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Abstract

A longstanding disconnect between the growing number of MHC Class | immunopeptidomic
studies and genomic medicine hinders cancer vaccine design. We develop COD-dipp to
genomically map the full spectrum of detected canonical and non-canonical (non-exonic)
MHC Class | antigens from 26 cancer studies. We demonstrate that patient mutations in
regions overlapping physically identified antigens better predict immunotherapy response
when compared to neoantigen predictions. We suggest a vaccine design approach using
140,966 highly immune-visible regions of the genome annotated by their expression and
haplotype frequency in the human population. These regions tend to be highly conserved,
mutated in cancer and harbor 7.8 times more immunogenicity. Intersecting pan-cancer
mutations with these immune surveilled regions revealed a potential to create off-the-shelf

multi-epitope vaccines against public neoantigens. Here we release COD-dipp, a cancer

vaccine toolkit as a web-application (https://www.proteogenomics.ca/COD-dipp) and open-

source high-throughput resource.
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Introduction

A revolution in cancer vaccines is underway fueled by a better understanding of the immune
response and the breadth of tumor-associated antigens (neoantigens)'. In part, this is due to
the accelerated adoption of MHC Class | antigen profiling (i.e., immunopeptidomics) in
cancer by mass spectrometry. Leveraging these studies for cancer vaccines involves
connecting the wealth of immunopeptidomics data to immunogenomics, where the goal is to

carefully choose effective mutations to develop vaccines?.

The immunopeptidomics community has emphasized linking genomics to proteomics
through the direct detection of neoantigens among the unexplained spectra in mass
spectrometry studies®>. Yet, there are known sequence coverage limitations of current MS-
based proteomics that limit the detection of neoantigens and therefore the effectiveness of
this approach®’. Oppositely, genomics has emphasized the use of MHC binding predictors®-
10 trained from immunopeptidomics and affinity data to propose neoantigens for vaccines.
Although their artificial intelligence architecture offers the most predictive accuracy, they still
suffer from some drawbacks. First, the training datasets lag behind on cutting edge
developments in computational mass-spectrometry that would identify non-canonical
antigens. Second, they do not generalize well to the highly polymorphic MHC alleles’ or to
peptides with different lengths. Third, a high fraction of peptides is predicted to bind strongly,
where in fact they do not, meaning a high proportion of these predicted neoantigens will not
be effective for vaccine design'2. Finally, an accurate landscape of the presented
immunopeptidome remains inaccessible within these predictive models, breaking the flow

between the detected genomic aberrations and their predicted MHC presentation.

From a therapeutic standpoint, cancer vaccines have been designed to target private
neoantigens'® personalized to individual patients’ tumors. This strategy presents a

substantial bottleneck in terms of production and scalability because vaccines must be
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tailored to each patient. A more sustainable strategy is to use public neoantigens that rely
on recurrent mutations in cancer to develop antibody and T cell therapies. Thus, a
comprehensive list of such recurring neoantigens broadly presented to the immune system
across the human population is urgently needed. These alternative therapeutic agents could
cover the genomic diversity of presented antigens as well as the multitude of co-
translational’® and post-translational'® aberrations. Such ‘focal public neoantigens’ could be
used to refine the development of multi-epitope vaccines against cancer and could offer a

new line of population-level immunotherapeutics.

Since cancer is a disease of the genome, tracing the physically detected immunopeptidome
back to the genome stands to transform cancer vaccine design, yet remains difficult. To
start, no high-throughput method for capturing the full-breadth of the immunopeptidome
including canonical (exonic and post translationally modified) and non-canonical (intronic,
frame shifted or UTR peptides) has been put forward. In addition, harmonized analyses have

yet to connect accessibly to the genome-centric bioinformatics community.

Here, we present a comprehensive and well-engineered resource of presented peptidic
antigens (immunopeptidomes) that incorporates the full breadth of neoantigen science'2".
The immunopeptidome profiles of over 486 samples from 26 published cancer studies?>23
were analyzed using a novel harmonized approach. Assembling a novel catalog of peptides
derived from canonical (exonic or post translationally modified) and non-canonical (intronic,
frame shifted or UTR) sources uncovered a spectrum of recurrent in-frame antigens and out-
of-frame neoantigens. The genome centric nature of our resource makes the connection to
cancer mutation data simple. Aligning these peptides to the genome revealed a cartography
of over 468,048 unique immunopeptides and proved that mutations in the corresponding
regions are predictive for immunotherapy response. Our pan-cancer analysis relying on focal
public neoantigens suggests which multi-epitope vaccines will make strong candidates for

the next generation of vaccines and T-cell based therapies. We assess the feasibility of
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designing poly-epitope vaccines against focal public neoantigens and provide data,
alongside a web-application, to explore and develop these vaccines for broad spectrum
therapeutics. Beyond cancer, the methods introduced here stand to enable important
questions about the status and evolution of the immune-visible genome for the comparative

immunology community.

Results

Immunopeptidomics Mass Spectrometry datasets

We selected 26 immunopeptidomics mass spectrometry studies (Supplementary Table 1)
to create our dataset of antigen presentation in cancer. Samples were analyzed using a
harmonized approach for the characterization of data-dependent acquisition (DDA) mode in
tandem mass spectrometry. These DDA datasets covered several cancer types affecting
brain, lung, skin, liver, blood, colon, ovarian, and breast cancer tissues, (Fig. 1a, methods,
Supplementary Note 1) including cell lines, and disease free normals (Fig. 1b). We filtered
the available data for high-resolution mass spectrometry instruments (Q Exactive
Plus/HF/HFX and Fusion Lumos) to minimize the bias associated with older tandem mass-
spectrometry instrumentation (Fig. 1¢). Antibody choice can impact which MHC molecules
are selected for analysis in immunoprecipitation (IP)?*. Within our dataset, W6/32 was the
most used monoclonal antibody for HLA class | IP compared to the other antibodies (BB7.2
and G46-2.6) (Fig. 1d, cf. Supplementary Table 1). The studies cover 5 different HLA
Class | genes with HLA-A, B, and C being the most studied compared to HLA-E, and G (Fig.

1e).
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COD-dipp: A high-throughput pipeline for the interrogation of immunopeptidomics

datasets

We present COD-dipp (Closed Open Denovo - deep immunopeptidomics pipeline), an open-
source high throughput pipeline with novel post-processing steps to deeply interrogate
immunopeptidomics datasets (Fig. 2a). We then use this pipeline to develop a well-
engineered database of canonical and non-canonical MHC Class | peptides, and an
accessible web-application to facilitate their use for vaccine design (Fig. 2b). We chose to
work with DDA datasets, owing to their abundance in the literature. DDA data can be
analyzed using different computational methods to identify the peptides by matching the
acquired MS2 spectra to an amino-acid sequence?® in a process called peptide-spectrum
matching (PSM)?. Closed search, open search, and de novo sequencing are three main
strategies used to identify canonical, post-translationally modified and non-canonical
peptides respectively. We chose one algorithm from each of these categories of PSM
assignment: MS-GF+27, MSFragger?, and deepNovo v22 in order to cover more of the
spectra in all 486 samples. We interfaced the deep neural network (deepNovoV2) with the
closed search algorithm (MS-GF+) to automatically learn the interpretation of mass
spectrometry spectra. Using our novel de novo post-processing we traced these peptides to
canonical and non-canonical sources using carefully tuned short sequence alignments

(Supplementary Note 2; Supplementary Fig. S1).

Pipeline Components: To identify canonical peptides, MS-GF+ and Scavager?® were used
as the closed search algorithm and to control the False Discovery Rate (FDR) to 1%
respectively. To find and position post-translational modified peptides (PTMs), MSFragger
and PTMiner3® were used to perform an open search analysis and to control both FDR along
with False Localization Rate (FLR) to 1%. To find peptides from non-canonical sources,
DeepNovoV2 was used for the de novo strategy (methods) in combination with the closed
search PSM level information to train a specific DeepNovoV2 model per sample on

interpreting the raw data. The training step for such deep learning approach is crucial for
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learning features of tandem mass spectra, fragment ions, and leverage sequence patterns in
the immunopeptidome to impute over missing MS2 fragments. All high quality de novo
peptides (90% accuracy) were sequentially mapped?! to the human reference proteome and
afterwards to a 3 Frame Translation (3FT) database derived from the coding strand for each
gene in the genome i.e., unspliced transcriptome (cf. methods). 3FT was used for the
detection of peptides from novel sources (i.e., non-canonical peptides) such as introns,
5'UTRs, 3'UTRs, out of frame exons, and junctions spanning any of the previously

mentioned features.

A deep interrogation of immunopeptidomic datasets

Applying the COD-dipp pipeline across the dataset improved the number of peptide
spectrum matches over any one strategy (Fig. 3a), revealing a breadth of canonical, post-

translationally modified, and non-canonical peptides.

Peptides with mass-shifts: Post-Translational Modifications (PTMs)

The robust Bayesian statistical analysis used in PTMiner for open search PTMs?° controls
both False Discovery and False Localization Rates (FDR and FLR). Overall, 4,684,008
PSMs were detected at a 1% FDR + FLR by this strategy (Fig. 3a) and a subset of 5.15%
was found to show PTMs (Fig. 3b). Cysteine (cysteinyl, carbamidomethyl and trioxidation)
and Methionine (oxidation and dioxidation) were the 2 most modified residues (Fig. 3c¢).
Interestingly, Cysteine has been reported as under-represented®?33 in comparison to the
proteome and has been treated as a technical bias in the database search parameters
previously. Furthermore, 1.12% of open search MHC Associated Peptides (MAPs) showed
unknown mass shifts illustrated in Fig. 3d as green and red. Eight of the most common
unexplained mass shifts were introduced by non-specific cleavage when combined with
open search (Supplementary Note 3) except (176.02, 176.04] Da on Cys which remains

with no clear assignable PTM in existing databases?®.
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Out of frame and intronic neoantigens

Several studies have explored MAPs from non-coding regions of the genome7:353¢ and
novel antigens have been proposed from (1) pseudogenes and IncRNAs?®’ (ll) intragenic non-
coding regions'” through intron retention events®® or non-canonical translation events3¢. We
developed a novel sequential approach for the specific purpose of detecting non-coding
antigens from annotated genes. Our workflow identified 11,710 unique MAPs within
intragenic non-coding regions. We explored the landscape of non-canonical antigen
presentation in cancer using a rigorous sequential de novo sequencing strategy that made
use of the entire immunopeptidomics dataset independent of matched genomics data
(methods). We ensured that only high-quality spectra were assigned by applying a 90%
accuracy threshold on de novo prediction. Carefully, preference was given for the human
proteome before matching the non-canonical sequence space. Peptides were mapped to
known normal proteins first, then the remaining to a 3 frame translation database based on
the coding pre-mRNA sequences in GRCh38 as shown in (Fig. 2, methods). We did not
examine fully non-coding genomic regions in order to focus on the most likely candidate
peptides in this analysis, despite evidence that these too are translated®”. Our de novo
strategy contributed to 15.9% (1,893,527) of all identified spectra (Fig. 3a), with 96.3%
mapping fully to normal exonic sequences (i.e., canonical) and a minority (3.7%) mapping to

the 3 Frame translation database (i.e., non-canonical) sequences (Fig. 3e).

We assessed the quality of the de novo sequences by examining their DeepNovoV2 score
quality, liquid chromatography retention times conformity, and HLA binding motifs
appropriateness. Both canonical and non-canonical peptides showed a similar de novo
score distribution with a slight shift of non-canonical peptides toward higher scores (Fig. 3f).
The filtering of peptides with less than 3 unique amino acids (i.e., Poly A or poly G peptides)

reduced the FDR (proportion of peptides that mapped to the decoy database) to 0.77%

Number of decoys

(FDR = ) among exonic peptides (Fig. 3g). This filter was applied on

Number of decoys + targets
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non-canonical peptides as well. As another quality control step, the correlation between the
experimental and predicted retention time of de novo canonical and non-canonical peptides
was checked. Fig. 3h shows an r-squared score of 0.9 for de novo exonic and 0.863 for de
novo non-canonical peptides in a melanoma sample (mel-15 of PXD004894) and an overall
de novo non-canonical r-squared score of 0.88 among all samples. Similarly, de novo
canonical and non-canonical peptides showed an 86% overlap in terms of HLA motifs
indicating that the same MHC Class | haplotypes explain the newly found non-canonical
peptides (Fig. 3i, Supplementary Note 4). All this provides strong evidence that these de
novo peptides are high quality identifications (i.e., correctly predicted complete peptidic
sequences). We found that any non-coding region type within genes can generate non-
canonical peptides (Fig. 3j). Fig. 3k shows that most detected non-canonical peptides come
from introns (568.3%) by either intronic retention or alternative Translation Initiation Sites
(aT1S). Interestingly, we found that 86.29% of the intronic peptides had an upstream start
codon and 40.65% to have a potential upstream Translation initiation site (TIS)* hinting at

alternative translation as a possible source.

Integrated search results

Of all 468,048 unique peptides, 21% were detected in all 3 strategies, and 19.4% by both
closed search and open search (Fig. 3l). Closed search showed the largest exclusive set of
peptides (16.7%) compared to open search 15.2% and de novo 12%. All strategies showed
a similar number of mapped locations to the human genome with mostly 1 and 2 reference
locations (Fig. 3m). Of all 85,208 unique protein isoforms, 85.2% (72,633) were detected by
all 3 strategies (Fig. 3n). The low fraction of exclusive proteins reflects the complementary
nature of the strategies. Similarly, the majority of non-canonical peptides identified by de
novo sequencing originated from the same set of proteins of canonical peptides with 86.3%
(24,518) of proteins overlap (Fig. 30). This implies that non-canonical peptides originate

from the same subset of proteins of canonical ones.
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Recurrent neoantigens from alternative sources

We further surveyed the recurrence of non-canonical peptides and their degree of ubiquity
across cancer immunopeptidomes. 239 MAPs were recurrently identified in at least 10
samples with at least 2 spectra (Fig. 4). Some recurrent peptides occur exclusively within
cancer types (colon cancer, melanoma, and ovarian carcinoma) while others are shared
across cancer types. Reassuringly, 90.6% were predicted binders by NetMHCPan 4.0 to the
HLA class | supertypes, 12 HLA alleles with binding properties that cover much of the human
population. Strong binders were in the majority 76% (181), while 14.6% (35) were predicted
as weak binders. In comparison, a set of 239 random peptides with random length from 8 to
12 shows only 5.7% strong binders, and 11.7% weak binders to the same 12 HLA types. In
addition, these peptides were detected in colon cancer tissue without the help of HLA
amplification treatments (IFN or TRAM) hinting at a high expression by the MHC class |
system. 20 out of 239 peptides were found downstream of known frameshift mutations in
COSMIC and were associated with low NMD efficacy scores®®, which could offer an
explanation for their origins. 87 out of 239 were exclusively shared between cancer samples
without any occurrence in disease free samples of which 7 were found in COSMIC as
frameshifts. In addition, the presence of some peptides could be explained by cancer

aberrations affecting splice sites.

Prognostic power of the COD-dipp generated antigen library

The assignment of somatic mutations to neoantigens tends to make use of predictive models
of antigen presentation. Genomic mutations are translated to mutated sequences, then MHC
Class | binding is evaluated for patient-specific HLA types using a sliding window to choose
the best nonamer candidates. Here we suggest that neoantigen prediction should be
informed by experimentally detected antigens (methods) and show a significant
improvement over relying on predicted epitopes alone for immuno-therapy response
prediction. Fig. 5a shows the performance of the homogenous fitness model by tuksza et

al.“? (top row) when using a typical prediction approach compared to focusing on genomic

10


https://doi.org/10.1101/2022.01.13.475872
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.13.475872; this version posted February 22, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

regions where antigens have previously been detected in our dataset (bottom row). The
incorporation of mass spectrometry data improved the patient separation into responders
(low fitness) and non-responders (high fitness) in all 3 cohorts. In addition, the 2 cohorts
from Rizvi et al.*', and VanAllen et al.*?> showed significance only with the mass

spectrometry informed model.

Focal public neoantigens as simplified antigenic library

We define focal public neoantigens as sets of mutations from cancer-relevant hotspots that
intersect with directly observed highly immune-visible regions in the genome. To find them,
we first cataloged immune hotspots at the genome level. Although such hotspots have been
reported before, here we paired them with a novel MHC haplotype deconvolution strategy
(methods, Supplementary Note 4; Supplementary Fig. S2). Hence, hotspots can be
described in terms of their prevalence in the human immunopeptidome, across haplotypes
and therefore in the population. All identified peptides from all samples were mapped to the
human genome, and genomic coordinates from overlapping peptides were combined to
define immune-visible genomic hotspots (Genomic Immune clusters or GIC, methods,
Supplementary Note 4). Fig. 5b shows that the majority of neoantigens (orange) detected
in the 3 previously mentioned checkpoint blockade immunotherapy cohorts are captured by
focal regions (blue) in both low and high fitness groups. Furthermore, a combination of 1374
epitopes*** from studies evaluating the immunogenicity of cancer mutations revealed a
significant 7.8 times (Fig. 5c) increase in T-Cell reactive epitopes within GIC regions
(13/210) when compared to unreactive epitopes (9/1142) (two-sided fisher exact test p
value: 4.98e-6). Antigen binding prediction by NetMHCpan 4.0 of these 1374 epitopes
yielded only 4.8 fold enrichment in immunogenicity (two-sided fisher exact test p value:
3.34e-2). This indicates the value of verified immune-visible regions to identify neoantigens
requiring 3 times less wet lab effort when pursuing T-Cell reactivity experiments. This
simplifies the isolation of neoantigens, highlighting the importance of GICs for vaccine

design. These genomic regions were associated with 3 features: (I) the mean MAPs

11
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expression calculated in Reads Per Million (RPM) (ll) the cancer associated mutational
density within the overlapping gene(s) (gene mutational ratio) (Ill) the percentage of the
world population expressing the region given the deconvoluted HLA types (methods,
Supplementary Note 4). These features capture highly immune-visible genomic regions
relevant to disease without a bias towards their width (Supplementary Fig. $3) and can be
used to derive a score ranging between 0-1, which we call the immune score (methods).
Finally, we developed an ‘immune score’ to rank focal regions according to the MHC Class |
expression, the mutational load in cancer, and the population coverage according to the

corresponding HLA types (Fig. 5d; methods: immune score).

Interestingly, fourteen out of seventeen GICs of the tumor suppressor TP53 have a high
immune score (Fig. 5d, e), indicating that multiple haplotypes converge on the same regions
of this crucial cancer gene, which is consistent with immunogenicity profiles*¢ for TP53. Four
examples in Fig. 5d illustrate how the diversity and spread of motifs in these genomic
regions differ from region to region, and this relates to population coverage (Supplementary
Note 4 illustration). High scoring GICs (Fig. 5d left side) are relatively more spread in the
motif space in comparison to low scoring GICs (right side). This positive relation between the
immune score and the population coverage is related to the cross-presentation of immune
peptides across multiple HLA types (Supplementary Note 4 illustration). Interestingly,
GICs with high immune score occur in regions of high evolutionary conservation according to
the PHAST score*’ (Supplementary Fig. S4), preference towards particular secondary
structure elements (Supplementary Fig. S5), and are equally highly mutated in cancer.
While 11.18% of the coding genome showed immune coverage (by at least 1 unique
peptide), the GIC analysis revealed 140,966 regions of the human genome, that is 3.35% of
the coding genome, being focal points of antigen presentation. Hence, the MHC system
could be restricting presentation to focus on functional sites since they are mostly conserved

throughout evolution.
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Feasibility of vaccines based on focal antigen presentation

We wanted to understand the feasibility of vaccine development using these focal regions of
antigen presentation. Using the COSMIC*® database, pan-cancer aberrations were
intersected with immune-visible regions of the genome and ranked by decreasing recurrence
(Fig. 6a). The cumulative population penetrance (i.e., percentage of patients in COSMIC)
increased to reach 38% when incorporating the top 30 mutations (Fig. 6b). Adding all
mutations from these same immune-visible regions increased the population penetrance to
45% but required 2038 unique mutations. We noticed that certain cancer types tended to
have recurrent mutations falling into the focal regions while others did not, indicating
differences in cancer-specific potentials for vaccination. When the top 10 most recurrent
mutations are considered, Hematopoietic neoplasms show a low vaccine potential, having
low cumulative penetrance (11.9%) for immune-visible recurrent mutations. In comparison,
large intestine (colon) carcinoma was highly immune-visible with 71.4% penetrance (Fig.

6¢c).

We next developed a vaccine potential score (Supplementary Note 5) for a focal region that
balances recurrence in cancer with additive penetrance. This vaccine potential score takes
into consideration the proportion of people with a particular genetic mutation (penetrance) in
a cancer type along with the immune-visibility on the MHC class | system generally across
the population based on physically measured neoantigens in the current dataset. Fig. 6d
illustrates the possibility to develop either therapeutic vaccines using public neoantigens
across different premalignant and malignant lesions or vaccines against pre-cancerous or
symptomatic benign tumors reported in COSMIC (Supplementary Table 2). The top
malignant cancer candidates for potential vaccines are lung carcinoma, liver carcinoma,
pancreas carcinoma, colon carcinoma, brain glioma, skin malignant melanoma, and thyroid

carcinoma presented as the most attractive targets for therapeutic vaccines.
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A web application for vaccine development: understanding the immune-visibility of

public and private neoantigens

To make the results presented in Fig. 5 and 6 broadly accessible, we have developed a web

application (https://www.proteogenomics.ca/COD-dipp) to facilitate vaccine design by

bridging genomic mutations with physically detected MAPs (Fig. 2b). The portal provides a
“neoantigen analysis” where the user can upload a set of gene mutations or a mutation
calling file (VCF format) and retrieve their equivalent neoantigens templated from physically
detected peptides. A second ‘GIC analysis’ feature is also included to give further
information about the regions the mutations occur in. Mutations that overlap highly immune-
visible regions, which we have called Genomic Immune Clusters (i.e., GICs) are returned. In
addition, the expression levels, population coverage, enrichment in cancer mutations as well

as the immune score of the immune-visible regions are provided (methods).

Discussion

The cartography of antigen presentation developed by our open resource arises from a
harmonized analysis of immunopeptidomics data mapped to the human genome. Our
innovations over the most recent trends in computational mass-spectrometry identified a
diversity of peptides mapping to the reference human proteome and its 3 frame translation.
We mapped deviations away from the reference proteome as mass-shifts to reference
peptides and explained significant numbers of these as genetic alterations (Supplementary
Note 6) or PTMs. This approach expands with rigor on preliminary studies which either rely
on proteogenomics for mutation calling® or focus on the specific isolation and study of
PTMs'8. Our cartography is openly accessible as an alignment file directly usable by the
genomics community to suggest focal neoantigens. On top of that, the easy access web-
application, the high-throughput pipeline, and the code for all the analysis extends the

accessibility.
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A diversity of peptides with post-translational modifications or from non-canonical
sources

We found that 4% of all MAPs harbor PTMs. The most abundant detections are:
carbamidomethylation, cysteinylation, oxidation, di or tri-oxidation, acetylation (Fig. 3c).
Some PTMs are confirmatory chemical modifications from sample-preparation methods or
common chemical derivatives (Supplementary Note 3). Other PTMs have been reported to
increase immunogenicity of antigenic molecules against diseases*® and protect against
degradation (Supplementary Table 3). For example, Tri-oxidation of cysteine has a
potential of altering the immune response®, however its interaction mechanism with the HLA
molecules and T cells is still in its infancy®'. Additionally, T cells can discriminate
cysteinylated from unmodified cysteine residues®'52. Likewise, N-terminal serine
acetylation is known for multifunctional regulation, acting as a protein degradation signal, an
inhibitor of endoplasmic reticulum (ER) translocation, and a mediator of protein complex
formation. In our study, 96.3% of the cases of serine acetylation took place on P1 of
peptides located at the second amino acid of proteins indicating the involvement of N-
terminal acetyltransferases A after the initiator methionine is removed by methionine
aminopeptidases®®. P1 serine acetylation has been shown to protrude out of the HLA-
peptide groove for T cell recognition®*. With all the aforementioned, abundant PTMs
implicated in immunogenicity such as serine N-term acetylation, cysteinylation, and tyrosine

oxidation provide insights into immunogenicity and PTM-based vaccines.

The recurrence of non-canonical peptides within cancer types and between cancer types
provides opportunities for vaccination. Several were found downstream of known frameshift
mutations in COSMIC, which could offer an explanation for their origins and 87 out of 239
were cancer exclusive in our data. This includes 2 recurrent non-canonical peptides from an
alternative exonic frame in the TSPO with an upstream splice variant (COSMIC ID:
COSV61568369) that could cause a frameshift. The recurrence of certain non-canonical

peptides in disease free samples is not surprising, since they contain normal tumor-adjacent
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tissue (21 samples) that could contain tumor contamination or PBMCs that might have been

exposed to cancer cells and therefore do express neoantigen of non-canonical origins.

Insights on vaccine and antibody-therapeutic design: Exploring the feasibility of

recurrent and focal public neoantigen vaccines

Currently suggested biomarkers for response to checkpoint blockade immunotherapy
include metrics based on tumor mutational burden and cell surface HLA expression.
However, we now suggest a targeted exome-seq panel based on genomic hotspots of
antigen presentation (The GICs in Fig. 5d) as a library to assess the likelihood of patients to
respond to immunotherapy. Indeed, we have shown the prognostic value of templating
neoantigens from previous physical detections (Fig. 5a) and their utility successfully
shortlisting neoantigens (Fig. 5¢). Indeed, we found that focusing on these regions can
drastically simplify (7.8 fold) the identification of T-Cell epitopes. Likewise, this library may be
valuable for informing both personalized and public neoantigens for vaccine development

(Fig. 6) and we provide a simple web server to make this discovery accessible.

When recurrent mutations in COSMIC are intersected with focal hotspots of antigen
presentation, the top 50 focal public neoantigens cover 78,326 patients in COSMIC (Fig.
6a). The development of a multi-epitope vaccine requires further validation to confirm their
presentation on more frequent HLA alleles as well as their immunogenicity. Vaccines
covering more mutations within immune-hotspots could further broaden population
coverage, but the number quickly rises to thousands of mutations with only small gains in

sample coverage.

Concluding remarks: An evolutionary perspective on focal antigen presentation

Our method and resource focus on making immune-surveillance accessible from the
genome and transcriptome centric view, which may have far reaching implications that

remain to be explored. It turns out that an analysis of recurrently identified peptides in the
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immunopeptidome reveals an enrichment of focal points in genes relevant to cancer. Of all
the peptides detected in our study, 74% fell into focal regions that were conserved across
vertebrate lineages (Supplementary Fig. S4, $5) and enriched in cancer genes
(Supplementary Fig. S3). This would seem to indicate an evolutionary constraint on the

immune system to preserve surveillance of these conserved regions.

Focused antigen presentation could have been converged on through two related
processes. (I) fixing mutations in populations that maximize coverage of these regions by
different haplotypes, or (Il) by constraining the HLA molecules themselves to these regions.
Indeed, genomic regions covered by more haplotypes may be constrained to code for
anchor residues that allow broad presentation. Likewise, new HLA haplotypes may be
constrained to maintain the presentation of these anchor regions. If the MHC Class | system
tends to present focal regions important for cancer, then these regions could be prioritized
for multi-epitope vaccines. Regardless of how, it would appear that evolution may have
provided the right environment for the presence of focal regions in cancer genes on which to
develop public and private neoantigen based therapies. These therapies could consist of
multi-epitope vaccines spanning one or several regions that maximize coverage of the

mutation landscape, either against one or multiple cancer types.

The tools and analyses herein may spark a new field of comparative immunology to
understand how immune-surveillance changes due to the onset of diseases like cancer.
Even between species a genome-centric view may help to better understand any
evolutionary origins of genomic hotspots of antigen presentation. These fields would make
use of genome and transcriptome centric Al models that can now be trained from our open

and growing resource.
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Limitations of this study

The biological design of this study permits general claims to be made about neoplasms,
whilst specific biological questions are out of scope. The findings in this paper may not be
applicable for ethnic groups or regions of the world that were not included in the considered
dataset. The mass spectrometry centric dataset limits our finding to the immunopeptidome
fraction that falls into the dynamic range of the current technology. Most studies collected for
analysis were based on immuno-precipitation and W6/32 antibody leading to a potential

sampling bias toward W6/32 hla-types selectivity.

Methods

Dataset selection

Twenty-five studies were selected based on a list of keywords related to immunopeptidomics
(Supplementary Note 1). Low-resolution analyses were eliminated and only MHC related
datasets conducted with at least one of the following instruments Q Exactive, Q Exactive
plus/HF/HFX, LTQ orbitrap velos, LTQ orbitrap elite, Orbitrap Fusion, Orbitrap Fusion Lumos
were kept (Supplementary Table 1). An additional study®® was considered from the
massive.ucsd.edu database as it incorporated 95 HLA-A, -B, -C and -G mono-allelic cell

lines.

Proteomic database generation

A protein database was downloaded using ENSEMBL (RRID:SCR_002344) r94 biomart,
decoy sequences were appended by reversing the target ones and 116 contaminant
proteins were added®®.

As peptides with intronic and out-of-frame reading frames have been previously reported’”-%,
a pre-mRNA 3 frame translation database (3FTDB) was generated for protein coding genes
based on ENSEMBL (RRID:SCR_002344) r94 using the AnnotationHub and biostrings R

packages.
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Mass spectrometry computational analysis

The proprietary RAW files acquired from the instruments selected were converted to mzML
and mgf format using MSConvert (ProteoWizard version 3.0.19295.c8b8b470d,

RRID:SCR_012056) with the TPP compatibility and peakPicking filter on.

Database search strategies

PTM calling considered a 1% False Localization Rate (FLR) of mass shifts on peptides at
specific amino acids (PTMiner) as well as a global False Discovery rate (FDR) of 1%.
Similarly, closed search (for identifying canonical peptides) was restricted to 1% FDR using
Scavager. MSFragger v2.2 search engine was used to conduct the open search analysis
against the ENSEMBL (RRID:SCR_002344) r94 biomart protein database in combination
with PTMiner v1.1.2 to apply a transfer False Discovery Rate (FDR) and a False Localization
Rate of 1% (FLR, the rate of falsely localizing the site of modification). MS-GF+ v2019.04.18
(RRID:SCR_015646) was used for closed search against the protein database in
combination with Scavager to apply an FDR of 1%. Both database search strategies
considered 8 to 25 amino acid peptide lengths, unspecific cleavage and no fixed Post-

Translational Modifications (PTMs).

De novo analysis

DeepNovo (v2)'92° is a neural network based de novo peptide sequencing model that
integrates Convolutional Neural Networks (CNNs) and Long short-term memory (LSTM)
architectures to extract features from both the spectrum and the language of presented
peptides. DeepNovo has demonstrated improved performance to the state-of-the-art de
novo sequencing algorithms by large margins. The model can be tuned on a restricted
peptide space to improve performance, and models were trained for each sample using
spectra from closed search analysis. Validation and test sets were also derived from the
closed search results. The trained models were used to perform de novo (predict) on the

remaining unmatched spectra. de novo sequences with at least 90% accuracy were
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considered by thresholding the de novo prediction score considering the performance

analysis on the test set.

de novo peptide annotation

de novo peptides coming from canonical human proteins were identified by a BLAT?'
alignment against the protein target-decoy database. Sequences perfectly matching any
protein sequence were considered exonic (1 mismatch allowed for isobaric amino acids
Leucine and Isoleucine). All the remaining sequences unexplained by proteins were
considered as potential non-canonical peptides and were aligned against the pre-mRNA 3
frame translation database. Stringently, peptides perfectly matching a 3 frame translation
(3FT) sequence were required to have at least 3 mismatches with any known protein
sequence before being considered non-canonical. Since PSMs can be assigned without
complete sequencing accuracy, requiring a 3 amino acid difference alongside the 90%
accuracy cutoff above, increases confidence that the peptides assigned fall far outside the
standard human reference. Remaining de novo peptides without any canonical or non-

canonical annotation were labeled as ‘unmapped peptides’ and discarded.

Alignment of immunopeptides on the genome

Closed search, open search and de novo exonic spectra were converted to an mzTAB
format and converted to proBAM format®” using an inhouse maintained fork of
proBAMconvert® to generate a proBAM format. de novo non-canonical spectra were
converted to proBAM using the pysam python (RRID:SCR_001658) package®® according to

the Proteomic Standard Initiative (PSI) specifications.

Deconvolution of haplotypes

We aimed to characterize the landscape of focal neoantigens across tumors by overlapping
the peptides discovered by our pipelines to the genome, and kept track of sample

haplotypes in order to understand the population penetrance of each region. The compiled
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dataset was missing HLA-type information for 32.9% of samples and a further 52.5% were
poly-allelic making complicated our understanding of the immunopeptidomes characterized
and our discussion around focal points of antigen presentation. We focused on comparing
HLA peptide binding motifs at the sample level in order to interpret and compare samples,
and associated samples to haplotypes based on the binding motifs they contained. For each
immunopeptidomics sample, we deconvolved haplotypes based on samples with known

MHC haplotype (Supplementary Fig. S2, Supplementary Note 4).

We developed a method to visualize immunopeptidomics samples and to pool sets of
sequences together representing ‘motifs’ related to the interaction interface between
antigens and HLA molecules (Supplementary Note 4). UMAP projections of the
immunopeptidomes (Supplementary Fig. S2a) revealed clear clusters of peptides in each
sample that were inspected by generating Position Specific Weight Matrices (PSWMs), a
commonly used representation of motifs (patterns) in biological sequences (Supplementary
Fig. S2b). Clusters with at least 1 high and 1 mild conservation site were considered and
labeled as high quality binding motifs. Thus for each sample, we were able to produce a set
of confident ‘motifs’ denoted by a 20Xn vector representation of the PSWMs. In total we

identified 6993 PSWNMs across all samples (Supplementary Table 4).

We then developed a strategy to cluster, visualize and compare the motifs identified across
all samples, which we dub the motif-binding landscape. To this end, we characterized the
motif landscape by tracing similarities between all 6993 PSWMs from different samples
using matalignerv4a to align matrices (Supplementary Fig. S2c). 248 Highly similar HLA

Class | motif clusters were identified and covered 76.7% (5662) PSWMs.

Taking into account that 82.5% of the identified high quality motifs lacked HLA typing
information, we developed a strategy to deconvolute HLA-types based on motif comparison.

Hence, HLA type deconvolution was carried out by comparison against intra-cluster motifs
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coming from mono-allelic samples (Supplementary Fig. S2d, Supplementary Note 4). This
imputation strategy increased the labeled motifs fraction to 85% (5943). The remaining 15%
of motifs were either isolated in clusters without any mono allelic origin motif or were not

assigned in clusters (Supplementary Table 4).

Focal regions of antigen presentation

The detection of peptides overlapping a core genomic region (focal region) from patients
with alternative HLA allotypes increases the presentation likelihood of mutations
(neoantigens) in this region. Hence, peptides identified by open search, closed search and
de novo (canonical + non-canonical) were aligned to the genome and pooled. Genomic
immune clusters (GIC) were defined as overlapping peptides with a maximum distance of 24
nucleotides. 3 features per GIC were derived (1) Expression in reads per million (RPM):

Number of identified spectra from all samples in GIC! x 108 (2)

GIC (i) expression = population

number of all identified spectra from all samples
coverage: as a percentage of the world population that could be presented by considering at
least 1 peptide from the cluster. This was calculated from the HLA types that the peptides in

a specific GIC belong to®® (3) Gene mutational ratio (GMR): overlapping genes of each GIC

gene length

were split into tiles of length 9 forming a set T = {tile(1), ..., tile(1)} with [ = 5

COSMIC mutations were counted in each tile then divided by the maximum count in Twith

. . b / jons in til : . :
tile (n) ratio = mber of cosmic mutationsinthe @) \1GR(i) was defined as the maximum of t, a
maximum(T)

subset of T(t c T), consisting of tiles overlapping with the genomic immune cluster (i).

Immune score

The 3 genomic immune cluster features (expression in RPM, population coverage, gene
mutational ratio) were normalized using the powerQuantile method. An immune score was
derived for each genomic immune cluster by multiplying the 3 normalized features producing
an immune score ranging from 0 to 1. A high immune score reflects an increased MHC class

| presentation, coverage of the world population, and relevance in cancer.
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Prognostics to immunotherapy response

Patients from 2 melanoma“*?6" and 1 small cell lung cancer*' cohort were used to predict a
response to immunotherapy. Genomic mutations from all patients overlapping the genomic
coordinates of the mass spectrometry detected MHC peptides were kept. Neoantigens were
generated by first introducing patient specific mutations to the WT genomic sequence of the
MHC peptides followed by in-silico translation. NetMHCPan 4.0 was used to predict the
binding of the wild type and mutated (neoantigen) immunopeptides using patients’ specific
HLA Alleles. Both weak and strong binders NetMHCpan predictions were kept excluding all
non binders. The Homogenous full AxR fitness model by tuksza et al.*® was used for
predicting response to immunotherapy. Survival plots and log rank tests were calculated
using lifelines®? to compare the impact of a full in-silico versus mass spectrometry informed

neoantigen framework on predicting response to immunotherapy.

The pipeline architecture and technical details

Considering the complex nature of the immunopeptidomic database searches (unspecific
cleavage) compared to proteomics (mostly tryptic cleavage) we implemented a pipeline with
scalability in mind. The implementation is under snakemake v5.4.5, a pipeline manager,
offering compatibility with most popular cluster workload managers such as SLURM.
Therefore, a study with multiple patients would still take from 10 to 12 hours to complete on
a cluster thanks to the parallel computations. In addition, the use of Conda, a package
manager, allows the pipeline to automatically create software environments making it easily
reproducible on other machines. For instance, the analysis of the pride dataset PXD004894
(i.e., 25 patients) comprised of 140 raw files took over 12 hours (real time) and around
28892 computational hours (~5000 GPU hours for DeepNovoV2, ~7000 CPU hours for MS-

GF+, ~16800 CPU hours for MSFragger, ~92 CPU hours for Scavager).
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Code and data availability

1. The web portal: as an interface for easy neoantigen analysis and GIC analysis

described earlier (https://www.proteogenomics.ca/COD-dipp).

2. The COD-dipp code: intended for High Performance Computing (HPC) will be made
available as a snakemake pipeline on a git upon peer-review.
3. The full mass spectrometry processed library will be made available on figshare upon

peer-review.
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Figure 1: Included immunopeptidomic datasets. (a) Different types of cancers considered in this
study. (b) Number of cell lines (blue) patient tissues (orange) and patient pools (green) per lesion type
(c) Mass spectrometry instruments considered (instrument name: number of studies) (d) Antibodies
used for Immuno-precipitation (IP) (e) Overall number HLA subtypes per HLA type
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Figure 2: COD-dipp: A new high-throughput pipeline for a deep interrogation of
immunopeptidomic datasets. (a) Three strategies of peptide spectrum assignment were combined:
closed search (for canonical peptides), open search (for PTMs), and de novo (for canonical and non-
canonical peptides). False Localization Rates for PTMs and False Discovery Rates for peptide calling
were carefully controlled to 1%. An approach to find non-canonical peptides developed here uses a
denovo sequencing model trained for each sample using the quality controlled peptide-spectrum
matches from closed search. Results were split into 3 groups: training and testing to tune the hyper-
parameters while accounting for overfitting and a validation group to approximate the accuracy per
sample. Denovo peptides whose sequence was known with an accuracy of at least 90% were
sequentially mapped against the Human proteome (HP) and a 3 Frame Translation (3FT) database.
Since Leucine and Isoleucine are difficult to discriminate by MS, sequences with at most 1
leucine/isoleucine mismatch to any known protein were labeled “canonical peptides”. Similarly, peptides
mapping to the 3FT database considered up to 1 leucine/isoleucine mismatch but were also stringently
required to be at least 3 amino acids different from any known protein sequence before being
considered non-canonical. (b) The resulting COD-dipp antigen library contains fields across the central
dogma (genome, transcriptome, proteome). The COD-dipp web application allows for the development
of physically templated neoantigens alongside additional statistics starting from public or patient-
specific mutations to facilitate vaccine design.
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Figure 3: The revealed landscape of canonical, post-translationally modified and non-canonical
peptide antigens. (a) Mass spectrometry peptide-spectrum match count per strategy. (b) Overview of
Post-Translational Modifications identified by open search. (blue: spectra without PTMs, orange:
spectra with a known UNIMOD PTM localized on a specific amino acid on the peptide. Green: The
mass-shift is localized but the known PTM options do not fit the residue modified. Red: Otherwise. (c)
Top annotated PTMs reported by modification type. (d) Most common partially annotated (green) or
unannotated (red) mass shifts. (e) de novo identified spectra from canonical (dark gray) and non-
canonical (light gray) sources. (f) Similar de novo score distribution of canonical and non-canonical
spectra. (g) The use of target (blue) and decoy (red) frequencies to set a lower bound on the number
of unique amino acids (minimum of 3) in an identified de novo peptide. (h) Correlation quality between
predicted and experimental retention time for closed search and de novo peptides. (i) de novo peptides
score similarly with motifs identified from database searches (Closed and open search) regardless of
their canonical or non-canonical origin. (j) Distribution of non-canonical peptides into 5 categories of
their origin. (k) Fraction of intronic peptides explained by the presence of an upstream start codon and
predicted translation initiation sites. (I) Overlap of peptide identifications between strategies. (m)
Fraction of peptides uniquely or multiply mapped to the genome per strategy. (n) Overlap of proteins
identified between strategies. (0) Zoom in on the protein isoforms overlap between the de novo spectra
from canonical and non-canonical sources.
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Figure 4: Recurrent non-canonical peptides in cancer. Heatmap showing the extent of shared non-
canonical peptides (from de novo sequencing) across samples grouped by cancer type. Recurrent
peptides were defined as sequences detected at least 2 times per sample and in at least 10 samples.
In total 239 peptides from non-canonical sources passed this threshold. Each vertical row represents a
recurrent non-canonical peptide and the gray to black intensity reflects the log10 spectra count for each
peptide.
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Figure 5: MHC Class | focal regions better predict immunogenicity and show diverse potential
as vaccine targets. (a) Survival analysis of 3 cohorts using the “homogenous” fitness model from
tuksza et al. Patients are grouped into low fitness (immunotherapy responders) and high fitness (non-
responders). Top row shows patient survival using only in-silico neoantigen prediction. Mutations in
physically detected regions better predict overall survival (bottom row). (b) The majority of neoantigens
(orange) lie in focal regions (blue) in low and high fithess groups. (¢) a 7.8 fold enrichment in T-Cell
reactivity within GICs versus outside GICs when using a combination of 1374 epitopes**5. (d) The
140,966 focal regions of antigen presentation (Genomic immune clusters; GIC) differ in terms of antigen
expression, mutational frequency in cancer (gene mutational ratio) and population coverage. As an
example, focal regions in TP53 (black dots) have different properties in different regions. The 4
surrounding panels show the shared antigen presentation motif landscape across 486 samples
(projected by UMAP). Each focal region presents peptides arising from different binding motifs and are
therefore associated with different MHC-haplotypes so the breadth of coverage in motif space relates
to population coverage of the immune-visible genomic region (methods) (e) Genomic coordinates for
TP53 (on the left) highlighting immune clusters are according to the immune scores (IC) along with a
zoom-in (right).
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Figure 6: The tractability of building multi-epitope vaccines based on focal regions of antigen
presentation. (a) Genomic immune cluster (GIC) analysis by intersecting focal regions (GICs) with
cancer mutations from COSMIC database in a pan cancer (cf. panel b) and cancer specific fashion (cf.
panels ¢ and d). (b) Global analysis of the focal public neoantigen penetrance (proportion of people
with a specific mutation in COSMIC) in all cancer types. Top bar plot shows the immune visibility scores
for the 30 most recurrent aberrations in COSMIC. Bottom bar plot shows a cumulative penetrance
calculated from the proportion of patients covered with each added mutation. (¢) An example of a cancer
with low vaccine potential (LHS: haematopoietic neoplasm) compared with one with high vaccine
potential (RHS: colon carcinoma). A high vaccine potential is reflected by a high penetrance of immune-
visible and low penetrance of immune hidden recurrent mutations. (d) Scope of vaccine potential across
malignant, pre-malignant, and benign lesions. On the left, Immune-visible versus immune hidden
mutational penetrance along with a relative score of vaccine potential on the right for each of visualized
tumors found in COSMIC. Each cancer type was defined by the primary site and primary histology of
the tissue.
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