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ABSTRACT

Premise of the study: Robust standards to evaluate quality and completeness are
lacking for eukaryotic structural genome annotation. Genome annotation software is
developed with model organisms and does not typically include benchmarking to
comprehensively evaluate the quality and accuracy of the final predictions. Plant
genomes are particularly challenging with their large genome sizes, abundant
transposable elements (TEs), and variable ploidies. This study investigates the impact of
genome quality, complexity, sequence read input, and approach on protein-coding gene
prediction.

Methods: The impact of repeat masking, long-read, and short-read inputs, de novo, and
genome-guided protein evidence was examined in the context of the popular BRAKER
and MAKER workflows for five plant genomes. Annotations were benchmarked for
structural traits and sequence similarity.

Results: Benchmarks that reflect gene structures, reciprocal similarity search
alignments, and mono-exonic/multi-exonic gene counts provide a more complete view of
annotation accuracy. Transcripts derived from RNA-read alignments alone are not
sufficient for genome annotation. Gene prediction workflows that combine evidence-
based and ab initio approaches are recommended, and a combination of short and long-
reads can improve genome annotation. Adding protein evidence from de novo or
genome-guided approaches generates more putative false positives as implemented in
the current workflows. Post-processing with functional and structural filters is highly
recommended.

Discussion: While annotation of non-model plant genomes remains complex, this study

provides recommendations for inputs and methodological approaches. We discuss a set
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of best practices to generate an optimal plant genome annotation, and present a more

robust set of metrics to evaluate the resulting predictions.

Keywaords: genome annotation, plant genomes, gene identification, BRAKER, MAKER,

StringTie2
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INTRODUCTION

The first published plant genome, Arabidopsis thaliana, was released in 2000 (Arabidopsis
Genome Initiative, 2000). Its small genome size (135Mb) and minimal repeat content stand in
stark contrast to the plant species sequenced and assembled today (Kress et al., 2022). NCBI's
(https://www.ncbi.nim.nih.gov/) genome repository contains genomes of over 900 land plant
species, and roughly half of these are assembled to chromosome scale. The total number of
complete reference plant genomes has more than doubled in the last five years (Marks et al.,
2021). Initiatives like the Open Green Genomes (OGG) (https://phytozome-
next.jgi.doe.gov/ogg/), 10KP (Cheng et al., 2018), and the Earth BioGenome Project (Lewin et
al., 2022) are improving the phylogenetic representation of plant genomes by sampling
underrepresented clades. The plant genomes published today are more likely to be polyploids
and/or larger genomes with substantial transposable element content (Sun et al., 2022). The
combination of high throughput sequencing advancements, particularly long reads and
chromosome conformation capture approaches, have enabled the completion of these more

challenging assemblies (Pucker et al., 2022).

While genome assembly has seen substantial improvements in accuracy and contiguity,
structural annotation remains challenging. This process delineates the physical positions of
genomic features, including protein-coding genes, promoters, and regulatory elements. It can be
followed by functional annotation, which assigns biological descriptors to the identified features.
The accurate classification of these features provides the basis for questions focused on
species evolution, population dynamics, and functional genomics. Errors in genome annotation
are frequent, even among well-studied models, and are propagated through downstream

analyses (Deutekom et al., 2019; Meyer et al., 2020; Salzberg, 2019). In most eukaryotes,
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genome annotation is challenged by partial conservation of sequence patterns, variable lengths

of introns, variable distances between genes, alternative splicing, and higher densities of TEs
and pseudogenes (Kersey, 2019; Salzberg, 2019). As a result of these complexities, the
structural annotation process requires more advanced informatic tools and skills that support the

integration and manipulation of large datasets (Mudge & Harrow, 2016).

Structural and functional genome annotation proceeds in three stages: identifying and masking
noncoding regions (repeats); predicting physical positions of gene structures; and assigning
biological information to the predictions (Jung et al., 2020). Repeat regions are soft-masked
(eg., RepeatMasker (Smit, AFA, Hubley, R & Green, P., 2013-2015) and RepeatModeler2
(Flynn et al., 2020)), which means these regions are indicated but not obscured to annotation
software. This is followed by gene prediction, which may be ab initio (evidence-free) or
evidenced-based. Evidence-based approaches use RNA-Seq and protein sequence similarity
search alignments. Evidence-based approaches are often used in combination with ab initio
(e.g. AUGUSTUS; (Stanke & Waack, 2003)) to generate models that are trained on patterns
associated with true genes. Given the advanced state of high throughput transcriptome
sequencing, it is common to resolve transcripts from RNA reads through genome-guided
approaches, such as StringTie2 (Kovaka et al., 2019). Long-read cDNA sequencing through
PacBio and Oxford Nanopore can provide additional resolution and improve the identification of
splice variants. When extrinsic evidence from RNA-seq and protein alignments are available,
workflow packages like MAKER (Campbell, Holt, et al., 2014; Cantarel et al., 2008; Holt &
Yandell, 2011) and BRAKER (Brdna et al., 2021; Hoff et al., 2016, 2019) can assist in training
ab initio prediction tools. These packages can leverage sequence data from the target species

as well as evidence from closely related species. While these workflows can simplify the
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integration across external evidence, downstream packages are still required to select or modify

the resulting predictions (Banerjee et al., 2021; Gabriel et al., 2021; Haas et al., 2008).

Here, we provide a comprehensive evaluation of plant genome annotation workflows,
intentionally selecting beyond the typical model species to represent some of the more complex
genomes under investigation today. In doing so, we evaluate the impact of repeat-masking
using two different implementations of the RepeatModeler2 framework (Flynn et al., 2020). This
is followed by exploring the role of read length and accuracy, and the impact of short-read and
long-read data. Finally, we examine the contribution of protein evidence, generated from de
novo assembly of the RNA inputs and a genome-guided assembly. These variations are
examined in the MAKER and BRAKER frameworks to emphasize the importance of defining
benchmarks to guide downstream filtering approaches. Finally, the largest and most repetitive
genome assessed in this study, Liriodendron chinense, was used to demonstrate best practices

to refine the predictions.

METHODS

Gathering plant genome datasets-
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Five plant genomes were chosen for this study, including Chinese tuliptree (Liriodendron
chinense) (Chen et al. 2019), black cottonwood (Populus trichocarpa v3) (Tuskan et al. 2006),
Chinese rose (Rosa chinensis) (Raymond et al. 2018), thale cress (Arabidopsis thaliana TAIR
10) (Cheng et al. 2017), and a bryophyte, the common cord-moss (Funaria hygrometrica) (Kirbis
et al., 2022) (Table S1). The genomes were selected to represent two model systems (Populus
and Arabidopsis) with well curated structural annotations and three non-model systems that
exclusively used computational techniques to produce the annotations. Two of these non-
models were also more divergent examples, representing the only sequenced member of their
genus (Funaria and Liriodendron). The public assembly and annotation for each species were
accessed from NCBI and genome completeness was estimated by searching the genome and
annotation for the conserved single-copy orthologs in the Embryophyta odb10 BUSCO v.5.0.0
(Siméo et al., 2015). The contiguity of the reference genomes was assessed with Quast v5.0.2
(Gurevich et al., 2013). Published annotation files were summarized with gFACs (Caballero and

Wegrzyn, 2019).

Read sets available through NCBI's Sequence Read Archive (SRA) were accessed to provide
transcriptomic evidence for each species and included a variety of tissue types. The Illumina
short-read libraries were sequenced with lllumina HiSeq 2500 (100bp paired-end). The read
sets included at least four libraries, between 20-82M reads before quality control (QC), and a
minimum of 16M reads after QC. Pacific Biosciences Iso-Seq long-reads were accessed for
Populus and Liriodendron, and Oxford PromethlON reads were available for Rosa and
Arabidopsis. The read sets for long-read data ranged between 161K-41M total reads per

species (Table S2).

Repeat masking and read alignment-
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RepeatModeler2 (Flynn et al., 2020) was used to construct repeat libraries with default settings,

and repeats were soft-masked with the libraries constructed via RepeatMasker v.4.0.6 (Smit et
al. 2013-2015). The genomes of Arabidopsis, Funaria, Populus, and Liriodendron were
additionally masked using RepeatModeler2 with additional LTR identification (-LTRStruct flag).
Quality assessment of the Illlumina short-reads was performed using FastQC v.0.11.7 (Andrews,
2010) before and after trimming low-quality bases. Sickle v.1.33 (Joshi NA, 2011) was used to
trim low-quality bases with 50bp as the minimum read length threshold. Single-end reads
generated post trimming were excluded from RNA alignments and assembly. The trimmed short
reads were aligned against their reference genomes using HISAT2 v2.2.0 (Kim et al., 2019).
HISAT2 was selected for its performance in recent benchmarking studies and as the aligner of
choice for input to Stringtie2 (Corchete et al., 2020; Musich et al., 2021). Long-read RNA data
were obtained for four species: Arabidopsis and Rosa were sequenced with Oxford Nanopore,
and Populus and Liriodendron were sequenced with PacBio Sequel. The long-read data sets

were aligned against their respective genomes using Minimap2 v2.1.7 (Li, 2018, 2021).

Generation of protein evidence-

To generate protein evidence, lllumina short reads were assembled de novo using Trinity
v.2.8.5 with a minimum contig length of 300 bp (Grabherr et al., 2011). The assembled
transcriptomes for the multiple libraries were combined, and putative coding regions were
predicted using TransDecoder v.5.3.0 (http://transdecoder.github.io). TransDecoder is one of
several frame-selection methods available and performs in a comparable manner but not
always superior in all metrics (Bolger et al., 2018). For this study, it was selected as the most
widely used package for this purpose. Redundancy in the predicted coding regions was reduced
after clustering at 98% identity using UCLUST, a clustering algorithm of USEARCH v.9.0.2132

(Edgar, 2010). Frame-selected transcripts shorter than 300 bp were removed. The remaining
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transcripts were aligned to the genome using GMAP v.2019-06-10 (Wu & Watanabe, 2005).
The predicted proteins (from the same Transdecoder run) were aligned to the reference

genome using GenomeThreader v 1.7.1 (Gremme, 2014).

To provide protein evidence from genome-guided sources, the previously aligned Illlumina short-
reads (via HISAT2) were constructed into transcripts with StringTie2 v2.2.0 (Kovaka et al., 2019;
M. Pertea et al., 2015). Long-reads were treated similarly, along with a combination of short and
long-reads. The predicted transcripts were extracted using gffRead (G. Pertea & Pertea, 2020)
and frame-selected with TransDecoder. The transcriptome alignment annotation file (gff3) was
passed to gFACs for evaluation of gene model statistics. Completeness of the aligned

transcripts and protein sequences were estimated using BUSCO.

Genome annotations-

Each genome was tested in four primary open-source annotation softwares to predict gene
models (Table 1). Several different runs of BRAKER v.2.1.5 (Hoff et al., 2019) and
BRAKER/TSEBRA (Gabriel et al., 2021) were used with various combinations of RNA-Seq (long
and short-read inputs) and protein evidence. MAKER v.3.1.3 (Cantarel et al., 2008) was run
once with transcript and protein evidence. Finally, StringTie2 (Kovaka et al., 2019), with

TransDecoder, was used to generate genome-guided predictions from RNA evidence alone.
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MAKER annotation-

MAKER (MK) was run on the soft-masked reference genomes of Arabidopsis, Populus, and
Funaria with repeats estimated using the additional LTR detection method in RepeatModeler2
(LTRStruct flag; RM2+). This was intended to emulate the MAKER-P (Campbell, Law, et al.,
2014) method since the original repeat and pseudogene identification protocols are deprecated.
MK (RM2+) was executed (i.e., trained) twice. The annotations derived from MK (RM2+) used
protein evidence generated from de novo assembled RNA-reads from Trinity. These models
were used to train ab initio gene prediction software AUGUSTUS v.3.3.3 (Stanke & Waack,
2003) and SNAP v. 2006-07-28 ((Korf, 2004). The Hidden Markov Models (HMMs) trained using
AUGUSTUS and SNAP were used along with initial aligned evidence (est2genome and

protein2genome parameters) for the second MK (RM2+) run to generate the final gene models.

Assessment of gene predictions-

The quality of genome annotation among different gene prediction methods was evaluated with
three primary metrics: (1) the mono-exonic (single-exon) and multi-exonic (multiple exon) ratio;
(2) conserved single-copy orthologs queried from the predicted gene models using BUSCO
(embryophyta database v10), and (3) gene prediction assessment with EnTAP v0.10.8 (Hart et
al., 2020) using a 70% reciprocal functional annotation approach with NCBI's Refseq Plant and
Uniprot databases. The mono:multi ratio was calculated from the gFACs summary report run
with default parameters (Caballero & Wegrzyn, 2019). We regard a mono:multi ratio near 0.2 to
be ideal and have further validated this with a larger set of model plant genomes (Table S3)
(Jain et al. 2008). The gene prediction assessment was recorded as a percentage of sequence
similarity hits to the total number of genes. This annotation rate depends on the phylogenetic

placement of species relative to the databases used, but the higher the annotation rate (>80%),
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the better the gene prediction assessment. The same is true for BUSCO since it utilizes

OrthoDB to form its conserved sets but the recommended target score is >95% for land plants
(Manni et al., 2021). The sensitivity and precision of the runs for Arabidopsis and Populus were
assessed using Mikado v2.3.2 (Venturini et al., 2018), by comparing the predicted gene models

to the current reference annotations.

Post-processing filtering-

The predicted gene models for Liriodendron were taken a step further to refine the genome
annotation. Post-process filtering was performed using gFACs and assessed for improvement
using BUSCO completeness scores and annotation percentage statistics. The gene models
predicted for Liriodendron were further filtered down and the mono-exonic and multi-exonic
genes were filtered for uniqueness (using the unique genes flag in gFACs). The mono-exonic
genes were filtered for the presence of protein domains using InterProScan v.5.35-74.0 and
Pfam (Jones et al., 2014; Quevillon et al., 2005). Multi-exonic genes that did not have an
EggNOG or a sequence similarity hit were removed, and the final annotation was assessed

using gFACs and EnTAP.

RESULTS
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Genome sizes, repeats, and published annotations-

The genome sizes of the five species assessed represented a 10-fold difference between the
smallest genome of Arabidopsis (~119 Mb) and the largest of Liriodendron (~1.7 Gb) (Fig 1A;
Table 2). Liriodendron (73.18%) and Rosa (60.58%) have higher levels of repeat content, and
Arabidopsis has the lowest (23.9%). Arabidopsis is the most complete chromosome-scale
genome, with seven contigs reflecting its five chromosomes and two organellar chromosomes.
The other genomes are assembled into pseudochromosomes (with the exception of Liriodendron).
Once the genomes were downloaded, contigs < 500 bp were removed. The published genome
assemblies and annotations were compared in terms of completeness via BUSCO (Fig 1, Table
2). When BUSCO is run in genome mode, it searches the genome for the set of 1614 single-
copy orthologs in the embryophyte database. Aside from Funaria, which had the lowest
completeness score of 82.4%, the remaining plant genomes ranged from 94% to 99%. When
we evaluated the published annotations for the same species, and ran BUSCO in protein mode,
a slight decrease in completeness was observed in every species except Funaria and
Arabidopsis (Fig 1B). The largest reduction in BUSCO score was observed in Liriodendron
(98.6% to 75.1%). The discrepancy between the estimated completeness at the genome-level
and the majority of the published annotations speaks to the challenges of achieving an accurate

structural annotation.

RepeatModeler2 (RM2) with and without the LTRStruct package (the additional LTR masking
module) (Flynn et al. 2020) was used to soft-mask repeats in four of the genomes. The increase
in repeat content was marginal in all species, ranging from 1% in Funaria to 5% in Populus.

Comparisons using the LTRStruct flag were denoted as RM2+ (Table S4).
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Transcriptome evidence-

For the subsequent genome annotation analysis, the Illumina RNA short reads were first aligned
to the genome. All libraries, ranging from four to 20 per species, aligned at over 97%, with the
exception of Rosa (92%) (Table 3; Table S5). Long-read RNA libraries were aligned with
Minimap?2 for four species: Arabidopsis (Nanopore reads at 97.1%), Populus (Iso-Seq reads at
92.01%), Liriodendron (Iso-Seq reads at 95.5%), and Rosa (Nanopore reads at 99%). The N50s

for the long-reads range from 976 Kb in Rosa to 4.6 Kb in Liriodendron (Table S6).

Transcript-derived annotations-

The reads were assembled using StringTie2 (ST2) and Trinity. Trinity de novo assemblies of the
lllumina short-reads generated longer transcripts, with N50s ranging from 1.2 Kb (151,265
transcripts in total) in Funaria, to 3.06 Kb (2,839,867 transcripts) in Liriodendron. Among
genome-guided assemblies with StringTie2 (ST2(SR)), the range was much smaller, with N50s
ranging from 369 bp (59,741 transcripts in total) in Funaria to 2.54 Kb (37,747 transcripts) in
Arabidopsis (Table S6). The StringTie2 (ST2(LR) and ST2(SR/LR)) range was longer, with
N50s ranging from 1.07 Kb (20,633 transcripts in total) in Rosa ST2(LR) to 2.36 Kb (45,785
transcripts) in Liriodendron ST2 (SR/LR) (Table 3; Table S6). The StringTie2 and Trinity
transcripts were aligned back to the genome using GMAP after frame-selection. BUSCO scores
for the aligned transcriptomes derived from short read data, run in transcriptome mode, ranged
from 73% in Funaria to 83% in Rosa for Trinity, and 73% in Liriodendron to 97% in Rosa using
StringTie2 (Table 3). The BUSCO scores were the lowest for the ST2 (LR) runs across all
species as compared to the other StringTie2 only runs. For the ST2 (SR/LR), the BUSCO
scores were lower than ST2 (SR), with the exception of Rosa, where the ST2 (SR/LR) was
97.2% as opposed to 97% in ST2 (SR). In all species, ST2 (SR/LR) had higher BUSCO scores

than ST2 (LR). Despite Trinity producing more than double the total transcripts than StringTie2,
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the BUSCO completeness score of most StringTie2 runs were much higher than that of Trinity.

Liriodendron remained the only exception with a slightly higher BUSCO score from Trinity.

Arabidopsis and Populus were further evaluated with Mikado to compare the sensitivity and
specificity of published annotations (Fig.4B, Table S7). Overall, StringTie2 predictions had
higher sensitivity and precision rates compared to the Trinity runs. From this point, Trinity was
excluded, and StringTie2 runs were compared against BRAKER and TSEBRA predictions (Fig

4B).

The mono:multi ratios produced by StringTie2 ranged from 0.15 in Populus (ST2 (LR)) to 0.53 in
Liriodendron (ST2 (LR)), which were an improvement over the mono:multi ratios produced from
the BRAKER annotations that ranged from 0.37 in Arabidopsis (BR (LR)) to 1.27 in Funaria (BR
(SR/RM2+)). The BUSCO scores of the proteins predicted from BRAKER were generally higher
than the BUSCO scores from StringTie2. For example, Arabidopsis StringTie2 runs range from
85% (ST2 (LR)) to 95.5% in ST2 (SR), and BRAKER runs ranged from 94% (BR (LR)) to 95.9%
(BR (SR)). However, some runs are comparable, the ST2 (SR) run with a BUSCO score of 95%
was similar to the BR (SR) run at 95% and the BR (SR/RM2+) run at 95% in Arabidopsis.
StringTie2 predicted models had a higher annotation rate, in general, compared to BRAKER.
For example, the EnTAP annotation rate in Funaria was just over 40% post BRAKER, but was

near 60% from the StringTie2 runs (Fig 2).

Genome annotation with MAKER and BRAKER-
To replicate MAKER-P’s repeat pipeline, the RM2+ genome was used for Arabidopsis, Populus,
and Funaria for the MAKER runs. BUSCO completeness was low, compared with BRAKER

runs, and ranged from 19.6% in Populus to 90.4% in Arabidopsis (Fig 3A). The mono:multi ratio
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of MAKER(RM2+) for Arabidopsis was comparable to the BRAKER runs for the same species

(0.22 for BR (SR) and BR (SR/RM2+), 0.24 for BR (LR), and 0.23 for BR (SR/LR)). The MK
(RM2+) predictions for the total number of genes in Arabidopsis and Funaria were in the
expected range for these species, 22K and 44K genes, respectively; whereas, only 7K genes
were predicted for Populus. The gene lengths ranged from 1.8 Kb in Funaria to 2.3 Kb in
Arabidopsis (Table S8). The best run for MK (RM2+) was for Arabidopsis, with a mono:multi
ratio of 0.22 and a BUSCO score of 90.4%. On the other hand, the mono:multi ratio for Populus

was 0.07, and the BUSCO score was 19.6%.

The model systems, Arabidopsis and Populus, further were evaluated with Mikado to compare
the sensitivity and specificity of the published annotations (Fig. 3B; Table S7). The sensitivity
and precision scores for gene predictions were the lowest from MAKER then Trinity, and highest
from TSEBRA runs. StringTie2 and BRAKER yielded similar sensitivity and specificity scores for
Arabidopsis, whereas for Populus the sensitivity score was lower than those from BRAKER
runs. Given its overall low scores, MAKER was excluded from the subsequent comparisons. It
should be noted, however, the outcomes of MAKER can be improved through the inclusion of

external programs, such as GeneMark-ES, from BRAKER (Brlina et al., 2021).

In general, BUSCO scores were higher in the BRAKER and TSEBRA runs compared to
StringTie2 runs, mono:multi ratios were the lowest in the StringTie2 runs, and all methods
performed equally in terms of annotation percentage (Fig 4). Overall, the gene models
generated by BRAKER for Arabidopsis performed similarly according to BUSCO completeness
scores. The mono:multi ratios across BRAKER runs ranged between 0.23 to 0.39, and the
annotation percentage was consistently above 95%. Compared to the StringTie2 annotations,
the BRAKER and TSEBRA runs had worse mono:multi ratio, and overall fewer genes. Funaria

had more variable results in terms of mono:multi ratio, from 0.39 for BR (SR/RM2+), and 1.27
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TSB (SR/IST2/RM2+). The annotation percentages for Funaria were lower than expected, 43%

for BR (SR), and TSB (SR/TRINITY) had the highest annotation percentage with 53%. The
BUSCO completeness scores of about 85% post BRAKER are comparable to those from
StringTie2. In the case of Liriodendron post BRAKER, there were more variable mono:multi
ratios as compared to the respective StringTie2 runs, which ranged from 0.34 to SR, and 1.04
BR (SR/RM2+). The annotation percentages for each run were around 75%, with BUSCO
scores between 83% for TSB (SR/LR/ST2), and 90.8% for BR (SR). Populus gene models post-
BRAKER without protein had mono:multi scores around 0.24, and with TSEBRA, the ratio
ranged from 0.4 to 0.5. Annotation percentages also differed between TSEBRA and BRAKER
from 75% to 87%, respectively. Rosa had overall consistent scores for BUSCO post BRAKER,
ranging around 96%. TSEBRA runs had higher mono:multi ratios of around 0.75 and 0.37 for

BRAKER runs (Table S8).

Annotation with long reads-

For BRAKER runs, the predicted gene lengths from the long-reads were comparable to those
based on short-reads, with the exception of Populus. The average gene length post BR (LR) for
Populus ranges from 2.7K to 3.4K, although some transcripts exceed 6 Kb in length. The
longest predicted gene length was for a Liriodendron gene, estimated to be 9.3 Kb. The
inclusion of long-reads (only) did not improve BUSCO completeness for any species, with the
exception of Arabidopsis, where the BR (LR) BUSCO completeness was 1% higher than the BR
(SR) run. The rise in BUSCO completeness in Arabidopsis could be due to the large number of
long-reads included (23M across four libraries). However, the quality of genome annotation
does not seem correlated with depth of long-read sequencing; for example, Rosa had more
reads (41M across 6 libraries), and the BR (LR) run had a similar BUSCO score to BR (SR)

(96%). It should be noted that the long-reads for Arabidopsis and Rosa were sequenced with
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ONT. The ONT reads had higher mapping rates, compared to Iso-Seq, to their respective

genomes, 97.1% in Arabidopsis and 99% in Rosa (Table S5). The long-read inputs, regardless
of depth or type, impact ST2 (LR) runs across all species, with a reduction of up to 10% in
BUSCO completeness (Table S9). Finally, we note that the combination of short-reads and
long-reads BR (SR/LR) is comparable to the BR (SR) reads in terms of BUSCO completeness,

annotation rate and total genes predicted, but had worse mono:multi ratios overall.

Refining the genome annotation for Liriodendron-
The BRAKER runs for Liriodendron were filtered with gFACs and InterProScan to remove
unlikely gene models (Table 4). The number of mono-exonic genes was drastically reduced
post-filter with InterProScan. Across all runs, the mono-exonic genes numbered 11K to 25K.
After removing mono-exonics without a protein domain annotation from the Pfam database, they
decreased from 11K to 5K. The decrease in false positive mono-exonics resulted in an
improved mono:multi ratio that nor range from 0.16 for BR (SR) and BR (SR/RM2+), 0.16 and
0.23 for the StringTie2 runs, to 0.43 for the TSEBRA runs. The BUSCO scores decreased
slightly post-filtering (1-2%). EnTAP annotation percentages ranged between 66% to 84%, with

the TSEBRA runs, and ST2(LR) having the highest annotation rates overall.

In terms of BUSCO completeness and mono:multi ratios, the two best performing runs (BR (SR)
and BR (SR/LR)) were further filtered (Table 4). In this step, multi-exonic genes without an
EggNOG hit or a sequence similarity hit through EnTAP were removed. These filtered models
were re-assessed for mono:multi ratio, BUSCO completeness, and EnTAP annotation. The
BUSCO completeness remained the same for BR(SR), but not for BR(SR/LR). The EnTAP

annotation increased from 66% to 81% in BR (SR), and 67% to 87% in BR (SR/LR).
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DISCUSSION

BRAKER (Hoff et al., 2020) and MAKER (Cantarel et al., 2008) are currently the most popular
eukaryotic structural annotation tools, cited 475 and 1,010 times (since 2021, as referenced in
Google Scholar). Processes that select from multiple ab initio or aligned forms of evidence are
gaining popularity as well though they add both time and complexity to the analyses (FINDER
cited 22 times, (Banerjee et al., 2021); EVidenceModeler cited 381 times (Haas et al., 2008)).
Finally, as high-throughput transcriptomics, in the form of both short and long-read evidence
become more accessible, rapid approaches like StringTie2 (cited 451 times (Kovaka et al.,
2019)) are occasionally used as the exclusive approach, though more often, used in

combination with the options listed above.

Regardless of the methods selected, recently published benchmarks are challenged to achieve
high values for gene sensitivity in larger genomes (Brlna et al., 2021). Within smaller and less
complex model systems such as C. elegans and D. melanogaster, ab initio prediction results in
gene sensitivity 49.8% and 59.5%, respectively (Brlina et al., 2021). In well studied complex
organisms, such as humans, gene level sensitivity and specificity hovers at 48% and 43%,
respectively (Banerjee et al., 2021). While generating benchmarks with model systems (A.
thaliana, C. elegans, and D. melanogaster) provides more reliable metrics for comparison, they
are infamous for not fully representing the diversity of their respective clades (Chang et al.,

2016).

This study focused on four gene prediction workflows: StringTie2, MAKER, BRAKER, and
BRAKER/TSEBRA, and examined the process across a variety of evidence inputs. Both model
and non-model plant genomes were considered to highlight the challenges and reinforce the

need for downstream filtering.
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Genome annotation benchmarks for both models and non-models-

Among plant genomes, the total number of genes is relatively conserved and ranges from
20,000 to just over 40,000. As such, total gene number provides an accessible preliminary
benchmark. However, the number of genes in the reference annotation fails to assess the
overall quality of the annotation. To measure this, we should consider additional metrics. Here,
we describe the utility of BUSCO score, mono-exonic:multi-exonic ratio, and sequence similarity

assessment.

BUSCO allows us to identify complete, duplicated, fragmented, and missing single-copy
orthologs shared by most seed plants (Simé&o et al. 2015; Seppey, Manni, and Zdobnov 2019).
This provides a reliable benchmark in the absence of a high quality reference annotation and
poor BUSCO scores are immediately indicative of a larger issue. However, a high BUSCO
score is not sufficient to estimate the quality of an annotation (Fig 4B). Six of the 17 BRAKER
runs and four of the 17 StringTie2 runs exceeded 95% completeness. However, total gene

number, gene length, and structure varied considerably.

Repeat content, especially in the form of LTRs, and pseudogenes can lead to inflated gene
model estimates, especially in the form of mono-exonic genes (Scott et al., 2020; Trouern-Trend
et al., 2020). We expect that eukaryotes maintain 20% or less of their gene space as mono-
exonics (Jain et al., 2008). Although the BUSCO scores were consistent, we note tremendous
variation in mono- to multi-gene model ratios post-BRAKER. In practice, having aworse
mono:multi ratio is preferable to having alower BUSCO score, since missing genes, especialy those
thought to be conserved, cannot be easily rectified, and putative false positives can potentially be filtered

through other means.


https://doi.org/10.1101/2022.10.03.510643
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.03.510643; this version posted November 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Vuruputoor et al. Welcome to the big leaves: best practices for improving genome annotation in non-model plant
genomes.

20

Sequence similarity search metrics are more complex to interpret, but when used with high-
quality and curated databases that contain full-length proteins (e.g. NCBI RefSeq), can provide
a benchmark. Specifically, a reciprocal BLAST search requires that both the query and target in
the search retain a minimum level of coverage in the alignment. For new plant genomes, that
are in the darkest corners of the tree of life, this might be a less reliable metric. For species that
may fare poorly in database comparisons, searches for protein domains can provide some level

of confidence and we demonstrate this as a filter to reduce the mono-exonics in Liriodendron.

Masking repeats in plant genomes: Repeat masking is important but may not require
additional LTR resolution to improve performance-

Plant genomes typically contain a large number of repeats, mostly in the form of transposable
elements (TEs), averaging around 46% (Luo et al., 2022). Given the abundance of TEs in
genomes, it is important to mask these in advance of gene prediction. Soft-masking involves
changing nucleotides identified as repeats to lowercase (Yandell & Ence, 2012), signaling
downstream programs to ignore these sequences. Of the five genomes included in this study,
Liriodendron had the largest genome size and repeat content. Running downstream analyses
on an unmasked genome of Liriodendron resulted in a 4-fold increase in gene predictions (Fig
5A). Many repeats were identified as putative gene models, resulting in a large increase of total

number of genes (Fig 5B).

RepeatModeler2 is a widely used tool for TE discovery (Flynn et al., 2020). The recent release
of RepeatModeler2 includes an optional module for more robust LTR structural detection
(LTRStruct module) that includes the LTRharvest (Ellinghaus et al., 2008), LTRDetector

(Valencia & Girgis, 2019), and LTR_retriever packages (Ou & Jiang, 2018). This is particularly
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useful in identifying more divergent LTRs in the genome that may exist in fewer copies (Ou &

Jiang, 2018; Valencia & Girgis, 2019). Among the default packages included, RepeatScout
serves as a fast method to detect young and abundant repeat families in the genome. RECON,
on the other hand, is more computationally intensive and is sensitive enough to detect older TE
families. The LTRStruct module is run on the unmasked genome to identify LTR families that
may be redundant with the families identified by the default package. This creates redundancy

that is resolved through clustering with CD-HIT (Flynn et al., 2020).

In the four species compared, additional repeat masking did not significantly improve gene
predictions (Table S9; Fig 4). The mono:multi ratios across species were consistent before and
after additional LTR masking (Fig 5A). The BUSCO completeness scores remained relatively
the same, with BR (SR/RM2+) being 1% higher than BR (SR) in Arabidopsis, Funaria and
Populus. The marginal improvement observed in these genomes could be related to the
structure and type of LTRs, for example, better identification of divergent Tyl-copia elements
described in the Funaria genome (Kirbis et al., 2022). While we did not include genomes with
excessive repeat estimates (>70%), our results indicated that the optional LTRStruct module

was not beneficial.

Genome-guided transcriptome assembly for annotation: Transcripts derived directly

from alignments are not sufficient to annotate reference genomes-

Transcriptome assemblers are designed to work with primarily short RNA-Seq reads to
construct full-length transcripts. In the presence of a high quality reference genome, genome-
guided approaches are preferred as the reads are aligned directly to the target genome in

advance. Aligned RNA evidence provides resolution on exon boundaries, and aids in the
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identification of splice variants. De novo approaches build graph models directly from the short

(or long) reads to generate transcripts. The latter is much more challenging, computationally

intensive, and prone to error.

We compared the accuracy of the annotations produced by StringTie2, de novo assembled
transcripts with Trinity and with BRAKER. The selected packages are top performers when
compared in their respective categories of genome-guided and de novo transcriptome assembly
(Sahraeian et al., 2017; Venturini et al., 2018). As expected, Trinity produced a higher number
of transcripts than StringTie2, and BUSCO completeness was consistently lower (Table 3),
except for Liriodendron. The gene models generated by StringTie2 were more numerous than
the BRAKER gene models, more than expected for each species. It should be noted, however,
that StringTie2 identifies splice variants by generating a splice graph and resolving conflict
between multiple potential splice sites (Kovaka et al., 2019), whereas BRAKER trains an
internal algorithm GeneMark-ET to find specific genes with complete support among all introns

to be further used in training Augustus (Hoff et al., 2019).

StringTie2 runs resulted in lower BUSCO completeness when compared to BRAKER and/or
TSEBRA runs (Fig 4A; Table S11). This outcome is supported by the lack of ab initio prediction
with genome-guided approaches. Inflated mono-exonic predictions (and lower BUSCO scores)
were also observed in the StringTie2 genome annotation of the water strider (Microvelia
longipes) (Toubiana et al., 2021). In our study, Rosa ST2 (SR/LR) run was closest with a

BUSCO score of 97.2%, BR (SR/LR) of 96.9%, and TSB (SR/ST2) of 98% (Table S9, S10).
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Including proteins: Genome annotations are marginally improved if protein evidence

sourced from genome-guided predictions is used in combination with read data for high

guality reference genomes only-

The performance of StringTie2 and Trinity-derived protein evidence was assessed on the
predicted gene models using BRAKER and TSEBRA. In this context, the genome-guided or de
novo assembled transcripts were translated into proteins and provided as evidence to train the
ab initio component of the pipelines. Adding protein evidence to genome annotation can target
protein-coding genes leading to more accurate predictions than RNA-Seq evidence alone
(Bruna, 2022). This study specifically focused on using protein evidence derived in some
fashion from the transcriptomic inputs; however, some workflows, including BRAKER,
recommend including external curated protein sets (i.e., UniProt, RefSeq) to provide additional
evidence. We avoided this comparison since the protein models would represent the true
protein models for the model systems, but it is worth noting that this could improve some

outcomes.

The TSEBRA runs of the model species, Arabidopsis and Populus were compared to the
reference annotations. These runs were the best for the model species in terms of sensitivity
and specificity as compared to the MAKER, StringTie2, Trinity and BRAKER runs (Fig 3B). The
model genomes also had very similar BUSCO completeness scores, but had different
mono:multi ratios with the addition of protein evidence The non-model plant genomes had
higher mono:multi ratios, and especially in the case of Liriodendron, the BUSCO scores were
overall lower than the non-protein runs. The Rosa TSB (SR/ST2) reported the highest BUSCO
score across all runs but at the expense of more putative false positives. The higher quality of

the Rosa genome assembly could influence the utility of the protein evidence.
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TSEBRA runs with proteins sourced from genome-guided predictions perform similarly, but had
lower BUSCO, mono:multi ratio and total gene number when compared to the SR only runs (Fig
4A, Table S9). Among TSEBRA runs, Trinity fares better only for Liriodendron, which could
indicate that genome-guided proteins are not a suitable choice for a more fragmented genome.
This is consistent in independent assessments between de novo transcriptome assemblers and
genome-guided assemblers with fragmented genomes (for example in Ae. albopictus (Huang et
al., 2016). The total number of genes predicted by TSEBRA and BRAKER runs remained
largely the same across all species (Table S9). However, the number of mono-exonic genes
increased, whereas the multi-exonic genes decreased across all TSEBRA runs in comparison to
the BRAKER runs without proteins across all species. The gene lengths also decreased, as

expected from the increase in mono-exonics.

Initial examination of the EnTAP reciprocal BLAST assessment revealed high annotation rates
for the non-model species when protein evidence was included, particularly the multi-exonics
(whereas the mono-exonic percentage remained the same) (Table S9). However, this increase
in multi-exonic annotation proved to be an artifact since the total number of multi-exonic models
was reduced. Direct comparison of the predictions revealed that 40% of multi-exonics were
actually split into mono-exonic predictions when comparing the BR(SR) to the TSB (SR/ST2)

gene models predicted using Liriodendron (Table S15).

Long-read transcriptomes: Long-reads can be paired with short-reads to improve the
guality of the resulting models-
Long-reads generated from platforms such as Oxford Nanopore or PacBio have the potential to

resolve splice variants and assemble transcripts more accurately than traditional lllumina RNA-
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Seq (Amarasinghe et al., 2020). While long-reads can independently generate transcriptomes, it

is recommended to have a combination of short and long reads to achieve greater depth,
improved error profiles, and gain more evidence for splice site resolution (Amarasinghe et al.,

2020; Gonzalez-lbeas et al., 2016; Watson & Warr, 2019).

In this study, we utilized both ONT and Iso-Seq long-reads. In the latter, we relied on raw reads
(not the error-corrected CCS reads) in our comparisons for genome annotations using long-
reads. In all cases, long-reads (alone) did not outperform short-reads for the BRAKER runs.
However, in some cases, the combination of short-read and long-read inputs was beneficial.
The higher error rate Iso-Seq reads from Populus and Liriodendron produced comparable, but
lower, BUSCO scores compared to the BR (SR) runs. In contrast, the ONT long-reads used for
Arabidopsis and Rosa in the combined runs (BR (SR/LR)) had slightly better BUSCO
completeness as compared to the BR (SR) runs, and similar mono:multi ratios. Overall, the
lower error profile of using ONT reads, supplemented with short-read data, as well as using high

guality reference genomes, support the higher BUSCO completeness scores.

Best Practices for Plant Genome Annotation-

Given existing tools, we recommend that investigators utilize RepeatModeler2 to mask their
genome of interest with the default settings available in v2 (Flynn et al. 2020). Following soft-
masking, RNA-Seq short reads (between 4-10 libraries, paired-end, minimum 15M reads per
library) are generally sufficient for annotation. While we did not comprehensively investigate the
impact of tissue type, it is recommended to sample from multiple tissues when possible (Kress
et al., 2022). In our study, we did not observe a difference in the annotation completeness
among species with a higher number of short-read libraries, although we did not comprehensively

evaluate the difference of using fewer libraries within a single species.
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Sequencing of long-read libraries remains more expensive than generating deep Illlumina short-
read RNA-Seq. In most cases, the short-reads were sufficient as input. The notable exceptions
include the BR (SR/LR), as they were comparable to only BR (SR) across most species. The

lower error-profile Nanopore reads were more beneficial when combined with short-reads.

BRAKER and TSEBRA outperformed runs of MAKER, StringTie2 and Trinity with default
settings. It should be noted that the authors did not comprehensively benchmark MAKER with
multiple training runs of AUGUSTUS as recommended, which could have further improved
results. However, previous benchmarking studies also support lower performance of MAKER
(Banerjee et al., 2021; Hoff et al., 2020). Among the BRAKER runs executed in the model
plants, Arabidopsis and Populus, the TSEBRA runs were the best runs. TSEBRA also appears
to perform the best for Rosa but would require substantial filtering to remove false-positives.
Among the less contiguous assemblies (Funaria and Liriodendron), BR (SR) runs performed the
best in terms of BUSCO completeness, mono:multi ratios, and EnTAP annotation rates. For
draft genomes, BRAKER runs with short-reads, or short-reads and long-reads, when high

quality long-read transcripts from deeper sequencing are available, is advised.

Regardless of approach, existing pipelines do not provide appropriate summary statistics or
robust methods for filtering unlikely gene models. All methods produce more putative false
positives than desired. We recommend utilizing reciprocal BLAST searches with well curated
databases containing targets with full-length proteins (such as NCBI's RefSeq) to identify
fragmented models. We also recommend filtering and removing mono-exonics that do not have
a protein domain. Finally, we recommend structural filters to remove unlikely gene structures

(splice sites, start sites, incompletes, etc).
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In this study, we demonstrated the impact of post-filtering on the most complex genome
assessed in this study, Liriodendron. We improved the published annotation across all
benchmarks evaluated in this study following a new BR(SR) run (Table 4; (Chen et al., 2019)).
The filters reduced the overall number of putative false positives and increased the overall rate

of annotation, with minimal reduction to BUSCO completeness.

Data Availability: All scripts and data used is available through

https://www.protocols.io/blind/3A33C8E3B76511EC84CAOAS8A9FEACO2 . The public data

(NCBI SRA and genome assembly accessions) for the reference genomes, short-reads, and

long-reads are listed in Table S2.
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Figure 1. Genome size, repeat content, and BUSCO completeness for the five plant genomes:
Arabidopsis, Populus, Funaria, Rosa, and Liriodendron. Each pie represents the BUSCO
completeness. Green denotes the completeness score, orange indicates the fragmented score,
and blue indicates the missing score from BUSCO. (A) BUSCO scores estimated from the
published assemblies. (B) BUSCO scores estimated from protein-coding gene predictions

from the published annotations.
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Figure 2: Comparing metrics between BRAKER (blue) and StringTie2 (red) predictions. (A)
mono:multi ratios, (B) BUSCO comparisons, and (C) EnTAP annotation percentages of the

gene models. The yellow region indicates the ideal value for each of the metrics.
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Figure 3: Comparison of BUSCO, sensitivity, and false positive rates between the Arabidopsis
and Populus annotations. (A) BUSCO completeness scores for the MAKER and BRAKER runs
of Arabidopsis and Populus, green denotes the completeness score, orange indicates the
fragmented score, and blue indicates the missing score from BUSCO (B) False positive rates
and sensitivity scores from Mikado against published annotations for Arabidopsis (red color) and
Populus (gold color) for the MAKER, BRAKER, Trinity, and StringTie2 runs. The scores were
assessed using MIKADO. Multiple points per run reflect differences in input read type and

repeat-masking.
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Figure 4: Comparison of mono:multi ratios (A), BUSCO completeness scores (B), and EnTAP
annotation rates (C) across all species between the runs of different input types and software,

i.e., MAKER (MK-green) BRAKER (BK-light blue), TSEBRA (TSB-dark blue) and StringTie2
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(ST2-red). The yellow rectangle represents the target scores for each benchmark. RM2+-

RepeatModeler2 with LTRStruct.
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Figure 5: (A) The effect of soft-masking on gene prediction in Liriodendron. Performing
structural annotation on the unmasked Liriodendron genome results in inflation in the mono and
multi- exonic genes. Blue denotes the BRAKER (BR) runs for both genomes, SR denotes short-
reads, and LR denotes long reads. The lighter shade represents mono-exonics, and the darker
shade represents the multi-exonics. (B) More genes predicted using the unmasked genome

(blue), as compared to only one gene predicted in this region with the masked genome (red).
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The green track shows the LTR elements in the genome as identified by RepeatModeler2. The

RNA alignment reads show a read pile-up at the predicted gene (masked track).

TABLES

Table 1: Notations for the different runs performed for benchmarking. SR- Short reads, LR-

Long reads, and RM2+- RepeatModeler2 with the additional repeat masking.

Run Arabidopsileunarial Populus | Liriodendron Rosa
StringTie2
ST2 (SR) Short-reads X X X X X
ST2 (LR) Long-reads X X X X
ST2(SR/LR) Short and long-reads X X X X
BRAKER
BR (SR) Short-reads X X X X X
BR (LR) Long-reads X X X X
BR (SR/LR) Short and long-reads X X X X
BR (SR/RM2+) Short-reads with additional X X X X
masking for LTRs
TSEBRA
TSB (SR/TRINITY)  |Short-reads and de novo X X X X X
proteins
TSB (SR/ST2) Short-reads and genome- X X X X X
guided proteins
TSB (LR/ST2) Long-reads and genome- X X X X
guided proteins
TSB (SR/LR/ST?2) Short and long-reads and X X X X
genome-guided proteins
TSB (SR/ST2/RM2+) |Short-reads and genome- X X X X
guided proteins with
additional masking for LTRs
MAKER
MK (RM2+) Short-reads with additional X X X

masking for LTRs

Table 2: Genome assembly and annotation statistics for the five published plant genomes

BUSCO Completeness

Genome | Total scaffolds
Species size |(chromosomes) N50 Repeat content Genome Annotation
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Arabidopsis thaliana 119 Mb 7 (5) 23.46 Mb 15.2% 99.30% 99.60%
Funaria hygrometrica 327 Mb 687 (26) 1.48 Mb 42.35% 85.60% 86.60%
Liriodendron chinense | 1,742 Mb 3,711 (21) 3.53 Mb 73.18% 98.60% 75.10%
Populus trichocarpa 434 Mb 1,446 (19) 19.47 Mb 35.90% 98.80% 98.30%
Rosa chinensis 515 Mb 55 (7) 69.64 Mb 60.53% 98.80% 97.30%

Table 3: Comparison between genome-guided (StringTie2- ST2) and de novo (Trinity) genome
annotations. SR denotes short reads, LR for Long reads, RM for RepeatModeler2, and RM2+

for RepeatModeler2 with the LTRStruct flag.

Total BUSCO transcript
Trc])talt ITotal Total ST2 g;_tzal ;I’otal ST2 alignments (%) P
) RM |[Rm2+ 31O ong- Trinity  |transcr __|transcrip
Species % % reads reads transecrio liots transcrip |ts Trinit ST2
(total (total PP ts (LR) |(SRILR) ST2 | arnl
libraries) |libraries) | N80 |(SR) | G5 I(Ns0) ~ [Yer |(SR) |¢
(N50) (SR) R)
511,277,12| 23,134,06| 319,434| 37,747 36,241 42,265
Arabidopsis | 15.2| 16.5 6 (9) 8(4)| (2726) (2538)| (1599)| (1363)| 82.7| 95.5| 93.6
549,205,03 151,265| 59,741
Funaria 42.3] 43.1 0(9) (1198)| (369) 72.9| 84.5
Liriodendro 1,408,831,6| 10,437,02|2,839,867| 62,341| 33,895| 45,785
n 73.2| 727 70 (20) 9(1)] (3055)| (1041)| (1815)| (2361)| 92.5| 87.1] 77.3
267,403,77 161,334 283,572| 56,468 20,633 37,222
Populus 35.9| 45.1 2 (5) (1) (1837)| (402)| (1074)| (1869)| 71.3| 73.3 65.3
134,461,06| 41,929,38| 812,407| 53,708 74397| 105,639
Rosa 60.5 8 (4) 3(6) (2187)| (672)| (1866) (1605)| 88.8) 97| 97.2

Table 4: Gene model statistics for Liriodendron after two rounds of structural and functional
filters. BR- BRAKER, ST2- StringTie2, TSB- TSEBRA, SR- Short reads, LR- Long-reads, RM2+-

RepeatModeler2 with LTRStruct.

Liriodendron

A . Total genes Mono:Multi Ratio BUSCO % EnTAP %
nnotation

Published annotation 35261 0.7 75.1 63
Mono-exonic filters

BR (LR) 39031 0.21 87.4 69
BR (SR) * 41065 0.16 90.2 66
BR (SR/LR) * 40420 0.16 90.3 67
BR (SR/RM2+) 40740 0.17 88.2 67
ST2 (SR) 51804 0.16 86.5 80
ST2 (LR) 27012 0.23 65 84

ST2 (SR/LR) 36345 0.24 70.6 82
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TSB (LR/ST2) 33132 0.43 82.3 84
TSB (SR/LR/ST?2) 33964 0.43 82.4 84
TSB (SR/ST) 32898 0.41 83.4 84
TSB (SR/ST2/RM2+) 33637 0.45 82.8 84
TSB (SR/TRINITY) 34646 0.42 84 83
+Multi-exonic filters
BR (SR) 30219 0.24 90.3 81
BR (SR/LR) 30035 0.23 86.9 87

* denotes the two best annotation sets
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