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Abstract 

 

Many peptide hormones form an alpha-helix upon binding their receptors1–4, and sensitive 

detection methods for them could contribute to better clinical management. De novo protein 

design can now generate binders with high affinity and specificity to structured proteins5,6. 

However, the design of interactions between proteins and short helical peptides is an unmet 
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challenge. Here, we describe parametric generation and deep learning-based methods for 

designing proteins to address this challenge. We show that with the RFdiffusion generative model, 

picomolar affinity binders can be generated to helical peptide targets either by noising and then 

denoising lower affinity designs generated with other methods, or completely de novo starting 

from random noise distributions; to our knowledge these are the highest affinity designed binding 

proteins against any protein or small molecule target generated directly by computation without 

any experimental optimization. The RFdiffusion designs enable the enrichment of parathyroid 

hormone or other bioactive peptides in human plasma and subsequent detection by mass 

spectrometry, and bioluminescence-based protein biosensors. Capture reagents for bioactive 

helical peptides generated using the methods described here could aid in the improved diagnosis 

and therapeutic management of human diseases.7,8 

 

Main 

 

Peptide hormones, such as parathyroid hormone (PTH), neuropeptide Y (NPY), glucagon (GCG), 

and secretin (SCT), which adopt alpha helical structures upon binding their receptors1–4, play key 

roles in human biology and are well established biomarkers in clinical care and biomedical 

research (Fig. 1a). There is considerable interest in their sensitive and specific quantification, 

which currently relies on antibodies that require substantial resources to generate, can be difficult 

to produce with high affinity, and often have less-than-desirable stability and reproducibility5. 

Furthermore, the loop-mediated interaction surfaces of antibodies are not particularly well suited 

to high specificity binding of extended helical peptides. Designed proteins can be readily produced 

with high yield and low cost in E. coli and have very high stability, but while there have been 

considerable advances in de novo protein design to generate binders for folded proteins5,6, the 

design of proteins that bind helical peptides with high affinity and specificity remains an 

outstanding challenge. Design of peptide-binding proteins is challenging for two reasons. First, 

proteins designed to bind folded proteins, such as picomolar affinity hyper-stable 50-65 residue 

minibinders5, have shapes suitable for binding rigid concave targets, but not for cradling extended 

peptides. Second, peptides have fewer residues to interact with, and are often partially or entirely 

unstructured in isolation9; as a result, there can be an entropic cost of structuring the peptide into 

a specific conformation10, which compromises the favorable free energy of association. Progress 

has been made in designing peptides that bind to extended beta strand structures11 and 

polyproline II conformations conformations12 using protein side chains to interact with the peptide 

backbone, but such interactions cannot be made with alpha helical peptides due to the extensive 

internal backbone - backbone hydrogen bonding. 

 

Design of helical peptide binding scaffolds 

 

We set out to develop general methods for designing proteins that bind peptides in helical 

conformations. To fully leverage recent advances in protein design, we explored both parametric 

and deep learning-based approaches. For parametric generation, we reasoned that helical bundle 

scaffolds with an open groove for a helical peptide could provide a general solution to the helical 

peptide binding problem: the extended interaction surface between the full length of the helical 

peptide target and the contacting helices on the designed scaffold could enable the design of high 
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affinity and specificity binding (Fig. 1b). In parallel, we reasoned that deep learning methods, 

which do not pre-specify scaffold geometries, could permit the exploration of different potential 

solutions to helical peptide binding.  

 

Parametric design of groove scaffolds 

 

We began by exploring parametric methods for generating backbones with overall “groove” 

shapes. Using the Crick parameterization of alpha-helical coiled coils13, we devised a method to 

sample scaffolds consisting of a three-helix groove supported by two buttressing helices (Fig. 1c, 

see Supplementary Materials). We assembled a library of these scaffolds sampling a range of 

supercoiling and helix-helix spacings to accommodate a variety of helical peptide targets 

(Supplementary Fig. S1). We then used this library to design binders to PTH, GCG, and NPY, 

and screened 12 designs for each target using a nanoBiT split luciferase binding assay. Many of 

the designs bound their targets (3/12, 4/12, and 8/12 to PTH, GCG, and NPY) but with only 

micromolar affinities (see Supplementary Materials). These results suggest that groove-shaped 

scaffolds can be designed to bind helical peptides, but also that design method improvement was 

necessary to achieve high-affinity binding.  

 

While powerful for generating and sampling a large number of potential scaffolds, the parametric 

generation approach has the limitation of building only from ideal building blocks, in this case 

parametric alpha helices.  Deep learning methods do not have these limitations, and we explored 

whether RoseTTAFold inpainting (RFjoint)14, a model that can jointly design protein sequences 

and structures, could be used to improve the modest affinities of our parametrically-designed PTH 

binders (Fig. 2a). We used RF inpainting to extend the binders (non-parametrically) to incorporate 

additional interactions with the target peptide to take advantage of the full potential binding 

interface of the peptide. Out of 192 designs tested, 44 showed binding against PTH in initial yeast 

display screening. Following SEC purification, the best binder was found to bind at 6.1 nM affinity 

to PTH.  Binding was quite specific: very little binding was observed to PTH related peptide 

(PTHrp), a related peptide sequence with 34% sequence identity (Fig. 2A).  Overall, the affinity of 

the starting PTH binders was improved by approximately three orders of magnitude, and the 

highest-affinity binder had 19% greater surface area contacting the target peptide. We used the 

same design strategy to generate higher affinity binders for NPY and GCG. Using weak 

parametric binders as a starting point, we extended their binding interfaces and generated a ~231 

nM affinity binder for GCG and a 3.5 µM binder for NPY after screening 96 designs 

(Supplementary Fig. S2).  

 

As an alternative to de novo parametric design of scaffolds that contain grooves, we explored the 

threading of helical peptides of interest onto already existing designed scaffolds with interfaces 

that make extensive interactions with helical peptides (Fig. 2b). We started from a library of 

scaffolds that contained single helices bound by pseudorepetitive helical scaffolds. We then 

threaded sequences of peptides of interest onto the bound single helix and filtered to maximize 

interfacial hydrophobic interactions of the target sequence to the binder scaffold. The binders 

were then redesigned in the presence of the threaded target sequence with ProteinMPNN15 and 

the complex was predicted with AF216 (with initial guess6) and filtered on AF2 and Rosetta metrics. 
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Initial screening using yeast surface display identified 4/66 binders, which were expressed in E. 

coli. Following size exclusion chromatography (SEC) purification of the monomer fraction, all 4 of 

the designs were found to bind with sub-micromolar affinity using fluorescence polarization (FP), 

with the highest-affinity design binding with an affinity of 2.7 nM for SCT.  Binding specificity was 

assessed with FP by measuring affinity for GCG, a related hormone to which SCT shares a 

significant degree of sequence identity (44%) and conformational homology1,2. We found that the 

tightest SCT binder was only 4 fold selective for SCT over GCG, which suggested additional 

design strategies might be necessary to increase the quality of the binding interface and to 

achieve high-specificity binding (Fig. 2b). 

 

Designing peptide binders by hallucination 

 

We next explored the use of deep learning hallucination methods to generate helical peptide 

binders completely de novo, with no pre-specification of the desired binder geometry (from 

peptide sequence alone) (Fig. 2c).  Hallucination or “activation maximization” approaches start 

from a network that predicts protein structure from sequence and carry out an optimization in 

sequence space for sequences which fold to structures with desired properties.  This approach 

has been used to generate novel monomers17, functional-site scaffolds14 and cyclic oligomers18.  

Hallucination using AlphaFold2 (AF2) or RosettaFold has a number of attractive features for 

peptide binder design. First, neither the binder nor the peptide structure needs to be specified 

during the design process, enabling the design of binders to peptides in different conformations 

(this is useful given the unstructured nature of many peptides in solution; disordered peptides 

have been observed to bind in different conformations to different binding partners9). Second, 

metrics such as the predicted alignment error (pAE) have been demonstrated to correlate well 

with protein binding6, permitting the direct optimization of the desired objective, albeit with the 

possible hazard of generating adversarial examples18.  

 

We began by designing binders to the apoptosis-related BH3 domain of Bid (Fig. 1a). The Bid 

peptide is unstructured in isolation, but adopts an alpha-helix upon binding to Bcl-2 family 

members19,20; it is therefore a model candidate for the design of helix-binding proteins. Starting 

from only the Bid primary sequence, and a random seed binder sequence (of lengths 60, 70, 80, 

90 or 100 residues), we iteratively optimized the sequence of the binder through a Monte Carlo 

search in sequence space, guided by a composite loss function including the AF2 confidence 

(pLDDT, pTM) in the complex structure, and in the interaction between peptide and target (pAE). 

The trajectories typically converged in 5000 steps (sequence substitutions; Supplementary Fig. 

S3), and the output binder sequence was subsequently redesigned with ProteinMPNN, as 

previously described18. All designed binders were predicted to bind to Bid in a helical 

conformation; the exact conformations differ between designs because only the amino acid 

sequence of the target is specified in advance. This protocol effectively carries out flexible 

backbone protein design, which can be a challenge for traditional Rosetta based design 

approaches for which deep conformational sampling can be very compute intensive. Interestingly, 

in line with our prediction that “groove” scaffolds would offer an ideal topology for helical peptide 

binding, many of the binders from this approach contained a well-defined “groove” by eye, with 
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the peptide predicted to make extensive interactions with the binder, typically helix-helix 

interactions. 

 

47 of the hallucinated designs were tested experimentally (Supplementary Fig. S4a). Initial 

screening was performed with co-expression of a GFP-tagged Bid peptide and the HIS-tagged 

binders, with coelution of GFP and binder used as a readout for binding. 4 of these designs were 

further characterized, and showed soluble, monomeric expression even in the absence of peptide 

co-expression (Supplementary Fig. S4b). All designed proteins could be pulled-down using Bid 

BH3 peptide immobilized on beads (Supplementary Fig. S4c). Circular dichroism experiments 

indicated that the Bid peptide was unstructured in solution, and that helicity increased upon 

interaction with the hallucinated proteins, in line with the design prediction (Supplementary Fig. 

S4d). The binders were highly thermostable, and, unlike the native Bcl-2 protein Mcl-1, readily 

refolded after (partial) thermal denaturation at 95 °C (Supplementary Fig. S4e). Isothermal titration 

calorimetry revealed that all four bound Bid peptide, with the highest-affinity design binding having 

an affinity of 25 nM (Fig. 2c), a higher affinity interaction than with the native partner Mcl-1 

(Supplementary Fig. S4f).  

 

Peptide binder design with RFdiffusion 

 

We next explored the design of binders using the RoseTTAFold-based denoising diffusion model 

RFdiffusion described in the accompanying paper (Watson et al.).  RFdiffusion is much more 

compute efficient than hallucination, and is trained to directly generate a diversity of solutions to 

specific design challenges starting from random 3D distributions of residues that are progressively 

denoised. We reasoned that RFdiffusion could be used both for binder optimization (by sampling 

related conformations around a specific binder structure) and for fully de novo design starting 

from a completely random noise distribution. 

 

A long-standing challenge in protein design is to increase the activity of an input native protein or 

designed protein by exploring the space of plausible closely related conformations for those with 

predicted higher activity.  This is difficult for traditional design methods as extensive full atom 

calculations are needed for each sample around a starting structure (using molecular dynamics 

simulation or Rosetta full atom relaxation methods), and it is not straightforward to optimize for 

higher binding affinity without detailed modeling of the binder-target sidechain interactions. We 

reasoned that, in contrast, RFdiffusion might be able to rapidly generate plausible backbones in 

the vicinity of a target structure, increasing the extent and quality of interaction with the target 

guided by the extensive knowledge of protein structure inherent in RoseTTAfold. During the 

reverse diffusion (generative) process, RFdiffusion takes random Gaussian noise as input, and 

iteratively refines this to a novel protein structure over many (“T”) steps (typically 200). Partly 

through this denoising process, the evolving structure no longer resembles “pure noise”, instead 

resembling a “noisy” version of the final structure.  We reasoned that ensembles of structure with 

varying extents of deviation from an input structure could be generated by partially noising to 

different extents (for example, timestep 70), and then denoising to a similar, but not identical final 

structure (Fig. 3a, b).  
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We experimented with this approach starting from our parametrically-designed inpainted binders 

to GCG (with 231 nM affinity) and NPY (with 3.5 µM affinity) (Supplementary Fig. S2). Following  

partial noising and denoising, we identified designs that in silico, had significantly improved AF2 

metrics compared to the starting design. The diversity compared to the starting design could be 

readily tuned by varying the time point to which the starting design was noised (Fig. 3a). Initial 

screening on yeast display revealed quite high binding success rates, with 25/96 designs binding 

GCG, and 20/96 binding NPY at 10 nM peptide concentration. The highest affinity designs were 

expressed in E. coli, purified, and their binding affinities were determined using FP. The highest-

affinity binders were found to bind at subnanomolar affinities to GCG, and 5.6 nM to NPY (Fig. 

3c). The designed proteins are quite specific: the GCG binders bound 10 times less tightly to SCT, 

which was chosen due to its high similarity to GCG. Impressively, the NPY binder  did not show 

any cross-reactivity to peptide YY (PYY), which is a member of the NPY/pancreatic polypeptide 

family21 and shares a high percentage of sequence similarity (63.5% for the sequences used in 

the assay). 

 

Inspired by this success at optimizing binders with RFdiffusion, we next tested its ability to design 

binders to a different BH3 peptide, Bim and PTH completely de novo through unconditional binder 

design - providing RFdiffusion only with the sequence and structures of the two peptides in helical 

conformations, and leaving the topology of the binding protein and the binding mode completely 

unspecified (Fig. 4a). From this minimal starting information, RFdiffusion generated designs 

predicted by AF2 to fold and bind to the targets with high in silico success rates. A representative 

design trajectory is shown for PTH in Fig. 4b and Supplemental Video 1; starting from a random 

distribution of residues surrounding the PTH peptide in a helical conformation, in sequential 

denoising steps the residue shifts to surround the peptide and progressively organize itself into a 

folded structure which cradles the peptide along its entire surface.   

 

We obtained synthetic genes encoding 96 designs for each target. Using yeast surface display, 

we found that 25 of the 96 designs bound to Bim at 10 nM peptide concentration. The highest 

affinity design, which purified as a soluble monomer, bound too tightly for steady state estimates 

of the dissociation constant (Kd); global fitting of the association and dissociation kinetics suggest 

a Kd of ~100pM (Fig 4C). For PTH, we found that 56/96 of the designs bound by yeast surface 

display with sub-micromolar affinities. The highest affinity design again bound too tightly for 

accurate Kd estimation; instead FP data provides an approximate upper bound for the Kd<500 

pM (Fig. 4c). Binding was also highly specific; no binding was observed to the related PTHrp (Fig. 

4c). Circular dichroism temperature melts indicate that both binders are stable at 95°C (Fig 4C).  

The diffused from scratch binders again had considerable structural similarity to our starting 

groove binding concept.  

 

Origins of higher affinity binding 

 

The RFdiffusion scaffolds bind the peptides with extended helices in a manner not entirely 

different from our starting groove structures and the other designs described above.  What is the 

origin of their higher affinity? Reasoning that de novo building of the designs in the presence of 

the target, rather than starting from pre-generated scaffolds, could increase the extent of shape 
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matching between binder and target, we computed the contact molecular surface5 for all of our 

designs in complex with the peptides. The average contact molecular surface for the partially 

diffused GCG binders and NPY increased by 33% and 29% respectively compared to the starting 

models, and the Rosetta ddG improved by 29% and 21% (Fig. S5a, S5b). 

 

Comparison of solutions to the binding problem 

 

Our results provide an interesting side by side comparison of human and machine based problem 

solving.  Despite the differences in affinity, the deep learning methods typically came up with the 

same overall solution to the helical peptide binding design problem–groove shaped scaffolds with 

helices lining the binding site–as the human designers did in the first Rosetta parametric 

approaches.  The increased affinity likely derives at least in part from higher shape 

complementarity resulting from direct building of the scaffold to match the peptide shape; the 

ability of RFdiffusion to “build to fit'' provides a general route to creating high shape 

complementary binders to a wide range of target structures. 

 

Design of protein biosensors for PTH detection 

Given our success in generating de novo binders to clinically-relevant helical peptides, we next 

sought to test their use as detection tools for use in diagnostic assays.  Compared to 

immunosensors, which often exhibit antibody denaturation, loss of conformational stability, and 

wrong positioning of the antigen-binding site during sensor immobilization, de novo protein-based 

biosensors offer a more robust platform with high stability and tunability for diagnostics22,23.  To 

design PTH biosensors, we grafted the 6.1 nM PTH binder  into the lucCage system24, screened 

8 designs for their luminescence response in the presence of PTH, and identified a sensitive 

lucCagePTH biosensor (LOD = 10 nM) with ~21-fold luminescence activation in the presence of  

PTH  (Fig. 5a).  

 

Enriching peptide targets from a complex mixture 

 

We explored the use of our picomolar affinity RFdiffusion generated binder to PTH as a capture 

reagent in immunoaffinity enrichment coupled with liquid chromatography-tandem mass 

spectrometry (LC-MS/MS),  a powerful platform for detecting low-abundance protein biomarkers 

in human serum25. We evaluated the RFdiffusion binder in an LC-MS/MS assay for PTH in serum. 

PTH enrichment was quantified based on the analysis of the N-terminal peptide of a tryptic 

digestion of PTH in human plasma26–28. (see Supplemental Materials). We found that the designed 

binder enabled capture of PTH from spiked buffer and spiked human plasma with recoveries of 

53% and 43%, respectively (Fig. 5b). The very high thermal stability of the designed binders (Fig. 

4c,d) suggests that bioactive peptide capture reagents could have much longer shelf lives than 

antibodies, and be amenable to harsher washing conditions enabling re-use of binder conjugated 

beads. 
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Discussion 

  

Antibodies have served as the industry standard for affinity reagents for many years, but their use 

is often hampered by variable specificity and stability29,30. For binding helical peptides, the 

computationally designed helical scaffolds described in this paper have a number of structural 

and biochemical advantages.  First, the extensive burial of the full length of an extended helix is 

difficult to accomplish with antibody loops, but very natural with matching extended alpha helices 

in groove shape scaffolds. Second, designed scaffolds are more amenable to incorporation into 

sensors as illustrated by the LucCage PTH sensor. Third, they are more stable, can be produced 

much less expensively, and could be more easily incorporated into affinity matrices for enrichment 

of peptide hormones from human serum. Fourth, peptide binders can achieve high affinity and 

specificity purely through computational methods, eliminating the need to use animals, which 

often mount weak responses to highly conserved bioactive molecules. Our MS based detection 

of peptides present at very low abundance in sera following enrichment using the designed 

binders could provide a general route forward for serological detection of a wide range of disease 

associated peptide biomarkers. 

 

Our results highlight the emergence of powerful new deep learning methods for protein design. 

The inpainting and RFdiffusion methods were both able to improve on initial Rosetta designs, and 

the hallucination approach generated high affinity binders without requiring prespecification of the 

bound structures. Most impressively, the RFdiffusion method rapidly generated very high 

(picomolar) affinity and specific binders to multiple helical peptides.  As described in the 

accompanying manuscript (Watson et al), RFdiffusion is able to design binders to folded targets; 

here we demonstrate further that RFdiffusion can be used to improve starting designs by partial 

noising and denoising, and can generate binders to peptides starting from no information other 

than the target.  To our knowledge, the Bim and PTH binding proteins diffused starting from 

random noise are the highest affinity binders to any target (protein, peptide, or small molecule) 

achieved directly by computational design with no experimental optimization. We expect both the 

de novo peptide binder design capability and the ability to resample around initial designs (before 

or after experimental characterization) to be broadly applicable.   
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Figure 1. Binding helical peptides in groove scaffolds. (a) Helical peptide targets: parathyroid 

hormone (PTH), glucagon (GCG), neuropeptide Y (NPY), secretin (SCT), and the apoptosis-

related BH3 domains of Bid and Bim. (b) “Open groove” structural solution to the helix binding 

problem. (c) Parametric approach to sampling of groove scaffolds varying supercoiling and helix 

distance to fit different targets. 
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Figure 2. Design strategies for binding helical peptides. (a) Inpainting binder optimization: 

redesign of parametrically generated binder designs using RFjoint inpainting to expand the 

binding interface. Left:  schematic illustration of approach.  Middle: original parametric scaffold 

(gray), inpainted design with extended interface (pink), and PTH target (purple).  Right: 

Fluorescence polarization measurements with TAMRA-labeled targets indicate 6.1 nM binding to 

PTH and only weak binding to off-target PTH related peptide (PTHrp). (b) Thread target sequence 

and redesign: threading peptides onto pseudorepetitive protein scaffolds. Left: schematic 

illustration.  Right: Design model of SCT based on repeat protein scaffold (grey) and SCT target 

(orange). Fluorescence polarization measurements with TAMRA-labeled targets indicate 3.95 nM 

binding to SCT and 12 nM binding to GCG. (c) Binder design with deep network hallucination. 

Top left: schematic illustration.  Right, designed binder resulting from Monte Carlo optimization of 

binder sequence using AlphaFold over 5000 steps, with only target sequence (not structure) 

provided. Hallucinated binder (gray); target Bid peptide (blue). Isothermal titration calorimetry 

measurements (far right) indicate 25 nM binding to Bid.  Bottom: hallucination trajectory starting 
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from random sequence (left) to final sequence (right); the protein folds around the peptide, which 

increases in helical content from step 0 to step 1000. 

 

 
Figure 3. Peptide binder optimization with RFdiffusion: (a) Top: Schematic showing partial 

noising and denoising using RFdiffusion. A starting monomer (left) is partially noised for an 

increasing number of steps and then denoised resulting in designs (color) increasingly different 

from the original design (gray). Varying the noising stage from which denoising trajectories are 

initiated enables control over the extent of introduced structural variation. Bottom left: The 

distribution of RMSD to initial design vs number of partial noising steps. Bottom right: Starting 

from initial helix binder designs, we use partial diffusion to design optimized binders with improved 

shape complementarity. (b) Partial denoising trajectory starting from an initial NPY binder shown 

on the left. The final design (color) is shown on the right overlaid over the original design (gray). 

Contact molecular surface (CMS), Rosetta DDG (DDG) and interface shape complementarity 

(sc_int) values are reported for the original and optimized binder. (c) Diffused binders to GCG 
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and NPY. Top left: Design models (gray) and AF2 predictions (pink, metrics in Supplementary 

Table 1), of diffused binders to GCG (yellow). Top right: FP measurements with FAM-labeled 

GCG indicate a sub-nanomolar binding affinity and selectivity over SCT. Bottom left: Design 

models (gray) and AF2 predictions (pink, metrics in Supplementary Table 1), of diffused binders 

to NPY (green). Bottom right: FP measurements with FAM-labeled NPY indicate a binding affinity 

of 5.29 nM and no binding to PYY, demonstrating selectivity. 

 

 
Figure 4. Peptide binder design with RFdiffusion: (a) Schematic showing binder design using 

RFdiffusion. Starting from a random distribution of residues around the target peptide (XT), 

successive RFdiffusion denoising steps progressively remove the noise leading by the end of the 

trajectory X0 to a folded structure cradling the peptide. At each step t, RFdiffusion predicts the 

final structure pX0 given the current noise sample Xt, and a step that interpolates in this direction 

is taken to generate the input for the next denoising step Xt-1. (b) Denoising trajectory in the 

presence of PTH (purple, Supplementary Video 1).  Starting from random noise (left), a folded 
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structure starts to emerge, leading to the final designed binder (right). (c) Design of picomolar 

affinity PTH binders.  Left: Design model (gray) and AF2 prediction (pink, metrics in 

Supplementary Table 1), of designed PTH binder (purple). Bottom right: Fluorescence 

polarization measurements with TAMRA-labeled PTH indicate a sub-nanomolar binding affinity 

and no binding for PTH related peptide, indicating high specificity (PTHrp). Top right: Circular 

dichroism data indicating that the binder has the designed helical secondary structure and does 

not undergo cooperative unfolding below 95°C (inset).  (d): Design of picomolar affinity Bim 

binders. Left: Design model (gray) and AF2 prediction (pink, metrics in Supplementary Table 1), 

of designed Bim binder (red). Right bottom:  Biolayer interferometry measurement of Bim binding 

indicates a sub-nanomolar affinity, with very slow dissociation kinetics. Biotinylated Bim was 

coupled to an Octet sensor, and incubated with the indicated concentrations of binder.  The off 

rate is too slow to be accurately measured.  Right top: CD data shows that the binder has helical 

secondary structure and is stable at 95°C (inset). 
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Figure 5. Application of designed binders to sensing and detection. (a) Protein biosensors 

for PTH detection. Left: Schematic of the grafted PTH lucCage biosensor, depicting the cage and 

latch (left, beige), key (right, beige), luciferase halves (inactive in white, active in blue), the PTH 

binder (red), and PTH peptide target (purple). Right: design model shown in the same color 

scheme. (b) Titration of PTH results in linear increases in luciferase luminescence. (c) Evaluation 

of the PTH biosensor at limiting concentrations of PTH indicates a 10 nM limit of detection (see 

methods). (d-f) The designed PTH binder enables robust recovery of PTH from complex mixtures. 

(d) Enrichment experiment schematic. (e) LC-MS/MS chromatograms for SVSEIQLMHNLGK, the 

N-terminal tryptic peptide of PTH; different peptide fragments detected by the LC-MS/MS assay 

are in different colors.  (f) Mean chromatographic peak areas for triplicate measurements of each 

sample type. Error bars represent standard deviation. 
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