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Abstract

Federated Learning approaches are becoming increasingly relevant in various fields. These
approaches promise to facilitate an integrative data analysis without sharing the data, which
is highly beneficial for applications with sensitive data such as healthcare. Yet, the risk of
data leakage caused by malicious attacks needs to be assessed carefully. In this study, we
consider a new attack route and present an algorithm that depends on being able to compute
sample means, sample covariances, and construct known linearly independent vectors on the
data owner side. We show that these basic functionalities, available in several established
Federated Learning frameworks, suffice to reconstruct privacy-protected data. Moreover, the
attack algorithm is robust to defence strategies that build on random noise. We demonstrate
this limitation of existing frameworks and discuss possible defence strategies. The novel

insights will facilitate the improvement of Federated Learning frameworks.
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Figure 1: Concept of (attacks in) Federated Learning. A In Local Learning all models
are trained separately on different servers. B In Meta Learning all models are trained sep-
arately on different servers but individual results are subsequently averaged to obtain meta
results. C In Central Learning the data is pooled and one model is trained. Hence the data
must be shared. D In Federated Learning the data is kept private on the servers. One model
is trained with continuous updates between the client and the servers. E Illustration of a
client side attack in Federated Learning. A malicious client uses the information received
from the server to retrieve private data. This figure has been designed using resources from

Flaticon.com

s Main Text

1 Large-scale data sets have been shown to be highly valuable for data-driven discovery in
15 various fields such as clinical research [1-4], self-driving cars [5, 6], and smartphone keyboard
16 word predictions [7, 8]. The COVID-19 pandemic has highlighted the importance of the rapid
17 acquisition of new evidence for interventions in public health. Yet, data are often collected
18 by different sides, e.g. hospitals, and established legal frameworks limit direct sharing [9],
19 reducing the speed and statistical power of the analyses with possibly harmful consequences
2 for patients [10]. To facilitate the integrative analysis of distributed data sets, federated
2 learning has been introduced by Google Researchers in 2016 [11]. This, supposedly, allows
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» for privacy-preserving estimation of statistical models from distributed data, making it an
23 essential tool for the rapid assessment of new treatments to improve the fast acquisition of
2 evidence-based interventions in public health. Security is a key topic in the field as data
» leakage can result in deontological and consequentialist privacy harms [12].

s Federated learning is based on sharing informative summary statistics by individual data
2 owners (each running a data server) with a central hub (Figure 1D). This central hub is
2 responsible for model building. Servers do not share individuals’ data but only non-disclosive
20 summary statistics. This approach is considered privacy-preserving. The focus on privacy
3 in these areas has naturally precipitated extensive research on potential attack vectors. In
a1 particular, that sharing parameter gradients — a particular type of summary statistic — in
2 deep neural structures can reveal the training data [13-17]. Algorithms were able to recreate
13 images (on the level of individual pixels) and texts [16, 17]. Further data leakage threats
1 have been summarized [18].

35 In this study, we complement the previous work by focusing on basic functionalities that are
s available in established Federated Learning frameworks. We consider the possibilities of a
s malicious client who tries to obtain the data stored across different data owners and introduce
;s anew attack concept. To perform the attack, we generate known linearly independent vectors
3 on each server. After concatenating them on the client side, we use sample means and sample
w0 covariances to reconstruct the server side data nearly up to numerical precision. In contrast to
s the well-studied gradient approach, the presented method requires comparatively little time,
22 and no model knowledge. Moreover, our algorithm carries desirable statistical properties:
1 Repeatedly executing it allows for exact data reconstruction even if random additive noise
w is applied to the covariance and means. In our opinion, this combination of features makes
s this attack strategy more problematic than any previously outlined approach. We discuss
s our algorithm theoretically and demonstrate its usage on the open-source frameworks R
« DataSHIELD (version 6.2.0) [19] and TensorFlow Federated (version 0.36.0) [20].

«» Covariance-Based Attack Algorithm

s The distributed infrastructure consists of n, servers. The j-th server hosts observations
so s = 1,...,n; (e.g. patient data sets), each with information for variables k = 1,...,n,.
si Accordingly, each server stores a data matrix X; = (ij ce Tk e xjvnp> with ;5 €
2 R™, where each vector z;; contains the information about variable k for all n; samples on
s3 server j. Without loss of generality, the malicious client focuses on a specific variable k
s« on a specific server j, denoted by x;;. Retrieving the remaining variables and servers can
55 be subsequently obtained analogously. We assume that the attacker has at least three basic
ss tools: (T1) a sample mean function Mean(z), (T2) a sample covariance function Cov(z, y) for
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Figure 2: Covariance-Based Attack Algorithm setup for reconstructing data x;; on
the first server. The malicious client generates linear independent vectors vy, ..., ¥y,, on the
server and client side, computes the covariances of them together with the attacked vector
21,1, and returns them with the mean of x;; to the client side. Subsequently, the returned
information is used with the means of y;,...,y,, to compute z;; on the client side. The
algorithm can be repeated for all x;;, to obtain the full data set. This figure has been designed

using resources from Flaticon.com

7 a vector y provided by the client, and (T3) an algorithm A generating n; linearly independent
ss  vectors y; € R™ on the server side and their column-wise collection as a matrix Y € R™*"
so on the client side, A(n;) = <y1 e Y yn]) =Y with y; € R (Figure 2).

s These requirements are met by many distributed analysis frameworks, virtually all of which
s include functions for computing sample means (T1) and covariances (T2). The input of the
& covariance function is usually not restricted to subsets of the data matrix X but allows for
3 other inputs y (T2). The availability of a function for the construction and sharing of linearly
s independent vectors (T3) might appear least obvious, but it is indeed available in most tools.
es For instance, it is necessary in the context of optimisation via federated averaging: The
6 client receives the server side gradients, updates the parameters, and sends them back to the
e servers. For any system where this operation is possible, assumption (T3) must therefore be
¢ satisfied. Well-known and widely used distributed analysis frameworks for which assumptions
o (T1)—(T3) are fulfilled are TensorFlow Federated [20] and R DataSHIELD [19].

70 Assuming that (T1)—(T3) are met, the centrepiece of our algorithm is the fact that evaluat-
7 ing the sample covariance makes it possible to reconstruct the inner vector products between
2 the attacked vector z;, and the linearly independent vectors yi, ..., y,;. This yields a linear
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Algorithm 1 Covariance-Based Attack Algorithm
Input: Position of attacked server side variable x;

Output: Retrieved data

Require: Data matrix X; on the server side, function Mean(x) returning the sample mean,
function Cov(z, 2') returning the sample covariance, algorithm A(n;) returning n; known
linearly independent vectors y; € R™ on the server side and their column-wise collection
as a matrix Y on the the client side

1: procedure

2 Y.y, Yn, < Alny) > Client and server side
3 initialise V,m € R" > Client side
4 foriin 1:n; do

5: m[i] < Mean(y;) > Client side
6 Vi) « Cov(zx, ;) > Client side
7 x4+ (nj—1) (YT)_1 V —n; Mean(z; ) (YT)_1 m > Client side
8: return x

73 system of n; equations which can be solved for z;; and written in matrix form as

) Cov (%‘,m Y1) X Mean (y,)
zip=(nj—1)- (YT)_ : +n; - Mean(z; ) - (YT)_ : . (D)
Cov (xm, ynj) Mean(ynj)
=V =m

7+ where the right-hand side of (1) is known by the malicious client. Derivations of the computa-
7 tions are reported in the section Mathematical Computations of the Methods. The presented
76 procedure can be repeated for each variable k& = 1,2,...,n, and server j = 1,2,... ng,
77 using the same linearly independent vectors y;, until all data X3,..., X, is obtained. As
7 the covariance calculation is essential, we refer to the strategy as Covariance-Based Attack
70 Algorithm.

» R DataSHIELD is vulnerable to the Algorithm

a1 To demonstrate the Covariance-Based Attack Algorithm and the vulnerability of existing
&2 distributed analysis frameworks, we considered different software packages. First we provide
&3 an example implementation in R DataSHIELD (version 6.2.0) framework and its base package
ss dsBaseClient [19]. This tool is well-established and used in various biomedical applications

ss  [3, 21-24] in which data sharing is limited, e.g. to ensure compliance with privacy regulations,
s such as the General Data Protection Regulation (GDPR). The utilised data set is the CNSIM
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Figure 3: Leakage results and computation times for R DataSHIELD. A True data

values from the first server of the CNSIM data set vs.

the corresponding retrieved data

provided by the Covariance-Based Attack Algorithm. B Computation time of the algorithm
for different sample size. This figure has been designed using resources from Flaticon.com

data set from the R DataSHIELD tutorial [25] to ensure an easy-to-reproduce test case. This
data set consists of 3 servers with a total of 9,379 synthetic observations of 11 personalised
obesity-related variables. We have reconstructed information on the individual Body Mass
Index (BMI) measurements from the first server using a complete case analysis with a sample
size of n; = 250.

R DataSHIELD meets the requirements (T1)—

(T3) and is therefore vulnerable to the Covariance-

Based Attack Algorithm. The functions to compute sample means (T1) and sample covari-
ances (T2) are ds.mean and ds.cov, respectively. These functions return the means and
covariances directly, but require mild conditions on the attacked data z;;: (C1) the sample
sizes n; must exceed the thresholds n; > 3 (ds.mean ) and n; > 6 (ds.cov); and (C2)
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both levels of a dichotomous variable must occur at least 3 times in the given data vectors.
The conditions (C1) and (C2) ensure a privacy-preserving analysis if the functions are ap-
plied once. If any of the assumptions (C1) and (C2) were violated, descriptive statistics or
further analysis with z;; would be impossible. Therefore, it is reasonable to assume their
validity. In our example, the data has n; = 250 observations of a continuous variable so that
requirements (C1) and (C2) are clearly satisfied. The construction of n; linearly independent
vectors (T3) can be implemented in several ways. We used the function ds.dmtC2S to send
which allows for sending client side matrices to the server side. Hence, it is possible for the
client to create suitable linearly independent vectors g; on the client side and to send them
to the server side. Note that since the covariance operation is performed on z;; and all y;,
(C1) and (C2) must hold for all y; as well. Since x;; and y; have the same length n;, (C1)
holds. To meet (C2) and the linear independence condition, we draw each element y; from
a standard normal distribution, so that y; almost surely consists of n; distinct entries and

that yy,...,yn, are almost surely linearly independent. In principle, however, the malicious
client can use any linearly independent vectors yi,...,y,, that meet the requirements (C1)
and (C2).

After creating all linearly independent y; on the server and the client side and computing
the relevant means and covariances, the data can be obtained as described in (1). Our eval-
uation of the example above shows that the true data can be reconstructed almost perfectly
(Figure 3A). The Pearson correlation coefficient between true and retrieved BMI values is
1.0. The highest absolute error observed is 2 - 107'2, which is close to numerical accuracy.
This demonstrates that the Covariance-Based Attack Algorithm is not limited to theoretical
settings. Instead, data leakage can also be achieved in real-life set-ups.

TensorFlow Federated provides functionality for the Al-

gorithm

To assess whether other tools allow for the implementation of similar attack strategies, we
considered TensorFlow Federated (version 0.36.0)[20]. This is an open-source framework for
computations on decentralized data. In contrast to R DataSHIELD, the website mentions
explicitly that this tool is meant for experimentation with Federated Learning. Yet, if ex-
perimentation environments allow for (non-trivial) disclosive computations, these are likely
to find their way into application. Accordingly, we evaluated the possibility of implementing

the Covariance-Based Attack Algorithm using a set of basic functions.!

'Note that the developers of TensorFlow Federated use the terms client and server in a way opposite
to that of the R DataSHIELD community. To avoid confusing the reader, we stick to the convention of R
DataSHIELD, with the client being the central hub and the servers being the data owners.
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Our assessment revealed that TensorFlow Federated meets the tool requirements (T1)—
(T3) and allows for the implementation of a Covariance-Based Attack Algorithm. Func-
tions can be constructed in TensorFlow Federated by wrapping functionalities from Python
packages, e.g. TensorFlow or numpy, in a function and labelling it with tf_computation .
To compute sample means (T1), a function that computes the average of x;;, e.g. us-
ing numpy.mean , can be implemented. For (T2), one can for instance wrap the function
stats.covariance from the TensorFlow probability package. Both functions need to be
applied with the functionality of federated map to return values from the server side. Since
TensorFlow Federated does not enforce further privacy leakage checks, these functions do not
have requirements that are equivalent to (C1) and (C2) for R DataSHIELD. However, we
expect that if TensorFlow Federated is used in real-world applications, further disclosiveness
checks, similar to (C1) and (C2), will be implemented. For (T3), TensorFlow Federated
offers the tff.federated broadcast function which is similar to the function ds.dmtC2S
as it sends objects from the client to the server side. Due to the current lack of requirements
such as (C1) and (C2), the vectors yi,...,y,, must be linearly independent but no further
restrictions have to be imposed.

The implementation of the Covariance-Based Attack Algorithm in TensorFlow Federated was
applied to the afore-mentioned CNSIM data set. We found that this allows for a reconstruc-
tion of the data up to numerical accuracy (Supplementary Figure 5). Hence, data leakage
is also possible in TensorFlow Federated, using algorithms that appear to be non-disclosive.
This raises questions regarding the suitability of the framework for experimentation with

Federated Learning.

Computation complexity of data reconstruction grows

linearly with sample size

To study the applicability of the Covariance-Based Attack Algorithm, we considered the
scaling of the computation time with growing sample size n;. As computation time we

consider the wall time required to obtain the result.

In theory, the sample size determines the time requirements in different ways. Firstly, it
determines the size of the system of equations (1). This size is identical to n;, meaning that
n; requests need to be sent to the j-th server. The communication overhead for a request
is constant, but the computation time will in general grow linearly with n; [O(n;)], as the
dimensionality of the scalar product grows. Secondly, the computation time for solving the
3

linear system from (1) grows cubically [O(n?

linalg.inv command in Python available through the NumPy library. Hence, there are

)] using the solve command in R and the

linear, and cubic contributions, with different pre-factors, to the computation time.
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In order to evaluate the scaling behaviour in practice, we considered subsets of the CNSIM
data set of different sizes and determined the wall time required to complete the attack (Fig-
ure 3B). We observed linear scaling (Figure 3B), meaning that the communication overhead
determines overall wall time. Indeed, even for the largest considered data set, matrix inver-
sion required only 0.004 seconds, meaning that it contributed only 7 - 107® percent to the

overall time.

The essentially linear scaling behavior in the relevant regime, compared to the theoretically

cubic scaling behavior, leads to this attack being feasible in many real-world scenarios.

The Covariance-Based Attack Algorithm is robust against

noise perturbations

The Covariance-Based Attack Algorithm allows for the reconstruction of the data on the
servers. We further investigated whether our approach is robust to adding zero-mean noise
to the means and covariances before returning them to the client. In this case, the client
observes noise-corrupted data estimates

2 = (ny — 1) (YT) (V) +ny (YT) T (Mean(a4) + 7)1
=Tkt (nj - 1) (YT)_1 €+n; (YT)_l my,

with zero-mean and finite-variance noise terms ¢ and ~.

The noise-corrupted data estimate 73" can be decomposed into the true data z;; and a noise
component so that the malicious client cannot retrieve the original data (Figure 4A). However,
the malicious client is, given suitable communication and computational budgets, able to run
the algorithm r times. If R is sufficiently large, the zero-mean noise components average
out such that the mean £ 37 x??jiy converges in probability to the data x;; (Figure 4B).
We provide a proof in the Method section. Hence, even if noise is added to means and
covariances, a malicious client is able to retrieve the data.

Discussion

Federated Learning is a powerful tool and has been proven to be essential in a large number
of fields. During the SARS-CoV-2 pandemic, a large number of consortia heavily relied on
Federated Learning and outlined its potential [1, 26, 27]. Yet, it must be ensured that the
data of the participating servers remain private. To achieve this, attack strategies need to
be studied in detail. Here, we have proposed the novel Covariance-Based Attack Algorithm
to which established Federated Learning systems are vulnerable.
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Figure 4: Robustness of Covariance-Based Attack Algorithm to normally distributed
noise on means and covariances. A Relative mean squared error (MSE) of the reconstructed
data values for different noise level if only a single realisation is available (R = 1). The
median (line) and the 5th to 95th-percentile (area) of 200 replicates are depicted. B Relative
mean squared error (MSE) of the empirical mean of reconstructed data values obtained
from different numbers of realisation (r = 1,...,1000) and four different noise levels. The
median (line) of 200 replicates is depicted. This figure has been designed using resources
from Flaticon.com

We have shown that a malicious client could use the Covariance-Based Attack Algorithm
to leak data from a Federated Learning system. Our approach is conceptually different
from previously published studies, which focused on information leakage through gradients
obtained from deep neural models. It relies on building linearly independent vectors on the
server side and sample means as well as sample covariance functions that can be accessed by
the client. This attack approach provides fast data leakage and superior scaling. It is easily

10
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implemented and not thwarted by noise perturbations. This is demonstrated by applying
our algorithm on R DataSHIELD (version 6.2.0.), and TensorFlow Federated (version 0.36.0)
for which we were able to reconstruct the data. We have provided the respective developers
with due notice.

The proposed Covariance-Based Attack Algorithm provides a prototype for a class of strate-
gies. Improvements may, for instance, simultaneously evaluate multiple vectors y;, enforce
block structures on Y or create it with a sample mean of zero. This can reduce the time
spent in communication as well as the computation time required to solve the linear system.
Furthermore, additional functions on the server and client side might be (mis-)used.

Our findings suggest that existing functionalities of Federated Learning frameworks need to
be reviewed with respect to data leakage threats. We propose to tackle (T3). It is necessary
to send ordered vectors carrying aggregated information, e.g. parameters in optimisation,
from the client to the server site. Immediately processing these vectors within a function,
instead of creating a vector on the server side, is a possible defence strategy.

We note that in order to apply the proposed strategy, the attacker must have access to the
client. In most cases, this is not straightforward and requires login credentials. However, if the
security of the data only depended on the trustworthiness of the client, who could potentially
retrieve the data with the Covariance-Based Attack Algorithm, Federated Learning were
redundant as it could be replaced by Central Learning. Furthermore, it raises the question
of GDPR conformity. Finally, this study raises the question of responsibility and liability in
the case of unknown attack strategies.

With this work, we aim to support studies around Federated Algorithms and to raise aware-
ness about potential security. Hence, we contribute to the emerging literature on data leakage
problems in Federated Learning systems. We did no study other distributed frameworks, like
swarm learning, but encourage a careful review. While security levels appear higher as the
aggregation of information is shared, an attack might still be possible if requirements (T1)-
(T3) are met for the data providers. If this is not the case, swarm learning is more likely to
represent a preferable framework.

We expect that our results will contribute to establishment of design criteria for the structure
of Federated Learning platforms. We have demonstrated that the available systems need to
be improved to reduce the risk of data leaks.

Supplementary Information (code) is available for this paper. Correspondence and requests
for materials should be addressed to Jan Hasenauer.
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« Methods

w2 Proof of correctness for the Covariance-Based Attack Algorithm

303 In this study, we consider an attack by a malicious client and provide an algorithm for data re-
s construction based on covariance information. In the following, we provide the mathematical

s derivation of the algorithm.

s For the attack, it is necessary to compute sample means

1< |,
Mean(z; ) = w Z 95512
s=1
L\~
Mean(y;) = — » v,”,
W)=+ Z;
s7  and sample covariances,
Cov (zjp,yi) = ! ZJ 2% — Mean(z;;)) (v — Mean(y;)
],kvyz —nj ] - 4.k 7.k Y; Y;
g — " Mean(r ) Mean(y)
= ST — ean(x; ean(y;),
nj —1 Yi ok nj —1 gk Y
ss for all « = 1,2,...,n; on the server side and to return them to the client side. The vectors

300 Y; are chosen in a way to ensure their linear independence.

s To reconstruct x;, we exploit that the sample covariances can be reformulated to determine

s the inner product y/ z;,

yl v = (n; — 1) Cov (zx,y;) + n; Mean(z;;) Mean(y;). (2)
sz We combine the equations for ¢ = 1,...,n; from (2) to a system of equations in matrix form:
i Cov (2, y1) Mean(y; )
oz =(n; — 1) : +n; Mean(x; ) :
ygj Cov (xj7k7 yn) Mean(ynj)
S~—— ~ ~ - —_—
YT =Vjr =m

— YT:cj,k =(n; — 1) Vr +n; Mean(z; ) m.

a3 Since the vectors y; were chosen to be linearly independent, Y, and therefore also Y7, are
s invertible. Hence, we can multiply both sides of equation (3) by the inverse of Y7 to obtain

zir =(n; — 1) (YT)_1 vV + n; (YT)_1 Mean(z; ) m, (3)
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where the right-hand side is known to the client. This provides a constructive proof for the
recovery of x;; via the proposed approach.

The same procedure can be repeated for all n; servers and all n, variables, yielding compre-

hensive information about potentially sensitive data on the servers.

Robustness of the Covariance-Based Attack Algorithm to noise per-

turbations

As a defence strategy against malicious client, we consider the perturbation of mean and
covariance with noise. More specifically, we consider the addition of zero-mean noise to
means and covariances on the server side before sending them to the client side. Given only
access to noisy data, one might assume that the client will not be able to reconstruct x;y
exactly. However, running the attack algorithm multiple times on the same variable and
averaging over these results yields a random variable that converges in probability to x;
such that the malicious client is, given an appropriate communication and computational
budget, able to still retrieve all information about z; ;. We prove that the empirical mean of
the noisy results of the Covariance-Based Attack Algorithm %27{11 x;lzljy, with R denoting
the number of calls in an attack, converges in probability to z;, i.e. formally that for any
c>0

1 R
. noisy
}%gr;OP = E Tin, —Tikl| =c| =0, (4)
r=1
————
= empirical mean 2

where xj"?f,y is the result of the r-th run of the Covariance-Based Attack Algorithm.

Let &, be an n; dimensional random vector with mean E(e,) = 0 and covariance matrix
V(e,) = 02l,, for which 62 < co. Let 7, be a random variable with mean E(y,) = 0 and
variance V(v,) = 03 < 00. Further, let 4, and &, be uncorrelated so that E(y, - £,) = 0. The

noisy version of equation (3) is given by

xﬁziy = (n; — 1) (YT)fl (f/ +e) +ny (YT)f1 (Mean(z; k) + 7-) m
=+ (n;— 1) (YT) ety (YD) iy,
) ;;‘ ’ =B

such that x??ff’ can be decomposed into the true z;; and a noise term. Combining (4) and
(5) shows that (4) is proven if the mean of the noise term converges in probability to zero,
such that it sufficient to show that

lim P ( !
R—o0

~—

R
Z(AET + B7,)
r=1

=

20) — 0. (5
2
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a0 'This can be shown by applying Markov’s Inequality

e >c)<E< ) e

s Since (6) holds for all R, it is sufficient to show that the numerator of the right-hand side
sz converges to 0 if R — oo in order to prove (5). To facilitate notation, the entries of AT A are
w3 denoted by a®*") and the entries of &, by el Note that the following holds:

% Zle(Agr + Br)

c2

R
1
= > (Ae, + By,)

r=1

2

344 o Vr,m : E(vuel ATB) = E(y,,el)ATB =0,

245 e VI # m : by independence of ¢, and &,,, E(el AT Ae,,,) = E(e7)AT AE(g,,)) = 0 and by
346 independence of v, and 1, that E(y,7, BT B) = E(y,)E(y,)B*B =0,

347 o Vr=m:E(ETAT4e,) = 0, S0 E(eP e N als) = 62577 09 and E(v,7, BT B) =
” E(+2)BTB = 0BT B.

10 The numerator of the right-hand side of (6) can therefore be written as

2 R
E =K <% DO (eF AT Aey + 29mef ATB + fyr’ymBTB)>
2 =

r=1 m=1

R
1
= Z(AET + B7y,)
r=1
1 2 - $,8 2 pT
:E <RO£ Z&( ) + R(T,YB B)
s=1

1 .
== <a§ > a4 0,2YBT3> .

s=1
s This is a constant multiplied by R™. Accordingly, (5) holds and therefore (4) is proven.

1 In the manuscript, we provide an analysis of the mean squared error for different number of
12 calls of an attacker and different noise levels. The Relative mean squared error (RMSE) is
353 here defined as

2
1 R noisy
‘ ‘}_2 Zr:l xj,k,r — Ljk ‘
RMSE = 2, (7)
14115

= Implementation and availability

s A code example of our attack algorithm using the open source frameworks R DataSHIELD
36 (version 6.2.0) and TensorFlow Federated (version 0.36.0) with their tutorial’s test data set

37 CNSIM is provided at GitHub at
s https://github.com/manuhuth/Data-Leakage-From-Covariances.git.

16


https://github.com/manuhuth/Data-Leakage-From-Covariances.git
https://doi.org/10.1101/2022.10.09.511497
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.09.511497; this version posted October 11, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

available under aCC-BY-NC-ND 4.0 International license.

Acknowledgments

We thank the Interdisciplinary Research Unit Mathematics and Life Sciences at the Univer-
sity of Bonn, Nina Schmid, and Marc Vaisband for comments and discussions.

Funding

This study was funded by the German Research Foundation (Deutsche Forschungsgemein-
schaft, DFG) under Germany’s Excellence Strategy (EXC 2047 - 390873048 & EXC 2151
- 390685813), the German Ministry for Education and Research (Deutches Bundesmin-
sterium fiir Bildung und Forschung, BMBF) under the CompLS program (grant agreement
No 031L0293C), the University of Bonn (via the Schlegel Professorship of JH), the Helmholtz
Association - Munich School for Data Science (MUDS), and the ORCHESTRA project. The
ORCHESTRA project has received funding from the European Union’s Horizon 2020 re-
search and innovation program under grant agreement No 101016167. The views expressed
in this paper are the sole responsibility of the authors and the Commission is not responsible
for any use that may be made of the information it contains. The funders had no role in the
study design, data collection, data analyses, data interpretation, writing, or submission of

this manuscript.

Author information

M.H. developed the Covariance-Based Attack Algorithm. M.H., L.C. and J.H. proved the
reconstruction accuracy. M.H. implemented the algorithm in R DataSHIELD. R.G. imple-
mented the algorithm in TensorFlow Federated. J.H and E.T. conceptualised the study.
M.H. and J.H. wrote the manuscript. All authors read and approved the final manuscript.

Authors and affiliations

Helmholtz Zentrum Miinchen - German Research Center for Environmental
Health, Institute of Computational Biology, Neuherberg, Germany
Manuel Huth, Roy Gusinow, Jan Hasenauer

University of Bonn, Life and Medical Sciences Institute, Bonn, Germany
Manuel Huth, Roy Gusinow, Lorenzo Contento, Jan Hasenauer

University of Verona, Department of Diagnostics and Public Health, Division of
Infectious Diseases, Verona, Italy

17


https://doi.org/10.1101/2022.10.09.511497
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.09.511497; this version posted October 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s Bvelina Tacconelli

<)

» Ethics declarations

3

<]

s0 The authors have no competing interests.

= Supplementary Figures

L4
40 R=1,p<22e-16
@
[ ]
o
~~
o~
£ /
~
[@)]
A4
— 30
=
m
(0]
bt
O
o /
8 o
Y2 K
© ..0’
g
..
1075 20 30 40

True Data - BMI (kg/m?)

Figure 5: Leakage results for TensorFlow Federated are shown. The true data values
from the first server of the CNSIM data set are plotted against the corresponding leaked data
provided by the Covariance-Based Attack Algorithm.
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