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ABSTRACT  

● Premise of the study: Robust standards to evaluate quality and completeness are 

lacking for eukaryotic structural genome annotation. Genome annotation software is 

developed with model organisms and does not typically include benchmarking to 

comprehensively evaluate the quality and accuracy of the final predictions. Plant 

genomes are particularly challenging with their large genome sizes, abundant 

transposable elements (TEs), and variable ploidies. This study investigates the impact of 

genome quality, complexity, sequence read input, and approach on protein-coding gene 

prediction. 

● Methods: The impact of repeat masking, long-read, and short-read inputs, de novo, and 

genome-guided protein evidence was examined in the context of the popular BRAKER 

and MAKER workflows for five plant genomes. Annotations were benchmarked for 

structural traits and sequence similarity. 

● Results: Benchmarks that reflect gene structures, reciprocal similarity search 

alignments, and mono-exonic/multi-exonic gene counts provide a more complete view of 

annotation accuracy. Transcripts derived from RNA-read alignments alone are not 

sufficient for genome annotation. Gene prediction workflows that combine evidence-

based and ab initio approaches are recommended, and a combination of short and long-

reads can improve genome annotation. Adding protein evidence from de novo or 

genome-guided approaches generates more putative false positives as implemented in 

the current workflows. Post-processing with functional and structural filters is highly 

recommended.  

● Discussion: While annotation of non-model plant genomes remains complex, this study 

provides recommendations for inputs and methodological approaches. We discuss a set 
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of best practices to generate an optimal plant genome annotation, and present a more 

robust set of metrics to evaluate the resulting predictions. 

 

Keywords: genome annotation, plant genomes, gene identification, BRAKER, MAKER, 

StringTie2 
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INTRODUCTION 

The first published plant genome, Arabidopsis thaliana, was released in 2000 (Arabidopsis 

Genome Initiative, 2000). Its small genome size (135Mb) and minimal repeat content stand in 

stark contrast to the plant species sequenced and assembled today (Kress et al., 2022). NCBI’s 

(https://www.ncbi.nlm.nih.gov/) genome repository contains genomes of over 900 land plant 

species, and roughly half of these are assembled to chromosome scale. The total number of 

complete reference plant genomes has more than doubled in the last five years (Marks et al., 

2021). Initiatives like the Open Green Genomes (OGG) (https://phytozome-

next.jgi.doe.gov/ogg/), 10KP (Cheng et al., 2018), and the Earth BioGenome Project (Lewin et 

al., 2022) are improving the phylogenetic representation of plant genomes by sampling 

underrepresented clades. The plant genomes published today are more likely to be polyploids 

and/or larger genomes with substantial transposable element content (Sun et al., 2022). The 

combination of high throughput sequencing advancements, particularly long reads and 

chromosome conformation capture approaches, have enabled the completion of these more 

challenging assemblies (Pucker et al., 2022). 

  

While genome assembly has seen substantial improvements in accuracy and contiguity, 

structural annotation remains challenging. This process delineates the physical positions of 

genomic features, including protein-coding genes, promoters, and regulatory elements. It can be 

followed by functional annotation, which assigns biological descriptors to the identified features. 

The accurate classification of these features provides the basis for questions focused on 

species evolution, population dynamics, and functional genomics. Errors in genome annotation 

are frequent, even among well-studied models, and are propagated through downstream 

analyses (Deutekom et al., 2019; Meyer et al., 2020; Salzberg, 2019). In most eukaryotes, 
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genome annotation is challenged by partial conservation of sequence patterns, variable lengths 

of introns, variable distances between genes, alternative splicing, and higher densities of TEs 

and pseudogenes (Kersey, 2019; Salzberg, 2019). As a result of these complexities, the 

structural annotation process requires more advanced informatic tools and skills that support the 

integration and manipulation of large datasets (Mudge & Harrow, 2016). 

 

Structural and functional genome annotation proceeds in three stages: identifying and masking 

noncoding regions (repeats); predicting physical positions of gene structures; and assigning 

biological information to the predictions (Jung et al., 2020). Repeat regions are soft-masked 

(eg., RepeatMasker (Smit, AFA, Hubley, R & Green, P., 2013-2015) and RepeatModeler2 

(Flynn et al., 2020)), which means these regions are indicated but not obscured to annotation 

software. This is followed by gene prediction, which may be ab initio (evidence-free) or 

evidenced-based. Evidence-based approaches use RNA-Seq and protein sequence similarity 

search alignments. Evidence-based approaches are often used in combination with ab initio 

(e.g. AUGUSTUS; (Stanke & Waack, 2003)) to generate models that are trained on patterns 

associated with true genes. Given the advanced state of high throughput transcriptome 

sequencing, it is common to resolve transcripts from RNA reads through genome-guided 

approaches, such as StringTie2 (Kovaka et al., 2019). Long-read cDNA sequencing through 

PacBio and Oxford Nanopore can provide additional resolution and improve the identification of 

splice variants. When extrinsic evidence from RNA-seq and protein alignments are available, 

workflow packages like MAKER (Campbell, Holt, et al., 2014; Cantarel et al., 2008; Holt & 

Yandell, 2011) and BRAKER (Brůna et al., 2021; Hoff et al., 2016, 2019) can assist in training 

ab initio prediction tools. These packages can leverage sequence data from the target species 

as well as evidence from closely related species. While these workflows can simplify the 
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integration across external evidence, downstream packages are still required to select or modify 

the resulting predictions (Banerjee et al., 2021; Gabriel et al., 2021; Haas et al., 2008). 

 

Here, we provide a comprehensive evaluation of plant genome annotation workflows, 

intentionally selecting beyond the typical model species to represent some of the more complex 

genomes under investigation today. In doing so, we evaluate the impact of repeat-masking 

using two different implementations of the RepeatModeler2 framework (Flynn et al., 2020). This 

is followed by exploring the role of read length and accuracy, and the impact of short-read and 

long-read data. Finally, we examine the contribution of protein evidence, generated from de 

novo assembly of the RNA inputs and a genome-guided assembly. These variations are 

examined in the MAKER and BRAKER frameworks to emphasize the importance of defining 

benchmarks to guide downstream filtering approaches.  Finally, the largest and most repetitive 

genome assessed in this study, Liriodendron chinense, was used to demonstrate best practices 

to refine the predictions. 

METHODS 

 

Gathering plant genome datasets- 
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Five plant genomes were chosen for this study, including Chinese tuliptree (Liriodendron 

chinense) (Chen et al. 2019), black cottonwood (Populus trichocarpa v3) (Tuskan et al. 2006), 

Chinese rose (Rosa chinensis) (Raymond et al. 2018), thale cress (Arabidopsis thaliana TAIR 

10) (Cheng et al. 2017), and a bryophyte, the common cord-moss (Funaria hygrometrica) (Kirbis 

et al., 2022) (Table S1). The genomes were selected to represent two model systems (Populus 

and Arabidopsis) with well curated structural annotations and three non-model systems that 

exclusively used computational techniques to produce the annotations. Two of these non-

models were also more divergent examples, representing the only sequenced member of their 

genus (Funaria and Liriodendron). The public assembly and annotation for each species were 

accessed from NCBI and genome completeness was estimated by searching the genome and 

annotation for the conserved single-copy orthologs in the Embryophyta odb10 BUSCO v.5.0.0 

(Simão et al., 2015). The contiguity of the reference genomes was assessed with Quast v5.0.2 

(Gurevich et al., 2013). Published annotation files were summarized with gFACs (Caballero and 

Wegrzyn, 2019).  

 
Read sets available through NCBI’s Sequence Read Archive (SRA) were accessed to provide 

transcriptomic evidence for each species and included a variety of tissue types. The Illumina 

short-read libraries were sequenced with Illumina HiSeq 2500 (100bp paired-end). The read 

sets included at least four libraries, between 20-82M reads before quality control (QC), and a 

minimum of 16M reads after QC. Pacific Biosciences Iso-Seq long-reads were accessed for 

Populus and Liriodendron, and Oxford PromethION reads were available for Rosa and 

Arabidopsis. The read sets for long-read data ranged between 161K-41M total reads per 

species (Table S2).  

 

Repeat masking and read alignment- 
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RepeatModeler2 (Flynn et al., 2020) was used to construct repeat libraries with default settings, 

and repeats were soft-masked with the libraries constructed via RepeatMasker v.4.0.6 (Smit et 

al. 2013-2015). The genomes of Arabidopsis, Funaria, Populus, and Liriodendron were 

additionally masked using RepeatModeler2 with additional LTR identification (-LTRStruct flag). 

Quality assessment of the Illumina short-reads was performed using FastQC v.0.11.7 (Andrews, 

2010) before and after trimming low-quality bases. Sickle v.1.33 (Joshi NA, 2011) was used to 

trim low-quality bases with 50bp as the minimum read length threshold. Single-end reads 

generated post trimming were excluded from RNA alignments and assembly. The trimmed short 

reads were aligned against their reference genomes using HISAT2 v2.2.0 (Kim et al., 2019). 

HISAT2 was selected for its performance in recent benchmarking studies and as the aligner of 

choice for input to Stringtie2 (Corchete et al., 2020; Musich et al., 2021). Long-read RNA data 

were obtained for four species: Arabidopsis and Rosa were sequenced with Oxford Nanopore, 

and Populus and Liriodendron were sequenced with PacBio Sequel. The long-read data sets 

were aligned against their respective genomes using Minimap2 v2.1.7 (Li, 2018, 2021).  

 

Generation of protein evidence- 

To generate protein evidence, Illumina short reads were assembled de novo using Trinity 

v.2.8.5 with a minimum contig length of 300 bp (Grabherr et al., 2011). The assembled 

transcriptomes for the multiple libraries were combined, and putative coding regions were 

predicted using TransDecoder v.5.3.0 (http://transdecoder.github.io). TransDecoder is one of 

several frame-selection methods available and performs in a comparable manner but not 

always superior in all metrics (Bolger et al., 2018). For this study, it was selected as the most 

widely used package for this purpose. Redundancy in the predicted coding regions was reduced 

after clustering at 98% identity using UCLUST, a clustering algorithm of USEARCH v.9.0.2132 

(Edgar, 2010). Frame-selected transcripts shorter than 300 bp were removed. The remaining 
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transcripts were aligned to the genome using GMAP v.2019-06-10 (Wu & Watanabe, 2005). 

The predicted proteins (from the same Transdecoder run) were aligned to the reference 

genome using GenomeThreader v 1.7.1 (Gremme, 2014).  

 

To provide protein evidence from genome-guided sources, the previously aligned Illumina short-

reads (via HISAT2) were constructed into transcripts with StringTie2 v2.2.0 (Kovaka et al., 2019; 

M. Pertea et al., 2015). Long-reads were treated similarly, along with a combination of short and 

long-reads. The predicted transcripts were extracted using gffRead (G. Pertea & Pertea, 2020) 

and frame-selected with TransDecoder. The transcriptome alignment annotation file (gff3) was 

passed to gFACs for evaluation of gene model statistics. Completeness of the aligned 

transcripts and protein sequences were estimated using BUSCO. 

 

Genome annotations- 

Each genome was tested in four primary open-source annotation softwares to predict gene 

models (Table 1). Several different runs of BRAKER v.2.1.5 (Hoff et al., 2019) and 

BRAKER/TSEBRA (Gabriel et al., 2021) were used with various combinations of RNA-Seq (long 

and short-read inputs) and protein evidence. MAKER v.3.1.3 (Cantarel et al., 2008) was run 

once with transcript and protein evidence. Finally, StringTie2 (Kovaka et al., 2019), with 

TransDecoder, was used to generate genome-guided predictions from RNA evidence alone. 
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MAKER annotation- 

MAKER (MK) was run on the soft-masked reference genomes of Arabidopsis, Populus, and 

Funaria with repeats estimated using the additional LTR detection method in RepeatModeler2 

(LTRStruct flag; RM2+). This was intended to emulate the MAKER-P (Campbell, Law, et al., 

2014) method since the original repeat and pseudogene identification protocols are deprecated. 

MK (RM2+) was executed (i.e., trained) twice. The annotations derived from MK (RM2+) used 

protein evidence generated from de novo assembled RNA-reads from Trinity. These models 

were used to train ab initio gene prediction software AUGUSTUS v.3.3.3 (Stanke & Waack, 

2003) and SNAP v. 2006-07-28 ((Korf, 2004). The Hidden Markov Models (HMMs) trained using 

AUGUSTUS and SNAP were used along with initial aligned evidence (est2genome and 

protein2genome parameters) for the second MK (RM2+) run to generate the final gene models.  

  

Assessment of gene predictions- 

The quality of genome annotation among different gene prediction methods was evaluated with 

three primary metrics: (1) the mono-exonic (single-exon) and multi-exonic (multiple exon) ratio; 

(2) conserved single-copy orthologs queried from the predicted gene models using BUSCO 

(embryophyta database v10), and (3) gene prediction assessment with EnTAP v0.10.8 (Hart et 

al., 2020) using a 70% reciprocal functional annotation approach with NCBI’s Refseq Plant and 

Uniprot databases. The mono:multi ratio was calculated from the gFACs summary report run 

with default parameters (Caballero & Wegrzyn, 2019). We regard a mono:multi ratio near 0.2 to 

be ideal and have further validated this with a larger set of model plant genomes (Table S3)  

(Jain et al. 2008). The gene prediction assessment was recorded as a percentage of sequence 

similarity hits to the total number of genes. This annotation rate depends on the phylogenetic 

placement of species relative to the databases used, but the higher the annotation rate (>80%), 
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the better the gene prediction assessment. The same is true for BUSCO since it utilizes 

OrthoDB to form its conserved sets but the recommended target score is >95% for land plants 

(Manni et al., 2021). The sensitivity and precision of the runs for Arabidopsis and Populus were 

assessed using Mikado v2.3.2 (Venturini et al., 2018), by comparing the predicted gene models 

to the current reference annotations. 

 

Post-processing filtering- 

The predicted gene models for Liriodendron were taken a step further to refine the genome 

annotation. Post-process filtering was performed using gFACs and assessed for improvement 

using BUSCO completeness scores and annotation percentage statistics. The gene models 

predicted for Liriodendron were further filtered down and the mono-exonic and multi-exonic 

genes were filtered for uniqueness (using the unique genes flag in gFACs). The mono-exonic 

genes were  filtered for the presence of protein domains using InterProScan v.5.35-74.0 and 

Pfam (Jones et al., 2014; Quevillon et al., 2005). Multi-exonic genes that did not have an 

EggNOG or a sequence similarity hit were removed, and the final annotation was assessed 

using gFACs and EnTAP.  

 

RESULTS 
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Genome sizes, repeats, and published annotations- 

The genome sizes of the five species assessed represented a 10-fold difference between the 

smallest genome of Arabidopsis (~119 Mb) and the largest of Liriodendron (~1.7 Gb) (Fig 1A; 

Table 2). Liriodendron (73.18%) and Rosa (60.58%) have higher levels of repeat content, and 

Arabidopsis has the lowest (23.9%). Arabidopsis is the most complete chromosome-scale 

genome, with seven contigs reflecting its five chromosomes and two organellar chromosomes. 

The other genomes are assembled into pseudochromosomes (with the exception of Liriodendron). 

Once the genomes were downloaded, contigs < 500 bp were removed. The published genome 

assemblies and annotations were compared in terms of completeness via BUSCO (Fig 1, Table 

2). When BUSCO is run in genome mode, it searches the genome for the set of 1614 single-

copy orthologs in the embryophyte database. Aside from Funaria, which had the lowest 

completeness score of 82.4%, the remaining plant genomes ranged from 94% to 99%. When 

we evaluated the published annotations for the same species, and ran BUSCO in protein mode, 

a slight decrease in completeness was observed in every species except Funaria and 

Arabidopsis (Fig 1B). The largest reduction in BUSCO score was observed in Liriodendron 

(98.6% to 75.1%). The discrepancy between the estimated completeness at the genome-level 

and the majority of the published annotations speaks to the challenges of achieving an accurate 

structural annotation.  

 

RepeatModeler2 (RM2) with and without the LTRStruct package (the additional LTR masking 

module) (Flynn et al. 2020) was used to soft-mask repeats in four of the genomes. The increase 

in repeat content was marginal in all species, ranging from 1% in Funaria to 5% in Populus. 

Comparisons using the LTRStruct flag were denoted as RM2+ (Table S4). 
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Transcriptome evidence- 

For the subsequent genome annotation analysis, the Illumina RNA short reads were first aligned 

to the genome. All libraries, ranging from four to 20 per species, aligned at over 97%, with the 

exception of Rosa (92%) (Table 3; Table S5). Long-read RNA libraries were aligned with 

Minimap2 for four species: Arabidopsis (Nanopore reads at 97.1%), Populus (Iso-Seq reads at 

92.01%), Liriodendron (Iso-Seq reads at 95.5%), and Rosa (Nanopore reads at 99%). The N50s 

for the long-reads range from 976 Kb in Rosa to 4.6 Kb in Liriodendron (Table S6). 

 

Transcript-derived annotations- 

The reads were assembled using StringTie2 (ST2) and Trinity. Trinity de novo assemblies of the 

Illumina short-reads generated longer transcripts, with N50s ranging from 1.2 Kb (151,265 

transcripts in total) in Funaria, to 3.06 Kb (2,839,867 transcripts) in Liriodendron. Among 

genome-guided assemblies with StringTie2 (ST2(SR)), the range was much smaller, with N50s 

ranging from 369 bp (59,741 transcripts in total) in Funaria to 2.54 Kb (37,747 transcripts) in 

Arabidopsis (Table S6). The StringTie2 (ST2(LR) and ST2(SR/LR)) range was longer, with 

N50s ranging from 1.07 Kb (20,633 transcripts in total) in Rosa ST2(LR) to 2.36 Kb (45,785 

transcripts) in Liriodendron ST2 (SR/LR) (Table 3; Table S6). The StringTie2 and Trinity 

transcripts were aligned back to the genome using GMAP after frame-selection. BUSCO scores 

for the aligned transcriptomes derived from short read data, run in transcriptome mode, ranged 

from 73% in Funaria to 83% in Rosa for Trinity, and 73% in Liriodendron to 97% in Rosa using 

StringTie2 (Table 3). The BUSCO scores were the lowest for the ST2 (LR) runs across all 

species as compared to the other StringTie2 only runs. For the ST2 (SR/LR), the BUSCO 

scores were lower than ST2 (SR), with the exception of Rosa, where the ST2 (SR/LR) was 

97.2% as opposed to 97% in ST2 (SR). In all species, ST2 (SR/LR) had higher BUSCO scores 

than ST2 (LR). Despite Trinity producing more than double the total transcripts than StringTie2, 
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the BUSCO completeness score of most StringTie2 runs were much higher than that of Trinity. 

Liriodendron remained the only exception with a slightly higher BUSCO score from Trinity. 

 

Arabidopsis and Populus were further evaluated with Mikado to compare the sensitivity and 

specificity of published annotations (Fig.4B, Table S7). Overall, StringTie2 predictions had 

higher sensitivity and precision rates compared to the Trinity runs. From this point, Trinity was 

excluded, and StringTie2 runs were compared against BRAKER and TSEBRA predictions (Fig 

4B). 

  

The mono:multi ratios produced by StringTie2 ranged from 0.15 in Populus (ST2 (LR)) to 0.53 in 

Liriodendron (ST2 (LR)), which were an improvement over the mono:multi ratios produced from 

the BRAKER annotations that ranged from 0.37 in Arabidopsis (BR (LR)) to 1.27 in Funaria (BR 

(SR/RM2+)). The BUSCO scores of the proteins predicted from BRAKER were generally higher 

than the BUSCO scores from StringTie2. For example, Arabidopsis StringTie2 runs range from 

85% (ST2 (LR)) to 95.5% in ST2 (SR), and BRAKER runs ranged from 94% (BR (LR)) to 95.9% 

(BR (SR)). However, some runs are comparable, the ST2 (SR) run with a BUSCO score of 95% 

was similar to the BR (SR) run at 95% and the BR (SR/RM2+) run at 95% in Arabidopsis. 

StringTie2 predicted models had a higher annotation rate, in general, compared to BRAKER. 

For example, the EnTAP annotation rate in Funaria was just over 40% post BRAKER, but was 

near 60% from the StringTie2 runs (Fig 2).  

 

Genome annotation with MAKER and BRAKER- 

To replicate MAKER-P’s repeat pipeline, the RM2+ genome was used for Arabidopsis, Populus, 

and Funaria for the MAKER runs. BUSCO completeness was low, compared with BRAKER 

runs, and ranged from 19.6% in Populus to 90.4% in Arabidopsis (Fig 3A). The mono:multi ratio 
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of MAKER(RM2+) for Arabidopsis was comparable to the BRAKER runs for the same species 

(0.22 for BR (SR) and BR (SR/RM2+), 0.24 for BR (LR), and 0.23 for BR (SR/LR)). The MK 

(RM2+) predictions for the total number of genes in Arabidopsis and Funaria were in the 

expected range for these species, 22K and 44K genes, respectively; whereas, only 7K genes 

were predicted for Populus. The gene lengths ranged from 1.8 Kb in Funaria to 2.3 Kb in 

Arabidopsis (Table S8). The best run for MK (RM2+) was for Arabidopsis, with a mono:multi 

ratio of 0.22 and a BUSCO score of 90.4%. On the other hand, the mono:multi ratio for Populus 

was 0.07, and the BUSCO score was 19.6%. 

The model systems, Arabidopsis and Populus, further were evaluated with Mikado to compare 

the sensitivity and specificity of the published annotations (Fig. 3B; Table S7). The sensitivity 

and precision scores for gene predictions were the lowest from MAKER then Trinity, and highest 

from TSEBRA runs. StringTie2 and BRAKER yielded similar sensitivity and specificity scores for 

Arabidopsis, whereas for Populus the sensitivity score was lower than those from  BRAKER 

runs. Given its overall low scores, MAKER was excluded from the subsequent comparisons. It 

should be noted, however, the outcomes of MAKER can be improved through the inclusion of 

external programs, such as GeneMark-ES, from BRAKER (Brůna et al., 2021).  

 

In general, BUSCO scores were higher in the BRAKER and TSEBRA runs compared to 

StringTie2 runs, mono:multi ratios were the lowest in the StringTie2 runs, and all methods 

performed equally in terms of annotation percentage (Fig 4). Overall, the gene models 

generated by BRAKER for Arabidopsis performed similarly according to BUSCO completeness 

scores. The mono:multi ratios across BRAKER runs ranged between 0.23 to 0.39, and the 

annotation percentage was consistently above 95%. Compared to the StringTie2 annotations, 

the BRAKER and TSEBRA runs had worse mono:multi ratio, and overall fewer genes. Funaria 

had more variable results in terms of mono:multi ratio, from 0.39 for BR (SR/RM2+), and 1.27 
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TSB (SR/ST2/RM2+). The annotation percentages for Funaria were lower than expected, 43% 

for BR (SR), and TSB (SR/TRINITY) had the highest annotation percentage with 53%. The 

BUSCO completeness scores of about 85% post BRAKER are comparable to those from 

StringTie2. In the case of Liriodendron post BRAKER, there were more variable mono:multi 

ratios as compared to the respective StringTie2 runs, which ranged from 0.34 to SR, and 1.04 

BR (SR/RM2+). The annotation percentages for each run were around 75%, with BUSCO 

scores between 83% for TSB (SR/LR/ST2), and 90.8% for BR (SR). Populus gene models post-

BRAKER without protein had mono:multi scores around 0.24, and with TSEBRA, the ratio 

ranged from 0.4 to 0.5. Annotation percentages also differed between TSEBRA and BRAKER 

from 75% to 87%, respectively. Rosa had overall consistent scores for BUSCO post BRAKER, 

ranging around 96%. TSEBRA runs had higher mono:multi ratios of around 0.75 and 0.37 for 

BRAKER runs (Table S8).  

 

Annotation with long reads- 

For BRAKER runs, the predicted gene lengths from the long-reads were comparable to those 

based on short-reads, with the exception of Populus. The average gene length post BR (LR) for 

Populus ranges from 2.7K to 3.4K, although some transcripts exceed 6 Kb in length. The 

longest predicted gene length was for a Liriodendron gene, estimated to be 9.3 Kb. The 

inclusion of long-reads (only) did not improve BUSCO completeness for any species, with the 

exception of Arabidopsis, where the BR (LR) BUSCO completeness was 1% higher than the BR 

(SR) run. The rise in BUSCO completeness in Arabidopsis could be due to the large number of 

long-reads included (23M across four libraries). However, the quality of  genome annotation 

does not seem correlated with depth of long-read sequencing; for example, Rosa had more 

reads (41M across 6 libraries), and the BR (LR) run had a similar BUSCO score to BR (SR) 

(96%). It should be noted that the long-reads for Arabidopsis and Rosa were sequenced with 
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ONT. The ONT reads had higher mapping rates, compared to Iso-Seq, to their respective 

genomes, 97.1% in Arabidopsis and 99% in Rosa (Table S5). The long-read inputs, regardless 

of depth or type, impact ST2 (LR) runs across all species, with a reduction of up to 10% in 

BUSCO completeness (Table S9). Finally, we note that the combination of short-reads and 

long-reads BR (SR/LR) is comparable to the BR (SR) reads in terms of BUSCO completeness, 

annotation rate and total genes predicted, but had worse mono:multi ratios overall. 

 

Refining the genome annotation for Liriodendron- 

The BRAKER runs for Liriodendron were filtered with gFACs and InterProScan to remove 

unlikely gene models (Table 4). The number of mono-exonic genes was drastically reduced 

post-filter with InterProScan. Across all runs, the mono-exonic genes numbered 11K to 25K. 

After removing mono-exonics without a protein domain annotation from the Pfam database, they 

decreased from 11K to 5K. The decrease in false positive mono-exonics resulted in an 

improved mono:multi ratio that nor range from 0.16 for BR (SR) and BR (SR/RM2+), 0.16 and 

0.23 for the StringTie2 runs, to 0.43 for the TSEBRA runs. The BUSCO scores decreased  

slightly post-filtering (1-2%). EnTAP annotation percentages ranged between 66% to 84%, with 

the TSEBRA runs, and ST2(LR) having the highest annotation rates overall.  

In terms of BUSCO completeness and mono:multi ratios, the two best performing runs (BR (SR) 

and BR (SR/LR)) were further filtered (Table 4). In this step, multi-exonic genes without an 

EggNOG hit or a sequence similarity hit through EnTAP were removed. These filtered models 

were re-assessed for mono:multi ratio, BUSCO completeness, and EnTAP annotation. The 

BUSCO completeness remained the same for BR(SR), but not for BR(SR/LR). The EnTAP 

annotation increased from 66% to 81% in BR (SR), and 67% to 87% in BR (SR/LR).  
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DISCUSSION 

BRAKER (Hoff et al., 2020) and MAKER (Cantarel et al., 2008) are currently the most popular 

eukaryotic structural annotation tools, cited 475 and 1,010  times (since 2021, as referenced in 

Google Scholar). Processes that select from multiple ab initio or aligned forms of evidence are 

gaining popularity as well though they add both time and complexity to the analyses (FINDER 

cited 22 times, (Banerjee et al., 2021); EVidenceModeler cited 381 times (Haas et al., 2008)). 

Finally, as high-throughput transcriptomics, in the form of both short and long-read evidence 

become more accessible, rapid approaches like StringTie2 (cited 451 times (Kovaka et al., 

2019)) are occasionally used as the exclusive approach, though more often, used in 

combination with the options listed above.   

 

Regardless of the methods selected, recently published benchmarks are challenged to achieve 

high values for gene sensitivity in larger genomes (Brůna et al., 2021). Within smaller and less 

complex model systems such as C. elegans and D. melanogaster, ab initio prediction results in 

gene sensitivity 49.8% and 59.5%, respectively (Brůna et al., 2021). In well studied complex 

organisms, such as humans, gene level sensitivity and specificity hovers at 48% and 43%, 

respectively (Banerjee et al., 2021). While generating benchmarks with model systems (A. 

thaliana, C. elegans, and D. melanogaster) provides more reliable metrics for comparison, they 

are infamous for not fully representing the diversity of their respective clades (Chang et al., 

2016).  

 

This study focused on four gene prediction workflows: StringTie2, MAKER, BRAKER, and 

BRAKER/TSEBRA, and examined the process across a variety of evidence inputs.  Both model 

and non-model plant genomes were considered to highlight the challenges and reinforce the 

need for downstream filtering.  
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Genome annotation benchmarks for both models and non-models- 

Among plant genomes, the total number of genes is relatively conserved and ranges from 

20,000 to just over 40,000. As such, total gene number provides an accessible preliminary 

benchmark. However, the number of genes in the reference annotation fails to assess the 

overall quality of the annotation. To measure this, we should consider additional metrics. Here, 

we describe the utility of BUSCO score, mono-exonic:multi-exonic ratio, and sequence similarity 

assessment.  

 

BUSCO allows us to identify complete, duplicated, fragmented, and missing single-copy 

orthologs shared by most seed plants (Simão et al. 2015; Seppey, Manni, and Zdobnov 2019). 

This provides a reliable benchmark in the absence of a high quality reference annotation and 

poor BUSCO scores are immediately indicative of a larger issue. However, a high BUSCO 

score is not sufficient to estimate the quality of an annotation (Fig 4B). Six of the 17 BRAKER 

runs and four of the 17 StringTie2 runs exceeded 95% completeness. However, total gene 

number, gene length, and structure varied considerably.  

 

Repeat content, especially in the form of LTRs, and pseudogenes can lead to inflated gene 

model estimates, especially in the form of mono-exonic genes (Scott et al., 2020; Trouern-Trend 

et al., 2020). We expect that eukaryotes maintain 20% or less of their gene space as mono-

exonics (Jain et al., 2008). Although the BUSCO scores were consistent, we note tremendous 

variation in mono- to multi-gene model ratios post-BRAKER. In practice, having a worse 

mono:multi ratio is preferable to having a lower BUSCO score, since missing genes, especially those 

thought to be conserved, cannot be easily rectified, and putative false positives can potentially be filtered 

through other means.    
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Sequence similarity search metrics are more complex to interpret, but when used with high-

quality and curated databases that contain full-length proteins (e.g. NCBI RefSeq), can provide 

a benchmark. Specifically, a reciprocal BLAST search requires that both the query and target in 

the search retain a minimum level of coverage in the alignment. For new plant genomes, that 

are in the darkest corners of the tree of life, this might be a less reliable metric. For species that 

may fare poorly in database comparisons, searches for protein domains can provide some level 

of confidence and we demonstrate this as a filter to reduce the mono-exonics in Liriodendron.  

 

Masking repeats in plant genomes: Repeat masking is important but may not require 

additional LTR resolution to improve performance- 

Plant genomes typically contain a large number of repeats, mostly in the form of transposable 

elements (TEs), averaging around 46% (Luo et al., 2022). Given the abundance of TEs in 

genomes, it is important to mask these in advance of gene prediction. Soft-masking involves 

changing nucleotides identified as repeats to lowercase (Yandell & Ence, 2012), signaling 

downstream programs to ignore these sequences. Of the five genomes included in this study, 

Liriodendron had the largest genome size and repeat content. Running downstream analyses 

on an unmasked genome of Liriodendron resulted in a 4-fold increase in gene predictions (Fig 

5A). Many repeats were identified as putative gene models, resulting in a large increase of total 

number of genes (Fig 5B). 

 

RepeatModeler2 is a widely used tool for TE discovery (Flynn et al., 2020). The recent release 

of RepeatModeler2 includes an optional module for more robust LTR structural detection 

(LTRStruct module) that includes the LTRharvest (Ellinghaus et al., 2008), LTRDetector 

(Valencia & Girgis, 2019), and LTR_retriever packages (Ou & Jiang, 2018). This is particularly 
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useful in identifying more divergent LTRs in the genome that may exist in fewer copies (Ou & 

Jiang, 2018; Valencia & Girgis, 2019). Among the default packages included, RepeatScout 

serves as a fast method to detect young and abundant repeat families in the genome. RECON, 

on the other hand, is more computationally intensive and is sensitive enough to detect older TE 

families. The LTRStruct module is run on the unmasked genome to identify LTR families that 

may be redundant with the families identified by the default package. This creates redundancy 

that is resolved through clustering with CD-HIT (Flynn et al., 2020). 

 

In the four species compared, additional repeat masking did not significantly improve gene 

predictions (Table S9; Fig 4). The mono:multi ratios across species were consistent before and 

after additional LTR masking (Fig 5A). The BUSCO completeness scores remained relatively 

the same, with BR (SR/RM2+) being 1% higher than BR (SR) in Arabidopsis, Funaria and 

Populus. The marginal improvement observed in these genomes could be related to the 

structure and type of LTRs, for example, better identification of divergent Ty1-copia elements 

described in the Funaria genome (Kirbis et al., 2022). While we did not include genomes with 

excessive repeat estimates (>70%), our results indicated that the optional LTRStruct module 

was not beneficial.  

 

Genome-guided transcriptome assembly for annotation: Transcripts derived directly 

from alignments are not sufficient to annotate reference genomes- 

 

Transcriptome assemblers are designed to work with primarily short RNA-Seq reads to 

construct full-length transcripts. In the presence of a high quality reference genome, genome-

guided approaches are preferred as the reads are aligned directly to the target genome in 

advance. Aligned RNA evidence provides resolution on exon boundaries, and aids in the 
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identification of splice variants. De novo approaches build graph models directly from the short 

(or long) reads to generate transcripts. The latter is much more challenging, computationally 

intensive, and prone to error.  

 

We compared the accuracy of the annotations produced by StringTie2, de novo assembled 

transcripts with Trinity and with BRAKER. The selected packages are top performers when 

compared in their respective categories of genome-guided and de novo transcriptome assembly 

(Sahraeian et al., 2017; Venturini et al., 2018). As expected, Trinity produced a higher number 

of transcripts than StringTie2, and BUSCO completeness was consistently lower (Table 3), 

except for Liriodendron. The gene models generated by StringTie2 were more numerous than 

the BRAKER gene models, more than expected for each species. It should be noted, however, 

that StringTie2 identifies splice variants by generating a splice graph and resolving conflict 

between multiple potential splice sites (Kovaka et al., 2019), whereas BRAKER trains an 

internal algorithm GeneMark-ET to find specific genes with complete support among all introns 

to be further used in training Augustus (Hoff et al., 2019). 

 

StringTie2 runs resulted in lower BUSCO completeness when compared to BRAKER and/or 

TSEBRA runs (Fig 4A; Table S11). This outcome is supported by the lack of ab initio prediction 

with genome-guided approaches. Inflated mono-exonic predictions (and lower BUSCO scores) 

were also observed in the StringTie2 genome annotation of the water strider (Microvelia 

longipes) (Toubiana et al., 2021). In our study, Rosa ST2 (SR/LR) run was closest with a 

BUSCO score of 97.2%, BR (SR/LR) of 96.9%, and TSB (SR/ST2) of 98% (Table S9, S10).  

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.10.03.510643doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510643
http://creativecommons.org/licenses/by-nc/4.0/


Vuruputoor et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant 
genomes. 

                                                     
23 

Including proteins: Genome annotations are marginally improved if protein evidence 

sourced from genome-guided predictions is used in combination with read data for high 

quality reference genomes only- 

 

The performance of StringTie2 and Trinity-derived protein evidence was assessed on the 

predicted gene models using BRAKER and TSEBRA. In this context, the genome-guided or de 

novo assembled transcripts were translated into proteins and provided as evidence to train the 

ab initio component of the pipelines. Adding protein evidence to genome annotation can target 

protein-coding genes leading to more accurate predictions than RNA-Seq evidence alone 

(Bruna, 2022). This study specifically focused on using protein evidence derived in some 

fashion from the transcriptomic inputs; however, some workflows, including BRAKER, 

recommend including external curated protein sets (i.e., UniProt, RefSeq) to provide additional 

evidence. We avoided this comparison since the protein models would represent the true 

protein models for the model systems, but it is worth noting that this could improve some 

outcomes. 

 

The TSEBRA runs of the model species, Arabidopsis and Populus were compared to the 

reference annotations. These runs were the best for the model species in terms of sensitivity 

and specificity as compared to the MAKER, StringTie2, Trinity and BRAKER runs (Fig 3B). The 

model genomes also had very similar BUSCO completeness scores, but had different 

mono:multi ratios with the addition of protein evidence The non-model plant genomes had  

higher mono:multi ratios, and especially in the case of Liriodendron, the BUSCO scores were 

overall lower than the non-protein runs. The Rosa TSB (SR/ST2) reported the highest BUSCO 

score across all runs but at the expense of more putative false positives. The higher quality of 

the Rosa genome assembly could influence the utility of the protein evidence. 
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TSEBRA runs with proteins sourced from genome-guided predictions perform similarly, but had 

lower BUSCO, mono:multi ratio and total gene number when compared to the SR only runs (Fig 

4A, Table S9). Among TSEBRA runs, Trinity fares better only for Liriodendron, which could 

indicate that genome-guided proteins are not a suitable choice for a more fragmented genome. 

This is consistent in independent assessments between de novo transcriptome assemblers and 

genome-guided assemblers with fragmented genomes (for example in Ae. albopictus (Huang et 

al., 2016). The total number of genes predicted by TSEBRA and BRAKER runs remained 

largely the same across all species (Table S9). However, the number of mono-exonic genes 

increased, whereas the multi-exonic genes decreased across all TSEBRA runs in comparison to 

the BRAKER runs without proteins across all species. The gene lengths also decreased, as 

expected from the increase in mono-exonics.  

 

Initial examination of the EnTAP reciprocal BLAST assessment revealed high annotation rates 

for the non-model species when protein evidence was included, particularly the multi-exonics 

(whereas the mono-exonic percentage remained the same) (Table S9). However, this increase 

in multi-exonic annotation proved to be an artifact since the total number of multi-exonic models 

was reduced. Direct comparison of the predictions revealed that 40% of multi-exonics were 

actually split into mono-exonic predictions when comparing the BR(SR) to the TSB (SR/ST2) 

gene models predicted using Liriodendron (Table S15). 

 

Long-read transcriptomes: Long-reads can be paired with short-reads to improve the 

quality of the resulting models- 

Long-reads generated from platforms such as Oxford Nanopore or PacBio have the potential to 

resolve splice variants and assemble transcripts more accurately than traditional Illumina RNA-

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.10.03.510643doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510643
http://creativecommons.org/licenses/by-nc/4.0/


Vuruputoor et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant 
genomes. 

                                                     
25 

Seq (Amarasinghe et al., 2020). While long-reads can independently generate transcriptomes, it 

is recommended to have a combination of short and long reads to achieve greater depth, 

improved error profiles, and gain more evidence for splice site resolution (Amarasinghe et al., 

2020; Gonzalez-Ibeas et al., 2016; Watson & Warr, 2019).  

 

In this study, we utilized both ONT and Iso-Seq long-reads. In the latter, we relied on raw reads 

(not the error-corrected CCS reads) in our comparisons for genome annotations using long-

reads. In all cases, long-reads (alone) did not outperform short-reads for the BRAKER runs. 

However, in some cases, the combination of short-read and long-read inputs was beneficial. 

The higher error rate Iso-Seq reads from Populus and Liriodendron produced comparable, but 

lower, BUSCO scores compared to the BR (SR) runs. In contrast, the ONT long-reads used for 

Arabidopsis and Rosa in the combined runs (BR (SR/LR)) had slightly better BUSCO 

completeness as compared to the BR (SR) runs, and similar mono:multi ratios. Overall, the 

lower error profile of using ONT reads, supplemented with short-read data, as well as using high 

quality reference genomes, support the higher BUSCO completeness scores.  

 

Best Practices for Plant Genome Annotation- 

Given existing tools, we recommend that investigators utilize RepeatModeler2 to mask their 

genome of interest with the default settings available in v2 (Flynn et al. 2020). Following soft-

masking, RNA-Seq short reads (between 4-10 libraries, paired-end, minimum 15M reads per 

library) are generally sufficient for annotation. While we did not comprehensively investigate the 

impact of tissue type, it is recommended to sample from multiple tissues when possible (Kress 

et al., 2022). In our study, we did not observe a difference in the annotation completeness 

among species with a higher number of short-read libraries, although we did not comprehensively 

evaluate the difference of using fewer libraries within a single species.  
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Sequencing of long-read libraries remains more expensive than generating deep Illumina short-

read RNA-Seq. In most cases, the short-reads were sufficient as input. The notable exceptions 

include the BR (SR/LR), as they were comparable to only BR (SR) across most species. The 

lower error-profile Nanopore reads were more beneficial when combined with short-reads.  

 

BRAKER and TSEBRA outperformed runs of MAKER, StringTie2 and Trinity with default 

settings. It should be noted that the authors did not comprehensively benchmark MAKER with 

multiple training runs of AUGUSTUS as recommended, which could have further improved 

results. However, previous benchmarking studies also support lower performance of MAKER 

(Banerjee et al., 2021; Hoff et al., 2020). Among the BRAKER runs executed in the model 

plants, Arabidopsis and Populus, the TSEBRA runs were the best runs. TSEBRA also appears 

to perform the best for Rosa but would require substantial filtering to remove false-positives. 

Among the less contiguous assemblies (Funaria and Liriodendron), BR (SR) runs performed the 

best in terms of BUSCO completeness, mono:multi ratios, and EnTAP annotation rates. For 

draft genomes, BRAKER runs with short-reads, or short-reads and long-reads, when high 

quality long-read transcripts from deeper sequencing are available, is advised. 

 

Regardless of approach, existing pipelines do not provide appropriate summary statistics or 

robust methods for filtering unlikely gene models.  All methods produce more putative false 

positives than desired. We recommend utilizing reciprocal BLAST searches with well curated 

databases containing targets with full-length proteins (such as NCBI’s RefSeq) to identify 

fragmented models. We also recommend filtering and removing mono-exonics that do not have 

a protein domain. Finally, we recommend structural filters to remove unlikely gene structures 

(splice sites, start sites, incompletes, etc).  
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In this study, we demonstrated the impact of post-filtering on the most complex genome 

assessed in this study, Liriodendron. We improved the published annotation across all 

benchmarks evaluated in this study following a new BR(SR) run (Table 4; (Chen et al., 2019)). 

The filters reduced the overall number of putative false positives and increased the overall rate 

of annotation, with minimal reduction to BUSCO completeness.  

 

Data Availability: All scripts and data used is available through 

https://www.protocols.io/blind/3A33C8E3B76511EC84CA0A58A9FEAC02 . The public data 

(NCBI SRA and genome assembly accessions) for the reference genomes, short-reads, and 

long-reads are listed in Table S2.  

 

Acknowledgements  

The authors would like to thank the Institute for Systems Genomics (ISG) and Computational 

Biology Core at UConn for HPC services. Thanks go to Dr. Bernard Goffinet for his careful 

review of this manuscript. This work was supported by the National Science Foundation awards, 

DEB-1753811 and DBI-1943371. 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.10.03.510643doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510643
http://creativecommons.org/licenses/by-nc/4.0/


Vuruputoor et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant 
genomes. 

                                                     
28 

LITERATURE CITED 

Amarasinghe, S. L., Su, S., Dong, X., Zappia, L., Ritchie, M. E., & Gouil, Q. (2020). 

Opportunities and challenges in long-read sequencing data analysis. Genome Biology, 

21(1), 30. 

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Available 

online. Retrieved May, 17, 2018. 

Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant 

Arabidopsis thaliana. Nature, 408(6814), 796–815. 

Banerjee, S., Bhandary, P., Woodhouse, M., Sen, T. Z., Wise, R. P., & Andorf, C. M. (2021). 

FINDER: an automated software package to annotate eukaryotic genes from RNA-Seq 

data and associated protein sequences. BMC Bioinformatics, 22(1), 205. 

Bolger, M. E., Arsova, B., & Usadel, B. (2018). Plant genome and transcriptome annotations: 

from misconceptions to simple solutions. Briefings in Bioinformatics, 19(3), 437–449. 

Bruna, T. (2022). Unsupervised algorithms for automated gene prediction in novel eukaryotic 

genomes. https://smartech.gatech.edu/handle/1853/67297 

Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M., & Borodovsky, M. (2021). BRAKER2: 

automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported 

by a protein database. NAR Genomics and Bioinformatics, 3(1), lqaa108. 

Caballero, M., & Wegrzyn, J. (2019). gFACs: Gene Filtering, Analysis, and Conversion to Unify 

Genome Annotations Across Alignment and Gene Prediction Frameworks. Genomics, 

Proteomics & Bioinformatics, 17(3), 305–310. 

Campbell, M. S., Holt, C., Moore, B., & Yandell, M. (2014). Genome Annotation and Curation 

Using MAKER and MAKER-P. Current Protocols in Bioinformatics / Editoral Board, 

Andreas D. Baxevanis ... [et Al.], 48, 4.11.1–39. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.10.03.510643doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510643
http://creativecommons.org/licenses/by-nc/4.0/


Vuruputoor et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant 
genomes. 

                                                     
29 

Campbell, M. S., Law, M., Holt, C., Stein, J. C., Moghe, G. D., Hufnagel, D. E., Lei, J., 

Achawanantakun, R., Jiao, D., Lawrence, C. J., Ware, D., Shiu, S.-H., Childs, K. L., Sun, 

Y., Jiang, N., & Yandell, M. (2014). MAKER-P: A Tool Kit for the Rapid Creation, 

Management, and Quality Control of Plant Genome Annotations. Plant Physiology, 164(2), 

513–524. 

Cantarel, B. L., Korf, I., Robb, S. M. C., Parra, G., Ross, E., Moore, B., Holt, C., Sánchez 

Alvarado, A., & Yandell, M. (2008). MAKER: an easy-to-use annotation pipeline designed 

for emerging model organism genomes. Genome Research, 18(1), 188–196. 

Chang, C., Bowman, J. L., & Meyerowitz, E. M. (2016). Field Guide to Plant Model Systems. 

Cell, 167(2), 325–339. 

Cheng, S., Melkonian, M., Smith, S. A., Brockington, S., Archibald, J. M., Delaux, P.-M., Li, F.-

W., Melkonian, B., Mavrodiev, E. V., Sun, W., Fu, Y., Yang, H., Soltis, D. E., Graham, S. 

W., Soltis, P. S., Liu, X., Xu, X., & Wong, G. K.-S. (2018). 10KP: A phylodiverse genome 

sequencing plan. GigaScience, 7(3), 1–9. 

Chen, J., Hao, Z., Guang, X., Zhao, C., Wang, P., Xue, L., Zhu, Q., Yang, L., Sheng, Y., Zhou, 

Y., Xu, H., Xie, H., Long, X., Zhang, J., Wang, Z., Shi, M., Lu, Y., Liu, S., Guan, L., … Shi, 

J. (2019). Liriodendron genome sheds light on angiosperm phylogeny and species-pair 

differentiation. Nature Plants, 5(1), 18–25. 

Corchete, L. A., Rojas, E. A., Alonso-López, D., De Las Rivas, J., Gutiérrez, N. C., & Burguillo, 

F. J. (2020). Systematic comparison and assessment of RNA-seq procedures for gene 

expression quantitative analysis. Scientific Reports, 10(1), 19737. 

Deutekom, E. S., Vosseberg, J., van Dam, T. J. P., & Snel, B. (2019). Measuring the impact of 

gene prediction on gene loss estimates in Eukaryotes by quantifying falsely inferred 

absences. PLoS Computational Biology, 15(8), e1007301. 

Edgar, R. (2010). Usearch. https://www.osti.gov/biblio/1137186 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.10.03.510643doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510643
http://creativecommons.org/licenses/by-nc/4.0/


Vuruputoor et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant 
genomes. 

                                                     
30 

Ellinghaus, D., Kurtz, S., & Willhoeft, U. (2008). LTRharvest, an efficient and flexible software 

for de novo detection of LTR retrotransposons. BMC Bioinformatics, 9, 18. 

Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. 

(2020). RepeatModeler2 for automated genomic discovery of transposable element 

families. Proceedings of the National Academy of Sciences of the United States of America, 

117(17), 9451–9457. 

Gabriel, L., Hoff, K. J., Brůna, T., Borodovsky, M., & Stanke, M. (2021). TSEBRA: transcript 

selector for BRAKER. BMC Bioinformatics, 22(1), 566. 

Gonzalez-Ibeas, D., Martinez-Garcia, P. J., Famula, R. A., Delfino-Mix, A., Stevens, K. A., 

Loopstra, C. A., Langley, C. H., Neale, D. B., & Wegrzyn, J. L. (2016). Assessing the Gene 

Content of the Megagenome: Sugar Pine (Pinus lambertiana). G3 , 6(12), 3787–3802. 

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., 

Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., 

Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). 

Full-length transcriptome assembly from RNA-Seq data without a reference genome. 

Nature Biotechnology, 29(7), 644–652. 

Gremme, G. (2014). GenomeThreader Gene Prediction Software. 

https://genomethreader.org/doc/gthmanual.pdf 

Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for 

genome assemblies. Bioinformatics , 29(8), 1072–1075. 

Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., White, O., Buell, C. R., & 

Wortman, J. R. (2008). Automated eukaryotic gene structure annotation using 

EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology, 

9(1), R7. 

Hart, A. J., Ginzburg, S., Xu, M. S., Fisher, C. R., Rahmatpour, N., Mitton, J. B., Paul, R., & 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.10.03.510643doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510643
http://creativecommons.org/licenses/by-nc/4.0/


Vuruputoor et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant 
genomes. 

                                                     
31 

Wegrzyn, J. L. (2020). EnTAP: Bringing faster and smarter functional annotation to non-

model eukaryotic transcriptomes. Molecular Ecology Resources, 20(2), 591–604. 

Hoff, K. J., Brŭna, T., Lomsadze, A., & Stanke, M. (2020). Fully Automated and Accurate 

Annotation of Eukaryotic Genomes with BRAKER2. Poster Presented at. 

https://www.researchgate.net/profile/Katharina-Hoff-

2/publication/338831355_Fully_Automated_and_Accurate_Annotation_of_Eukaryotic_Gen

omes_with_BRAKER2/links/5e2d9102299bf152167f6424/Fully-Automated-and-Accurate-

Annotation-of-Eukaryotic-Genomes-with-BRAKER2.pdf 

Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M., & Stanke, M. (2016). BRAKER1: 

Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. 

Bioinformatics , 32(5), 767–769. 

Hoff, K. J., Lomsadze, A., Borodovsky, M., & Stanke, M. (2019). Whole-Genome Annotation 

with BRAKER. Methods in Molecular Biology , 1962, 65–95. 

Holt, C., & Yandell, M. (2011). MAKER2: an annotation pipeline and genome-database 

management tool for second-generation genome projects. BMC Bioinformatics, 12, 491. 

Huang, X., Chen, X.-G., & Armbruster, P. A. (2016). Comparative performance of transcriptome 

assembly methods for non-model organisms. BMC Genomics, 17, 523. 

Jain, M., Khurana, P., Tyagi, A. K., & Khurana, J. P. (2008). Genome-wide analysis of intronless 

genes in rice and Arabidopsis. Functional & Integrative Genomics, 8(1), 69–78. 

Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., 

Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., 

Yong, S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: genome-scale protein function 

classification. Bioinformatics , 30(9), 1236–1240. 

Joshi NA, F. J. N. (2011). Sickle: A sliding-window, adaptive, quality-based trimming tool for 

FastQ files (Version Version 1.33) [Computer software]. https://github.com/najoshi/sickle 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.10.03.510643doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510643
http://creativecommons.org/licenses/by-nc/4.0/


Vuruputoor et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant 
genomes. 

                                                     
32 

Jung, H., Ventura, T., Chung, J. S., Kim, W.-J., Nam, B.-H., Kong, H. J., Kim, Y.-O., Jeon, M.-

S., & Eyun, S.-I. (2020). Twelve quick steps for genome assembly and annotation in the 

classroom. PLoS Computational Biology, 16(11), e1008325. 

Kersey, P. J. (2019). Plant genome sequences: past, present, future. Current Opinion in Plant 

Biology, 48, 1–8. 

Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome 

alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8), 

907–915. 

Kirbis, A., Rahmatpour, N., Dong, S., Yu, J., van Gessel, N., Waller, M., Reski, R., Lang, D., 

Rensing, S. A., Temsch, E. M., Wegrzyn, J. L., Goffinet, B., Liu, Y., & Szövényi, P. (2022). 

Genome dynamics in mosses: Extensive synteny coexists with a highly dynamic gene 

space. In bioRxiv (p. 2022.05.17.492078). https://doi.org/10.1101/2022.05.17.492078 

Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5(1), 59. 

Kovaka, S., Zimin, A. V., Pertea, G. M., Razaghi, R., Salzberg, S. L., & Pertea, M. (2019). 

Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome 

Biology, 20(1), 278. 

Kress, W. J., Soltis, D. E., Kersey, P. J., Wegrzyn, J. L., Leebens-Mack, J. H., Gostel, M. R., 

Liu, X., & Soltis, P. S. (2022). Green plant genomes: What we know in an era of rapidly 

expanding opportunities. Proceedings of the National Academy of Sciences of the United 

States of America, 119(4). https://doi.org/10.1073/pnas.2115640118 

Lewin, H. A., Richards, S., Lieberman Aiden, E., Allende, M. L., Archibald, J. M., Bálint, M., 

Barker, K. B., Baumgartner, B., Belov, K., Bertorelle, G., Blaxter, M. L., Cai, J., Caperello, 

N. D., Carlson, K., Castilla-Rubio, J. C., Chaw, S.-M., Chen, L., Childers, A. K., Coddington, 

J. A., … Zhang, G. (2022). The Earth BioGenome Project 2020: Starting the clock. 

Proceedings of the National Academy of Sciences of the United States of America, 119(4). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.10.03.510643doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510643
http://creativecommons.org/licenses/by-nc/4.0/


Vuruputoor et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant 
genomes. 

                                                     
33 

https://doi.org/10.1073/pnas.2115635118 

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics , 34(18), 

3094–3100. 

Li, H. (2021). New strategies to improve minimap2 alignment accuracy. Bioinformatics . 

https://doi.org/10.1093/bioinformatics/btab705 

Luo, X., Chen, S., & Zhang, Y. (2022). PlantRep: a database of plant repetitive elements. Plant 

Cell Reports, 41(4), 1163–1166. 

Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., & Zdobnov, E. M. (2021). BUSCO 

Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic 

Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Molecular Biology 

and Evolution, 38(10), 4647–4654. 

Marks, R. A., Hotaling, S., Frandsen, P. B., & VanBuren, R. (2021). Representation and 

participation across 20 years of plant genome sequencing. Nature Plants, 7(12), 1571–

1578. 

Meyer, C., Scalzitti, N., Jeannin-Girardon, A., Collet, P., Poch, O., & Thompson, J. D. (2020). 

Understanding the causes of errors in eukaryotic protein-coding gene prediction: a case 

study of primate proteomes. BMC Bioinformatics, 21(1), 513. 

Mudge, J. M., & Harrow, J. (2016). The state of play in higher eukaryote gene annotation. 

Nature Reviews. Genetics, 17(12), 758–772. 

Musich, R., Cadle-Davidson, L., & Osier, M. V. (2021). Comparison of Short-Read Sequence 

Aligners Indicates Strengths and Weaknesses for Biologists to Consider. Frontiers in Plant 

Science, 12, 657240. 

Ou, S., & Jiang, N. (2018). LTR_retriever: A Highly Accurate and Sensitive Program for 

Identification of Long Terminal Repeat Retrotransposons. Plant Physiology, 176(2), 1410–

1422. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.10.03.510643doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510643
http://creativecommons.org/licenses/by-nc/4.0/


Vuruputoor et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant 
genomes. 

                                                     
34 

Pertea, G., & Pertea, M. (2020). GFF Utilities: GffRead and GffCompare. F1000Research, 9. 

https://doi.org/10.12688/f1000research.23297.2 

Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T., & Salzberg, S. L. 

(2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. 

Nature Biotechnology, 33(3), 290–295. 

Pucker, B., Irisarri, I., de Vries, J., & Xu, B. (2022). Plant genome sequence assembly in the era 

of long reads: Progress, challenges and future directions. Quantitative Plant Biology, 3, e5. 

Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., & Lopez, R. (2005). 

InterProScan: protein domains identifier. Nucleic Acids Research, 33(Web Server issue), 

W116–W120. 

Sahraeian, S. M. E., Mohiyuddin, M., Sebra, R., Tilgner, H., Afshar, P. T., Au, K. F., Bani Asadi, 

N., Gerstein, M. B., Wong, W. H., Snyder, M. P., Schadt, E., & Lam, H. Y. K. (2017). 

Gaining comprehensive biological insight into the transcriptome by performing a broad-

spectrum RNA-seq analysis. Nature Communications, 8(1), 59. 

Salzberg, S. L. (2019). Next-generation genome annotation: we still struggle to get it right. 

Genome Biology, 20(1), 92. 

Scott, A. D., Zimin, A. V., Puiu, D., Workman, R., Britton, M., Zaman, S., Caballero, M., Read, A. 

C., Bogdanove, A. J., Burns, E., Wegrzyn, J., Timp, W., Salzberg, S. L., & Neale, D. B. 

(2020). A Reference Genome Sequence for Giant Sequoia. G3 , 10(11), 3907–3919. 

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). 

BUSCO: assessing genome assembly and annotation completeness with single-copy 

orthologs. Bioinformatics , 31(19), 3210–3212. 

Smit, AFA, Hubley, R & Green, P. (2013-2015). RepeatMasker Open-4.0. RepearMasker. 

http://www.repeatmasker.org 

Stanke, M., & Waack, S. (2003). Gene prediction with a hidden Markov model and a new intron 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.10.03.510643doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510643
http://creativecommons.org/licenses/by-nc/4.0/


Vuruputoor et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant 
genomes. 

                                                     
35 

submodel. Bioinformatics , 19 Suppl 2, ii215–ii225. 

Sun, Y., Shang, L., Zhu, Q.-H., Fan, L., & Guo, L. (2022). Twenty years of plant genome 

sequencing: achievements and challenges. In Trends in Plant Science (Vol. 27, Issue 4, pp. 

391–401). https://doi.org/10.1016/j.tplants.2021.10.006 

Toubiana, W., Armisén, D., Dechaud, C., Arbore, R., & Khila, A. (2021). Impact of male trait 

exaggeration on sex-biased gene expression and genome architecture in a water strider. 

BMC Biology, 19(1), 89. 

Trouern-Trend, A. J., Falk, T., Zaman, S., Caballero, M., Neale, D. B., Langley, C. H., 

Dandekar, A. M., Stevens, K. A., & Wegrzyn, J. L. (2020). Comparative genomics of six 

Juglans species reveals disease-associated gene family contractions. The Plant Journal: 

For Cell and Molecular Biology, 102(2), 410–423. 

Valencia, J. D., & Girgis, H. Z. (2019). LtrDetector: A tool-suite for detecting long terminal repeat 

retrotransposons de-novo. BMC Genomics, 20(1), 450. 

Venturini, L., Caim, S., Kaithakottil, G. G., Mapleson, D. L., & Swarbreck, D. (2018). Leveraging 

multiple transcriptome assembly methods for improved gene structure annotation. 

GigaScience, 7(8). https://doi.org/10.1093/gigascience/giy093 

Watson, M., & Warr, A. (2019). Errors in long-read assemblies can critically affect protein 

prediction [Review of Errors in long-read assemblies can critically affect protein prediction]. 

Nature Biotechnology, 37(2), 124–126. 

Wu, T. D., & Watanabe, C. K. (2005). GMAP: a genomic mapping and alignment program for 

mRNA and EST sequences. Bioinformatics , 21(9), 1859–1875. 

Yandell, M., & Ence, D. (2012). A beginner’s guide to eukaryotic genome annotation. Nature 

Reviews. Genetics, 13(5), 329–342. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.10.03.510643doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510643
http://creativecommons.org/licenses/by-nc/4.0/


Vuruputoor et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant 
genomes. 

                                                     
36

FIGURES 

Figure 1: Genome size, repeat content, and BUSCO completeness for the five plant genomes:

Arabidopsis, Populus, Funaria, Rosa, and Liriodendron. Each pie represents the BUSCO

completeness. Green denotes the completeness score, orange indicates the fragmented score,

and blue indicates the missing score from BUSCO. (A) BUSCO scores estimated from the

published assemblies. (B) BUSCO scores estimated from protein-coding gene predictions

from the published annotations.  
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Figure 2: Comparing metrics between BRAKER (blue) and StringTie2 (red) predictions. (A)

mono:multi ratios, (B) BUSCO comparisons, and (C) EnTAP annotation percentages of the

gene models. The yellow region indicates the ideal value for each of the metrics. 
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Figure 3: Comparison of BUSCO, sensitivity, and false positive rates between the Arabidopsis

and Populus annotations. (A) BUSCO completeness scores for the MAKER and BRAKER runs

of Arabidopsis and Populus, green denotes the completeness score, orange indicates the

fragmented score, and blue indicates the missing score from BUSCO (B) False positive rates

and sensitivity scores from Mikado against published annotations for Arabidopsis (red color) and

Populus (gold color) for the MAKER, BRAKER, Trinity, and StringTie2  runs. The scores were

assessed using MIKADO. Multiple points per run reflect differences in input read type and

repeat-masking. 
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Figure 4: Comparison of mono:multi ratios (A), BUSCO completeness scores (B), and EnTAP

annotation rates (C) across all species between the runs of different input types and software,

i.e., MAKER (MK-green) BRAKER (BK-light blue),TSEBRA (TSB-dark blue) and StringTie2
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(ST2-red). The yellow rectangle represents the target scores for each benchmark. RM2+-

RepeatModeler2 with LTRStruct. 

 

Figure 5: (A) The effect of soft-masking on gene prediction in Liriodendron. Performing

structural annotation on the unmasked Liriodendron genome results in inflation in the mono and

multi- exonic genes. Blue denotes the BRAKER (BR) runs for both genomes, SR denotes short-

reads, and LR denotes long reads. The lighter shade represents mono-exonics, and the darker

shade represents the multi-exonics. (B) More genes predicted using the unmasked genome

(blue), as compared to only one gene predicted in this region with the masked genome (red).
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The green track shows the LTR elements in the genome as identified by RepeatModeler2. The 

RNA alignment reads show a read pile-up at the predicted gene (masked track).  

TABLES 

Table 1: Notations for the different runs performed for benchmarking. SR- Short reads, LR- 

Long reads, and RM2+- RepeatModeler2 with the additional repeat masking. 

 

Run  Arabidopsis Funaria Populus Liriodendron Rosa 

StringTie2 

ST2 (SR) Short-reads  X X  X  X X 

ST2 (LR) Long-reads  X  X X X 

ST2(SR/LR) Short and long-reads  X  X X X 

BRAKER 

BR (SR) Short-reads  X X  X  X X 

BR (LR) Long-reads  X  X X X 

BR (SR/LR) Short and long-reads  X  X X X 

BR (SR/RM2+) Short-reads with  additional 
masking for LTRs  

X X X X  

TSEBRA 

TSB (SR/TRINITY) Short-reads and de novo 
proteins 

X X X X X 

TSB (SR/ST2) Short-reads and genome-
guided proteins 

X X X X X 

TSB (LR/ST2) Long-reads and genome-
guided proteins 

X  X X X 

TSB (SR/LR/ST2) Short and long-reads and 
genome-guided proteins 

X  X X X 

TSB (SR/ST2/RM2+) Short-reads and genome-
guided proteins with 
additional masking for LTRs  

X X X X  

MAKER 

MK (RM2+) Short-reads with additional 
masking for LTRs 

X X X   

 

Table 2: Genome assembly and annotation statistics for the five published plant genomes 

Species 
Genome 

size  
Total scaffolds 
(chromosomes) N50  Repeat content 

BUSCO Completeness 

Genome Annotation 
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Arabidopsis thaliana 119 Mb 7 (5) 23.46 Mb 15.2% 99.30% 99.60% 

Funaria hygrometrica 327 Mb 687 (26) 1.48 Mb 42.35% 85.60% 86.60% 

Liriodendron chinense 1,742 Mb 3,711 (21) 3.53 Mb 73.18% 98.60% 75.10% 

Populus trichocarpa 434 Mb 1,446 (19) 19.47 Mb 35.90% 98.80% 98.30% 

Rosa chinensis 515 Mb 55 (7) 69.64 Mb 60.53% 98.80% 97.30% 

 

Table 3: Comparison between genome-guided (StringTie2- ST2) and de novo (Trinity) genome 

annotations. SR denotes short reads, LR for Long reads, RM for RepeatModeler2, and RM2+ 

for RepeatModeler2 with the LTRStruct flag. 

Species RM
% 

RM2+
% 

Total 
short-
reads 
(total 
libraries) 

Total 
long-
reads  
(total 
libraries) 

Total 
Trinity 
transcrip
ts (N50) 

Total 
ST2 
transcr
ipts 
(SR) 
(N50) 

Total 
ST2 
transcrip
ts (LR) 
(N50) 

Total ST2 
transcrip
ts 
(SR/LR) 
(N50) 

BUSCO transcript 
alignments (%) 

Trinit
y 
(SR) 

ST2 
(SR) 

ST2 
(SR/L
R) 

Arabidopsis 15.2 16.5 
511,277,12

6 (9) 
23,134,06

8 (4) 
319,434 

(2726) 
37,747 
(2538) 

36,241 
(1599) 

42,265 
(1363) 82.7 95.5 93.6 

Funaria 42.3 43.1 
549,205,03

0 (9)  
151,265 

(1198) 
59,741 

(369)   72.9 84.5  
Liriodendro
n 73.2 72.7 

1,408,831,6
70 (20) 

10,437,02
9 (1) 

2,839,867 
(3055) 

62,341 
(1041) 

33,895 
(1815) 

45,785 
(2361) 92.5 87.1 77.3

Populus 35.9 45.1 
267,403,77

2 (5) 
161,334 

(1) 
283,572 

(1837) 
56,468 

(402) 
20,633 
(1074) 

37,222 
(1869) 71.3 73.3 65.3

Rosa 60.5  
134,461,06

8 (4) 
41,929,38

3 (6) 
812,407 

(2187) 
53,708 

(672) 
74397 
(1866) 

105,639 
(1605) 88.8 97 97.2 

 

Table 4: Gene model statistics for Liriodendron after two rounds of structural and functional 

filters. BR- BRAKER, ST2- StringTie2, TSB- TSEBRA, SR- Short reads, LR- Long-reads, RM2+- 

RepeatModeler2 with LTRStruct.  

Liriodendron 
Annotation Total genes Mono:Multi Ratio BUSCO % EnTAP % 

 
Published annotation 35261 0.7 75.1 63 
Mono-exonic filters 
BR (LR) 39031 0.21 87.4 69 
BR (SR) * 41065 0.16 90.2 66 
BR (SR/LR) * 40420 0.16 90.3 67 
BR (SR/RM2+) 40740 0.17 88.2 67 
ST2 (SR) 51804 0.16 86.5 80 
ST2 (LR) 27012 0.23 65 84 
ST2 (SR/LR) 36345 0.24 70.6 82 
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TSB (LR/ST2) 33132 0.43 82.3 84 
TSB (SR/LR/ST2) 33964 0.43 82.4 84 
TSB (SR/ST) 32898 0.41 83.4 84 
TSB (SR/ST2/RM2+) 33637 0.45 82.8 84 
TSB (SR/TRINITY) 34646 0.42 84 83 
+Multi-exonic filters 
BR (SR) 30219 0.24 90.3 81 
BR (SR/LR) 30035 0.23 86.9 87 

* denotes the two best annotation sets 
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