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Abstract1

Federated Learning approaches are becoming increasingly relevant in various fields. These2

approaches promise to facilitate an integrative data analysis without sharing the data, which3

is highly beneficial for applications with sensitive data such as healthcare. Yet, the risk of4

data leakage caused by malicious attacks needs to be assessed carefully. In this study, we5

consider a new attack route and present an algorithm that depends on being able to compute6

sample means, sample covariances, and construct known linearly independent vectors on the7

data owner side. We show that these basic functionalities, available in several established8

Federated Learning frameworks, suffice to reconstruct privacy-protected data. Moreover, the9

attack algorithm is robust to defence strategies that build on random noise. We demonstrate10

this limitation of existing frameworks and discuss possible defence strategies. The novel11

insights will facilitate the improvement of Federated Learning frameworks.12
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Figure 1: Concept of (attacks in) Federated Learning. A In Local Learning all models

are trained separately on different servers. B In Meta Learning all models are trained sep-

arately on different servers but individual results are subsequently averaged to obtain meta

results. C In Central Learning the data is pooled and one model is trained. Hence the data

must be shared. D In Federated Learning the data is kept private on the servers. One model

is trained with continuous updates between the client and the servers. E Illustration of a

client side attack in Federated Learning. A malicious client uses the information received

from the server to retrieve private data. This figure has been designed using resources from

Flaticon.com

Main Text13

Large-scale data sets have been shown to be highly valuable for data-driven discovery in14

various fields such as clinical research [1–4], self-driving cars [5, 6], and smartphone keyboard15

word predictions [7, 8]. The COVID-19 pandemic has highlighted the importance of the rapid16

acquisition of new evidence for interventions in public health. Yet, data are often collected17

by different sides, e.g. hospitals, and established legal frameworks limit direct sharing [9],18

reducing the speed and statistical power of the analyses with possibly harmful consequences19

for patients [10]. To facilitate the integrative analysis of distributed data sets, federated20

learning has been introduced by Google Researchers in 2016 [11]. This, supposedly, allows21
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for privacy-preserving estimation of statistical models from distributed data, making it an22

essential tool for the rapid assessment of new treatments to improve the fast acquisition of23

evidence-based interventions in public health. Security is a key topic in the field as data24

leakage can result in deontological and consequentialist privacy harms [12].25

Federated learning is based on sharing informative summary statistics by individual data26

owners (each running a data server) with a central hub (Figure 1D). This central hub is27

responsible for model building. Servers do not share individuals’ data but only non-disclosive28

summary statistics. This approach is considered privacy-preserving. The focus on privacy29

in these areas has naturally precipitated extensive research on potential attack vectors. In30

particular, that sharing parameter gradients – a particular type of summary statistic – in31

deep neural structures can reveal the training data [13–17]. Algorithms were able to recreate32

images (on the level of individual pixels) and texts [16, 17]. Further data leakage threats33

have been summarized [18].34

In this study, we complement the previous work by focusing on basic functionalities that are35

available in established Federated Learning frameworks. We consider the possibilities of a36

malicious client who tries to obtain the data stored across different data owners and introduce37

a new attack concept. To perform the attack, we generate known linearly independent vectors38

on each server. After concatenating them on the client side, we use sample means and sample39

covariances to reconstruct the server side data nearly up to numerical precision. In contrast to40

the well-studied gradient approach, the presented method requires comparatively little time,41

and no model knowledge. Moreover, our algorithm carries desirable statistical properties:42

Repeatedly executing it allows for exact data reconstruction even if random additive noise43

is applied to the covariance and means. In our opinion, this combination of features makes44

this attack strategy more problematic than any previously outlined approach. We discuss45

our algorithm theoretically and demonstrate its usage on the open-source frameworks R46

DataSHIELD (version 6.2.0) [19] and TensorFlow Federated (version 0.36.0) [20].47

Covariance-Based Attack Algorithm48

The distributed infrastructure consists of nh servers. The j-th server hosts observations49

s = 1, . . . , nj (e.g. patient data sets), each with information for variables k = 1, . . . , np.50

Accordingly, each server stores a data matrix Xj =
(
xj,1 . . . xj,k . . . xj,np

)
with xj,k ∈51

Rnj , where each vector xj,k contains the information about variable k for all nj samples on52

server j. Without loss of generality, the malicious client focuses on a specific variable k53

on a specific server j, denoted by xj,k. Retrieving the remaining variables and servers can54

be subsequently obtained analogously. We assume that the attacker has at least three basic55

tools: (T1) a sample mean function Mean(x), (T2) a sample covariance function Cov(x, y) for56
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Figure 2: Covariance-Based Attack Algorithm setup for reconstructing data xj,1 on

the first server. The malicious client generates linear independent vectors y1, . . . , yn1 on the

server and client side, computes the covariances of them together with the attacked vector

x1,1, and returns them with the mean of x1,1 to the client side. Subsequently, the returned

information is used with the means of y1, . . . , yn1 to compute x1,1 on the client side. The

algorithm can be repeated for all xj,k to obtain the full data set. This figure has been designed

using resources from Flaticon.com

a vector y provided by the client, and (T3) an algorithm A generating nj linearly independent57

vectors yi ∈ Rnj on the server side and their column-wise collection as a matrix Y ∈ Rnj×nj
58

on the client side, A(nj) =
(
y1 . . . yi . . . ynj

)
= Y with yi ∈ Rnj (Figure 2).59

These requirements are met by many distributed analysis frameworks, virtually all of which60

include functions for computing sample means (T1) and covariances (T2). The input of the61

covariance function is usually not restricted to subsets of the data matrix X but allows for62

other inputs y (T2). The availability of a function for the construction and sharing of linearly63

independent vectors (T3) might appear least obvious, but it is indeed available in most tools.64

For instance, it is necessary in the context of optimisation via federated averaging: The65

client receives the server side gradients, updates the parameters, and sends them back to the66

servers. For any system where this operation is possible, assumption (T3) must therefore be67

satisfied. Well-known and widely used distributed analysis frameworks for which assumptions68

(T1)—(T3) are fulfilled are TensorFlow Federated [20] and R DataSHIELD [19].69

Assuming that (T1)—(T3) are met, the centrepiece of our algorithm is the fact that evaluat-70

ing the sample covariance makes it possible to reconstruct the inner vector products between71

the attacked vector xj,k and the linearly independent vectors y1, . . . , ynj
. This yields a linear72
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Algorithm 1 Covariance-Based Attack Algorithm

Input: Position of attacked server side variable xj,k

Output: Retrieved data xj,k

Require: Data matrix Xj on the server side, function Mean(x) returning the sample mean,

function Cov(x, x′) returning the sample covariance, algorithm A(nj) returning nj known

linearly independent vectors yi ∈ Rnj on the server side and their column-wise collection

as a matrix Y on the the client side

1: procedure

2: Y, y1, . . . , ynj
← A(nj) ▷ Client and server side

3: initialise Ṽ , m̃ ∈ Rnj ▷ Client side

4: for i in 1 : nj do

5: m̃[i]← Mean(yi) ▷ Client side

6: Ṽ [i]← Cov(xj,k, yi) ▷ Client side

7: x← (nj − 1)
(
Y T
)−1

Ṽ − nj Mean(xj,k)
(
Y T
)−1

m̃ ▷ Client side

8: return x

system of nj equations which can be solved for xj,k and written in matrix form as73

xj,k = (nj − 1) ·
(
Y T
)−1

 Cov (xj,k, y1)
...

Cov
(
xj,k, ynj

)


︸ ︷︷ ︸
:=Ṽ

+nj ·Mean(xj,k) ·
(
Y T
)−1

Mean(y1)
...

Mean(ynj
)


︸ ︷︷ ︸

:=m̃

, (1)

where the right-hand side of (1) is known by the malicious client. Derivations of the computa-74

tions are reported in the section Mathematical Computations of the Methods. The presented75

procedure can be repeated for each variable k = 1, 2, . . . , np and server j = 1, 2, . . . , nS,76

using the same linearly independent vectors yi, until all data X1, . . . , Xns is obtained. As77

the covariance calculation is essential, we refer to the strategy as Covariance-Based Attack78

Algorithm.79

R DataSHIELD is vulnerable to the Algorithm80

To demonstrate the Covariance-Based Attack Algorithm and the vulnerability of existing81

distributed analysis frameworks, we considered different software packages. First we provide82

an example implementation in R DataSHIELD (version 6.2.0) framework and its base package83

dsBaseClient [19]. This tool is well-established and used in various biomedical applications84

[3, 21–24] in which data sharing is limited, e.g. to ensure compliance with privacy regulations,85

such as the General Data Protection Regulation (GDPR). The utilised data set is the CNSIM86
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Figure 3: Leakage results and computation times for R DataSHIELD. A True data

values from the first server of the CNSIM data set vs. the corresponding retrieved data

provided by the Covariance-Based Attack Algorithm. B Computation time of the algorithm

for different sample size. This figure has been designed using resources from Flaticon.com

data set from the R DataSHIELD tutorial [25] to ensure an easy-to-reproduce test case. This87

data set consists of 3 servers with a total of 9,379 synthetic observations of 11 personalised88

obesity-related variables. We have reconstructed information on the individual Body Mass89

Index (BMI) measurements from the first server using a complete case analysis with a sample90

size of nj = 250.91

RDataSHIELDmeets the requirements (T1)—(T3) and is therefore vulnerable to the Covariance-92

Based Attack Algorithm. The functions to compute sample means (T1) and sample covari-93

ances (T2) are ds.mean and ds.cov , respectively. These functions return the means and94

covariances directly, but require mild conditions on the attacked data xj,k: (C1) the sample95

sizes nj must exceed the thresholds nj > 3 ( ds.mean ) and nj > 6 ( ds.cov ); and (C2)96
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both levels of a dichotomous variable must occur at least 3 times in the given data vectors.97

The conditions (C1) and (C2) ensure a privacy-preserving analysis if the functions are ap-98

plied once. If any of the assumptions (C1) and (C2) were violated, descriptive statistics or99

further analysis with xj,k would be impossible. Therefore, it is reasonable to assume their100

validity. In our example, the data has nj = 250 observations of a continuous variable so that101

requirements (C1) and (C2) are clearly satisfied. The construction of nj linearly independent102

vectors (T3) can be implemented in several ways. We used the function ds.dmtC2S to send103

which allows for sending client side matrices to the server side. Hence, it is possible for the104

client to create suitable linearly independent vectors yi on the client side and to send them105

to the server side. Note that since the covariance operation is performed on xj,k and all yi,106

(C1) and (C2) must hold for all yi as well. Since xj,k and yi have the same length nj, (C1)107

holds. To meet (C2) and the linear independence condition, we draw each element yi from108

a standard normal distribution, so that yi almost surely consists of nj distinct entries and109

that y1, . . . , ynj
are almost surely linearly independent. In principle, however, the malicious110

client can use any linearly independent vectors y1, . . . , ynj
that meet the requirements (C1)111

and (C2).112

After creating all linearly independent yi on the server and the client side and computing113

the relevant means and covariances, the data can be obtained as described in (1). Our eval-114

uation of the example above shows that the true data can be reconstructed almost perfectly115

(Figure 3A). The Pearson correlation coefficient between true and retrieved BMI values is116

1.0. The highest absolute error observed is 2 · 10−12, which is close to numerical accuracy.117

This demonstrates that the Covariance-Based Attack Algorithm is not limited to theoretical118

settings. Instead, data leakage can also be achieved in real-life set-ups.119

TensorFlow Federated provides functionality for the Al-120

gorithm121

To assess whether other tools allow for the implementation of similar attack strategies, we122

considered TensorFlow Federated (version 0.36.0)[20]. This is an open-source framework for123

computations on decentralized data. In contrast to R DataSHIELD, the website mentions124

explicitly that this tool is meant for experimentation with Federated Learning. Yet, if ex-125

perimentation environments allow for (non-trivial) disclosive computations, these are likely126

to find their way into application. Accordingly, we evaluated the possibility of implementing127

the Covariance-Based Attack Algorithm using a set of basic functions.1128

1Note that the developers of TensorFlow Federated use the terms client and server in a way opposite

to that of the R DataSHIELD community. To avoid confusing the reader, we stick to the convention of R

DataSHIELD, with the client being the central hub and the servers being the data owners.
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Our assessment revealed that TensorFlow Federated meets the tool requirements (T1)—129

(T3) and allows for the implementation of a Covariance-Based Attack Algorithm. Func-130

tions can be constructed in TensorFlow Federated by wrapping functionalities from Python131

packages, e.g. TensorFlow or numpy, in a function and labelling it with tf computation .132

To compute sample means (T1), a function that computes the average of xj,k, e.g. us-133

ing numpy.mean , can be implemented. For (T2), one can for instance wrap the function134

stats.covariance from the TensorFlow probability package. Both functions need to be135

applied with the functionality of federated map to return values from the server side. Since136

TensorFlow Federated does not enforce further privacy leakage checks, these functions do not137

have requirements that are equivalent to (C1) and (C2) for R DataSHIELD. However, we138

expect that if TensorFlow Federated is used in real-world applications, further disclosiveness139

checks, similar to (C1) and (C2), will be implemented. For (T3), TensorFlow Federated140

offers the tff.federated broadcast function which is similar to the function ds.dmtC2S141

as it sends objects from the client to the server side. Due to the current lack of requirements142

such as (C1) and (C2), the vectors y1, . . . , ynj
must be linearly independent but no further143

restrictions have to be imposed.144

The implementation of the Covariance-Based Attack Algorithm in TensorFlow Federated was145

applied to the afore-mentioned CNSIM data set. We found that this allows for a reconstruc-146

tion of the data up to numerical accuracy (Supplementary Figure 5). Hence, data leakage147

is also possible in TensorFlow Federated, using algorithms that appear to be non-disclosive.148

This raises questions regarding the suitability of the framework for experimentation with149

Federated Learning.150

Computation complexity of data reconstruction grows151

linearly with sample size152

To study the applicability of the Covariance-Based Attack Algorithm, we considered the153

scaling of the computation time with growing sample size nj. As computation time we154

consider the wall time required to obtain the result.155

In theory, the sample size determines the time requirements in different ways. Firstly, it156

determines the size of the system of equations (1). This size is identical to nj, meaning that157

nj requests need to be sent to the j-th server. The communication overhead for a request158

is constant, but the computation time will in general grow linearly with nj [O(nj)], as the159

dimensionality of the scalar product grows. Secondly, the computation time for solving the160

linear system from (1) grows cubically
[
O(n3

j)
]
using the solve command in R and the161

linalg.inv command in Python available through the NumPy library. Hence, there are162

linear, and cubic contributions, with different pre-factors, to the computation time.163
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In order to evaluate the scaling behaviour in practice, we considered subsets of the CNSIM164

data set of different sizes and determined the wall time required to complete the attack (Fig-165

ure 3B). We observed linear scaling (Figure 3B), meaning that the communication overhead166

determines overall wall time. Indeed, even for the largest considered data set, matrix inver-167

sion required only 0.004 seconds, meaning that it contributed only 7 · 10−6 percent to the168

overall time.169

The essentially linear scaling behavior in the relevant regime, compared to the theoretically170

cubic scaling behavior, leads to this attack being feasible in many real-world scenarios.171

The Covariance-Based Attack Algorithm is robust against172

noise perturbations173

The Covariance-Based Attack Algorithm allows for the reconstruction of the data on the174

servers. We further investigated whether our approach is robust to adding zero-mean noise175

to the means and covariances before returning them to the client. In this case, the client176

observes noise-corrupted data estimates177

xnoisy
j,k = (nj − 1)

(
Y T
)−1

(Ṽ + ε) + nj

(
Y T
)−1

(Mean(xj,k) + γ) m̃

= xj,k + (nj − 1)
(
Y T
)−1

ε+ nj

(
Y T
)−1

m̃γ,

with zero-mean and finite-variance noise terms ε and γ.178

The noise-corrupted data estimate xnoisy
j,k can be decomposed into the true data xj,k and a noise179

component so that the malicious client cannot retrieve the original data (Figure 4A). However,180

the malicious client is, given suitable communication and computational budgets, able to run181

the algorithm r times. If R is sufficiently large, the zero-mean noise components average182

out such that the mean 1
R

∑R
r=1 x

noisy
j,k,r converges in probability to the data xj,k (Figure 4B).183

We provide a proof in the Method section. Hence, even if noise is added to means and184

covariances, a malicious client is able to retrieve the data.185

Discussion186

Federated Learning is a powerful tool and has been proven to be essential in a large number187

of fields. During the SARS-CoV-2 pandemic, a large number of consortia heavily relied on188

Federated Learning and outlined its potential [1, 26, 27]. Yet, it must be ensured that the189

data of the participating servers remain private. To achieve this, attack strategies need to190

be studied in detail. Here, we have proposed the novel Covariance-Based Attack Algorithm191

to which established Federated Learning systems are vulnerable.192
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Figure 4: Robustness of Covariance-Based Attack Algorithm to normally distributed

noise on means and covariances. A Relative mean squared error (MSE) of the reconstructed

data values for different noise level if only a single realisation is available (R = 1). The

median (line) and the 5th to 95th-percentile (area) of 200 replicates are depicted. B Relative

mean squared error (MSE) of the empirical mean of reconstructed data values obtained

from different numbers of realisation (r = 1, . . . , 1000) and four different noise levels. The

median (line) of 200 replicates is depicted. This figure has been designed using resources

from Flaticon.com

We have shown that a malicious client could use the Covariance-Based Attack Algorithm193

to leak data from a Federated Learning system. Our approach is conceptually different194

from previously published studies, which focused on information leakage through gradients195

obtained from deep neural models. It relies on building linearly independent vectors on the196

server side and sample means as well as sample covariance functions that can be accessed by197

the client. This attack approach provides fast data leakage and superior scaling. It is easily198
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implemented and not thwarted by noise perturbations. This is demonstrated by applying199

our algorithm on R DataSHIELD (version 6.2.0.), and TensorFlow Federated (version 0.36.0)200

for which we were able to reconstruct the data. We have provided the respective developers201

with due notice.202

The proposed Covariance-Based Attack Algorithm provides a prototype for a class of strate-203

gies. Improvements may, for instance, simultaneously evaluate multiple vectors yi, enforce204

block structures on Y or create it with a sample mean of zero. This can reduce the time205

spent in communication as well as the computation time required to solve the linear system.206

Furthermore, additional functions on the server and client side might be (mis-)used.207

Our findings suggest that existing functionalities of Federated Learning frameworks need to208

be reviewed with respect to data leakage threats. We propose to tackle (T3). It is necessary209

to send ordered vectors carrying aggregated information, e.g. parameters in optimisation,210

from the client to the server site. Immediately processing these vectors within a function,211

instead of creating a vector on the server side, is a possible defence strategy.212

We note that in order to apply the proposed strategy, the attacker must have access to the213

client. In most cases, this is not straightforward and requires login credentials. However, if the214

security of the data only depended on the trustworthiness of the client, who could potentially215

retrieve the data with the Covariance-Based Attack Algorithm, Federated Learning were216

redundant as it could be replaced by Central Learning. Furthermore, it raises the question217

of GDPR conformity. Finally, this study raises the question of responsibility and liability in218

the case of unknown attack strategies.219

With this work, we aim to support studies around Federated Algorithms and to raise aware-220

ness about potential security. Hence, we contribute to the emerging literature on data leakage221

problems in Federated Learning systems. We did no study other distributed frameworks, like222

swarm learning, but encourage a careful review. While security levels appear higher as the223

aggregation of information is shared, an attack might still be possible if requirements (T1)–224

(T3) are met for the data providers. If this is not the case, swarm learning is more likely to225

represent a preferable framework.226

We expect that our results will contribute to establishment of design criteria for the structure227

of Federated Learning platforms. We have demonstrated that the available systems need to228

be improved to reduce the risk of data leaks.229

Supplementary Information (code) is available for this paper. Correspondence and requests230

for materials should be addressed to Jan Hasenauer.231
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Methods301

Proof of correctness for the Covariance-Based Attack Algorithm302

In this study, we consider an attack by a malicious client and provide an algorithm for data re-303

construction based on covariance information. In the following, we provide the mathematical304

derivation of the algorithm.305

For the attack, it is necessary to compute sample means306

Mean(xj,k) =
1

nj

nj∑
s=1

x
(s)
j,k

Mean(yi) =
1

nj

nj∑
s=1

y
(s)
i ,

and sample covariances,307

Cov (xj,k, yi) =
1

nj − 1

nj∑
s=1

(
x
(s)
j,k −Mean(xj,k)

)(
y
(s)
i −Mean(yi)

)
=

1

nj − 1
yTi xj,k −

nj

nj − 1
Mean(xj,k) Mean(yi),

for all i = 1, 2, . . . , nj on the server side and to return them to the client side. The vectors308

yi are chosen in a way to ensure their linear independence.309

To reconstruct xj,k, we exploit that the sample covariances can be reformulated to determine310

the inner product yTi xj,k,311

yTi xj,k = (nj − 1) Cov (xj,k, yi) + nj Mean(xj,k) Mean(yi). (2)

We combine the equations for i = 1, . . . , nj from (2) to a system of equations in matrix form:312 yT1
...

yTnj


︸ ︷︷ ︸

Y T

xj,k =(nj − 1)

 Cov (xj,k, y1)
...

Cov
(
xj,k, ynj

)


︸ ︷︷ ︸
=Ṽj,k

+nj Mean(xj,k)

Mean(y1)
...

Mean(ynj
)


︸ ︷︷ ︸

=m̃

=⇒ Y Txj,k =(nj − 1) Ṽj,k + nj Mean(xj,k) m̃.

Since the vectors yi were chosen to be linearly independent, Y , and therefore also Y T , are313

invertible. Hence, we can multiply both sides of equation (3) by the inverse of Y T to obtain314

xj,k =(nj − 1)
(
Y T
)−1

Ṽ + nj

(
Y T
)−1

Mean(xj,k) m̃, (3)
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where the right-hand side is known to the client. This provides a constructive proof for the315

recovery of xj,k via the proposed approach.316

The same procedure can be repeated for all nj servers and all np variables, yielding compre-317

hensive information about potentially sensitive data on the servers.318

Robustness of the Covariance-Based Attack Algorithm to noise per-319

turbations320

As a defence strategy against malicious client, we consider the perturbation of mean and321

covariance with noise. More specifically, we consider the addition of zero-mean noise to322

means and covariances on the server side before sending them to the client side. Given only323

access to noisy data, one might assume that the client will not be able to reconstruct xj,k324

exactly. However, running the attack algorithm multiple times on the same variable and325

averaging over these results yields a random variable that converges in probability to xj,k326

such that the malicious client is, given an appropriate communication and computational327

budget, able to still retrieve all information about xj,k. We prove that the empirical mean of328

the noisy results of the Covariance-Based Attack Algorithm 1
R

∑R
r=1 x

noisy
j,k,r , with R denoting329

the number of calls in an attack, converges in probability to xj,k, i.e. formally that for any330

c > 0331

lim
R→∞

P


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
1

R

R∑
r=1

xnoisy
j,k,r︸ ︷︷ ︸

= empirical mean

−xj,k

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2

≥ c

→ 0, (4)

where xnoisy
j,k,r is the result of the r-th run of the Covariance-Based Attack Algorithm.332

Let εr be an nj dimensional random vector with mean E(εr) = 0 and covariance matrix333

V(εr) = σ2
εInj

for which σ2
r < ∞. Let γr be a random variable with mean E(γr) = 0 and334

variance V(γr) = σ2
γ <∞. Further, let γr and εr be uncorrelated so that E(γr · εr) = 0. The335

noisy version of equation (3) is given by336

xnoisy
j,k,r = (nj − 1)

(
Y T
)−1

(Ṽ + εr) + nj

(
Y T
)−1

(Mean(xj,k) + γr) m̃

= xj,k + (nj − 1)
(
Y T
)−1︸ ︷︷ ︸

:=A

εr + nj

(
Y T
)−1

m̃︸ ︷︷ ︸
:=B

γr,

such that xnoisy
j,k,r can be decomposed into the true xj,k and a noise term. Combining (4) and337

(5) shows that (4) is proven if the mean of the noise term converges in probability to zero,338

such that it sufficient to show that339

lim
R→∞

P

(∣∣∣∣∣
∣∣∣∣∣ 1R

R∑
r=1

(Aεr +Bγr)

∣∣∣∣∣
∣∣∣∣∣
2

≥ c

)
→ 0. (5)
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This can be shown by applying Markov’s Inequality340

P

(∣∣∣∣∣
∣∣∣∣∣ 1R

R∑
r=1

(Aεr +Bγr)

∣∣∣∣∣
∣∣∣∣∣
2

≥ c

)
<

E
(∣∣∣∣∣∣ 1R∑R

r=1(Aεr +Bγr)
∣∣∣∣∣∣2
2

)
c2

. (6)

Since (6) holds for all R, it is sufficient to show that the numerator of the right-hand side341

converges to 0 if R→∞ in order to prove (5). To facilitate notation, the entries of ATA are342

denoted by a(s,s
′) and the entries of εr by ε

(s)
r . Note that the following holds:343

• ∀r,m : E(γmεTr ATB) = E(γmεTr )ATB = 0,344

• ∀l ̸= m : by independence of εr and εm, E(εTr ATAεm) = E(εTr )ATAE(εm)) = 0 and by345

independence of γr and γm that E(γrγmBTB) = E(γr)E(γm)BTB = 0,346

• ∀r = m : E(εTr ATAεm) =
∑nj

s=1

∑nj

s=1 E(ε
(s)
r ε

(s′)
r )a(s,s

′) = σ2
ε

∑nj

s=1 a
(s,s) and E(γrγrBTB) =347

E(γ2
r )B

TB = σ2
γB

TB.348

The numerator of the right-hand side of (6) can therefore be written as349

E

∣∣∣∣∣
∣∣∣∣∣ 1R

R∑
r=1

(Aεr +Bγr)

∣∣∣∣∣
∣∣∣∣∣
2

2

 =E

(
1

R2

R∑
r=1

R∑
m=1

(
εTr A

TAεm + 2γmε
T
r A

TB + γrγmB
TB
))

=
1

R2

(
Rσ2

ε

nj∑
s=1

a(s,s) +Rσ2
γB

TB

)

=
1

R

(
σ2
ε

nj∑
s=1

a(s,s) + σ2
γB

TB

)
.

This is a constant multiplied by R−1. Accordingly, (5) holds and therefore (4) is proven.350

In the manuscript, we provide an analysis of the mean squared error for different number of351

calls of an attacker and different noise levels. The Relative mean squared error (RMSE) is352

here defined as353

RMSE =

∣∣∣∣∣∣ 1R∑R
r=1 x

noisy
j,k,r − xj,k

∣∣∣∣∣∣2
2

||xj,k||22
. (7)

Implementation and availability354

A code example of our attack algorithm using the open source frameworks R DataSHIELD355

(version 6.2.0) and TensorFlow Federated (version 0.36.0) with their tutorial’s test data set356

CNSIM is provided at GitHub at357

https://github.com/manuhuth/Data-Leakage-From-Covariances.git.358
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Figure 5: Leakage results for TensorFlow Federated are shown. The true data values

from the first server of the CNSIM data set are plotted against the corresponding leaked data

provided by the Covariance-Based Attack Algorithm.
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