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Abstract Habituation allows animals to learn to ignore persistent but inconsequential stimuli. Despite
being the most basic form of learning, a consensus model on the underlying mechanisms has yet to emerge. To
probe relevant mechanisms we took advantage of a visual habituation paradigm in larval zebrafish, where larvae
reduce their reactions to abrupt global dimming (a dark flash). Using Ca2+ imaging during repeated dark flashes,
we identified 12 functional classes of neurons that differ based on their rate of adaptation, stimulus response
shape, and anatomical location. While most classes of neurons depressed their responses to repeated stimuli, we
identified populations that did not adapt, or that potentiated their response. To identify molecular players, we
used a small molecule-screening approach to search for compounds that alter habituation learning. Among the
pathways we identified were Melatonin and Estrogen signaling, as well as GABAergic inhibition. By analyzing which
functional classes of neurons are GABAergic, and the result of pharmacological manipulations of the circuit, we
propose that GABAergic inhibitory motifs drive habituation, perhaps through the potentiation of GABAergic
synapses. Our results have identified multiple molecular pathways and cell types underlying a form of long-term
plasticity in a vertebrate brain, and allow us to propose the first iteration of a model for how and where this
learning process occurs.

Introduction
A central function of the brain is to learn and change with experience. These adaptations can reflect attempts to
identify and attend preferentially to salient stimuli. For example, identifying the smell of a predator or prey may be
crucial, while identifying that my home still smells likemy kin is not. This ability to suppress responses to continuous
non-salient stimuli is known as habituation, a process generally considered to be the simplest form of learning and
memory (Rankin et al., 2009). Habituation is conserved across all animals, and like other forms of plasticity, exists in
at least twomechanistically distinct forms: transient short-term habituation, and protein-synthesis dependent long-
term habituation. Here we focus on long-term habituation, which serves as a pragmatic model to dissect plasticity
processes in neural circuits.

Work on long-term habituation in various species and paradigms has led to significant insights into the adap-
tations underlying this process (Cooke and Ramaswami, 2020; McDiarmid et al., 2019b), nonetheless a consensus
model on the general principles underlying habituation is yet to emerge. Physiological and genetic work in Aplysia,
and C. elegans were consistent with a model in which homosynaptic depression of excitatory synapses drives habit-
uation (Bailey and Chen, 1983; Rose et al., 2003) (although see (Glanzman, 2009)). In contrast, work in the Drosophila
olfactory and gustatory systems indicate that the potentiation of inhibitory neurons drives habituation rather than
depression of excitatory connections (Das et al., 2011; Paranjpe et al., 2012; Trisal et al., 2022), and habituation to
specific orientations of visual cues inmice is associatedwith the potentiation of neuronal activity and synapses in the
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visual cortex (Cooke et al., 2015), which requires GABAergic interneurons (Kaplan et al., 2016; Hayden et al., 2021).
These studies are more consistent with a model in which the potentiation of inhibition, rather than depression of
excitation, drives habituation (Cooke and Ramaswami, 2020).

Recently, we found that long-term habituation of the response of larval zebrafish to sudden pulses of whole-field
darkness, or dark flashes (DFs), involves multiple molecularly independent plasticity processes that act to suppress
different components of the behavioural response (Randlett et al., 2019). Similar behavioural, pharmacological, and
genetic experiments have led to comparable conclusions in acoustic short-term habituation (Nelson et al., 2022),
and habituation in C. elegans (McDiarmid et al., 2019a,b), indicating that habituation generally acts via multiple
modular plasticity processes. These modules act to mute or shift behavioural responses to repeated stimuli. How
andwhere these processes are implemented in the circuit, and how conserved or derived these processes are across
species or paradigms remains to be determined. Here we have used a combination of high-throughput behavioural
analyses, pharmacology and whole brain imaging to dissect DF habituation, arriving at a model where GABAergic
inhibition drives habituation and suppresses behavioural output.

Results
Volumetric 2-photon Ca2+ imaging of habituation learning

When stimulated with a dark flash (DF), larval zebrafish execute an O-bend response (Figure 1A). The O-bend is char-
acterised by a strong body bend and a large turn that forms part of the phototactic strategy of larval zebrafish, help-
ing them navigate towards lit environments (Burgess and Granato, 2007; Chen and Engert, 2014). When presented
with repeated DFs, larvae habituate and reduce their responsiveness, remaining hypo-responsive formultiple hours
(Figure 1B), (Randlett et al., 2019).

To explore the circuit mechanisms leading to this form of habituation, we asked how individual neurons within
the DF responsive circuit adapt to repeated dark flashes. We used a head-fixed paradigm to perform 2-photon Ca2+
imaging in larvae expressing nuclear-targeted GCaMP7f pan-neuronally. Imaging was performed with a resonant
scanner and piezo objective, enabling us to cover a volume of ≈ 600 x 300 x 120 𝜇m (x,y,z) sampled at 0.6 x 0.6 x 10
𝜇m resolution, leading to the detection of 30890±3235 ROIs per larvae (±SD, Figure 1C-E). ROIs were aligned to the
Z-Brain atlas coordinates (Randlett et al., 2015), demonstrating that this volume spans the majority of the midbrain,
hindbrain, pretectum and thalamus (Figure 1C-E).

We focused on a single training block of 60 DFs, as this is the period during which the strongest learning takes
place (Figure 1Bi). This paradigm induced strong Ca2+ activity in neurons (Figure 1F), some of which were clearly
associated with the DF stimuli. Ca2+ transients in response to DFs generally decreased across the 60 stimuli, though
this pattern was not seen in all neurons, and substantial heterogeneity in their adaptations were observed. Strong
correlated patterns were also seen in large groupings of neurons, predominantly in the hindbrain, which were
associatedwithmovement events through their correlationwithmotion artifacts in the imaging data (Figure 1-figure
Supplement 1).

To explore the spatial patterns in these datawe used a 2-dimensional lookup table to visualize tuningwith regres-
sors representing either DF stimuli or movement (Figure 1G, H). This revealed segregated populations of neurons
coding for the DFs (pink) and movement (green/teal). As expected, DF-tuned neurons were located predominantly
in visual sensory areas of themidbrain (tectum) and the diencephalon (pretectum and thalamus). Motor-coding neu-
rons dominated in the hindbrain, with the exception of the cerebellum and inferior olive, which was predominantly
tuned to the sensory stimulus. Some neurons did show approximately equal correlation values to both stimuli, as
evidenced by the blue-ish hues. Finally, some areas of the brain appeared to contain mixtures of neurons with
different coding properties, including the ventral diencephalon and midbrain.

To determine if there was any spatial logic to how different neurons adapt their responsiveness to DFs during
imaging, we plotted the ROIs using a lookup table highlighting the preference of for either the first three DFs (pink,
naive response), or last three DFs (green, trained response). Strong preferences for the naive stimuli reflects a
depressing response profile (Figure 1I, J). While most neurons did show tuning consistent with strong depression,
there were neurons that showed an equal preference for naive and trained stimuli, or even stronger preference for
the latter, indicating stable or potentiating response profiles. These non-depressing neurons weremostly contained
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Figure 1. Volumetric 2-photon Ca2+ imaging of dark flash habituation.
A) In response to a dark flash (DF), larval zebrafish execute a high-amplitude turn called an O-bend response.
B) Habituation results in a progressive decrease in response probability to dark flashes repeated at 1-minute intervals, delivered in 4 blocks of60 stimuli, separated by 1hr of rest (from 0:00-7:00), and after a 5hr retention period (12:00-). Inset i) shows and expanded view of the firsttraining block.
C) Tg(elavl3:H2B-GCaMP7f) larvae were imaged across 12 z-planes at 10𝜇m steps. ROIs are overlaid in random colors.
D) Density of detected ROIs registered and plotted in the Z-Brain coordinate space. n=1,050,273 ROIs across 34 larvae.
E) Cropped field of view used for plotting and analyzing Ca2+ imaging data and approximate anatomical localizations of major brain areas:dien=diencephalon, mid-b = midbrain, cb = cerebellum, hind-b = hindbrain, io = inferior olive, ret = retina, tec = tectum
F) Functional responses of neurons to 60 dark flashes at 1-minute intervals, plotted as a clustered heatmap (“rastermap” (Pachitariu et al.,
2017), github.com/MouseLand/rastermap), where rows represent individual neurons ordered by the similarities in their activity. Darker shadesreflect increased activity. This clustering reveals neurons that are tuned to the DF stimuli (pink box) or motor events (green box). Dashed traceabove the heatmap depicts the DF stimulus convolved with a kernel approximating H2B-GCaMP7f kinetics.
G) ROIs in an individual fish plotted based on their correlation and tuning to regressors defining either Motor or DF stimulus events, highlightingthe spatial distributions of these tunings across the imaged population. Plotted as a maximum intensity projection.
H) Same analysis as G, but across the entire population of 34 larvae.
I) ROIs in an individual fish plotted based on their correlation and tuning to regressors defining either the first or last three DF stimuli.
J) Same analysis as I, but across the entire population of 34 larvae. tl = torus longitudinalis
Figure 1—figure supplement 1. Validation of motion analysis based on image artifacts during 2-photon imaging
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in the dorsal regions of the brain, including the torus longitudinalis, cerebellum and dorsal hindbrain. These results
demonstrate that while the majority of neurons across the brain depress their responsiveness during habituation,
a smaller population of neurons exists that show the opposite pattern.

These results indicate that habituation does not occur via a simple excitatory bottleneck in the sensory system,
as in such a model neurons that show stable responses or that potentiate would not be observed in downstream
regions. The fact that non-depressing neurons are observed within the hindbrain demonstrates that motor-related
brain regions contain non-depressed signals, and therefore likely contribute to habituation plasticity.
Functional classification and anatomical localization of neuronal types observed during habitua-
tion learning

To explore the functional heterogeneity within the DF-tuned neurons we used affinity propagation clustering. This
method has the advantage that cluster numbers do not need to be defined beforehand, and instead attempts to
identify themost representative response profiles (Förster et al., 2020). This identified 12 clusters that differed both
in their adaptation to repeated DFs, as well as the shape of their response to the DF (Figure 2A,B).

We therefore use these two aspects of the response to label the clusters:
Adaptation Profile
No Adaptation = 𝑛𝑜𝐴 : Cluster 1, 9, 10
Weak Depression = 𝑤𝑒𝑎𝑘𝐷 : Cluster 5, 6, 11
Medium Depression = 𝑚𝑒𝑑𝐷 : Cluster 2, 3, 7
Strong Depression = 𝑠𝑡𝑟𝑔𝐷 : Cluster 4, 8
Potentiation = 𝑃𝑜𝑡 : Cluster 12
Response Shape
On-response = 𝑂𝑛 : Cluster 1, 2
Long/sustained response = 𝐿 : Cluster 3, 4
Medium-length response = 𝑀 : Cluster 5, 6, 9
Short/transient response = 𝑆 : Cluster 7, 8, 10, 11
Yielding clusters: 1𝑛𝑜𝐴𝑂𝑛 , 2𝑚𝑒𝑑𝐷𝑂𝑛 , 3𝑚𝑒𝑑𝐷𝐿 , 4𝑠𝑡𝑟𝑔𝐷𝐿 , 5𝑤𝑒𝑎𝑘𝐷

𝑀 , 6𝑤𝑒𝑎𝑘𝐷
𝑀 , 7𝑚𝑒𝑑𝐷𝑆 , 8𝑠𝑡𝑟𝑔𝐷𝑆 , 9𝑛𝑜𝐴𝑀 , 10𝑛𝑜𝐴𝑆 , 11𝑤𝑒𝑎𝑘𝐷

𝑆 , and 12𝑃𝑜𝑡𝑀

While these results indicate the presence of a dozen functionally distinct neuron types, such clustering analyses will
force categories upon the data irrespective of if such categories actually exist. To determine if our cluster analyses
identified genuine neuron types, we analyzed their anatomical localization (Figure 2C-E). Since our clustering was
based purely on functional responses, we reasoned that anatomical segregation of these clusters would be con-
sistent with the presence of truly distinct types of neurons. Indeed, we observed considerable heterogeneity both
within and across brain regions. For example: 11𝑤𝑒𝑎𝑘𝐷

𝑆 was mostly restricted to medial positions within the optic
tectum; 3𝑚𝑒𝑑𝐷𝐿 and 4𝑠𝑡𝑟𝑔𝐷𝐿 were more prevalent within motor-related regions of the brain including the tegmentum
and hindbrain rhombomeres; 9𝑛𝑜𝐴𝑀 was the most prominent cluster in the torus longitudinalis, consistent with the
presence of non-depressing signals in the area (Figure 1I,J).

We then quantified the similarity in the spatial relationships among the clusters by looking at the correlations in
the positions of the ROIs in the Z-Brain (Figure 2E). This revealed similar hierarchical relationships to those identified
functionally (Figure 2B), especially with respect to Response Shape, indicating that physical location is associated with
functional response type.

Finally, since our functional analysis was performed purely based on correlations with the DF stimuli, we asked to
what extent neurons belonging to each cluster were correlated withmotor output (Figure 2F). This identified 4𝑠𝑡𝑟𝑔𝐷𝐿 as
themost strongly correlated tomotor output, consistent with its strong habituation profile and its localizationwithin
motor-regions of the hindbrain. This indicates that 4𝑠𝑡𝑟𝑔𝐷𝐿 neurons likely occupy the most downstream positions
within the sensory-motor network.
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Figure 2. Characterization of functional response types during habituation learning.
A) Heatmap of the response profiles of ROIs categorized into 12 functional clusters. n=16,607 ROIs from 34 larvae.
B) Average z-scored fluorescence of each functional cluster plotted for the whole experiment (left column), and centered on each DF stimulus(right column), demonstrating the differences in both Adaptation Profiles and Response Shape for each cluster. Clusters were identified usingAffinity Propagation clustering (affinity = Pearson correlation, damping = 0.9, preference =-9), and organized using Hierarchical clustering,distance = complete, correlation. Dashed lines in top panels are the DF stimulus convolved with a kernel approximating H2B-GCaMP7f kinetics,used as the regressor in the analysis.
C) Summed intensity projection of the ROIs belonging to each functional cluster in Z-Brain coordinate space depicting their physical locations inthe brain. Projection images are normalized to the maximum value.
D) Heatmap depicting the density of each cluster that is found within different Z-Brain regions.
E) Correlogram calculated from the Pearson correlation in downsampled volumes for the ROI centroid positions for each cluster (see Methods).Hierarchical clustering, distance = complete, correlation.
F) Correlation between motor events and the Ca2+ traces for each ROI assigned to the functional clusters. dots = individual ROIs, bar height =99.99999% confidence interval around the median value.
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These results highlight a diversity of functional neuronal classes active during DF habituation. Whether there
are indeed 12 classes of neurons, or if this is an over- or under-estimate, awaits a full molecular characterization.
Independent of the precise number of neuronal classes, we proceed under the hypothesis that these clusters define
neurons that play distinct roles in the DF response and/or its modulation during habituation learning.
Pharmacological screening to identify habituation modulators

We next used a pharmacological screening approach to both identify molecular mechanisms of habituation and to
further probe the habituating circuit. For this we screened 1953 small molecule compounds with known targets
(Figure 3-source data 1)), in conjunction with the high-throughput assay we previously established, which has a
maximum throughput of 600 larvae/day (Figure 3A, (Randlett et al., 2019)). As we aimed to identify modulators
specific for habituation, we included additional behavioural assays as controls, including the response to acoustic
stimuli, the optomotor response, and the spontaneous swimming behaviour of the fish in the absence of stimulation
(Figure 3B,C). In each 300-well plate, 40 groups of 6 larvae were treated in individual wells, and compared to 60
vehicle treated controls (Figure 3A). We chose these numbers based on a sub-sampling analysis that determined
these numbers were sufficient to identify the effect of a known modulator of habituation (haloperidol (Randlett
et al., 2019)) at a false-negative rate of less than 0.05 (not shown), while allowing us to screen 80 compounds per
experiment across 2 plates.

We were able to collect the full behavioural record of 1761 compounds (Figure 3D, Figure 3-source data 2)),
indicating that the fish survived the treatment and maintained their ability to swim. Behavioural records for fish
treated with each compound were compressed into a fingerprint (Rihel et al., 2010) – a vector representing the
strictly standardised mean difference (SSMD) across 47 aspects of behaviour (see Methods). For measurements
related to dark-flash habituation behaviour, responses were time-averaged across three epochs chosen to highlight
changes in habituation: the naive response (first 5 dark flashes), the response during the remaining training flashes,
and the re-test block 5 hrs after training (Figure 3B). This was done across 10 different components of the dark flash
response (Probability of Response, Latency, Displacement, etc.).

We found that 176 compounds significantly altered at least one aspect of measured behaviour, yielding a 9% hit
rate (hit threshold of |𝑆𝑆𝑀𝐷| ≥ 2). While the average effect was to suppress behavioural output (𝑆𝑆𝑀𝐷 = −0.20),
which could reflect non-specific toxicity or a generalized inhibition of motor output, most small molecules induced
both positive and negative changes in behavioural output, indicating that toxicity is not the primary phenotypic
driver. While the false negative rate is difficult to determine since so little is known about the pharmacology of the
system, we note that of the three small molecules we previously established to alter dark flash habituation that
were included in the screen, Clozapine, Haloperidol and Pimozide (Randlett et al., 2019), two were identified among
our hits.
Correlational structure in the pharmaco-behavioural space

To explore the pharmaco-behavioural space in our dataset we clustered the hits based on their behavioural phe-
notypes (Figure 4A). This strategy can identify compounds that share common pharmacological targets, or perhaps
distinct pharmacological targets that result in convergent behavioural effects (Bruni et al., 2016; Rihel et al., 2010).
Indeed, compounds known to target the samemolecular pathways often showed similar behavioural fingerprints ly-
ing proximal on the linkage tree, indicating that our dataset contains sufficient signal-to-noise to recover consistent
pharmaco-behaviour relationships.

Alternatively, compounds can be considered as tools tomanipulate different aspects of brain function agnostic to
theirmolecularmechanisms. Consequently, using similarities anddifferences among the induced alterations should
uncover molecular and neural linkages among different behavioural outputs. Following this logic, the ability of a
compound to co-modify different aspects of behaviour would reflect molecular and/or circuit-level dependencies.
For example, visual behaviours that all depend upon photoreceptors should be similarly affected by any compounds
that modulate phototransduction in these photoreceptors. We quantified these relationships by calculating the
correlated effects on our different behavioural measurements across compounds (Figure 4B).

Consistent with our previous results highlighting uncorrelated learning across the behavioural components of
the O-bend response during habituation (Randlett et al., 2019), we found that different aspects of the response
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Figure 3. Pharmacological screening for dark flash habituation modulators.
A) Screening setup to record larval zebrafish behaviour in 300-well plates, which are placed below a 31°C water bath that acts as a heated lid forthe behaviour plates. Two 300-well plates are imaged in alternation using mirrors mounted on stepper motors. Fish are illuminated withinfra-red LEDs and imaged with a high-speed camera recording at 560 frames per second (fps). Visual stimuli are delivered by a rectangular ringof RGB LEDs, and acoustic stimuli are delivered via a solenoid mounted on the back of the water tank. Colors overlaid on the 300-well plateindicate the arrangement of small molecule treatments and controls (yellow).
B) Habituation results in a progressive decrease in responsiveness to dark flashes repeated at 1-minute intervals, delivered in 4 training blocksof 60 stimuli, separated by 1hr of rest (from 0:00-8:00). This epoch is separated into periods reflective of the Naive response (first 5 stimuli, blue),and the remaining 235 stimuli during Training (green). From 8:00-8:30, no stimuli are delivered and fish are monitored for spontaneousbehaviour (yellow). From 8:30-9:00 fish are given acoustic stimuli via the solenoid tapping on the water bath (pink). From 10:00 - 11:00 fish arestimulated with alternating leftward and rightward motion using the RGB LEDs to induce the optomotor response and turning towards thedirection of motion (light blue). Finally, at 12:00-13:00, larvae are given 60 additional dark flashes during the test period (red).
C) The strictly standardized mean difference (SSMD) is calculated across these different time periods, behaviours and the different componentsof O-Bend behavioural habituation (Randlett et al., 2019). All compounds were dosed at 10 𝜇M in 0.1% DMSO (n = 6 larvae), relative to 0.1%DMSO vehicle controls (n = 60 larvae).
D) These vectors are assembled across all screened compounds that were viable and did not cause death or paralysis of the larvae. Displayed asa hierarchically clustered heatmap of behavioural Fingerprints (vectors of SSMD values). Clustering distance = ward, standardized euclidean.

Figure 3—source data 1. Small molecule library, Selleckchem Bioactive: FDA-approved/FDA-like small molecules
Figure 3—source data 2. Behavioural fingerprints for viable compounds

7 of 23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.06.17.496451doi: bioRxiv preprint 

https://github.com/owenrandlett/lamire_2022/blob/main/LamireEtAl_2022/Figure3_sourcedata1_Small_molecule_library.csv
https://github.com/owenrandlett/lamire_2022/blob/main/LamireEtAl_2022/Figure3_sourcedata2_Behavioural_fingerprints.csv
https://doi.org/10.1101/2022.06.17.496451
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Pharmaco-behavioural analyses of behaviour-modifying compounds.
A) Clustered heatmap of the behavioural Fingerprints for the 176 hits of the screen, showing at least one behaviour measure with |𝑆𝑆𝑀𝐷| ≥ 2.Clustering distance = ward, standardized euclidean, colour/cluster threshold = 9.5. This led to the re-identification of Haloperidol and Clozapineas habituation modifiers (light blue arrows).
B) Clustered correlogram of the Pearson correlation coefficients for the different measured components of behaviour across hits (same data as(A)) revealing the independence or co-modulation of behaviours. Clustering distance = average, correlation, colour/cluster threshold = 1.5.
C) Subsets of clustered heatmap from (A), highlighting the similar phenotypes exhibited by i) GABA Receptor antagonists and ii), iii) Melatoninreceptor agonists, Estrogen receptor agonists, Progesterone receptor agonists and peroxisome proliferator-activated receptor alpha (PPAR𝛼)agonists. Heatmap is cropped to the first three columns of (A), depicting the SSMD of response Probability relative to vehicle controls.
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were independently affected pharmacologically, resulting in distinctive correlated groupings within the correlogram.
While we previously found that O-Bend response Probability and Latency habituate independently in individual fish
(Randlett et al., 2019), in our small molecule screen data these appear to be tightly coupled (Figure 4B). The per-
formance of the animals in the OMR assay under different treatments was also associated with O-bend Probability
and Latency, suggesting that pharmacological modulation of vision or arousal could drive these correlations within
the small molecule screen dataset.

These analyses confirm habituation behaviour manifests from multiple distinct molecular mechanisms that in-
dependently modulate different behavioural outputs.
Modulation of habituation by GABA, Melatonin and Estrogen signaling

For the remainder of the analyses we decided to focus on the mechanisms leading to the habituation of response
probability, as this is the criterion for which it is easiest to identify the link between neural activity and behavior,
providing the best entry point for studying the circuit mechanisms of long-term habituation. To identify the most
promising hits, we sought to identify compounds that:
1) Have minimal effects on the naive response to DFs, but strong effects during the training and/or memory-

retention periods. This would prioritize pathways that affect habituation, rather than simply DF responsive-
ness.

2) Have minimal effects on other aspects of behaviour, in order to exclude compounds that would alter general-
ized arousal, movement ability/paralysis, or visual impairment. Such compounds would strongly influence DF
responsiveness, but likely independently of pathways related to habituation.

3) Show similar behavioural effects to other compounds tested that target the same molecular pathway. Such
relationships can be used to cross validate, yet we note that our library choice was very broad, and target
coverage is non-uniform. Therefore a lack of multiple hits targeting the same pathway should not be taken as
strong evidence of a false positive.

This prioritization led to the identification of the GABAA/C Receptor antagonists Bicuculline, Amoxapine, and Pi-
crotoxinin (PTX). PTX treatment had the strongest effects, with increased responsiveness to DFs during the training
and test periods, indicative of defects in habituation (Figure 4Ci). Dose-response experiments confirmed a strong
effect of PTX on inhibiting the progressive decrease in responsiveness during habituation learning at 1-10𝜇M doses
(Figure 5A). Importantly, like the naive dark-flash response, the probability of responding to an acoustic stimulus
and the optomotor response were not inhibited (Figure 5-figure Supplement 1A). While strong GABAA/CR inhibitionresults in epileptic activity in larval zebrafish, we did not observe evidence of seizure-like behaviour at these doses,
consistent with a partial GABAA/CR in our experiments and previous results (Bandara et al., 2020). Therefore, we
conclude that partial antagonism of GABAAR and/or GABACR is sufficient to strongly suppress habituation but not
generalized behavioural excitability, indicating that GABA plays a very prominent role in habituation. This is consis-
tent with amodel in which the potentiation of inhibition actively silences sensory-induced activity during habituation
to suppress motor output (Cooke and Ramaswami, 2020; Ramaswami, 2014).

We next turned our attention to the upper portion of the clustered behavioural fingerprint graph (Figure 4A),
where strong and relatively specific inhibition of responsiveness during training and testing were observed, indica-
tive of enhanced habituation (Figure 4Cii, iii). Among the hits observed here were multiple agonists of both Mela-
tonin and Estrogen receptors, indicating that hormonal signaling may play a prominent role in habituation. Dose
response studies with Melatonin confirmed strong potentiation of habituation (Figure 5B). Melatonin did cause a
decrease in spontaneous movement behaviour, consistent with its role in arousal/sleep regulation in zebrafish and
other vertebrates (Gandhi et al., 2015; Zhdanova et al., 2001), yet Melatonin did not inhibit the naive response to
dark flashes, the responsiveness to acoustic stimuli or OMRperformance (Figure 5B, Figure 5-figure Supplement 1B).
Melatonin’s effect on habituation was also most prominent for the Probability of response, and did not strongly al-
ter habituation for Displacement Figure 5-figure Supplement 1F, indicating it does not cause generalized sedation
but modulates specific aspects of behaviour at these doses, including increasing habituation of the Probability of
response.
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Figure 5. Confirmed pharmacological modulators of habituation.Dose response studies for A) Picrotoxinin, B)Melatonin, C) Ethinyl Estradiol and D) Hexestrol.Displayed for each treatment are: i) Behavioural fingerprint for the original screen data (10 uM), and the dose response data. ii)Original screen data for the probability of response to DF stimuli. Each dot is the probability of response to one flash. Lines aresmoothed in time with a Savgolay Filter (window = 15 stimuli, order=2). iii) Dose response data for the probability of response,plotted as in ii)
Figure 5—figure supplement 1. Pharmacological manipulation of control behaviours and response displacement during
habituation

We similarly validated that the Estrogen Receptor agonists Ethinyl Estradiol and Hexestrol, potentiated habitua-
tion at 5-100𝜇Mand 1-10𝜇Mdoses, respectively (Figure 5C,D). Ethinyl Estradiol strongly suppressedmovement rates
at these doses, and both treatments suppressed acoustic responsiveness and OMR performance at doses >=10𝜇M
(Figure 5 - figure Supplement 1C,D). Thus, it is less clear how specific or generalized Estrogen Receptor agonism is
on behaviour, although the effective doses of Hexestrol for influencing habituation (1-5uM) were lower than those
that significantly affected other behaviours (10uM). Nevertheless we decided to focus on PTX and Melatonin for the
remaining experiments.

Our screening approach identified both expected (GABA) and unexpected (Melatonin, Estrogen) pathways that
strongly modulate habituation of responsiveness. We also implicated other pathways in habituation, including Pro-
gesterone and PPAR𝛼 (Figure 4C), and identified compounds that strongly modify other aspects of behaviour (OMR,
acoustic and spontaneous behaviour). These hits can bemined for future projects investigating the molecular basis
of behaviour.
Pharmacological manipulations of functional circuit properties during habituation

Our Ca2+ imaging experiments identified 12 distinct functional classes of neurons during habituation learning, but
it is unclear how these might be organized in a circuit. Based on the diversity of functional response profiles identi-
fied, it is clear that solving this circuit will take considerable further work. As as starting point in this long-term effort,
we used the pharmacological manipulations as these treatments provide us with tools to ask how treatments that
potently alter habituation behaviour also alter the functional properties of neurons. We compared the Ca2+ activ-
ity patterns after treatment with vehicle (0.1% DMSO), PTX, or Melatonin (Figure 6). At the behavioural level, we
found a trend indicating that we were able to manipulate habituation pharmacologically in our tethered imaging
assay, though this was very subtle (Figure 6A). This discrepancy relative to the very strong behavioural effects in
freely-swimming animals (Figure 5) likely result from the head-restrained protocol, which itself strongly inhibits be-
havioural output. Yet, since we did observe a trend in behavioural data, we proceeded under the assumption that
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Figure 6. Picrotoxinin and Melatonin alter the proportions of functionally identified neurons
A) Percent habituation for larvae during Ca2+ imaging, calculated as: %𝐻𝑎𝑏𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 = 100 × (1 − 𝑃 (𝑅𝑒𝑠𝑝31→60)

0.5×(𝑃 (𝑅𝑒𝑠𝑝1→30+𝑃 (𝑅𝑒𝑠𝑝31→60))
)

B) Heatmap of response profiles of ROIs categorized into the 12 functional clusters from larvae treated with DMSO (vehiclecontrol, n = 428,720 total ROIs in 14 larvae), Picrotoxinin (PTX, 10uM, n = 271,037 total ROIs in 9 larvae), or Melatonin (1uM, n =350,516 total ROIs in 11 larvae).
C) Proportion of neurons belonging to each functional cluster across treatment groups. Distributions for violin plots arebootstrapped from 5000 replicates.
D) Same data as M, only showing the data for PTX vs DMSO vehicle control, re-ordered to reflect the cluster Adaptation Profilesgrouped by cluster Response Shape.
Figure 6—figure supplement 1. Mean response of functionally identified clusters after different pharmacological treatments
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the compounds were having the desired effects.
As PTX and Melatonin have opposing effects on habituation behaviour, we reasoned that these two treatments

should have opposite effects in the circuit, with PTX inhibiting depression and Melatonin promoting depression. In-
deed Melatonin has been found to increase the effects of GABA, and so such a relationship could be direct (Cheng
et al., 2012; Niles et al., 1987). In contrast to this straightforward hypothesis, what we observed was considerably
more complex. We did not observe alterations of the average response profiles of individual neuronal classes, which
remained indistinguishable after the treatments (Figure 6-figure Supplement 1C-K). Instead, the proportion of neu-
rons that belonged to the different classes was altered (Figure 6B-D). Therefore, the pharmacological manipulations
did not alter the activity of neurons in such a way as to alter the average activity states of populations, but instead
the proportion of neurons belonging to different populations changed. This may point to fixed and relatively inflexi-
ble processing strategies that the brain is using in the context of dark-flash habituation which constrain the possible
functional response types.

The effect of PTX on cluster reassignment generally tended towards weaker depression, increasing the propor-
tion of cells falling into the weaker depressing classes at the expense of strongly depressing classes for a given
response shape (Figure 6D). This pattern was most clear in the classes with “Short” and “Long” Response Shapes,
which are those that included the most strongly depressed classes of neurons.

Based on the hypothesis that Melatonin and GABA cooperate during habituation, we expected PTX and Mela-
tonin to have opposite effects. This clearly does not fit with our observations: for example, the size of the 12𝑃𝑜𝑡𝑀neuron population was increased by both PTX and Melatonin (Figure 5C). While habituation of the Probability of
response is oppositely modulated by PTX and Melatonin, this is not true of behaviour globally – the behavioural
fingerprints of Melatonin and GABA are not opposites (Figure 5A,B) and opposing effects are not seen for the ha-
bituation of Displacement (Figure 5-figure Supplement 1E,F). Therefore, a lack of coherent shifts across the entire
neural population when applying these treatments is expected. However, opposite effects of PTX and Melatonin
were observed for 4𝑠𝑡𝑟𝑔𝐷𝐿 neurons (Figure 6C), which we found to be most strongly correlated with motor output (Fig-
ure 2F), and thus is most closely associated with behavioural initiation. Therefore, this class might be most critical
for habituation of response Probability.

Combined, these experiments reveal that pharmacologicalmanipulations that affect habituation behaviourman-
ifest in complex functional alterations in the circuit. These effects can not be captured by a simple model, and con-
siderable additional knowledge of the circuit, including the connectivity and signalling capacity of different neurons
will be necessary to understand these dynamics.
Identification of GABAergic neurons classes in the habituating circuit

Since our experiments point to the importance of GABAergic inhibition in habituation, we asked which functional
classes of neurons are GABAergic? An obvious model would assign a GABAergic identity to the 12𝑃𝑜𝑡𝑀 neurons that
potentiate their responses, and thus could act to progressively depress the responses of other neuronal classes. We
began with virtual co-localization analyses with 3D atlases to identify candidate molecular markers for functionally
identified neurons. Such a strategy can be powerful to generate hypotheses frombrain-wide imaging data, provided
sufficient stereotypy exists in the positioning of neurons, and the relevant marker exists in the atlas (Dunn et al.,
2016; Randlett et al., 2015). Therefore, we analyzed the spatial correlations for markers contained in the Z-Brain
(Randlett et al., 2015), Zebrafish Brain Browser (Gupta et al., 2018; Marquart et al., 2017; Tabor et al., 2018), and
mapZebrain atlases (Kunst et al., 2018; Shainer et al., 2022). We identified markers showing the highest spatial
correlationswith any of our functional clusters (corr. > 0.15, n=89 of 752markers), and organized these hierarchically
(Figure 7A). GABAergic reporter lines based on the gad1b promoter were located in a region of the hierarchy showing
greatest spatial similarity with 10𝑛𝑜𝐴𝑆 and 11𝑤𝑒𝑎𝑘𝐷

𝑆 (Figure 7B-E). An enrichment along the medial tectum is common to
markers in this region of the hierarchy, where the highest density of GABAergic neurons within the tectum reside.

To confirm that 10𝑛𝑜𝐴𝑆 and 11𝑤𝑒𝑎𝑘𝐷
𝑆 classes are GABAergic, we imaged the response of neurons in Tg(Gad1b:DsRed);

Tg(elavl3:H2B-GCaMP6s) double transgenic larvae, and classified neurons as gad1b-positive or -negative based on
DsRed/GCaMP levels (Figure 7F,G). Indeed we saw a heterogeneous distribution of gad1b-positive neurons across
functional clusters, including a significant enrichment in not only 10𝑛𝑜𝐴𝑆 and 11𝑤𝑒𝑎𝑘𝐷

𝑆 , but also the other two clusters
with the “Short” Response Shape (7𝑚𝑒𝑑𝐷𝑆 and 8𝑠𝑡𝑟𝑔𝐷𝑆 ). The remaining clusters either showed no significant bias, indicating
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Figure 7. Identification of GABAergic neuronal classes
A) Hierarchically clustered heatmap depicting the correlation of markers aligned to the Z-Brain atlas with the spatial arrangement of the 12functional clusters (distance = complete, correlation). Correlation values are z-scored by rows to highlight the cluster(s) most strongly correlatedor anti-correlated with a given marker. The subset of the hierarchy containing the gad1b-reporters is coloured in purple.
B-D) Normalized summed intensity projections of B) 10𝑛𝑜𝐴𝑆 , and C) 11𝑤𝑒𝑎𝑘𝐷

𝑆 , D) TgBAC(gad1b:GFP) (Satou et al., 2013), Z-Brain Atlas, and E) nns26,aka TgBAC(gad1b:LOXP-RFP-LOXP-GFP) (Satou et al., 2013), mapZebrain Atlas
F) 2-photon imaging of Tg(Gad1b:DsRed);Tg(elavl3:H2B-GCaMP6s) larvae depicting the raw data for each channel (top), and the ratio ofGad1b/GCaMP6s fluorescence in each ROI functionally identified using suite2p.
G) ROIs imaged in double transgenic larvae are assigned a cluster identity based on their correlation to the cluster mean trace, and classified asGad1b-positive based on a DsRed/GCaMP6s ratio of greater than 0.25. Dotted line = expected proportion based on total number of cellsclassified as Gad1b-positive. *=p<0.05, Chi Square test with Bonferroni correction. Distributions for violin plots calculated by bootstrapping5000 replicates. n = 1835 ROIs in 6 larvae.
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that they containmixed populations, or a significant depletion of gad1b-positive cells, suggesting that they comprise
mostly of excitatory or neuromodulatory neurons (3𝑚𝑒𝑑𝐷𝐿 and 12𝑃𝑜𝑡𝑀 ).

These experiments indicate that GABAergic neurons in the habituating circuit are not characterized by their
Adaptation Profile (other than non-potentating), and instead have a characteristic "Short" Response Shape, perhaps
reflecting a transient bursting style of activity relative to other neuronal types that exhibit more sustained firing
patterns. This lack of coherence in adaptation profile may explain why global manipulations of GABAergic signaling
through PTX have complex manifestations in the functional properties of neurons (Figure 6D)

Discussion
Molecular mechanisms of DF habituation
In the data resulting from our small molecule screen, we focused our analysis on those pharmacological agents
and pathways that strongly and relatively specifically modulated habituation when measuring response probability.
We found that inhibition of GABAA/C Receptors using PTX reduced habituation learning. GABA is the main inhibitory
neurotransmitter in the zebrafish brain, and deficits in GABA signaling lead to epileptic phenotypes (Baraban et al.,
2005). We were fortunate that our screening concentration (10𝜇M) did not induce seizures, but was still sufficient to
inhibit habituation. This implies that the habituation circuit is exquisitely sensitive to changes in GABA signaling at
levels well below the threshold required to globally change excitatory-inhibitory balances. This argues for a central
rather than supporting role of GABAergic inhibition in dark-flash habituation.

A critical role for GABA in habituation is consistent with data from Drosophila, where both olfactory and gustatory
habituation have been linked to GABAergic interneurons (Das et al., 2011; Paranjpe et al., 2012; Trisal et al., 2022).
Therefore, this circuit motif of increasing inhibition to drive habituation may be a conserved feature of habituation,
whichwould allow for a straightforwardmechanism for habituation override during dis-habituation via dis-inhibition
(Cooke and Ramaswami, 2020; Trisal et al., 2022).

Our screen also identified that neuro-hormonal signaling is critical for habituation, where Melatonin and Estro-
gen receptor agonists potently increase habituation learning rate. The role of Estrogens in learning and memory
is well established (Luine et al., 1998; Nilsson and Gustafsson, 2002). Though its role in habituation is less well ex-
plored, it has previously been shown to increase memory retention for olfactory habituation in mice (Dillon et al.,
2013). To our knowledge, Melatonin has not previously been implicated in habituation, though it has been impli-
cated in other learning paradigms (El-Sherif et al., 2003; Jilg et al., 2019). Notably, Melatonin was shown to block
operant learning at night in adult zebrafish (Rawashdeh et al., 2007), and therefore Melatonin appears to be able
to both promote or inhibit plasticity in zebrafish, depending on the paradigm.

WhileMelatonin and Estrogenwere not strong candidates for involvement in DF habituation plasticity before our
screen, their previous associations with learning and memory reinforce the idea that these molecules play critical
roles in plasticity processes. In support of this idea, we have previously shown that habituation is regulated in a
circadian-dependent manner (Randlett et al., 2019), and both Melatonin and Estrogen levels fluctuate across the
circadian cycle (Alvord et al., 2022; Gandhi et al., 2015; Zhdanova et al., 2001), suggesting that either or both of
these pathways may act to couple the circadian rhythm with learning performance.

Finally, approximately 2% of the US population use Melatonin as a sleep-aid (Li et al., 2022), and a substan-
tial proportion of US women take Estrogen as part of either oral contraceptives or hormone replacement therapy.
Therefore, understanding the roles these molecules play in neuroplasticity is a clear public health concern.
Circuit mechanisms of DF habituation
Based on behavioural experiments, we previously postulated that multiple plasticity loci cooperate in the habituat-
ing dark-flash circuit, arranged in both parallel and series within the circuit (Randlett et al., 2019). Here, our Ca2+
imaging experiments identified a diverse range of neuronal Adaptation Profiles, including non-adapting and potenti-
ating neurons spread throughout sensory- and motor- related areas of the brain. Thus, non-habituated signals are
transmitted throughout the brain, consistent with a distributed learning process. Such amodel is further supported
with brain-wide imaging data for short-term habituation to looming stimuli, where distributed neurons were identi-
fied that showed differential rates of habituation (Marquez-Legorreta et al., 2022). It is important to point out that
Marquez-Legorreta et al. did not observe non-adapting or potentiating neurons in their experiments. This may be
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due to differences in analysis methods, or could highlight a difference between short- and long-term habituation
circuit mechanisms, the latter of which may rely on more complex circuit mechanisms involving both potentiation
and suppression of responses.

Figure 8. Working models of dark flash habituation.
A)Model proposed to explain how biased GABAergicinhibition may mediate the differential depressionrates observed across neurons. Model proposesthat the neurons with a short Response Shape areGABAergic, and that they differentially connect tothe other functional subtypes, as well as themselves,to drive the response decreases observed duringhabituation. The strength of this inhibitoryconnectivity determines the decrease inresponsiveness across neuronal classes. Larger pinkbox = Stronger inhibition. Cell types are depicted bythe color scheme in Figure 2.
B) Proposed circuit model for the habituation of theprobability of responding to a DF stimulus. The darkflash stimulus is detected by the retina and sent asan unadapted signal to the brain. GABA-ergicinhibitory neurons form the critical node in thehabituating circuit, where habituation occurs as theresult of a potentiation of GABAergic synapses,resulting in depressed responses in connectedneurons. The strength of neuronal adaptationduring habituation depends on the GABAergicconnectivity strength (as in B). The output neuronsof the circuit are the Long-responding class.Potentiated GABAergic inhibition onto thispopulation silences behavioural output.

While we have insufficient anatomical data to constrain cir-
cuit connectivity models that drive DF habituation, here we
demonstrate the use of pharmacology, functional imaging and
neurotransmitter classifications to constrain ourmodels. Specif-
ically, pharmacology indicated a central role for GABA in habit-
uation, and our functional imaging highlighted a role for dis-
tinct classes of neuronal types in the DF circuit, including po-
tentiating neurons (12𝑃𝑜𝑡𝑀 ). These results point to a model where
12𝑃𝑜𝑡𝑀 neurons are GABAergic and thus progressively inhibit the
other neuronal classes. However, in silico co-localization analy-
ses and double transgenic Ca2+ imaging identified 12𝑃𝑜𝑡𝑀 neurons
as predominantly non-GABAergic, inconsistent with this simple
model. Instead, we found that the GABAergic neurons in the
circuit are characterized by their short burst of activity to the
stimulus onset. If the GABAergic neurons are not increasing
in their firing rates but do drive habituation, then perhaps it is
the potentiation of GABAergic synapses that drives habituation
(Figure 8). This is a somewhat unexpected model, as studies of
long-term synaptic plasticity (e.g. LTP and LTD) have overwhelm-
ingly focused on plasticity at excitatory synapses. Although a
functional link to behaviour is less well established, long-term
inhibitory synaptic plasticity has been well documented, includ-
ing inhibitory (i)-LTP and i-LTD (Castillo et al., 2011).

A key question then is what underlies the ranges in Adap-
tation Profiles that we see in individual neurons, which include
non-adapting, weak-, medium-, and strong-depressing profiles.
One possible model is that i-LTP is implemented differentially,
which would require a mechanism to drive differential plastic-
ity along different places in the circuit. While feasible, we fa-
vor a more parsimonious model in which differential connec-
tivity from inhibitory neurons underlie these dynamics: non-
adapting neurons receive little inhibition thus i-LTP has little ef-
fect, while strong-depressing neurons receive strong inhibitory
connections undergoing i-LTP (Figure 8A). While this model is
certainly incomplete, it provides the initial framework for the
circuit-wide mechanisms leading to DF habitation, and testable
hypotheses as to the connectivity and functional consequences
of manipulations of different neuronal classes.

Conspicuously absent from our models are the 12𝑃𝑜𝑡𝑀 neu-
rons. Since these neuronswere increased by both PTX andMela-
tonin, they might play a complex role in habituation. How they
influence the system remains to be seen, but perhaps they act to
reinforce activity in weakly habituating neurons. Given their lo-
cation in the hindbrain they may alternatively directly feed into
the reticulospinal system to modulate motor commands as the
kinematics of the O-bend response change. Also absent from
our current model are the classes exhibiting an On-response
profile (1𝑛𝑜𝐴𝑂𝑛 and 2𝑚𝑒𝑑𝐷𝑂𝑛 ). These neurons fire at the ramping off-
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set of the stimulus, making it unlikely that they play a role in aspects of acute DF behaviour we measured here.
These neurons exist in both non-adapting and depressing forms suggesting a yet unidentified role in behavioural
adaptation to repeated DFs.
Circuit loci of DF habituation
Where in the brain does habituation take place? As discussed above and previously, our data is inconsistent with
a single-locus of plasticity (Randlett et al., 2019). Instead, we propose that plasticity is distributed throughout the
circuit. Since PTX inhibits most aspects of habituation learning (Figure 5Ai), these all may all involve GABAergic
motifs. Moreover, the different functional classes of neurons are distributed through sensory- and motor-related
areas of the brain, consistent with the notion that habituation plasticity occurs in a very distributed manner. While
distributed, there are clear associations between anatomical location and functional neuron type (Figure 2A-E), in-
dicating that there is some degree of regional logic to the localization of Adaptation Profiles. For example, 5𝑤𝑒𝑎𝑘𝐷

𝑀and 6𝑤𝑒𝑎𝑘𝐷
𝑀 are the most prevalent in the pretectum, and mostly absent from the tegmentum and posterior hind-

brain, whereas 3𝑚𝑒𝑑𝐷𝐿 and 4𝑠𝑡𝑟𝑔𝐷𝐿 are numerous in tegmentum and posterior hindbrain, and thus likely occupy more
downstream positions in the sensori-motor circuit.

The tectum is one of the largest brain areas in larval zebrafish, and is directly innervated by nearly all retinal
ganglion cells (Robles et al., 2014). Therefore, the tectum is a prime candidate for implementing DF habituation for
anatomical reasons. In further support of this notion, the neurons we have identified as GABAergic and propose
to be driving habituation (7𝑚𝑒𝑑𝐷𝑆 , 8𝑠𝑡𝑟𝑔𝐷𝑆 , 10𝑛𝑜𝐴𝑆 and 11𝑤𝑒𝑎𝑘𝐷

𝑆 ) are concentrated in the tectum (Figure 2C,D). The tectum
contains multiple anatomically distinct types of GABAergic neurons, most of which are locally projecting interneu-
rons (SINs, ITNs, PVINs), although GABAergic projection neurons have been observed with axons projecting to the
anterior hindbrain (Gebhardt et al., 2019;Martin et al., 2022; Nevin et al., 2010; Robles et al., 2011). Therefore, we
expect that our GABAergic classes correspond to subsets of these GABAergic tectal neurons, which is testable using
genetic approaches based on marker co-expression and/or single cell morphometric and transcriptomic analyses.

Beyond the tectum, conspicuous neuronal clustering was observed in the inferior olive and cerebellum, which
have been implicated in motor-related learning behaviours in larval zebrafish (Ahrens et al., 2012; Lin et al., 2020;
Markov et al., 2021). Both structures contained many stimulus-tuned neurons (Figure 1I), and non-adapting (1𝑛𝑜𝐴𝑂𝑛 ,
9𝑛𝑜𝐴𝑀 and 10𝑛𝑜𝐴𝑆 ), and potentiating (12𝑃𝑜𝑡𝑀 ) neurons were among the most concentrated in the cerebellum (Figure 2C,D).
Non-adapting 9𝑛𝑜𝐴𝑀 neurons were also prominent in the torus longitudinalis, which also contains high concentrations
of on-responding 1𝑛𝑜𝐴𝑂𝑛 , 2𝑚𝑒𝑑𝐷𝑂𝑛 neurons. The torus longitudinalis has recently been implicated in the binocular integra-
tion of luminance cues (Tesmer et al., 2022), and therefore is ideally placed to influence habituation to whole-field
stimuli like DFs.

Collectively, our brain-wide imaging data point to a central role for inhibitory neurons in the tectum in habitu-
ation, but also clearly implicate other brain areas, and therefore a comprehensive model will need to span many
regions of the brain in order to explain the neural and behavioural dynamics underlying habituation learning.
Conclusion
Habituation is the simplest form of learning, yet despite its presumed simplicity a model of how this process is
regulated in the vertebrate brain is still emerging. Here we have combined two powerful methods offered by the
larval zebrafish model: whole brain functional imaging and high-throughput behavioural screening. By applying
these methods to long-term habituation, we identified dozens of pharmacological agents that strongly modulate
habituation learning and distinct classes of neurons that are activated by DFs and adapt their activity during learning.
The systematic datasets we generated contain large amounts of additional information that await future validation
and integration into a unified model for DF habituation. Nonetheless they yielded a multitude of hypotheses as to
the molecular and circuit mechanisms of habituation that can be followed up in future studies.

Our approach validates the utility of virtual anatomical analyses using atlases and pharmacological manipula-
tions to test and constrain neural circuit models in pan-neuronal imaging experiments, for which anatomical and
molecular information is often sparse. From these analyses we have arrived at the first iteration of a working model
for long-term dark flash habituation Figure 8. The diversity of molecular pathways and functional neuronal types
we have identified here indicate that considerable biological complexity exists that awaits discovery within the “sim-
plest” form of learning.
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Methods
Animals
All experiments were performed on larval zebrafish at 5 days post fertilization (dpf), raised at a density of ≈1 lar-
vae/mL of E3 media in a 14:10h light/dark cycle at 28-29°C. Wild type zebrafish were of the TLF strain (ZDB-GENO-
990623-2). Transgenic larvae used were of the following genotypes: Tg(elavl3:H2B-GCaMP7f)jf90 (Yang et al., 2021),
Tg(elavl3:H2B-GCaMP6s)jf5 (Freeman et al., 2014), and Tg(gad1b:DsRed)nns26 (Satou et al., 2013). Zebrafishwere housed,
cared for, and bred at the Harvard MCB, UPenn CDB, and Lyon PRECI zebrafish facilities. All experiments were done
in accordance with relevant approval from local ethical committees at Harvard University, the University of Pennsyl-
vania, and the University of Lyon.
High-throughput screening setup and protocol
Larvae were assayed for behaviour in 300-well plates using the apparatus described previously (Randlett et al.,
2019). Briefly, each well is 8mm in diameter and 6mm deep, yielding a water volume of ≈300uL. Behaviour plates
are suspended below a water bath kept at 31°C, which acts as a heated lid to prevent condensation and maintains
the water temperature in the well at 29°C. Behaviour was tracked using a Mikrotron CXP-4 camera, Bitflow CTN-
CX4 frame grabber, illuminated with IR LEDs (TSHF5410, digikey.com). Visual stimuli were delivered via a ring of 155
WS2812B RGB LEDs (144LED/M, aliexpress.com). For a dark flash stimulus, the LEDs were turned off for 1s, and then
the light intensity was increased linearly to the original brightness over 20s. The optomotor response was induced
by illuminating every 8th LED along the top and bottom of the plate, and progressively shifting the illuminated
LED down the strip resulting in an approximately sinusoidal stimulus, 5.5 cm peak to peak, translating at 5.5 cm
per second. Direction of motion was switched every 30 s, for a total testing period of 1 hour, and performance was
scored as the average change in heading direction towards the direction of motion during these 30s epocs. Acoustic
tap stimuli were delivered using a Solenoid (ROB-10391, Sparkfun). The behavioural paradigm was designed to be
symmetrical such that 1hr worth of stimulationwas followed by 1hr worth of rest (Figure 1B), allowing us to alternate
the view of the camera between two plates using 45-degree incidence hotmirrors (43-958, EdmundOptics)mounted
on stepper motors (Figure 1A, ROB-09238, Sparkfun), driven by an EasyDriver (ROB-12779, Sparkfun).

Apparatus were controlled using arduino microcontrollers (Teensy 2.0 and 3.2, PJRC) interfaced with custom
written software (Multi-Fish-Tracker), available here:
github.com/haesemeyer/MultiTracker .

The protocol for assessing behaviour (Figure 1B, Figure 3B) consisted of dark flashes repeated at 1-minute inter-
vals, delivered in 4 training blocks of 60 stimuli, separated by 1hr of rest (from 0:00-8:00, hr:min of the protocol). For
analyses, this epoch is separated into periods reflective of the Naive response (first 5 stimuli), and the remaining 235
stimuli during training. From 8:00-8:30, no stimuli are delivered and fish are monitored for spontaneous behaviour.
From 8:30-9:00 fish are given acoustic stimuli, and from 10:00 - 11:00 fish are assayed for the optomotor response
and turning towards the direction of motion (light blue). Finally, at 12:00-13:00, larvae are given 60 additional dark
flashes during the test period (red).
Behavioural analyses
The behaviour of the fish was tracked online at 28 hz, and 1-second long videos at 560 hz were recorded in response
to DF and Acoustic Tap stimuli. Offline tracking on recorded videoswas performed inMATLAB (Mathworks) using the
script “TrackMultiTrackerTiffStacks_ParallelOnFrames.m”, as described previously, to track larval posture (Randlett
et al., 2019). Tracks were then analyzed using Python. Analysis code available here:
github.com/owenrandlett/lamire_2022.

Responses to DFs and to taps were identified as movement events that had a bend amplitude greater than 3𝑟𝑎𝑑
and 1𝑟𝑎𝑑, respectively. Behavioural fingerprints were created by first calculating the average value for each fish
reflecting either the DF response during the specified time period (Naive = DFs 1-5, Training = DFs 6-240, Test = DFs
241-300), or the average response during the entire stimulus period (Acoustic Taps, OMR, Free Swimming). Periods
where the tracking data was incomplete were excluded from the analysis. DFs where larvae did not respond were
excluded from the behavioural components other than the Probability of Response. The Strictly StandardizedMean
Difference was then calculated for each of these average fish values for the compound-treated larvae relative to the
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vehicle (DMSO) control (Figure 3C). The threshold for determining hit compounds was set at |𝑆𝑆𝑀𝐷| ≥ 2. These
analyses were performed using:
Analyze_MultiTracker_TwoMeasures.py.

Hierarchical clustering (Figure 3D, Figure 4A-C) was performed using SciPy (Virtanen et al., 2020). Correlations
across different behavioural measures (Figure 4B) was calculated computing all pairwise comparisons for each be-
havioural measure in the SSMD fingerprint across the 176 hit compounds.

Further details and code for the analyses used to create the figure panels are in the following notebook:
2022_LamireEtAl_BehavFigs.ipynb. Analyses made use of open-source Python packages, including: NumPy (Harris
et al., 2020), SciPy (Virtanen et al., 2020), matplotlib (Hunter, 2007), seaborn (Waskom, 2021), and open-cv (Bradski,
2000).
Pharmacology
Compounds were prepared as 1000x frozen stock solutions in DMSO. Stock solutions were initially diluted 1:100 in
E3, yielding a 10x solution. 30uL of this solution was then pipetted into the wells, yielding a 1x compound solution
in 0.1% DMSO (Sigma). Vehicle treatment followed the same protocol, using pure DMSO. Larvae were incubated in
compound solution for between 30 to 90 minutes prior to behavioural testing.

The small molecule compound library (Selleckchem Bioactive: FDA-approved/FDA-like small molecules, Figure 1-
source data 1) was obtained from the UPenn High-Throughput Screening Core. The library concentration was
10mM, and thus all compounds were screened at approximately 10uM. For subsequent pharmacological exper-
iments chemicals were obtained from: Picrotoxinin: Sigma, P-8390; Melatonin: Cayman, 14427; Sigma, M5250;
Ethinyl Estradiol: Cayman, 10006486; Hexestrol: Sigma, H7753
Microscopy
Imaging was performed on 5dpf larvae, mounted tail-free in 2% LMP agarose (Sigma A9414) in E3, using a 20x
1.0NA water dipping objective (Olympus). Volumetric Imaging (Figure 1,Figure 2, Figure 6) was performed at 930
nm on a Bruker Ultimamicroscope at the CIQLE imaging platform (Lyon, LYMIC), using a resonant scanner resonant
scanner over a rectangular region of 1024x512 pixels (0.6𝜇m x/y resolution) and piezo objective mount for fast z-
scanning. Imaging sessions began by taking an “Anatomy Stack” consisting of 150 slices at 1µm z-steps, summed
over 128 repeats (imaging time ≈11 minutes). This served as the reference stack used for alignment to the Z-Brain
atlas, and to detect Z-drift in the imaging session (see below). The functional stack consisted of 12 slices separated at
10𝜇msteps, thus covering 120𝜇m in the brain acquired at 1.98 hz). To image Tg(elavl3:H2B-GCaMP6s);Tg(gad1b:DsRed)
double transgenic larvae (Figure 7), we used a custom built 2-photonmicroscope (Haesemeyer et al., 2018), imaging
512x512 images at (0.98 𝜇m x/y resolution) at 1.05 hz. The anatomy stack was taken at 2 𝜇m step sizes for both the
green and red channels in the dark. Functional imaging was performed only on the green/GCaMP channel since the
red stimulus LED was incompatible with DsRed imaging.

When developing this protocol we determined that substantial shifts of more than a cell-body diameter (5uM) in
the Z-plane are common during the≈1.2 hrs of imaging. We determined this by comparing the sumof the functional
image planes during 5 equally sized time epochs (1540 frames per epoch), aligned to the “Anatomy Stack”, using
“phase_cross_correlation” in the scikit-image library (van der Walt et al., 2014). This allowed us to quantify shifts
in the imaging plane as shifts in this alignment. These tended to occur within the first hour of imaging, therefore
we performed an hour of imaging of this functional stack before beginning the DF stimulation protocol to allow the
preparation to settle under imaging conditions. Dark flashes were delivered using a 3mm red LED mounted above
the fish, controlled by an Arduino Nano connected to the microscope GPIO board and the Prairie View software to
deliver pulses of darkness consisting of 1 sec light off, 20 sec linear ramp back to light on, delivered at 60 second
intervals.

Even with this pre-imaging protocol, z-shifts were still observed in a considerable number of fish. Since our
habituation-based analysis is focused on how individual neurons change their responses over time, shifts in the
z-plane are extremely problematic as they are not correctable post-acquisition and can result in different neurons
being imaged at individual voxels. This could easily be confused for changes in functional responses over timeduring
habituation. Therefore, any fish showing a z-drift of greater than 3𝜇m was excluded from our analysis. Stable z-
positioning was further confirmed by manual inspection of the eigan images in the imaging timecourse using “View
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registration metrics” in suite2 to confirm that these do not reflect z-drift. Of 56 larvae imagined total, 22 were
excluded, leaving 34 included. Larvae were treated with 0.1% DMSO, Picrotoxinin (PTX, 10uM), or Melatonin (1uM),
from approximately 1hr before imaging. These fish were analyzed as a single population (Figure 1,Figure 2) and
separately to determine the effects of the treatments (Figure 6).
Ca2+ imaging analysis
ROIs were identified using suite2p (Pachitariu et al., 2017) using the parameters outlined in
RunSuite2p_BrukerData_ScreenPaper.py and RunSuite2p_MartinPhotonData_ScreenPaper.py scripts for the data
from the Bruker Ultimamicroscope (Figure 5-Figure 8), and custom built 2-photonmicroscope (Figure 7D,E), respec-
tively. These ROIs mostly reflected individual neuronal nuclei/soma. The imaging planes were then aligned to the
anatomical stack taken before functional imaging using “phase_cross_correlation” in the scikit-image library (van der
Walt et al., 2014). For the volumetric data, the anatomical stack was then aligned to the Z-Brain atlas coordinates
using CMTK, and ROI coordinates were transformed into Z-Brain coordinates using streamxform in CMTK. These
steps were performed using Bruker2p_AnalyzePlanesAndRegister.py.

To identify ROIs that were correlated with the stimulus we use a regression-based approach (Miri et al., 2011),
where we identified ROIs that were correlated with vectors representing the time course of the DF stimuli convolved
with a kernel approximating the slowed H2B-GCaMP time course with respect to neuronal activity. These regressors
reflected either the entire 21 second dark flash stimulus, or only the onset of the flash, and either the first 3, last 3,
or all 60 flashes (6 regressors in total). To identify neurons correlated to motor output, we took advantage of the
plane-based registration statistics calculated by suite2p. Specifically, the “ops[’corrXY’]” metric, which reflects the
correlation of each registered image frame with the reference image. We reasoned that movements would cause
image artifacts and distortions that would be reflected as a transient drop in these correlations. Indeed, we con-
firmed this association by imaging the tail using an infrared camera, and compared the motion index calculated
through tail tracking, and that which we calculated based on the motion artifacts, which showed good overall agree-
ment in predictedmovement events and average correlation of 0.4, demonstrating that these image-based artifacts
can be used as reliable proxies of tail movements (Figure 1-figure Supplement 1). Therefore, regressors based on
these motion indices were used to identify neurons correlated with motor output.

Images for the functional tuning of individual neurons (Figure 1G-J) were computed using the the Hue Saturation
Value (HSV) colorscheme, with the maximal correlation value to either regressor mapped to saturation, and the
hue value reflecting the linear preference for either regressor. Clustering of functional response types (Figure 2)
was done by first selecting all those ROIs that showed a correlation of 0.25 or greater with any of the 6 stimulus
regressors across all imaged fish. Then among these ROIs we removed any ROIs that did not show a correlation of
0.3 or greaterwith at least 5 ROIs imaged in a different larvae. This filtered out ROIs thatwere unique in any individual
fish, allowing us to focus on those neuron types that were most consistent across individuals. We then used the
Affinity Propagation clustering from scikit-learn (Pedregosa et al., 2011), with “affinity” computed as the Pearson
product-moment correlation coefficients (corrcoef in NumPy (Harris et al., 2020)), preference=-9, and damping=0.9.

To generate the final cluster assignments we re-scanned all the ROIs calculating their correlation with the mean-
response vectors for each of the identified 12 functional clusters, selecting those with a correlation value of 0.3 or
greater, which were then assigned to the cluster with which they had the highest correlation. To determine the clus-
ter assignments for the data from Tg(Gad1b:DsRed);Tg(elavl3:H2B-GCaMP6s) double transgenic larvae (Figure 7F,G)
data were realigned and interpolated to match the frame rate of the clustered data, and assigned to the 12 clusters
as above.

To compare the spatial relationships between the neuronal positions of different functional clusters (Figure 2E),
and between the functional clusters and reference brain labels (Figure 7A-E), image volumes were cropped to the
imaged coordinates (Figure 1E), downsampled to isometric 10 um3 voxels, and linearized to calculate the Pearson’s
correlation coefficient between the image sub-volumes.

Analyses made use of multiple open-source Python packages, including: suite2p (Pachitariu et al., 2017) NumPy
(Harris et al., 2020), SciPy (Virtanen et al., 2020), scikit-learn (Pedregosa et al., 2011), scikit-image (van derWalt et al.,
2014), numba (Lam et al., 2015), matplotlib (Hunter, 2007), seaborn (Waskom, 2021), and open-cv (Bradski, 2000).
Details of the analyses used to create the figure panels are in the following notebook:
2022_LamireEtAl_FunctionalFigs.ipynb
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Data and Code Availability
Code for data analysis and for generating the figure panels is available here:
github.com/owenrandlett/lamire_2022
Data are available here:
lamire2022.randlettlab.com/
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Figure 1—figure supplement 1. Validation of motion analysis based on image artifacts during 2-photon imaging.
A)Motion indexes as calculated based on tail tracking (blue) and based on decreases in the correlation between in-
dividual frames and the reference frame used for motion alignment (orange) across the entire imaging experiment
(65 minutes).
B) Same analysis as (A), for a different larva.
C) Cross-correlation plot comparing the two motion index vectors. Mean across 6 larvae, and line thickness = stan-
dard error.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.06.17.496451doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496451
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5—figure supplement 1. Pharmacological manipulation of control behaviours and response displacement
during habituation.
Dose response studies for A) Picrotoxinin, B) Melatonin, C) Ethinyl Estradiol and D) Hexestrol. Displayed for
each treatment are: i) Violin plots for the dose response data, showing the probability of response to 30 acous-
tic tap stimuli. Horizontal lines = individual fish. ii) Violin plots for the dose response data OMR performance.
Horizontal lines = individual fish. Statistical tests: Mann Whitney with bonferroni correction, ns=not significant;
𝑝 ≤∗∗∗∗= 1𝑥10−4; ∗∗∗= 1𝑥10−3; ∗∗= 1𝑥10−2; ∗= 0.05.
E) Treatment with Picrotoxinin inhibits the decreases in movement displacement during habituation training.
F) Treatment with Melatonin inhibits the decreases in movement displacement during habituation training. Each
dot is the mean response of the population to one flash. Lines are smoothed in time with a Savgolay Filter (window
= 15 stimuli, order=2).
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Figure 6—figure supplement 1. Mean response of functionally identified clusters after different pharmacologi-
cal treatments. A-C) Average z-scored fluorescence each functional cluster plotted for the whole experiment (left
column), and centered on each DF stimulus (right column), demonstrating the differences in both adaptation and
Response Shape for each cluster after treatment with (A) 0.1% DMSO vehicle control, (B) Picrotoxinin (10uM), or (C)
Melatonin (1uM). D) Same data as A-C, plotted together for each treatment group.
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