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90
91 ABSTRACT

92  Translating genome-wide association loci to therapies requires knowledge of the causal genes,
93 their directionality of effect and the cell-types in which they act. To infer these relationships in
94  the human brain, we implemented Mendelian randomisation using single cell-type expression
95 quantitative trait loci (eQTLs) as genetic anchors. Expression QTLs were mapped across 8 major
96 cell-types in brain tissue exclusively ascertained from donors with no history of brain disease. We
97  reportevidence for a causal association between the change in expression of 118 genes and one or
98 more of 16 brain phenotypes, revealing candidate targets for risk mitigation and opportunities
99 for shared preventative therapeutic strategies. We highlight key causal genes for
100  neurodegenerative and neuropsychiatric disease and for each, we report its cellular context and
101  the therapeutic directionality required for risk mitigation. Our use of control samples establishes
102  anew resource for the causal interpretation of GWAS risk alleles for human brain phenotypes.
103
104
105 INTRODUCTION
106  The average cost to bring a drug to market is $2.6 billion (2013 dollars)[1]. Only 4% of drug-
107  development programs yield licensed drugs due to two main issues: (a) preclinical experimental models
108 are poorly predictive of eventual therapeutic efficacy and (b) definitive evidence of target validity is
109 not obtained until randomised controlled trials (RCT) in late-stage drug development[2]. The
110  retrospective observation that drugs with genetic support for the target-indication pairing are more than
111 twice as likely to be successful in clinical development has therefore focused attention on the potential
112 for human genetics to predict successful new drugs[3], [4]. However, translating genetic loci to
113  therapies requires knowledge of the causal genes as well as the directionality of effect of a gene’s
114 expression on disease risk in specific cell-types, which is rarely directly available from genetic analysis
115  alone[5],[6].
116
117  Here, we aimed to infer these causal relationships by implementing a principled approach to Mendelian
118  randomisation (MR) using single cell-type expression quantitative trait loci (eQTLS) as genetic anchors.
119 MR is a statistical framework for inferring causal associations using human observational data[7].
120 Instead of randomising subjects to drug exposure versus placebo to investigate the causal relation
121  between an exposure and a health outcome, MR makes use of the naturally randomized allocation of
122 genetic variants (SNPs) that instrument an exposure such as the level of expression of a gene[8].
123
124 In the present study, we restricted our analysis to human brain single-cell gene expression data
125  ascertained exclusively from donors with no history of brain disease and with normal appearances of

126  the brain on neuropathological examination. Although brain tissue samples from people who have died
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127  with a neurological or psychiatric diagnosis are more widely available than control samples, the use of
128  diseased brain tissue has the potential to confound the deconvolution of true forward causal effects from
129  mere correlation due to biased anchoring of the causal inference in disease-induced gene expression
130  changes rather than disease-causing ones (confounding by reverse causation)[9]. In contrast, our use of
131  brain tissue that predates the onset of brain disease offers an opportunity to discover cell-type specific
132 causal risk factors that are unconfounded by reverse causation and therefore modifiable drug targets for
133  disease prevention. By focussing solely on control samples, we establish a new resource for the
134 interpretation of GWAS-risk alleles on human brain phenotypes.

135

136 In addition to providing an improved level of certainty about the causal relation between a candidate
137  drug target and a clinical outcome, the application of MR anchored in single cell-type eQTLs also
138  provides estimates of the size and direction of the effect of an exposure on an outcome in a specific
139  cell-type. These estimates are critical to designing the correct therapeutic intervention. Therefore, to
140  enable a transparent assessment of our cell-type specific causal inferences we report our findings in line
141  with the STROBE-MR guidelines for MR studies[10], including explicit reporting of the strength of
142  the statistical evidence at each step.

143

144

145 RESULTS

146  Study overview

147  To study cell-type specific genetic effects on human brain structure, disease, and behaviour we utilized
148  single-nuclei gene expression data (SNnRNA-seq) based on post-mortem brain tissue samples from 147
149  genotyped adult donors. Across all donors, there was no history of neurological or psychiatric disease
150  prior to death, and no evidence for disease of the brain on neuropathological examination. Single cell-
151  type Mendelian randomisation (MR) analysis was implemented on this resource in three stages: (a) data
152 generation and single cell-type eQTL mapping, (b) instrumental variable selection and assessment, (c)
153  two-sample Mendelian randomisation (MR) (study design summarised in Fig.1a).

154

155  Data generation and single cell-type cis-eQTL mapping

156  After quality control, sample integration, cell-type annotation and genotype imputation, 577,115 single-
157  cells across 128 subjects averaging 4,509 cells per donor were available for estimating allele-specific
158  effects on gene expression in single cell-types (hereon referred to as single cell-type eQTLS). The
159 577,115 single cells across the sample set were aligned in a single graph (Fig. 1b) and consisted of
160 219,942 excitatory neurons, 66,246 inhibitory neurons, 133,752 oligodendrocytes, 68,809 astrocytes,
161 30,086 microglia, 27,248 oligodendrocyte precursors, 17,144 endothelial cells and 13,888 pericytes
162  (overview of sSnRNA-seq data characteristics in Supplementary Fig.1).

163


https://doi.org/10.1101/2022.11.28.517913
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.28.517913; this version posted November 29, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

164  To calculate cell-type specific eQTLs we generated pseudobulk gene expression matrices by
165  aggregating read counts for each gene in each cell-type for each subject (Methods). cis-eQTLs were
166  mapped using MatrixEQTL[11] for each SNP-gene pair in each cell-type using a cis window extending
167  1Mb either side of the gene per protocol and adjusting for age, sex, post-mortem interval, sample source
168  and the first 40 principal components of gene expression as fixed covariates[12]. In total, across the
169 eight cell-types, 326,748 cis-eQTLs were identified at a study-wide False Discovery Rate (FDR) <5%
170  [13] corresponding to one or more regulatory SNP (eSNP) for 10,288 genes (eGenes) (Figs.1c-d). Of
171  these, 5,101 eGenes were unique to a single cell-type (illustrative examples in Figs.1le-f). Across the set
172  of single cell-type cis-eQTLs, we observed a high level of replication (71.3-83.6%, varying by cell-
173  type) in a large independent cis-eQTL dataset derived from bulk brain tissue samples from 6,518
174  subjects [14](Supplementary Figure 2).

175

176  Instrumental variable selection

177  Valid genetic instruments for MR are underpinned by three core assumptions: They are associated with
178  the exposure of interest (the relevance assumption); they only act via the measured exposure (the
179  exclusion restriction assumption); there are no unmeasured confounders of the association between the
180  genetic instrument and the outcome (the independence assumption)[15].

181

182  To plausibly meet these assumptions, we took a principled approach to the selection of instrumental
183  variables (IVs). As a first step, we assessed whether phenotypic outcomes and potential gene mediators
184  might share one or more causal variants using colocalization analysis. COLOC[16] is a method for
185  genetic colocalization analysis that provides an estimate of the posterior probability of a shared signal
186  between pairs of genetic association studies — in our case between a cell-type specific cis-eQTL (i.e., a
187  SNP-gene pair in a particular cell-type) as one “trait”, and a SNP-phenotype association from a well-
188  conducted GWAS as the second. We restricted the colocalization analysis to chromosomal regions
189  containing a genome-wide significant association with the outcome in question (defined as a GWAS P
190 <5.0x107%). Colocalization analysis was carried out across 23 human brain phenotypes and the resulting
191  cell-type specific colocalizations are summarised for each outcome in Supplementary Fig.3. As an
192 illustrative example, we show the cell-type specific posterior probability of colocalizations (PP.H4>0.5)
193  with Alzheimer’s disease (AD) in Fig.2a. These reveal several genes in specific cell-types concordant
194 with the known biology of AD such as PICALM (PP.H4 microglia = 0.99; Figs.2b-c) and RIN3 (PP.H4
195  microglia =0.99)[17], as well as genes with a previously proposed but less well-established link to AD
196  such as SNX31 (PP.H4 astrocytes = 0.99)[18]. In total, across all phenotypes, we identified 402 cell-
197  type specific colocalizations with PP.H4>0.5 (summary of the number of colocalised genes and cell-
198  types for each brain phenotype in Fig.2d and Fig.2e respectively).

199
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200  To select the specific IV SNPs for MR analysis we first retained only the colocalised regions with a
201  posterior probability (PP.H4) >0.5 for a shared causal signal, of which 76.5% mapped to a single cell-
202  type. Inline with the relevance assumption, we removed all SNPs in the colocalised region with a study-
203  wide cis-eQTL FDR>5%. We then identified the lead eQTL SNP in the colocalised region and removed
204 all variants in linkage disequilibrium (LD r?>0.01) with that SNP so as to minimise the risk of
205  confounding by LD (i.e., confounding because the genetic variant is in LD with another variant that
206  independently influences the outcome via an alternative unmeasured risk factor). For the retained SNPs,
207  we then re-assessed the strength of the association between each instrumental SNP and its associated
208  gene expression in a particular cell-type using the F-statistic[19]. Overall F-statistic distributions for
209  each cell-type in Supplementary Figure 4 (I\V-gene F-statistic range 16.9 - 233, median 29).

210

211  Following the above steps only a single SNP was retained as the selected IV for most (96.9%) gene/cell-
212 type/outcome combinations. Less commonly encountered was the occurrence of >1 IV for a particular
213  gene/cell-type/outcome combination. For example, colocalization between a genome-wide significant
214 chromosomal region on 5g35.3 for AD and cis-eQTLs for RASGEF1C in microglia identified 2,184
215  SNPs in the colocalised chromosomal region (PP.H4=0.87). Removal of SNPs with a cis-eQTL FDR
216  >5% followed by removal of SNPs in LD (r>>0.01) with the lead cis-eQTL eSNP resolved two
217  independent IVs for RASGEF1C in microglia, namely: rs76792388 and rs10077711, with study-wide
218  cis-eQTL FDRs of 2.40x10* and 4.62x107? respectively. In line with the MR assumptions, we
219  considered each IV to independently instrument RASGEF1C expression and both 1Vs were combined
220  in a single inverse-variance weighted (IVW) MR test to estimate the overall contribution of cis-
221  regulatory control of RASGEF1C expression to AD risk (MR analysis detailed below).

222

223  Intotal, we identified 167 unique 1V SNPs which, because a single IV may instrument the same gene
224 across multiple cell-types and/or co-localise with multiple health outcomes, represented 262 IV-
225  gene/cell-type/outcome combinations. Identifying the causal mechanism by which IVs instrument gene
226  expression is challenging due to the multiple mechanisms by which genetic variants can have an effect
227  on gene expression such as alteration of RNA splicing, disruption of cis-regulatory enhancers or
228  promoters etc as well as cell-type specific effects on gene regulation which are poorly annotated[20].
229  Moreover, from a drug target discovery perspective, the precise mechanism by which an IV influences
230  a gene’s expression is less important for MR than the reliability of the association. Nevertheless, an
231  understanding of the mechanisms of cis-regulation can add support to the SNP-gene association. We
232  therefore assessed the IVs first using a cell-type agnostic repository of regulatory variants (SNP2TFBS)
233  affecting predicted transcription factor binding sites[21]. This revealed that 41/167 (24.6%) of the
234 selected IVs are predicted to disrupt TF binding affinity (Fig. 3a). We then assessed the regulatory
235  relationship between an IV and its paired gene in a particular cell-type using an external dataset of cell-

236  type specific assay for transposase-accessible chromatin sequencing (ATAC-seq), H3K27ac ChlP-seq,
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237  H3K4me3 ChIP-seq and proximity ligation-assisted ChlP-seq (PLAC-seq)[22]. Out of the 186 IV-
238  gene/cell-type/outcome combinations mapping to one or more of the three cell-types for which data
239  were available (neurons, microglia and oligodendrocytes), 40 (21.5%) intersected one or more
240  epigenomic feature supporting the observed cell-type gene regulatory relationship (Fig.3a). For
241  example, for the microglial-specific 1V-gene pair rs10792832-PICALM (Fig.3b), which colocalises
242  with AD, rs10792832 overlaps a microglial-specific enhancer marked by an H3K27ac peak, is
243  connected to the promoter region of PICALM in microglia via a PLAC-seq loop and the PICALM
244 promoter itself overlaps an H3K4me3 peak consistent it with being an active promoter in microglia.
245 For the excitatory neuron-specific 1V-gene pair rs1716183-OGFOD?2 (Fig.3c), which colocalises with
246  schizophrenia (SCZ) and intelligence quotient (1Q), rs1716183 overlaps neuronal ATAC and H3K27ac
247  peaks, interacts with the promoter of OGFOD2 via a PLAC-seq loop in neurons, and the OGFOD?2
248  promoter overlaps a neuronal H3K4me3 peak.

249

250  Two-sample Mendelian randomisation

251  For each of the 262 IV-gene/cell-type/outcome combinations we assessed the relationship between the
252  levels of expression of a gene in a particular cell-type with a clinical outcome using the package
253  MendelianRandomisation[23]. Here, we used the cell-type specific effect sizes for the IV SNP-gene
254 pair in question as the exposure and the SNP-phenotype effect size from the relevant GWAS as the
255  outcome. In total, we found evidence consistent with a causal interpretation of the association between
256  the levels of expression of a gene and a clinical outcome for 118 genes across 16 brain phenotypes
257  (Summarised in Fig.4a). Of these, 21 genes were inferred to have a causal association to two or more
258  phenotypes (Fig.4b), equating to a total of 149 gene-outcome associations across all phenotypes tested.
259  Whilst there is no single standard by which to benchmark these causal inferences, across all 149 gene-
260  outcome pairs inferred to have a causal association, we find that 132 (88.6%) are reported to have a
261  target-disease association score >0 by the Open Targets Consortium[24] (Fig.4a).

262

263 In addition to inferring the causal relationship between genes, cell-types and health outcomes, the
264  present study informs the directionality of the relationships unconfounded by disease-induced changes
265  in gene expression. Knowledge of the directionality of the relationship between the level of expression
266  of a gene and a clinical outcome is critical to informing the therapeutic strategy (i.e., target activation
267  orinactivation), whilst knowledge of the relevant cell-type/s in which they act can inform more precise
268  pre-clinical experimental validations. For example, among the genes inferred to be causal for AD,
269  PICALM, encoding phosphatidylinositol binding clathrin assembly protein was first associated with
270  AD in 2009[25]. Currently, no drugs are reported to be in development targeting PICALM as a
271  treatment or prevention strategy for AD[26]. Here, we associate increased PICALM expression in
272  microglia with decreased risk of AD (MR P=3.03x10%), a finding consistent with the pre-clinical

273  evidence that a reduction in PICALM expression increases the development of both amyloid[27] and
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274  tau pathologies[28]. Targeting PICALM as a single molecular entity therefore offers the potential to
275  simultaneously modify both amyloid and tau pathologies as a preventative strategy for AD. Notably, of
276  the 16 genes identified by MR in the present study as having a causal association with AD, seven are
277  putatively involved in protein aggregation or trafficking (PICALM, RABEP1, SNX31, RIN3, PRSS36,
278  NSF and MINDY2), suggesting the absence of drugs in clinical development targeting cellular protein
279  metabolism is a gap in the AD drug development pipeline. Moreover, the MR evidence in support of
280  these genes having a causal association with AD unites the amyloid and tau hypotheses of AD around
281  asingle proximal mechanism related to protein trafficking and aggregation.

282

283  As a further illustration of the translational value of directionality and cell-type context, we associate
284  increased expression of GPNMB (encoding glycoprotein nonmetastatic melanoma protein B) in
285  astrocytes and oligodendrocyte precursor cells (OPCs) with an increased risk of Parkinson’s disease
286  (PD) (MR P=3.01x10° and P=1.68x108 respectively). This directionality of effect was recently
287  independently confirmed by the experimental demonstration that loss of GPNMB activity results in loss
288  of cellular internalization of fibrillar alpha synuclein and reduced pathogenicity, confirming GPNMB
289 inhibition as a candidate therapeutic strategy in PD[29]. Similarly, epidermal growth factor receptor
290 (EGFR) was recently suggested as an AD risk gene following genomic fine mapping based on bulk
291  brain-tissue cis-eQTL reference datasets[30]. Here, we explicitly associate decreased EGFR activity in
292  astrocytes with a decreased risk of AD (MR P=1.70x107). This causal inference for EGFR is in keeping
293  with EGFR’s known biological relationship to AD, where EGFR inhibition has been shown to
294  ameliorate cognitive dysfunction in different AD models via multiple mechanisms including a reduction
295  in amyloid-beta/tau pathology and inhibition of reactive astrocytes[31]. These findings highlight the
296  potential for EGFR inhibition, including the use of new blood-brain barrier-penetrant EGFR
297  inhibitors[32], as a potential therapeutic strategy in AD.

298

299  As well as informing the therapeutic strategy, knowledge of the directionality of an exposure’s effect
300  onan outcome can also inform new biological insights into the causal relationships between genes and
301  phenotypes. For example, five schizophrenia (SCZ) genes (BTN3A2, FLOT1, KMT2E, OGFOD?2,
302  KMT5A) overlapped with intelligence (1Q) (Fig.4b). For three out of these (BTN3A2, FLOT1, KMT2E),
303 the directionality of the gene exposure on SCZ risk and IQ are in the opposite direction (Supplementary
304  Fig.5a). The inverse relationship between SCZ and 1Q for these genes may offer an explanation for the
305 clinically observed monotonic relationship between IQ and SCZ — i.e., increasing risk of SCZ with
306  decreasing 1Q[33], and therefore targeting them may offer a route to simultaneously alleviating the
307  cognitive deficit associated with SCZ whilst reducing risk of the disease itself. In contrast, where causal
308  genes overlapped between SCZ and neuroticism (PCCB, FAM120A0S), the directionality of exposure
309 effect on phenotype was in the same direction (Supplementary Fig.5b). The congruent direction of effect
310  of PCCB and FAM120A0S on risk of SCZ and neuroticism may partially explain the clinically observed
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311 increased risk of SCZ with increasing pre-morbid neuroticism[34], and targeting these genes in SCZ
312  may offer a route to alleviating a maladaptive personality trait associated with SCZ whilst mitigating
313  disease risk. These observations highlight how a phenome-wide approach to single cell-type eQTL-
314  based MR can begin to deconvolute the many complex causal relationships between traits that share
315  overlapping heritability, and thereby improve our understanding of both biology and treatment
316  strategies.

317

318  When considering the full set of phenotypes investigated in this study, we observed examples of causal
319  associations across all cell-types of the brain studied (Supplementary Fig.5c), including the lowest
320  abundant cell-types such as pericytes (e.g., multiple sclerosis (MS):HLA-B) and endothelial cells (e.g.,
321  MS:ZNHIT6). Notably, among the 149 gene-outcome combinations inferred to have a causal
322  association, 105 (70.9%) were specific to a single cell-type, suggesting the majority of single gene risk
323  factors for brain outcomes act via a single cell-type as previously observed for immune cell-types and
324  autoimmune disease[35]. Conversely, for clinical outcomes for which multiple risk genes were
325 identified, such as AD, no single cell-type accounted for all the observed heritable effects on phenotypic
326  risk (see Supplementary Fig.6). In situations where the 1\VV-gene pair was inferred to have a causal
327  association with an outcome across more than one cell-type, in all cases the inferred directionality was
328  concordant across the different cell-types.

329

330 Relationship of eQTLs to pQTLs

331  Animplicit assumption in all gene expression studies is that transcript abundance is a valid proxy for
332  protein abundance. A recent comparison of human brain protein QTLs (pQTLs) with eQTLs revealed
333  that a majority pQTLs are also identified as eQTLs[36], although due to lower mapping power for
334  pQTLs not all eQTLs are identified as pQTLs. However, since (currently), proteins represent the

335  dominant category of druggable targets, we assessed the extent to which the association of a clinical
336  outcome with an exposure converges at both the level of transcript and protein abundance. To this
337  end, we used an external dataset consisting of high-throughput mass spectrometry-based protein

338  expression data from bulk-tissue post-mortem brain samples[36]. Across all 118 genes inferred to

339  have a causal association with an outcome in our study, only 51 had a measurable protein expression
340  value in this dataset. Of these 51, 26 had one or more cis-pQTL SNP at FDR <5% and of these, 13
341  (50%) of our MR-inferred causal gene-outcome pairings were reproducible when considering proteins
342  instrumented by either the same genetic variant or by a variant in high LD (r>>0.8) (Fig.4a). These
343  results are consistent with the interpretation that for the human brain, causal effects estimated using
344 single-cell sSnRNA-seq are a valid proxy of a protein’s effect on disease risk. Genes inferred to have a
345  causal association with a clinical outcome at both the level of transcript and protein abundance, and
346  with orthogonal published evidence to support a causal interpretation of the gene-trait association

347  include (trait:gene): PD:GPNMBJ[29], AD:ADAM10[37] and AD.RABEP1[38].
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348

349  Causal genes identified by single cell-type MR identify drug repurposing opportunities.

350  The identification of a causal gene in a specific cell-type is the first step in the development of a new
351  therapy targeting disease risk. To facilitate this, we summarise the cell-type and therapeutic
352  directionality required for risk mitigation for each gene inferred by MR to have a causal association
353  with a brain outcome in Supplementary Fig.6. In contrast to novel drug development, repurposing an
354  existing drug can offer a more rapid route to clinical translation when there is reliable data supporting
355  the target-disease pairing and where the directionality of effect between drug and exposure and between
356  exposure and clinical outcome are known. To explore potential repurposing opportunities, we therefore
357 investigated existing gene-drug interactions using the Drug-gene Interaction Database (DGIdb)[39] and
358  the Sear Tool for Interactions of Chemicals (STITCH)[40]. Of the 118 genes inferred to have a causal
359  association with an outcome, 26 (22.0%) had a reported chemical interaction in DGIdb, and 58 (49.2%)
360 in STITCH (Fig. 4a). These chemical interactions offer a potential tool compound that can be used to
361  experimentally explore the consequences of a drug intervention, or as a starting point for more refined
362  chemistry. Of the drug-gene interactions with a potential for more immediate repurposing, the acid
363  sensing ion channel-1 (encoded by ASIC1) was identified by MR as a significant (MR P=6.2x10*) risk
364  factor for SCZ associated with increased expression in oligodendrocytes, suggesting that drugs with a
365  negative effect on ASIC1 currents could act to exert a mitigating effect on schizophrenia.
366  Experimentally, over-expression of ASIC1 has been shown to enhance context fear conditioning in mice
367  and ASIC-like currents have been documented in oligodendrocytes[41]. The licensed potassium sparing
368  diuretic amiloride is a known non-selective blocker of the acid-sensing ion channel-1, currently
369  undergoing evaluation as a prophylactic treatment for migraine (https:/clinicaltrials.gov), and
370  highlighted here as a potential novel, non-neuroleptic intervention in schizophrenia.

371

372

373  DISCUSSION

374 In this study we mapped genetic effects on gene expression in eight cell-types of the non-diseased
375  control human brain. Single cell-type cis-eQTLs were integrated with GWAS loci in a Mendelian
376  randomisation framework to infer causal genes and to identify the cell-types in which they act. In total,
377  we identified 118 genes with MR evidence for a causal association between variation in their levels of
378  expression and susceptibility to one or more brain outcomes. These genes include novel gene-outcome
379  associations as well as genes previously proposed as candidate drug targets for brain disease. For genes
380  with an appropriate measurable pQTL value, we observed a high level of reproducibility of targets
381 identified using cell-type specific gene expression data consistent with causal effects estimated by
382  snRNA-seq being a valid proxy of a protein’s effect on risk.

383
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384  An important scientific advance of this work is our application of Mendelian randomisation to human
385  brain tissue samples ascertained exclusively from subjects with no history of brain disease. Previous
386  research exploring bi-directional effects between gene expression and disease have suggested that
387  differentially expressed genes are more prone to reveal disease-induced gene expression changes rather
388  than disease-causing ones[9]. Expression QTLs measured in diseased brain samples might therefore be
389  unrepresentative of gene regulatory relationships in the pre-morbid brain. In contrast, the use of non-
390  diseased control human brain samples in a principled Mendelian randomisation framework offers an
391  approach, and a new biological resource, to uncover cell-type specific causal risk factors that are
392  unconfounded by reverse causation and therefore modifiable drug targets for disease prevention.

393

394  Our sample size for cis-eQTL detection in single cell-types was limited by the substantial difficulties
395 in ascertaining control brain tissue of appropriate quality given the predominant focus of brain banks
396  on brain diseases such as PD, AD, MS etc. Despite these limitations, we report regulatory variants for
397 10,288 genes across eight cell-types. Future studies that include a larger number of control subjects and
398 anincrease in the number of sequenced cells per sample will provide a more granular picture of the role
399  cellular sub-types play in disease aetiology and are likely to lead to additional causal inferences missed
400 by the current study due to sample size limitations. Given the importance of effective target discovery
401  for reducing the costly attrition of drug development in Phase II/1l1 trials, this argues for a concerted
402  global effort to collect control brains in addition to those from people who have died with a neurological
403  or psychiatric diagnosis.

404

405 In addition to inferring causality, the present study provides information on the directionality of the
406  association between a gene exposure and a phenotype in a specific cell-type. Knowledge of the direction
407  of effect of an exposure on a health outcome is critical to guiding the directionality of the therapeutic
408 intervention, whilst knowledge of the cell-types via which genes act can aid the design of more precise
409  pre-clinical experiments that may translate better to the human condition. As well as informing
410  therapeutic strategy, knowledge of the directionality of an exposure’s effect on an outcome from MR
411 can also inform new biological insights into the causal relationships between phenotypes when
412  undertaken in a phenome-wide manner as described here. Identification of such shared risk factors
413  across disease categories present opportunities for shared preventative strategies, with a convergence
414  of diverse stakeholders in therapy development hastening drug development. Additionally, as our
415  knowledge of the relationship between existing drug targets and brain disease expands, so too will our
416  ability to predict long-term adverse health effects from candidate therapeutic interventions.

417

418 In conclusion, we report a generalizable framework for the selection of genetic instruments and
419  principled conduct of single-cell Mendelian randomisation regardless of starting tissue. The present

420  study highlights novel mechanistic connections between genes, cell-types and phenotypes, prioritises
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421 candidate drug targets in their cellular context and establishes a new resource for the interpretation of
422  GWAS-risk alleles in human brain disease and behaviour.

423

424
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442
443 METHODS
444  Samples

445  Snap-frozen human brain tissue samples from 60 subjects were obtained from the brain tissue banks
446  with full ethical approvals and appropriate material transfer agreements. We complied with all relevant
447  statutory and ethical regulations approved by the Imperial College research ethics committee regarding
448  the use of human post-mortem tissue samples. At the individual brain banks, post-mortem, fresh tissue
449  samples were snap-frozen in liquid nitrogen vapour for 20 minutes before being stored in -80C freezer
450  long term. Immunohistochemistry was undertaken on all samples using adjacent brain tissue (same
451  block) and assessed for beta-amyloid, Tau, TDP43, alpha synuclein and p62. All H&E stains were
452  performed by hand. In the selection of control samples we excluded all samples with a pre-mortem
453 history of neurological or psychiatric disease (at any time) and in all cases, there was no evidence of
454 neurodegenerative or other significant disease processes on neuropathological examination.

455

456  Nuclei isolation and single-nuclei RNA-seq
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457  Single-nuclei RNA-seq (snRNA-seq) data was generated at Imperial College on prefrontal cortex and
458  hippocampus samples ascertained from 60 unique subjects. These brain tissue samples were ascertained
459  from the Imperial College, Oxford University, Edinburgh University or Amsterdam Medical Centre
460  brain tissue banks. Nuclei were isolated as previously described[42] except for a slightly extended
461  douncing during the tissue lysis step (see our previous publication for detailed protocol PMID:
462  34309761)[43]. Additionally, we included sSnRNA-seq data on temporal and prefrontal cortex control
463  samples from a further unrelated 87 unique subjects from Roche. Details of the Roche control samples
464  and nuclei isolation are as previously described [12]. In all cases, SnRNA-seq data was generated using
465  the 10X Single Cell Next GEM Chip targeting a minimum 5,000 nuclei per sample and libraries
466  prepared using the Chromium Single Cell 3’ Library and Gel Bead v3 kit according to manufacturer’s
467  instructions. cDNA libraries were sequenced using the Illumina NovaSeq 6000 system at a minimum
468  sequencing depth of 30,000 paired-end reads per nucleus.

469

470  snRNA-Seq data mapping

471  The raw sequencing reads in the FASTQ files were used to align to the human GRCh38 genome and
472  quantified gene counts as UMIs using Cell Ranger count (version 5.0.1). For snRNA-Seq reads, we
473  counted reads mapping to introns as well as exons by --include-introns option in Cell Ranger (version
474  5.0.1). As shown in the earlier studies, this results in a greater number of genes detected per nucleus, as
475  well as better cell type classification[44], [45].To build the latest reference genome for read mapping,
476  we followed the recommended building steps by 10X Genomics. We then modified sequence headers
477 in the Ensembl FASTA file, removed version suffix in the Gencode GTF file, defined string patterns
478  for GTF tags, constructed the gene IDs, and filtered the GTF file based on the gene IDs. Finally, the
479  reference genome was created using Cell Ranger mkref (version 5.0.1) with default settings[46].

480

481  Genotyping

482  Donor DNA from samples processed at Imperial College was genotyped using the Illumina Infinium
483  Global Screening Array v2.0. The tool PLINK (version 1.90b6.18) was applied to call genotypes using
484  the default settings[47]. Roche control subject were genotyped as previously described[12]. These
485  genotyped data were harmonized to the hg38 reference genome using bcftools (version 1.9) with the
486  fixref plugin (-m flip option)[48], [49]. Prior to imputation, no missing data threshold or minor allele
487  frequency (MAF) or Hardy-Weinberg equilibrium (HWE) filters were applied. Imputation was done on
488  the Michigan Imputation Server (version 1.6.3) using Haplotype Reference Consortium (version r1.1)
489  reference panel of European population[50], [51] with a pre-phasing using Eagle (version 2.4)[52] and
490  imputation using Minimac4[50]. Only bi-allelic SNPs where imputation score (r?) was >0.8 were kept.
491  Imperial and Roche samples were merged as previously described [12]. Genetic variants common to

492  imputed genotypes and whole genome sequencing were identified and merged by bcftools (version
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493  1.9)[48]. Post-merging, SNPs with MAF <5% and P <10° in HWE were excluded. Finally, we
494 performed kinship analysis and excluded all samples with a kinship coefficient above 0.2. Following
495  these steps, we retained ~5.17 million high-quality SNPs in 128 individuals for further analysis.

496

497  Demultiplexing

498  Sample pools were demultiplexed based on their genotype using the Demuxlet algorithm with the
499  default settings, as previously described[53], [54]. The variable SNPs between the pooled individuals
500  were used to determine which cell belongs to which individual and to identify doublets. Droplets called
501  doublet by Demuxlet were removed from downstream analyses.

502

503 QC and processing of snRNA-Seq data

504  The quality of snRNA-Seq datasets was assessed using the following metrics: number of total reads per
505 library, sequencing saturation (fraction of reads originating from an already-observed UMI as reported
506 by Cell Ranger count), estimated total recovered nuclei, mean of reads per nucleus, number of genes
507  detected, median UMI Counts per nucleus and reads mapped to genome. While the quality of each cell
508  was assessed using filtered feature-barcode matrices (generated using Cell Ranger workflow and
509  EmptyDrops implemented in Cell Ranger, version 5.0.1)[12]. For each sample pool, the data was saved
510 as Seurat object by CreateSeuratObject function in Seurat (version 4.0.1)[55]. Nuclei exhibiting
511  mitochondrial read proportions higher than 5% and genes expressed in less than 5 nuclei were removed
512  from further analysis. Dimensionality reduction and clustering were conducted based on Seurat's built-
513 in functions using standard workflow. After clustering, we predicted potential doublets using
514  DoubletFinder (version 2.0.3) based on the filtered matrix, with the assuming doublet formation
515 rateequal to 0.07 as previously illustrated[43], [56]. Potential doublets identified by DoubletFinder
516  were removed. To integrate the samples, we employed the recommended integration method within
517  Seurat using reciprocal PCA (“RPCA”) with default settings. Samples with less than 500 cells were
518  excluded from downstream analysis. Cell-types were assigned using canonical cell-type markers.
519  Specifically, Excitatory Neurons: SLC17A7, SATB2, VIP, LAMP5, Inhibitory Neurons: GAD1, GAD2,
520 SOX6, PVALB; Astrocytes: AQP4, GJB6, FGFR3; Microglia: CTSS, C1QB, CSF1R; Oligodendrocyte
521  Precursor Cells (OPC): CSPG4, PDGFRA, VCAN; Oligodendrocytes: MAG, MOG; Pericytes: PTGDS,
522  ATP1A2, ITIH5, FLT1, DCN, PDGFRB; Endothelial Cells: ACTA2, KCNJ78, ZEBL.

523

524  eQTL mapping

525  Raw count matrices were extracted for each cell type, after which counts for all cells were summed per
526 individual, to obtain a single aggregated count value per cell-type per individual. For an individual to
527  be included in the pseudobulk dataset, a minimum of 20 cells in that cell type was required. The
528  aggregated count matrices were then normalised with the cpm function (counts per million) from the

529 edgeR package[57] and log-transformed. Mapping of cis-eQTLs was performed using
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530  MatrixEQTL[11] with a cis window of 2Mb (1Mb from each end of the gene) and default parameters.
531  For each cell type, the input consisted of the pseudobulk matrix, genotype matrix, SNP locations file,
532  gene locations file and a covariate matrix including individual-level information for age, sex, post-
533  mortem index (PMI) and sample source. In addition, for each filtered expression matrix, we included
534  the first 40 principal components (PCs) of gene expression as fixed covariates to increase power to
535  detect signals, as previously suggested [12]. We included all genes expressed in at least 3 individuals
536  per cell-type, and genetic variants with at least two individuals in 2 out of the 3 genotypic categories.
537  False Discovery Rate (FDR) using the Benjamini—-Hochberg method for both discovery sets was applied
538 [13].

539

540  Validation of eQTLs using a bulk dataset

541  We obtained the full cis-eQTL associations from a recent bulk eQTL dataset (“Metabrain” dataset)
542  performed on 6,518 individuals[14]. To calculate the percentage overlap, we first identified cis-eQTLs
543  (SNP-gene pairs) with a study-wide FDR <5% FDR in each cell-type. This identified a total 39,840
544  SNP-gene pairs for astrocytes, 4,339 for endothelial cells, 140,053 for excitatory neurons, 40,463 for
545  inhibitory neurons, 20,180 for microglia, 66,114 for oligodendrocytes, 21,418 for oligodendrocyte
546  precursor cells and 7,884 for pericytes. The percentage overlap with the external cis-eQTL dataset in
547  Metabrain was then calculated based on the total number of SNP-gene pairs also in Metabrain at FDR
548  <5%, divided by the aforementioned numbers.

549

550  Colocalisation analysis

551  We employed COLOC[16] to perform colocalisation analysis. Briefly, cis-eQTLs were generated for
552  each cell type as described above. To prepare the summary statistics for colocalisation analysis, we first
553  performed a liftover from hg19 to hg38 using the liftOver function from the rtracklayer package[58]
554  and the latest liftover chain file from UCSC (hg19ToHg38.over.chain). For each GWAS trait analysed,
555  the regions were selected based on variants with the most significant genome-wide association in a non-
556  overlapping fashion (meaning each selected region could have more than one genome-wide significant
557  SNP). The summary statistics were scanned using the Id_clump function of the ieugwasr package[59]
558  and only the top genetic variant in a window of 1Mb was kept (500kb on either side of the variant). The
559  regions were then re-populated with the full list of variants situated within the 1Mb window of each
560  region to then be used in the colocalisation analysis. To perform single-cell eQTL colocalisation, the
561  full cis-eQTL associations for each cell type were intersected with variants in each GWAS trait on a
562  per-region basis. For each region, COLOC was then used iteratively in a binary fashion between the
563  GWAS and all cell-type/gene combinations using default priors. Each cell type/gene combination was
564  considered as a single trait (such as astrocyte/APIP), i.e., the total number of colocalisation tests
565  performed would be equal to the number of genes multiplied by the number of cell-types. For example,

566 in a region with 20 genes, a total of 160 when considering 8 cell types. This was repeated for every
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567  region of genome-wide significance in each GWAS. For downstream analysis, traits with a regional
568  posterior probability (PP.H4) above 0.5 were retained. For quantitative GWAS traits, t ype="quant”
569  was specified in the COLOC input. For case/control GWAS traits, type="cc” was specified in the
570  COLOC input. For all cis-eQTL traits, t ype="quant” was specified in the COLOC input.

571

572  Mendelian randomisation

573  Mendelian randomisation was performed using the MendelianRandomisation R package[23]. For each
574  GWAS, regions around colocalised traits (cell/gene combination) with a posterior probability (PP.H4)
575  of more than 0.5 were carried forward to MR. The genetic variants were then filtered to satisfy the
576 mendelian randomisation assumptions. First, to ensure the robustness of our instrumental variables, we
577  only kept variants in that region with an association with the gene at FDR below 5%. Following this,
578  we excluded all variants in high LD (r? >0.01) with the lead variant(s). In the large majority of cases
579  (>90%), only one instrumental variable (I\VV) was retained. Then, we applied Mendelian randomisation
580  using the mr_allmethods function specifiying “ivw” (with a fixed-effects meta-analysis for more than
581  one IV and the ratio method when there was only one 1V) as the method to be used, using the cell-type
582  specific effect sizes for the gene in question as the exposure and the GWAS effect size as the outcome.
583

584  Intersection with protein-QTL dataset

585  To assess whether our MR hits had actionable potential evidenced by protein expression, we sought to
586 identify overlaps with published pQTL datasets. We obtained two published pQTL summary stats from
587 a study recently conducted using samples from the dorsolateral prefrontal cortex[36]. The first
588  contained all individuals in the study, which included samples with Alzheimer's Disease, while the latter
589  only contained samples obtained from individuals with no cognitive impairment (NCI). To perform our
590  overlap, we first intersected exact SNP-gene pairs obtained from our MR results (instrumental
591 variable(s)-gene). In addition, we extended this overlap for SNPs in high LD (r? >0.8) with the
592  instrumental variable(s). This was assessed using the LDproxy function from the LDLinkR package[60],
593  specifying “CEU” as the population to be used.

594

595 Intersection with epigenetic data

506  To assess the cis-regulatory evidence of our MR hits, we intersected our hits with data from a recently
597  published article on cell-type specific epigenetic regulation assessed through Histone ChlIP-seq and
5908 PLAC-seq[22]. We obtained the processed and filtered bed files from the author’s GitHub page

599  (https://github.com/nottalexi/brain-cell-type-peak-files). For our IV intersection, we first performed a

600 liftover from hg38 to h19, as the peak files were on this build, before the intersection. For the gene
601  promoter intersection, we first obtained gene promoters from the

602  TxDb.Hsapiens.UCSC.hg19.knownGene package using the promoters function from the
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603  GenomicRanges package[61], specifying a maximum range of 5,001 bp (to ensure overlap with the
604  PLAC-seq fragments, which are 5kb long).

605

606 Intersection with drug targets

607  We investigated whether our MR targets were potentially actionable through therapeutic targeting based
608 on available protein interaction databases. To do so, we downloaded the following interaction
609  databases; DGIdb[39] STITCH[40], and OpenTargets[24]. For STITCH, we downloaded the
610  protein/chemical links dataset and kept all connections with a “combined score” of 0.9 and above
611  (which is equivalent to the highest confidence of connections according to the STITCH guidelines),
612  obtained from http:/stitch.embl.de/. We converted protein ENSEMBL IDs using the biomaRt

613  package[62]. For DGIdb, we downloaded the latest set of interactions (“interactions.tsv”, “genes.tsv”

614  and “drugs.tsv” of February 2022), obtained from https://www.dgidb.org/downloads. For OpenTargets,

615  all data was downloaded from https://platform.opentargets.org/downloads. We performed two sets of

616  analysis. First, we tested whether the MR genes in question were also putative targets for the trait
617  analysed in OpenTargets. To do so, we downloaded the “Associations — direct (overall score)” dataset,
618  which contains scores for putatively important risk genes. For our analysis, we intersected all genes
619  with a score above 0. Secondly, we tested whether our targets had been previously used for therapeutic
620  design. Hence, we downloaded the “Target” and “Drug” datasets to assess whether this was the case
621  and matched these to our MR genes.

622

623  Processing of GWAS summary statistics

624  We standardised all GWAS studies to contain the following headers; “chr” for chromosome position,
625  “pos” for a base-pair position, “rsid” for SNP id, “pval” for association p-value, “b” for the effect size,
626  “se” for the standard error, “A1” for the effect allele, “A2” for the other allele and “MAF” for the minor
627  allele frequency. In cases where the effect size was missing but the Z-score was available, we calculated
628  the effect size (beta regression coefficient) and standard error using a previously described formula[63].
629  When the Odds Ratio (OR) was included but not the effect size, we did a natural logarithmic conversion
630 to obtain the effect size.

631

632  Data availability

633  The datasets generated during and/or analysed during the current study will be made available at the
634  point of publication deposited within the European Genome-phenome Archive.

635

636  Figures

637  Most figure panels were generated programmatically in R using ggplot2[64] with the exception of Fig.
638  2b-c which were generated using gassocplot2 (https://github.com/jrs95/gassocplot?). Fig. 1a was

639  created with BioRender.com (full licence). Figure 3b-c was created using the custom tracks on the
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UCSC genome browser (https://genome.ucsc.edu/) as previously illustrated[22].
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Fig. 1. Study overview, cell types and single cell-type cis-eQTLs. a. Single cell-type cis-eQTLs were identified
in control brain tissue samples and integrated with GWAS loci in a Mendelian randomisation framework to infer
the causal relationships between genes, cell-types and phenotypes. b. The eight major cell-types of the human brain
(excitatory neurons, oligodendrocytes, astrocytes, inhibitory neurons, microglia, oligodendrocyte precursor cells,
endothelial cells and pericytes) were identified from snRNA-seq using canonical cell-type markers. ¢. Number of
eGenes unique (top line) and total (bottom line) for each cell-type at <5% FDR. d. Number of cis-eQTLs eSNPs
unique (top line) and total (bottom line) for each cell-type at <5% FDR. e. An example of a cell-type-specific cis-
eQTL (SNP-gene pair) in excitatory neurons. f. An example of cell-type specific cis-eQTL (SNP-gene pair) in
microglia.
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Fig. 2. Colocalization analysis. a. Heatmap of posterior probability (PP.H4>0.5) for a shared genetic signal for a
SNP-gene (i.e., cis-eQTL) pair (row) in a particular cell-type (column) and a genome-wide significant GWAS locus
for Alzheimer’s disease (AD). b. Example of a microglial-specific colocalization between PICALM cis-eQTLs and
AD. Each blue circle represents a SNP with the significance of its association (y-axis) to PICALM expression (top)
or AD (bottom). SNP rs10792832 (purple diamond) is the lead colocalised SNP across the two associations. c.
SNP-PICALM associations in the other cell-types across the same chromosomal region illustrating the lack of
colocalization in other cell-types. d. Summary of the number of colocalizations (PP.H4>0.5) for each phenotype
(SD: sleep duration; SCZ: schizophrenia; SCV: subcortical volume caudate; PD: Parkinson’s disease; NEUR:
neuroticism; MS: multiple sclerosis; MDD: major depressive disorder; IQ: intelligence; INS: insomnia; ICV:
intracranial volume; HV: hippocampal volume; FTD: Frontotemporal Dementia; EPI. GEN: genetic generalized
epilepsy; BD: bipolar disorder; ADHD: attention deficit hyperactivity disorder, AD: Alzheimer disease). Each cell-
type/gene pair with PP.H4>0.5 is reported - for example, LRRC37A has two colocalisations with AD, one in
Excitatory Neurons and one in Inhibitory Neurons and therefore counts for two colocalisations. e. Bubble plot
demonstrating the number of occurrences of a particular cell-type in a colocalization for the indicated phenotype.
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Fig. 3. Instrumental variable gene-regulatory landscape. a. Cell-type specific gene-regulatory features for the
instrumental variables (IVs) in microglia, oligodendrocytes (ODC) and neurons. Each row represents a gene-
outcome pair in the indicated cell-type. For neurons, each gene-outcome pair is suffixed with the type of neuron
the IV was colocalized in (InN for inhibitory, EXN for excitatory). The first three columns represent (from left to
right) the intersection (solid square) between the IV for the indicated gene and an epigenetic feature in that cell-
type annotated by ATAC-seq, H3K4me3 ChlP-seq or H3K27ac ChIP-seq. The “PLAC” column indicates whether
the IV for the gene in question physically connects to the promoter region of the gene of interest via a PLAC-seq
loop in the indicated cell-type. The SNP2TFBS column indicates whether the IV is predicted to disrupt
transcription factor binding using the SNP2TFBS database. The H3K4me3.gene column indicates whether the
promoter of the gene in question fell within a H3K4me3 ChIP-seq peak in the indicated cell-type. b. Genomic map

indicating the location of the PICALM instrumental SNP (IV) rs10792832 overlapping a microglial-specific

enhancer and connected to the PICALM promoter (red line) via a PLAC-seq loop. ¢. Genomic map indicating the
location of the OFGOD2 1V rs1716183 overlapping a neuronal enhancer and connected to the OGFOD2 promoter
(red line) via a PLAC-seq loop.
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Fig. 4. Overview of Mendelian Randomisation results. a. Overview of gene-outcome pairs (here labelled with the
clinical outcome first to allow causal inferences to be grouped by phenotype) with a significant Mendelian
randomisation (MR) association in the indicated cell-type/s. "MR beta" refers to whether the beta coefficients for the
IV SNP-gene and SNP-phenotype associations are positively or negatively correlated. A positive correlation can be
interpreted as increased gene expression leads to increased outcome risk, whilst a negative correlation can be
interpreted as increased gene expression leads to decreased disease risk (or vice versa). Grey squares (MS:HLA-A)
indicate that the cell-types involved had opposite MR beta directions. Column "pQTL" — solid square indicates that
the gene-outcome association at a transcriptional level was reproducible when considering proteins instrumented by
the same genetic variant or by a variant in high LD (r>>0.8) (grey square indicates that the gene was not assessed in
the pQTL dataset due to lack of data). Columns "STITCH" and "DGIdb" — solid square indicates that the protein
product for the indicated gene interacts with a known chemical entity from the relevant database. Column "Open
Targets" — solid square indicates that the gene-outcome pair have evidence for a target-indication association from the
Open Targets Consortium. b. Histogram showing the number of genes with an MR-inferred causal association for the
indicated phenotype. Genes with an inferred causal association to two or more phenotypes are shown by a solid
vertical line connecting the phenotypes. ADHD: attention deficit hyperactivity disorder; EPI: epilepsy; MDD: major
depressive disorder; FTD: frontotemporal dementia; HV: hippocampal volume; INS: insomnia; BD: bipolar disease;
SCV: subcortical volume (caudate); ICV: intracranial volume; MS: multiple sclerosis; SD: sleep duration; AD:
Alzheimer’s disease; NEUR: neuroticism trait; PD: Parkinson’s disease; 1Q: full-scale intelligence quotient; SCZ:
schizophrenia.
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Supplementary Fig. 1. Overview of snRNA-seq on 128 individuals. Following integration, single-cell and sample
quality control, we obtained a total of high-quality 577,115 single-cells across 128 individuals. a. Number of cells per
cell-type sequenced across all individuals used in the study. b. Total number of cells discovered across the 8 major brain
cell-types. ¢. Distribution of cell-type clusters, annotated by sample source (and/or study). d. Distribution of cell-type
clusters, annotated by brain region (CU; Cortex (unspecified), HIP; Hippocampus, PFC; Prefrontal cortex, TC; Temporal
cortex). e. Distribution of cell-type clusters, annotated by sex.
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Supplementary Fig. 2. Replication of cis-eQTLs in the Metabrain cohort. Our cis-
eQTL discovery was validated in a large bulk RNA brain dataset (Metabrain) comprising of
6,518 individuals. Each point represents the percentage (y-axis) of FDR-significant (<5%) cis-
eQTLs in a specific cell-type in our cohort that was also of FDR significance
(FDR<5%) in the metabrain cohort. The x-axis represents the total number of SNP-gene
pairs replicated.
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Supplementary Fig. 3. Colocalisation results. Each heatmap shows the posterior probability (PP.H4>0.5) for a shared
genetic signal for a SNP-gene (i.e., cis-eQTL) pair (row) in a particular cell-type (column) and a genome-wide significant
GWAS locus within a given trait (SD: sleep duration; SCZ: schizophrenia; SCV: subcortical volume caudate; PD:
Parkinson’s disease; NEUR: neuroticism; MS: multiple sclerosis; MDD: major depressive disorder; IQ: intelligence; INS:
insomnia; ICV: intracranial volume; HV: hippocampal volume; FTD: Frontotemporal Dementia; EPI.GEN: genetic
generalized epilepsy; BD: bipolar disorder; ADHD: attention deficit hyperactivity disorder, AD: Alzheimer disease).
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Supplementary Fig. 4. F-statistic distributions of cis-eQTLs. Mendelian Randomization necessitates

selection of robust instrumental variables (£-statistic > 10, denoted by the dotted line). In each plot (per cell-
type), the x-axis represents the F-statistic for a given association, and the y-axis represents the significance of the
association for a given F-statistic value (p-value (P) in blue, FDR in red).
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Supplementary Fig. 5. Inferred causal directionality and cell-type specificity. a. Cell-type/gene combinations
overlapping only between schizophrenia (SCZ) and intelligence quotient (IQ). The y-axis represents the MR effect size
(beta regression coefficient) for a given cell-type/gene pair in 1Q. The x-axis represents the MR effect size for that same
cell-type/gene pair in SCZ. For example, cell-type/gene pairs in the lower right quadrant (OPC-KMT?2E, Pericytes-
BTN3A2, Microglia-BTN3A2 and OPC-BTN3A?2) indicate a positive MR beta regression coefficient for SCZ but
negative for IQ (i.e., increased gene expression for these genes is associated with increased risk of SCZ and reduced 1Q).
b. Cell-type/gene combinations shared only between SCZ and neuroticism (NEUR). The cell-type/gene pairs in the upper
right quadrant (Astrocytes-FAM120A0S, Inhibitory-FAM120A0S, ODC-FAM120A0S, Excitatory- PCCB) indicate a
positive MR beta regression coefficient for both SCZ and neuroticism (i.e., increased gene expression for these genes is
associated with increased risk of both SCZ and neuroticism). ¢. Overview of cell-type proportions per trait for all
significant MR results for that trait.
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Supplementary Fig. 6. Directionality for all MR hits in across all traits (denoted in each plot title). The y-axis denotes
the gene for the MR hit, and the x-axis denotes the MR beta regression coefficient, indicated by the dot (coloured by
cell-type). The dotted line is centered on zero, meaning hits on the right represent a positive beta (increased expression
relates to increased risk, requiring target inactivation) whereas on the left represent a negative beta (increased expression
relates to decreased risk, requiring target activation). ADHD: attention deficit hyperactivity disorder; EPI: epilepsy;
MDD: major depressive disorder; FTD: frontotemporal dementia; HV: hippocampal volume; INS: insomnia; BD:
bipolar disease; SCV: subcortical volume (caudate); ICV: intracranial volume; MS: multiple sclerosis; SD: sleep
duration; AD: Alzheimer’s disease; NEUR: neuroticism trait; PD: Parkinson’s disease; 1Q: full-scale intelligence
quotient; SCZ: schizophrenia.
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