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Abstract 

Twin and family studies have historically aimed to partition phenotypic variance into components 

corresponding to additive genetic effects (A), common environment (C), and unique 

environment (E). Here we present the ACE Model and several extensions in the Adolescent 

Brain Cognitive Development� Study (ABCD Study®), employed using the new Fast Efficient 

Mixed Effects Analysis (FEMA) package. In the twin sub-sample (n = 924, 462 twin pairs), 

heritability estimates were similar to those reported by prior studies for height (twin heritability = 

0.86) and cognition (twin heritability from 0.00 to 0.61), respectively. Incorporating measured 

genetic relatedness and using the full ABCD Study® sample (n = 9,742) led to narrower 

confidence intervals for all parameter estimates. By leveraging the sparse clustering method 

used by FEMA to handle genetic relatedness only for participants within families, we were able 

to take advantage of the diverse distribution of genetic relatedness within the ABCD Study® 

sample. 
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Introduction 

For over a century, researchers have relied on variance partitioning as a statistical method for 

estimating heritability (Carey 2003). Historically, twin studies provided an avenue by which 

researchers could model the variance of a given phenotype as comprised of distinct 

components: e.g., additive genetic effects (A), common environmental effects (C), and unique 

environmental effects (also including error or unmodeled unexplained variance; Martin and 

Eaves 1977; Neale and Maes 2004). Specifically, in a linear mixed-effect (LME) regression 

model,  

��� � � � ����� � 	�� � 
�� � ���  (1)  

where yij is the trait value of individual j in family i; μ is the overall mean; xij denotes a vector of 

covariates; and Aij , Cij , Eij represent latent additive genetic, common environmental and unique 

environmental random effects, respectively.  

 

Although the ACE model has often been implemented using structural equation model (SEM) 

software such as OpenMx (Neale et al. 2016), the SEM representation is mathematically 

equivalent to the LME regression model shown in Equation 1 (Neale and Maes 2004; Visscher 

et al. 2004; McArdle and Prescott 2005). Indeed, prior applications of the ACE framework have 

been implemented using LMEs from R and Stata packages (Rabe-Hesketh et al. 2008) as well 

as SAS (Wang et al. 2011). For studies that incorporate extended family designs with several 

random effects, Visscher and colleagues (2004) recommended implementation using a LME 

approach, though SEM methods also exist to model complex family structure (Truett et al. 1994; 

Keller et al. 2009). 
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Many of the software packages used to estimate coefficients of mixed-effects models are based 

on restricted maximum likelihood (REML) estimation to avoid bias introduced by inclusion of 

many fixed effects (Shaw 1987). With recent advances in genomic sequencing, there has been 

an influx of methods that use measured genetic data rather than inferred genetic similarity from 

twin status. For example, genome-wide complex trait analysis (GCTA; Yang et al. 2011) was 

developed to incorporate a pairwise genetic relatedness matrix (GRM) between individuals 

using information from single nucleotide polymorphisms (SNPs). Twin studies have 

subsequently been adapted to incorporate empirical measures of genetic relatedness 

(Kirkpatrick et al. 2021). However, incorporating a matrix of pairwise relatedness values for each 

set of participants leads to an increase in the computational time when estimating these model 

parameters. Various subsequent adaptations have been developed to increase the processing 

speed of GCTA software (Ge et al. 2015) and to incorporate effects of maternal and/or paternal 

genotype on the traits within GCTA (Eaves et al. 2014; Qiao et al. 2020; Eilertsen et al. 2021).  

 

Comparison of heritability estimates derived from non-twin versus twin analyses have found that 

non-twin studies consistently yield lower heritability estimates, an example of the so-called 

“missing heritability” in genetics research (Kim et al. 2015). Some researchers have suggested 

that this phenomenon may be due in part to inflated twin heritability estimates, for example due 

to dominant genetic variation which might be masked by shared environment in twin and family 

studies (Chen et al. 2015). Indeed, twin and family studies have developed several ways of 

parsing “common environment”, including using geospatial location information (Heckerman et 

al. 2016; Fan et al. 2018) and adding a random effect of twin status (T) when including twins 

and full siblings in the same study (Zyphur et al. 2013). 

 

The Adolescent Brain Cognitive Development� Study (ABCD Study®) provides a particularly 

appealing dataset for estimation of heritability, not only due to its population sampling frame, 
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large sample size, and longitudinal design, but also because it contains an embedded sub-

sample of 840 pairs of same-sex twins recruited through birth registries at four sites (Iacono et 

al. 2018). The overall sample is thus enriched for genetic relatedness, with families that include 

siblings, half siblings, dizygotic (DZ) twins, and monozygotic (MZ) twins. The ABCD Study® data 

therefore requires the application of modeling approaches that take family structure and 

relatedness into account. 

 

In this study we implemented modeling strategies that account for family structure and pairwise 

genetic relatedness using the recently developed Fast Efficient Mixed Effects Analysis (FEMA; 

Fan et al. 2021). We used FEMA to model participants nested within families, where random 

effects such as genetic relatedness were taken into account for each pair of subjects within a 

family, and set to zero for individuals who are not in the same family (Fan et al. 2021). FEMA 

provides a flexible platform for users to specify a wide array of fixed and random effects, which 

makes it a useful tool for modeling variance components in the ABCD Study®.  

 

We first compared the basic ACE model implemented in FEMA versus OpenMx (Neale et al. 

2016). Next, we tested the effect of including measured genetic relatedness (using genotype 

array data) compared to assigning approximate relatedness based on zygosity (i.e., 1.0 for MZ 

twins, 0.5 for DZ twins and full siblings). We then progressively expanded our sample size, first 

going from “twins only” to the full ABCD Study® baseline sample (including non-twin siblings and 

singletons), and finally to the full sample across multiple timepoints. We compared model 

estimates for the commonly used A, C, and E components, as well as a subject-level 

component (S) in the longitudinal data, and the twin component (T), which captured the 

variance attributable to variance in the common environment of twin pairs. In addition, we 

explored the change in model estimates and model fit when adjusting for specific fixed effect 

covariates, and when excluding the twin sub-sample.  
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Methods 

Sample 

The ABCD Study® is a longitudinal cohort of 11,880 adolescents beginning when participants 

were aged 9-11 years, with annual visits to assess mental and physical health (Volkow et al. 

2018). The study sample spans 21 data acquisition sites and includes participants from 

demographically diverse backgrounds such that the sample demographics approximate the 

demographics of the United States (Garavan et al. 2018). The sample includes many siblings as 

well as a twin sub-sample consisting of 840 pairs of same-sex twins recruited from state birth 

registries at four sites (Garavan et al. 2018). Exclusion criteria for participation in the ABCD 

Study® were: 1) lack of English proficiency in the child; 2) the presence of severe sensory, 

neurological, medical or intellectual limitations that would inhibit the child’s ability to comply with 

the study protocol; 3) an inability to complete an MRI scan at baseline. The study protocols were 

approved by the University of California, San Diego Institutional Review Board. Parent/caregiver 

permission and child assent were obtained from each participant. The data used in this study 

were obtained from ABCD Study® data release 4.0. 

 

Statistical analyses were conducted on a sample that included a total of 13,984 observations 

from 9,742 unique participants across two timepoints (the baseline and year 2 visits). The twin 

sub-sample used in this study consisted of 462 pairs of twins with complete data (total N = 924). 

Observations were included in the final sample if the participant had complete data across 

sociodemographic factors (household income, highest parental education), available genetic 

data (to provide ancestry information using the top 10 principal components), and the 

phenotypes of interest. Table 1 shows the baseline demographics of the full sample as well as 
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the twin sub-sample. Compared to the full sample, the twin sub-sample had a higher percentage 

of parents with bachelor’s degrees (33.3% compared to 26.7% in the full sample), and 

household income was shifted higher (52.7% with income over $100,000 compared to 42.0% in 

the full sample).  

Measures 

Phenotypes of interest 

For the present study, we included height as a phenotype of interest due to its common use in 

twin and family studies (Silventoinen et al. 2003), as well as the availability of larger genetic 

studies from samples of unrelated participants (Yengo et al. 2022). Several cognitive 

phenotypes were included from the NIH toolbox cognition battery (Gershon et al. 2013): 

specifically, we analyzed the raw composite scores measuring fluid and crystallized intelligence, 

which have been validated against gold-standard measures of cognition (Akshoomoff et al. 

2013; Heaton et al. 2014). We also included the uncorrected scores from the flanker task, 

picture sequence memory task, list sorting memory task, pattern comparison processing speed, 

dimensional change card sort task (components of fluid cognition); and the oral reading 

recognition task and picture vocabulary task (components of crystallized cognition). In addition 

to the NIH Toolbox, we included the matrix reasoning test from the Wechsler Intelligence Scales 

for Children (WISC-V; Wechsler 2014), the total percent correct from the Little Man visuospatial 

processing task (Acker 1982), and the total number of items correctly recalled across the five 

learning trials of the Rey Auditory Verbal Learning Task (RAVLT; Daniel et al. 2014). See 

Extended Methods for a complete description of each phenotype of interest including data 

collection procedures.  
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Covariates 

Unless otherwise specified, models were run on data that was pre-residualized for age and sex 

only, in keeping with common practice for twin studies (Neale and Maes 2004). In models that 

included pre-residualization for additional covariates, these were chosen based on common 

practices in cognitive and behavioral research, and included recruitment site, parental 

education, household income, and the first ten genetic principal components.  

Genetic Principal Components and Genetic Relatedness 

Methods for collecting genetic data have been described in detail elsewhere (Uban et al. 2018). 

Briefly, a saliva sample was collected at the baseline visit, as well as a blood sample from twin 

pairs. The Smokescreen™ Genotyping array (Baurley et al. 2016) was used to assay over 

300,000 SNPs. Resulting genotyped and imputed SNPs were used for principal components 

derivation as well as genetic relatedness calculation.  

 

The genetic principal components were calculated using PC-AiR (Conomos et al. 2015). PC-AiR 

was designed for robust population structure inference in the presence of known or cryptic 

relatedness. Briefly, PC-AiR captures ancestry information that is not confounded by 

relatedness by finding a set of unrelated individuals in the sample that have the highest 

divergent ancestry and computes the PCs in this set; the remaining related individuals are then 

projected into this space. This method has been recommended by the Population Architecture 

through Genomics and Environment Consortium (Wojcik et al. 2019), which is principally 

concerned with conducting genetic studies in diverse ancestry populations. 

 

PC-AiR was run on using the default suggested parameters from the GENESIS package 

(Gogarten et al. 2019). We used non-imputed SNPs passing quality control (516,598 variants 
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and 11,389 individuals). Using the computed kinship matrix, PC-Air was then run on a pruned 

set of 158,103 SNPs, which resulted in 8,005 unrelated individuals from which PCs were 

derived – leaving 3,384 related individuals being projected onto this space. 

 

We then computed a GRM using PC-Relate (Conomos et al. 2016). PC-Relate aims to compute 

a GRM that is independent from ancestry effects as derived from PC-AiR. PC-Relate was run 

on the same pruned set of SNPs described above using the first two PCs computed from PC-

Air. 

Data analysis 

Pre-residualization 

We used R version 3.6.3 for data processing. After obtaining the sample of complete cases for 

all variables, phenotypes were pre-residualized for age and sex using the lm function. For 

certain models (see Table 2), we additionally included the following covariates during this 

residualization step: site, parental education, income, and the first ten genetic principal 

components. The purpose of pre-residualization was to ensure that both FEMA and OpenMx 

implementations were fitting random effects to the same data. Because our models only fit 

random effects, and because FEMA implements an unbiased estimation of total variance, the 

FEMA implementation was therefore mathematically equivalent to the REML estimation in 

OpenMx. However, it should be noted that there are negligible differences between REML and 

maximum likelihood (ML) estimates when applied to large sample sizes such as those in the 

ABCD Study® sample (Browne and Draper 2006). 
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Previous work has found evidence for a practice effect in some of the cognitive measures from 

the ABCD Study® (Anokhin et al. 2022). Therefore, in models that included data from baseline 

and year 2, we included a “practice effect” as a dummy variable in the pre-residualization step. 

This variable was equal to 0 if the observation was the first instance of data for that participant 

(i.e., all participants had 0 at baseline), and 1 if the participants were providing data for the 

second time at the year 2 visit. Most participants (N = 4242, 76.19%) had a value of 1 at the 

year 2 visit.  

Model specification 

We ran a series of models, described in Table 2. For each model, we specified whether genetic 

relatedness was “measured” (calculated using PC-AiR and PC-Relate; Conomos et al. 2015, 

2016) or “assigned”. For assigned relatedness, we used the zygosity data from the twin sub-

sample to assign a value of 1 for MZ twins, 0.5 for DZ twins, and 0.5 for all other siblings (under 

the assumption that there are only full siblings within a family). 

 

Since each phenotype was pre-residualized, we only needed to estimate the random effects 

components in each LME run within FEMA and OpenMx. These included an effect of family ID 

(common environment, C), additive effect of genetic relatedness (A), subject (S), twin status (T, 

calculated by creating a variable “pregnancy ID” that was shared by any two individuals with the 

same family ID and same birth date), and unique environment/unexplained variance (E). 

OpenMx 

We first ran an ACE model in the baseline twin sample, using the OpenMx package in R 

(package version 2.20.6; Neale et al. 2016). We elected to use OpenMx as the comparison 

software due to its widespread use in twin and family studies to estimate heritability. We chose 
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to use the REML estimator within OpenMx, which differs from ML estimators by a) using an 

unbiased estimation to calculate total variance, and b) first estimating the random effects 

iteratively and then estimating the fixed effects coefficients, as opposed to alternating estimation 

of variances and fixed effects. However, due to the preresidualization step described above, in 

our models we solely estimated random effects, such that the REML estimator in OpenMx 

provided a good comparison for FEMA (a ML estimator that uses an unbiased estimation of total 

variance). We ran OpenMx using R version 3.6.3., using the default SLSQP optimizer. Because 

data were preresidualized for age and sex, we did not fit any additional covariates. OpenMx 

provides likelihood-based confidence intervals by default (Neale and Miller 1997), which we 

used to compare with the likelihood-based confidence intervals calculated in FEMA. 

Fast Efficient Mixed Effects Analysis (FEMA) 

FEMA was developed for the efficient implementation of mass univariate LMEs in high 

dimensional data (e.g., brain imaging phenotypes; Fan et al. 2021). Whereas the original 

version of FEMA used a method of moments estimator for increased computational efficiency, 

we modified the package to allow the user to select a ML estimator. An updated version of 

FEMA that includes this option is available at the time of this publication 

(https://github.com/cmig-research-group/cmig_tools). Because FEMA uses an unbiased 

estimation of total variance, and we were only fitting random effects and not fixed effects, the 

estimates from the FEMA implementation of ML regression were predicted to be mathematically 

equivalent to REML. To run FEMA, we passed a design matrix (the design matrix was “empty” 

because we were not fitting any fixed effects) as well as a file containing a matrix of (measured 

or assigned) genetic relatedness values. FEMA then used a nested random effects design to 

create a sparse relatedness matrix, in which the relatedness values for all participants not 

assigned the same familyID was set to zero. For all models we reported the random effects 

variances as a percent of the total variance in the residualized phenotype that was explained by 
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variance in the random effect of interest. As a result, for a given model, the random effects 

estimates sum to 1 (representing 100% of the variance in the residualized phenotype). For ease 

of interpretation and comparison to previous literature, in this paper the term “heritability 

estimate” refers to the percent of residualized phenotypic variance that is explained by variance 

in genetic relatedness, i.e., variance explained by variance in A.  

Model Comparison 

For comparing two models that used identical samples, we calculated the Akaike Information 

Criterion (AIC) as (Akaike 1974): 

 

	�
 �  
�2���
�����������  �  2�  (2) 

 

where k represents the number of model parameters. Therefore, the difference in AIC between 

two models (ΔAIC) can be calculated as: 

�	�
 �  �2
����  � 2
���  (3) 

where ΔLL represents the difference in log likelihood between the two models and Δk 

represents the difference in the number of parameters between the two models. In models that 

have the same level of complexity (Δk = 0), the ΔAIC is equal to -2(ΔLL). We chose to use the 

AIC as opposed to the likelihood ratio test statistic for model comparison because several 

comparisons were not between nested models. 
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Results 

ACE model (Model 1) in FEMA versus OpenMx 

A summary of heritability estimates (i.e., the A random effects) from all models is provided in 

Supplementary Table 1. To compare model estimates between OpenMx and FEMA, we fit the 

same ACE model in each, using the same sample of 462 complete twin pairs from the twin sub-

sample (i.e., pairs in which each twin had complete data for all phenotypes). Figure 1 shows a 

comparison of the two results as well as the parameter estimates using FEMA. The difference in 

heritability estimates between the two software packages was less than 0.001 for all 

phenotypes. On comparing these models (Figure 1B), we found that the difference in AIC was 

less than 0.05 for all phenotypes, indicating that there was no difference in the model fit. 

Because the model estimates and model fits were practically the same, we elected to use the 

LME implementation in FEMA for all further analyses. 

Effect of including measured genetic relatedness (Model 2) 

To assess the difference in parameter estimates when including measured versus assigned 

genetic relatedness, we fit two versions of the ACE model in the baseline twin sample. Model 1 

(the ACE model described above, implemented in FEMA) used a matrix of assigned relatedness 

values (1.0 for MZ twins and 0.5 for DZ twins) whereas Model 2 used a matrix of measured 

relatedness values. 

 

The models provided equivalent heritability estimates, with differences in A estimates ranging 

from -0.01 (Little Man Task) to 0.03 (pattern comparison; Figure 2A). On inspecting the 

differences in the AIC between the two models, we found that using measured GRM led to small 
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improvements in the overall model fit. This improvement was most pronounced for height (ΔAIC 

= -1.04) but less so for the cognitive phenotypes (Figure 2B). Random effects variance 

component estimates are presented in Figure 2C.  

Effect of increased sample size (Model 3) 

We next tested the change in model estimates when moving from the twin sub-sample (n = 924) 

to the full baseline sample (n = 8,242). Model 2 (from previous analysis) and Model 3 both used 

the measured GRM values and included A, C, and E random effects. The two models are 

therefore equivalent except for the much larger sample fit in Model 3. As described in Methods, 

the sparse clustering method within FEMA ignored the genetic relatedness among individuals 

with different family IDs. In practice, this meant that the sample of 8,242 unique subjects at 

baseline was clustered into 7,136 families, and genetic relatedness values were only used for 

individuals within families. 

 

Figure 3 shows the estimates from Model 3 and their comparison to Model 2. The increased 

sample size led to much smaller confidence intervals for all random effects estimates calculated 

in Model 3 (Figure 3A). In general, using the full sample led to smaller estimates of A and larger 

estimates of C compared to Model 2. The changes in heritability estimates ranged from -0.31 

(NIH Toolbox Fluid Cognition) to +0.04 (height). The estimated total variance was larger in 

Model 3 for most phenotypes (Figure 3B), with the largest increase in variance in total 

composite cognition (24.36% increase in total variance), crystallized cognition (23.76% 

increase), and oral reading recognition (24.08% increase). Because the two models were fit to 

different samples, it was not possible to directly compare their AIC model fit from the likelihood 

statistics. Figure 3C shows the random effects variances from Model 3. 
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Adding a Twin random effect (Model 4) 

Given that the full sample analysis included singletons, half siblings, and adopted siblings, as 

well as twins and triplets, we next tested the addition of a random effect of twin status (T). We 

calculated a “pregnancy ID” that was shared by individuals who had the same family ID and the 

same birth date. We then used this “pregnancy ID” to code for the T random effect in an ACTE 

Model (Model 4). Figure 4 shows the model estimates from Model 4 as well as a comparison to 

Model 3; the two models are equivalent with the exception of the T random effect.  

 

For most phenotypes, the addition of the T random effect did not lead to a change in parameter 

estimates (i.e., T was estimated to be 0). The largest change in parameter estimates was in 

matrix reasoning (heritability estimate decreased by 0.07, T estimated at 0.07; Figure 4A). 

Model comparison found that the difference in the AIC was at or near 2.0 for all phenotypes 

except for the RAVLT (ΔAIC = 1.58) and matrix reasoning (ΔAIC = 0.85). Because the AIC was 

calculated as -2ΔLL plus double the difference in model parameters (Equation 3), the consistent 

values of 2.0 reflect that the -2ΔLL statistic was approximately 0 before the penalization for the 

additional parameter in Model 4 (Figure 4B). The random effects variances for Model 4 are 

shown in Figure 4C. 

Incorporation of two timepoints (Model 5, 6) 

We next moved from examining the full sample at baseline (Model 4) to the full sample at 

baseline and Year 2 (Model 5). Models 4 and 5 were equivalent except for the difference in 

sample size (i.e., Model 5 did not account for nesting of data within subjects, in order to directly 

assess this effect in Model 6). Because not all phenotypes were available at the Year 2 visit, 

models that included baseline and Year 2 data only included pattern comparison processing 

speed, flanker task performance, picture sequence memory, picture vocabulary, oral reading 
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recognition, crystallized cognition, RAVLT, Little Man Task, and height. To account for nesting 

of multiple visits within subjects, we added a random effect of subject (S) in Model 6. Figure 5 

shows the change in random effects variances moving from Model 4 to Model 5 and from Model 

5 to Model 6.  

 

Adding the second visit led to overall increases in the heritability estimates for the cognitive 

phenotypes, with changes ranging from -0.06 (Little Man Task) to +0.38 (pattern comparison; 

Figure 5A). Conversely, the heritability estimate for height decreased by 0.21. Adding the 

random effect of subject led to minimal change (<0.001) in the heritability estimate for height, 

Little Man Task, and RAVLT, but a decrease in heritability estimates across the other cognitive 

phenotypes (changes ranging from -0.19 to -0.05) compared to estimates from Model 5. The 

total difference in heritability estimates going from Model 4 to Model 6 ranged from -0.21 

(height) to +0.22 (pattern comparison; Figure 5C). 

 

Model comparison between Model 5 and Model 6 found that the model was substantially 

improved for crystallized cognition (ΔAIC = -5.26), oral reading recognition (ΔAIC = -7.45), 

picture vocabulary (ΔAIC = -5.61), flanker (ΔAIC = -11.33), and pattern comparison (ΔAIC = -

25.40). However, the difference in the fit was smaller for height (ΔAIC = +2.00), picture 

sequence memory (ΔAIC = +0.91), the RAVLT (ΔAIC =+2.00), and the Little Man Task (ΔAIC = 

+2.00; Figure 5D). Figure 5B and 5E show the random effects variances from Model 5 and 

Model 6. 
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Effect of assigning genetic relatedness in large samples (Model 7-

9) 

For the next set of models, we tested whether the parameter estimates for models using the full 

sample (Models 3-5) changed in the absence of measured genetic relatedness. We used a 

matrix of assigned genetic relatedness (assigning 1.0 for MZ twins from the twin sub-sample, 

and 0.5 for DZ twins from the twin sub-sample and all other individuals in the same family). The 

assigned relatedness value therefore assumed that all non-twins in the same family, as well as 

twins who were not part of the twin sub-sample, were full siblings.  

 

Figure 6 compares the ACTSE longitudinal model with an equivalent model that used assigned 

genetic relatedness. Supplementary Figure 1 shows the same question of assigned versus 

measured relatedness applied to Models 3 and 4. Overall, the random effects estimates were 

largely unchanged with the use of assigned GRM, with the largest changes in the ACTSE model 

occurring in flanker (ΔA = 0.09) and pattern comparison (ΔA = -0.09; Figure 6A, Supplementary 

Figure 1A,D). Model comparison using ΔAIC found that the ACTSE model using measured 

GRM had better model fit for height (ΔAIC = -34.25), crystallized cognition (ΔAIC = -15.69), oral 

reading recognition (ΔAIC = -19.43), picture vocabulary (ΔAIC = -6.87), and pattern comparison 

(ΔAIC = -8.67) compared to the model using assigned GRM; the difference in model fit was less 

pronounced for picture sequence memory (ΔAIC = +0.84) and flanker (ΔAIC = +0.45; Figure 6B, 

Supplementary Figure 1B,E). Figure 6C and Supplementary Figure 1C and 1F show the random 

effects variances for models using assigned genetic relatedness. 
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Residualizing for additional covariates (Models 10-14) 

While it is common in twin and family analyses to include only age and sex as fixed effects, 

behavioral scientists often include additional fixed effects such as sociodemographic variables 

or recruitment site as covariates. To test whether the inclusion of such variables led to changes 

in our random effects estimates, we ran several of our original models with additional variables 

included in the pre-residualization step (i.e., site, parental education, income, and the first ten 

genetic principal components). Figure 7 shows the results of this model comparison applied to 

Model 1 (the “classic” ACE model). Supplementary Figure 2 shows the same pre-residualization 

and model comparison applied to Models 2-4 and 6. In the classic ACE model, the A estimate 

tended to decrease and the C estimate tended to decrease in the models that included 

additional covariates (Figure 7A). Residualizing for additional covariates led to a decrease in the 

total residual variance across all phenotypes, with decreases ranging from -2.67% (RAVLT) to -

26.02% in the ACE model(crystallized cognition; Figure 7B). Because the two models were run 

on different datasets (pre-residualized for different covariates), we did not calculate the 

difference in AIC between the two models. Figure 7C and Supplementary Figure 2C, 2F, 2I, and 

2L show the random effects variances for the models that were residualized for additional 

covariates. 

Effect of removing the twin-enriched sample (Models 15-16) 

The size and structure of the ABCD Study® cohort, with its embedded twin sub-sample as well 

as the large number of related participants, led us to test the degree to which the model fit 

depended on having a large subset of MZ and DZ twins. As a proxy for the general population, 

we removed the twin sub-sample. This left a small number of twins and triplets recruited through 

the general recruitment pipeline (168 twin pairs and 6 sets of triplets, with 57 pairs of 

participants with genetic relatedness > 0.9 across the full sample). The number of twin and 
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triplet sets in this sample (174 out of 8131 pregnancies, 2.14%) was less than the 3.11% twin 

birth rate reported in the general population of the United States (Osterman et al. 2021). We 

therefore assumed that the ABCD Study® sample excluding the embedded twin sub-sample 

was a proxy for a population sample with a naturally occurring number of twins. We then fit an 

ACSE model, applied to the full sample excluding the twin sub-sample, at baseline and year 2, 

to represent the “best” model possible of those explored thus far, excluding the T random effect 

(Model 16). We compared this model to the same ACSE model applied to the full sample, 

inclusive of twins (Model 15). 

 

A comparison of the parameter estimates is shown in Figure 8A. The model excluding the twin 

sub-sample led to a difference in A estimates of -0.19 (picture sequence memory task) to +0.12 

(pattern comparison). Excluding the twin sub-sample led to an increase in the total residual 

variance across all phenotypes, with changes ranging from +0.24% (pattern comparison) to 

+17.55% (Little Man Task; Figure 8B). Because the two models were fit to different samples, it 

was not possible to directly compare model fit from the likelihood statistics. Figure 8C shows the 

random effects variances from the model that omitted the twin sub-sample participants. 

Discussion 

In this paper we present results from different modeling strategies for implementing the ACE 

model using LMEs, as implemented in FEMA. FEMA is capable of applying the ACE model as 

well as incorporating additional features such as using a sparse matrix of within-family genetic 

relatedness and a random effect of subject to model longitudinal data. Notably, the use of FEMA 

to incorporate relatedness across all subjects within a family allows for the flexibility to include 

the full ABCD Study® sample, rather than restricting analysis to the twin sub-sample. After 

expanding our analyses to include the full sample, even when genetic relatedness was 
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assumed rather than measured, and in the absence of a twin-enriched sample, changes in the 

model estimates of heritability and other random effects were generally small. 

 

We first applied the ACE model in the baseline twin sample. FEMA and OpenMx found nearly 

equivalent estimates for all random effects variances, demonstrating the equivalence of the two 

models being fitted. We estimated the heritability of height at 0.86, which is near the top of the 

range of twin heritability estimates reported by a comparative study of twin cohorts in eight 

countries (ranging from 0.68 to 0.87; Silventoinen et al. 2003). Our twin heritability estimate for 

height was higher than the SNP heritability, which was recently estimated to be 40% of 

phenotypic variance in European ancestry populations and 10%-20% in other ancestries (Yengo 

et al. 2022). Of the cognitive phenotypes, we found the highest twin heritability estimate for total 

composite cognition (0.61) and oral reading recognition (0.58), consistent with prior findings that 

heritability estimates tend to be higher for more “crystallized” and culturally sensitive measures 

of cognition (Kan et al. 2013). Interestingly, the picture vocabulary test had a relatively lower 

heritability estimate in this model (0.24) compared to the reading recognition test (0.58), which 

may reflect a difference in the cultural sensitivity of the two “crystallized” cognition tasks. The 

NIH Toolbox tasks comprising fluid cognition (flanker task, picture sequence memory task, list 

sorting, pattern comparison, and dimensional card sort) ranged in heritability estimates from 

0.22 (flanker) to 0.41 (picture), which is within the wide range of heritability estimates for similar 

tasks in children (approximately 0-0.6; see Kan et al. 2013). Interestingly, the RAVLT had near-

zero estimates for all random effects variances in all models, indicating that this task may be 

exceptionally unreliable in this sample, or perhaps particularly prone to variance in 

measurement. 

 

We next tested the change in model fit and parameter estimation when using measured genetic 

relatedness rather than assigned relatedness based on twin zygosity. Parameter estimates 
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were largely unchanged, reflecting that in a twin sample, the assigned relatedness values of 0.5 

and 1 are sufficient to arrive at similar random effects estimates compared to models using 

measured relatedness (though the model fit was improved with the measured relatedness 

values).  

 

Perhaps one of the most exciting applications comes when extending the model to the full 

ABCD Study® sample. By leveraging the sparse clustering method used by FEMA to handle 

genetic relatedness only for participants within families, we were able to take advantage of the 

diverse distribution of genetic relatedness, ranging from 0 (e.g. adopted siblings) to 1 (i.e., MZ 

twins) for any pair of participants within a family. Unlike the large computational load generated 

by other similar genome-based REML regressions, the use of sparse clusters allowed FEMA to 

dramatically cut the computational time (Fan et al. 2021), allowing all the analyses in this paper 

to be fit on a single machine without the use of parallel computing. Using the full sample, first at 

baseline then with the addition of the Year 2 data, led to narrower confidence intervals, as 

shown in Figure 3. Inclusion of the full sample led to lower heritability estimates for several 

cognitive phenotypes, which may be related to the relative homogeneity of the twin sub-sample 

leading to potential for overestimation of heritability. Of note, though singletons (participants 

who are the sole members of their family cluster) did not contribute to estimation of the random 

effects variances themselves, they did contribute to the estimation of the total variance, which 

allows the model to leverage the full ABCD Study® sample. 

 

After expanding the model to include the full sample, we tested the effect of an added random 

effect of twin status (i.e., “pregnancy ID”). We found evidence for a T effect in matrix reasoning, 

with a compensatory decrease in the heritability estimate when T was included in the model. 

This T effect could include any components of the environment that are shared between twins 

but not among siblings. Examples could include shared uterine environment and prenatal 
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factors, such as gestational age; or the fact that twins experience the same environmental 

events at exactly the same time. To illustrate this point, a pair of twins might experience a global 

pandemic at exactly the same age, causing them to experience any effects of the event in 

similar ways. In contrast, if two siblings are different ages at the time of the event, it might have 

a different age-dependent effect on each of them (despite the fact that it is occurring as part of 

their “common environment”). Future work could further investigate additional effects, such as 

gestational age or specific age × environment interactions, to tease apart the multifactorial 

influences that relate to shared twin environments.  

 

We next used the complete sample across multiple timepoints, for a total of over 13,000 

observations (Figure 5). Adding the second timepoint led to a substantial decrease in the 

heritability estimate for height, with a similar increase in the E component for height. This may 

be due to several factors, including possible nonadditive genetic effects (e.g., Silventoinen et al. 

2008). Conversely, many of the cognitive phenotypes (with the exception of the Little Man Task 

and the RAVLT) saw an increase in heritability estimates when modeled across multiple 

timepoints (Figure 5E). It is possible that this phenomenon is related to the well documented 

increase in apparent heritability of cognitive traits with age (Davis et al. 2009; Haworth et al. 

2010), which may be due in part to the gene × environment correlation (Loughnan et al. 2019). 

The estimation of the S variance component varied by phenotype; height had a negligible S 

component, which may be due to the large amount of variance that was already explained by 

genetic and environmental effects. On the other hand, the NIH Toolbox tasks each had a 

variance component explained by subject-level variance, indicating that variance in these 

phenotypes may be relatively more stable for a given participant over time. For these tasks, 

including S in our model allows for better explanation of variance that would otherwise be part of 

the E component. The Little Man Task and the RAVLT did not exhibit subject-specific variance, 
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which may be related to higher noise in these measures as evidenced by the large E 

components for both tasks (.79 and .97 in Model 6, respectively).  

 

Of all the models described in this paper, the model including A, C, T, S, and E, fit across the 

full ABCD Study® sample and using all timepoints (Model 6), represented the “most complete” 

model. However, we employed a series of model comparisons to assess the effect of various 

study design considerations on the random effects variances. First, we examined the change in 

our model results when using only “assigned” genetic relatedness, to approximate a study 

design in which genetic data are not readily available. We found that, as expected, the model fit 

was worse in this model, but the parameter estimates were generally similar. Of note, we 

deliberately used the twin sub-sample data to “assign” relatedness values, meaning that for 

these analyses the twins recruited through the general population were assumed to have a 

relatedness value of 0.5. Despite this deliberate attempt to increase the error in our model, 

estimates remained relatively similar, with inflated estimates for the T variance component that 

seemed to compensate for the induced error in relatedness values. These results indicate that 

when using assigned relatedness, variance that would have been attributed to increased 

genetic relatedness is “shifted” into the T component.  

 

We next tested whether including additional covariates in our pre-residualization step would 

lead to a change in random effects estimates. In general, residualizing for sociodemographic 

and genetic ancestry covariates led to a decrease in the total residual variance as well as the 

common environment (C) parameter estimate. This was expected, as adjusting for additional 

covariates led to a better model fit; the improved model fit is accompanied by a smaller amount 

of residual variance that is not accounted for by the fixed effects, and any variance that would 

have been partitioned into C was already attributed to the covariates such as household income 

or parental education. Notably, adjusting for genetic principal components is an attempt to 
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include potential influences of population stratification in the model, and does not have an effect 

on the estimation of genetic relatedness. Due to the nesting structure of the random effects, the 

FEMA package only uses the pairwise genetic similarity between individuals within the same 

family. This is in contrast to the genetic principal components, which are used to estimate a 

fixed effect across the whole sample that may represent population stratification and other 

effects of genetic ancestry.  

 

Finally, we tested whether omitting the twin sub-sample led to a difference in model results. 

Overall, the model estimates only slightly changed for most phenotypes, with the exception of 

the picture sequence memory task which saw a decrease of 0.19 in its heritability estimate. The 

confidence intervals generated by the two models were similar, suggesting that a large study 

sample with many siblings is capable of generating model estimates that are similar to those in 

a twin-enriched sample. Due to the difference in recruitment strategy between the twin sub-

sample and the general population sample (recruited primarily through schools; Garavan et al. 

2018), it is possible that these groups differed in ways that could lead to different heritability 

estimates.  

 

The results from this study should be considered in light of certain limitations. Generally, LMEs 

are used to partition the variance in a phenotype of interest into components modeled by 

random effects; however, models are often built with the assumption that the random effects are 

mutually independent and follow the normal distributions with mean 0 (Neale and Maes 2004; 

Wang et al. 2011). Additionally, LMEs represent a “top-down” heritability estimation method that 

can be biased by several factors including gene–environment correlations, selection, non-

random mating, and inbreeding (Zaitlen and Kraft 2012; Zhang and Sun 2022). Furthermore, we 

did not explore non-additive genetic effects, which can attenuate bias of heritability estimates 
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(Wang et al. 2011); nor did we model any gene × environment interactions, which are likely to 

exist for some of the phenotypes of interest (Loughnan et al. 2019).  

 

This work describes many of the modeling techniques available for researchers interested in 

applying the ACE model and its extensions to a large sample with high relatedness such as the 

ABCD Study® sample. Notably, the FEMA package provides a tool for mass univariate 

estimation of LMEs, and its current implementation does not allow for bivariate mixed models. 

SEM and other implementations of bivariate linear mixed models may provide an avenue to 

address questions involving genetic and environmental correlations between variables. Bivariate 

models may provide some insight into questions of innovation, i.e., whether the set of genes 

that influence a given phenotype changes over time. 

 

The last several years have seen the development of several new techniques that can be used 

to model additional relationships, such as random effect × time interaction (He et al. 2016), 

random effect × covariate interaction (Arbet et al. 2020), covariance among random effects 

(Zhou et al. 2020; Dolan et al. 2021), and allowing random effects estimates to vary as a 

function of the phenotype (Azzolini et al. 2022). The sparse clustering design employed in the 

FEMA package leads to improved computational efficiency compared to other LME 

implementation software (Fan et al. 2021); future work will investigate the use of FEMA to 

estimate random effects estimates in more high-dimensional datasets, such as the brain 

imaging data present in the ABCD Study®, and compare with other computationally efficient 

implementations of the ACE Model such as Accelerated Permutation Inference for the ACE 

Model (APACE; Chen et al. 2019) and positive semidefinite ACE (PSD-ACE; Risk and Zhu 

2021). More broadly, as stated by (Zyphur et al. 2013), “top down” heritability estimates should 

serve as just one piece of the puzzle connecting genes and the environment, where current 
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techniques at the molecular and single-gene level may be useful in filling in the gaps from the 

bottom up. 
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Table 1 
 

 Full sample Twin sub-sample 

N 8239 924 

Age (months; mean (SD)) 118.94 (7.55) 121.79 (6.61) 

Parental Education (%) 

  < HS Diploma 320 (3.9) 18 (1.9) 

  Bachelor 2196 (26.7) 308 (33.3) 

  HS Diploma/GED 680 (8.3) 38 (4.1) 

  Post Graduate Degree 2892 (35.1) 314 (34.0) 

  Some College 2151 (26.1) 246 (26.6) 

Household Income (%) 

  < $50,000 2404 (29.2) 170 (18.4) 

  >= $100,000 3461 (42.0) 487 (52.7) 

  >= $50,000 & < $100,000 2374 (28.8) 267 (28.9) 

 
Table 1. Sample information at baseline. All samples include complete cases only. 
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Table 2 
 

Model Sample Timepoints Nobs GRM values Covariates Random 
Effects 

Model 1 Twin Baseline 924 Assigned Age and sex  A, C, E 

Model 2 Twin Baseline 924 Measured Age and sex  A, C, E 

Model 3 Full Baseline 8242 Measured Age and sex  A, C, E 

Model 4 Full Baseline 8242 Measured Age and sex  A, C, T, E 

Model 5 Full Baseline and Y2 13984 Measured Age and sex  A, C, T, E 

Model 6 Full Baseline and Y2 13984 Measured Age and sex  A, C, T, S, E 

Model 7 Full Baseline 8242 Assigned Age and sex  A, C, E 

Model 8 Full Baseline 8242 Assigned Age and sex  A, C, T, E 

Model 9 Full Baseline and Y2 13984 Assigned Age and sex  A, C, T, S, E 

Model 10 Twin Baseline 924 Assigned All covariates A, C, E 

Model 11 Twin Baseline 924 Measured All covariates A, C, E 

Model 12 Full Baseline 8242 Measured All covariates A, C, E 

Model 13 Full Baseline 8242 Measured All covariates A, C, T, E 

Model 14 Full Baseline and Y2 13984 Measured All covariates A, C, T, S, E 

Model 15 Full Baseline and Y2 13984 Measured Age and sex A, C, S, E 

Model 16 Full minus 
twins Baseline and Y2 11835 Measured Age and sex A, C, S, E 

 
Table 2. List of model specifications. GRM = genetic relatedness matrix; Nobs = number of 
observations; Y2 = year 2 follow-up visit. All models pre-residualized for age and sex; when 
specified, “all covariates” includes these as well as site, parental education, household income, 
and first ten genetic principal components. Random effects: A = additive genetic relatedness, C 
= common environment, S = subject, T = twin status (shared pregnancy ID), E = unexplained 
variance / error. 
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Figure Captions 
Figure 1. ACE Model in FEMA versus OpenMx. A) Comparison of model estimates. Horizontal 
error bars represent confidence interval calculated in FEMA; vertical error bars represent 
confidence intervals calculated in OpenMx. B) Difference in Akaike Information Criterion in 
FEMA versus in OpenMx. C) Random effects estimates from FEMA. 
 
Figure 2. ACE Model using assigned versus measured GRM. A) Comparison of model 
estimates. Horizontal error bars represent confidence interval calculated in Model 2; vertical 
error bars represent confidence intervals calculated in Model 1. B) Difference in Akaike 
Information Criterion in Model 2 versus in Model 1. C) Random effects estimates from Model 2. 
 
Figure 3. ACE Model using full baseline sample compared to twin sub-sample. A) Comparison 
of model estimates. Horizontal error bars represent confidence interval calculated in Model 3; 
vertical error bars represent confidence intervals calculated in Model 2. B) Random effects 
estimates from Model 3. 
 
Figure 4. ACE Model versus ACTE model using full baseline sample. A) Comparison of model 
estimates. Horizontal error bars represent confidence interval calculated in Model 4; vertical 
error bars represent confidence intervals calculated in Model 3. B) Difference in Akaike 
Information Criterion in Model 4 versus in Model 3. C) Random effects estimates from Model 4. 
 
Figure 5. ACTE and ACTSE Model in baseline versus longitudinal sample. A) Comparison of 
estimates from Model 5 versus Model 4. Horizontal error bars represent confidence interval 
calculated in Model 5; vertical error bars represent confidence intervals calculated in Model 4. 
B) Random effects estimates from Model 5. C) Comparison of estimates from Model 6 versus 
Model 5. Horizontal error bars represent confidence interval calculated in Model 6; vertical error 
bars represent confidence intervals calculated in Model 5. D) Difference in Akaike Information 
Criterion in Model 6 versus in Model 5. C) Random effects estimates from Model 6. 
 
Figure 6. ACTSE model using assigned versus measured genetic relatedness. A) Comparison 
of estimates from Model 9 versus Model 6. Horizontal error bars represent confidence interval 
calculated in Model 9; vertical error bars represent confidence intervals calculated in Model 6. 
B) Difference in Akaike Information Criterion in Model 9 versus in Model 6. C) Random effects 
estimates from Model 9. 
 
Figure 7. ACE model in baseline twin sample, residualizing for all covariates versus age and 
sex only. A) Comparison of estimates from Model 10 versus Model 1. Horizontal error bars 
represent confidence interval calculated in Model 10; vertical error bars represent confidence 
intervals calculated in Model 1. B) Difference in total residual variance in Model 10 versus in 
Model 1. C) Random effects estimates from Model 10. 
 
Figure 8. ACSE model in longitudinal sample, in a sample that excludes twin registry 
participants. Comparison model is equivalent but includes the full sample inclusive of twin 
registry participants. A) Comparison of estimates from Model 16 versus Model 15. Horizontal 
error bars represent confidence interval calculated in Model 16; vertical error bars represent 
confidence intervals calculated in Model 15. B) Difference in total residual variance in Model 16 
versus in Model 15. C) Random effects estimates from Model 16. 
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