

1                    **Chronic Jetlag Accelerates Pancreatic Neoplasia in Conditional Kras-Mutant Mice**

2                    **Authors:** Patrick B Schwartz, MD<sup>1</sup>, Morgan T Walcheck, PhD<sup>1</sup>, Manabu Nukaya, PhD<sup>1</sup>, Derek M  
3                    Pavelec, PhD<sup>2</sup>, Kristina A Matkowskyj<sup>3,4,5</sup>, and Sean M Ronnekleiv-Kelly, MD<sup>1,5</sup>

4                    **Affiliations:**

5                    <sup>1</sup>Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and  
6                    Public Health, Madison, WI

7                    <sup>2</sup>Biotechnology Center, University of Wisconsin, Madison, WI

8                    <sup>3</sup>Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and  
9                    Public Health, Madison, Wisconsin.

10                    <sup>4</sup>William S Middleton Memorial Veterans Hospital, Madison, Wisconsin.

11                    <sup>5</sup>University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and  
12                    Public Health, Madison, WI

13                    **Corresponding Author:** Sean M Ronnekleiv-Kelly, MD ([ronnekleiv-kelly@surgery.wisc.edu](mailto:ronnekleiv-kelly@surgery.wisc.edu))

14                    **Address:** 600 Highland Ave. Bx 7375, K3/705 CSC, Madison, WI, 53792

15                    **Phone:** (608) 262-2025 **Fax:** (608) 252-0913

16                    **Running Title:** Chronic Jetlag Accelerates Pancreatic Neoplasia

17

18

19

20

21                    **Disclosure:** The authors declare no conflict of interest.

22 **Abstract:**

23 Misalignment of the circadian clock compared to environmental cues causes circadian desynchrony,  
24 which is pervasive in humans. Clock misalignment can lead to various pathologies including obesity and  
25 diabetes, both of which are associated with pancreatic ductal adenocarcinoma - a devastating cancer with  
26 an 80% five-year mortality rate. Although circadian desynchrony is associated with an increased risk of  
27 several solid-organ cancers, the correlation between clock misalignment and pancreas cancer is unclear.  
28 Using a chronic jetlag model, we investigated the impact of clock misalignment on pancreas cancer  
29 initiation in mice harboring a pancreas-specific activated *Kras* mutation. We found that chronic jetlag  
30 accelerated the development of pancreatic cancer precursor lesions, with a concomitant increase in  
31 precursor lesion grade. Cell-autonomous knock-out of the clock in pancreatic epithelial cells of *Kras*-  
32 mutant mice demonstrated no acceleration of precursor lesion formation, indicating non-cell-autonomous  
33 clock dysfunction was responsible for the expedited tumor development. Therefore, we applied single-cell  
34 RNA sequencing over time and identified fibroblasts as the cell population manifesting the greatest clock-  
35 dependent changes, with enrichment of specific cancer-associated fibroblast pathways due to circadian  
36 misalignment. Collectively, these results suggest fibroblasts as the putative target of chronic jetlag-  
37 induced accelerated pancreas cancer initiation.

38

39

40

41

42

43

44 **Keywords:** Circadian, Pancreas, Jetlag, Pancreatic Ductal Adenocarcinoma, Misalignment

45 **Introduction:**

46 Circadian clock proteins coordinate daily biological rhythms with an oscillation of 24 hours (McIntosh et  
47 al. 2010). Control from the central clock in the hypothalamus assimilates environmental cues (e.g.  
48 day/night cycles) to modulate peripheral organ rhythmic expression of core circadian genes and  
49 behavioral patterns (e.g. sleep/wake cycle) (McIntosh et al. 2010). In addition to central control, nearly all  
50 cells have an autonomous circadian clock based on transcriptional and translational feedback mechanisms  
51 of core clock genes (CCGs) (Lee et al. 2001; Preitner et al. 2002; Sato et al. 2004; Takahashi 2017).  
52 Collectively, the CCGs of the central and peripheral clocks orchestrate the transcription of circadian  
53 output genes, also known as clock-controlled genes (Takahashi 2017; Cox and Takahashi 2019). The  
54 central and peripheral clocks in mammals (and other organisms) have evolved to anticipate environmental  
55 changes that occur over the 24-hr day/night cycle, and in doing so, appropriately sequence complex  
56 internal processes to align with external cues (Takahashi 2017). For instance, in humans, energy intake,  
57 physical activity, and cognitive activities are anticipated to occur during the day while rest and sleep are  
58 expected to occur at night (Pittendrigh 1993; Wright et al. 2013). Consequently, this network of circadian  
59 control coordinates the optimal timing of critical cell and organ processes such as metabolism, cell  
60 division, apoptosis, and immune function (Matsuo et al. 2003; Bass and Takahashi 2010; Lee and Sancar  
61 2011; Scheiermann et al. 2013).

62 Notably, the internal clock can be adjusted, or re-trained, based on changes to environmental zeitgebers  
63 or ‘time-givers’, such as through alteration of the day/night cycle (Wright et al. 2013). However,  
64 persistent misalignment between environmental cues compared to the internal clocks can result in  
65 circadian desynchrony with associated aberrant gene signaling (Kettner et al. 2016; West et al. 2017).  
66 Unfortunately, this type of clock dysfunction (misalignment or circadian desynchrony) is pervasive in  
67 humans and this condition affects a substantial proportion of the human population, particularly shift  
68 workers, whose clock timing can be altered dramatically compared to environmental zeitgebers by work  
69 schedule requirements (Bass and Lazar 2016). Further, this environmental or behavior-induced

70 desynchrony can have profound implications for human health including the promotion of various  
71 pathologies such as the metabolic syndromes of obesity and diabetes (Arble et al. 2009; Roenneberg et al.  
72 2012; Perelis et al. 2016). There is also a strong correlation between circadian clock dysfunction and the  
73 risk of developing several different solid organ cancers, including lung cancer, liver cancer, and colon  
74 cancer (Schernhammer et al. 2003; Papagiannakopoulos et al. 2016; Kettner et al. 2016). Meanwhile, a  
75 history of shiftwork has been shown to increase the risk of pancreatic ductal adenocarcinoma (PDAC) in  
76 men over 2-fold (Parent et al. 2012); concordantly, obesity and diabetes are both risk factors for the  
77 development of PDAC (Schernhammer et al. 2003; Marcheva et al. 2010; Kettner et al. 2016). Despite  
78 this converging evidence and the substantive data linking the circadian clock to pancreas-specific disease  
79 processes (Marcheva et al. 2010; Perelis et al. 2015), the correlation between circadian desynchrony and  
80 the risk of developing PDAC remains unclear.

81 We sought to establish the connection between clock misalignment – a process that is highly prevalent in  
82 humans – and PDAC because this would have important implications for understanding cancer  
83 pathogenesis and risk mitigation in this deadly disease. Risk factor reduction leading to cancer prevention  
84 is particularly relevant in this highly lethal malignancy because few people survive after cancer diagnosis:  
85 of the 60,430 people estimated to be diagnosed in 2021, approximately 48,220 (~80%) will die of their  
86 disease (Siegel et al. 2021). As a foundation for uncovering the link between circadian clock dysfunction  
87 and the development of PDAC, we investigated whether circadian misalignment impacted tumor  
88 initiation within the pancreas. We used *LSL-Kras*<sup>G12D/+</sup>; *Pdx1-Cre* mice (KC) that harbor a *Kras* mutation  
89 in pancreatic acinar and ductal cells (Hingorani et al. 2003). KC mice develop the full spectrum of  
90 neoplastic changes including acinar-to-ductal metaplasia (earliest lesion), pancreatic intra-epithelial  
91 neoplasia 1 (PanIN-1), higher grade PanIN lesions (PanIN-2, -3), and ultimately PDAC (Hingorani et al.  
92 2003). We implemented a well-characterized model of chronic jetlag (CJ) that is known to cause  
93 environmental-induced misalignment and phase-shift of the clock (Filipski et al. 2004;  
94 Papagiannakopoulos et al. 2016; Schwartz et al. 2021) and is meant to mimic the environmental and

95 behavioral misalignment experienced by humans (Vetter 2020). The abrupt change in timing of the  
96 light/dark cycle with CJ causes a period of desynchrony, with differences in the rate of re-entrainment by  
97 internal clocks or behavior (Yamazaki et al. 2000; West and Bechtold 2015). Previously, we have found  
98 that behavioral re-entrainment occurs much more rapidly than re-entrainment of the pancreatic clock  
99 (Schwartz et al. 2021). Moreover, this type of protocol (CJ) has been shown to promote the growth of  
100 several other cancers, including osteosarcoma, and hepatocellular carcinoma in mice (Filipski et al. 2004;  
101 Filipski et al. 2009; Kettner et al. 2016).

102 In the current study, we hypothesized that circadian clock desynchrony through CJ would accelerate the  
103 initiation of PanIN-1 and progression to higher-grade PanINs or PDAC. We found that the pancreata of  
104 KC mice subjected to CJ developed increased fibroinflammatory infiltrate and neoplastic lesion formation  
105 (i.e. PanINs) compared to KC mice under standard conditions. To understand whether cell-autonomous  
106 clock dysfunction was responsible for the accelerated PanIN development, we generated KC mice with an  
107 abolished clock (*Bmal1* knock-out) in the pancreatic ductal and acinar cells (cellular origin of PDAC).  
108 These mice did not replicate the phenotype observed in the CJ group of KC mice, indicating a non-cell-  
109 autonomous role of clock dysfunction that is facilitating the PanIN progression. To investigate further, we  
110 used single-cell RNA sequencing (scRNA-seq) and identified cancer-associated fibroblasts (CAFs) as the  
111 putative target of the CJ-induced phenotype. This work serves as a foundation for understanding the link  
112 between circadian misalignment through CJ and the acceleration of PDAC development.

113 **Materials and Methods:**

114 *Mouse Care and Husbandry*

115 All animal studies were conducted according to an approved protocol (M005959) by the University of  
116 Wisconsin School of Medicine and Public Health (UW SMPH) Institutional Animal Care and Use  
117 Committee (IACUC). Male and female mice were housed in an Assessment and Accreditation of  
118 Laboratory Animal Care (AALAC) accredited selective pathogen-free facility (UW Medical Sciences

119 Center) on corncob bedding with chow diet (Mouse diet 9F 5020; PMI Nutrition International) and water  
120 *ad libitum*.

121 Conditional *LSL-Kras*<sup>G12D/+</sup> (K) mice (B6.129S4-Kras tm4TyJ/J (#008179)) were bred with mice  
122 expressing Cre-Recombinase driven by the *Pdx1* promoter (C) (B6.FVB-Tg(Pdx1-cre)6Tuv/J) (#014647))  
123 to generate *LSL-Kras*<sup>G12D/+</sup>, *Pdx1-Cre* (KC) mice (Hingorani et al. 2003). The KC mouse has been well  
124 characterized as a pancreas pre-cancer model (Hingorani et al. 2003). To evaluate the effect of loss of  
125 clock function on KC mouse pathology the conditional *Bmal1*<sup>f/f</sup> mouse, kindly gifted by Professor  
126 Christopher Bradfield (University of Wisconsin-Madison, Madison, WI), was crossed with the KC mouse  
127 to generate the *Bmal1*<sup>f/f</sup>, *LSL-Kras*<sup>G12D/+</sup>; *Pdx1-Cre* (BKC) mouse model (Liu et al. 2014; Johnson et al.  
128 2014). To identify cell types targeted by *Pdx1-Cre* recombinase in the KC mouse model, the KC mouse  
129 was additionally crossed with the *LSL-tdTomato* reporter (Ai14) mouse (B6.Cg-  
130 Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J (#007914)) to produce the KCT mouse (*LSL-R26*<sup>CAG-tdTomato</sup>;  
131 *LSL-Kras*<sup>G12D/+</sup>; *Pdx1-Cre*). The presence of each allele, including activated *Kras*-mutation, was  
132 confirmed with genotyping PCR according to Jackson Laboratory's (Bar Harbor, ME) protocols as  
133 previously described (Liu et al. 2014; Walcheck et al. 2021). The K, C, and T mice were purchased from  
134 Jackson Laboratory.

135 *Chronic Jetlag Protocol*

136 Starting at 4-6 weeks of age, KC mice were subjected to either a normal circadian (standard lighting) 12-  
137 hour/12-hour light: dark (LD) cycle condition, or a chronic jetlag protocol (CJ) known to induce circadian  
138 desynchrony and mimic altered environmental exposure experienced by humans (Filipski et al. 2004;  
139 Papagiannakopoulos et al. 2016; Vetter 2020; Schwartz et al. 2021). CJ consisted of a 12-hour/12-hour  
140 LD cycle, phase-shifted forward 4 hours every 2-3 days. Mice were kept under their respective conditions  
141 until the study endpoint at 5 and 9 months of age.

142 *Histologic Analysis*

143 Mouse pancreatic tissue was fixed in 10% neutral buffered formalin for 48 hours and then stored in 70%  
144 ethanol until further processing. Tissue was processed, paraffin embedded, sectioned onto slides, and  
145 stained with hematoxylin and eosin (H&E) by the University of Wisconsin Carbone Cancer Center  
146 (UWCCC) Experimental Animal Pathology Laboratory (EAPL) Core. Each pancreas was sectioned at  
147 200  $\mu$ m steps for at least 6 slides. All slides processed were assessed for the presence of pancreas cancer  
148 precursor lesions (pancreatic intraepithelial neoplasia or PanIN) along with grading on a scale of 1-3 (1 =  
149 lowest grade, 2 = intermediate grade, and 3 = high grade) and/or pancreatic ductal adenocarcinoma  
150 (PDAC). This was performed by a blinded, board-certified, gastrointestinal pathologist (KAM) at 5  
151 months (n = 36 normal circadian [24 male and 12 female] vs n = 26 CJ [14 male and 12 female]) and 9  
152 months age (n = 33 normal circadian [19 male and 14 female] vs n = 39 CJ [23 male and 16 female]).  
153 Additional BKC mice (n = 24 [14 male and 10 female]) were assessed at 5 months. Categorical  
154 comparisons between groups were made with the Chi-squared or Fisher's Exact test as appropriate. KC  
155 mice develop fibroinflammatory infiltrate associated with adjacent PanINs and are collectively part of the  
156 pancreatic changes with neoplasm formation (Hingorani et al. 2003). Quantification of the total percent  
157 pancreas involvement by the fibroinflammatory infiltrate and PanINs (referred to collectively as  
158 FI/PanIN) was made by 3 separate reviewers, and differences were tested using Student's t-test between  
159 groups. For evaluation, two slides were selected from each pancreas comprising the largest area of  
160 available tissue. Values are presented as the mean with associated standard deviation (SD). Inter-rater  
161 reliability statistics were computed and the intraclass correlation coefficient is reported with associated  
162 95% confidence intervals.

163 *Immunohistochemistry*

164 KCT mouse pancreas samples were formalin-fixed, paraffin embedded, and sectioned by the EAPL Core  
165 facility. Immunohistochemistry (IHC) for red fluorescence protein (tdTomato) was also performed by  
166 EAPL. Sections were deparaffinized in xylenes and hydrated through graded alcohols to distilled water.  
167 Antigens were retrieved using citrate buffer pH 6.0 (10 mM Citric Acid and 0.05% tween 20).

168 Endogenous peroxidase was blocked with 0.3% H<sub>2</sub>O<sub>2</sub> and blocking of non-specific binding was  
169 performed using 10% goat serum. Sections were incubated with rabbit anti-RFP antibody (600-401-379,  
170 Rockland Inc, Pottstown, PA) (1:1600) followed by ImmPRESS goat anti-rabbit IgG (MP-7451, Vector  
171 Laboratories, Burlingame, CA). Detection was performed using the DAB substrate kit (8059S, Cell  
172 Signaling Technology, Danvers, MA). Samples were counterstained using Mayer's hematoxylin  
173 (MHS32, Millipore-Sigma, St. Louis, MO).

174 *scRNAseq Sample Preparation, Library Construction, and Sequencing*

175 Five- and 9-month-old normal circadian and CJ KC mice were sacrificed with cervical dislocation and the  
176 pancreas was rapidly dissected (< 60 seconds) and placed in cold PBS (Thermo Fisher Scientific,  
177 Waltham, MA). One male and female pancreas was pooled from each condition and time point after  
178 demonstration of no discernable sex-specific differences (Takele Assefa et al. 2020). Pancreas samples  
179 were minced until the tissue was < 1 mm in diameter, and then centrifuged at 900 RPM for 5 minutes to  
180 remove fat contamination. Samples were then incubated with 5 mL of Collagenase P (Sigma Aldrich, St.  
181 Louis, MO) in HBSS (Thermo Fisher Scientific) at 37° C for 15 minutes while being shaken at 100 RPM.  
182 Additionally, samples were manually agitated every 2-3 minutes. The digestion reaction was quenched  
183 with 10 mL R10 media. Samples were then centrifuged at 900 RPM and washed twice with 10 mL of  
184 R10. Samples were then strained in a gradient fashion using 500 µm, 100 µm, and 40 µm strainers.  
185 Samples were then live/dead sorted into single-cell populations and were transferred to the University of  
186 Wisconsin Gene Expression Center (GEC) for Library Preparation.

187 In brief, libraries were constructed according to the Chromium NextGEM Single Cell 3' Reagent Kit v3.1  
188 User Guide, Rev.D (10x Genomics, Pleasanton, CA). Single-cell suspension cell concentration and  
189 viability were quantified on the Countess II (Thermo Fisher Scientific) using 0.4% Trypan Blue  
190 (Invitrogen, Carlsbad, CA). Single-cell droplet encapsulation was performed using the Single Cell G Chip  
191 and the 10x Genomics Chromium Controller. Following the completion of the Chromium run, the Gel  
192 Beads in Emulsion (GEMs) were transferred to emulsion-safe strip tubes for GEM-RT using an

193 Eppendorf MasterCycler Pro thermocycler (Eppendorf, Hamburg, Germany). Following reverse  
194 transcription (RT), GEMs were broken, and the pooled single-cell cDNA was collected in Recovery  
195 Agent, purified using DynaBeads MyOne Silane beads (Thermo Fisher Scientific), and amplified with the  
196 appropriate number of PCR cycles based on the number of cells targeted for recovery. Post-cDNA  
197 amplified product was purified using SPRIselect (Beckman Coulter, Brea, CA) and quantified on a  
198 Bioanalyzer 2100 (Agilent, Santa Clara, CA) using the High Sensitivity DNA kit. Adapters were then  
199 added to the libraries after fragmentation, end repair, A-tailing, and double-sided size selection using  
200 SPRIselect. Following adapter ligation, libraries were cleaned up using SPRIselect and sample-specific  
201 indexes (Chromium i7 Multiplex Kit, 10x Genomics) were added by sample index PCR using the  
202 appropriate number of PCR cycles based on the cDNA yield calculated by the Bioanalyzer quantification.  
203 After sample index PCR, samples were double-size selected using SPRIselect and quantified by the Qubit  
204 High Sensitivity DNA Kit (Thermo Fisher Scientific). Libraries were sequenced on a NovaSeq6000  
205 (Illumina, San Diego, CA).

206 *scRNAseq Data Analysis*

207 Single-cell RNAseq data were analyzed by the UW Bioinformatics Resource Center. Data were  
208 demultiplexed using the Cell Ranger Single Cell Software Suite, mkfastq command wrapped around  
209 Illumina's bcl2fastq. The MiSeq balancing run was quality-controlled using calculations based on UMI-  
210 tools (Smith et al. 2017). Sample libraries were balanced for the number of estimated reads per cell and  
211 run on an Illumina NovaSeq system. Cell Ranger software was then used to perform demultiplexing,  
212 alignment, filtering, barcode counting, UMI counting, and gene expression estimation for each sample  
213 according to the 10x Genomics documentation (<https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger>). The gene expression estimates from each sample  
215 were then aggregated using Cellranger (cellranger aggr) to compare experimental groups with normalized  
216 sequencing-depth and expression data.

217 Gene expression data was then processed using the Seurat version 4 pipeline for data integration (Hao et  
218 al. 2021). Data was loaded into Seurat. Low quality (<200 features or >20% mitochondrial gene content)  
219 and doublets were removed. Cells expressing more than 1% hemoglobin gene content were filtered out.  
220 The normal circadian and CJ KC data were merged and integrated using the SCTtransform v2 wrapper  
221 with 3000 unique features (Choudhary and Satija 2022). SCTtransform allows for normalization and better  
222 batch correction based on a regularized negative binomial regression. The regression additionally allowed  
223 for correction of the cell cycle effect and mitochondrial gene content (Nestorowa et al. 2016). A principal  
224 component analysis (PCA) was performed with the number of dimensions (principal components)  
225 selected based on an elbow plot. Data were visualized using the Uniform Manifold Approximation and  
226 Projection for Dimension Reduction (UMAP) (McInnes et al. 2020). Cell identities were called based on  
227 the expression of known markers for each cell type and scored using the ScType package to cross-validate  
228 identities following the default settings for SCT-transformed data in the provided vignette (Ianevski et al.  
229 2022). Differential expression between conditions and time points was performed between clusters or  
230 conditions in Seurat using the MAST test based on a log fold change threshold of 0.25 and a false  
231 discovery rate (FDR) corrected  $p$  value of  $p < 0.05$ . The MAST test within Seurat is based on the MAST  
232 package, which is specifically designed to handle differential expression in scRNA-seq data and utilizes a  
233 hurdle model (Finak et al. 2015). Gene Set Enrichment Analysis (GSEA) was conducted with the fgsea  
234 package leveraged against the oncogenic signature gene set (c6.all.v7.5.1.symbols) and biologic process  
235 subset of gene ontology (GO BP) (c5.go.v7.5.1.symbols) (Sergushichev 2016). Pseudotime trajectory  
236 analysis was performed with the Monocle 3 package (Trapnell et al. 2014). Genes correlated with  
237 pseudotime progression were computed using the Moran's I test and those genes with an FDR  $p < 0.05$   
238 were considered significant. All scRNaseq data is publicly available through gene expression omnibus  
239 (GEO) (Accession number: GSE209629). All analyses in this manuscript were conducted in R version  
240 4.2.0 (Vienna, Austria) or GraphPad Prism version 8.3.1 (Dotmatics, Boston, MA).

241 **Results:**

242 *Chronic Jetlag Promotes Pancreatic Tumor Initiation*

243 To test the hypothesis that circadian misalignment by chronic jetlag (CJ) accelerates tumor initiation (i.e.  
244 PanIN or pre-cancerous lesion formation) and development of PDAC, we elected to utilize the *LSL-*  
245 *Kras*<sup>G12D/+</sup>, *Pdx1-Cre* (KC) mouse model – a well-characterized PDAC development model – and  
246 assessed the burden of neoplastic lesions (i.e. PanIN) and PDAC (Hingorani et al. 2003). We have  
247 previously shown that the CJ protocol results in circadian misalignment with phase-shift of core clock  
248 gene (CCG) expression and alteration of diurnally expressed genes in the pancreas compared to mice  
249 under normal circadian (standard lighting) conditions (Schwartz et al. 2021). Furthermore, we have  
250 demonstrated that after normalizing the time of lights on/lights off (i.e. light/dark cycle) in CJ mice,  
251 complete re-entrainment of the pancreatic clock does not occur out to day 10 post-normalization; this is in  
252 contrast to behavioral re-entrainment which occurred by 3 days (Schwartz et al. 2021). Therefore, the CJ  
253 protocol is a robust protocol to evaluate the impact of circadian misalignment on the tumor initiation and  
254 progression of pancreatic pre-cancerous lesions.

255 We first evaluated KC mice at age 5 months, because existing literature demonstrates that 5-month KC  
256 mice develop neoplastic changes consisting of early PanINs (i.e. PanIN-1) but most of the pancreas  
257 remains normal (Hingorani et al. 2003). Therefore, evaluating the extent of pancreas involvement by  
258 PanIN at this time point (not incidence) should allow for the detection of any acceleration in tumor  
259 initiation due to circadian misalignment (CJ). All sections were scored for their degree of pancreatic  
260 involvement by neoplastic lesions (e.g. PanINs) and the associated fibroinflammatory infiltrate, hereafter  
261 referred to as FI/PanIN. This was calculated by determining the percent of the pancreas that was involved  
262 with FI/PanIN by 3 independent reviewers, and there was an excellent intraclass correlation coefficient of  
263 0.896 (95% CI 0.868-0.919;  $p < 0.01$ ). We found that KC mice that were exposed to CJ ( $n = 26$ )  
264 displayed an approximate 2-fold mean increase ( $\pm$  standard deviation [SD]) in FI/PanIN involvement of  
265 the pancreas at 5 months compared to KC mice under standard lighting conditions ( $n = 36$ ) ( $22.47\% \pm$   
266  $19.08$  vs  $12.73\% \pm 12.08$ ;  $p = 0.027$ , **Figure 1**). There were no sex-specific differences at 5 months for

267 normal circadian (males  $13.14\% \pm 12.68$  vs. females  $11.93\% \pm 11.27$ ;  $p = 0.77$ ) or CJ KC mice (males  
268  $17.27\% \pm 12.94$  vs. females  $28.53\% \pm 23.55$ ;  $p = 0.16$ ).

269 Due to the expected progression of FI/PanIN at 9 months, the extent becomes less relevant (Hingorani et  
270 al. 2003). Instead, by 9 months, the incidence of higher grade PanINs (i.e. PanIN-2 and PanIN-3) and  
271 development of PDAC better reflects the progression of pre-cancerous lesions into cancer. This is because  
272 i) not all PanIN-1s progress to higher-grade lesions, ii) PanIN-2,-3, and PDAC represent tumor  
273 progression, and iii) KC mice are expected to develop a significant incidence of PanIN-2, -3, and PDAC  
274 with increasing age (Hingorani et al. 2003). In contrast, higher-grade lesions are rarely observed by  
275 approximately 5 months of age (Hingorani et al. 2003). Concordantly, we found that KC mice under  
276 normal circadian conditions exhibited almost exclusively PanIN-1, with only 5.6% ( $n = 2/36$ )  
277 demonstrating a PanIN-2 lesion at age 5 months; no 5-month KC mice under normal conditions  
278 developed PanIN-3 or PDAC (**Figure 2A/C**). Interestingly, although not significant, 7.7% ( $n = 2/26$ ) of  
279 KC mice subjected to CJ developed PanIN-2, and one mouse developed dedifferentiated PDAC which  
280 had replaced the entirety of the pancreatic parenchyma (**Figure 2A/C**).

281 As expected, the incidence of advanced lesions increased by 9 months of age in KC mice under normal  
282 circadian conditions to 3% ( $n = 1/33$ ) harboring PanIN-2, 6.1% ( $n = 2/33$ ) developing PanIN-3, and  
283 15.2% ( $n = 5/33$ ) of mice progressing to PDAC (**Figure 2B/C**). Notably, although the incidence of  
284 PanIN-3 (10.3% [ $n = 4/39$ ]) and PDAC (10.3% [ $n = 4/39$ ]) was similar between CJ and normal circadian  
285 KC mice at 9 months, there was a significant increase in PanIN-2 formation in KC mice due to CJ (23.1%  
286 [ $n = 9/39$ ] vs 3% [ $n = 1/33$ ],  $p = 0.02$ ) (**Figure 2B-E**). There were no sex-specific differences in PanIN-2  
287 incidence for normal circadian (male 0/19 (0%) vs. female 1/14 (7.1%);  $p = 0.42$ ) and CJ mice (male 4/23  
288 (17.4%) vs. female 5/16 (31.2%);  $p = 0.44$ ). Collectively, this data demonstrates that circadian  
289 desynchrony promoted by CJ in KC mice caused accelerated development of FI/PanIN at 5 months  
290 leading to an increased incidence of higher grade PanINs (i.e. PanIN-2) by 9 months, and these findings

291 were independent of sex. This strongly supports the assertion that circadian misalignment (desynchrony)  
292 facilitates tumor initiation and progression of the neoplastic PanIN lesions.

293 *Pancreatic Clock Gene Deletion Abrogated Tumor Initiation*

294 Different cell populations within the pancreas can lead to tumor development. For instance, islet cells can  
295 transform into neuroendocrine tumors (Zhang et al. 2013; Li and Xie 2022), whereas acinar-to-ductal  
296 metaplasia is the initiating process in PanIN formation (and consequently PDAC) (Chuvin et al. 2017).  
297 Therefore, we hypothesized that misalignment of the clock within acinar cells was responsible for the  
298 accelerated PanIN phenotype seen in CJ KC mice. In turn, we employed a cell-autonomous *Bmal1* knock-  
299 out model to test whether circadian disruption in acinar cells facilitates tumor initiation and progression of  
300 the pancreas cancer precursor lesions. In support of this hypothesis, previous studies in hepatocellular  
301 carcinoma (HCC) have revealed a concordant phenotype between CJ and cell-autonomous clock  
302 disruption (*Bmal1* knock-out) in mice predisposed to develop HCC (Kettner et al. 2016). We crossed the  
303 KC mouse with a mouse harboring a conditional deletion of the core clock gene *Bmal1* to produce  
304 *Bmal1*<sup>fx/fx</sup>; *LSL-Kras*<sup>G12D/+</sup>; *Pdx1-Cre* (BKC) mice, which possess *Bmal1* deletion in cells concomitantly  
305 expressing *Pdx1* and the *Kras*<sup>G12D</sup> mutation (Johnson et al. 2014). BMAL1 is a central transcriptional  
306 regulator of the clock and is therefore essential for clock functionality (Bunger et al. 2000). We evaluated  
307 the degree of FI/PanIN in BKC mice under standard lighting conditions at 5 months and, contrary to our  
308 hypothesis, we found that cell-autonomous clock disruption caused resistance to FI/PanIN development  
309 (**Figure 3A-D**). Compared to normal circadian KC mice, BKC mice had scant development of FI/PanIN  
310 ( $12.73\% \pm 12.08$  (KC) vs  $1.59\% \pm 0.65$  (BKC);  $p < 0.01$ ), with essentially histologically normal pancreas,  
311 and no mice exhibited a higher-grade lesion than PanIN-1 (**Figure 3A-D**). Additionally, this suppressed  
312 PanIN development in BKC mice was not sex-dependent (male  $1.64\% \pm 0.74$  vs. female  $1.52\% \pm 0.53$ ;  $p$   
313  $=0.65$ ).

314 The observed results with cell-autonomous clock disruption were discordant with our expectations and  
315 demonstrated that *Bmal1* knock-out in the targeted cells did not recapitulate the accelerated PanIN

316 phenotype seen with KC mice under (global) CJ conditions. *Pdx1* is expressed early during pancreatic  
317 development and later to commit pancreatic progenitor cells to islets (Offield et al. 1996; Hingorani et al.  
318 2003). To understand which cell populations in BKC mice exhibited loss of BMAL1 (location of *Pdx1*  
319 expression), we crossed the KC mouse with the Ai14 ‘marker’ mouse that conditionally expresses  
320 tdTomato in the presence of *Pdx1*-driven Cre-recombinase (**Figure 3E-F**). This revealed tdTomato  
321 expression (*Kras* mutation and *Bmal1* deletion) in acinar cells, ductal cells, PanINs, and islet cells.  
322 Concomitantly, expression was absent in the fibroinflammatory infiltrate (fibroblasts, collagen, and  
323 immune cells) and blood vessels surrounding the PanINs. Thus, in mice predisposed to pancreas  
324 neoplasm formation, circadian disruption in acinar cells produced a different phenotype compared to CJ,  
325 suggesting a different cell population may be responsible for the observed accelerated PanIN formation  
326 and progression in CJ KC mice.

327 *Single-cell RNA Sequencing of KC Mice Recapitulates the Highly Heterogeneous Tumor*

328 *Microenvironment*

329 Prior work in the liver revealed that cell-autonomous knock-out of the clock in liver hepatocytes  
330 (Albumin-Cre; *Bmal1*<sup>fx/fx</sup>) drove a nearly identical phenotype compared to CJ mice (non-alcoholic fatty  
331 liver disease progressing to HCC) (Kettner et al. 2016). However, we found that in the pancreas of KC  
332 mice this was not evident. We expected that this was a consequence of non-cell autonomous changes to  
333 the circadian clock (i.e. not acinar cells or PanINs) – whether by loss of clock function or by  
334 misalignment – are responsible for accelerating the neoplastic progression. To examine further, we tested  
335 the hypothesis that misalignment of the clock in an alternative cell population caused the accelerated  
336 PanIN formation and progression; this was done by evaluating the expression of individual cells in the  
337 tumor microenvironment over time. We performed single-cell RNA sequencing (scRNAseq) from pooled  
338 pancreatic samples (1 male/female) from both normal circadian and CJ KC mice at 5 and 9 months  
339 (**Figure 4A/B**). Notably, male and female mice were pooled because we consistently demonstrated no  
340 sex-specific effect within either the normal circadian or the CJ group of KC mice at 5 months or 9

341 months. After filtering and dimensionality reduction, a total of 14 different heterogeneous cell types were  
342 annotated using the ScType package comprising 42,211 cells (**Figure 4A-B & Supplemental Data 1-2**)  
343 (Ianevski et al. 2022). These included acinar cells, several classes of immune cells, endothelial cells, and  
344 fibroblast populations.

345 We first began by subsetting the pancreatic epithelial cells, which should encompass both normal acinar  
346 and developing PanINs, and used pseudotime trajectory analysis to track cell-state changes that occurred  
347 from 5 to 9 months. The expectation was that this population would gain signatures of neoplastic  
348 transformation over time, given the loss of normal acinar cell density and increase in PanINs from 5 to 9  
349 months. Pseudotime was set to zero at the point with the highest fraction of cells from the 5-month mice  
350 and allowed to progress (**Figure 4C**). Moran's I autocorrelation analysis was then performed to obtain  
351 genes that varied across the trajectory (**Supplemental Data 3**). Gene set enrichment analysis (GSEA) of  
352 the genes that correlated with pseudotime progression revealed an association with multiple *Kras*-driven  
353 cancer cell line signatures – corresponding precisely to the development of *Kras*-driven pancreatic  
354 neoplasia over time (**Figure 4D**). Therefore, we identified a collection of pancreatic epithelial cells that  
355 appeared to represent the transition from acinar cells to PanIN, coinciding with the increased PanIN  
356 formation seen in histopathology from 5 to 9 months. These findings established a foundation for the  
357 subsequent analysis of the clock to understand the effects of circadian misalignment (CJ) in the acinar cell  
358 and PanIN population, which would then help to support or refute our new hypothesis of a non-cell-  
359 autonomous cell population driving the accelerated PanIN phenotype.

360 *Chronic Jetlag Promotes Differential Clock Gene Expression in Fibroblasts*

361 We performed differential gene expression comparing the collective 5- and 9-month normal circadian and  
362 CJ mouse cells, and assessed for differences in the CCG and clock-associated genes (including *Tef*, *Hlf*,  
363 *Bhlhe40*, *Bhlhe41*, *Nfil3*, *Rorc*, *Dbp*, and *Ciart*) (**Supplemental Data 4**). We previously showed that CJ-  
364 induced clock misalignment in the pancreas caused differential expression of the core clock genes  
365 (Schwartz et al. 2021), and thus we expected populations of cells manifesting misalignment of the clock

366 between normal circadian and CJ conditions would similarly demonstrate CCG differential expression. In  
367 support of our new hypothesis, the acinar cell/PanIN clusters that we identified and confirmed from the  
368 pseudotime analysis did not exhibit differential expression of any of the CCGs or the clock-associated  
369 genes between clusters derived from normal circadian or CJ KC mice. We then evaluated the other  
370 clusters, and we found that endothelial cells, macrophages, memory CD4 T cells, and monocytes each had  
371 a single clock-associated gene differentially expressed (**Figure 5A**). Interestingly, fibroblasts were the  
372 only cell type that exhibited differential expression of CCGs and clock-associated genes as a result of  
373 circadian misalignment, including *Per2*, *Per3*, *Nrl1d2*, *Hlf*, *Tef*, and *Dbp* (**Figure 5A-B**). Fibroblasts are  
374 an integral part of the PDAC microenvironment and are known to exhibit circadian rhythmicity when  
375 compared to naïve fibroblasts (Parascandolo et al. 2020). The lack of other cell types exhibiting changes  
376 in clock-specific gene expression suggests fibroblasts may be the target of the CJ-induced circadian  
377 misalignment and accelerated neoplastic phenotype. Concordantly, fibroblasts were among the population  
378 of cells that were negative for *Pdx1* expression (in the KCT ‘marker’ mouse), corresponding to an intact  
379 clock function in the BKC mice.

380 *Fibroblasts Exhibit Time-Dependent Effects Secondary to Chronic Jetlag*

381 To further evaluate the fibroblasts within our dataset, we isolated three different subclusters (**Figure 6A**).  
382 Using existing markers generated for cancer-associated fibroblasts (CAFs), including inflammatory CAFs  
383 (iCAF), myofibroblast CAFs (mCAF), and antigen-presenting CAFs (apCAF), we assigned identities  
384 with ScType (**Supplementary Data 5-6**) (Elyada et al. 2019). Of the three clusters, we identified all three  
385 as iCAF – with the expression of known markers, such as *Cle3b*, *Il6*, *Has1*, and *Col14a1* (**Figure 6B**).  
386 Fibroblast cluster 3 exhibited some characteristics consistent with apCAF, including expression of  
387 multiple major histocompatibility complex (MHC) II components *H2-Aa*, *H2-Eb1*, and *H2-ab1* and *Cd74*,  
388 the invariant chain of MHC II (Figure 6B). We then performed differential gene expression and GSEA  
389 comparing the iCAF between normal circadian and CJ groups at 5 and 9 months (**Figure 7A-B** &  
390 **Supplemental Data 7**). We found that multiple metabolic pathways in fibroblasts were enriched in the CJ

391 group at 5 months (**Figure 7A**), and our 9-month comparison revealed enrichment of several apoptosis-  
392 related pathways, including ‘NEGATIVE\_REGULATION\_OF\_CELL\_DEATH’ and  
393 ‘REGULATION\_OF\_APOPTOTIC\_SIGNALING\_PATHWAY’ (**Figure 7B**). To evaluate if CJ was  
394 simply increasing fibrosis (i.e. collagen deposition) to facilitate these changes, we compared the collagen  
395 content from 5- and 9-month normal circadian and CJ KC mice (**Supplemental Data 8**). We found no  
396 differences in the collagen content at either time point. We, therefore, identified that the iCAF<sub>s</sub> in the  
397 developing tumor microenvironment of KC mice had early enrichment of metabolic pathways in response  
398 to CJ, with late enrichment of apoptosis-related pathways. Enrichment of these pathways in fibroblasts as  
399 a consequence of CJ corresponds with the finding that fibroblasts manifest differential expression of core  
400 clock genes (i.e. affected by misalignment of the clock). When combined with the observation that acinar  
401 cells/PanINs demonstrated no differential gene expression of CCGs, and abolishing the clock in acinar  
402 cells did not replicate the CJ-induced phenotype, these results suggest CJ causes clock desynchrony in the  
403 fibroblast population to alter signaling and accelerate the formation and progression of PanINs.

404 **Discussion:**

405 There has been a substantial volume of literature examining circadian desynchrony, which encompasses  
406 the misalignment between environmental or behavioral cycles and the endogenous clock (Vetter 2020).  
407 Persistent misalignment between environmental cues (light/dark cycle) and behavioral cues (feeding)  
408 compared to the internal clocks can result in aberrant gene signaling (Kettner et al. 2016; Sulli et al. 2018)  
409 with consequent disease pathology (Scheer et al. 2009; Lee et al. 2013; Morris et al. 2015). For instance,  
410 in healthy human adults subjected to a forced circadian desynchrony protocol that replicated shift work  
411 (12-hour reversal of light/dark cycle for 3 days), there was a misalignment of the circadian clock relative  
412 to the timing of the light/dark cycle causing glucose intolerance as well as reduced insulin sensitivity –  
413 findings indicative of impaired glucose metabolism that occurs with the onset of type II diabetes (Morris  
414 et al. 2015). This coincides with epidemiological findings of an increased risk of type II diabetes with  
415 shift work (Pan et al. 2011) and is congruent with the increased risk of obesity and metabolic syndrome in

416 individuals performing rotating shift work schedules (Lin et al. 2009; Antunes et al. 2010). Unfortunately,  
417 the metabolic reprogramming and chronic inflammation that ensues following these diagnoses can drive  
418 the formation of several cancers such as hepatocellular carcinoma (Campbell et al. 2016), which  
419 commences a path of ‘neoplastic change’ consisting of non-alcoholic fatty liver disease, non-alcoholic  
420 steatohepatitis, and liver cancer (Simon et al. 2021). The same process of neoplastic transformation in the  
421 liver can occur due to circadian misalignment: C57Bl/6J mice subjected to chronic jetlag conditions  
422 experienced an acceleration of non-alcoholic fatty liver disease and an increased incidence of  
423 hepatocellular carcinoma compared to mice under standard lighting conditions (Kettner et al. 2016).  
424 Notably, the evidence correlating circadian desynchrony and liver cancer is mirrored in a similar  
425 metabolic organ – the pancreas. There is a strong correlation between obesity and diabetes, and risk of  
426 developing pancreatic ductal adenocarcinoma (PDAC). A potential link between circadian misalignment  
427 (associated with obesity and diabetes) and PDAC can be inferred from this correlation, and this putative  
428 link is strengthened by epidemiologic data reporting an increased risk of PDAC in shift workers (Parent et  
429 al. 2012). Therefore, based on this cumulative evidence, we sought to test the hypothesis that circadian  
430 clock desynchrony through chronic jetlag (CJ) would accelerate the initiation and progression of PanINs  
431 in mice predisposed to develop pre-cancerous lesions (PanIN-1,-2,-3) and PDAC.

432 Our work revealed that circadian misalignment through CJ increased tumor initiation and progression of  
433 PanINs, which are pancreas cancer pre-cursor lesions that can ultimately develop into PDAC. Our  
434 findings of accelerated neoplasm progression in the current study are alarming considering the highly  
435 lethal nature of PDAC (Siegel et al. 2021), and the prevalence of circadian desynchrony in society  
436 (Antunes et al. 2010). This type of clock dysfunction affects a significant percentage of the population,  
437 such as shift workers under imposed non-daytime schedules, who experience chronic misalignment  
438 between their endogenous clock and environmental cues (Bass and Lazar 2016). A less severe but highly  
439 prevalent form of misalignment may also be present through extended exposure to light at night, extended  
440 duration of dietary intake, or significant alteration in sleep patterns (social jetlag) (Roenneberg et al.

441 2012; Chang et al. 2015; Bass and Lazar 2016; Fishbein et al. 2021). To study the potential implications  
442 of these types of clock desynchrony in the development of PDAC, we utilized a mouse model in which  
443 *Kras*-mutation in pancreatic acinar cells promotes acinar-to-ductal metaplasia, followed by PanIN  
444 formation, and ultimately PDAC. Consequently, a pertinent question for the present work is the  
445 applicability of the model to humans. Interestingly, in humans, PanINs are frequently found in the  
446 pancreas and their prevalence increases with age (Matsuda et al. 2017). They are a result of acinar  
447 metaplastic transformation to a ductal cell phenotype, typically in response to injury or inflammation (De  
448 La O et al. 2008; Reichert and Rustgi 2011; Chuvin et al. 2017). In an autopsy study of 173 cases with no  
449 evidence of PDAC (mean age 80.5 years), PanIN-1 was present in 77% of pancreas specimens, PanIN-2  
450 was present in 28%, and 4% of the pancreas specimens harbored PanIN-3 (Matsuda et al. 2017).  
451 Consistent with our KC model, PanIN-1s were always present in the pancreas when PanIN-2 or -3 were  
452 identified. These autopsy findings were also confirmed in a separate study (Longnecker and Suriawinata  
453 2022). Thus, our model is concordant with the neoplastic process that occurs in humans and relevant for  
454 studying PanIN progression. Our findings of CJ-induced acceleration of advanced PanIN formation could  
455 be applicable to many individuals who unknowingly harbor PanINs and experience consistent circadian  
456 misalignment.

457 PanINs are microscopic and early PanINs are unable to be detected with the current imaging modalities  
458 (Kanda et al. 2012). Therefore, human studies of circadian misalignment driving PanIN progression have  
459 not been feasible. Yet, the *in vivo* findings in our study warrant consideration of future investigations  
460 designed to evaluate risk in humans and possibly risk mitigation. Given the widespread presence of  
461 circadian misalignment, and the prevalence of PanINs, a suitable population of individuals to target for  
462 risk mitigation of circadian desynchrony may prove tenable. For example, there is convincing evidence  
463 that patients who have a family history of PDAC demonstrate a greater propensity for PanIN formation,  
464 are more likely to harbor advanced PanINs, and, therefore, are at higher risk for developing PDAC. In a  
465 study by Shi and colleagues evaluating patients who underwent pancreatic resection for PDAC, those

466 with a family history of PDAC (without a germline mutation) demonstrated a rate of 1.51 PanIN  
467 lesions/cm<sup>2</sup> in the pancreas (i.e. non-cancer pancreas) compared to 0.55 PanIN lesion/cm<sup>2</sup> in patients with  
468 sporadic PDAC (Shi et al. 2009). The majority of the lesions were PanIN-1, with fewer PanIN-2 and  
469 PanIN-3 lesions identified (Shi et al. 2009); again mirroring the findings in our KC model where there is  
470 multifocal lesion formation, and the majority of the lesions at 9 months were PanIN-1 with fewer PanIN-2  
471 and PanIN-3. Moreover, in the study by Shi *et al* (Shi et al. 2009), PanIN lesions were found in the  
472 pancreas remote from invasive cancer, which supports the findings from autopsy studies (Matsuda et al.  
473 2017; Longnecker and Suriawinata 2022) that not all PanINs progress to cancer. Similar to the etiology of  
474 PanINs in our model, greater than 95% of human PanINs harbor a *Kras* mutation (including 92% of  
475 PanIN-1) (Kanda et al. 2012), and it is generally accepted that the fraction of *Kras*-mutant cells in PanINs  
476 increases with PanIN grade, indicating clonal expansion of the *Kras*-mutant cells that have been  
477 ‘transformed’ (Kanda et al. 2012). However, the drivers of this transformation from PanIN-1 to higher-  
478 grade PanINs or PDAC are poorly understood. Consequently, our study forms a strong basis for further  
479 investigation to understand how circadian misalignment promotes the progression of PanIN lesions. This  
480 should lead to prevention strategies (e.g. chemoprevention or behavioral modification) that can then be  
481 applied to high-risk patients to prevent the progression of PanINs to cancer (Miller et al. 2016).  
482 Incidentally, these high-risk patients are already being captured in high-risk clinics, where individuals  
483 with a strong family history or known pre-cursor lesions in the pancreas are being followed to identify  
484 cancer transformation at an early stage (Shin et al. 2015; Miller et al. 2016; Dbouk et al. 2022). This  
485 would be an ideal group to target for risk mitigation or chemoprevention.  
486 To better understand the basis for our observations of accelerated neoplasm formation with circadian  
487 misalignment (CJ), we implemented a conditional mouse model to achieve cell-autonomous core clock  
488 gene knock-out. We chose a conditional knock-out as opposed to a global knock-out because of the  
489 known difficulty in disentangling the effects in a global knock-out model (e.g. *Bmal1*<sup>-/-</sup>). For example, the  
490 opposing effects in glucose metabolism and insulin sensitivity with knock-out of the clock in the pancreas

491 and liver can mask glucose intolerance phenotypes that are otherwise readily apparent with islet-cell-  
492 specific clock disruption (Lamia et al. 2008; Marcheva et al. 2010; Perelis et al. 2016). Furthermore,  
493 chronic jetlag exposure is a ‘global’ effect and we aimed to home in on the cell population responsible for  
494 the observed phenotype. In this way, the use of core clock gene knock-out models has been indispensable  
495 in ascertaining clock-dependent mechanisms for various pathologies. Oftentimes, the phenotypes among  
496 circadian disrupted groups are concordant, whether by circadian desynchrony or through genetic  
497 alteration. For instance, Lee and colleagues found that the cell-autonomous deletion of *Bmal1* in  $\beta$ -cells of  
498 the pancreas resulted in the loss of glucose-stimulated insulin secretion, and the blunted insulin secretion  
499 with peripheral insulin resistance was replicated by environmentally-induced circadian misalignment (i.e.  
500 6-hr light phase advancement protocol) (Lee et al. 2013). In a separate study, mice predisposed to  
501 colorectal cancer development were subjected to circadian misalignment via constant lighting conditions  
502 and showed a 2-fold increase in tumor initiation compared to those housed under diurnal conditions  
503 (Stokes et al. 2021). In this study, Stokes *et al.* showed that global and epithelial loss of *Bmal1* similarly  
504 induced tumor initiation, suggesting that *Bmal1* expression in the colon epithelial cells (cell of origin for  
505 colorectal cancer) is similarly ‘targeted’ by perturbations in the clock (altered lighting) and by clock  
506 disruption (*Bmal1* deletion). Comparable results were seen by Kettner *et al.* when evaluating rates of non-  
507 alcoholic fatty liver disease and hepatocellular carcinoma between cell-autonomous *Bmal1* knock-out  
508 mice and mice subjected to circadian desynchrony (Kettner et al. 2016). Thus, we expected that cell-  
509 autonomous clock disruption in KC mice (pancreatic endocrine and exocrine *Bmal1* knock-out) would  
510 demonstrate a PanIN phenotype concordant with the circadian misaligned KC mice. However, when we  
511 crossed our KC mice with the condition *Bmal1*<sup>fx/fx</sup> mouse, we found a discordant phenotype in pancreatic  
512 tumor initiation compared to circadian misalignment. Although the results were unanticipated, they did  
513 provide insight and enabled us to conclude that disruption of the clock in acinar cells does not facilitate  
514 PanIN formation or progression. This led us to investigate separate putatively involved cell populations.

515 To better understand individual cell population involvement, and to build a foundation for discerning how  
516 pancreatic neoplasia more rapidly progressed in CJ conditions, we performed scRNASeq at both 5 and 9  
517 months. We found that the pancreatic epithelial cells, including the PanINs and acinar cells, showed a  
518 time-dependent cancer signature on pseudotime analysis consistent with the observed histopathologic  
519 changes. Confirming the time-dependent cancer signature enabled us to examine these cells primarily for  
520 changes to the clock, to determine if the scRNASeq data from circadian misaligned mice complemented  
521 the *Bmal1* cell-autonomous knock-out data. Subsequently, we assessed 13 other cell types for evidence of  
522 differential gene expression between normal circadian and CJ, and we found that fibroblasts –not the  
523 pancreatic epithelial cells – were the only cell type with multiple CCG and clock-associated gene  
524 changes. This finding supports the notion that CJ augments fibroblasts in the developing tumor  
525 microenvironment and not necessarily the epithelial/PanINs themselves. Notably, this also reinforces the  
526 differences identified in the cell-autonomous *Bmal1* knock-out model versus the circadian desynchrony  
527 model – misalignment may be targeting the fibroblast population to accelerate neoplasm formation and  
528 progression. Meanwhile, in the *Lsl-Bmal1<sup>fx/fx</sup>*; *Pdx1-Cre*; *Lsl-Kras<sup>G12D/+</sup>* mice, *Bmal1* (and thus the  
529 clock) is intact in the mesenchymal cells: IHC in KC mice conditionally expressing tdTomato  
530 demonstrated that there was *Pdx1*-Cre-directed expression in the acinar, ductal, islet, and PanINs, but not  
531 the mesenchymal lineage cells, including the fibroblasts and endothelial cells. We used additional  
532 expression markers to subset the fibroblasts and we identified all 3 clusters as inflammatory CAFs  
533 (iCAFs) based on established markers (Elyada et al. 2019). iCAFs secrete IL-6, CXCL9, and TGF $\beta$  and  
534 can be both immunosuppressive as well as immune-promoting (Sahai et al. 2020). Interestingly, we did  
535 not observe any differences in the amount of pancreatic collagen content at 5 or 9 months between normal  
536 circadian and CJ KC mice, suggesting a role for paracrine signaling in mediating the effects of CJ by  
537 fibroblasts rather than extracellular matrix production (i.e. desmoplasia). While this requires additional  
538 consequential investigation and will be the focus of future work, it is important to note that other  
539 investigators have uncovered the substantive involvement of the fibroblast clock in cancer. In a pan-  
540 cancer analysis of The Cancer Genome Atlas tumor samples, Wu and colleagues employed a new

541 computational approach (LTM) to explore clock-controlled pathways in cancer (Wu et al. 2022). The  
542 authors found that the variation in clock strength across 9 separate cancers was directly related to the  
543 proportion of fibroblasts in the samples and concluded that this was consequent to fibroblasts possessing a  
544 more robust circadian clock than the adjacent cancer cells within the tumor microenvironment. Moreover,  
545 fibroblasts are known to have an essential role in fostering cancer progression in the pancreas cancer  
546 microenvironment (Hanahan and Coussens 2012; Helms et al. 2020). As fibroblast density increases with  
547 the advancement of PanINs (i.e. PanIN-1 to PanIN-2/3) towards invasive cancer, the cancer-associated  
548 fibroblasts (CAFs) display a ‘wound-healing’ type response that supports neoplastic proliferation through  
549 direct and indirect metabolic contributions (Helms et al. 2020). CAFs display differences in rhythmic  
550 gene expression compared to naïve fibroblasts (Parascandolo et al. 2020), and the wound healing type  
551 response in fibroblasts has been previously shown to be strongly clock dependent (Hoyle et al. 2017),  
552 with disruption of the clock profoundly affecting this pathway. Concordantly, after identifying and  
553 characterizing the CAFs in our mouse pancreas samples, we performed GSEA at 5 and 9 months. This  
554 demonstrated that at 5 months CJ promoted metabolic gene enrichment in the CAFs, and by 9 months,  
555 there was enrichment of multiple cell death and apoptosis-related pathways. It is therefore conceivable  
556 that the fibroblasts – which harbor a strong clock and coevolve with PanINs – underlie the circadian  
557 desynchrony-induced acceleration of PanIN formation and progression. To investigate further whether  
558 circadian disruption in the fibroblasts may recapitulate the circadian misalignment (CJ) phenotype, in  
559 future work we aim to generate *Colla1-Cre; Bmal1<sup>fx/fx</sup>* in FLP recombinase *Kras*-mutant mice (*Pdx1-*  
560 *FlpO; FSF-Kras*<sup>G12D/+</sup>) (Wu et al. 2017). This would be effective in abolishing the fibroblast clock in the  
561 developing tumor microenvironment because all the identified fibroblast populations expressed high  
562 levels of *Colla1* (scRNAseq).

563 A limitation to consider from the scRNAseq data was that we did not identify islet cell clusters and were  
564 therefore unable to discern whether differential expression of CCGs was present in this population of  
565 cells. However, *Pdx1* is expressed in endocrine cells in the pancreas, and therefore the BKC mice (which

566 did not display an accelerated PanIN phenotype) would have a disrupted clock in this cell population  
567 (Offield et al. 1996; Hingorani et al. 2003). While clock disruption via *Bmal1* knock-out in islet cells  
568 produces metabolic changes that could ostensibly alter the formation or growth trajectory of tumors  
569 (PanINs), the prevailing phenotype with BMAL1 deficiency in islet cells – and also with circadian  
570 misalignment – is glucose intolerance, hypoinsulinemia, and hyperglycemia (i.e. characteristics of  
571 diabetes) (Marcheva et al. 2010; Lee et al. 2013; Perelis et al. 2016). Given that diabetes is a risk factor  
572 for PDAC development (Abbruzzese et al. 2018), and the lack of phenotype (expedited PanIN formation)  
573 in the BKC mice, it seems unlikely that circadian misalignment in the islets would have contributed to  
574 accelerated PanIN formation and progression. Regardless, we were not able to evaluate this cell  
575 population in the scRNAseq analysis, and so this remains a limitation. To investigate further, one could  
576 consider beta-cell specific *Bmal1* knock-out (*Rip-Cre; Bmal1<sup>fx/fx</sup>*) in FLP recombinase *Kras*-mutant mice  
577 (*Pdx1-FlpO; FSF-Kras<sup>G12D/+</sup>*) to determine if the accelerated PanIN development emerges (Wu et al.  
578 2017). Another consideration is the intriguing observation that loss of pancreatic *Bmal1* (acinar cells,  
579 ductal cells, islets, PanINs) resulted in near abolishment of PanIN formation, and not just an absence of  
580 accelerated PanIN formation. This finding speaks to the complex interplay of the circadian clock amongst  
581 cell populations in the tumor microenvironment. In future work, we aim to employ various genetically  
582 engineered mouse models to disentangle these findings, which should have clinical relevance for the  
583 multitude of individuals that harbor PanINs while concomitantly experiencing chronic circadian  
584 misalignment.

585 Although previous evidence suggests a role for the circadian clock in PDAC growth and spread, this is the  
586 first study to show perturbations of the clock increases tumor initiation in PDAC (Jiang et al. 2016; Jiang  
587 et al. 2018). Our study provides a foundation for future work to expand our understanding of how a  
588 dyssynchronous clock orchestrates cancer development in the pancreas.

589 **Figure Legends:**

590 **Figure 1: Pancreatic fibroinflammation/PanIN development is increased by chronic jetlag at 5 months.**

591 **A.** Boxplot comparing the mean (with associated 25<sup>th</sup> and 75<sup>th</sup> quantiles) percent pancreatic involvement  
592 of FI/PanIN at 5 months for normal circadian KC (n= 36) and CJ KC mice (n = 26). **B.** Representative  
593 H&E images of normal circadian (upper) and chronic jetlag (lower) mice at 40x (left) and 100x (right).  
594 Scale bars are shown for reference. [Annotation: PanIN (P), acinar (A) cells, islet (I) cells, ductal (D)  
595 cells, vascular (V) cells (i.e. endothelial cells), and fibroinflammatory (F) infiltrate]

596 **Figure 2: Chronic jetlag accelerates the grade of PanIN lesions.** Bar charts indicating the incidence of  
597 PanIN-1-3 and PDAC in normal circadian (black) and CJ (grey) conditions at **A.** 5 months (normal  
598 circadian n = 36 vs. CJ n = 26) and **B.** 9 months (normal circadian n = 33 vs. CJ n = 39). **C.** Table  
599 showing the Fischer's Exact Test comparisons between 5- and 9-month normal circadian and CJ mice. **D.**  
600 Representative 200x H&E image from a CJ mouse demonstrating PanIN-1 (arrow) and PanIN-2 lesion  
601 (arrowhead). **E.** Representative 200x H&E image from a CJ mouse demonstrating a PanIN-3 lesion  
602 (arrowhead) and PDAC off the same gland (dashed circle). Scale bars are shown for reference.

603 **Figure 3: Pancreatic cell-autonomous deletion of Bmal1 does not accelerate pancreatic  
604 fibroinflammatory infiltrate/PanIN development at 5 months.** **A.** Boxplot comparing the mean (with  
605 associated 25<sup>th</sup> and 75<sup>th</sup> quantiles) percent pancreatic involvement of FI/PanIN at 5 months for normal  
606 circadian KC (n= 36) and BKC mice (n = 24). Representative H&E images demonstrating the FI/PanIN  
607 from a BKC mouse at 40x (**B**), 100x (**C**), and 200x (**D**) To evaluate the cell types affected in BKC, KC  
608 mice were crossed with Ai14 reporter mice to create KCT mice. H&E stained sections (**E**) and  
609 immunohistochemistry for tdTomato (**F**) were compared to evaluate cell-specific Pdx1-driven Cre  
610 expression in KC mice. Scale bars are shown for reference. [annotation: PanIN (P), acinar (A) cells, islet  
611 (I) cells, ductal (D) cells, vascular (V) cells (i.e. endothelial cells), and fibroinflammatory (F) infiltrate]

612 **Figure 4: The single-cell landscape of KC mice recapitulates the developing pancreatic cancer tumor  
613 microenvironment.** **A.** UMAP demonstrating the 14 diverse cell types and 42,211 cells in the scRNAseq  
614 dataset. **B.** UMAPs split by time (5 and 9 months) and condition (normal circadian and CJ) **C.**

615 Pseudotime trajectory analysis was performed for the subset of pancreatic acinar cells with 0 pseudotime  
616 set to the point with the highest fraction of cells at 5 months. **D.** Gene Set Enrichment Analysis (GSEA)  
617 was performed for the oncogenic signature gene set associated with pseudotime progression and ordered  
618 by the log adjusted p value.

619 **Figure 5:** *Fibroblasts were preferentially affected by chronic jetlag. A.* Table of core clock genes (CCGs)  
620 and clock-associated genes differentially expressed when comparing normal circadian and CJ conditions  
621 of each cell type. **B.** Representative UMAP dimensionality plots demonstrating cellular expression (blue  
622 color) of select CCG and clock-associated genes in the subset of fibroblasts.

623 **Figure 6:** *Fibroblasts subclusters in the developing pancreatic tumor microenvironment were identified  
624 as inflammatory cancer-associated fibroblasts. A.* A UMAP demonstrating the three fibroblast  
625 subclusters identified on dimensionality reduction. **B.** Violin plots with select markers for Pan-,  
626 Inflammatory-, Myofibroblastic-, and Antigen Presenting-Cancer Associated Fibroblasts (CAFs).

627 **Figure 7:** *Chronic jetlag influences fibroblast expression patterns across time.* Figures with The Gene Set  
628 Enrichment Analysis (GSEA) demonstrating the gene ontology biologic process (GO BP) pathways  
629 enriched in CJ compared to normal circadian fibroblasts at **A.** five and **B.** nine months. The top 10  
630 pathways at each time point are ordered by their log-adjusted p value.

631 **Supplementary Data:**

632 Supplemental Data 1: Marker database for single-cell RNA sequencing cell-type identification

633 Supplemental Data 2: ScType Scores for overall single-cell RNA sequencing dataset

634 Supplemental Data 3: Moran's I pseudotime analysis for the pancreatic acinar cells

635 Supplemental Data 4: Differential gene expression between normal circadian and chronic jetlag  
636 conditions for all cell types

637 Supplemental Data 5: Marker database for fibroblast subtype identification

638 Supplemental Data 6: ScType Scores for fibroblast subtype identification

639 Supplemental Data 7: Differential gene expression between normal circadian and chronic jetlag

640 conditions for fibroblasts at 5 and 9 months

641 Supplemental Data 8: Quantification of collagen content in 5-month normal circadian and chronic jetlag

642 KC mice

643 **Acknowledgments:**

644 We would like to take the opportunity to acknowledge the University of Wisconsin Carbone Cancer

645 Center Support Grant P30 CA014520, which provides funding for the Experimental Animal Pathology

646 Lab Core.

647 We would also to acknowledge the Gene Expression Center and the Bioinformatics Resource Center

648 (BRC) at the University of Wisconsin, Madison for their contributions to this work.

649 Finally, we would like to thank the Michael W. Oglesby Foundation for their funding support of our work

650 in circadian disruption and pancreas pathology.

651 **Grants:**

652 The research reported in this publication was supported by the Department of Defense Peer Reviewed

653 Cancer Research Program Award CA190176 (Grants.gov ID GRANT12935023) and the University of

654 Wisconsin Institute for Clinical and Translational Research KL2 Award (UL1TR002373 and

655 KL2TR002374) [SRK]. Funding support for this work was also provided by the National Institutes of

656 Health under Award Number T32 ES007015 [PBS]. The content is solely the responsibility of the authors

657 and does not necessarily represent the official views of the National Institutes of Health.

658 **Data Statement:**

659 Single-cell RNA sequencing data is made publicly available through gene expression omnibus (GEO)  
660 (Accession number: GSE209629). All other data that support the findings of this study are available from  
661 the corresponding author, SRK, upon reasonable request.

662 **References:**

663 Abbruzzese JL, Andersen DK, Borrebaeck CAK, Chari ST, Costello E, Cruz-Monserrate Z, Eibl G,  
664 Engleman EG, Fisher WE, Habtezion A, et al. 2018. The Interface of Pancreatic Cancer With Diabetes,  
665 Obesity, and Inflammation: Research Gaps and Opportunities: Summary of a National Institute of  
666 Diabetes and Digestive and Kidney Diseases Workshop. *Pancreas*. 47(5):516–525.  
667 <https://doi.org/10.1097/MPA.0000000000001037>

668 Antunes LC, Levandovski R, Dantas G, Caumo W, Hidalgo MP. 2010. Obesity and shift work:  
669 chronobiological aspects. *Nutr Res Rev*. 23(1):155–168. <https://doi.org/10.1017/S0954422410000016>

670 Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. 2009. Circadian timing of food intake  
671 contributes to weight gain. *Obesity (Silver Spring)*. 17(11):2100–2102.  
672 <https://doi.org/10.1038/oby.2009.264>

673 Bass J, Lazar MA. 2016. Circadian time signatures of fitness and disease. *Science*. 354(6315):994–999.  
674 <https://doi.org/10.1126/science.aah4965>

675 Bass J, Takahashi JS. 2010. Circadian integration of metabolism and energetics. *Science*.  
676 330(6009):1349–1354. <https://doi.org/10.1126/science.1195027>

677 Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC,  
678 Takahashi JS, Bradfield CA. 2000. Mop3 is an essential component of the master circadian pacemaker in  
679 mammals. *Cell*. 103(7):1009–1017. [https://doi.org/10.1016/s0092-8674\(00\)00205-1](https://doi.org/10.1016/s0092-8674(00)00205-1)

680 Campbell PT, Newton CC, Freedman ND, Koshiol J, Alavanja MC, Beane Freeman LE, Buring JE, Chan  
681 AT, Chong DQ, Datta M, et al. 2016. Body Mass Index, Waist Circumference, Diabetes, and Risk of  
682 Liver Cancer for U.S. Adults. *Cancer Res.* 76(20):6076–6083. <https://doi.org/10.1158/0008-5472.CAN-16-0787>

684 Chang A-M, Aeschbach D, Duffy JF, Czeisler CA. 2015. Evening use of light-emitting eReaders  
685 negatively affects sleep, circadian timing, and next-morning alertness. *Proc Natl Acad Sci U S A.*  
686 112(4):1232–1237. <https://doi.org/10.1073/pnas.1418490112>

687 Choudhary S, Satija R. 2022. Comparison and evaluation of statistical error models for scRNA-seq.  
688 *Genome Biology.* 23(1):27. <https://doi.org/10.1186/s13059-021-02584-9>

689 Chuvin N, Vincent DF, Pommier RM, Alcaraz LB, Gout J, Caligaris C, Yacoub K, Cardot V, Roger E,  
690 Kaniewski B, et al. 2017. Acinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta  
691 Facilitates KRASG12D-driven Pancreatic Tumorigenesis. *Cell Mol Gastroenterol Hepatol.* 4(2):263–282.  
692 <https://doi.org/10.1016/j.jcmgh.2017.05.005>

693 Cox KH, Takahashi JS. 2019. Circadian clock genes and the transcriptional architecture of the clock  
694 mechanism. *J Mol Endocrinol.* 63(4):R93–R102. <https://doi.org/10.1530/JME-19-0153>

695 Dbouk M, Katona BW, Brand RE, Chak A, Syngal S, Farrell JJ, Kastrinos F, Stoffel EM, Blackford AL,  
696 Rustgi AK, et al. 2022. The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and  
697 Survival. *J Clin Oncol.* 40(28):3257–3266. <https://doi.org/10.1200/JCO.22.00298>

698 De La O J-P, Emerson LL, Goodman JL, Froebe SC, Illum BE, Curtis AB, Murtaugh LC. 2008. Notch  
699 and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. *Proc Natl Acad Sci U S A.*  
700 105(48):18907–18912. <https://doi.org/10.1073/pnas.0810111105>

701 Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhardt RA, Teinor JA, Belleau P, Biffi G,  
702 Lucito MS, et al. 2019. Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma  
703 Reveals Antigen-Presenting Cancer-Associated Fibroblasts. *Cancer Discov.* 9(8):1102–1123.  
704 <https://doi.org/10.1158/2159-8290.CD-19-0094>

705 Filipski E, Delaunay F, King VM, Wu M-W, Claustre B, Gréchez-Cassiau A, Guettier C, Hastings MH,  
706 Francis L. 2004. Effects of chronic jet lag on tumor progression in mice. *Cancer Res.* 64(21):7879–7885.  
707 <https://doi.org/10.1158/0008-5472.CAN-04-0674>

708 Filipski E, Subramanian P, Carrière J, Guettier C, Barbason H, Lévi F. 2009. Circadian disruption  
709 accelerates liver carcinogenesis in mice. *Mutat Res.* 680(1–2):95–105.  
710 <https://doi.org/10.1016/j.mrgentox.2009.10.002>

711 Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ,  
712 Prlic M, et al. 2015. MAST: a flexible statistical framework for assessing transcriptional changes and  
713 characterizing heterogeneity in single-cell RNA sequencing data. *Genome Biol* [Internet]. [accessed 2021  
714 Feb 4] 16. <https://doi.org/10.1186/s13059-015-0844-5>

715 Fishbein AB, Knutson KL, Zee PC. 2021. Circadian disruption and human health. *J Clin Invest.*  
716 131(19):e148286. <https://doi.org/10.1172/JCI148286>

717 Hanahan D, Coussens LM. 2012. Accessories to the crime: functions of cells recruited to the tumor  
718 microenvironment. *Cancer Cell.* 21(3):309–322. <https://doi.org/10.1016/j.ccr.2012.02.022>

719 Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager  
720 M, et al. 2021. Integrated analysis of multimodal single-cell data. *Cell.* 184(13):3573–3587.e29.  
721 <https://doi.org/10.1016/j.cell.2021.04.048>

722 Helms E, Onate MK, Sherman MH. 2020. Fibroblast Heterogeneity in the Pancreatic Tumor

723 Microenvironment. *Cancer Discov.* 10(5):648–656. <https://doi.org/10.1158/2159-8290.CD-19-1353>

724 Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP,

725 Veenstra TD, Hitt BA, et al. 2003. Preinvasive and invasive ductal pancreatic cancer and its early

726 detection in the mouse. *Cancer Cell.* 4(6):437–450. [https://doi.org/10.1016/s1535-6108\(03\)00309-x](https://doi.org/10.1016/s1535-6108(03)00309-x)

727 Hoyle NP, Seinkmane E, Putker M, Feeney KA, Krogager TP, Chesham JE, Bray LK, Thomas JM, Dunn

728 K, Blaikley J, O'Neill JS. 2017. Circadian actin dynamics drive rhythmic fibroblast mobilization during

729 wound healing. *Sci Transl Med.* 9(415):eaal2774. <https://doi.org/10.1126/scitranslmed.aal2774>

730 Ianevski A, Giri AK, Aittokallio T. 2022. Fully-automated and ultra-fast cell-type identification using

731 specific marker combinations from single-cell transcriptomic data. *Nat Commun.* 13(1):1246.

732 <https://doi.org/10.1038/s41467-022-28803-w>

733 Jiang W, Zhao S, Jiang X, Zhang E, Hu G, Hu B, Zheng P, Xiao J, Lu Z, Lu Y, et al. 2016. The circadian

734 clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor

735 suppressor pathway. *Cancer Lett.* 371(2):314–325. <https://doi.org/10.1016/j.canlet.2015.12.002>

736 Jiang W, Zhao S, Shen J, Guo L, Sun Y, Zhu Y, Ma Z, Zhang X, Hu Y, Xiao W, et al. 2018. The MiR-

737 135b-BMAL1-YY1 loop disturbs pancreatic clockwork to promote tumourigenesis and chemoresistance.

738 *Cell Death Dis.* 9(2):149. <https://doi.org/10.1038/s41419-017-0233-y>

739 Johnson BP, Walisser JA, Liu Y, Shen AL, McDearmon EL, Moran SM, McIntosh BE, Vollrath AL,

740 Schook AC, Takahashi JS, Bradfield CA. 2014. Hepatocyte circadian clock controls acetaminophen

741 bioactivation through NADPH-cytochrome P450 oxidoreductase. *Proc Natl Acad Sci U S A.*

742 111(52):18757–18762. <https://doi.org/10.1073/pnas.1421708111>

743 Kanda M, Matthaei H, Wu J, Hong S-M, Yu J, Borges M, Hruban RH, Maitra A, Kinzler K, Vogelstein  
744 B, Goggins M. 2012. Presence of somatic mutations in most early-stage pancreatic intraepithelial  
745 neoplasia. *Gastroenterology*. 142(4):730-733.e9. <https://doi.org/10.1053/j.gastro.2011.12.042>

746 Kettner NM, Voicu H, Finegold MJ, Coarfa C, Sreekumar A, Putluri N, Katchy CA, Lee C, Moore DD,  
747 Fu L. 2016. Circadian Homeostasis of Liver Metabolism Suppresses Hepatocarcinogenesis. *Cancer Cell*.  
748 30(6):909–924. <https://doi.org/10.1016/j.ccr.2016.10.007>

749 Lamia KA, Storch K-F, Weitz CJ. 2008. Physiological significance of a peripheral tissue circadian clock.  
750 *Proc Natl Acad Sci U S A*. 105(39):15172–15177. <https://doi.org/10.1073/pnas.0806717105>

751 Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. 2001. Posttranslational mechanisms  
752 regulate the mammalian circadian clock. *Cell*. 107(7):855–867. [8674\(01\)00610-9](https://doi.org/10.1016/s0092-<br/>753 8674(01)00610-9)

754 Lee J, Moulik M, Fang Z, Saha P, Zou F, Xu Y, Nelson DL, Ma K, Moore DD, Yechoor VK. 2013.  
755 Bmal1 and  $\beta$ -cell clock are required for adaptation to circadian disruption, and their loss of function leads  
756 to oxidative stress-induced  $\beta$ -cell failure in mice. *Mol Cell Biol*. 33(11):2327–2338.  
757 <https://doi.org/10.1128/MCB.01421-12>

758 Lee JH, Sancar A. 2011. Regulation of apoptosis by the circadian clock through NF- $\kappa$ B signaling.  
759 *Proc Natl Acad Sci U S A*. 108(29):12036–12041. <https://doi.org/10.1073/pnas.1108125108>

760 Li S, Xie K. 2022. Ductal metaplasia in pancreas. *Biochim Biophys Acta Rev Cancer*. 1877(2):188698.  
761 <https://doi.org/10.1016/j.bbcan.2022.188698>

762 Lin Y-C, Hsiao T-J, Chen P-C. 2009. Persistent rotating shift-work exposure accelerates development of  
763 metabolic syndrome among middle-aged female employees: a five-year follow-up. *Chronobiol Int*.  
764 26(4):740–755. <https://doi.org/10.1080/07420520902929029>

765 Liu Y, Johnson BP, Shen AL, Wallisser JA, Krentz KJ, Moran SM, Sullivan R, Glover E, Parlow AF,

766 Drinkwater NR, et al. 2014. Loss of BMAL1 in ovarian steroidogenic cells results in implantation failure

767 in female mice. *PNAS*. 111(39):14295–14300. <https://doi.org/10.1073/pnas.1209249111>

768 Longnecker DS, Suriawinata AA. 2022. Incidence of Pancreatic Intraepithelial Neoplasia in an Autopsy

769 Series. *Pancreas*. 51(4):305–309. <https://doi.org/10.1097/MPA.0000000000002027>

770 Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna

771 MH, et al. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and

772 diabetes. *Nature*. 466(7306):627–631. <https://doi.org/10.1038/nature09253>

773 Matsuda Y, Furukawa T, Yachida S, Nishimura M, Seki A, Nonaka K, Aida J, Takubo K, Ishiwata T,

774 Kimura W, et al. 2017. The Prevalence and Clinicopathological Characteristics of High-Grade Pancreatic

775 Intraepithelial Neoplasia: Autopsy Study Evaluating the Entire Pancreatic Parenchyma. *Pancreas*.

776 46(5):658–664. <https://doi.org/10.1097/MPA.0000000000000786>

777 Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. 2003. Control mechanism of the

778 circadian clock for timing of cell division in vivo. *Science*. 302(5643):255–259.

779 <https://doi.org/10.1126/science.1086271>

780 McInnes L, Healy J, Melville J. 2020. UMAP: Uniform Manifold Approximation and Projection for

781 Dimension Reduction. *arXiv:180203426 [cs, stat] [Internet]*. [accessed 2021 Feb 4].

782 <http://arxiv.org/abs/1802.03426>

783 McIntosh BE, Hogenesch JB, Bradfield CA. 2010. Mammalian Per-Arnt-Sim proteins in environmental

784 adaptation. *Annu Rev Physiol*. 72:625–645. <https://doi.org/10.1146/annurev-physiol-021909-135922>

785 Miller MS, Allen P, Brentnall TA, Goggins M, Hruban RH, Petersen GM, Rao CV, Whitcomb DC, Brand  
786 RE, Chari ST, et al. 2016. Pancreatic Cancer Chemoprevention Translational Workshop: Meeting Report.  
787 *Pancreas*. 45(8):1080–1091. <https://doi.org/10.1097/MPA.0000000000000705>

788 Morris CJ, Yang JN, Garcia JI, Myers S, Bozzi I, Wang W, Buxton OM, Shea SA, Scheer FAJL. 2015.  
789 Endogenous circadian system and circadian misalignment impact glucose tolerance via separate  
790 mechanisms in humans. *Proc Natl Acad Sci U S A*. 112(17):E2225-2234.  
791 <https://doi.org/10.1073/pnas.1418955112>

792 Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M, Laurenti E, Wilson NK, Kent DG,  
793 Göttgens B. 2016. A single-cell resolution map of mouse hematopoietic stem and progenitor cell  
794 differentiation. *Blood*. 128(8):e20–e31. <https://doi.org/10.1182/blood-2016-05-716480>

795 Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV. 1996.  
796 PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. *Development*.  
797 122(3):983–995. <https://doi.org/10.1242/dev.122.3.983>

798 Pan A, Schernhammer ES, Sun Q, Hu FB. 2011. Rotating night shift work and risk of type 2 diabetes:  
799 two prospective cohort studies in women. *PLoS Med*. 8(12):e1001141.  
800 <https://doi.org/10.1371/journal.pmed.1001141>

801 Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, Bhutkar A, Bartlebaugh J,  
802 Vander Heiden MG, Jacks T. 2016. Circadian Rhythm Disruption Promotes Lung Tumorigenesis. *Cell  
803 Metab*. 24(2):324–331. <https://doi.org/10.1016/j.cmet.2016.07.001>

804 Parascandolo A, Bonavita R, Astaburuaga R, Sciuto A, Reggio S, Barra E, Corcione F, Salvatore M,  
805 Mazzoccoli G, Relógio A, Laukkanen MO. 2020. Effect of naive and cancer-educated fibroblasts on  
806 colon cancer cell circadian growth rhythm. *Cell Death Dis*. 11(4):289. [https://doi.org/10.1038/s41419-020-2468-2](https://doi.org/10.1038/s41419-<br/>807 020-2468-2)

808 Parent M-É, El-Zein M, Rousseau M-C, Pintos J, Siemiatycki J. 2012. Night work and the risk of cancer  
809 among men. *Am J Epidemiol.* 176(9):751–759. <https://doi.org/10.1093/aje/kws318>

810 Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL, Taguchi A, Peek CB, Hong H, Huang  
811 W, Omura C, et al. 2015. Pancreatic  $\beta$  cell enhancers regulate rhythmic transcription of genes controlling  
812 insulin secretion. *Science.* 350(6261):aac4250. <https://doi.org/10.1126/science.aac4250>

813 Perelis M, Ramsey KM, Marcheva B, Bass J. 2016. Circadian Transcription from Beta Cell Function to  
814 Diabetes Pathophysiology. *J Biol Rhythms.* 31(4):323–336. <https://doi.org/10.1177/0748730416656949>

815 Pittendrigh CS. 1993. Temporal organization: reflections of a Darwinian clock-watcher. *Annu Rev  
816 Physiol.* 55:16–54. <https://doi.org/10.1146/annurev.ph.55.030193.000313>

817 Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. 2002. The orphan  
818 nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the  
819 mammalian circadian oscillator. *Cell.* 110(2):251–260. [https://doi.org/10.1016/s0092-8674\(02\)00825-5](https://doi.org/10.1016/s0092-8674(02)00825-5)

820 Reichert M, Rustgi AK. 2011. Pancreatic ductal cells in development, regeneration, and neoplasia. *J Clin  
821 Invest.* 121(12):4572–4578. <https://doi.org/10.1172/JCI57131>

822 Roenneberg T, Allebrandt KV, Merrow M, Vetter C. 2012. Social jetlag and obesity. *Curr Biol.*  
823 22(10):939–943. <https://doi.org/10.1016/j.cub.2012.03.038>

824 Sahai E, Astsaturow I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR,  
825 Hingorani SR, Hunter T, et al. 2020. A framework for advancing our understanding of cancer-associated  
826 fibroblasts. *Nat Rev Cancer.* 20(3):174–186. <https://doi.org/10.1038/s41568-019-0238-1>

827 Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA,  
828 Hogenesch JB. 2004. A functional genomics strategy reveals Rora as a component of the mammalian  
829 circadian clock. *Neuron.* 43(4):527–537. <https://doi.org/10.1016/j.neuron.2004.07.018>

830 Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. 2009. Adverse metabolic and cardiovascular  
831 consequences of circadian misalignment. *Proc Natl Acad Sci U S A.* 106(11):4453–4458.  
832 <https://doi.org/10.1073/pnas.0808180106>

833 Scheiermann C, Kunisaki Y, Frenette PS. 2013. Circadian control of the immune system. *Nat Rev  
834 Immunol.* 13(3):190–198. <https://doi.org/10.1038/nri3386>

835 Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA.  
836 2003. Night-shift work and risk of colorectal cancer in the nurses' health study. *J Natl Cancer Inst.*  
837 95(11):825–828. <https://doi.org/10.1093/jnci/95.11.825>

838 Schwartz PB, Walcheck MT, Berres ME, Nakaya M, Wu G, Carrillo ND, Matkowskyj KA, Ronnekleiv-  
839 Kelly SM. 2021. Chronic Jetlag-Induced Alterations in Pancreatic Diurnal Gene Expression. *Physiol  
840 Genomics.* <https://doi.org/10.1152/physiolgenomics.00022.2021>

841 Sergushichev AA. 2016. An algorithm for fast preranked gene set enrichment analysis using cumulative  
842 statistic calculation. *bioRxiv.* 060012. <https://doi.org/10.1101/060012>

843 Shi C, Klein AP, Goggins M, Maitra A, Canto M, Ali S, Schulick R, Palmisano E, Hruban RH. 2009.  
844 Increased Prevalence of Precursor Lesions in Familial Pancreatic Cancer Patients. *Clin Cancer Res.*  
845 15(24):7737–7743. <https://doi.org/10.1158/1078-0432.CCR-09-0004>

846 Shin EJ, Topazian M, Goggins MG, Syngal S, Saltzman JR, Lee JH, Farrell JJ, Canto MI. 2015. Linear-  
847 array EUS improves detection of pancreatic lesions in high-risk individuals: a randomized tandem study.  
848 *Gastrointest Endosc.* 82(5):812–818. <https://doi.org/10.1016/j.gie.2015.02.028>

849 Siegel RL, Miller KD, Fuchs HE, Jemal A. 2021. Cancer Statistics, 2021. *CA Cancer J Clin.* 71(1):7–33.  
850 <https://doi.org/10.3322/caac.21654>

851 Simon TG, Roelstraete B, Sharma R, Khalili H, Hagström H, Ludvigsson JF. 2021. Cancer Risk in  
852 Patients With Biopsy-Confirmed Nonalcoholic Fatty Liver Disease: A Population-Based Cohort Study.  
853 Hepatology. 74(5):2410–2423. <https://doi.org/10.1002/hep.31845>

854 Smith T, Heger A, Sudbery I. 2017. UMI-tools: modeling sequencing errors in Unique Molecular  
855 Identifiers to improve quantification accuracy. Genome Res. 27(3):491–499.  
856 <https://doi.org/10.1101/gr.209601.116>

857 Stokes K, Nunes M, Trombley C, Flôres DEFL, Wu G, Taleb Z, Alkhateeb A, Banskota S, Harris C,  
858 Love OP, et al. 2021. The Circadian Clock Gene, Bmal1, Regulates Intestinal Stem Cell Signaling and  
859 Represses Tumor Initiation. Cell Mol Gastroenterol Hepatol. 12(5):1847-1872.e0.  
860 <https://doi.org/10.1016/j.jcmgh.2021.08.001>

861 Sulli G, Manoogian ENC, Taub PR, Panda S. 2018. Training the Circadian Clock, Clocking the Drugs,  
862 and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol Sci.  
863 39(9):812–827. <https://doi.org/10.1016/j.tips.2018.07.003>

864 Takahashi JS. 2017. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet.  
865 18(3):164–179. <https://doi.org/10.1038/nrg.2016.150>

866 Takele Assefa A, Vandesompele J, Thas O. 2020. On the utility of RNA sample pooling to optimize cost  
867 and statistical power in RNA sequencing experiments. BMC Genomics. 21(1):312.  
868 <https://doi.org/10.1186/s12864-020-6721-y>

869 Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS,  
870 Rinn JL. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal  
871 ordering of single cells. Nat Biotechnol. 32(4):381–386. <https://doi.org/10.1038/nbt.2859>

872 Vetter C. 2020. Circadian disruption: What do we actually mean? *Eur J Neurosci.* 51(1):531–550.

873 <https://doi.org/10.1111/ejn.14255>

874 Walcheck MT, Matkowskyj KA, Turco A, Blaine-Sauer S, Nukaya M, Noel J, Ronnekleiv OK,

875 Ronnekleiv-Kelly SM. 2021. Sex-dependent development of Kras-induced anal squamous cell carcinoma

876 in mice. *PLoS One.* 16(11):e0259245. <https://doi.org/10.1371/journal.pone.0259245>

877 West AC, Bechtold DA. 2015. The cost of circadian desynchrony: Evidence, insights and open questions.

878 *Bioessays.* 37(7):777–788. <https://doi.org/10.1002/bies.201400173>

879 West AC, Smith L, Ray DW, Loudon ASI, Brown TM, Bechtold DA. 2017. Misalignment with the

880 external light environment drives metabolic and cardiac dysfunction. *Nat Commun.* 8(1):417.

881 <https://doi.org/10.1038/s41467-017-00462-2>

882 Wright KP, McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED. 2013. Entrainment of the

883 human circadian clock to the natural light-dark cycle. *Curr Biol.* 23(16):1554–1558.

884 <https://doi.org/10.1016/j.cub.2013.06.039>

885 Wu G, Ruben MD, Francey LJ, Lee YY, Anafi RC, Hogenesch JB. 2022. An in silico genome-wide

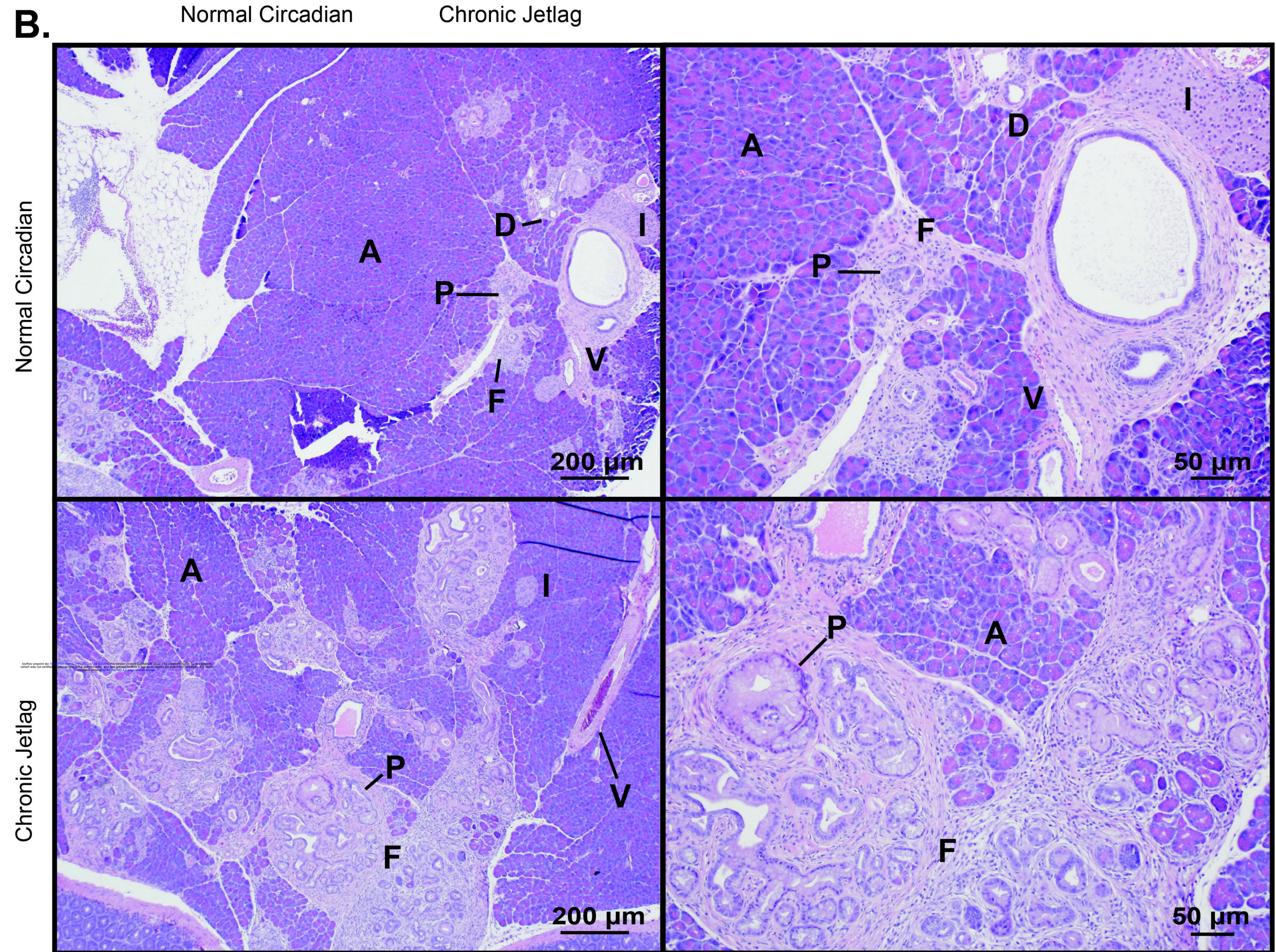
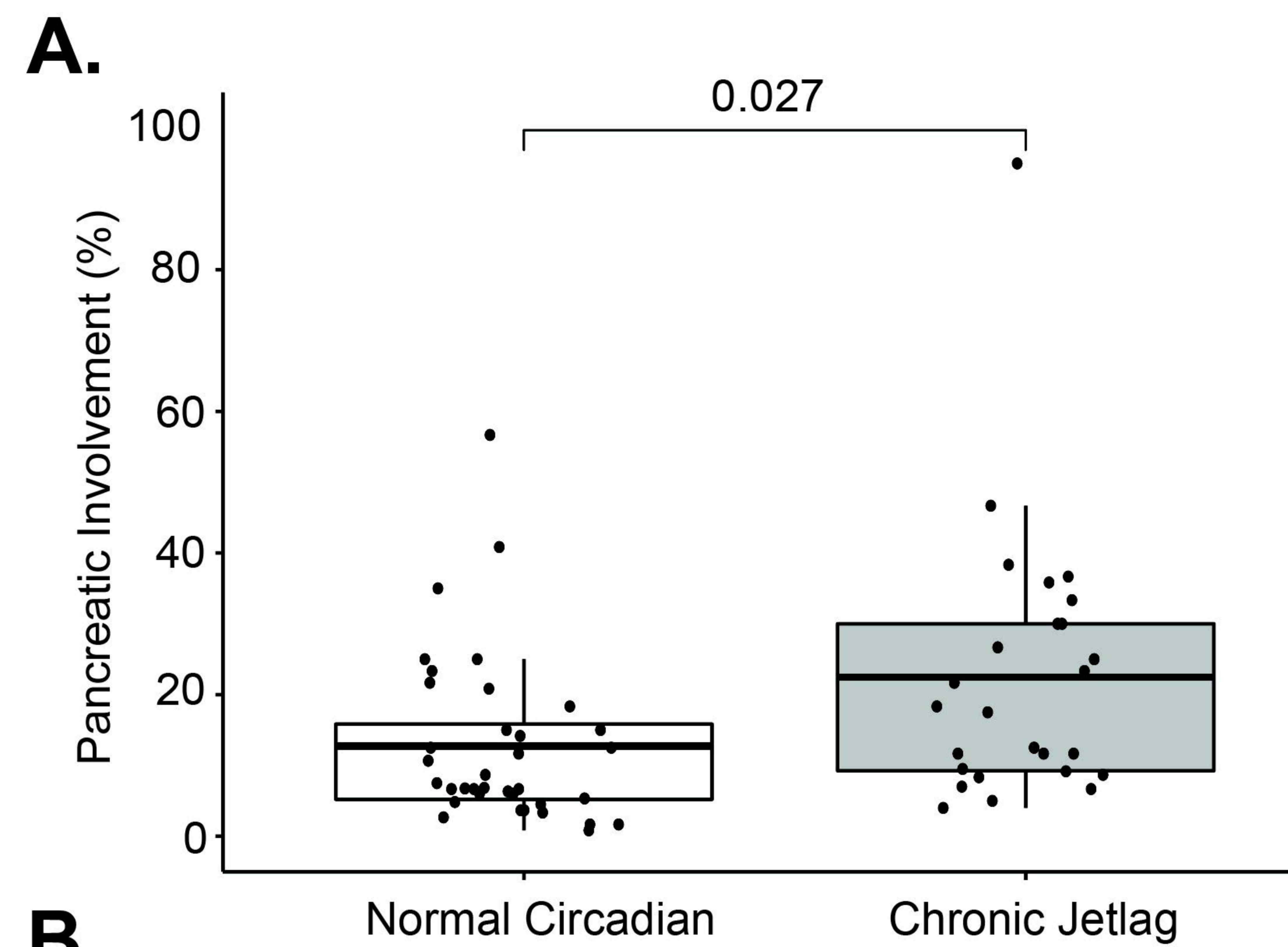
886 screen for circadian clock strength in human samples [Internet]. [accessed 2022 Sep

887 8]:2022.05.10.491250. <https://doi.org/10.1101/2022.05.10.491250>

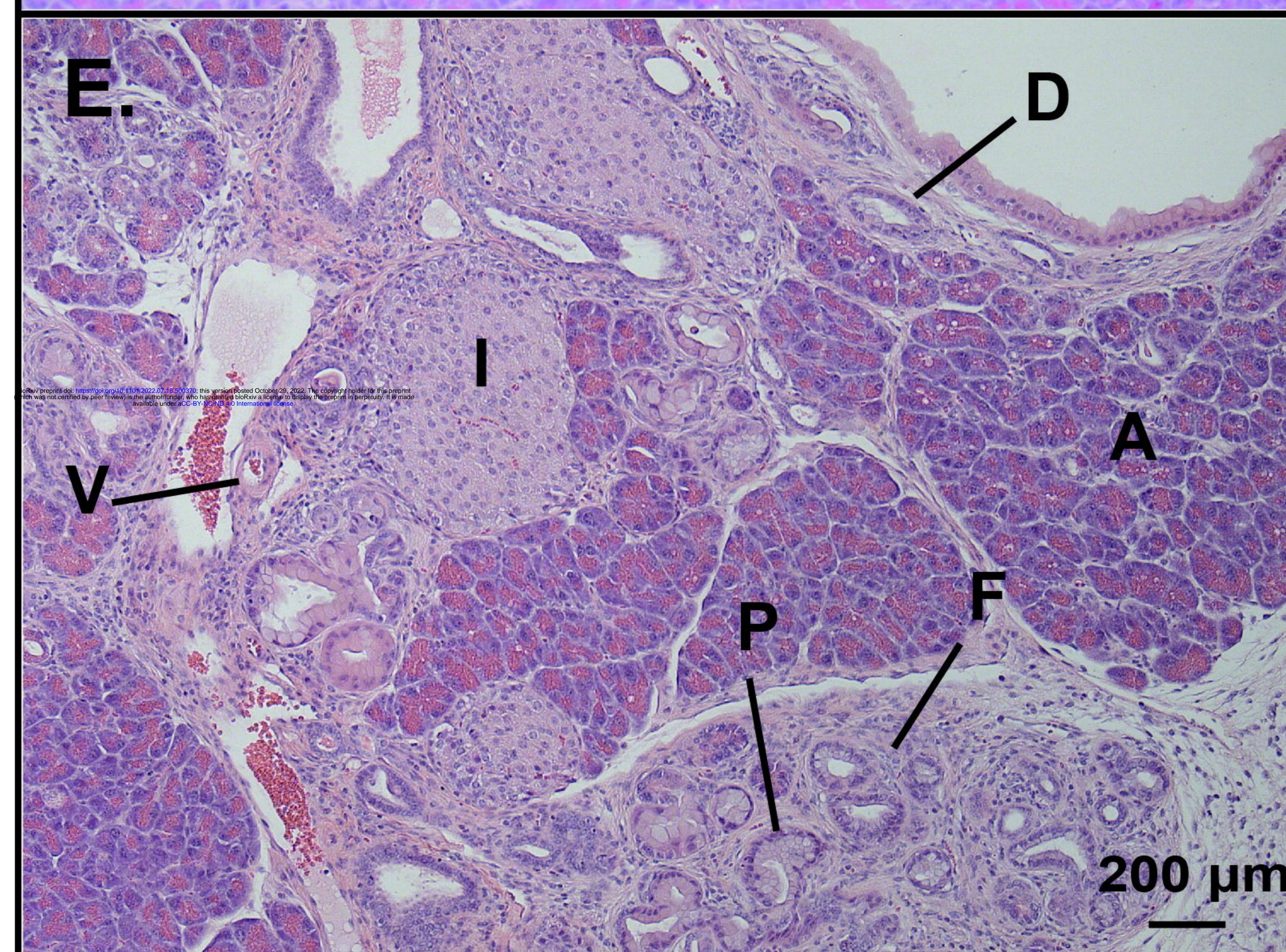
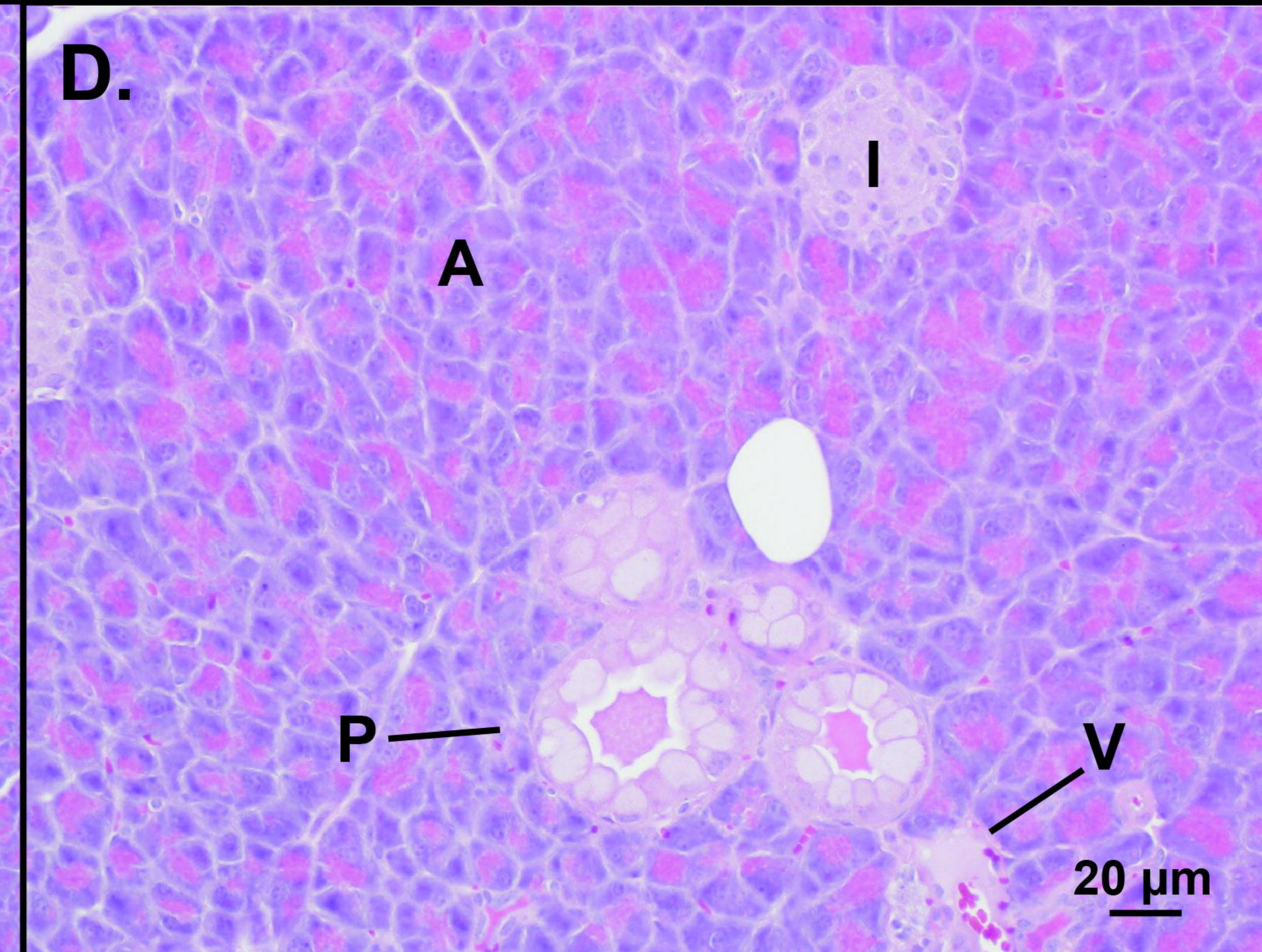
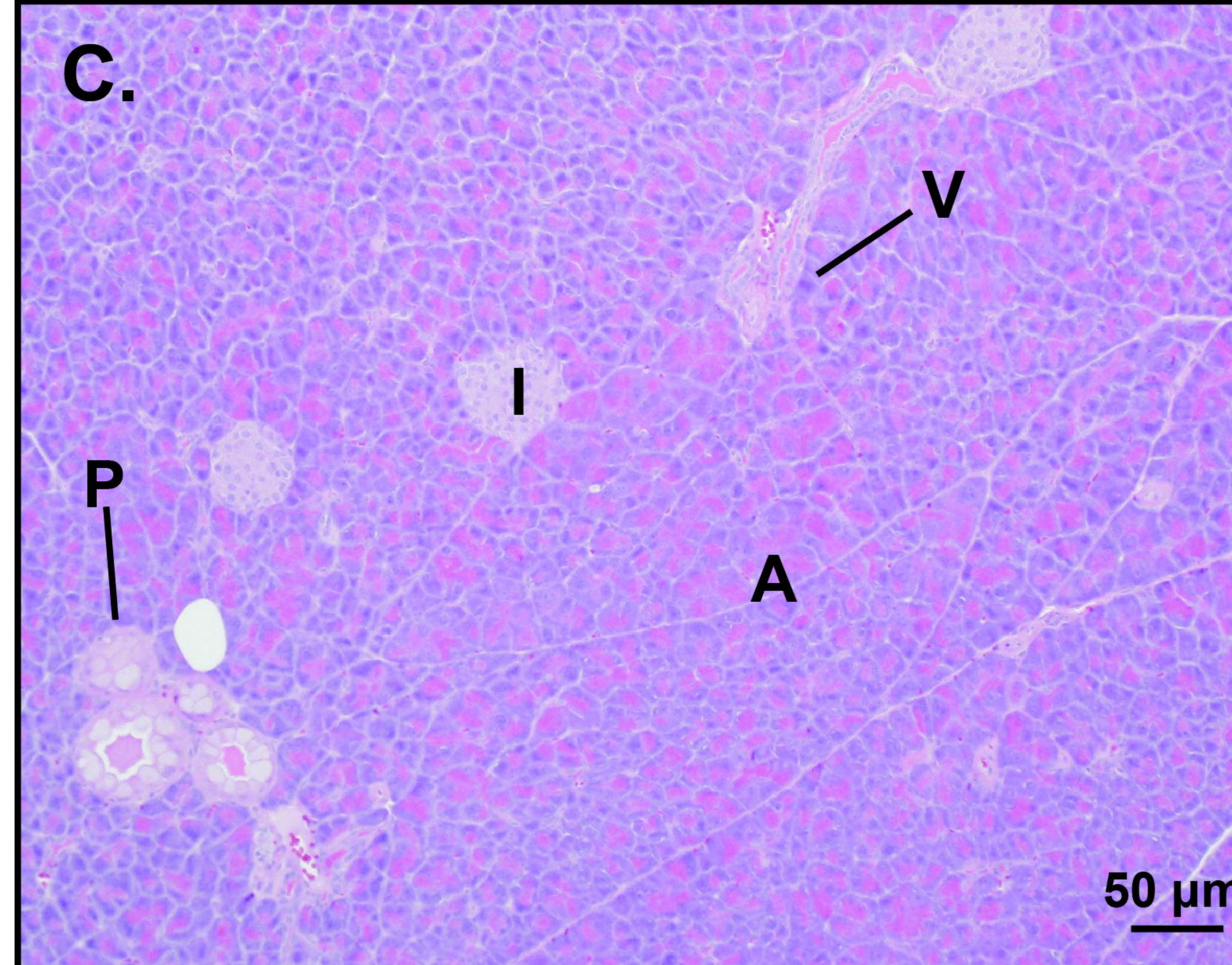
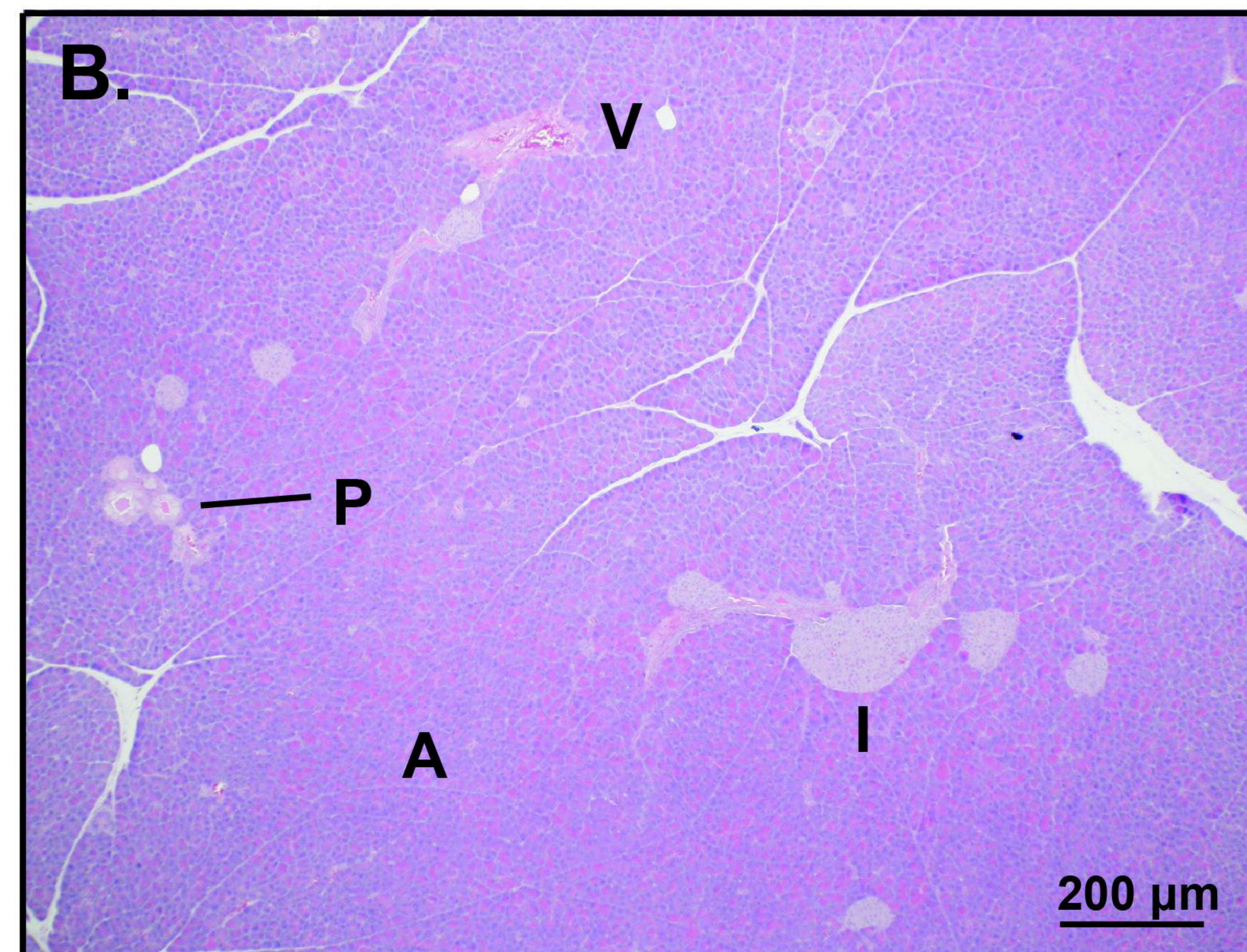
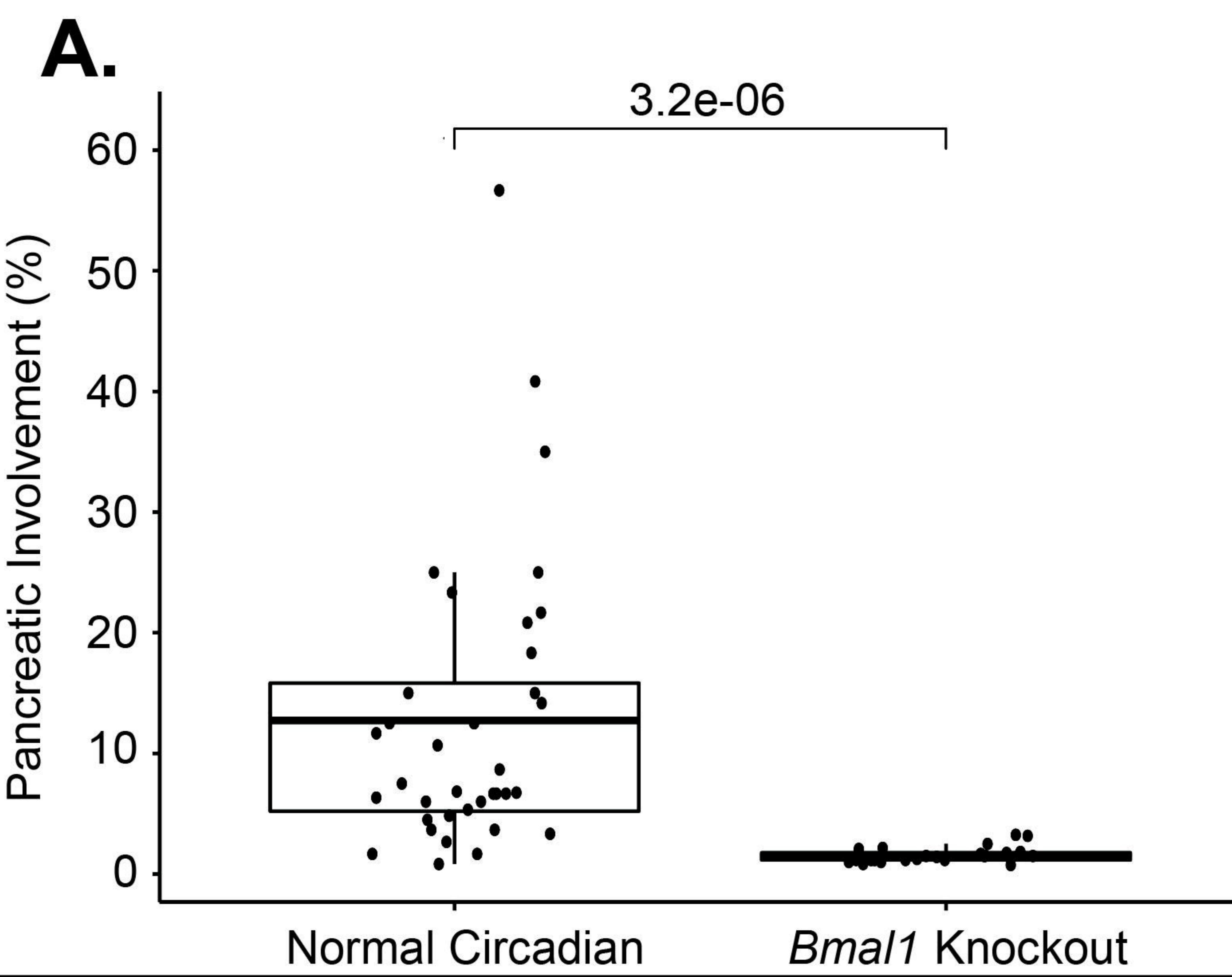
888 Wu J, Liu X, Nayak SG, Pitarresi JR, Cuitiño MC, Yu L, Hildreth BE, Thies KA, Schilling DJ, Fernandez

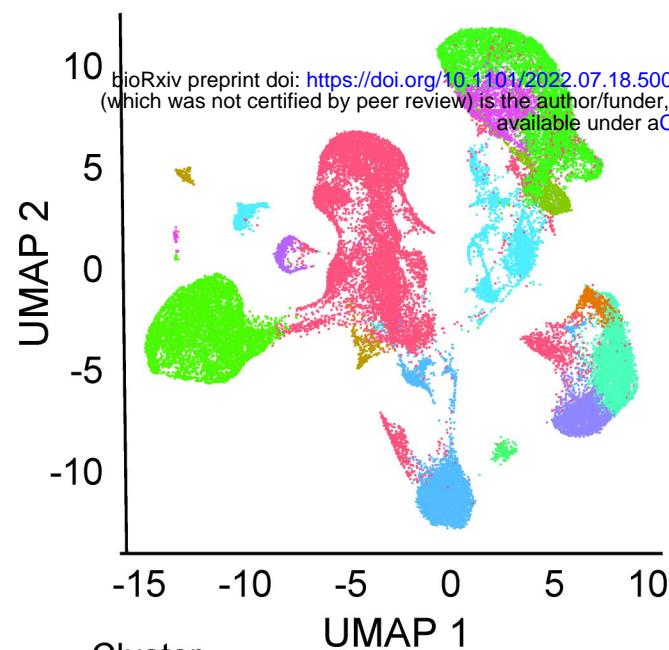
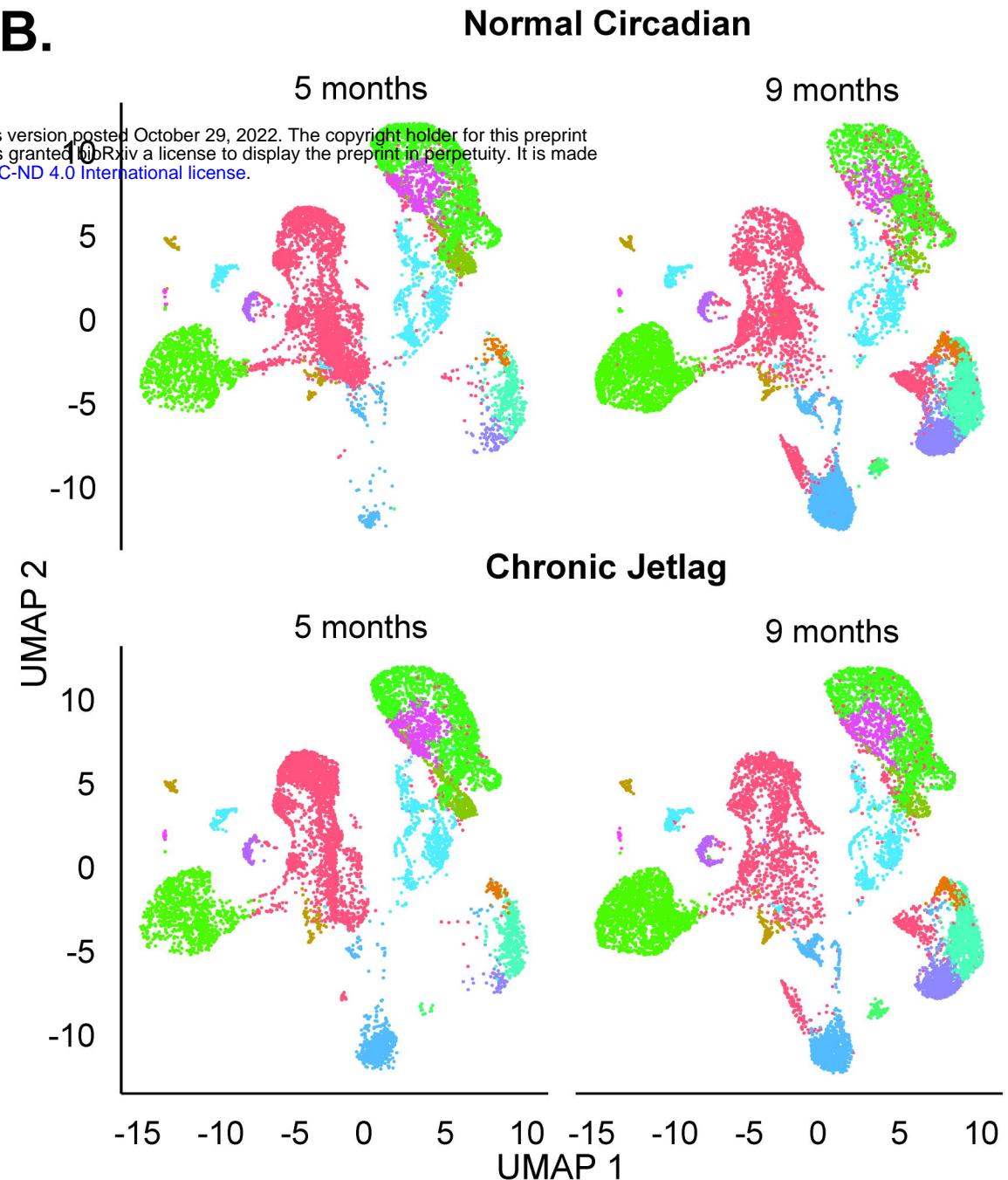
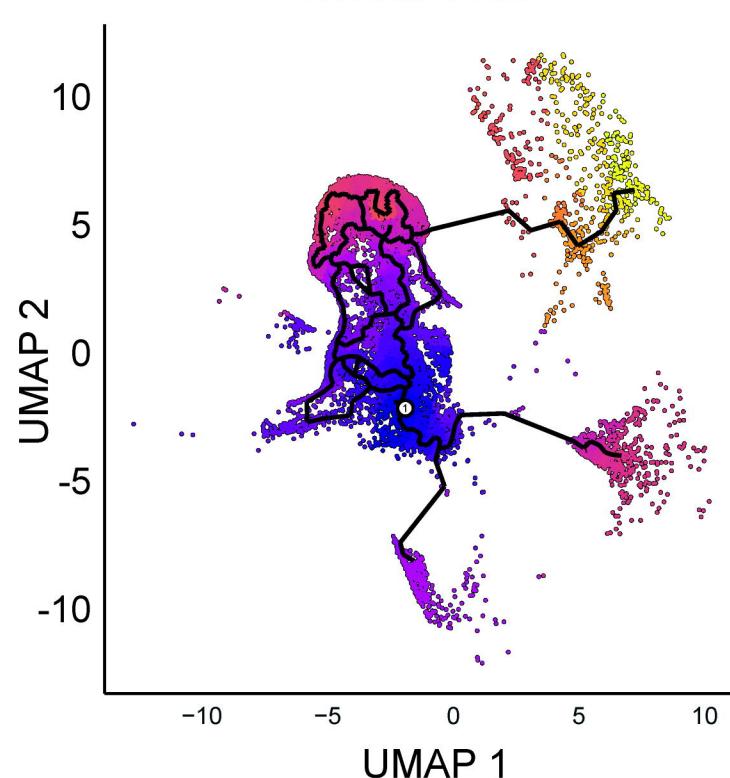
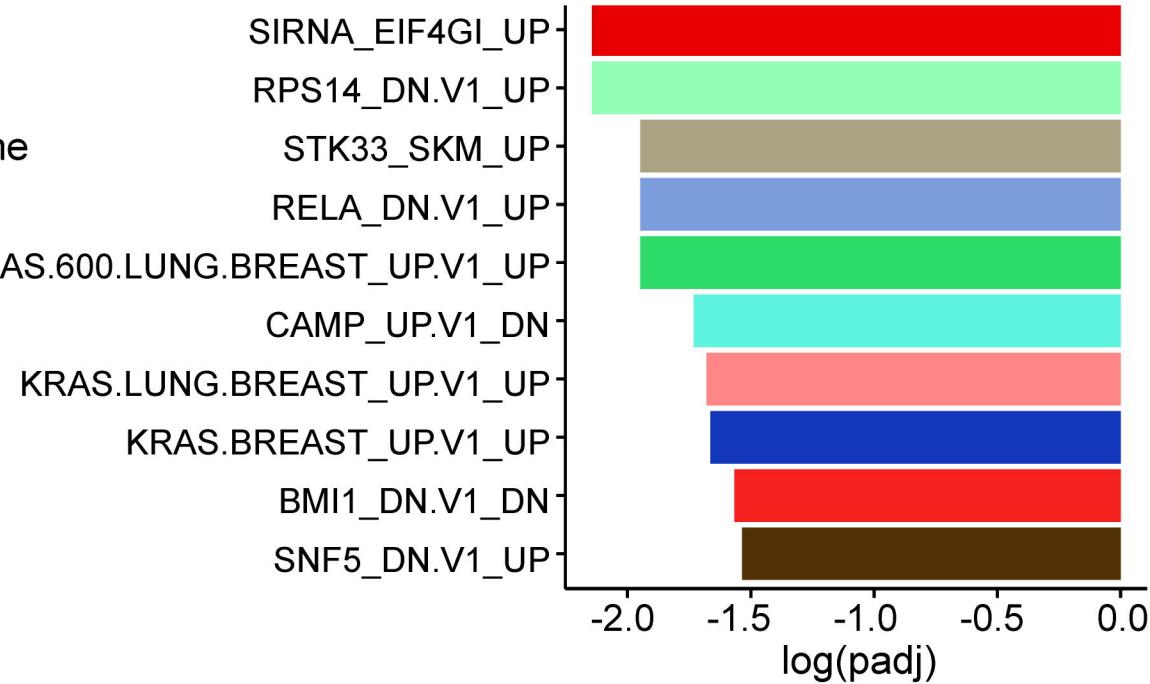
889 SA, et al. 2017. Generation of a pancreatic cancer model using a Pdx1-Flp recombinase knock-in allele.

890 *PLoS One.* 12(9):e0184984. <https://doi.org/10.1371/journal.pone.0184984>



891 Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei

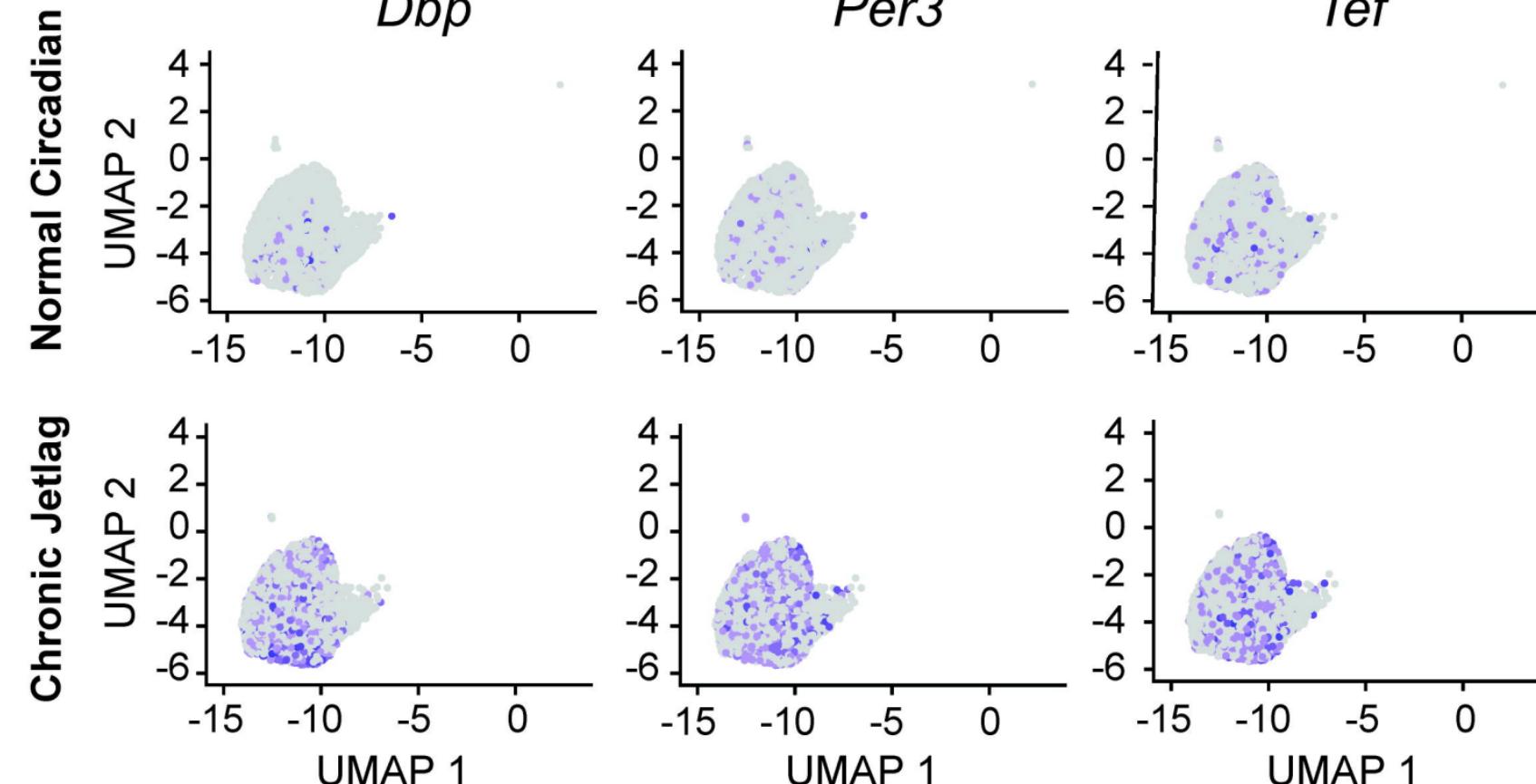
892 H. 2000. Resetting central and peripheral circadian oscillators in transgenic rats. *Science.* 288(5466):682–







893 685. <https://doi.org/10.1126/science.288.5466.682>





894 Zhang J, Francois R, Iyer R, Seshadri M, Zajac-Kaye M, Hochwald SN. 2013. Current understanding of  
895 the molecular biology of pancreatic neuroendocrine tumors. *J Natl Cancer Inst.* 105(14):1005–1017.  
896 <https://doi.org/10.1093/jnci/djt135>

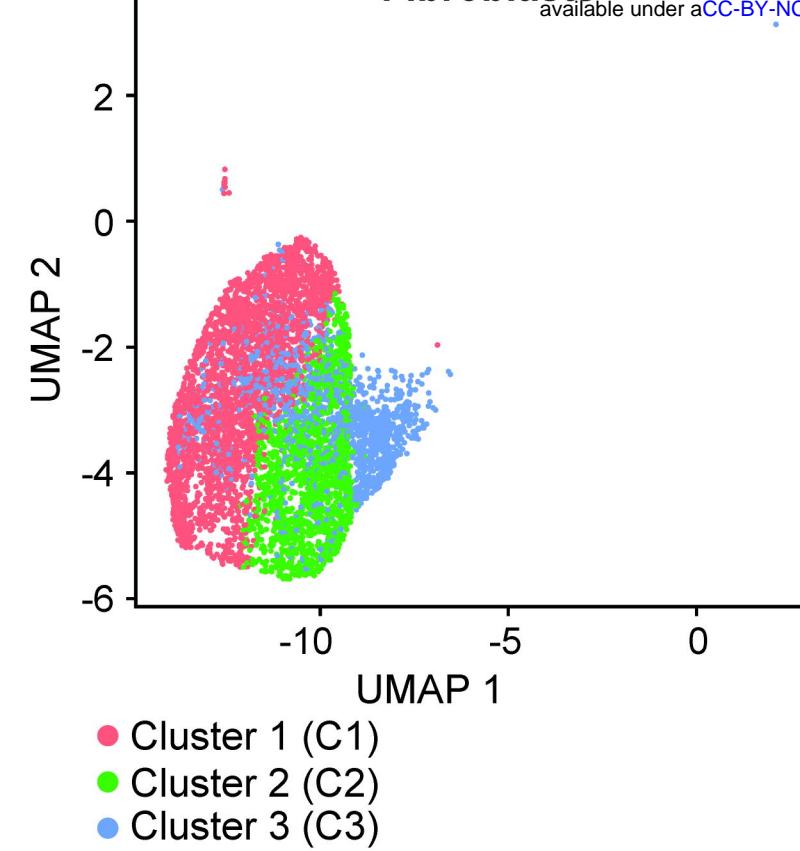
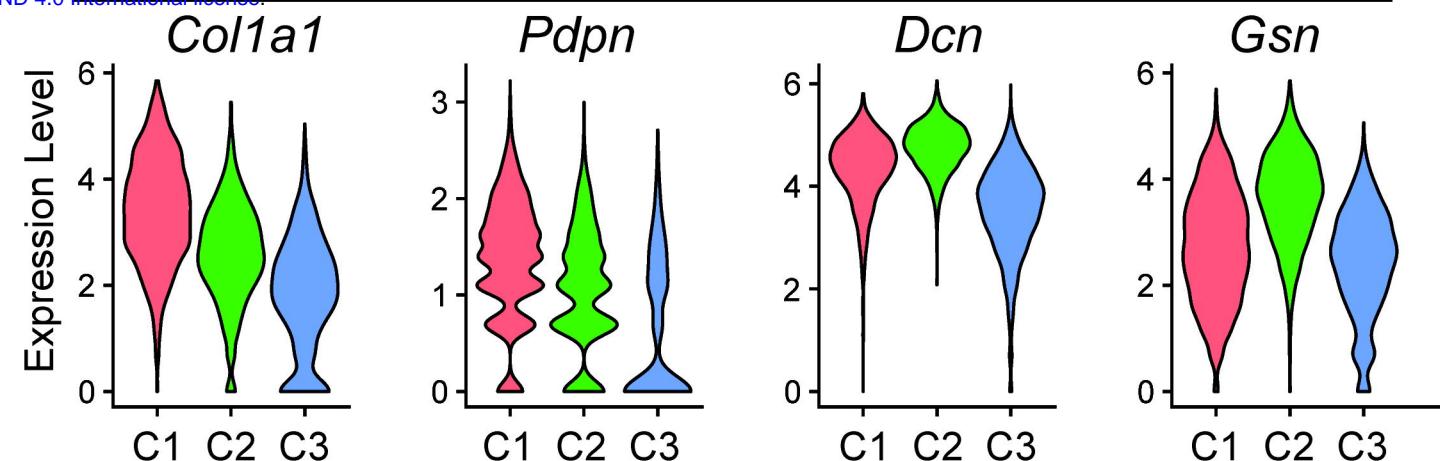
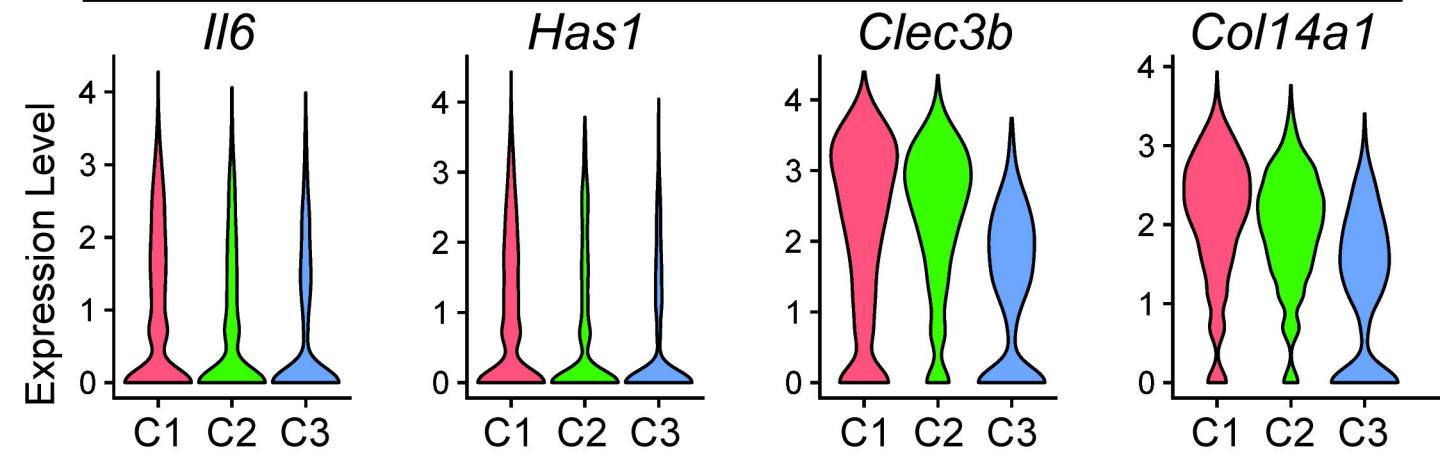
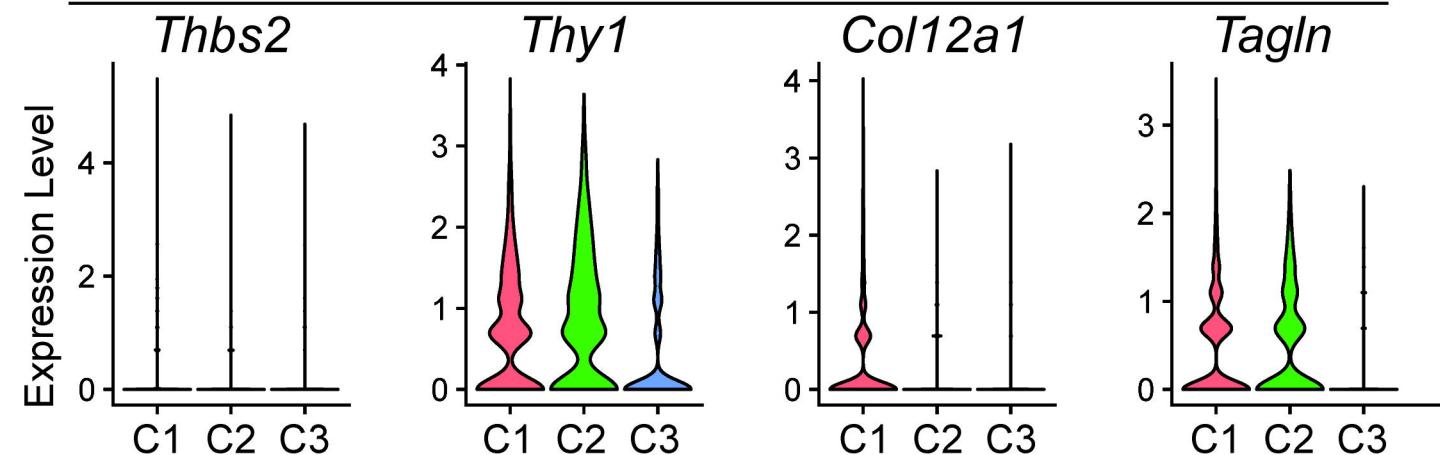
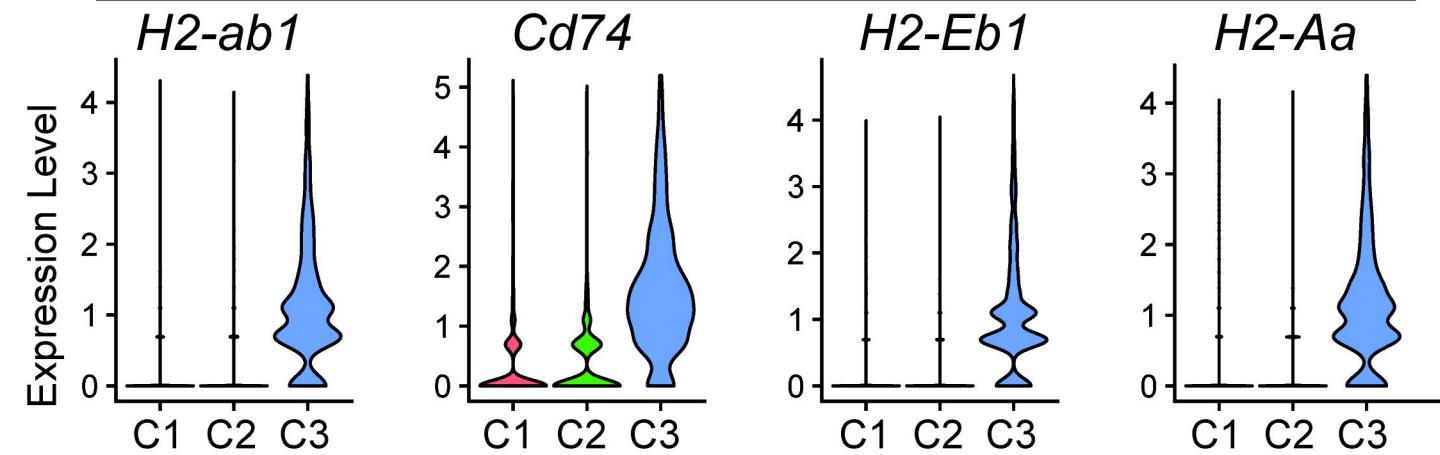
897







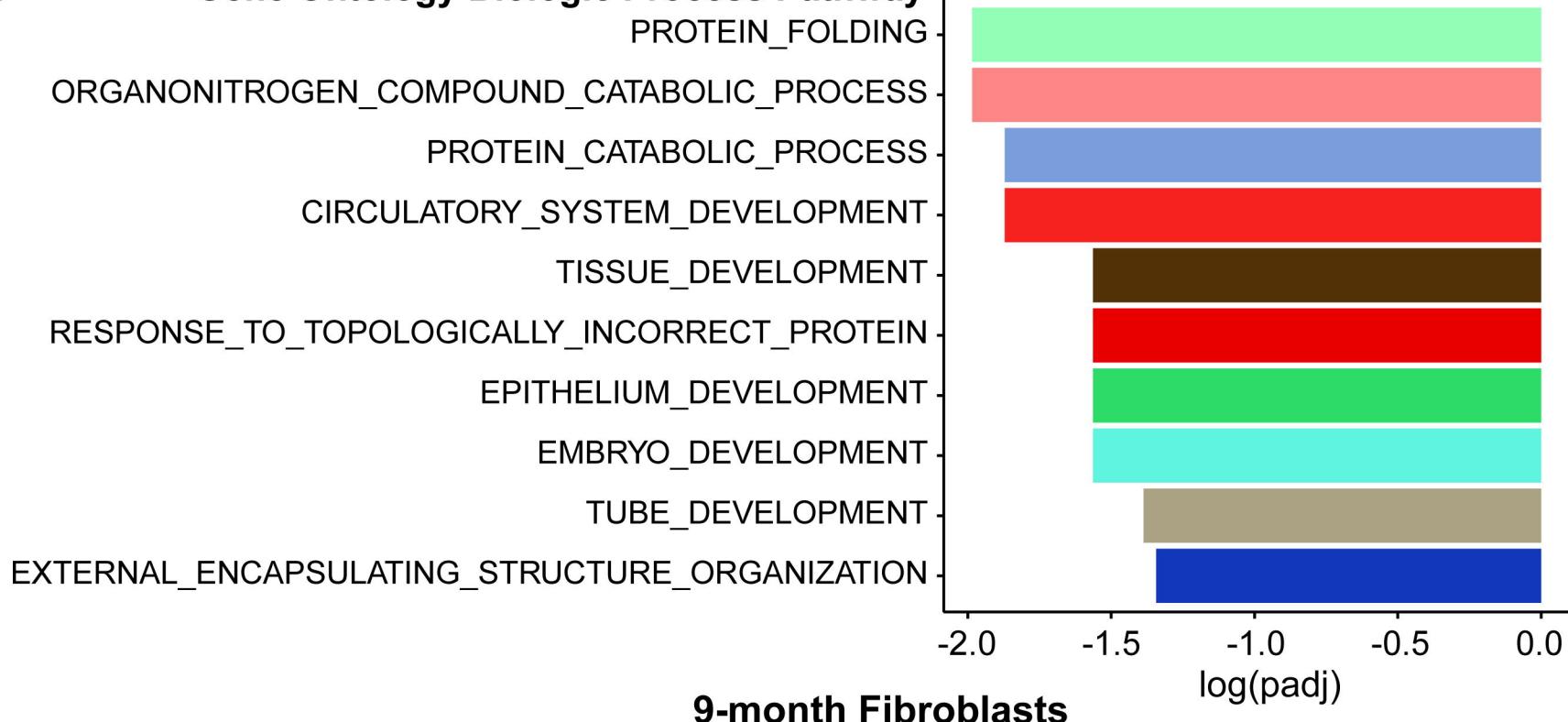

**A.****B.****C.****D.****Cancer Hallmark Pathway**






**A.**

| Cell Type              | Gene Name      | Log2 FC      | Adj p value |
|------------------------|----------------|--------------|-------------|
| Endothelial Cell       | <i>Tef</i>     | 0.326049301  | 0.001081832 |
| Fibroblast             | <i>Dbp</i>     | 0.606422244  | 7.90E-208   |
| Fibroblast             | <i>Per3</i>    | 0.574324977  | 1.74E-209   |
| Fibroblast             | <i>Tef</i>     | 0.395985989  | 2.46E-123   |
| Fibroblast             | <i>Nr1d2</i>   | 0.334812842  | 3.82E-79    |
| Fibroblast             | <i>Hlf</i>     | 0.333177448  | 5.96E-101   |
| Fibroblast             | <i>Per2</i>    | 0.270340607  | 1.22E-130   |
| Macrophage             | <i>Dbp</i>     | 0.425914793  | 4.73E-111   |
| Memory CD4 T Cell      | <i>Bhlhe40</i> | -0.480979686 | 4.00E-22    |
| Non-Classical Monocyte | <i>Dbp</i>     | 0.341766669  | 1.68E-18    |

**B.**

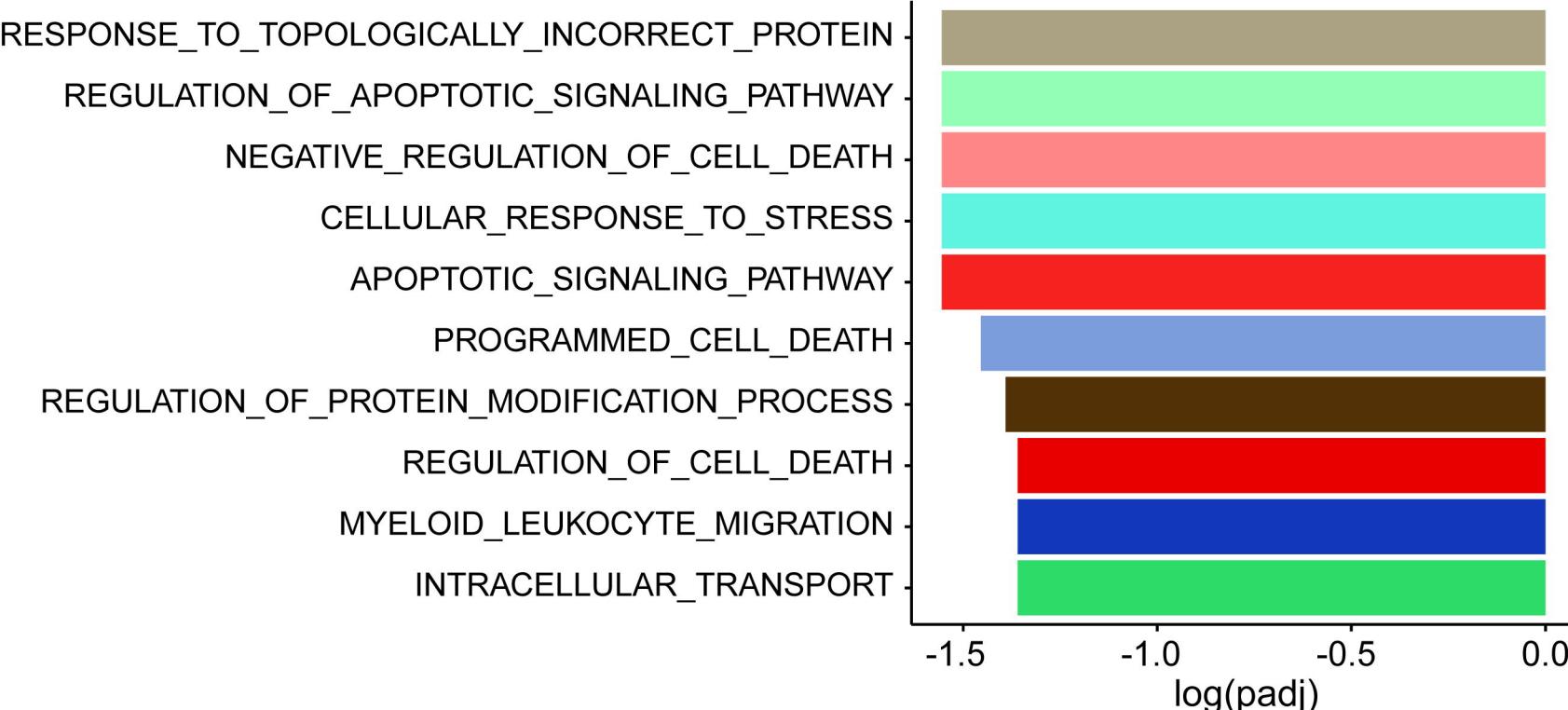
**A.**


bioRxiv preprint doi: <https://doi.org/10.1101/2022.07.18.500370>; this version posted October 29, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

**Fibroblasts****B.****Pan-Fibroblast****Inflammatory CAF****Myofibroblastic CAF****Antigen Presenting CAF**

## 5-month Fibroblasts

**A.**


### Gene Ontology Biologic Process Pathway



## 9-month Fibroblasts

**B.**

### Gene Ontology Biologic Process Pathway

