

1 [Title:](#)

2 **Genome sequence data reveal at least two distinct incursions of the tropical race 4 (TR4) variant of**
3 ***Fusarium* wilt into South America**

4

5 [Authors:](#)

6 Paula H. Reyes-Herrera 1†, Eliana Torres-Bedoya 1,2†, Diana Lopez-Alvarez 3†, Diana Burbano-David
7 1, Sandra L. Carmona 1, Daniel P. Bebber 2, David J. Studholme 2, Monica Betancourt 1, Mauricio
8 Soto-Suarez 1,*

9

10 [Affiliations:](#)

11 1 Corporación Colombiana de Investigación Agropecuaria - Agrosavia. C.I Tibaitatá. Km 14 vía
12 Mosquera-Bogotá, Cundinamarca, Colombia.

13 2 Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom.

14 3 Universidad Nacional de Colombia, Sede Palmira. Facultad de Ciencias Agropecuarias,
15 Departamento de Ciencias Biológicas.

16 * Correspondence: msoto@agrosavia.co

17 † These authors contributed equally to this work.

18

19 [Abstract](#)

20 The global banana industry is threatened by one of the most devastating diseases: *Fusarium* wilt
21 (FWB). FWB is caused by the soil-borne fungus *Fusarium oxysporum* f. sp. *cubense* (*Foc*), which almost
22 annihilated the banana production in the late 1950s. A new strain of *Foc*, known as tropical race 4
23 (TR4), attacks a wide range of banana varieties including Cavendish clones which are the source of
24 99% of banana exports. In 2019, *Foc* TR4 was reported in Colombia, and more recently (2021) in Peru.
25 In this study, we sequenced three fungal isolates identified as *Foc* TR4 from La Guajira (Colombia) and
26 compared them against 19 whole-genome sequences of *Foc* TR4 publicly available, including four
27 genome sequences recently released from Peru. To understand the genetic relatedness of the
28 Colombian *Foc* TR4 isolates and those from Peru, we conducted a phylogenetic analysis based on a

29 genome-wide set of single nucleotide polymorphisms (SNPs). Additionally, we compared the genomes
30 of the 22 available *Foc* TR4 isolates looking for the presence-absence of gene polymorphisms and
31 genomic regions. Our results reveal that (i) the Colombian and Peruvian isolates are genetically
32 distant, which could be better explained by independent incursions of the pathogen to the continent,
33 and (ii) there is a high correspondence between the genetic relatedness and geographic origin of *Foc*
34 TR4. The profile of present/absent genes and the distribution of missing genomic regions showed a
35 high correspondence to the clades recovered in the phylogenetic analysis, supporting the results
36 obtained by SNP-based phylogeny.

37

38 [Introduction](#)

39 The global banana export industry generates around 14.5 billion USD per year (FAOSTAT 2020).
40 Approximately 51% of global production is of the Cavendish cultivar (Lescot 2018). Latin America and
41 the Caribbean (LAC) constitutes the world's most important exporting region for bananas. During
42 2018, the total production volume of bananas in LAC was estimated at 30 million tonnes and 13 million
43 tonnes were exported to developed countries, mainly the United States of America and the European
44 Union. In Colombia, banana is the country's third most important export crop after coffee and flowers.
45 Approximately 91% of the national banana production is destined for export. Five departments
46 concentrate almost 75% of the national production. In 2019, Antioquia was the department with the
47 largest production of banana, with a cultivated area of 40,000 ha (42% of the total cultivated area of
48 the nation), followed by Magdalena (14%), Nariño (9%), Valle del Cauca (7%) and La Guajira (3%)
49 (Statistics home 2014).

50 Fusarium wilt of banana (FWB), one of the most devastating diseases of bananas, is threatening the
51 global export industry. The disease, caused by the soil-borne fungus *Fusarium oxysporum* f. sp.
52 *cubense* (*Foc*), was first reported in Australia in 1876 (Bancroft 1876). The devastation caused by *Foc*
53 race 1 (R1) was mitigated in the late 1950s by the substituting Gros Michel with resistant Cavendish
54 cultivars, which now account for nearly all banana exports. However, a newly emerging lineage of *Foc*,
55 known as tropical race 4 (TR4) corresponding to vegetative compatibility group VCG 01213/16, attacks
56 Cavendish clones and a wide range of other banana varieties. *Foc* TR4 was first detected in Taiwan in
57 1967 (Hwang and Ko 2004; Su et al. 1977), after most likely being introduced on infected plants from
58 Sumatra, Indonesia, and subsequently spread widely in banana-producing countries (Ploetz et al.
59 2015; Ploetz 2015). *Foc* TR4 was restricted to Australasia from 1990 when it was formally recognized
60 until 2013 when it was first reported in Jordan, and Mozambique (Butler 2013). In 2015 it emerged in
61 Lebanon, Oman, India and Pakistan (Viljoen et al. 2020; Ordoñez et al. 2016; Thangavelu et al. 2019;

62 Ploetz et al. 2015). Between 2017 and 2019, *Foc* TR4 was found in Laos, Vietnam, Myanmar and
63 Thailand (Ordoñez et al. 2016; García-Bastidas et al. 2014; Acuña et al. 2021; Chittarath et al. 2018;
64 Hung et al. 2018; Zheng et al. 2018; Latest Pest Reports 2019). According to official information, *Foc*
65 TR4 is currently confirmed in 22 countries (CABI ISC 2021), predominantly in South and Southeast Asia.
66 In 2019, the pathogen was reported for the first time in Colombia, reaching out to the American
67 continent (García-Bastidas et al. 2020; Viljoen et al. 2020), and more recently in Peru (Acuña et al.
68 2021). *Foc* TR4 was detected on a banana plantation in the northeastern region of La Guajira,
69 Colombia. Currently, eleven farms in La Guajira and one in Magdalena are confirmed for the presence
70 of *Foc* TR4. Consequently the 0.32 % of banana producing region in the country is under quarantine
71 due to the presence *Foc* TR4.

72 Understanding the phylogenetic relationships among geographically disparate isolates can provide
73 clues about a pathogen's chains of transmission. An understanding of the genetic diversity and
74 relationships with other organisms is important for rational design of molecular assays for detection
75 and identification. Taxonomy is important for implementation of control measures such as notification
76 and quarantine.

77 Recently, the use of high-throughput genome-sequencing technologies has made important
78 contributions to studies on *Foc* TR4, particularly on genetic diversity (Maymon et al. 2020; Ordonez et
79 al. 2015) and phylogeographical analysis (Zheng et al. 2018). Ordoñez and colleagues (Ordoñez 2018;
80 Ordonez et al. 2015) performed a hierarchical clustering analysis based on 4,298 DArTseq markers
81 showing a limited genetic diversity between multiple *Foc* TR4 isolates from countries in the Middle
82 East, Asia and Oceania (China, Indonesia, Jordan, Lebanon, Malaysia, Pakistan, Philippines and
83 Australia). Genomic comparison of *Foc* TR4 isolates from the Greater Mekong subregion (Zheng et al.
84 2018) identified three geographically distinct clusters, one of which constituted isolates from Laos,
85 Vietnam, Myanmar and China; this suggested that the source of infection in the Greater Mekong
86 subregion probably originated from China. Most recently, a phylogeographical study conducted by
87 Maymon and colleagues (Maymon et al. 2020), using SNPs across the whole genome, principal
88 component analyses (PCA) and hierarchical clustering, claimed a strong similarity between the
89 Colombian isolates and the Indonesian isolate II-5. The authors argued that this suggests that the
90 pathogen most likely spread to Colombia from Indonesia (Maymon et al. 2020). A recent genomic
91 comparison of Indian *Foc* isolates belonging to races 1, 2 and 4 revealed differences in the repertoire
92 of *SIX* genes in Indian *Foc* TR4 compared with *Foc* TR4 isolated elsewhere (Raman et al. 2021).

93 Previous work (Maymon et al. 2020) suggested that the source of the Colombian *Foc* TR4 outbreak
94 might be Indonesia. It is likely that the *Foc* TR4 lineage first arose in that part of the world (Bentley et

95 al. 1998; Vézina 2014) and in that sense, Indonesia might ultimately be the origin of all *Foc* TR4.
96 However, it remains unclear as to what routes *Foc* TR4 has taken to disseminate across and between
97 continents. Furthermore, misattribution of the pathogen's source may have important economic and
98 political consequences; so, any such claims require careful scrutiny. Therefore, the aims of this study
99 were (i) to evaluate the SNP genetic diversity between Colombian isolates and those from elsewhere,
100 including genome sequences for three additional Colombian isolates, four from Peru and other
101 sequence data that were not available at the time of the previous study (Maymon et al. 2020), and (ii)
102 to identify new genomic differences/similarities between TR4 isolates able to support the SNP-based
103 phylogeny. For this, we sequenced the genomes of the three additional *Foc* TR4 isolates using Oxford
104 Nanopore Technologies' MinION platform. Our genomic comparison analyses revealed that outbreaks
105 in Peru and Colombia are genetically distinct and likely have different origins. We generate a catalogue
106 of genes/regions whose presence is variable among *Foc* TR4 pathogen individuals that will be useful
107 resource for future study.

108

109 **Results and Discussion**

110 The *Foc* TR4 variant of *Fusarium* wilt has been detected in two South American countries, namely Peru
111 and Colombia. This lineage of the pathogen likely emerged initially in Indonesia or Malaysia (Bentley
112 et al. 1998; Vézina 2014) and has subsequently undergone a number of intercontinental transmission
113 events. Each of these events presumably involved a founder population that represents a tiny sample
114 of the pathogen population's genetic diversity, leading to a genetic bottleneck at each introduction to
115 a new geographical location. Until recently, *Foc* TR4 was unknown in Latin America. This raises the
116 question of whether recent outbreaks in the two South American countries are linked in a direct chain
117 of transmission or whether they represent separate introductions. The 'bottleneck' effect of
118 introduction from the *Foc* TR4 population in its centre of origin predicts that directly linked outbreaks
119 would involve genetically similar pathogen individuals, whereas independent samples from the that
120 original population would be relatively divergent from each other. We compared isolates from
121 Colombia with previously sequenced isolates from elsewhere, using genome-wide sequence data to
122 maximise the resolution of the genetic relationships.

123 **Genome sequencing of Colombian *Foc* TR4 isolates**

124 We generated approximately 17 Gb of long-read data for each Colombian *Foc* TR4 isolate. The
125 sequence reads have been deposited in the Sequence Read Archive under the BioProject accession
126 number PRJNA774343 (BioSample accession numbers SAMN22562322, SAMN22562323 and
127 SAMN22562324). These genomic reads were aligned against the UK0001 *Foc* TR4 reference genome

128 sequence and the resulting alignments were used for calling SNPs for phylogenetic analysis and for
129 surveying differentially present/absent genes.

130

131 [Presence/absence of *SIX* genes in the Colombian *Foc* TR4 genomes](#)

132 During the last ten years, several studies have developed molecular markers for detection of *Foc* TR4
133 (Matthews et al. 2020; Magdama et al. 2019; Ndayihanzamaso et al. 2020; Dita et al. 2010; Aguayo et
134 al. 2017; Lin et al. 2013; Li et al. 2013; Carvalhais et al. 2019). This raises an important question: Are
135 the existing molecular markers present in the Colombian *Foc* TR4 genomes? We investigated whether
136 the secreted in xylem *SIX* genes (*SIX1* – *SIX13*) were present/absent in Colombian *Foc* TR4 isolates. For
137 this, a BLAST analysis was carried out using *SIX* gene sequences against the 190098, 190203 and 03242
138 Colombian genome assemblies. All sequences were present in all three Colombian *Foc* TR4 genomes.
139 *SIX*-gene homologues from *SIX1* to *SIX13* showed different levels of similarity, ranging from 98 to
140 100%, to those of our sequenced isolates (Supplementary Table S1). Interestingly, *SIX6* and *SIX9* genes
141 presented low percentage similarities of 91 and 88%, respectively.

142

143 [Colombian isolates constitute a distinct clade distinct from Peruvian isolates](#)

144 We identified 671 single-nucleotide sites in the *Foc* TR4 genome that showed variation and for which
145 the allele could be unambiguously determined in every one of the examined genomes. On the basis
146 of these 671 SNPs (Supplementary File S2), we constructed the maximum-likelihood phylogeny shown
147 in Figure 1. This phylogenetic tree displayed a clear correspondence between genetic relatedness and
148 geographic origin. For example, there is a clade comprising isolates from the Middle East. Notably,
149 isolates from South America are distributed among two distinct clades. The six isolates from Colombia
150 comprise a single clade; similarly, the four isolates from Peru comprise another distinct clade.
151 Colombian isolates are genetically much more distant from Peruvian isolates than they are from
152 isolates collected in the Middle East and the United Kingdom. This phylogeographic pattern is not
153 consistent with a single introduction of *Foc* TR4 from its centre of origin into South America and
154 subsequent spread within the continent. Rather, it is better explained by separate, independent
155 incursions into Colombia and Peru.

156 Our phylogenetic analysis revealed that the six Colombian isolates are much more closely related to
157 each other than they are to any previously sequenced isolates from other geographic locations. In
158 other words, there is greater genetic differentiation between than within geographical regions.
159 Furthermore, there is no close relationship between Colombian isolates and isolates from elsewhere;
160 Colombian isolates are genetically approximately equidistant to each of the other isolates. Therefore,

161 there is no genetic evidence of a direct source of the incursion of *Foc* TR4 into the Americas; the
162 lineage comprising the Colombian isolates probably diverged from the lineages isolated elsewhere
163 prior to the emergence of *Foc* TR4 outside of its centre of origin (whose location is unknown but likely
164 to lie in Indonesia and/or Malaysia). The phylogenetic tree is consistent with several independent
165 intercontinental transmissions of *Foc* TR4 from its origin. Similarly, within China and SE Asia, all
166 sequenced isolates are closer to each other than to isolates from elsewhere, suggesting a single egress
167 of *Foc* TR4 into that region. Similarly, most of the isolates from countries in the Middle East are
168 genetically close and may have arisen from a single inoculum. In conclusion, the phylogenetic analysis
169 is consistent with a single source of *Foc* TR4 into the Americas and shows no evidence that this is
170 derived from the *Foc* TR4 populations seen in other regions where it has emerged.

171

172 Patterns of gene content are broadly consistent with phylogeny

173 Based on alignments of genomic reads from *Foc* TR4 isolates against the UK0001 reference genome
174 sequence, we identified 615 gene presence-absence polymorphisms. These are tabulated as an Excel
175 spreadsheet in Supplementary File S3. The distributions of these variable genes across the sequenced
176 isolates were broadly consistent with phylogeny. Clustering of the genomes based on their profile of
177 present/absent genes showed clusters that corresponded to the clades recovered in the phylogenetic
178 analysis (Figure 2), revealing dozens of genes whose presence or absence is characteristic of specific
179 *Foc* TR4 clades. This opens the future possibility of developing molecular typing assays to assign
180 isolates to lineages without the need for whole-genome sequencing. Furthermore, it is notable that
181 several genes show presence-absence polymorphism within the Colombian clade, suggesting that
182 gene deletions have taken place very recently during the epidemic, some of which might be adaptive
183 as the fungus finds itself in a new environment with new host genotypes. The biological significance
184 of these differentially present genes is an avenue for future investigation.

185

186 Comparative genomic analysis reveals sequence gaps shared by *Foc* TR4 isolates from specific 187 geographic locations

188 A comprehensive genomic analysis can identify components of the *Foc* TR4 genome that might
189 complement the information provided by the SNP-based phylogeny. In this study, the whole genome
190 assemblies were compared to the published genomes of *Foc* TR4 (Supplementary Table S4). We
191 compared the genomes of 22 publicly available *Foc* TR4 isolates with the reference genome assembly
192 of UK0001 (Figure S1). The comparison between the *de novo* assembled Colombian *Foc* TR4 shows

193 that they do not differ from each other. However, when comparing all *Foc* TR4 genomes, we observed
194 several major gapped regions located on contigs VMNF0100005.1, VMNF0100007.1,
195 VMNF01000013.1 and VMNF01000014.1 (Figure 3). Specifically, genomic regions that are present on
196 the UK0001 reference genome are missing in (i) the Colombian *Foc* TR4 isolates (contigs
197 VMNF0100005.1 and VMNF0100007.1); (ii) Middle Eastern isolates from Jordan, Israel and Lebanon
198 (contigs VMNF01000013.1 and VMNF01000014.1); (iii) isolates from China, Vietnam, Myanmar, Laos
199 and Peru (VMNF01000014.1). Thus, this comparative genomic analysis also supports the SNP-based
200 phylogeny.

201

202 Conclusion

203 Phylogeographic relationships among *Foc* TR4 worldwide isolates are required to infer the routes of
204 TR4's transmission between and within continents. In this work, we sequence and obtained a nearly
205 complete genome assembly of three isolated of *Foc* TR4, obtained from banana plantations of la
206 Guajira in Colombia. Our analysis suggests that Colombian isolates are more closely related to those
207 from the UK and the Middle East and less to those from Perú. However, the divergences between
208 those three lineages likely occurred prior to the global emergence of *Foc* TR4 outside its centre of
209 origin, based on the genetic distances seen within geographically distinct lineages. Comparative
210 genomic analysis revealed missing genomic regions that were shared between *Foc* TR4 isolates
211 belonging to the same clade, also confirming a correspondence between genetic relatedness and
212 geographic origin.

213

214 Materials and methods

215

216 Genome sequence data from public repositories

217 We used the previously published UK0001 genome (Warmington et al. 2019) as the reference
218 sequence for alignment-based analyses as that genome sequence was assembled using long reads and
219 is therefore of high quality. We used genome sequencing reads for previously reported *Foc* TR4
220 genome sequencing projects from the Sequence Read Archive (SRA) accession numbers SRR10103605,
221 SRR10125423, SRR10747097, SRR9733598, SRR7226880, SRR10054450, SRR10054449, SRR7226881,
222 SRR10054448, SRR10054446, SRR10054447, SRR7226882, SRR7226883, SRR7226879, SRR15514269,
223 SRR15514270, SRR15514271, SRR15514272, SRR550155, SRR550152, SRR7226878 and SRR7226877
224 (Guo et al. 2014; Leinonen et al. 2011; Kodama et al. 2012; Warmington et al. 2019; Maymon et al.
225 2020; Acuña et al. 2021; Zheng et al. 2018).

226 Colombian *Foc* TR4 isolates
227 The *Fusarium oxysporum* f. sp. *cubense* TR4 isolates 190098, 03242 and 190203, isolated from
228 symptomatic Cavendish banana from Dibulla, La Guajira state (Colombia) were provided by Instituto
229 Agropecuario Colombiano (ICA). The isolates were maintained in potato dextrose agar (PDA) at 27 °C.

230 Extraction of genomic DNA
231 For high molecular weight (HMW) DNA extraction, the *Foc* TR4 isolates were grown on PDA plates for
232 seven days at 28°C. Then, propagules were harvested and transferred to Czapek dox medium and
233 incubated for six additional days to produce fungal mycelia. Fungal mycelium was obtained by filtering
234 through two layers of Miracloth and washed twice with 10 mL sterile distilled water. Then, fungal
235 mycelium was freeze-dried overnight and ground in a mortar with a pestle. Five hundred milligrams
236 of ground mycelium were incubated for one hour at 65°C with 800 µL fresh DNA extraction buffer and
237 15 µL de RNase (10mg/µL). DNA extraction buffer was prepared by mixing 2.5 volumes of solution A
238 (0.35 M Sorbitol, 0.1 M Tris-base, 5 mM EDTA pH 7.5), 2.5 volumes of solution B (0.2 M Tris, 0.05 M
239 EDTA, 2 M NaCl, 2% CTAB), 1 volume of Sarkosyl (10% w/v) and 1% β-mercaptoethanol. To separate
240 the organic phase, 400 µL of phenol/chloroform/isoamyl alcohol (25:24:1) was added, vortexed for 5
241 minutes and incubated at room temperature (RT) for 5 minutes before centrifugation at 16,000 g for
242 15 min. Two chloroform extractions were used on the aqueous phase by adding 0.5 volumes and
243 centrifuge at 16,000 g for 5 min at RT each time. The aqueous phase was mixed with 10 volumes of
244 100% ice-cold ethanol, incubated for 30 min at RT, and the precipitated DNA was collected in a new
245 tube using a disposable inoculation loop. Collected HMW DNA was washed twice with 1 mL 70% ice-
246 cold ethanol and the air-dried DNA was resuspended in nuclease-free water and conserved at 4°C. The
247 DNA quality, size and quantity were assessed by spectrometry in a NanoDrop 2000
248 Spectrophotometer (Thermo Fisher Scientific, Wilmington, USA), electrophoresis in agarose gel and
249 fluorometry in a Qubit Fluorometer v2.0 (Life Technologies, Thermo Fisher Scientific Inc.)

250 DNA sequencing
251 Sequencing library was prepared with the Ligation Sequencing Kit (SQK-LSK109) according to the
252 manufacturer instructions (Oxford Nanopore Technologies, Oxford, UK) using 22 ng HMW DNA. An
253 R9.4.1 flow cell (Oxford Nanopore Technologies, Oxford, UK) was loaded and run for 48 hours. Base
254 calling was performed using Guppy from MinKNOW (version 4.0.21; Oxford Nanopore Technologies).

255 Genome assembly
256 For the *de novo* assembly of Oxford Nanopore Technologies data from three newly sequenced
257 Colombian isolates, we used Canu 2.0 (Koren et al. 2017) and Flye 2.8.2 (Kolmogorov et al. 2019)
258 followed by several iterations of Racon v1.4.3 (Vaser et al. 2017) and medaka 1.2.1 (Oxford Nanopore
259 Technologies Ltd. 2018) to obtain a consensus sequence. The best assembly for each isolate was

260 selected according to most of the metrics such as BUSCO score (Simão et al. 2015), QUAST genome
261 statistics (Gurevich et al. 2013) and Qualimap (García-Alcalde et al. 2012). In addition, BlobTools2
262 (Challis et al. 2020) as used to integrate to include coverage, BUSCO, Blast, and DIAMOND v2.0.11
263 (Buchfink et al. 2015) and do contaminant screening and genome assessment.

264 For most of the previously sequenced genomes, assemblies were available in the public databases.
265 However, for several isolates, only unassembled sequence reads were available. Assemblies of isolates
266 SRR10125423, SRR10747097, SRR550152, SRR550155, SRR7226877, SRR7226878, SRR7226879,
267 SRR7226880, SRR7226881, SRR7226882, and SRR7226883 were performed using SPAdes and
268 evaluated with Qualimap (García-Alcalde et al. 2012). For genomes with low numbers of reads
269 (SRR10054447, SRR10054448, SRR10054449, SRR10054450, SRR10103605, SRR15514270,
270 SRR15514271, and SRR15514272) we aligned the reads to the reference genome using Bowtie2
271 (Langmead and Salzberg 2012) and used the mpileup tool in Samtools (Li et al. 2009) to obtain a
272 consensus sequence from the alignment. MUMmer4 was used to align the whole genome assemblies
273 to the reference genome UK0001. Then, we used Circos to visualize the alignments in a circular
274 representation.

275 Aligning sequence reads against reference genome sequence

276 To mitigate problems arising from incompleteness and errors in *de novo* assembly of short sequence
277 reads, we used a genome-comparison strategy based on aligning sequencing reads against a high-
278 quality reference genome sequence. For this assembly-free genomic comparison, we acquired short-
279 read whole-genome Illumina sequence data as FastQ files (Cock et al. 2010) for *Fusarium oxysporum*
280 f. sp. *cubense* from the SRA database (Kodama et al. 2012). The quality of the sequencing data was
281 evaluated using FASTQC (Andrews n.d.). Reads with low quality or containing adaptor sequences were
282 trimmed using Trim Galore (Babraham Bioinformatics - Trim Galore! 2022) or Canu (Koren et al. 2017)
283 as appropriate to the sequencing method that generated the data. The sequences were aligned
284 against the reference genome of isolate UK0001 (GenBank:GCA_007994515) using the Burrows
285 Wheeler Aligner (BWA) (Li and Durbin 2010, 2009) and Minimap2 (Li 2018). The alignments were
286 evaluated with Qualimap (García-Alcalde et al. 2012).

287 SNP-calling and phylogeny reconstruction

288 We used a genome-wide survey of SNPs towards understanding the relationship between Colombian
289 *Foc* TR4 isolates and those from other geographical locations.

290 Single-nucleotide sites that showed sequence variability between *Foc* TR4 isolates (i.e. candidate
291 SNPs) were identified using Pilon (Walker et al. 2014). There was some variation in the level of
292 confidence in the nucleotide sequences at these candidate SNPs. For example, at some sites, there

293 was not a consensus among the multiple sequence reads aligned at that site. Therefore, candidate
294 SNPs were filtered to retain only high-confidence SNPs with read-consensus above 95%, using a Perl
295 script available at <https://github.com/davidstudholme/SNPsFromPileups>. Full details of the
296 command lines are given in Appendix 1 at the end of this document. Genomes were assigned to
297 genetic types (haplotypes) according to the combination of nucleotide-states found at each of the
298 high-confidence SNPs. These were represented as files in FastA and Nexus formats. A PhyML tree was
299 generated in IQ-TREE (Nguyen et al. 2015) using the GTR model (Tavare 1986; Gouy et al. 2010;
300 Guindon et al. 2010). The robustness of the phylogeny was assessed using 1000 bootstrap replicates.

301 Comparison of gene content

302 We identified genes in the UK0001 reference genome that were absent from one or more sequenced
303 isolates (i.e. presence-absence polymorphisms) from the BWA alignments using the *coverageBed* tool
304 in BEDtools (Quinlan and Hall 2010). This tool reports the breadth of coverage by aligned sequence
305 reads for each gene. This approach, based on aligning reads against a reference genome, avoids
306 problems arising from incompleteness of *de-novo* genome assemblies.

307

308 Author contributions

309 The study was conceived by MS-S and MB. The experiments were supervised by MS-S and MB. DNA
310 extraction, library preparation and sequencing were conducted by SLC and DB-D. The analyses
311 performed in the study were conceived by MS-S, DL-A, ET-B, DJS and PHR-H. Data analyses were
312 completed by PHR-H, DL-A and ET-B. DPB and DJS supervised ET-B's bioinformatic analyses. PHR-H,
313 DL-A, ET-B, MB, DPB, DJS and MS-S interpreted results. MS-S and DJS drafted a first version of this
314 manuscript, edited by all other co-authors. All authors contributed to the article and approved the
315 submitted version.

316 Funding

317 This work was supported by the earmarked fund to Agrosavia from Colombian Ministry of Agriculture,
318 grant number (1000734: An update on Musaceae family diseases).

319 The Colombian *Foc* TR4 isolates were registered in the National Collections Registry (RNC129) and was
320 collected under the AGROSAVIA's permit framework No.1466 from 2014, updated by the 04039
321 resolution on July 19th, 2018.

322 **Institutional Review Board Statement:** Not applicable.

323 **Informed Consent Statement:** Not applicable.

324 Data Availability Statement

325 The data that supports the findings of this study are available in the supplementary information of this
326 article. Any additional data will be available on request to the corresponding author
327 (msoto@agrosavia.co). Genome sequence data have been deposited in the Sequence Read Archive
328 and GenBank and are available via BioProject accession number PRJNA774343 (BioSamples
329 SAMN22562322, SAMN22562323 and SAMN22562324) and PRJNA731180 (BioSamples
330 SAMN19572426, SAMN19275239 and SAMN19275177).

331 Conflicts of Interest

332 The authors declare no conflicts of interest.

333

334 References

335 Acuña, R., Rouard, M., Leiva, A. M., Marques, C., Olortegui, A., Ureta, C., et al. 2021. First report of
336 *Fusarium oxysporum* f. sp. *cubense* Tropical Race 4, causing *Fusarium* wilt in Cavendish bananas in
337 Peru. *Plant Dis.* 105:219.

338 Aguayo, J., Mostert, D., Fourrier-Jeandel, C., Cerf-Wendling, I., Hostachy, B., Viljoen, A., et al. 2017.
339 Development of a hydrolysis probe-based real-time assay for the detection of tropical strains of
340 *Fusarium oxysporum* f. sp. *cubense* race 4. *PLoS One.* 12:e0171767.

341 Andrews, S. FastQC A Quality Control tool for High Throughput Sequence Data.

342 Babraham Bioinformatics - Trim Galore! Available at:
343 https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ [Accessed January 8, 2022].

344 Bancroft, J. 1876. Report of the board appointed to enquire into the cause of disease affecting
345 livestock and plants. *Votes Proc.* 3:1011–1038.

346 Bentley, S., Pegg, K. G., Moore, N. Y., Davis, R. D., and Buddenhagen, I. W. 1998. Genetic Variation
347 Among Vegetative Compatibility Groups of *Fusarium oxysporum* f. sp. *cubense* Analyzed by DNA
348 Fingerprinting. *Phytopathology®.* 88:1283–1293 Available at:
349 <https://apsjournals.apsnet.org/doi/10.1094/PHYTO.1998.88.12.1283>.

350 Buchfink, B., Xie, C., and Huson, D. H. 2015. Fast and sensitive protein alignment using DIAMOND.
351 *Nat. Methods.* 12:59–60.

352 Butler, D. 2013. Fungus threatens top banana. *Nature.* 504:195–196 Available at:
353 <http://www.nature.com/articles/504195a>.

354 CABI ISC. 2021. *Fusarium oxysporum* f.sp. *cubense* tropical race 4 (Foc TR4). Invasive species
355 Compend. database, Retrieved from <https://www.cabi.org/isc/tr4>. :accessed 7 January 2022.

356 Carvalhais, L. C., Henderson, J., Rincon-Florez, V. A., O'Dwyer, C., Czislowski, E., Aitken, E. A. B., et al.
357 2019. Molecular diagnostics of banana Fusarium Wilt targeting secreted-in-xylem genes. *Front. Plant
358 Sci.* 10:547.

359 Challis, R., Richards, E., Rajan, J., Cochrane, G., and Blaxter, M. 2020. BlobToolKit—Interactive quality
360 assessment of genome assemblies. *G3 Genes, Genomes, Genet.* 10:1361–1374.

361 Chittarath, K., Mostert, D., Crew, K. S., Viljoen, A., Kong, G., Molina, A. B., et al. 2018. First Report of
362 *Fusarium oxysporum* f. sp. *cubense* Tropical Race 4 (VCG 01213/16) Associated with Cavendish
363 Bananas in Laos. *Plant Dis.* 102:449.

364 Cock, P. J. a, Fields, C. J., Goto, N., Heuer, M. L., and Rice, P. M. 2010. The Sanger FASTQ file format
365 for sequences with quality scores, and the Solexa/Illumina FASTQ variants. *Nucleic Acids Res.*
366 38:1767–71.

367 Dita, M. A., Waalwijk, C., Buddenhagen, I. W., Souza Jr, M. T., and Kema, G. H. J. 2010. A molecular
368 diagnostic for tropical race 4 of the banana fusarium wilt pathogen. *Plant Pathol.* 59:348–357.

369 FAOSTAT. Available at: <https://www.fao.org/faostat/en/#data/QCL> [Accessed January 8, 2022].

370 García-Alcalde, F., Okonechnikov, K., Carbonell, J., Cruz, L. M., Götz, S., Tarazona, S., et al. 2012.
371 Qualimap: evaluating next-generation sequencing alignment data. *Bioinformatics.* 28:2678–2679.

372 García-Bastidas, F. A., Quintero-Vargas, J. C., Ayala-Vasquez, M., Schermer, T., Seidl, M. F., Santos-
373 Paiva, M., et al. 2020. First report of Fusarium wilt Tropical Race 4 in Cavendish bananas caused by
374 *Fusarium odoratissimum* in Colombia. *Plant Dis.* 104:994.

375 García-Bastidas, F., Ordóñez, N., Konkol, J., Al-Qasim, M., Naser, Z., Abdelwali, M., et al. 2014. First
376 report of *Fusarium oxysporum* f. sp. *cubense* tropical race 4 associated with panama disease of
377 banana outside Southeast Asia. *Plant Dis.* 98:694.

378 Gouy, M., Guindon, S., and Gascuel, O. 2010. SeaView Version 4: A Multiplatform Graphical User
379 Interface for Sequence Alignment and Phylogenetic Tree Building. *Mol. Biol. Evol.* 27:221–224.

380 Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. 2010. New
381 algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of
382 PhyML 3.0. *Syst. Biol.* 59:307–321.

383 Guo, L., Han, L., Yang, L., Zeng, H., Fan, D., Zhu, Y., et al. 2014. Genome and transcriptome analysis of

384 the fungal pathogen *fusarium oxysporum* f. Sp. *Cubense* causing banana vascular wilt disease. *PLoS*
385 *One*. 9.

386 Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. 2013. QUAST: quality assessment tool for
387 genome assemblies. *Bioinformatics*. 29:1072–1075.

388 Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., and Vinh, L. S. 2018. UFBoot2: Improving
389 the Ultrafast Bootstrap Approximation. *Mol. Biol. Evol*. 35:518–522.

390 Hung, T. N., Hung, N. Q., Mostert, D., Viljoen, A., Chao, C. P., and Molina, A. B. 2018. First report of
391 Fusarium wilt on Cavendish bananas, caused by *Fusarium oxysporum* f. sp. *cubense* tropical race 4
392 (VCG 01213/16), in Vietnam. *Plant Dis*. 102:448.

393 Hwang, S.-C., and Ko, W.-H. 2004. Cavendish banana cultivars resistant to Fusarium wilt acquired
394 through somaclonal variation in Taiwan. *Plant Dis*. 88:580–588.

395 Kodama, Y., Shumway, M., and Leinonen, R. 2012. The sequence read archive: explosive growth of
396 sequencing data. *Nucleic Acids Res*. 40:D54–D56.

397 Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P. A. 2019. Assembly of long, error-prone reads using
398 repeat graphs. *Nat. Biotechnol*. 37:540–546.

399 Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. 2017. Canu:
400 scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation.
401 *Genome Res*. 27:722–736.

402 Langmead, B., and Salzberg, S. L. 2012. Fast gapped-read alignment with Bowtie 2. *Nat. Methods*.
403 9:357–359.

404 Latest Pest Reports - International Plant Protection Convention.

405 Leinonen, R., Sugawara, H., and Shumway, M. 2011. The Sequence Read Archive. *Nucleic Acids Res*.
406 39:D19–D21.

407 Lescot, T. 2018. Banane: Le fruit qui ne connaît pas la crise? 256:92–96.

408 Li, H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*. 34:3094–3100.

409 Li, H., and Durbin, R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform.
410 *Bioinformatics*. 26:589–95.

411 Li, H., and Durbin, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.
412 *Bioinformatics*. 25:1754–60.

413 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. 2009. The sequence
414 alignment/map format and SAMtools. *Bioinformatics*. 25:2078–2079.

415 Li, M., Shi, J., Xie, X., Leng, Y., Wang, H., Xi, P., et al. 2013. Identification and application of a unique
416 genetic locus in diagnosis of *Fusarium oxysporum* f. sp. *cubense* tropical race 4. *Can. J. Plant Pathol.*
417 35:482–493.

418 Lin, Y.-H., Su, C.-C., Chao, C.-P., Chen, C.-Y., Chang, C.-J., Huang, J.-W., et al. 2013. A molecular
419 diagnosis method using real-time PCR for quantification and detection of *Fusarium oxysporum* f. sp.
420 *cubense* race 4. *Eur. J. Plant Pathol.* 135:395–405.

421 Magdama, F., Monserrate-Maggi, L., Serrano, L., Sosa, D., Geiser, D. M., and Jiménez-Gasco, M. del
422 M. 2019. Comparative analysis uncovers the limitations of current molecular detection methods for
423 *Fusarium oxysporum* f. sp. *cubense* race 4 strains. *PLoS One*. 14:e0222727.

424 Matthews, M. C., Mostert, D., Ndayihanzamaso, P., Rose, L. J., and Viljoen, A. 2020. Quantitative
425 detection of economically important *Fusarium oxysporum* f. sp. *cubense* strains in Africa in plants,
426 soil and water. *PLoS One*. 15:e0236110.

427 Maymon, M., Sela, N., Shpatz, U., Galpaz, N., and Freeman, S. 2020. The origin and current situation
428 of *Fusarium oxysporum* f. sp. *cubense* tropical race 4 in Israel and the Middle East. *Sci. Rep.* 10:1–11.

429 Ndayihanzamaso, P., Karangwa, P., Mostert, D., Mahuku, G., Blomme, G., Beed, F., et al. 2020. The
430 development of a multiplex PCR assay for the detection of *Fusarium oxysporum* f. sp. *cubense*
431 lineage VI strains in East and Central Africa. *Eur. J. Plant Pathol.* 158:495–509.

432 Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A., and Minh, B. Q. 2015. IQ-TREE: a fast and effective
433 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* 32:268–274.

434 Ordoñez, N. 2018. A global genetic diversity analysis of *Fusarium oxysporum* f.sp. *cubense*.

435 Ordoñez, N., García-Bastidas, F., Laghari, H. B., Akkary, M. Y., Harfouche, E. N., al Awar, B. N., et al.
436 2016. First Report of *Fusarium oxysporum* f. sp. *cubense* Tropical Race 4 Causing Panama Disease in
437 Cavendish Bananas in Pakistan and Lebanon. *Plant Dis.* 100:209 Available at:
438 <https://apsjournals.apsnet.org/doi/10.1094/PDIS-12-14-1356-PDN>.

439 Ordonez, N., Seidl, M. F., Waalwijk, C., Drenth, A., Kilian, A., Thomma, B. P. H. J., et al. 2015. Worse
440 comes to worst: bananas and Panama disease—when plant and pathogen clones meet. *PLoS Pathog.*
441 11:e1005197.

442 Oxford Nanopore Technologies Ltd. 2018. Medaka. <https://github.com/nanoporetech/medaka>.

443 Ploetz, R. C. 2015. Fusarium Wilt of Banana. *Phytopathology*. 105:1512–1521 Available at:
444 <http://apsjournals.apsnet.org/doi/10.1094/PHYTO-04-15-0101-RVW>.

445 Ploetz, R., Freeman, S., Konkol, J., Al-Abed, A., Naser, Z., Shalan, K., et al. 2015. Tropical race 4 of
446 Panama disease in the Middle East. *Phytoparasitica*. 43:283–293.

447 Quinlan, A. R., and Hall, I. M. 2010. BEDTools: a flexible suite of utilities for comparing genomic
448 features. *Bioinformatics*. 26:841–2.

449 Raman, T., Edwin Raj, E., Muthukathan, G., Loganathan, M., Periyasamy, P., Natesh, M., et al. 2021.
450 Comparative Whole-Genome Sequence Analyses of Fusarium Wilt Pathogen (Foc R1, STR4 and TR4)
451 Infecting Cavendish (AAA) Bananas in India, with a Special Emphasis on Pathogenicity Mechanisms. *J.*
452 *Fungi*. 7:717.

453 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. 2015. BUSCO:
454 assessing genome assembly and annotation completeness with single-copy orthologs.
455 *Bioinformatics*. 31:3210–3212.

456 Statistics home. 2014.

457 Su, H. J., Chuang, T. Y., and Kong, W. S. 1977. Physiological race of fusarial wilt fungus attacking
458 Cavendish banana of Taiwan. *Taiwan Banan. Res. Inst. Spec. Publ.* 2:1–21.

459 Tavare, S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. *Some*
460 *Math. Quest. Biol. / DNA Seq. Anal.* Ed. by Robert M. Miura.

461 Thangavelu, R., Mostert, D., Gopi, M., Devi, P. G., Padmanaban, B., Molina, A. B., et al. 2019. First
462 detection of *Fusarium oxysporum* f. sp. *cubense* tropical race 4 (TR4) on Cavendish banana in India.
463 *Eur. J. Plant Pathol.* 154:777–786.

464 Vaser, R., Sović, I., Nagarajan, N., and Šikić, M. 2017. Fast and accurate de novo genome assembly
465 from long uncorrected reads. *Genome Res.* 27:737–746.

466 Vézina, A. 2014. The origin of TR4 : Under the peel | Improving the understanding of banana.
467 Available at: <https://www.promusa.org/blogpost375-The-origin-of-TR4> [Accessed January 8, 2022].

468 Viljoen, A., Ma, L.-J., and Molina, A. B. 2020. CHAPTER 8: Fusarium Wilt (Panama Disease) and
469 Monoculture in Banana Production: Resurgence of a Century-Old Disease. In *Emerging Plant*
470 *Diseases and Global Food Security*, The American Phytopathological Society, p. 159–184. Available
471 at: <https://apsjournals.apsnet.org/doi/10.1094/9780890546383.008>.

472 Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., et al. 2014. Pilon: An

473 Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly
474 Improvement ed. Junwen Wang. PLoS One. 9:e112963.
475 Warmington, R. J., Kay, W., Jeffries, A., O'Neill, P., Farbos, A., Moore, K., et al. 2019. High-quality
476 draft genome sequence of the causal agent of the current Panama disease epidemic. Microbiol.
477 Resour. Announc. 8:e00904-19.
478 Zheng, S.-J., García-Bastidas, F. A., Li, X., Zeng, L., Bai, T., Xu, S., et al. 2018. New Geographical
479 Insights of the Latest Expansion of *Fusarium oxysporum* f.sp. *cubense* Tropical Race 4 Into the
480 Greater Mekong Subregion. Front. Plant Sci. 9:1–9.
481

482 Figure Legends

483

484 **Figure 1. Maximum-likelihood phylogeny of genome-sequenced Foc TR4 isolates from diverse**
485 **geographical sources.** The tree is based on 671 single-nucleotide polymorphisms and built using IQ-
486 Tree (Nguyen et al. 2015). We obtained branch supports with the ultrafast bootstrap (Hoang et al.
487 2018).

488 **Figure 2. Heatmap showing a comparison of gene content of Foc TR4 genomes.** The rows represent
489 615 predicted protein-coding genes in the UK0001 reference genome that are absent from at least
490 one TR4 genome; that is, differentially present/absent genes. The presence or absence of each gene
491 was assessed in each genome based on breadth of coverage by genomic sequencing reads, using the
492 coverageBed tool (Quinlan and Hall 2010); this generates a value between zero (no reads, i.e.
493 absent) and one (completely covered by reads, i.e. present). The columns (i.e. genomes) are ordered
494 according to by complete linkage clustering. Rows (i.e. genes) are ordered according to genomic
495 location.

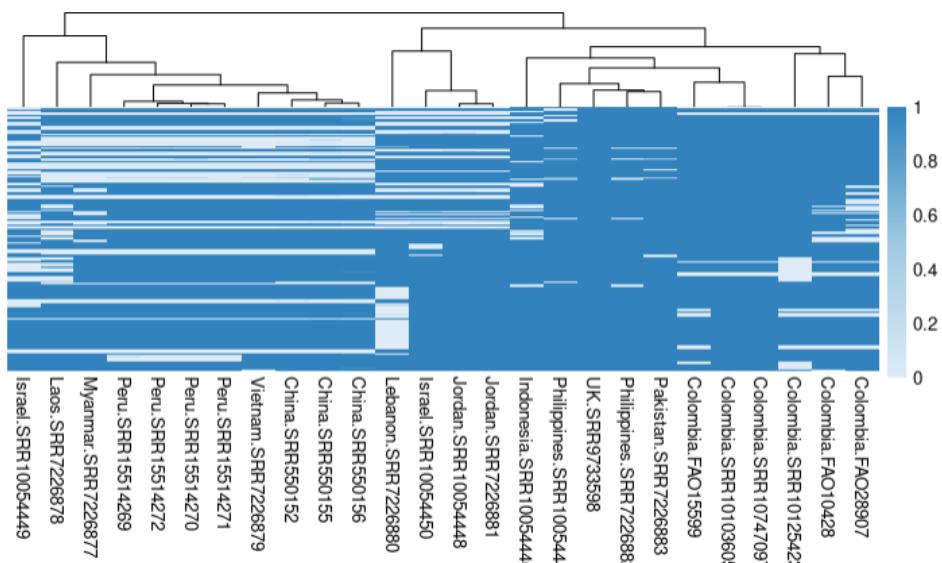
496 **Figure 3. Comparative genomic analysis of 22 Foc TR4 genomes.** Circle map showing contigs
497 VMNF0100005.1, VMNF0100007.1, VMNF01000013.1 and VMNF01000014.1. The dotted rectangles
498 indicate the missing genomic regions.

499

500

501

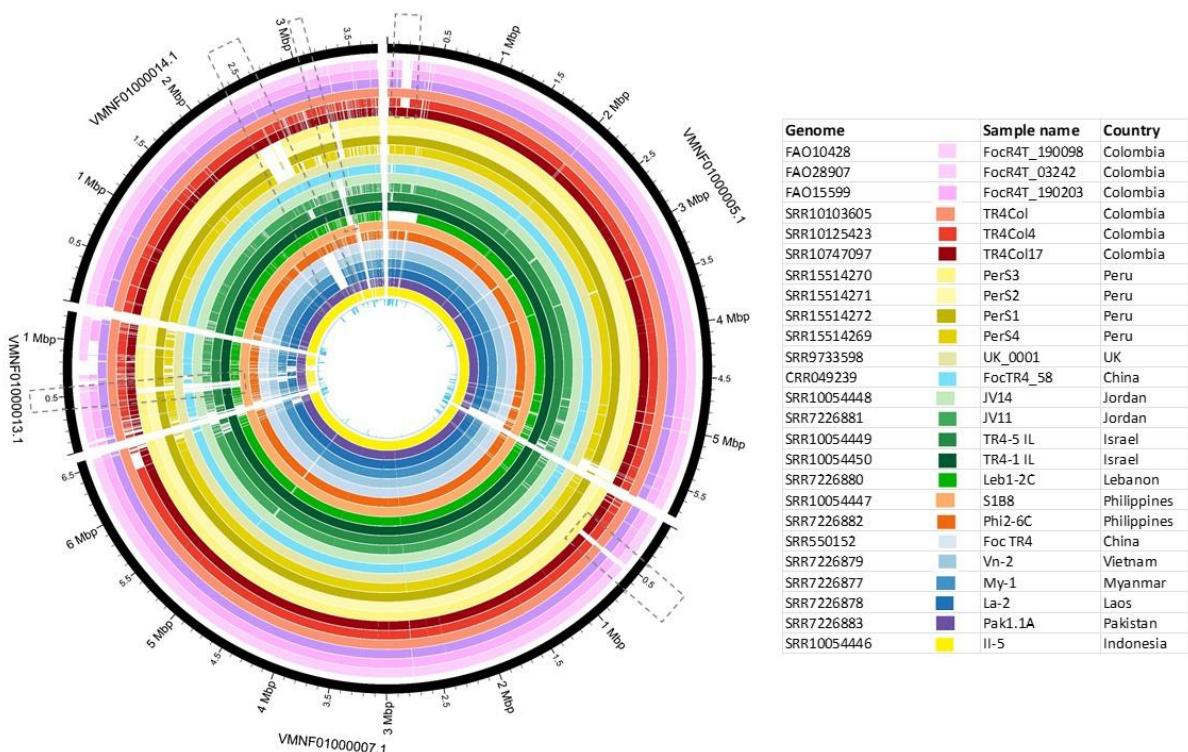
502


503 Figures

504

505

506 **Figure 1.**



507

508 Figure 2.

509

510

511

512 **Figure 3.**

513

514

515

516

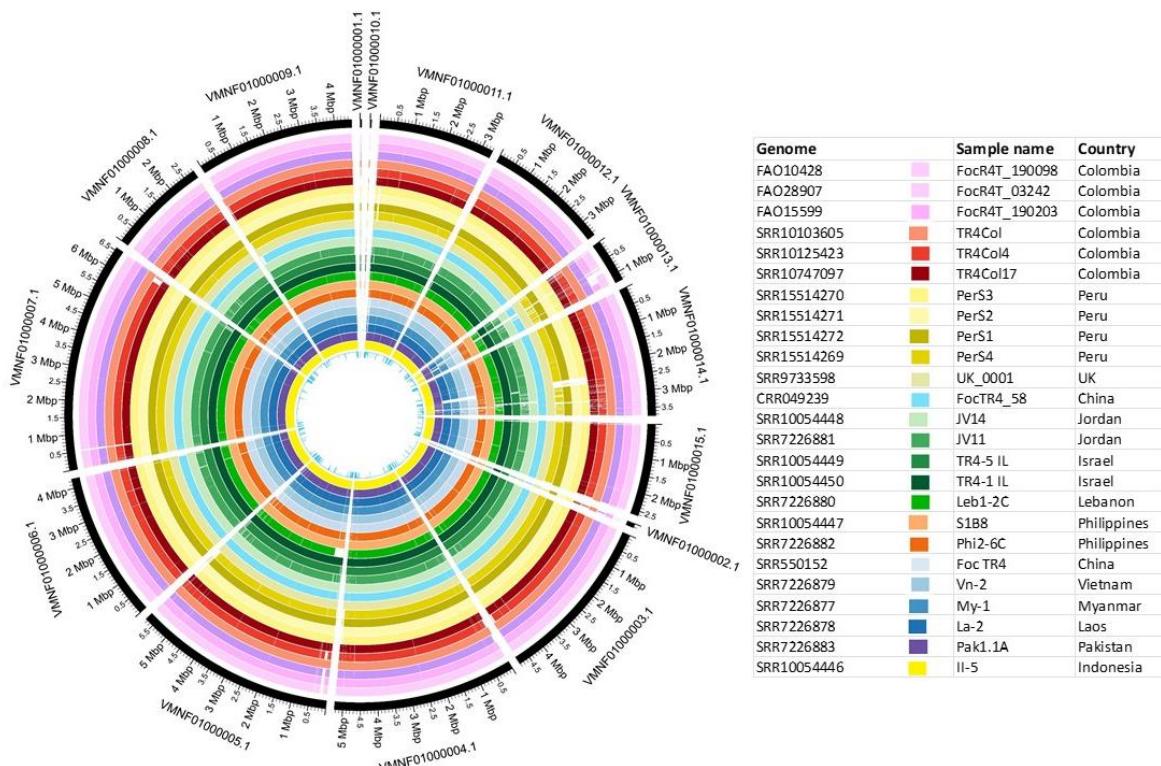
517

518

519

520

521


522

523

524

525 [Supplementary materials](#)

526

527

528

529 **Supplementary Figure 1.** Circos plot for all the contigs alignment between the 22 *Foc* TR4 genomes
530 and the Reference isolate UK0001 used as reference.

531 **Supplementary Table S1.** Summary of BLAST analysis using *SIX* genes against assembled *Foc* TR4
532 isolates of Colombian origin.

533 **Supplementary File S2.** Tabulated Excel spreadsheet containing the 671 SNPs 671 single-nucleotide
534 sites in the *Foc* TR4 genome that showed variation.

535 **Supplementary File S3.** Tabulated Excel spreadsheet containing the 615 gene presence-absence
536 polymorphisms identified after comparing genomic reads from *Foc* TR4 isolates against the UK0001
537 reference genome sequence.

538 **Supplementary Table S4.** Information on three newly assembled and 19 publicly available *Foc* TR4
539 genomes analysed in this study.

540

541 [Appendix 1: Command lines used for bioinformatics analysis](#)

542

543 Gene presence/absence polymorphisms, SNPs and phylogeny of TR4 genomes

544

545 Download the reference genome sequence

546

547 wget --no-clobber

548 https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/007/994/515/GCA_007994515.1_ASM799451v1/GCA_007994515.1_ASM799451v1_genomic.fna.gz

549

550 gunzip GCA_007994515.1_ASM799451v1_genomic.fna.gz

551

552

553 Generate the pileup files from BAM files

554

555 for alignmentFile in SRR*.bam

556 do

557 echo \$alignmentFile

558 samtools mpileup -q 1 -f GCA_007994515.1_ASM799451v1_genomic.fna \$alignmentFile >

559 \$alignmentFile.pileup

560

561 for alignmentFile in FAO*.bam

562 do

563 echo \$alignmentFile

564 samtools mpileup -f GCA_007994515.1_ASM799451v1_genomic.fna \$alignmentFile >

565 \$alignmentFile.pileup

566 done

567

568 Index the BAM files

569 for alignmentFile in FAO*.bam

570 do

571 echo \$i

572 samtools index \$alignmentFile

573 done

574

575 Call SNPs

576 Identify candidate SNP sites using Pilon

577

578 pilon --version

579

580 for alignmentFile in *.bam

581 do

582 echo \$alignmentFile

583 pilon --genome GCA_007994515.1_ASM799451v1_genomic.fna --bam \$alignmentFile --output

584 \$alignmentFile --vcf

585 done

586

587 Filter the candidate SNPs

588 for alignmentFile in *.bam

589 do

590 echo \$alignmentFile

591 bcftools filter --include '(REF="A" | REF="C" | REF="G" | REF="T") & (ALT="A" | ALT="C" |

592 ALT="G" | ALT="T")' pilon_\$alignmentFile.vcf > \$alignmentFile.filtered.vcf

593 done

594

595 Get the SNP-calling scripts from GitHub

596 git clone <https://github.com/davidjstuholme/SNPsFromPileups.git>

597 Perform SNP-calling from pileup files.

598 To minimise memory usage, we only consider candidate sites previously identified using Pilon.

599 rm snps.csv*

600

601 perl SNPsFromPileups/get_snps_from_pileups_small_genome.pl 10 *.filtered.vcf FAO10428

602 SRR10054449 SRR15514270 SRR7226877 SRR7226883 FAO15599 SRR10054450 SRR15514271

```
603 SRR7226878 SRR9733598 FAO28907      SRR10103605 SRR15514272  SRR7226879 SRR10054446
604 SRR10125423 SRR7226880 SRR10054447  SRR10747097 SRR7226881 SRR10054448 SRR15514269 SRR7226882
605 > snps.csv
606
607 perl SNPsFromPileups/get_snps_from_pileups_small_genome.pl 10 *.filtered.vcf *.pileup > snps-
608 all-pileups.csv
609
610 Convert the SNPs into Nexus format for input into IQ-Tree
611
612 perl SNPsFromPileups/get_haplotypes_and_aligned_fasta_from_csv.pl snps.csv
613
614 Perform phylogenetic analysis using IQ-Tree
615
616 /mnt/bio-tarako-home/djs217/iqtree-2.0.6-Linux/bin/iqtree2 --version
617 /mnt/bio-tarako-home/djs217/iqtree-2.0.6-Linux/bin/iqtree2 -s snps.csv.haplotype.nex -m
618 GTR+ASC
619
620 Perform bootstrapping
621
622 /mnt/bio-tarako-home/djs217/iqtree-2.0.6-Linux/bin/iqtree2 -nt AUTO -s
623 snps.csv.haplotype.nex.uniqueseq.phy -m TIM2+I+G -bb 1000
624 Examine gene content using coverageBed from Bedtools
625 coverageBed --help
626 for alignmentFile in *.bam
627   do echo $alignmentFile
628   if [ -s $alignmentFile.coverageBed.csv ]
629     then
630       echo $alignmentFile.coverageBed.csv already exists
631     else
632       coverageBed -a GCA_007994515.1_ASM799451v1_genomic.gff -b $alignmentFile >
633 $alignmentFile.coverageBed.csv
634     fi
635   done
636
637 ./SNPsFromPileups/compare_coverages.pl GCA_007994515.1_ASM799451v1_genomic.gff
638 *.coverageBed.csv > comparison.csv
639
640 Plot the variable genes as a heatmap
641
642 Install the packages
643
644 install.packages('pheatmap')
645
646 Load the packages
647
648 library('pheatmap')
649 library(RColorBrewer)
650 library(tidyverse)
651
652 Make the plot
653
654 ### Read the tab-delimited file that tabulates the variable genes/proteins
655 x <- read.table("variable_proteins_05_01_22.txt", header = T, stringsAsFactors = FALSE, quote
656 = "", sep = "\t")
657 row.names(x) <- paste(x$Gene)
658
659 ### How many rows and how many columns?
660 ncol <- ncol(x)
661 nrow <- nrow(x)
662
663 ### Discard some columns
664 cols_remove <- c("Location", "Protein.domains.features", "Gene", "SignalP.v5", "X")
665 x <- x[, !(colnames(x) %in% cols_remove)]
666
667 ### Format the data to be acceptable to pheatmap
```

```
668 x<-data.matrix(x)
669
670 ### Plot the heatmap
671 hmcol<-colorRampPalette(brewer.pal(1,"Blues"))(256)
672
673 pheatmap(x,
674   col=hmcol,
675   display_numbers=F,
676   #clustering_distance_rows = "correlation",
677   #clustering_distance_cols = "correlation",
678   #clustering_method = "complete",
679   cluster_cols = T,
680   cluster_rows = F,
681   show_rownames=F
682 )
683
684
```