3,
646  the cell lines for which Sagittarius’s simulated data most improves the predictions, are
647  highlighted. SKBR3, which Sagittarius struggles on, is also highlighted (a). GSK-461364 and
648  Neratinib are highlighted as the most-improved drugs with Sagittarius’s imputed dataset (b).
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649

650 Supplementary Fig. 7 LINCS measurements with the best-performing cell lines for the gene
651  essentiality prediction task with the DEMETER and CERES DepMap datasets. Bar plot of the
652  number of drug treatment experiments measured in the LINCS dataset per cell line. Sagittarius’s
653  imputed dataset provided the most benefit are A549, MDAMB231, THP1, HS578T, SKBR3, YAPC,
654  VCAP, OCILY19, and U20S, which are highlighted.

655

656  Supplementary Fig. 8 Distribution of TCGA patients per cancer type. Comparison of patient
657  counts if all patients are used in the analysis, patient counts if only retained patients (including
658  all observed patients and some censored patients) are used in the analysis, and patient counts if
659 only observed patients are used in the analysis. By construction, the number of total patients is
660 larger than the number of retained patients, which is in turn at least as large as the number of
661 observed patients. Retaining some censored patients according to the individual survival
662  prediction loss could improve model power without corrupting the time series formulation.

663

664  Supplementary Fig. 9 THCA censored patient analysis. Violin plot of the survival regressor’s
665  absolute error for each THCA patient, subdivided into an observed group and a censored group.
666

667  Supplementary Fig. 10 SARC training and extrapolation time point distribution. Histogram
668 showing the measured survival time of patients in the SARC time series as the available sarcoma
669 training data and the extrapolation time points used to simulate the expression profile of an early-
670  stage sarcoma patient.

671

672  Supplementary Fig. 11 Normalized mutation rate and survival time for Sagittarius’s predicted
673  early-stage sarcoma mutations. a-j, Bar plot of the Spearman correlation of survival time and a
674  patient’s mutation normalized by their total mutation load for the top-10 predicted mutations in
675  simulated early-stage sarcoma patients, DNAH17 (a), PREX1 (b), EGFLAM (c), FAM47B (d), DSEL
676 (e), ARID2 (f), TRPM1 (g), NLGN1 (h), PTCH1 (i), and MYCBP2 (j). We show the Spearman
677  correlation for each cancer type where at least two patients in the time series have a mutation in
678  the gene.

679

680  Supplementary Fig. 12 Normalized mutation rate and survival time for GLI mutations. a,b, Bar
681  plot of the Spearman correlation of survival time and a patient’s mutation normalized by their
682  total mutation load for the GLI2 (a) and GLI3 (b) genes, which are transcription factors in the
683  Hedgehog signaling pathway. We show the Spearman correlation for each cancer type where at
684  least two patients in the time series have a mutation in the gene.

685
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686  Supplementary Fig. 13 Mutation frequency across cancer types for Sagittarius’s predicted early-
687  stage sarcoma mutations. a-j, Bar plot of the percentage of patients in each cancer type with a
688  mutation in the DNAH17 (a), PREX1 (b), EGFLAM (c), FAM47B (d), DSEL (e), ARID2 (f), TRPM1
689 (g), NLGN1 (h), PTCH1 (i), and MYCBP2 (j) genes. We show a percentage for each cancer type
690  where at least one patient in the time series has a mutation in the gene.

691

692  Supplementary Fig. 14 Mutation frequency across cancer types for GLI mutations. a,b, Bar plot
693  of the percentage of patients in each cancer type with a mutation in the GLI2 (a) and GLI3 (b)
694  genes, which are transcription factors in the Hedgehog signaling pathway. We show a percentage
695  for each cancer type where at least one patient in the time series has a mutation in the gene.

696

697 Methods

698  We define the input heterogeneous time-series dataset as D = {(x;, ¥;, t;)}i=;. The x; € RT*™ are

699 the measured time series input for sequence i, where each measurement is M-dimensional and

700  the time series is measured at T timepoints; y; € {1,..., Cj}c are the C experimental variables for
701 time series i, with y;; €{1,...,C;} for C; possible values for the jth experimental variable; t; €
702  R®*T are the B continuous variables for time series i, with t; ;[r] denoting the value of the jth
703  continuous variable associated with the rthe measurement of time series i, x;[r]. In particular,
704 B =1in the Evo-Devo!'? and TCGA?¥ studies, while B = 2 in the LINCS' study, where we model
705  both dose and time. We further assume that (x;, y;, t;) ~ X, where X is the space of all possible
706  measurements. Sagittarius simulates a sample (X|y,t)~X for a user-specified combination of
707  experimental and continuous variables that may not be measured in dataset D.

708

709  As a first step, Sagittarius embeds the individual measured datapoints x;[r] into a low-
710  dimensional generative space, conditioned on the associated experimental variables. Formally,
711 we sample from the learned Gaussian space according to

712 wilr], oi[r] = qe (xi[r], yi) zi[r]~N(u[r], o:[r]),

713 where z;[r] € R? with d < M. For brevity, we often write these two steps jointly as z(x; , y;)[r].
714 Weregularize this learned Gaussian space by imposing the standard-normal prior, p(z) = N(0, ).
715

716 The second component of the model is a continuous transformer. In order to map time series to
717  the shared reference space, the user defines both a temporal basis range (9].(0), 9].(1)) for each of the

718 j={1,...,B} continuous variables, as well as S + 1, which defines the number of time points in
719  the reference space. To learn robust and compact representations from the input time series, we
720  choose S suchthatS +1 < T.Given these parameters, Sagittarius defines the fixed temporal grid
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M _

721 tref,j € RS+1: tref,j[T] = 9](0) + TjT]

722 for the tth reference point 7 € {0,-:-,S}. We further define the continuous attention embedding
723  function

724 i Cp[rDIv] = sin (fiytip[r] + aflsy)

725  for the bth continuous variable at dimension v of the continuous time embedding for each
726  attention head h, where the continuous embedding dimension V and number of attention heads
727  H are model hyperparameters, and w and « are fixed scaling and shifting terms. We further
728  combine the embeddings for each of the continuous variables to the complete continuous
729  embeddings

730 YR (e [r]) = @p= i (tip[r]) YR (trerlt]) = ®p=1¥iTy (trepplT]),
731 where @ indicates vector concatenation.
732

733 Inthe transformer model framework, we define the hth attention head’s key for time series i and
734 the regular space’s query as

735 K] = fens (v, Wi 6 IrD) a5melt] = g5 (Wi (trer[71)),
736 where both ki'°[r] and q;"*“[1] are di-dimensional vectors. We project the embeddings of the

737  measured time series embeddings z(x; ,y;) to Sagittarius’s regular reference space according to

_ A T . exp(kfiIrLag ™)) /\di)
738 Zres (X, Y t)[T] = Xh=1  Zr=1 2(Xi,¥0)[r] Iro exp( kEEIraE Tl /di)

739  producing the embeddings z.¢(x;, y;, t;) in the regular reference space for each of the S + 1 values
740  ofrT.
741

742 The decoder layer of our continuous transformer follows a very similar framework, decoding

743  from the regular reference space back to the time points of interest. Specifically, we let

744 nec(tplrDIv] = sin (0%t pr] + afls,)

745 and

746 r‘fec(tj [T]) = ®j-; Icli,%c(tj,b [r]) 1/Jr(fec(tref [T]) = eagzlwg,ebc(tref,b [T])-
747  We further define

748 kieclz] = filef (Wi (trer[r])) aioclr] = giiss (v, vie(ylr]))

749  tobe the decoding layer’s key and query values, respectively. Finally, we convert from the regular
750  time series in the reference space back to the irregular time series with
exp( Kl afsr) /)
25y exp( kECTLafS ) k)
752  If we take j = i, then this is equivalent to encoding to and from the same sequence; if we take j #

751 2i(xoyi toy; )] = Bhar Tico Zrer(xi,yi, t)lr]

753 i, then this encodes one sequence and decodes to another.
754
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755  Finally, we convert our time series Z; (xi Vit Y ,tj) back from the latent embedding space to
756  the data space, with

757 % (e yiti 5. 4) = po (2 (xi, vi ti, v 45), 37)-

758  We train our model end-to-end with the loss function L(¢,v,v,v’,v’, 8), which we denoteLg,(.)

759  for brevity, as
760 Loag() = E(y, 1 ex [Bewi i e~ [Eq;(zdxi yollogpe (%1%, yi,ti, . 4;) = BDro(as (zilxi, y0) |
761 p(Z))]] |,

762  where Dk, denotes the Kullback-Leibler divergence and f is a regularization weighting
763  hyperparameter.

764

765  During model training, we train on both the reconstruction setting (j = i) and a simulation setting
766  (j # i). The specifics for each experiment are described in their respective sections. After model
767  training, we simulate new observations for unseen combinations of experimental variables and
768 at unmeasured time points. All we require is that, for each experimental variable ¥},
769  3(x;,y;,t;) € D:y;p = Jp. We can then produce simulated data from a source time series i, which
770  can either be randomly chosen from the available dataset or selected specifically for the

771  generation task.
772

773  Evo-devo dataset processing

774  The Evo-devo dataset!? contains gene expression vectors for 7 species and 7 organs measured at
775  multiple pre- and post-natal time points. We first mapped all species' genes to their human
776  orthologs using their provided Ensembl gene IDs and the python pybiomart package;® if no
777  ortholog was found, we discarded that gene. We then took the intersection of all identified human
778  orthologs for each species as our starting gene list. This identified 5,037 common orthologs across
779  the 7 species. The observations for each species were given as strings, which were measured in
780  different units according to the species. As a pre-processing step, we ordered the observed
781  timepoint labels for each species and thereafter referred to that timepoint by its position in the
782  corresponding species’s ordered list to produce a common vocabulary. Finally, for the organ and
783  species combination y; = [species;,organ;] € {1,...,7}?, we took the indexed timepoint
784  representations t; for each measured gene expression profile from that experimental correlation
785  to construct the time series x;. We did this for each of the 48 species and organ combinations in
786  the dataset to produce Deyo—gevo = {(Xi, Vi, ti)}?il.

787  Existing models and Evo-devo training
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For all models that required hyperparameter optimization, we randomly selected 20% of the
measured data to use as a validation set. We did model hyperparameter selection on one model
initialization that we then used for all later initializations; we used the validation set for training
termination on all model initializations. For each model, we stopped training when the validation

loss had not dropped for 250 epochs and saved the model parameters with lowest validation loss.

Mean: The mean baseline model, which has no hyperparameters, simply simulates data as
- 1 . . . . . .
x;[t] = ;ZZ: 1x;[r]; that is, the predicted expression for each gene at any timepoint of interest t

is the average of the gene expression across all measured timepoints.

Linear: The linear baseline model, which has no hyperparameters, first defines a weight

Ai,t = 0 lf t < mm(tl),

Aig = 1if t > max(t;);

. t—-r .
A = max < min (—)) otherwise.
! TEt;: <t \ SEt;: s2t \S—T
Then, the linear model simulates expression at time t as
X;[t] = max (1 - Ai,t)xi [r] + min A;x;[s].

ret;:rs<t SEt;: s=t
Note that, in the extrapolation setting, the linear baseline therefore simulates a gene expression

vector identical to the expression vector of the nearest temporal measurement.

Neural ODE: We learn a set of single-sequence neural ODE models?® that take observations from
a single (x;,y;,t;) sequence. We train 48 such models, one for each species and organ
combination. As the experimental conditions y; are constant within a single sequence, we reduce
the task inputs to (x,t). We computed an ODE for both the forward and backward direction of
the sequence as

X,[r] = max x[s]+ ' fo(x[t]dt

SEt;: SsT t=s
o _ , T
X_[r] = Serg}}glzrx[s] + J._ 9o (x[tDdt.

In the case where X7 or X_ requires extrapolation (i.e., there is no such s to satisfy the constraint),
we set X5[r] = X¥_[r]. In order to empirically compute the integrals we used a step size of 4, =
0.1 and the python torchdif feq package.?®* We parameterized fy(.) and g (.) using a mutli-
layer perceptron (MLP) with two hidden layers of the same size as the input. Finally, we combine
the forward and backward results to produce the final estimate

2[r] = 3@ [r] + 2 [r]).

We trained the model using the Adam optimizer® and a learning rate of 1e-3.
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822  RNN: We learn a set of single-sequence bidirectional gated recurrent unit (GRU)*” models to learn
823  the dynamics for a single (x;,y;,t;) sequence, again reducing the problem input to (x,t). We
824  defined a time step 4, = 1 between observations of interest. At each time point, we computed
825  z. = q¢(x[r]) for an MLP q4(.) as the embedding for each observation in the time series, and
826  computed

827 27 = q4(pe(h?)) o= 98 @ h) i t € £ 5 iy = g™ (27, by otherwise,

828  where hy’ = 0. Similarly, we define the backward GRU as

829 25 =qu (pe (he < =gz, k) ift € t;; hE, = g™ (25, hY) otherwi
Zt =(q¢ (PG (h )) t+1 = Jg (z¢, he)ift € t;; hyyy e (2f, ht') otherwise,

830  with h7 = 0. Finally, we combine the forward- and backward directions to produce the simulated
831  gene expression profile

832 o) = po (; (h7 + hr))

833  for an MLP py(.).

834

835  We used a embedding dimension of z;”, z, hy', hi” € R¥, and used two hidden layers, each with
836 1024 hidden neurons, for q4(.) and pg(.). We trained the model end-to-end with the Adam
837  optimizer® and a learning rate of 1le-3.

838

839 mTAN: We trained a discretized multi-time attention network (mTAN)* using the Adam
840  optimizer® and a learning rate of le-3. As the mTAN module does not handle experimental
841  variables, for each time series (x;,y; ,t;) the model received the reduced input (x;,t;). We used
842  alatent embedding dimension of 32, a default temporal embedding dimension of 16, 8 attention
843  heads, and 4 temporal reference points. The model learned the temporal embedding in the
844  transformer's encoder, and fixed the temporal embedding in the transformer's decoder.

845

846  cVAE: We trained a conditional variational autoencoder (cVAE)? to learn p(x;[r] | ¥; , t;[r]) for
847  the Evo-devo dataset. We trained the model using the Adam optimizer® and a learning rate of
848  1le-3. We used a batch size of 128 gene expression profiles, since the model takes individual
849  measurements as input rather than full time series. We used a model latent dimension of 32 with
850  symmetric MLPs for the encoder and decoder. We tried both 2- and 3-hidden-layer networks,
851  each hidden layer with 1024 hidden units. We also varied the  weight for the KL-divergence loss
852  term with § € {0.7,1.0}. After a hyperparameter search, we selected the 2-hidden-layer encoder
853  and decoder networks and set f = 1.0.

854

855 CPA: We trained a compositional perturbation autoencoder (CPA)* using an embedding
856  dimension of 32 and batch size of 128. In the model, we considered the time to be independent of
857  the organ label (the covariate) and dependent on the species label (the perturbation). We used a


https://doi.org/10.1101/2022.12.24.521845
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.24.521845; this version posted December 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

858  patience of 5, autoencoder and temporal learning rate of 1le-3 and weight decay of 1e-7, and an
859  adversary learning rate of 1e-5 and weight decay of 1e-10. We used an autoencoder width of 1024
860  units and tried an autoencoder depth of both 2- and 3 hidden layers. We used an adversary width
861  of 16 and depth of 2, with 16 adversary steps. We also tried using both an MLP and a logarithmic
862  sigmoid to represent the temporal curve. After hyperparameter search, we chose the 2-hidden-
863 layer autoencoder and logarithmic sigmoid temporal curve.

864

865  Sagittarius: We used a latent space of dimension d = 32, a temporal range of interest (6(?,0D) =
866  (0,25), and a reference time series length S+ 1 =4. We chose H = § attention heads for our
867  transformer layers, where the temporal embedding is 8-dimensional in both the encoder and
868  decoder. We set the key- and query dimension d;, = 32 for the transformer. We used a batch size
869  of 8 time series, and the Adam optimizer® with a learning rate of 1e-3. Finally, we used our batch
870  size to set f = 0.1667 for our empirical loss Lgq4(. ).

871

872  We used symmetric MLPs to learn g¢ (x; ,y;) and pg (z“j (xi,yi,t; Vi tj)) in Sagittarius’s encoder
873  and decoder respectively. We considered both 2- and 3-hidden-layer MLP architectures, with
874 1024 hidden units in each layer. We embedded the species and organ values for each time series
875  into compact representations as an initial step in both the g; (.) and pg (. ) networks; we considered
876  either 2- or 8-dimensional embeddings for each of the species and organ labels. We also
877  embedded the species and organ labels in the transformer encoder's key and decoder's query
878  representations, and tried both 4- and 8-dimensional embeddings for each of the species and
879  organ labels in the transformer. Using the validation set, we selected a 3-layer MLP for both g (.)
880  and py(.), a2-dimensional embedding for both the species and the organ labels in q; (.) and pg(.),
881  and a4-dimensional embedding for both the species and organ labels in the transformer modules.
882

883  During training, we used the reconstruction objective for each available time series, setting j = i
884 fori=1,...,48in Lg44(.). We also included the following 4 simulation objectives during training.

885 1. Temporal generation: we randomly selected 12 time series from our training dataset. For
886 each of these time series, we constructed a new training input x;- where we masked out
887 an additional three time points from the sequence. The masked time points were added
888 as a partner training sequence X;".

889 2. Same-species generation: we randomly selected 12 time series from our training dataset.
890 For each of these, we appended them as new training points x; and randomly selected
891 another training sequence that had the same species label but different organ label, which

892 we added to our training data as the partner sequence x;".
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893 3. Same-organ generation: equivalent to the second, we randomly selected 12 time series x;’
894 from the training data and paired them each with a time series x;° that shares the organ
895 label but has a different species label.

896 4. Random generation: we randomly selected 12 time series X, and partner time series X;-
897 from the dataset.

898  Sagittarius was then also trained a generation objective, formulated according to the empirical
899  version of the loss term Lg,,(.), with i =i"and j = j".
900

901 Evo-devo quantitative extrapolation experiment

902  For the quantitative extrapolation experiments, we masked the latest four time points available
903  for each time series in the Evo-devo dataset.!? We then trained all models on the unmasked
904  portion of the dataset. This resulted in 471 measurements to use for training or validation and 192
905 test measurements. At evaluation time, we used the models to predict the expression vectors on
906 the masked time points and compared the simulated results from each model with the
907 measurements in the dataset.

908

909  Asaninitial pre-processing step, we restricted the gene expression vector of the 5,037 orthologous
910  genes in the dataset using the Augmented Dickey-Fuller (ADF) test, which tests for stationarity.
911  We randomly selected one species and organ time series, which was the rabbit heart time series.
912  Based on that combination, we retained the genes for which the ADF test failed to reject the null
913  hypothesis that the gene was non-stationary over time and discarded all of the others, using a
914  significance threshold of p <0.05. This resulted in 4,533 retained genes.

915

916 Evo-devo dataset evaluation

917  To evaluate the simulated gene expression vectors, we considered three metrics: root mean
918 squared error (RMSE), average Pearson correlation comparing genes, and average Pearson
919  correlation comparing time points. Using T; to denote the number of measurements for the ith
920 time series, x;[t] to denote the Evo-Devo dataset’s measurement for the ith time series at time
921  point t, and %;[t] to denote the model’s simulated measurement for the ith time series at time
922  point t, we defined the model’s test RMSE per sequence as

923 RMSE; = \/iz“ & [t] = x[t]?,

t=T;-3
924  with an overall model average test RMSE of
925 RMSE = — ¥, RMSE;.
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To determine whether Sagittarius was statistically better than the comparison approaches in
terms of RMSE, we used the one-sided paired t-test between Sagittarius’s RMSE per sequence
and the per-sequence RMSE of the comparison approach that performed best on average.

For the Pearson correlation (comparing genes), and using ppeqrson to denote the Pearson
correlation computation, we defined the model’s test correlation (comparing genes) per

sequence as

pi(genes) = - Zt ;-3 Ppearson (&[t], x:[tD,
with an overall model average test Pearson correlation (comparing genes) of
154
p(genes) — Eziil pi(genes).

To define the Pearson correlation (comparing time points), with x;[t, g] and %;[t, g] used to
denote expression of gene g at time point t from time series i from the Evo-Devo-measured and
model-simulated gene expression respectively, we first defined

xi[Ty = 3: Ty, g1 = [[Ti = 3, gl [Ty — 2, 9], (T — 1, 9], %:[Ti, 911
and

&[T —3:T;, g] = [%[T; — 3,9], %[T; — 2,91, %[T; — 1, g1, %[Ti, 911
We then defined the model’s test correlation (comparing time points) per sequence as

pi(times) = 1533 24533 ppearson(xl[ —3:T;, g] xl[ —3:T;, g])
With an overall model average test Pearson correlatlon (ranked by time points) of
p(times) — Z (tlmes)

To assess whether Sagittarius statistically outperformed the comparison approaches in terms of

plaenes) and ptimes) yyve first computed the Fisher z-transformation® of the correlation values,

2(p) = 31 (1=2)

for some correlation p. Then, we used the one-sided paired t-test between Sagittarius’s Fisher-

defined as

transformed correlation per sequence and the per-sequence Fisher-transformed correlation of

the comparison approach that performed best on average.

Mouse developmental analysis

We trained Sagittarius using the complete Evo-devo dataset D = {(x;,y;, ti)}?il. After training
7
completed, we selected Dpouse = {(%;,¥; ,tj)}j: , where yg,cies; = mouse. For each of the 7

organs in the dataset, we then used Sagittarius to simulate 10 gene expression time series. We
generated the observations at ranked timepoints ranging from -5 to 13 with a granularity of 0.1,


https://doi.org/10.1101/2022.12.24.521845
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.24.521845; this version posted December 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

959
960
961
962

963

964
965

966
967
968
969
970
971
972
973
974
975
976
977
978
979

980

981
982
983
984
985
986
987
988
989
990
991

992

available under aCC-BY-NC-ND 4.0 International license.

resulting in t* = [-5.0,—4.9,...,—0.1,0.0,0.1,...,12.9,13.0 ]. For each source sequence (x;,y;,t;)
we then simulated the target sequence for (y; ,t*) with

xX; = J?j(xl- JYiotin Y ,t).
To further smooth the results, we then computed the moving average of x; to produce

" 1 0.
x[t] = 5410640) £+Oiet*x [r] ift <—4.5

~ 1
x5 [t] = 5205 ree %7 [r] if t € [-4.5,12.5]

161 = mzr t—o5reet X [1] if t > 12.5,

for all t € t*. This resulted in 10 smoothed mouse gene expression time series samples for each
organ in the dataset.

Transcriptomic velocity: Given the smoothed samples, we next computed the UMAP*
embedding 27‘ [t] = UMAP(;C;;[t]) at each generated time point in each sample. We also computed
the developmental velocity in the UMAP space as
v =x[t+01] — x[t]if t < 13.0 v; =0ift =13
forall t € t*, and then further smoothed the results using moving average with a window size of
1, defined as
vy [=5] = v [-5]
lt] = 3[v[t—01] + v[t] if ¢ €[-49,13].

We took the average (mean) of the velocities of each of our 10 samples to produce the unified
organ velocity vector ¥;. Finally, we normalized the velocity embeddings and, to decrease clutter

in the plot, restricted our final result to integer time indices, such that

o7 [t]

ﬁ; [t] = ~J*
r[¢]]

forallt et* NZ.

To produce the organ development plot, we projected the z to a grid, and defined the velocity at
each grid point to be the average of the 100 velocity vectors 19] nearest to that grid point using
sklearn.neighbors.NearestNeighbors,® weighted by their distance from the grid point.
Finally, we discard the velocities with the 5% smallest magnitudes to simplify the plot. For our
PCA*2 analysis of the same data (Supplementary Fig. 2), we repeated these steps, using éf [t] =
PCA(x][t], nPCs = 2).

To identify genes that had a very similar expression at early developmental stages but differing
expression levels in different organs at later developmental stages, we took

) = 3t € [~5.0,~2.5] ] x4 = ¥7[t € [11.5,13.0]]

L
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993  for each simulated, smoothed time series 567 Considering all 10 simulated sequences, this resulted

994  in 250 early time points and 250 late time points per mouse organ. We then computed two

995 ANOVA statistical tests with Bonferroni multiple testing correction, first comparing

996  x(¥W)[gene m] from each organ to measure statistical similarity at early developmental stages

997  and then comparing x(14t®)[gene m] to measure similarity at later stages.

998

999 Tabula muris gene evaluation: We first generated 10 mouse gene expression vectors for each
1000 organ at time points ranging from 11 to 25, with a granularity of 0.1. Given t* =
1001  [11.0,11.1,...,24.9,25.0], we simulated gene expression profiles and smoothed the results to
1002  produce fj% as when producing %;. We then computed the Spearman correlation over time for
1003  each of the genes based on the simulated data. We also computed the Spearman correlation over
1004  time for each gene based on the measured data in the Evo-devo dataset.!? Finally, we took the
1005  heart and aorta, kidney, and liver tissue data from the Tabula Muris Senis droplet dataset,® which
1006  were the three tissues that aligned with the Evo-devo organs. For each cell type in the tissue data,
1007  we computed the average expression of that cell type at each of the measured timepoints, and

1008  then took the Spearman correlation of the average cell type expression over time.
1009

1010  LINCS dataset processing

1011 We used the LINCS L1000 Platform level 3 pharmacogenomic dataset.!> We restricted the data to
1012  drugand cell line combinations where the doses were measured in uM and then further restricted
1013  measurements to doses no more than 20 uM. After this processing step, we again restricted the
1014  dataset to include only the drug and cell line experiments, which we interpreted as “time series”,
1015  that had more than 15 dose and time measurements. This resulted in 2,687 total time series for
1016  our dataset, each with between 16 and 78 measurements (Supplementary Fig. 4), where over 73%
1017  of the treatment combinations retained in the dataset had fewer than 25 measurements. Each
1018  measurement contains 978 genes. We represented this dataset as y; = [drug;, cell line;] and t; =
1019  [dose;, time;].

1020

1021  Existing models and LINCS training

1022  We restricted our LINCS comparisons to the cVAE model,® which was the only existing model
1023  that could be applied to multiple continuous variables out-of-the-box. For Sagittarius and the
1024  cVAE model, we randomly partitioned the data into an 80% training, 10% validation, and 10%
1025  test split. We terminated model training when the validation loss had not decreased for at least
1026 100 epochs and returned the model with lowest validation loss.

1027
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1028  c¢VAE: We trained a cVAE® using the Adam optimizer with a learning rate of 1e-3. We used a
1029  symmetric MLP encoder and decoder architecture, both with 2 hidden layers of 128 units each, a
1030 latent embedding dimension of 16, a KL-divergence weight f = 1.0, and a batch size of 1024.
1031

1032  Sagittarius: We trained Sagittarius using the Adam optimizer®* with a learning rate of 1e-3 and a
1033  batch size of 1024. We used an 8-dimensional vector to embed both the drug and the cell line as
1034  aninitial input to Sagittarius’s expression encoder and decoder, and two hidden layers with 128
1035  neurons each to learn g;(.) and py(.). We used a latent embedding dimension d = 16, 8 attention
1036  heads, and 16 temporal reference points (for both time and dose). We embedded the dose into an
1037  8-dimensional vector and time into a 4-dimensional vector using the high-frequencing
1038  embeddings. For the transformer keys and queries, we used an 8-dimensional embedding for
1039  both drug and cell line. Finally, we used = 0.25 for the KL-divergence weight in Lg,,(.).

1040

1041  During training, we used the reconstruction objective for each available time series, setting j =
1042 iin Lg,4(.). We also included the following 3 simulation objectives during training.

1043 1. Generate drug: we randomly selected 32 drugs from the training dataset. For each drug,
1044 we identified two measured cell line combinations, and labeled one as X, and the other
1045 as its partner training sequence X;".

1046 2. Generate cell line: we randomly selected 32 cell lines from the training dataset. For each
1047 cell line, we identified two measured drug combinations, and labeled one as x;,' and the
1048 other as its partner training sequence X;".

1049 3. Random generation: we randomly selected 16 pairs of measured combinations from the
1050 training dataset, and labeled one as x;- and the other as its partner training sequence ;.

1051  Sagittarius was then also trained a generation objective, formulated according to the empirical
1052  version of the loss term Lg,,(.), with i =i"and j = j".
1053

1054  LINCS quantitative simulation experiment

1055  For the three different generation tasks we set for the LINCS dataset, we masked different
1056  combinations of experimental and continuous variables to create our test sets. For each, we first
1057  randomly selected 5 drug and cell line experimental combinations to remove from the training
1058  data, requiring that both the drug and the cell line appeared at least once somewhere else in the
1059  dataset.

1060 1. Complete generation: For each of these experimental combinations, we also selected 3
1061 non-zero doses and 1 non-zero time at random from each combination's measured time

1062 series to remove from all time series in the training dataset.


https://doi.org/10.1101/2022.12.24.521845
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.24.521845; this version posted December 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1063 2. Combination & Dose: For each of these experimental combinations, we also randomly
1064 selected 3 non-zero doses from those time series to remove from all time series in the
1065 training dataset.

1066 3. Combination & Time: For each of these experimental combinations we also randomly
1067 selected 1 non-zero time in the time series to remove from all time series in the training
1068 dataset.

1069 At evaluation time, we aimed to simulate the time series for the masked experimental
1070  combinations, doses, and times. For the complete generation task, this resulted in 2144 training
1071 sequences with 7651 total measurements, 269 validation sequences with 924 total measurements,
1072  and 7441 test sequences with 15,068 total measurements; for the combination & dose task, this
1073  resulted in 2144 training sequences with 27,242 total measurements, 269 validation sequences
1074  with 3326 total measurements, and 7377 test sequences with 14,905 total measurements; and for
1075  the combination & time task, this resulted in 2144 training sequences with 10,417 total
1076  measurements, 269 validation sequences with 1202 total measurements, and 7395 test sequences
1077  with 14,966 total measurements. To evaluate the models' performance, we computed the
1078  Spearman correlation between the measured gene expression vectors that we had removed from
1079  the training data and the models' simulated gene expression vectors.

1080

1081  LINCS quantitative extrapolation experiment

1082  We used Spearman correlation to assess model performance for the three LINCS generation tasks.
1083  Formally, let Y" be the set of drug and cell line treatment combinations that are masked during
1084  training for each generation task; let T\, be the set of doses that are masked during training
1085  (note that for the combination & time task, T\, = @); let 7,7 . be the set of treatment times that
1086  are masked during training (so 7;%,, = @ for the combination & dose task). Then, define the
1087  measurement in the LINCS dataset for treatment combination i at dose t;,s, and time t;j,. as
1088  x;[tgoses trimel, and the model’s simulated measurement for the same combination, dose, and time
1089  as Xi[tgoses trime]- For the complete generation task, we computed the model’s overall Spearman
1090  correlation as
1091 Pmodel = Z Z Z pspearman (Qi [tdosev ttime]v Xi [tdose» ttime]):

Y €YM taose ET4yse trime€Time
1092 with pspeqrman denoting the Spearman correlation.
1093  For the combination & dose and combination & time tasks, we computed the model’s overall
1094  Spearman correlation as
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pmodel-z Z D, HOnE YNV (taose € Tiheo)

tdoseetl trime€t; tEme

\% (ttime € ﬂ?me)}pspearman(fl [tdose' ttime]: xi[tdose' ttime]) ’

where 1{-} denotes an indicator variable.

Drug dosage similarity network

We first trained Sagittarius on the complete LINCS dataset,’> not masking any datapoints. We
then selected 78 random distinct doses dg., at random from the dataset, sorting them from
smallest to largest, and set the corresponding treatment time to be t4,,, = [6.0]’%. The randomly-
selected doses ranged from 8.33e-5 to 19.9998. For each drug and cell line experimental

combination in the dataset we then computed

fi(gen) = Do (21 (xi »Yio ti, Vi, [dgen' tgen] )/

thereby producing samples from each of the i combinations at our desired dose and time, even
when these are unmeasured in the dataset. To remove the strong cell-type-specific clustering of
the generated expression vectors, we then computed the differential expression by taking

2A[r] = 29V ] — 29 |0).
We then computed the average differential expression for each of the 2,687 experimental

combinations as

- Zr lx []ERWB'

Given the average differential expression vectors, we computed a similarity score between

combinations i and j as

%j — 0i"j
2y =arg mm arg max| ———————
vy’ L \Oyj T O

to normalize the similarities scores to X; ; € [0,1].

To construct an average differential expression k-nearest-neighbors (KNN) network Ggyy, we
defined the hyperparameters k = 50, m = 30,0 = 0.95. For each experimental combination i in our
simulated dataset, we considered all edges (i, ) for all combinations j, weighted by w(i,j) = % ;.
We followed the following procedure for constructing G from this fully-connected weighted
graph, where each vertex represents an experimental drug and cell line combination.

1. Remove all edges (i, j) where w(i,j) < 6.
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1125 2. For all remaining nodes i, if degree(i) > k then remove the degree(i) — k edges with
1126 lowest weights, resulting in a vertex with degree k.

1127 3. Remove all nodes i where degree(i) < m.

1128 4. Reduce G to its largest connected subgraph.

1129  To further analyze Ggyy, we then used the Louvain community detection algorithm® as
1130  implemented in the Python community package® to identify communities in Ggyy. To reduce
1131  the complexity of the analysis, we then combined neighboring communities until 4 communities
1132  remained, {C;, C,, C3, C;}. We calculated the average community ICso by taking the average of the
1133 ICso doses in the GDSC dataset® for every vertex in the community that had a GDSC
1134  measurement.

1135

1136  We plotted Ggyy using Cytoscape.®® We used the edge-weight spring embedded layout with
1137  minimum, maximum, and default edge weights of 0, 1, and 0.5 respectively. We ran 200 average
1138  iterations for each node. The spring strength parameter was set to 15, spring rest length to 45, the
1139  disconnected spring strength to 0.05, and the disconnected spring rest length to 2000. We did not
1140  add any spring strength to avoid collisions, and used 2 layout passes. Finally, we randomized the
1141  graph before computing the layout.

1142

1143  Drug sensitivity prediction dataset

1144  For the drug ICso prediction task, we randomly selected 78 different dose and time points, [d ", t "],
1145  that had been measured in the LINCS dataset. Then, given a fully-trained Sagittarius, we could
1146  compute the transformer encoder’s average key representation

1147 Karel = 3 2ty O kG, cacrry € R,

1148  where @ represents vector concatenation and H is the number of attention heads.

1149

1150  GDSC experiment: For the GDSC-based prediction, we computed kg, for each GDSC3-
1151  measured combination of drug and cell line, provided that both the drug and cell line appeared
1152  somewhere in the LINCS dataset (although not necessarily together).

1153

1154  We then considered two models: one used the kg, ; dataset produced by Sagittarius to predict
1155  the GDSC ICso values for that experimental combination, and had 271 datapoints; the other was
1156  trained on the measured LINCS experimental combinations available that also appeared in the
1157  GDSC dataset, and had 151 datapoints. We then divided the measured LINCS-GDSC dataset into

1158 3 splits and ran 3-fold cross validation, where for each fold the test set made up § of the data. We

1159  similarly divided Sagittarius’s simulated dataset such that the test set for each split matched the
1160  LINCS-GDSC dataset test split, and the rest of the data was available for training.


https://doi.org/10.1101/2022.12.24.521845
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.24.521845; this version posted December 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1161

1162  CTRP experiment: For this experiment we computed kg, for each CTRP*-measured
1163  experimental combination. We compared this dataset from Sagittarius, which had 2,929
1164  datapoints, to the measured LINCS-CTRP intersecting dataset, which had 625 datapoints. As

1165  before, we used 3-fold validation based on the LINCS-CTRP dataset, where % of the dataset was

1166  used as test for each fold, and defined folds for the Sagittarius dataset to match the LINCS-CTRP
1167  test fold.
1168

1169  Drug sensitivity prediction model and hyperparameter selection

1170  We held out 10% of the training data for both the LINCS-based and the Sagittarius datasets to
1171  determine the best regression model for the drug sensitivity prediction task. For both datasets,
1172  we tried a Support Vector Regression (SVR) model with linear, polynomial, and radial-basis-
1173  function (RBF) kernels, and an MLP regression model with regularizing weight a €
1174  {le —4,1e — 2,1,10}, with all other hyperparameters maintained as the defaults in sklearn.®
1175  We evaluated the model’s validation performance using the average Spearman correlation
1176  between the measured ICso labels (either from GDSC or CTRP) and the model’s predicted ICso
1177  labels. When comparing the network performance from the LINCS-based and Sagittarius
1178  datasets, we restricted our analysis to cell lines where at least one of the two models had a
1179  statistically significant correlation (Spearman rank-order p-value <0.05).

1180

1181  GDSC hyperparameters: The LINCS-GDSC dataset model achieved best validation performance
1182  with the SVR with RBF kernel; the Sagittarius dataset model achieved best validation
1183  performance with the MLP regressor with a = 10.

1184

1185  CTRP hyperparameters: The LINCS-CTRP dataset model achieved best validation performance
1186  with the SVR with polynomial kernel; the Sagittarius dataset model achieved best validation
1187  performance with the MLP regressor with a = 0.01.

1188

1189  Evaluation: To evaluate the model’s performance on the drug sensitivity prediction task, we
1190  looked at the Spearman correlation per drug. For the test drugs and cell lines with a measured
1191 drug sensitivity s(d, c¢) for drug d and cell line ¢, and a corresponding predicted drug sensitivity
1192  §(d, c), we defined the model’s Spearman performance for drug d as

1193 p(d) = Popearman([§(d,1), 8(d, 1), ... 8(d, ey )] [s(d, 1), 5(d c2), ..., 5(d, ey)] ),

1194  where [cl, Cy,*, CN d] are the Ny cell lines that were treated with drug d in the GDSC or CTRP
1195  datasets.

1196
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1197  Cancer gene essentiality prediction: dataset construction

1198  For each tested gene g and cell line ¢l combination in the DepMap dataset, independently
1199  considering the DEMETER® and CERES® versions, we searched for all drugs dr in the LINCS
1200  dataset’ that listed gene g as the drug’s target. Given 78 randomly-selected doses d " and times
1201  t’ from the set of all doses and times that had been measured in the LINCS dataset, we computed
1202  the transformer encoder’s average key representation

1203 karc = 7%2?;1 i iez?zgr,cl,dg,t{) € R*,

1204  where @ indicates concatenation and H = 8. This resulted in 4,216 datapoints for the DEMETER
1205  version and 1,666 for the CERES versions.

1206

1207  We also constructed a LINCS-DepMap dataset. For every gene g and cell line c! in the DepMap
1208  dataset, we searched for a drug dr in the LINCS dataset that listed g as its gene target. If such a
1209  drug existed in the dataset, we added the corresponding average measured post-treatment
1210  expression across all tested doses and times from LINCS to the LINCS-DepMap dataset. This
1211 resulted in 765 datapoints for the DEMETER version and 353 datapoints for the CERES version.
1212

1213  Gene essentiality model hyperparameters and evaluation

1214  For both the LINCS-DepMap dataset model and the Sagittarius dataset model, we trained an
1215  MLP regressor using two hidden layers with 200- and 100 hidden nodes respectively, ReLU
1216  activation functions, mean-squared-error loss, and the Adam optimizer®* with a learning rate of
1217  1e-3. We used 5-fold cross validation, where 20% of the LINCS-DepMap dataset was used as the
1218  test set, and we aligned the Sagittarius dataset's test set to match the LINCS-DepMap test set. We
1219  further held out 10% of the resulting training set for each of the 5 splits to use as a validation set
1220  for early model training termination.

1221

1222  To evaluate the model, we computed the Spearman correlation for each cell line. Denoting each
1223  tested cell line as ¢, with the measured tested target genes essentialities

1224 [e(c, g1).e(c, 92),-..,e(c, gn,)] and corresponding predicted essentiality
1225 [é(c, g1),€(c, 92), -+, €(c,gn,)], we computed the Spearman correlation as

1226 p(c) = pspearman([é(cv 91),€(c, 92),...,é(c, gNC)]v [e(c, 91),€(¢, 92),--.,e(c, gNC)])-

1227

1228 TCGA dataset processing

1229  We used the TCGA Firehose legacy dataset”” mutation data. Each patient’s mutation profile is
1230  mapped to somatic mutations from 20,501 total genes. The mutation profiles are binary vectors,
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1231  where 1 indicates that the gene contained a mutation. We first removed all patients with nan
1232  survival times and then restricted the dataset to the 1,000-most frequently mutated genes across
1233  all cancer types. We then removed patients from the dataset if they had no profiled mutations
1234  across any of the remaining 1,000 genes. If there were fewer than 12 patients remaining in a given
1235  cancer type, we also excluded this cancer type. We constructed a time series for each cancer type
1236 by ordering the remaining patients according to their labeled survival times, sorted from shortest
1237  survival to longest survival. We then constructed the dataset of (x;,y;,t;) where x; are the
1238  sequence of mutation profiles for patients of cancer type y;, each with the corresponding survival
1239  timest;.

1240

1241  Time series patient filtering

1242  In order to apply Sagittarius’s time series framework to the TCGA mutation profiles, we needed
1243  the cancer type time series to accurately reflect cancer survival times. In particular, inclusion of
1244  patients with a censored survival time, meaning they lost contact with the study before an
1245  observed death event, might lead to incorrect overall survival times and relative ordering of
1246  patients in the time series. However, excluding all patients with censored survival times would
1247  greatly decrease the size of the dataset and limit the statistical power of the model
1248  (Supplementary Fig. 8).

1249

1250  We hypothesized that censored patients could be divided approximately into two categories.
1251  First, some patients who lost contact with the study might die shortly afterwards, meaning their
1252  censored survival time (the time at which they lost contact with the study) would closely reflect
1253  their overall survival time, were it to have been observed. Second, some patients who lost contact
1254  with the study would survive well beyond the censoring time, and therefore the censored
1255  survival time would be substantially different from the overall survival time. The first of these
1256  two categories could therefore be included in the time series formulation, with censored survival
1257  time used as a proxy for overall survival time; the second category should be excluded to
1258  maintain the integrity of the input time series.

1259

1260 In order to identify censored patients belonging to the first category, where censored survival
1261  times closely reflected overall survival times, we trained a neural network on each cancer type
1262  individually to predict ¢;[r] from x;[r]. In this step, we also included each patient’s binary
1263  censoring label c[r], where c[r] = 0 indicates that the rth patient had an observed death event.
1264  We defined the individual patient loss as

1265 Linawiauat (x[r] t[r], 2], c[r]) =1[c[r] = 0] £ = tl; +1[c[r] = 1] max(t — £,0),
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1266  thereby not penalizing the model for overestimating the survival time of a censored patient. We
1267  further defined the empirical model loss as

1268 Lo(x,t,80) = 2371 Linawiauar *K[r], t[r] E[r c[r]) + 2113,

1269  Using a single hidden layer with 32 neurons, we trained the regressor on each cancer type
1270  individually with the regularizing weight A = 0.3, stochastic gradient descent (SGD) optimizer,
1271  and learning rate of le-1. We trained for up to 2,500 epochs, and selected the model epoch with
1272  the maximal concordance index for the patients with an observed death event.

1273

1274  We then leveraged techniques from Learning with Noisy Labels (LNL), where each patient’s
1275  survival time, either observed or censored, represented a potentially noisy label for their actual
1276  survival time. For each cancer type’s selected model, we computed the absolute error per patient
1277  for both the observed (|€,ps|) and censored (|€cens|) groups. Using the scipy® python package, we
1278  fit a beta distribution S, to |€,p5| and a beta distribution B eps to |€cens|, and then computed the
1279  probability that each patientin |€,,;| and |€.ens| could have been generated by either ,,50T Beens-
1280  Following previous work,®%2 if the probability that a censored patient’s absolute error was
1281  generated by f,,s was larger than the probability it was generated by B .,s, we switched their
1282  label to observed. Similarly, if a censored patient’s absolute error was smaller than the absolute
1283  error for at least one observed patient, we also switched their label to observed. We discarded all
1284  other censored patients, and retained only the observed patients and the censored patients with
1285  a swapped label as the resulting cancer type time series. After filtering, our dataset contained
1286 2297 cancer patients. For the SARC time series, we included 31 patients with a censored death
1287  event to include 115 total patients; for the THCA time series, we included 2 patients with a
1288  censored death event to include 15 total patients.

1289

1290 Model hyperparameters

1291  As in the Evo-devo dataset, the mean and linear comparison approaches did not require any
1292  hyperparameters. For Sagittarius, we used 20% of the available data as a validation set for
1293  hyperparameter selection and training termination. We used S + 1 = 4 temporal reference points,
1294  a latent dimension d = 16, H = 8 attention heads, an 8-dimensional cancer type embedding for
1295  the encoder and decoder, a 2-dimensional temporal embedding for the transformer, and a 4-
1296  dimensional cancer type embedding for the transformer. We set f = 1 and used a batch size of 2.
1297  We tried both 1-, 2-, and 3 hidden layer symmetric MLPs for the encoder and decoder, each with
1298 256 hidden neurons per layer. For the SARC cancer type, we selected the 2-layer MLPs based on
1299  validation performance; for the THCA cancer type, we selected 3-layer MLPs.

1300
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1301 In addition to the reconstruction task where i =j in Lg,,(.), we trained Sagittarius with 2

1302  simulation objectives.

1303 1. Time generation: we randomly selected 12 cancer type time series and, for each, randomly
1304 masked out 3 patients in the time series to produce x;.. The time series made up of the 3
1305 masked patients was its partner training sequence x;".

1306 2. Cancer type generation: we randomly selected 12 pairs of cancer type time series. We
1307 considered one of each pair to be x;,- and the other as its partner sequence X;".

1308  Sagittarius was then also trained a generation objective, formulated according to the empirical
1309  version of the loss term Lg,,(.), with i =i"and j = j".

1310

1311  Quantitative cancer patient extrapolation experiment

1312  We defined the extrapolation task as follows. For the cancer type with N observed patients, we
1313  defined a training split of the k observed patients with shortest survival time, as well as all
1314  censored patients with a survival time shorter than the longest of the k observed survival times,
1315  and used the remaining N — k patients as the test split. We then varied k = 1,..., N — 1. For each
1316 of the N —2 different test splits, we evaluated model performance with the AUROC of the
1317  simulated mutation profiles. For this evaluation, we restricted the genes that we evaluated to
1318  those that had a pattern with respect to survival time. Specifically, we used the augmented
1319  Dickey-Fuller statistical test to identify the mutations for each cancer type for which we did not
1320  reject the null hypothesis, indicating non-stationarity, with a significance threshold of p < 0.05.
1321  We then further took the union of the genes that appeared in the non-stationary gene sets for at
1322  least § cancer types to create the evaluation gene set y(8). We excluded any test patients that did
1323  not have a measured mutation in any of the genes in y(§). Based on the resulting number of test
1324  patients, we used 6 = 2 for THCA, resulting in 9 usable test splits, and § = 4 for SARC, resulting
1325  in 61 usable test splits. Then, we evaluate the model performance on cancer type y; for a test
1326  patient with survival time t > 7, for some threshold test set threshold 7, as

1327 AUROC;(t,t) = AUROC(X;[t,y ()], xi[t,y(D)]),

1328  where x;[t,y(6)] is the measured mutation profile for a patient with cancer type i and survival
1329  time t, restricted to the genes in set y(6), and AUROC(-) is the AUROC computation between two
1330  vectors. Then we computed the model’s overall performance on the test split beginning with test

1331  patient survival time 7 as
1332 AUROC;(7) = mzmi 1{(t > 1) A(x[ty(8)] # 0)} AUROCi(z, 1),
1333  where 1{-} represents an indicator variable. Then, to compare the model performance across test

1334  splits for cancer type i, we defined the overall model performance as the average of the test split
1335  AUROC:s for that cancer type, or


https://doi.org/10.1101/2022.12.24.521845
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.24.521845; this version posted December 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1

1336 AUROC, = —— 2 AUROC; (D).
T e 2y

1337

1338  Early cancer patient mutation simulation

1339  To simulate the early-stage sarcoma patient mutation profiles, we trained Sagittarius on all
1340  available TCGA data and then simulated mutation probability profiles at 27 survival time points,
1341  ranging from 203-283 months. Specifically, we selected the longest 27 survival times that
1342  appeared somewhere in the initial TCGA dataset, with

1343 t €{203.12,204.01,260.70,208.23,209.43,210.51,210.81,211.01,211.73,212.09, 216.59,
1344 216.75,22543,229.04,230.72,232.00,232.62,233.44,234.10,238.11, 244.32,
1345 244.91,255.49, 263.07,275.66,281.08,282.69}

1346  Months (Supplementary Fig. 10). We then averaged the mutation profile predictions of the 27
1347  time points and identified the 10 genes the model predicted as most likely to be mutated.

1348

1349  Figures

1350  Figures were created with BioRender.

1351

1352  Data availability

1353  The datasets used for this project are available at https://figshare.com/projects/Sagittarius/144771.
1354
1355  Code availability

1356 A python repository including the Sagittarius implementation and code to reproduce the results
1357  in this paper is available at https://github.com/addiewc/Sagittarius.
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Supplementary Fig. 8
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Supplementary Fig. 10
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