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Abstract

Twin and family studies have historically aimed to partition phenotypic variance into components
corresponding to additive genetic effects (A), common environment (C), and unique
environment (E). Here we present the ACE Model and several extensions in the Adolescent
Brain Cognitive Development!| Study (ABCD Study®), employed using the new Fast Efficient
Mixed Effects Analysis (FEMA) package. In the twin sub-sample (n = 924, 462 twin pairs),
heritability estimates were similar to those reported by prior studies for height (twin heritability =
0.86) and cognition (twin heritability from 0.00 to 0.61), respectively. Incorporating measured
genetic relatedness and using the full ABCD Study® sample (n = 9,742) led to narrower
confidence intervals for all parameter estimates. By leveraging the sparse clustering method
used by FEMA to handle genetic relatedness only for participants within families, we were able
to take advantage of the diverse distribution of genetic relatedness within the ABCD Study®
sample.
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Introduction

For over a century, researchers have relied on variance partitioning as a statistical method for
estimating heritability (Carey 2003). Historically, twin studies provided an avenue by which
researchers could model the variance of a given phenotype as comprised of distinct
components: e.g., additive genetic effects (A), common environmental effects (C), and unique
environmental effects (also including error or unmodeled unexplained variance; Martin and
Eaves 1977; Neale and Maes 2004). Specifically, in a linear mixed-effect (LME) regression
model,

yij=u + xX'yf + Ay + G+ E; (1)
where y; is the trait value of individual j in family i; p is the overall mean; x; denotes a vector of
covariates; and A;, C;, Ej represent latent additive genetic, common environmental and unique

environmental random effects, respectively.

Although the ACE model has often been implemented using structural equation model (SEM)
software such as OpenMx (Neale et al. 2016), the SEM representation is mathematically
equivalent to the LME regression model shown in Equation 1 (Neale and Maes 2004; Visscher
et al. 2004; McArdle and Prescott 2005). Indeed, prior applications of the ACE framework have
been implemented using LMEs from R and Stata packages (Rabe-Hesketh et al. 2008) as well
as SAS (Wang et al. 2011). For studies that incorporate extended family designs with several
random effects, Visscher and colleagues (2004) recommended implementation using a LME
approach, though SEM methods also exist to model complex family structure (Truett et al. 1994;

Keller et al. 2009).
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Many of the software packages used to estimate coefficients of mixed-effects models are based
on restricted maximum likelihood (REML) estimation to avoid bias introduced by inclusion of
many fixed effects (Shaw 1987). With recent advances in genomic sequencing, there has been
an influx of methods that use measured genetic data rather than inferred genetic similarity from
twin status. For example, genome-wide complex trait analysis (GCTA; Yang et al. 2011) was
developed to incorporate a pairwise genetic relatedness matrix (GRM) between individuals
using information from single nucleotide polymorphisms (SNPs). Twin studies have
subsequently been adapted to incorporate empirical measures of genetic relatedness
(Kirkpatrick et al. 2021). However, incorporating a matrix of pairwise relatedness values for each
set of participants leads to an increase in the computational time when estimating these model
parameters. Various subsequent adaptations have been developed to increase the processing
speed of GCTA software (Ge et al. 2015) and to incorporate effects of maternal and/or paternal

genotype on the traits within GCTA (Eaves et al. 2014; Qiao et al. 2020; Eilertsen et al. 2021).

Comparison of heritability estimates derived from non-twin versus twin analyses have found that
non-twin studies consistently yield lower heritability estimates, an example of the so-called
“missing heritability” in genetics research (Kim et al. 2015). Some researchers have suggested
that this phenomenon may be due in part to inflated twin heritability estimates, for example due
to dominant genetic variation which might be masked by shared environment in twin and family
studies (Chen et al. 2015). Indeed, twin and family studies have developed several ways of
parsing “common environment”, including using geospatial location information (Heckerman et
al. 2016; Fan et al. 2018) and adding a random effect of twin status (T) when including twins

and full siblings in the same study (Zyphur et al. 2013).

The Adolescent Brain Cognitive Development | Study (ABCD Study®) provides a particularly

appealing dataset for estimation of heritability, not only due to its population sampling frame,
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large sample size, and longitudinal design, but also because it contains an embedded sub-
sample of 840 pairs of same-sex twins recruited through birth registries at four sites (lacono et
al. 2018). The overall sample is thus enriched for genetic relatedness, with families that include
siblings, half siblings, dizygotic (DZ) twins, and monozygotic (MZ) twins. The ABCD Study® data
therefore requires the application of modeling approaches that take family structure and

relatedness into account.

In this study we implemented modeling strategies that account for family structure and pairwise
genetic relatedness using the recently developed Fast Efficient Mixed Effects Analysis (FEMA;
Fan et al. 2021). We used FEMA to model participants nested within families, where random
effects such as genetic relatedness were taken into account for each pair of subjects within a
family, and set to zero for individuals who are not in the same family (Fan et al. 2021). FEMA
provides a flexible platform for users to specify a wide array of fixed and random effects, which

makes it a useful tool for modeling variance components in the ABCD Study®.

We first compared the basic ACE model implemented in FEMA versus OpenMx (Neale et al.
2016). Next, we tested the effect of including measured genetic relatedness (using genotype
array data) compared to assigning approximate relatedness based on zygosity (i.e., 1.0 for MZ
twins, 0.5 for DZ twins and full siblings). We then progressively expanded our sample size, first
going from “twins only” to the full ABCD Study® baseline sample (including non-twin siblings and
singletons), and finally to the full sample across multiple timepoints. We compared model
estimates for the commonly used A, C, and E components, as well as a subject-level
component (S) in the longitudinal data, and the twin component (T), which captured the
variance attributable to variance in the common environment of twin pairs. In addition, we
explored the change in model estimates and model fit when adjusting for specific fixed effect

covariates, and when excluding the twin sub-sample.
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Methods

Sample

The ABCD Study® is a longitudinal cohort of 11,880 adolescents beginning when participants
were aged 9-11 years, with annual visits to assess mental and physical health (Volkow et al.
2018). The study sample spans 21 data acquisition sites and includes participants from
demographically diverse backgrounds such that the sample demographics approximate the
demographics of the United States (Garavan et al. 2018). The sample includes many siblings as
well as a twin sub-sample consisting of 840 pairs of same-sex twins recruited from state birth
registries at four sites (Garavan et al. 2018). Exclusion criteria for participation in the ABCD
Study® were: 1) lack of English proficiency in the child; 2) the presence of severe sensory,
neurological, medical or intellectual limitations that would inhibit the child’s ability to comply with
the study protocol; 3) an inability to complete an MRI scan at baseline. The study protocols were
approved by the University of California, San Diego Institutional Review Board. Parent/caregiver
permission and child assent were obtained from each participant. The data used in this study

were obtained from ABCD Study® data release 4.0.

Statistical analyses were conducted on a sample that included a total of 13,984 observations
from 9,742 unique participants across two timepoints (the baseline and year 2 visits). The twin
sub-sample used in this study consisted of 462 pairs of twins with complete data (total N = 924).
Observations were included in the final sample if the participant had complete data across
sociodemographic factors (household income, highest parental education), available genetic
data (to provide ancestry information using the top 10 principal components), and the

phenotypes of interest. Table 1 shows the baseline demographics of the full sample as well as
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the twin sub-sample. Compared to the full sample, the twin sub-sample had a higher percentage
of parents with bachelor's degrees (33.3% compared to 26.7% in the full sample), and
household income was shifted higher (52.7% with income over $100,000 compared to 42.0% in

the full sample).

Measures

Phenotypes of interest

For the present study, we included height as a phenotype of interest due to its common use in
twin and family studies (Silventoinen et al. 2003), as well as the availability of larger genetic
studies from samples of unrelated participants (Yengo et al. 2022). Several cognitive
phenotypes were included from the NIH toolbox cognition battery (Gershon et al. 2013):
specifically, we analyzed the raw composite scores measuring fluid and crystallized intelligence,
which have been validated against gold-standard measures of cognition (Akshoomoff et al.
2013; Heaton et al. 2014). We also included the uncorrected scores from the flanker task,
picture sequence memory task, list sorting memory task, pattern comparison processing speed,
dimensional change card sort task (components of fluid cognition); and the oral reading
recognition task and picture vocabulary task (components of crystallized cognition). In addition
to the NIH Toolbox, we included the matrix reasoning test from the Wechsler Intelligence Scales
for Children (WISC-V; Wechsler 2014), the total percent correct from the Little Man visuospatial
processing task (Acker 1982), and the total number of items correctly recalled across the five
learning trials of the Rey Auditory Verbal Learning Task (RAVLT; Daniel et al. 2014). See
Extended Methods for a complete description of each phenotype of interest including data

collection procedures.


https://doi.org/10.1101/2022.10.28.512918
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.28.512918; this version posted October 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

8

Covariates

Unless otherwise specified, models were run on data that was pre-residualized for age and sex
only, in keeping with common practice for twin studies (Neale and Maes 2004). In models that
included pre-residualization for additional covariates, these were chosen based on common
practices in cognitive and behavioral research, and included recruitment site, parental

education, household income, and the first ten genetic principal components.

Genetic Principal Components and Genetic Relatedness

Methods for collecting genetic data have been described in detail elsewhere (Uban et al. 2018).
Briefly, a saliva sample was collected at the baseline visit, as well as a blood sample from twin
pairs. The Smokescreen™ Genotyping array (Baurley et al. 2016) was used to assay over
300,000 SNPs. Resulting genotyped and imputed SNPs were used for principal components

derivation as well as genetic relatedness calculation.

The genetic principal components were calculated using PC-AiR (Conomos et al. 2015). PC-AIR
was designed for robust population structure inference in the presence of known or cryptic
relatedness. Briefly, PC-AiR captures ancestry information that is not confounded by
relatedness by finding a set of unrelated individuals in the sample that have the highest
divergent ancestry and computes the PCs in this set; the remaining related individuals are then
projected into this space. This method has been recommended by the Population Architecture
through Genomics and Environment Consortium (Wojcik et al. 2019), which is principally

concerned with conducting genetic studies in diverse ancestry populations.

PC-AIR was run on using the default suggested parameters from the GENESIS package

(Gogarten et al. 2019). We used non-imputed SNPs passing quality control (516,598 variants
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and 11,389 individuals). Using the computed kinship matrix, PC-Air was then run on a pruned
set of 158,103 SNPs, which resulted in 8,005 unrelated individuals from which PCs were

derived — leaving 3,384 related individuals being projected onto this space.

We then computed a GRM using PC-Relate (Conomos et al. 2016). PC-Relate aims to compute
a GRM that is independent from ancestry effects as derived from PC-AiR. PC-Relate was run
on the same pruned set of SNPs described above using the first two PCs computed from PC-

Air.

Data analysis

Pre-residualization

We used R version 3.6.3 for data processing. After obtaining the sample of complete cases for
all variables, phenotypes were pre-residualized for age and sex using the Im function. For
certain models (see Table 2), we additionally included the following covariates during this
residualization step: site, parental education, income, and the first ten genetic principal
components. The purpose of pre-residualization was to ensure that both FEMA and OpenMx
implementations were fitting random effects to the same data. Because our models only fit
random effects, and because FEMA implements an unbiased estimation of total variance, the
FEMA implementation was therefore mathematically equivalent to the REML estimation in
OpenMx. However, it should be noted that there are negligible differences between REML and
maximum likelihood (ML) estimates when applied to large sample sizes such as those in the

ABCD Study® sample (Browne and Draper 2006).
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Previous work has found evidence for a practice effect in some of the cognitive measures from
the ABCD Study® (Anokhin et al. 2022). Therefore, in models that included data from baseline
and year 2, we included a “practice effect” as a dummy variable in the pre-residualization step.
This variable was equal to O if the observation was the first instance of data for that participant
(i.e., all participants had O at baseline), and 1 if the participants were providing data for the
second time at the year 2 visit. Most participants (N = 4242, 76.19%) had a value of 1 at the

year 2 visit.

Model specification

We ran a series of models, described in Table 2. For each model, we specified whether genetic
relatedness was “measured” (calculated using PC-AiR and PC-Relate; Conomos et al. 2015,
2016) or “assigned”. For assigned relatedness, we used the zygosity data from the twin sub-
sample to assign a value of 1 for MZ twins, 0.5 for DZ twins, and 0.5 for all other siblings (under

the assumption that there are only full siblings within a family).

Since each phenotype was pre-residualized, we only needed to estimate the random effects
components in each LME run within FEMA and OpenMx. These included an effect of family ID
(common environment, C), additive effect of genetic relatedness (A), subject (S), twin status (T,
calculated by creating a variable “pregnancy ID” that was shared by any two individuals with the

same family ID and same birth date), and unique environment/unexplained variance (E).

OpenMx

We first ran an ACE model in the baseline twin sample, using the OpenMx package in R
(package version 2.20.6; Neale et al. 2016). We elected to use OpenMx as the comparison

software due to its widespread use in twin and family studies to estimate heritability. We chose
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to use the REML estimator within OpenMx, which differs from ML estimators by a) using an
unbiased estimation to calculate total variance, and b) first estimating the random effects
iteratively and then estimating the fixed effects coefficients, as opposed to alternating estimation
of variances and fixed effects. However, due to the preresidualization step described above, in
our models we solely estimated random effects, such that the REML estimator in OpenMx
provided a good comparison for FEMA (a ML estimator that uses an unbiased estimation of total
variance). We ran OpenMx using R version 3.6.3., using the default SLSQP optimizer. Because
data were preresidualized for age and sex, we did not fit any additional covariates. OpenMx
provides likelihood-based confidence intervals by default (Neale and Miller 1997), which we

used to compare with the likelihood-based confidence intervals calculated in FEMA.

Fast Efficient Mixed Effects Analysis (FEMA)

FEMA was developed for the efficient implementation of mass univariate LMESs in high
dimensional data (e.g., brain imaging phenotypes; Fan et al. 2021). Whereas the original
version of FEMA used a method of moments estimator for increased computational efficiency,
we modified the package to allow the user to select a ML estimator. An updated version of
FEMA that includes this option is available at the time of this publication

(https://github.com/cmig-research-group/cmiqg_tools). Because FEMA uses an unbiased

estimation of total variance, and we were only fitting random effects and not fixed effects, the
estimates from the FEMA implementation of ML regression were predicted to be mathematically
equivalent to REML. To run FEMA, we passed a design matrix (the design matrix was “empty”
because we were not fitting any fixed effects) as well as a file containing a matrix of (measured
or assigned) genetic relatedness values. FEMA then used a nested random effects design to
create a sparse relatedness matrix, in which the relatedness values for all participants not
assigned the same familylD was set to zero. For all models we reported the random effects

variances as a percent of the total variance in the residualized phenotype that was explained by
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variance in the random effect of interest. As a result, for a given model, the random effects
estimates sum to 1 (representing 100% of the variance in the residualized phenotype). For ease
of interpretation and comparison to previous literature, in this paper the term “heritability
estimate” refers to the percent of residualized phenotypic variance that is explained by variance

in genetic relatedness, i.e., variance explained by variance in A.

Model Comparison

For comparing two models that used identical samples, we calculated the Akaike Information

Criterion (AIC) as (Akaike 1974):

AIC = (—2)In(likelihood) + 2k (2)

where k represents the number of model parameters. Therefore, the difference in AIC between
two models (AAIC) can be calculated as:

AAIC = —2(ALL) +2(4k) (3)
where ALL represents the difference in log likelihood between the two models and Ak
represents the difference in the number of parameters between the two models. In models that
have the same level of complexity (Ak = 0), the AAIC is equal to -2(ALL). We chose to use the
AIC as opposed to the likelihood ratio test statistic for model comparison because several

comparisons were not between nested models.
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Results

ACE model (Model 1) in FEMA versus OpenMx

A summary of heritability estimates (i.e., the A random effects) from all models is provided in
Supplementary Table 1. To compare model estimates between OpenMx and FEMA, we fit the
same ACE model in each, using the same sample of 462 complete twin pairs from the twin sub-
sample (i.e., pairs in which each twin had complete data for all phenotypes). Figure 1 shows a
comparison of the two results as well as the parameter estimates using FEMA. The difference in
heritability estimates between the two software packages was less than 0.001 for all
phenotypes. On comparing these models (Figure 1B), we found that the difference in AIC was
less than 0.05 for all phenotypes, indicating that there was no difference in the model fit.
Because the model estimates and model fits were practically the same, we elected to use the

LME implementation in FEMA for all further analyses.

Effect of including measured genetic relatedness (Model 2)

To assess the difference in parameter estimates when including measured versus assigned
genetic relatedness, we fit two versions of the ACE model in the baseline twin sample. Model 1
(the ACE model described above, implemented in FEMA) used a matrix of assigned relatedness
values (1.0 for MZ twins and 0.5 for DZ twins) whereas Model 2 used a matrix of measured

relatedness values.

The models provided equivalent heritability estimates, with differences in A estimates ranging
from -0.01 (Little Man Task) to 0.03 (pattern comparison; Figure 2A). On inspecting the

differences in the AIC between the two models, we found that using measured GRM led to small
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improvements in the overall model fit. This improvement was most pronounced for height (AAIC
=-1.04) but less so for the cognitive phenotypes (Figure 2B). Random effects variance

component estimates are presented in Figure 2C.

Effect of increased sample size (Model 3)

We next tested the change in model estimates when moving from the twin sub-sample (n = 924)
to the full baseline sample (n = 8,242). Model 2 (from previous analysis) and Model 3 both used
the measured GRM values and included A, C, and E random effects. The two models are
therefore equivalent except for the much larger sample fit in Model 3. As described in Methods,
the sparse clustering method within FEMA ignored the genetic relatedness among individuals
with different family IDs. In practice, this meant that the sample of 8,242 unique subjects at
baseline was clustered into 7,136 families, and genetic relatedness values were only used for

individuals within families.

Figure 3 shows the estimates from Model 3 and their comparison to Model 2. The increased
sample size led to much smaller confidence intervals for all random effects estimates calculated
in Model 3 (Figure 3A). In general, using the full sample led to smaller estimates of A and larger
estimates of C compared to Model 2. The changes in heritability estimates ranged from -0.31
(NIH Toolbox Fluid Cognition) to +0.04 (height). The estimated total variance was larger in
Model 3 for most phenotypes (Figure 3B), with the largest increase in variance in total
composite cognition (24.36% increase in total variance), crystallized cognition (23.76%
increase), and oral reading recognition (24.08% increase). Because the two models were fit to
different samples, it was not possible to directly compare their AIC model fit from the likelihood

statistics. Figure 3C shows the random effects variances from Model 3.
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Adding a Twin random effect (Model 4)

Given that the full sample analysis included singletons, half siblings, and adopted siblings, as
well as twins and triplets, we next tested the addition of a random effect of twin status (T). We
calculated a “pregnancy ID” that was shared by individuals who had the same family ID and the
same birth date. We then used this “pregnancy ID” to code for the T random effect in an ACTE
Model (Model 4). Figure 4 shows the model estimates from Model 4 as well as a comparison to

Model 3; the two models are equivalent with the exception of the T random effect.

For most phenotypes, the addition of the T random effect did not lead to a change in parameter
estimates (i.e., T was estimated to be 0). The largest change in parameter estimates was in
matrix reasoning (heritability estimate decreased by 0.07, T estimated at 0.07; Figure 4A).
Model comparison found that the difference in the AIC was at or near 2.0 for all phenotypes
except for the RAVLT (AAIC = 1.58) and matrix reasoning (AAIC = 0.85). Because the AIC was
calculated as -2ALL plus double the difference in model parameters (Equation 3), the consistent
values of 2.0 reflect that the -24LL statistic was approximately O before the penalization for the
additional parameter in Model 4 (Figure 4B). The random effects variances for Model 4 are

shown in Figure 4C.

Incorporation of two timepoints (Model 5, 6)

We next moved from examining the full sample at baseline (Model 4) to the full sample at
baseline and Year 2 (Model 5). Models 4 and 5 were equivalent except for the difference in
sample size (i.e., Model 5 did not account for nesting of data within subjects, in order to directly
assess this effect in Model 6). Because not all phenotypes were available at the Year 2 visit,
models that included baseline and Year 2 data only included pattern comparison processing

speed, flanker task performance, picture sequence memory, picture vocabulary, oral reading
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recognition, crystallized cognition, RAVLT, Little Man Task, and height. To account for nesting
of multiple visits within subjects, we added a random effect of subject (S) in Model 6. Figure 5
shows the change in random effects variances moving from Model 4 to Model 5 and from Model

5 to Model 6.

Adding the second visit led to overall increases in the heritability estimates for the cognitive
phenotypes, with changes ranging from -0.06 (Little Man Task) to +0.38 (pattern comparison;
Figure 5A). Conversely, the heritability estimate for height decreased by 0.21. Adding the
random effect of subject led to minimal change (<0.001) in the heritability estimate for height,
Little Man Task, and RAVLT, but a decrease in heritability estimates across the other cognitive
phenotypes (changes ranging from -0.19 to -0.05) compared to estimates from Model 5. The
total difference in heritability estimates going from Model 4 to Model 6 ranged from -0.21

(height) to +0.22 (pattern comparison; Figure 5C).

Model comparison between Model 5 and Model 6 found that the model was substantially
improved for crystallized cognition (AAIC = -5.26), oral reading recognition (AAIC = -7.45),
picture vocabulary (AAIC = -5.61), flanker (AAIC =-11.33), and pattern comparison (AAIC = -
25.40). However, the difference in the fit was smaller for height (AAIC = +2.00), picture

sequence memory (AAIC = +0.91), the RAVLT (AAIC =+2.00), and the Little Man Task (AAIC

+2.00; Figure 5D). Figure 5B and 5E show the random effects variances from Model 5 and

Model 6.
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Effect of assigning genetic relatedness in large samples (Model 7-
9)

For the next set of models, we tested whether the parameter estimates for models using the full
sample (Models 3-5) changed in the absence of measured genetic relatedness. We used a
matrix of assigned genetic relatedness (assigning 1.0 for MZ twins from the twin sub-sample,
and 0.5 for DZ twins from the twin sub-sample and all other individuals in the same family). The
assigned relatedness value therefore assumed that all non-twins in the same family, as well as

twins who were not part of the twin sub-sample, were full siblings.

Figure 6 compares the ACTSE longitudinal model with an equivalent model that used assigned
genetic relatedness. Supplementary Figure 1 shows the same question of assigned versus
measured relatedness applied to Models 3 and 4. Overall, the random effects estimates were
largely unchanged with the use of assigned GRM, with the largest changes in the ACTSE model
occurring in flanker (AA = 0.09) and pattern comparison (AA = -0.09; Figure 6A, Supplementary
Figure 1A,D). Model comparison using AAIC found that the ACTSE model using measured
GRM had better model fit for height (AAIC = -34.25), crystallized cognition (AAIC = -15.69), oral
reading recognition (AAIC = -19.43), picture vocabulary (AAIC = -6.87), and pattern comparison
(AAIC = -8.67) compared to the model using assigned GRM; the difference in model fit was less
pronounced for picture sequence memory (AAIC = +0.84) and flanker (AAIC = +0.45; Figure 6B,
Supplementary Figure 1B,E). Figure 6C and Supplementary Figure 1C and 1F show the random

effects variances for models using assigned genetic relatedness.
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Residualizing for additional covariates (Models 10-14)

While it is common in twin and family analyses to include only age and sex as fixed effects,
behavioral scientists often include additional fixed effects such as sociodemographic variables
or recruitment site as covariates. To test whether the inclusion of such variables led to changes
in our random effects estimates, we ran several of our original models with additional variables
included in the pre-residualization step (i.e., site, parental education, income, and the first ten
genetic principal components). Figure 7 shows the results of this model comparison applied to
Model 1 (the “classic” ACE model). Supplementary Figure 2 shows the same pre-residualization
and model comparison applied to Models 2-4 and 6. In the classic ACE model, the A estimate
tended to decrease and the C estimate tended to decrease in the models that included
additional covariates (Figure 7A). Residualizing for additional covariates led to a decrease in the
total residual variance across all phenotypes, with decreases ranging from -2.67% (RAVLT) to -
26.02% in the ACE model(crystallized cognition; Figure 7B). Because the two models were run
on different datasets (pre-residualized for different covariates), we did not calculate the
difference in AIC between the two models. Figure 7C and Supplementary Figure 2C, 2F, 2I, and
2L show the random effects variances for the models that were residualized for additional

covariates.

Effect of removing the twin-enriched sample (Models 15-16)

The size and structure of the ABCD Study® cohort, with its embedded twin sub-sample as well
as the large number of related participants, led us to test the degree to which the model fit
depended on having a large subset of MZ and DZ twins. As a proxy for the general population,
we removed the twin sub-sample. This left a small number of twins and triplets recruited through
the general recruitment pipeline (168 twin pairs and 6 sets of triplets, with 57 pairs of

participants with genetic relatedness > 0.9 across the full sample). The number of twin and
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triplet sets in this sample (174 out of 8131 pregnancies, 2.14%) was less than the 3.11% twin
birth rate reported in the general population of the United States (Osterman et al. 2021). We
therefore assumed that the ABCD Study® sample excluding the embedded twin sub-sample
was a proxy for a population sample with a naturally occurring number of twins. We then fit an
ACSE model, applied to the full sample excluding the twin sub-sample, at baseline and year 2,
to represent the “best” model possible of those explored thus far, excluding the T random effect
(Model 16). We compared this model to the same ACSE model applied to the full sample,

inclusive of twins (Model 15).

A comparison of the parameter estimates is shown in Figure 8A. The model excluding the twin
sub-sample led to a difference in A estimates of -0.19 (picture sequence memory task) to +0.12
(pattern comparison). Excluding the twin sub-sample led to an increase in the total residual
variance across all phenotypes, with changes ranging from +0.24% (pattern comparison) to
+17.55% (Little Man Task; Figure 8B). Because the two models were fit to different samples, it
was not possible to directly compare model fit from the likelihood statistics. Figure 8C shows the

random effects variances from the model that omitted the twin sub-sample participants.

Discussion

In this paper we present results from different modeling strategies for implementing the ACE
model using LMEs, as implemented in FEMA. FEMA is capable of applying the ACE model as
well as incorporating additional features such as using a sparse matrix of within-family genetic
relatedness and a random effect of subject to model longitudinal data. Notably, the use of FEMA
to incorporate relatedness across all subjects within a family allows for the flexibility to include
the full ABCD Study® sample, rather than restricting analysis to the twin sub-sample. After

expanding our analyses to include the full sample, even when genetic relatedness was
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assumed rather than measured, and in the absence of a twin-enriched sample, changes in the

model estimates of heritability and other random effects were generally small.

We first applied the ACE model in the baseline twin sample. FEMA and OpenMx found nearly
equivalent estimates for all random effects variances, demonstrating the equivalence of the two
models being fitted. We estimated the heritability of height at 0.86, which is near the top of the
range of twin heritability estimates reported by a comparative study of twin cohorts in eight
countries (ranging from 0.68 to 0.87; Silventoinen et al. 2003). Our twin heritability estimate for
height was higher than the SNP heritability, which was recently estimated to be 40% of
phenotypic variance in European ancestry populations and 10%-20% in other ancestries (Yengo
et al. 2022). Of the cognitive phenotypes, we found the highest twin heritability estimate for total
composite cognition (0.61) and oral reading recognition (0.58), consistent with prior findings that
heritability estimates tend to be higher for more “crystallized” and culturally sensitive measures
of cognition (Kan et al. 2013). Interestingly, the picture vocabulary test had a relatively lower
heritability estimate in this model (0.24) compared to the reading recognition test (0.58), which
may reflect a difference in the cultural sensitivity of the two “crystallized” cognition tasks. The
NIH Toolbox tasks comprising fluid cognition (flanker task, picture sequence memory task, list
sorting, pattern comparison, and dimensional card sort) ranged in heritability estimates from
0.22 (flanker) to 0.41 (picture), which is within the wide range of heritability estimates for similar
tasks in children (approximately 0-0.6; see Kan et al. 2013). Interestingly, the RAVLT had near-
zero estimates for all random effects variances in all models, indicating that this task may be
exceptionally unreliable in this sample, or perhaps particularly prone to variance in

measurement.

We next tested the change in model fit and parameter estimation when using measured genetic

relatedness rather than assigned relatedness based on twin zygosity. Parameter estimates
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were largely unchanged, reflecting that in a twin sample, the assigned relatedness values of 0.5
and 1 are sufficient to arrive at similar random effects estimates compared to models using
measured relatedness (though the model fit was improved with the measured relatedness

values).

Perhaps one of the most exciting applications comes when extending the model to the full
ABCD Study® sample. By leveraging the sparse clustering method used by FEMA to handle
genetic relatedness only for participants within families, we were able to take advantage of the
diverse distribution of genetic relatedness, ranging from 0 (e.g. adopted siblings) to 1 (i.e., MZ
twins) for any pair of participants within a family. Unlike the large computational load generated
by other similar genome-based REML regressions, the use of sparse clusters allowed FEMA to
dramatically cut the computational time (Fan et al. 2021), allowing all the analyses in this paper
to be fit on a single machine without the use of parallel computing. Using the full sample, first at
baseline then with the addition of the Year 2 data, led to narrower confidence intervals, as
shown in Figure 3. Inclusion of the full sample led to lower heritability estimates for several
cognitive phenotypes, which may be related to the relative homogeneity of the twin sub-sample
leading to potential for overestimation of heritability. Of note, though singletons (participants
who are the sole members of their family cluster) did not contribute to estimation of the random
effects variances themselves, they did contribute to the estimation of the total variance, which

allows the model to leverage the full ABCD Study® sample.

After expanding the model to include the full sample, we tested the effect of an added random
effect of twin status (i.e., “pregnancy ID”). We found evidence for a T effect in matrix reasoning,
with a compensatory decrease in the heritability estimate when T was included in the model.
This T effect could include any components of the environment that are shared between twins

but not among siblings. Examples could include shared uterine environment and prenatal
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factors, such as gestational age; or the fact that twins experience the same environmental
events at exactly the same time. To illustrate this point, a pair of twins might experience a global
pandemic at exactly the same age, causing them to experience any effects of the event in
similar ways. In contrast, if two siblings are different ages at the time of the event, it might have
a different age-dependent effect on each of them (despite the fact that it is occurring as part of
their “common environment”). Future work could further investigate additional effects, such as
gestational age or specific age x environment interactions, to tease apart the multifactorial

influences that relate to shared twin environments.

We next used the complete sample across multiple timepoints, for a total of over 13,000
observations (Figure 5). Adding the second timepoint led to a substantial decrease in the
heritability estimate for height, with a similar increase in the E component for height. This may
be due to several factors, including possible nonadditive genetic effects (e.g., Silventoinen et al.
2008). Conversely, many of the cognitive phenotypes (with the exception of the Little Man Task
and the RAVLT) saw an increase in heritability estimates when modeled across multiple
timepoints (Figure 5E). It is possible that this phenomenon is related to the well documented
increase in apparent heritability of cognitive traits with age (Davis et al. 2009; Haworth et al.
2010), which may be due in part to the gene x environment correlation (Loughnan et al. 2019).
The estimation of the S variance component varied by phenotype; height had a negligible S
component, which may be due to the large amount of variance that was already explained by
genetic and environmental effects. On the other hand, the NIH Toolbox tasks each had a
variance component explained by subject-level variance, indicating that variance in these
phenotypes may be relatively more stable for a given participant over time. For these tasks,
including S in our model allows for better explanation of variance that would otherwise be part of

the E component. The Little Man Task and the RAVLT did not exhibit subject-specific variance,
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which may be related to higher noise in these measures as evidenced by the large E

components for both tasks (.79 and .97 in Model 6, respectively).

Of all the models described in this paper, the model including A, C, T, S, and E, fit across the
full ABCD Study® sample and using all timepoints (Model 6), represented the “most complete”
model. However, we employed a series of model comparisons to assess the effect of various
study design considerations on the random effects variances. First, we examined the change in
our model results when using only “assigned” genetic relatedness, to approximate a study
design in which genetic data are not readily available. We found that, as expected, the model fit
was worse in this model, but the parameter estimates were generally similar. Of note, we
deliberately used the twin sub-sample data to “assign” relatedness values, meaning that for
these analyses the twins recruited through the general population were assumed to have a
relatedness value of 0.5. Despite this deliberate attempt to increase the error in our model,
estimates remained relatively similar, with inflated estimates for the T variance component that
seemed to compensate for the induced error in relatedness values. These results indicate that
when using assigned relatedness, variance that would have been attributed to increased

genetic relatedness is “shifted” into the T component.

We next tested whether including additional covariates in our pre-residualization step would
lead to a change in random effects estimates. In general, residualizing for sociodemographic
and genetic ancestry covariates led to a decrease in the total residual variance as well as the
common environment (C) parameter estimate. This was expected, as adjusting for additional
covariates led to a better model fit; the improved model fit is accompanied by a smaller amount
of residual variance that is not accounted for by the fixed effects, and any variance that would
have been partitioned into C was already attributed to the covariates such as household income

or parental education. Notably, adjusting for genetic principal components is an attempt to
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include potential influences of population stratification in the model, and does not have an effect
on the estimation of genetic relatedness. Due to the nesting structure of the random effects, the
FEMA package only uses the pairwise genetic similarity between individuals within the same
family. This is in contrast to the genetic principal components, which are used to estimate a
fixed effect across the whole sample that may represent population stratification and other

effects of genetic ancestry.

Finally, we tested whether omitting the twin sub-sample led to a difference in model results.
Overall, the model estimates only slightly changed for most phenotypes, with the exception of
the picture sequence memory task which saw a decrease of 0.19 in its heritability estimate. The
confidence intervals generated by the two models were similar, suggesting that a large study
sample with many siblings is capable of generating model estimates that are similar to those in
a twin-enriched sample. Due to the difference in recruitment strategy between the twin sub-
sample and the general population sample (recruited primarily through schools; Garavan et al.
2018), it is possible that these groups differed in ways that could lead to different heritability

estimates.

The results from this study should be considered in light of certain limitations. Generally, LMEs
are used to partition the variance in a phenotype of interest into components modeled by
random effects; however, models are often built with the assumption that the random effects are
mutually independent and follow the normal distributions with mean 0 (Neale and Maes 2004;
Wang et al. 2011). Additionally, LMEs represent a “top-down” heritability estimation method that
can be biased by several factors including gene—environment correlations, selection, non-
random mating, and inbreeding (Zaitlen and Kraft 2012; Zhang and Sun 2022). Furthermore, we

did not explore non-additive genetic effects, which can attenuate bias of heritability estimates
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(Wang et al. 2011); nor did we model any gene x environment interactions, which are likely to

exist for some of the phenotypes of interest (Loughnan et al. 2019).

This work describes many of the modeling techniques available for researchers interested in
applying the ACE model and its extensions to a large sample with high relatedness such as the
ABCD Study® sample. Notably, the FEMA package provides a tool for mass univariate
estimation of LMEs, and its current implementation does not allow for bivariate mixed models.
SEM and other implementations of bivariate linear mixed models may provide an avenue to
address questions involving genetic and environmental correlations between variables. Bivariate
models may provide some insight into questions of innovation, i.e., whether the set of genes

that influence a given phenotype changes over time.

The last several years have seen the development of several new techniques that can be used
to model additional relationships, such as random effect x time interaction (He et al. 2016),
random effect x covariate interaction (Arbet et al. 2020), covariance among random effects
(Zhou et al. 2020; Dolan et al. 2021), and allowing random effects estimates to vary as a
function of the phenotype (Azzolini et al. 2022). The sparse clustering design employed in the
FEMA package leads to improved computational efficiency compared to other LME
implementation software (Fan et al. 2021); future work will investigate the use of FEMA to
estimate random effects estimates in more high-dimensional datasets, such as the brain
imaging data present in the ABCD Study®, and compare with other computationally efficient
implementations of the ACE Model such as Accelerated Permutation Inference for the ACE
Model (APACE; Chen et al. 2019) and positive semidefinite ACE (PSD-ACE; Risk and Zhu
2021). More broadly, as stated by (Zyphur et al. 2013), “top down” heritability estimates should

serve as just one piece of the puzzle connecting genes and the environment, where current
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techniques at the molecular and single-gene level may be useful in filling in the gaps from the

bottom up.
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Table 1
Full sample Twin sub-sample
N 8239 924
Age (months; mean (SD)) 118.94 (7.55) 121.79 (6.61)
Parental Education (%)
< HS Diploma 320 (3.9) 18 (1.9)
Bachelor 2196 (26.7) 308 (33.3)
HS Diploma/GED 680 (8.3) 38 (4.1)
Post Graduate Degree 2892 (35.1) 314 (34.0)
Some College 2151 (26.1) 246 (26.6)
Household Income (%)
< $50,000 2404 (29.2) 170 (18.4)
>= $100,000 3461 (42.0) 487 (52.7)
>= $50,000 & < $100,000 | 2374 (28.8) 267 (28.9)

Table 1. Sample information at baseline. All samples include complete cases only.
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Table 2
Model Sample Timepoints Nobs | GRM values | Covariates Random
Effects
Model 1 Twin Baseline 924 Assigned | Age and sex A C,E
Model 2 Twin Baseline 924 Measured | Age and sex A CE
Model 3 Full Baseline 8242 Measured | Age and sex A C,E
Model 4 Full Baseline 8242 Measured |Ageandsex| A,CT,E
Model 5 Full Baseline and Y2 13984 Measured |Ageandsex| A, C, T,E
Model 6 Full Baseline and Y2 13984 Measured | Ageandsex |A,C, T,S,E
Model 7 Full Baseline 8242 Assigned | Age and sex A CE
Model 8 Full Baseline 8242 Assigned |Ageandsex| A,C, T,E
Model 9 Full Baseline and Y2 | 13984 | Assigned |Ageandsex|A,C, T,S,E
Model 10 Twin Baseline 924 Assigned | All covariates A C,E
Model 11 Twin Baseline 924 Measured |All covariates A C,E
Model 12 Full Baseline 8242 Measured |All covariates| A, C,E
Model 13 Full Baseline 8242 Measured |All covariates| A,C, T, E
Model 14 Full Baseline and Y2 | 13984 | Measured |All covariates| A,C, T, S, E
Model 15 Full Baseline and Y2 13984 Measured | Ageandsex| A,C,S,E
Model 16 FuuNrinnigus Baseline and Y2 | 11835 | Measured |Ageandsex| A,C,S,E

Table 2. List of model specifications. GRM = genetic relatedness matrix; Nops = number of
observations; Y2 = year 2 follow-up visit. All models pre-residualized for age and sex; when
specified, “all covariates” includes these as well as site, parental education, household income,
and first ten genetic principal components. Random effects: A = additive genetic relatedness, C
= common environment, S = subject, T = twin status (shared pregnancy ID), E = unexplained
variance / error.
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Figure Captions

Figure 1. ACE Model in FEMA versus OpenMx. A) Comparison of model estimates. Horizontal
error bars represent confidence interval calculated in FEMA,; vertical error bars represent
confidence intervals calculated in OpenMx. B) Difference in Akaike Information Criterion in
FEMA versus in OpenMx. C) Random effects estimates from FEMA.

Figure 2. ACE Model using assigned versus measured GRM. A) Comparison of model
estimates. Horizontal error bars represent confidence interval calculated in Model 2; vertical
error bars represent confidence intervals calculated in Model 1. B) Difference in Akaike
Information Criterion in Model 2 versus in Model 1. C) Random effects estimates from Model 2.

Figure 3. ACE Model using full baseline sample compared to twin sub-sample. A) Comparison
of model estimates. Horizontal error bars represent confidence interval calculated in Model 3;
vertical error bars represent confidence intervals calculated in Model 2. B) Random effects
estimates from Model 3.

Figure 4. ACE Model versus ACTE model using full baseline sample. A) Comparison of model
estimates. Horizontal error bars represent confidence interval calculated in Model 4; vertical
error bars represent confidence intervals calculated in Model 3. B) Difference in Akaike
Information Criterion in Model 4 versus in Model 3. C) Random effects estimates from Model 4.

Figure 5. ACTE and ACTSE Model in baseline versus longitudinal sample. A) Comparison of
estimates from Model 5 versus Model 4. Horizontal error bars represent confidence interval
calculated in Model 5; vertical error bars represent confidence intervals calculated in Model 4.
B) Random effects estimates from Model 5. C) Comparison of estimates from Model 6 versus
Model 5. Horizontal error bars represent confidence interval calculated in Model 6; vertical error
bars represent confidence intervals calculated in Model 5. D) Difference in Akaike Information
Criterion in Model 6 versus in Model 5. C) Random effects estimates from Model 6.

Figure 6. ACTSE model using assigned versus measured genetic relatedness. A) Comparison
of estimates from Model 9 versus Model 6. Horizontal error bars represent confidence interval
calculated in Model 9; vertical error bars represent confidence intervals calculated in Model 6.
B) Difference in Akaike Information Criterion in Model 9 versus in Model 6. C) Random effects
estimates from Model 9.

Figure 7. ACE model in baseline twin sample, residualizing for all covariates versus age and
sex only. A) Comparison of estimates from Model 10 versus Model 1. Horizontal error bars
represent confidence interval calculated in Model 10; vertical error bars represent confidence
intervals calculated in Model 1. B) Difference in total residual variance in Model 10 versus in
Model 1. C) Random effects estimates from Model 10.

Figure 8. ACSE model in longitudinal sample, in a sample that excludes twin registry
participants. Comparison model is equivalent but includes the full sample inclusive of twin
registry participants. A) Comparison of estimates from Model 16 versus Model 15. Horizontal
error bars represent confidence interval calculated in Model 16; vertical error bars represent
confidence intervals calculated in Model 15. B) Difference in total residual variance in Model 16
versus in Model 15. C) Random effects estimates from Model 16.


https://doi.org/10.1101/2022.10.28.512918
http://creativecommons.org/licenses/by-nc-nd/4.0/

Model 1: ACE Model, twins only at baseline, assigned GRM (OpenMx)
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Model 1: FEMA ACE Model, twins only, baseline, assigned GRM
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Model 2: ACE Model, twins only, baseline, measured GRM
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Model 1: FEMA ACE Model, twins only, baseline, assigned GRM
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Model 10: ACE Model, twins only at baseline, assigned GRM,
all covariates
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