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 90 
ABSTRACT  91 

Translating genome-wide association loci to therapies requires knowledge of the causal genes, 92 

their directionality of effect and the cell-types in which they act. To infer these relationships in 93 

the human brain, we implemented Mendelian randomisation using single cell-type expression 94 

quantitative trait loci (eQTLs) as genetic anchors. Expression QTLs were mapped across 8 major 95 

cell-types in brain tissue exclusively ascertained from donors with no history of brain disease. We 96 

report evidence for a causal association between the change in expression of 118 genes and one or 97 

more of 16 brain phenotypes, revealing candidate targets for risk mitigation and opportunities 98 

for shared preventative therapeutic strategies. We highlight key causal genes for 99 

neurodegenerative and neuropsychiatric disease and for each, we report its cellular context and 100 

the therapeutic directionality required for risk mitigation. Our use of control samples establishes 101 

a new resource for the causal interpretation of GWAS risk alleles for human brain phenotypes.  102 

 103 

 104 

INTRODUCTION 105 

The average cost to bring a drug to market is $2.6 billion (2013 dollars)[1]. Only 4% of drug-106 

development programs yield licensed drugs due to two main issues: (a) preclinical experimental models 107 

are poorly predictive of eventual therapeutic efficacy and (b) definitive evidence of target validity is 108 

not obtained until randomised controlled trials (RCT) in late-stage drug development[2]. The 109 

retrospective observation that drugs with genetic support for the target-indication pairing are more than 110 

twice as likely to be successful in clinical development has therefore focused attention on the potential 111 

for human genetics to predict successful new drugs[3], [4]. However, translating genetic loci to 112 

therapies requires knowledge of the causal genes as well as the directionality of effect of a gene’s 113 

expression on disease risk in specific cell-types, which is rarely directly available from genetic analysis 114 

alone[5],[6].  115 

 116 

Here, we aimed to infer these causal relationships by implementing a principled approach to Mendelian 117 

randomisation (MR) using single cell-type expression quantitative trait loci (eQTLs) as genetic anchors. 118 

MR is a statistical framework for inferring causal associations using human observational data[7]. 119 

Instead of randomising subjects to drug exposure versus placebo to investigate the causal relation 120 

between an exposure and a health outcome, MR makes use of the naturally randomized allocation of 121 

genetic variants (SNPs) that instrument an exposure such as the level of expression of a gene[8].  122 

 123 

In the present study, we restricted our analysis to human brain single-cell gene expression data 124 

ascertained exclusively from donors with no history of brain disease and with normal appearances of 125 

the brain on neuropathological examination. Although brain tissue samples from people who have died 126 
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with a neurological or psychiatric diagnosis are more widely available than control samples, the use of 127 

diseased brain tissue has the potential to confound the deconvolution of true forward causal effects from 128 

mere correlation due to biased anchoring of the causal inference in disease-induced gene expression 129 

changes rather than disease-causing ones (confounding by reverse causation)[9]. In contrast, our use of 130 

brain tissue that predates the onset of brain disease offers an opportunity to discover cell-type specific 131 

causal risk factors that are unconfounded by reverse causation and therefore modifiable drug targets for 132 

disease prevention. By focussing solely on control samples, we establish a new resource for the 133 

interpretation of GWAS-risk alleles on human brain phenotypes. 134 

 135 

In addition to providing an improved level of certainty about the causal relation between a candidate 136 

drug target and a clinical outcome, the application of MR anchored in single cell-type eQTLs also 137 

provides estimates of the size and direction of the effect of an exposure on an outcome in a specific 138 

cell-type. These estimates are critical to designing the correct therapeutic intervention. Therefore, to 139 

enable a transparent assessment of our cell-type specific causal inferences we report our findings in line 140 

with the STROBE-MR guidelines for MR studies[10], including explicit reporting of the strength of 141 

the statistical evidence at each step.   142 

 143 

 144 

RESULTS 145 

Study overview  146 

To study cell-type specific genetic effects on human brain structure, disease, and behaviour we utilized 147 

single-nuclei gene expression data (snRNA-seq) based on post-mortem brain tissue samples from 147 148 

genotyped adult donors. Across all donors, there was no history of neurological or psychiatric disease 149 

prior to death, and no evidence for disease of the brain on neuropathological examination. Single cell-150 

type Mendelian randomisation (MR) analysis was implemented on this resource in three stages: (a) data 151 

generation and single cell-type eQTL mapping, (b) instrumental variable selection and assessment, (c) 152 

two-sample Mendelian randomisation (MR) (study design summarised in Fig.1a).  153 

 154 

Data generation and single cell-type cis-eQTL mapping  155 

After quality control, sample integration, cell-type annotation and genotype imputation, 577,115 single-156 

cells across 128 subjects averaging 4,509 cells per donor were available for estimating allele-specific 157 

effects on gene expression in single cell-types (hereon referred to as single cell-type eQTLs). The 158 

577,115 single cells across the sample set were aligned in a single graph (Fig. 1b) and consisted of 159 

219,942 excitatory neurons, 66,246 inhibitory neurons, 133,752 oligodendrocytes, 68,809 astrocytes, 160 

30,086 microglia, 27,248 oligodendrocyte precursors, 17,144 endothelial cells and 13,888 pericytes 161 

(overview of snRNA-seq data characteristics in Supplementary Fig.1).  162 

 163 
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To calculate cell-type specific eQTLs we generated pseudobulk gene expression matrices by 164 

aggregating read counts for each gene in each cell-type for each subject (Methods). cis-eQTLs were 165 

mapped using MatrixEQTL[11] for each SNP-gene pair in each cell-type using a cis window extending 166 

1Mb either side of the gene per protocol and adjusting for age, sex, post-mortem interval, sample source 167 

and the first 40 principal components of gene expression as fixed covariates[12]. In total, across the 168 

eight cell-types, 326,748 cis-eQTLs were identified at a study-wide False Discovery Rate (FDR) <5% 169 

[13] corresponding to one or more regulatory SNP (eSNP) for 10,288 genes (eGenes) (Figs.1c-d). Of 170 

these, 5,101 eGenes were unique to a single cell-type (illustrative examples in Figs.1e-f). Across the set 171 

of single cell-type cis-eQTLs, we observed a high level of replication (71.3-83.6%, varying by cell-172 

type) in a large independent cis-eQTL dataset derived from bulk brain tissue samples from 6,518 173 

subjects [14](Supplementary Figure 2).  174 

 175 

Instrumental variable selection  176 

Valid genetic instruments for MR are underpinned by three core assumptions: They are associated with 177 

the exposure of interest (the relevance assumption); they only act via the measured exposure (the 178 

exclusion restriction assumption); there are no unmeasured confounders of the association between the 179 

genetic instrument and the outcome (the independence assumption)[15]. 180 

 181 

To plausibly meet these assumptions, we took a principled approach to the selection of instrumental 182 

variables (IVs). As a first step, we assessed whether phenotypic outcomes and potential gene mediators 183 

might share one or more causal variants using colocalization analysis. COLOC[16] is a method for 184 

genetic colocalization analysis that provides an estimate of the posterior probability of a shared signal 185 

between pairs of genetic association studies – in our case between a cell-type specific cis-eQTL (i.e., a 186 

SNP-gene pair in a particular cell-type) as one “trait”, and a SNP-phenotype association from a well-187 

conducted GWAS as the second. We restricted the colocalization analysis to chromosomal regions 188 

containing a genome-wide significant association with the outcome in question (defined as a GWAS P 189 

<5.0×10-8). Colocalization analysis was carried out across 23 human brain phenotypes and the resulting 190 

cell-type specific colocalizations are summarised for each outcome in Supplementary Fig.3. As an 191 

illustrative example, we show the cell-type specific posterior probability of colocalizations (PP.H4>0.5) 192 

with Alzheimer’s disease (AD) in Fig.2a. These reveal several genes in specific cell-types concordant 193 

with the known biology of AD such as PICALM (PP.H4 microglia = 0.99; Figs.2b-c) and RIN3 (PP.H4 194 

microglia = 0.99)[17], as well as genes with a previously proposed but less well-established link to AD 195 

such as SNX31 (PP.H4 astrocytes = 0.99)[18]. In total, across all phenotypes, we identified 402 cell-196 

type specific colocalizations with PP.H4>0.5 (summary of the number of colocalised genes and cell-197 

types for each brain phenotype in Fig.2d and Fig.2e respectively).  198 

 199 
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To select the specific IV SNPs for MR analysis we first retained only the colocalised regions with a 200 

posterior probability (PP.H4) >0.5 for a shared causal signal, of which 76.5% mapped to a single cell-201 

type. In line with the relevance assumption, we removed all SNPs in the colocalised region with a study-202 

wide cis-eQTL FDR>5%. We then identified the lead eQTL SNP in the colocalised region and removed 203 

all variants in linkage disequilibrium (LD r2>0.01) with that SNP so as to minimise the risk of 204 

confounding by LD (i.e., confounding because the genetic variant is in LD with another variant that 205 

independently influences the outcome via an alternative unmeasured risk factor). For the retained SNPs, 206 

we then re-assessed the strength of the association between each instrumental SNP and its associated 207 

gene expression in a particular cell-type using the F-statistic[19]. Overall F-statistic distributions for 208 

each cell-type in Supplementary Figure 4 (IV-gene F-statistic range 16.9 - 233, median 29).  209 

 210 

Following the above steps only a single SNP was retained as the selected IV for most (96.9%) gene/cell-211 

type/outcome combinations. Less commonly encountered was the occurrence of >1 IV for a particular 212 

gene/cell-type/outcome combination. For example, colocalization between a genome-wide significant 213 

chromosomal region on 5q35.3 for AD and cis-eQTLs for RASGEF1C in microglia identified 2,184 214 

SNPs in the colocalised chromosomal region (PP.H4=0.87). Removal of SNPs with a cis-eQTL FDR 215 

>5% followed by removal of SNPs in LD (r2>0.01) with the lead cis-eQTL eSNP resolved two 216 

independent IVs for RASGEF1C in microglia, namely: rs76792388 and rs10077711, with study-wide 217 

cis-eQTL FDRs of 2.40×10-4 and 4.62×10-2 respectively. In line with the MR assumptions, we 218 

considered each IV to independently instrument RASGEF1C expression and both IVs were combined 219 

in a single inverse-variance weighted (IVW) MR test to estimate the overall contribution of cis-220 

regulatory control of RASGEF1C expression to AD risk (MR analysis detailed below).  221 

 222 

In total, we identified 167 unique IV SNPs which, because a single IV may instrument the same gene 223 

across multiple cell-types and/or co-localise with multiple health outcomes, represented 262 IV-224 

gene/cell-type/outcome combinations. Identifying the causal mechanism by which IVs instrument gene 225 

expression is challenging due to the multiple mechanisms by which genetic variants can have an effect 226 

on gene expression such as alteration of RNA splicing, disruption of cis-regulatory enhancers or 227 

promoters etc as well as cell-type specific effects on gene regulation which are poorly annotated[20]. 228 

Moreover, from a drug target discovery perspective, the precise mechanism by which an IV influences 229 

a gene’s expression is less important for MR than the reliability of the association. Nevertheless, an 230 

understanding of the mechanisms of cis-regulation can add support to the SNP-gene association. We 231 

therefore assessed the IVs first using a cell-type agnostic repository of regulatory variants (SNP2TFBS) 232 

affecting predicted transcription factor binding sites[21]. This revealed that 41/167 (24.6%) of the 233 

selected IVs are predicted to disrupt TF binding affinity (Fig. 3a). We then assessed the regulatory 234 

relationship between an IV and its paired gene in a particular cell-type using an external dataset of cell-235 

type specific assay for transposase-accessible chromatin sequencing (ATAC-seq), H3K27ac ChIP-seq, 236 
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H3K4me3 ChIP-seq and proximity ligation-assisted ChIP-seq (PLAC-seq)[22]. Out of the 186 IV-237 

gene/cell-type/outcome combinations mapping to one or more of the three cell-types for which data 238 

were available (neurons, microglia and oligodendrocytes), 40 (21.5%) intersected one or more 239 

epigenomic feature supporting the observed cell-type gene regulatory relationship (Fig.3a). For 240 

example, for the microglial-specific IV-gene pair rs10792832-PICALM (Fig.3b), which colocalises 241 

with AD, rs10792832 overlaps a microglial-specific enhancer marked by an H3K27ac peak, is 242 

connected to the promoter region of PICALM in microglia via a PLAC-seq loop and the PICALM 243 

promoter itself overlaps an H3K4me3 peak consistent it with being an active promoter in microglia. 244 

For the excitatory neuron-specific IV-gene pair rs1716183-OGFOD2 (Fig.3c), which colocalises with 245 

schizophrenia (SCZ) and intelligence quotient (IQ), rs1716183 overlaps neuronal ATAC and H3K27ac 246 

peaks, interacts with the promoter of OGFOD2 via a PLAC-seq loop in neurons, and the OGFOD2 247 

promoter overlaps a neuronal H3K4me3 peak.  248 

 249 

Two-sample Mendelian randomisation 250 

For each of the 262 IV-gene/cell-type/outcome combinations we assessed the relationship between the 251 

levels of expression of a gene in a particular cell-type with a clinical outcome using the package 252 

MendelianRandomisation[23]. Here, we used the cell-type specific effect sizes for the IV SNP-gene 253 

pair in question as the exposure and the SNP-phenotype effect size from the relevant GWAS as the 254 

outcome. In total, we found evidence consistent with a causal interpretation of the association between 255 

the levels of expression of a gene and a clinical outcome for 118 genes across 16 brain phenotypes 256 

(Summarised in Fig.4a). Of these, 21 genes were inferred to have a causal association to two or more 257 

phenotypes (Fig.4b), equating to a total of 149 gene-outcome associations across all phenotypes tested. 258 

Whilst there is no single standard by which to benchmark these causal inferences, across all 149 gene-259 

outcome pairs inferred to have a causal association, we find that 132 (88.6%) are reported to have a 260 

target-disease association score >0 by the Open Targets Consortium[24] (Fig.4a).  261 

 262 

In addition to inferring the causal relationship between genes, cell-types and health outcomes, the 263 

present study informs the directionality of the relationships unconfounded by disease-induced changes 264 

in gene expression. Knowledge of the directionality of the relationship between the level of expression 265 

of a gene and a clinical outcome is critical to informing the therapeutic strategy (i.e., target activation 266 

or inactivation), whilst knowledge of the relevant cell-type/s in which they act can inform more precise 267 

pre-clinical experimental validations. For example, among the genes inferred to be causal for AD, 268 

PICALM, encoding phosphatidylinositol binding clathrin assembly protein was first associated with 269 

AD in 2009[25]. Currently, no drugs are reported to be in development targeting PICALM as a 270 

treatment or prevention strategy for AD[26]. Here, we associate increased PICALM expression in 271 

microglia with decreased risk of AD (MR P=3.03×10-36), a finding consistent with the pre-clinical 272 

evidence that a reduction in PICALM expression increases the development of both amyloid[27] and 273 
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tau pathologies[28]. Targeting PICALM as a single molecular entity therefore offers the potential to 274 

simultaneously modify both amyloid and tau pathologies as a preventative strategy for AD. Notably, of 275 

the 16 genes identified by MR in the present study as having a causal association with AD, seven are 276 

putatively involved in protein aggregation or trafficking (PICALM, RABEP1, SNX31, RIN3, PRSS36, 277 

NSF and MINDY2), suggesting the absence of drugs in clinical development targeting cellular protein 278 

metabolism is a gap in the AD drug development pipeline. Moreover, the MR evidence in support of 279 

these genes having a causal association with AD unites the amyloid and tau hypotheses of AD around 280 

a single proximal mechanism related to protein trafficking and aggregation.  281 

 282 

As a further illustration of the translational value of directionality and cell-type context, we associate 283 

increased expression of GPNMB (encoding glycoprotein nonmetastatic melanoma protein B) in 284 

astrocytes and oligodendrocyte precursor cells (OPCs) with an increased risk of Parkinson’s disease 285 

(PD) (MR P=3.01×10-6 and P=1.68×10-8 respectively). This directionality of effect was recently 286 

independently confirmed by the experimental demonstration that loss of GPNMB activity results in loss 287 

of cellular internalization of fibrillar alpha synuclein and reduced pathogenicity, confirming GPNMB 288 

inhibition as a candidate therapeutic strategy in PD[29]. Similarly, epidermal growth factor receptor 289 

(EGFR) was recently suggested as an AD risk gene following genomic fine mapping based on bulk 290 

brain-tissue cis-eQTL reference datasets[30]. Here, we explicitly associate decreased EGFR activity in 291 

astrocytes with a decreased risk of AD (MR P=1.70×10-7). This causal inference for EGFR is in keeping 292 

with EGFR’s known biological relationship to AD, where EGFR inhibition has been shown to 293 

ameliorate cognitive dysfunction in different AD models via multiple mechanisms including a reduction 294 

in amyloid-beta/tau pathology and inhibition of reactive astrocytes[31]. These findings highlight the 295 

potential for EGFR inhibition, including the use of new blood-brain barrier-penetrant EGFR 296 

inhibitors[32], as a potential therapeutic strategy in AD.  297 

 298 

As well as informing the therapeutic strategy, knowledge of the directionality of an exposure’s effect 299 

on an outcome can also inform new biological insights into the causal relationships between genes and 300 

phenotypes. For example, five schizophrenia (SCZ) genes (BTN3A2, FLOT1, KMT2E, OGFOD2, 301 

KMT5A) overlapped with intelligence (IQ) (Fig.4b). For three out of these (BTN3A2, FLOT1, KMT2E), 302 

the directionality of the gene exposure on SCZ risk and IQ are in the opposite direction (Supplementary 303 

Fig.5a). The inverse relationship between SCZ and IQ for these genes may offer an explanation for the 304 

clinically observed monotonic relationship between IQ and SCZ – i.e., increasing risk of SCZ with 305 

decreasing IQ[33], and therefore targeting them may offer a route to simultaneously alleviating the 306 

cognitive deficit associated with SCZ whilst reducing risk of the disease itself. In contrast, where causal 307 

genes overlapped between SCZ and neuroticism (PCCB, FAM120AOS), the directionality of exposure 308 

effect on phenotype was in the same direction (Supplementary Fig.5b). The congruent direction of effect 309 

of PCCB and FAM120AOS on risk of SCZ and neuroticism may partially explain the clinically observed 310 
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increased risk of SCZ with increasing pre-morbid neuroticism[34], and targeting these genes in SCZ 311 

may offer a route to alleviating a maladaptive personality trait associated with SCZ whilst mitigating 312 

disease risk. These observations highlight how a phenome-wide approach to single cell-type eQTL-313 

based MR can begin to deconvolute the many complex causal relationships between traits that share 314 

overlapping heritability, and thereby improve our understanding of both biology and treatment 315 

strategies.  316 

 317 

When considering the full set of phenotypes investigated in this study, we observed examples of causal 318 

associations across all cell-types of the brain studied (Supplementary Fig.5c), including the lowest 319 

abundant cell-types such as pericytes (e.g., multiple sclerosis (MS):HLA-B) and endothelial cells (e.g., 320 

MS:ZNHIT6). Notably, among the 149 gene-outcome combinations inferred to have a causal 321 

association, 105 (70.9%) were specific to a single cell-type, suggesting the majority of single gene risk 322 

factors for brain outcomes act via a single cell-type as previously observed for immune cell-types and 323 

autoimmune disease[35]. Conversely, for clinical outcomes for which multiple risk genes were 324 

identified, such as AD, no single cell-type accounted for all the observed heritable effects on phenotypic 325 

risk (see Supplementary Fig.6). In situations where the IV-gene pair was inferred to have a causal 326 

association with an outcome across more than one cell-type, in all cases the inferred directionality was 327 

concordant across the different cell-types.  328 

 329 

Relationship of eQTLs to pQTLs 330 

An implicit assumption in all gene expression studies is that transcript abundance is a valid proxy for 331 

protein abundance. A recent comparison of human brain protein QTLs (pQTLs) with eQTLs revealed 332 

that a majority pQTLs are also identified as eQTLs[36], although due to lower mapping power for 333 

pQTLs not all eQTLs are identified as pQTLs. However, since (currently), proteins represent the 334 

dominant category of druggable targets, we assessed the extent to which the association of a clinical 335 

outcome with an exposure converges at both the level of transcript and protein abundance. To this 336 

end, we used an external dataset consisting of high-throughput mass spectrometry-based protein 337 

expression data from bulk-tissue post-mortem brain samples[36]. Across all 118 genes inferred to 338 

have a causal association with an outcome in our study, only 51 had a measurable protein expression 339 

value in this dataset. Of these 51, 26 had one or more cis-pQTL SNP at FDR <5% and of these, 13 340 

(50%) of our MR-inferred causal gene-outcome pairings were reproducible when considering proteins 341 

instrumented by either the same genetic variant or by a variant in high LD (r2>0.8) (Fig.4a). These 342 

results are consistent with the interpretation that for the human brain, causal effects estimated using 343 

single-cell snRNA-seq are a valid proxy of a protein’s effect on disease risk. Genes inferred to have a 344 

causal association with a clinical outcome at both the level of transcript and protein abundance, and 345 

with orthogonal published evidence to support a causal interpretation of the gene-trait association 346 

include (trait:gene): PD:GPNMB[29], AD:ADAM10[37] and AD.RABEP1[38].  347 
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 348 

Causal genes identified by single cell-type MR identify drug repurposing opportunities.  349 

The identification of a causal gene in a specific cell-type is the first step in the development of a new 350 

therapy targeting disease risk. To facilitate this, we summarise the cell-type and therapeutic 351 

directionality required for risk mitigation for each gene inferred by MR to have a causal association 352 

with a brain outcome in Supplementary Fig.6. In contrast to novel drug development, repurposing an 353 

existing drug can offer a more rapid route to clinical translation when there is reliable data supporting 354 

the target-disease pairing and where the directionality of effect between drug and exposure and between 355 

exposure and clinical outcome are known. To explore potential repurposing opportunities, we therefore 356 

investigated existing gene-drug interactions using the Drug-gene Interaction Database (DGIdb)[39] and 357 

the Sear Tool for Interactions of Chemicals (STITCH)[40]. Of the 118 genes inferred to have a causal 358 

association with an outcome, 26 (22.0%) had a reported chemical interaction in DGIdb, and 58 (49.2%) 359 

in STITCH (Fig. 4a). These chemical interactions offer a potential tool compound that can be used to 360 

experimentally explore the consequences of a drug intervention, or as a starting point for more refined 361 

chemistry. Of the drug-gene interactions with a potential for more immediate repurposing, the acid 362 

sensing ion channel-1 (encoded by ASIC1) was identified by MR as a significant (MR P=6.2x10-4) risk 363 

factor for SCZ associated with increased expression in oligodendrocytes, suggesting that drugs with a 364 

negative effect on ASIC1 currents could act to exert a mitigating effect on schizophrenia. 365 

Experimentally, over-expression of ASIC1 has been shown to enhance context fear conditioning in mice 366 

and ASIC-like currents have been documented in oligodendrocytes[41]. The licensed potassium sparing 367 

diuretic amiloride is a known non-selective blocker of the acid-sensing ion channel-1, currently 368 

undergoing evaluation as a prophylactic treatment for migraine (https://clinicaltrials.gov), and 369 

highlighted here as a potential novel, non-neuroleptic intervention in schizophrenia.  370 

 371 

 372 

DISCUSSION 373 

In this study we mapped genetic effects on gene expression in eight cell-types of the non-diseased 374 

control human brain. Single cell-type cis-eQTLs were integrated with GWAS loci in a Mendelian 375 

randomisation framework to infer causal genes and to identify the cell-types in which they act. In total, 376 

we identified 118 genes with MR evidence for a causal association between variation in their levels of 377 

expression and susceptibility to one or more brain outcomes. These genes include novel gene-outcome 378 

associations as well as genes previously proposed as candidate drug targets for brain disease. For genes 379 

with an appropriate measurable pQTL value, we observed a high level of reproducibility of targets 380 

identified using cell-type specific gene expression data consistent with causal effects estimated by 381 

snRNA-seq being a valid proxy of a protein’s effect on risk.  382 

 383 
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An important scientific advance of this work is our application of Mendelian randomisation to human 384 

brain tissue samples ascertained exclusively from subjects with no history of brain disease. Previous 385 

research exploring bi-directional effects between gene expression and disease have suggested that 386 

differentially expressed genes are more prone to reveal disease-induced gene expression changes rather 387 

than disease-causing ones[9]. Expression QTLs measured in diseased brain samples might therefore be 388 

unrepresentative of gene regulatory relationships in the pre-morbid brain. In contrast, the use of non-389 

diseased control human brain samples in a principled Mendelian randomisation framework offers an 390 

approach, and a new biological resource, to uncover cell-type specific causal risk factors that are 391 

unconfounded by reverse causation and therefore modifiable drug targets for disease prevention.  392 

 393 

Our sample size for cis-eQTL detection in single cell-types was limited by the substantial difficulties 394 

in ascertaining control brain tissue of appropriate quality given the predominant focus of brain banks 395 

on brain diseases such as PD, AD, MS etc. Despite these limitations, we report regulatory variants for 396 

10,288 genes across eight cell-types. Future studies that include a larger number of control subjects and 397 

an increase in the number of sequenced cells per sample will provide a more granular picture of the role 398 

cellular sub-types play in disease aetiology and are likely to lead to additional causal inferences missed 399 

by the current study due to sample size limitations. Given the importance of effective target discovery 400 

for reducing the costly attrition of drug development in Phase II/III trials, this argues for a concerted 401 

global effort to collect control brains in addition to those from people who have died with a neurological 402 

or psychiatric diagnosis.  403 

 404 

In addition to inferring causality, the present study provides information on the directionality of the 405 

association between a gene exposure and a phenotype in a specific cell-type. Knowledge of the direction 406 

of effect of an exposure on a health outcome is critical to guiding the directionality of the therapeutic 407 

intervention, whilst knowledge of the cell-types via which genes act can aid the design of more precise 408 

pre-clinical experiments that may translate better to the human condition. As well as informing 409 

therapeutic strategy, knowledge of the directionality of an exposure’s effect on an outcome from MR 410 

can also inform new biological insights into the causal relationships between phenotypes when 411 

undertaken in a phenome-wide manner as described here. Identification of such shared risk factors 412 

across disease categories present opportunities for shared preventative strategies, with a convergence 413 

of diverse stakeholders in therapy development hastening drug development. Additionally, as our 414 

knowledge of the relationship between existing drug targets and brain disease expands, so too will our 415 

ability to predict long-term adverse health effects from candidate therapeutic interventions.  416 

 417 

In conclusion, we report a generalizable framework for the selection of genetic instruments and 418 

principled conduct of single-cell Mendelian randomisation regardless of starting tissue. The present 419 

study highlights novel mechanistic connections between genes, cell-types and phenotypes, prioritises 420 
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candidate drug targets in their cellular context and establishes a new resource for the interpretation of 421 

GWAS-risk alleles in human brain disease and behaviour.  422 

 423 
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 442 

METHODS 443 

Samples 444 

Snap-frozen human brain tissue samples from 60 subjects were obtained from the brain tissue banks 445 

with full ethical approvals and appropriate material transfer agreements. We complied with all relevant 446 

statutory and ethical regulations approved by the Imperial College research ethics committee regarding 447 

the use of human post-mortem tissue samples. At the individual brain banks, post-mortem, fresh tissue 448 

samples were snap-frozen in liquid nitrogen vapour for 20 minutes before being stored in -80C freezer 449 

long term. Immunohistochemistry was undertaken on all samples using adjacent brain tissue (same 450 

block) and assessed for beta-amyloid, Tau, TDP43, alpha synuclein and p62. All H&E stains were 451 

performed by hand. In the selection of control samples we excluded all samples with a pre-mortem 452 

history of neurological or psychiatric disease (at any time) and in all cases, there was no evidence of 453 

neurodegenerative or other significant disease processes on neuropathological examination. 454 

 455 

Nuclei isolation and single-nuclei RNA-seq 456 
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Single-nuclei RNA-seq (snRNA-seq) data was generated at Imperial College on prefrontal cortex and 457 

hippocampus samples ascertained from 60 unique subjects. These brain tissue samples were ascertained 458 

from the Imperial College, Oxford University, Edinburgh University or Amsterdam Medical Centre 459 

brain tissue banks. Nuclei were isolated as previously described[42] except for a slightly extended 460 

douncing during the tissue lysis step (see our previous publication for detailed protocol PMID: 461 

34309761)[43]. Additionally, we included snRNA-seq data on temporal and prefrontal cortex control 462 

samples from a further unrelated 87 unique subjects from Roche. Details of the Roche control samples 463 

and nuclei isolation are as previously described [12]. In all cases, snRNA-seq data was generated using 464 

the 10X Single Cell Next GEM Chip targeting a minimum 5,000 nuclei per sample and libraries 465 

prepared using the Chromium Single Cell 3′ Library and Gel Bead v3 kit according to manufacturer’s 466 

instructions. cDNA libraries were sequenced using the Illumina NovaSeq 6000 system at a minimum 467 

sequencing depth of 30,000 paired-end reads per nucleus. 468 

 469 

snRNA-Seq data mapping  470 

The raw sequencing reads in the FASTQ files were used to align to the human GRCh38 genome and 471 

quantified gene counts as UMIs using Cell Ranger count (version 5.0.1). For snRNA-Seq reads, we 472 

counted reads mapping to introns as well as exons by --include-introns option in Cell Ranger (version 473 

5.0.1). As shown in the earlier studies, this results in a greater number of genes detected per nucleus, as 474 

well as better cell type classification[44], [45].To build the latest reference genome for read mapping, 475 

we followed the recommended building steps by 10X Genomics. We then modified sequence headers 476 

in the Ensembl FASTA file, removed version suffix in the Gencode GTF file, defined string patterns 477 

for GTF tags, constructed the gene IDs, and filtered the GTF file based on the gene IDs. Finally, the 478 

reference genome was created using Cell Ranger mkref (version 5.0.1) with default settings[46]. 479 

 480 

Genotyping 481 

Donor DNA from samples processed at Imperial College was genotyped using the Illumina Infinium 482 

Global Screening Array v2.0. The tool PLINK (version 1.90b6.18) was applied to call genotypes using 483 

the default settings[47]. Roche control subject were genotyped as previously described[12]. These 484 

genotyped data were harmonized to the hg38 reference genome using bcftools (version 1.9) with the 485 

fixref plugin (-m flip option)[48], [49]. Prior to imputation, no missing data threshold or minor allele 486 

frequency (MAF) or Hardy-Weinberg equilibrium (HWE) filters were applied. Imputation was done on 487 

the Michigan Imputation Server (version 1.6.3) using Haplotype Reference Consortium (version r1.1) 488 

reference panel of European population[50], [51] with a pre-phasing using Eagle (version 2.4)[52] and 489 

imputation using Minimac4[50]. Only bi-allelic SNPs where imputation score (r2) was >0.8 were kept. 490 

Imperial and Roche samples were merged as previously described [12]. Genetic variants common to 491 

imputed genotypes and whole genome sequencing were identified and merged by bcftools (version 492 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.517913doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.517913
http://creativecommons.org/licenses/by-nd/4.0/


 14 

1.9)[48]. Post-merging, SNPs with MAF <5% and P <10-6 in HWE were excluded. Finally, we 493 

performed kinship analysis and excluded all samples with a kinship coefficient above 0.2. Following 494 

these steps, we retained ~5.17 million high-quality SNPs in 128 individuals for further analysis. 495 

 496 

Demultiplexing 497 

Sample pools were demultiplexed based on their genotype using the Demuxlet algorithm with the 498 

default settings, as previously described[53], [54]. The variable SNPs between the pooled individuals 499 

were used to determine which cell belongs to which individual and to identify doublets. Droplets called 500 

doublet by Demuxlet were removed from downstream analyses. 501 

 502 

QC and processing of snRNA-Seq data 503 

The quality of snRNA-Seq datasets was assessed using the following metrics: number of total reads per 504 

library, sequencing saturation (fraction of reads originating from an already-observed UMI as reported 505 

by Cell Ranger count), estimated total recovered nuclei, mean of reads per nucleus, number of genes 506 

detected, median UMI Counts per nucleus and reads mapped to genome. While the quality of each cell 507 

was assessed using filtered feature-barcode matrices (generated using Cell Ranger workflow and 508 

EmptyDrops implemented in Cell Ranger, version 5.0.1)[12]. For each sample pool, the data was saved 509 

as Seurat object by CreateSeuratObject function in Seurat (version 4.0.1)[55]. Nuclei exhibiting 510 

mitochondrial read proportions higher than 5% and genes expressed in less than 5 nuclei were removed 511 

from further analysis. Dimensionality reduction and clustering were conducted based on Seurat's built-512 

in functions using standard workflow. After clustering, we predicted potential doublets using 513 

DoubletFinder (version 2.0.3) based on the filtered matrix, with the assuming doublet formation 514 

rate equal to 0.07 as previously illustrated[43], [56]. Potential doublets identified by DoubletFinder 515 

were removed. To integrate the samples, we employed the recommended integration method within 516 

Seurat using reciprocal PCA (“RPCA”) with default settings. Samples with less than 500 cells were 517 

excluded from downstream analysis. Cell-types were assigned using canonical cell-type markers. 518 

Specifically, Excitatory Neurons: SLC17A7, SATB2, VIP, LAMP5, Inhibitory Neurons: GAD1, GAD2, 519 

SOX6, PVALB; Astrocytes: AQP4, GJB6, FGFR3; Microglia: CTSS, C1QB, CSF1R; Oligodendrocyte 520 

Precursor Cells (OPC): CSPG4, PDGFRA, VCAN; Oligodendrocytes: MAG, MOG; Pericytes: PTGDS, 521 

ATP1A2, ITIH5, FLT1, DCN, PDGFRB; Endothelial Cells: ACTA2, KCNJ78, ZEB1.  522 

 523 

eQTL mapping 524 

Raw count matrices were extracted for each cell type, after which counts for all cells were summed per 525 

individual, to obtain a single aggregated count value per cell-type per individual. For an individual to 526 

be included in the pseudobulk dataset, a minimum of 20 cells in that cell type was required. The 527 

aggregated count matrices were then normalised with the cpm function (counts per million) from the 528 

edgeR package[57] and log-transformed. Mapping of cis-eQTLs was performed using 529 
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MatrixEQTL[11] with a cis window of 2Mb (1Mb from each end of the gene) and default parameters. 530 

For each cell type, the input consisted of the pseudobulk matrix, genotype matrix, SNP locations file, 531 

gene locations file and a covariate matrix including individual-level information for age, sex, post-532 

mortem index (PMI) and sample source. In addition, for each filtered expression matrix, we included 533 

the first 40 principal components (PCs) of gene expression as fixed covariates to increase power to 534 

detect signals, as previously suggested [12]. We included all genes expressed in at least 3 individuals 535 

per cell-type, and genetic variants with at least two individuals in 2 out of the 3 genotypic categories. 536 

False Discovery Rate (FDR) using the Benjamini–Hochberg method for both discovery sets was applied 537 

[13]. 538 

 539 

Validation of eQTLs using a bulk dataset 540 

We obtained the full cis-eQTL associations from a recent bulk eQTL dataset (“Metabrain” dataset) 541 

performed on 6,518 individuals[14]. To calculate the percentage overlap, we first identified cis-eQTLs 542 

(SNP-gene pairs) with a study-wide FDR <5% FDR in each cell-type. This identified a total 39,840 543 

SNP-gene pairs for astrocytes, 4,339 for endothelial cells, 140,053 for excitatory neurons, 40,463 for 544 

inhibitory neurons, 20,180 for microglia, 66,114 for oligodendrocytes, 21,418 for oligodendrocyte 545 

precursor cells and 7,884 for pericytes. The percentage overlap with the external cis-eQTL dataset in 546 

Metabrain was then calculated based on the total number of SNP-gene pairs also in Metabrain at FDR 547 

<5%, divided by the aforementioned numbers. 548 

 549 

Colocalisation analysis 550 

We employed COLOC[16] to perform colocalisation analysis. Briefly, cis-eQTLs were generated for 551 

each cell type as described above. To prepare the summary statistics for colocalisation analysis, we first 552 

performed a liftover from hg19 to hg38 using the liftOver function from the rtracklayer package[58] 553 

and the latest liftover chain file from UCSC (hg19ToHg38.over.chain). For each GWAS trait analysed, 554 

the regions were selected based on variants with the most significant genome-wide association in a non-555 

overlapping fashion (meaning each selected region could have more than one genome-wide significant 556 

SNP). The summary statistics were scanned using the ld_clump function of the ieugwasr package[59] 557 

and only the top genetic variant in a window of 1Mb was kept (500kb on either side of the variant). The 558 

regions were then re-populated with the full list of variants situated within the 1Mb window of each 559 

region to then be used in the colocalisation analysis. To perform single-cell eQTL colocalisation, the 560 

full cis-eQTL associations for each cell type were intersected with variants in each GWAS trait on a 561 

per-region basis. For each region, COLOC was then used iteratively in a binary fashion between the 562 

GWAS and all cell-type/gene combinations using default priors. Each cell type/gene combination was 563 

considered as a single trait (such as astrocyte/APIP), i.e., the total number of colocalisation tests 564 

performed would be equal to the number of genes multiplied by the number of cell-types. For example, 565 

in a region with 20 genes, a total of 160 when considering 8 cell types. This was repeated for every 566 
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region of genome-wide significance in each GWAS. For downstream analysis, traits with a regional 567 

posterior probability (PP.H4) above 0.5 were retained. For quantitative GWAS traits, type=”quant” 568 

was specified in the COLOC input. For case/control GWAS traits, type=”cc” was specified in the 569 

COLOC input. For all cis-eQTL traits, type=”quant” was specified in the COLOC input. 570 

 571 

Mendelian randomisation 572 

Mendelian randomisation was performed using the MendelianRandomisation R package[23]. For each 573 

GWAS, regions around colocalised traits (cell/gene combination) with a posterior probability (PP.H4) 574 

of more than 0.5 were carried forward to MR. The genetic variants were then filtered to satisfy the 575 

mendelian randomisation assumptions. First, to ensure the robustness of our instrumental variables, we 576 

only kept variants in that region with an association with the gene at FDR below 5%. Following this, 577 

we excluded all variants in high LD (r2 >0.01) with the lead variant(s). In the large majority of cases 578 

(>90%), only one instrumental variable (IV) was retained. Then, we applied Mendelian randomisation 579 

using the mr_allmethods function specifiying “ivw” (with a fixed-effects meta-analysis for more than 580 

one IV and the ratio method when there was only one IV) as the method to be used, using the cell-type 581 

specific effect sizes for the gene in question as the exposure and the GWAS effect size as the outcome.  582 

 583 

Intersection with protein-QTL dataset 584 

To assess whether our MR hits had actionable potential evidenced by protein expression, we sought to 585 

identify overlaps with published pQTL datasets. We obtained two published pQTL summary stats from 586 

a study recently conducted using samples from the dorsolateral prefrontal cortex[36]. The first 587 

contained all individuals in the study, which included samples with Alzheimer's Disease, while the latter 588 

only contained samples obtained from individuals with no cognitive impairment (NCI). To perform our 589 

overlap, we first intersected exact SNP-gene pairs obtained from our MR results (instrumental 590 

variable(s)-gene). In addition, we extended this overlap for SNPs in high LD (r2 >0.8) with the 591 

instrumental variable(s). This was assessed using the LDproxy function from the LDLinkR package[60], 592 

specifying “CEU” as the population to be used. 593 

 594 

Intersection with epigenetic data 595 

To assess the cis-regulatory evidence of our MR hits, we intersected our hits with data from a recently 596 

published article on cell-type specific epigenetic regulation assessed through Histone ChIP-seq and 597 

PLAC-seq[22]. We obtained the processed and filtered bed files from the author’s GitHub page 598 

(https://github.com/nottalexi/brain-cell-type-peak-files). For our IV intersection, we first performed a 599 

liftover from hg38 to h19, as the peak files were on this build, before the intersection. For the gene 600 

promoter intersection, we first obtained gene promoters from the 601 

TxDb.Hsapiens.UCSC.hg19.knownGene package using the promoters function from the 602 
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GenomicRanges package[61], specifying a maximum range of 5,001 bp (to ensure overlap with the 603 

PLAC-seq fragments, which are 5kb long). 604 

 605 

Intersection with drug targets 606 

We investigated whether our MR targets were potentially actionable through therapeutic targeting based 607 

on available protein interaction databases. To do so, we downloaded the following interaction 608 

databases; DGIdb[39] STITCH[40], and OpenTargets[24]. For STITCH, we downloaded the 609 

protein/chemical links dataset and kept all connections with a “combined score” of 0.9 and above 610 

(which is equivalent to the highest confidence of connections according to the STITCH guidelines), 611 

obtained from http://stitch.embl.de/. We converted protein ENSEMBL IDs using the biomaRt 612 

package[62]. For DGIdb, we downloaded the latest set of interactions (“interactions.tsv”, “genes.tsv” 613 

and “drugs.tsv” of February 2022), obtained from https://www.dgidb.org/downloads. For OpenTargets, 614 

all data was downloaded from https://platform.opentargets.org/downloads. We performed two sets of 615 

analysis. First, we tested whether the MR genes in question were also putative targets for the trait 616 

analysed in OpenTargets. To do so, we downloaded the “Associations – direct (overall score)” dataset, 617 

which contains scores for putatively important risk genes. For our analysis, we intersected all genes 618 

with a score above 0. Secondly, we tested whether our targets had been previously used for therapeutic 619 

design. Hence, we downloaded the “Target” and “Drug” datasets to assess whether this was the case 620 

and matched these to our MR genes. 621 

 622 

Processing of GWAS summary statistics 623 

We standardised all GWAS studies to contain the following headers; “chr” for chromosome position, 624 

“pos” for a base-pair position, “rsid” for SNP id, “pval” for association p-value, “b” for the effect size, 625 

“se” for the standard error, “A1” for the effect allele, “A2” for the other allele and “MAF” for the minor 626 

allele frequency. In cases where the effect size was missing but the Z-score was available, we calculated 627 

the effect size (beta regression coefficient) and standard error using a previously described formula[63]. 628 

When the Odds Ratio (OR) was included but not the effect size, we did a natural logarithmic conversion 629 

to obtain the effect size. 630 

 631 

Data availability 632 

The datasets generated during and/or analysed during the current study will be made available at the 633 

point of publication deposited within the European Genome-phenome Archive.  634 

 635 

Figures 636 

Most figure panels were generated programmatically in R using ggplot2[64] with the exception of Fig.  637 

2b-c which were generated using gassocplot2 (https://github.com/jrs95/gassocplot2). Fig. 1a was  638 

created with BioRender.com (full licence). Figure 3b-c was created using the custom tracks on the  639 
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UCSC genome browser (https://genome.ucsc.edu/) as previously illustrated[22]. 640 

 641 
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Fig. 1. Study overview, cell types and single cell-type cis-eQTLs. a. Single cell-type cis-eQTLs were identified 
in control brain tissue samples and integrated with GWAS loci in a Mendelian randomisation framework to infer 
the causal relationships between genes, cell-types and phenotypes. b. The eight major cell-types of the human brain 
(excitatory neurons, oligodendrocytes, astrocytes, inhibitory neurons, microglia, oligodendrocyte precursor cells, 
endothelial cells and pericytes) were identified from snRNA-seq using canonical cell-type markers. c. Number of 
eGenes unique (top line) and total (bottom line) for each cell-type at <5% FDR. d. Number of cis-eQTLs eSNPs 
unique (top line) and total (bottom line) for each cell-type at <5% FDR. e. An example of a cell-type-specific cis-
eQTL (SNP-gene pair) in excitatory neurons. f. An example of cell-type specific cis-eQTL (SNP-gene pair) in 
microglia.
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Fig. 2. Colocalization analysis. a. Heatmap of posterior probability (PP.H4>0.5) for a shared genetic signal for a 
SNP-gene (i.e., cis-eQTL) pair (row) in a particular cell-type (column) and a genome-wide significant GWAS locus 
for Alzheimer’s disease (AD). b. Example of a microglial-specific colocalization between PICALM cis-eQTLs and 
AD. Each blue circle represents a SNP with the significance of its association (y-axis) to PICALM expression (top) 
or AD (bottom). SNP rs10792832 (purple diamond) is the lead colocalised SNP across the two associations. c. 
SNP-PICALM associations in the other cell-types across the same chromosomal region illustrating the lack of 
colocalization in other cell-types. d. Summary of the number of colocalizations (PP.H4>0.5) for each phenotype 
(SD: sleep duration; SCZ: schizophrenia; SCV: subcortical volume caudate; PD: Parkinson’s disease; NEUR: 
neuroticism; MS: multiple sclerosis; MDD: major depressive disorder; IQ: intelligence; INS: insomnia; ICV: 
intracranial volume; HV: hippocampal volume; FTD: Frontotemporal Dementia; EPI.GEN: genetic generalized 
epilepsy; BD: bipolar disorder; ADHD: attention deficit hyperactivity disorder, AD: Alzheimer disease). Each cell-
type/gene pair with PP.H4>0.5 is reported - for example, LRRC37A has two colocalisations with AD, one in 
Excitatory Neurons and one in Inhibitory Neurons and therefore counts for two colocalisations. e. Bubble plot 
demonstrating the number of occurrences of a particular cell-type in a colocalization for the indicated phenotype. 

G
en

e

0

1

2

3

−l
og

10
(p
)

Astrocytes PICALM

0

1

2

3

Endothelial PICALM

0

1

2

3

0

1

2

3

−l
og

10
(p
)

Excitatory PICALM Inhibitory PICALM

0

1

2

3

−l
og

10
(p
)

ODC PICALM

0
1
2
3

OPC PICALM

0

2

4

6

Pericytes PICALM

0

2

4

6

−l
og

10
(p
)

rs10792832

Microglia PICALM

0

10

20

30

40

85,8 86,4 86,7

−l
og

10
(p
)

rs10792832

CREBZFCREBZF

CCDC89CCDC89

SYTL2SYTL2

CCDC83CCDC83

PICALMPICALM

EEDEED

HIKESHIHIKESHI

CCDC81CCDC81

ME3ME3

GWAS

r2 0.0−0.2 0.6−0.8 0.8−1.0

c

a b

<10

Number of 
colocalisations 

0.25

0.50

PP.H4

0.75

0.99

0.99

0.99

0.99 0.99

0.99

0.95

0.94

0.94

0.92

0.87

0.83

0.82

0.78

0.76

0.76

0.73

0.67

0.66

0.65

0.63

0.63

0.6

0.59

0.59

0.58

0.58

0.53

0.52

0.52

0.52

0.51

0.51

0.45

0.43

0.39

0.39

0.37

0.36

0.35

0.35

0.350.340.330.33

0.31

0.31

0.3

0.29

0.28

0.26

0.23

0.22

0.2

0.2

0.19

0.18

0.18

0.18

0.18

0.18

0.18

0.17

0.17

0.16

0.15

0.15

0.15

0.13

0.13

0.13

0.13

0.12

0.12

0.12

0.11

0.11

0.11 0.11

0.11

0.11

0.1 0.1

0.1

0.1

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.09

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.07

0.07

0.07

0.07

0.07

0.070.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07 0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.07

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06 0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.04

0.03

0.03

0.03

0.01

0

  Astrocytes Endothelial Excitatory Inhibitory Microglia ODC OPC Pericytes

MINDY2

OPN5

POP7

CNOT3

PPP4C

CD2AP

TRPV5

FCER1G

ADAM10

CLU

YPEL3

DPY19L4

CFAP126

ATP5F1D

RABEP1

PRSS36

CR2

TRIM72

LRRC37A2

RASGEF1C

CR1

EGFR

NSF

JAZF1

LRRC37A

PICALM

RIN3

SNX31

Alzheimer's Disease

33

1

4

2

5

2

11

4

86

1

42

40

36

9

102

24

AD
ADHD

BD
EPI.GEN

FTD
HV
ICV
INS

IQ
MDD

MS
NEUR

PD
SCV
SCZ

SD

0 12030 60 90
Number of colocalisations

G
W

A
S

e

AD
ADHD

BD
EPI.GEN

FTD
HV
ICV
INS

IQ
MDD

MS
NEUR

PD
SCV
SCZ

SD

10-30

>30

1.00

0.00 86,1

0.2−0.4 0.4−0.6

Position on Chromosome 11 (Mbp)

−l
og

10
(p
)

Astr
oc

Endoth

Ex
yte

s

cit
ateli
al

Inhibit

M

ory

icr
or

o
y a

gli

ODC
O er
PC

P
icy

tes

 d

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.517913doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.517913
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 3. Instrumental variable gene-regulatory landscape. a. Cell-type specific gene-regulatory features for the 
instrumental variables (IVs) in microglia, oligodendrocytes (ODC) and neurons. Each row represents a gene-
outcome pair in the indicated cell-type. For neurons, each gene-outcome pair is suffixed with the type of neuron 
the IV was colocalized in (InN for inhibitory, ExN for excitatory). The first three columns represent (from left to 
right) the intersection (solid square) between the IV for the indicated gene and an epigenetic feature in that cell-
type annotated by ATAC-seq, H3K4me3 ChIP-seq or H3K27ac ChIP-seq. The “PLAC” column indicates whether 
the IV for the gene in question physically connects to the promoter region of the gene of interest via a PLAC-seq 
loop in the indicated cell-type. The SNP2TFBS column indicates whether the IV is predicted to disrupt 
transcription factor binding using the SNP2TFBS database. The H3K4me3.gene column indicates whether the 
promoter of the gene in question fell within a H3K4me3 ChIP-seq peak in the indicated cell-type. b. Genomic map 
indicating the location of the PICALM instrumental SNP (IV) rs10792832 overlapping a microglial-specific 
enhancer and connected to the PICALM promoter (red line) via a PLAC-seq loop. c. Genomic map indicating the 
location of the OFGOD2 IV rs1716183 overlapping a neuronal enhancer and connected to the OGFOD2 promoter 
(red line) via a PLAC-seq loop.
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Fig. 4. Overview of Mendelian Randomisation results. a. Overview of gene-outcome pairs (here labelled with the 
clinical outcome first to allow causal inferences to be grouped by phenotype) with a significant Mendelian 
randomisation (MR) association in the indicated cell-type/s. "MR beta" refers to whether the beta coefficients for the 
IV SNP-gene and SNP-phenotype associations are positively or negatively correlated. A positive correlation can be 
interpreted as increased gene expression leads to increased outcome risk, whilst a negative correlation can be 
interpreted as increased gene expression leads to decreased disease risk (or vice versa). Grey squares (MS:HLA-A) 
indicate that the cell-types involved had opposite MR beta directions. Column "pQTL" – solid square indicates that 
the gene-outcome association at a transcriptional level was reproducible when considering proteins instrumented by 
the same genetic variant or by a variant in high LD (r2>0.8) (grey square indicates that the gene was not assessed in 
the pQTL dataset due to lack of data). Columns "STITCH" and "DGIdb" – solid square indicates that the protein 
product for the indicated gene interacts with a known chemical entity from the relevant database. Column "Open 
Targets" – solid square indicates that the gene-outcome pair have evidence for a target-indication association from the 
Open Targets Consortium. b. Histogram showing the number of genes with an MR-inferred causal association for the 
indicated phenotype. Genes with an inferred causal association to two or more phenotypes are shown by a solid 
vertical line connecting the phenotypes. ADHD: attention deficit hyperactivity disorder; EPI: epilepsy; MDD: major 
depressive disorder; FTD: frontotemporal dementia; HV: hippocampal volume; INS: insomnia; BD: bipolar disease; 
SCV: subcortical volume (caudate); ICV: intracranial volume; MS: multiple sclerosis; SD: sleep duration; AD: 
Alzheimer’s disease; NEUR: neuroticism trait; PD: Parkinson’s disease; IQ: full-scale intelligence quotient; SCZ: 
schizophrenia.
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Supplementary Fig. 1. Overview of snRNA-seq on 128 individuals. Following integration, single-cell and sample 
quality control, we obtained a total of high-quality 577,115 single-cells across 128 individuals. a. Number of cells per 
cell-type sequenced across all individuals used in the study. b. Total number of cells discovered across the 8 major brain 
cell-types. c. Distribution of cell-type clusters, annotated by sample source (and/or study). d. Distribution of cell-type 
clusters, annotated by brain region (CU; Cortex (unspecified), HIP; Hippocampus, PFC; Prefrontal cortex, TC; Temporal 
cortex). e. Distribution of cell-type clusters, annotated by sex.
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Supplementary Fig. 2. Replication of cis-eQTLs in the Metabrain cohort. Our cis-
eQTL discovery was validated in a large bulk RNA brain dataset (Metabrain) comprising of 
6,518 individuals. Each point represents the percentage (y-axis) of FDR-significant (<5%) cis-
eQTLs in a specific cell-type in our cohort that was also of FDR significance 
(FDR<5%) in the metabrain cohort. The x-axis represents the total number of SNP-gene 
pairs replicated.
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Supplementary Fig. 3.  Colocalisation results. Each heatmap shows the posterior probability (PP.H4>0.5) for a shared 
genetic signal for a SNP-gene (i.e., cis-eQTL) pair (row) in a particular cell-type (column) and a genome-wide significant 
GWAS locus within a given trait (SD: sleep duration; SCZ: schizophrenia; SCV: subcortical volume caudate; PD: 
Parkinson’s disease; NEUR: neuroticism; MS: multiple sclerosis; MDD: major depressive disorder; IQ: intelligence; INS: 
insomnia; ICV: intracranial volume; HV: hippocampal volume; FTD: Frontotemporal Dementia; EPI.GEN: genetic 
generalized epilepsy; BD: bipolar disorder; ADHD: attention deficit hyperactivity disorder, AD: Alzheimer disease).
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Supplementary Fig. 4.  F-statistic distributions of cis-eQTLs. Mendelian Randomization necessitates 
selection of robust instrumental variables (F-statistic > 10, denoted by the dotted line). In each plot (per cell-
type), the x-axis represents the F-statistic for a given association, and the y-axis represents the significance of the 
association for a given F-statistic value (p-value (P) in blue, FDR in red).
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Supplementary Fig. 5. Inferred causal directionality and cell-type specificity. a. Cell-type/gene combinations 
overlapping only between schizophrenia (SCZ) and intelligence quotient (IQ). The y-axis represents the MR effect size 
(beta regression coefficient) for a given cell-type/gene pair in IQ. The x-axis represents the MR effect size for that same 
cell-type/gene pair in SCZ. For example, cell-type/gene pairs in the lower right quadrant (OPC-KMT2E, Pericytes-
BTN3A2, Microglia-BTN3A2 and OPC-BTN3A2) indicate a positive MR beta regression coefficient for SCZ but 
negative for IQ (i.e., increased gene expression for these genes is associated with increased risk of SCZ and reduced IQ). 
b. Cell-type/gene combinations shared only between SCZ and neuroticism (NEUR). The cell-type/gene pairs in the upper
right quadrant (Astrocytes-FAM120AOS, Inhibitory-FAM120AOS, ODC-FAM120AOS, Excitatory- PCCB) indicate a
positive MR beta regression coefficient for both SCZ and neuroticism (i.e., increased gene expression for these genes is
associated with increased risk of both SCZ and neuroticism). c. Overview of cell-type proportions per trait for all
significant MR results for that trait.
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Supplementary Fig. 6. Directionality for all MR hits in across all traits (denoted in each plot title). The y-axis denotes 
the gene for the MR hit, and the x-axis denotes the MR beta regression coefficient, indicated by the dot (coloured by 
cell-type). The dotted line is centered on zero, meaning hits on the right represent a positive beta (increased expression 
relates to increased risk, requiring target inactivation) whereas on the left represent a negative beta (increased expression 
relates to decreased risk, requiring target activation). ADHD: attention deficit hyperactivity disorder; EPI: epilepsy; 
MDD: major depressive disorder; FTD: frontotemporal dementia; HV: hippocampal volume; INS: insomnia; BD: 
bipolar disease; SCV: subcortical volume (caudate); ICV: intracranial volume; MS: multiple sclerosis; SD: sleep 
duration; AD: Alzheimer’s disease; NEUR: neuroticism trait; PD: Parkinson’s disease; IQ: full-scale intelligence 
quotient; SCZ: schizophrenia.
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