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ABSTRACT 

 

Objective: Parkinson’s disease (PD) is the second most common neurodegenerative disorder 

symptom, and is closely related to the dysfunction of the basal ganglia-thalamocortical network. 

Deep Brain Stimulation (DBS) is an effective treatment for suppressing PD motor symptoms; 

however, the underlying mechanisms of DBS remain elusive. A recent study demonstrated that 

different nuclei of the basal ganglia and thalamus respond differently to various frequencies of 

DBS. Despite the capability of existing models in interpreting experimental data qualitatively, 

there are very few unified computational models that quantitatively capture the dynamics of the 

neuronal activity of varying stimulated nuclei—including subthalamic nucleus (STN), substantia 

nigra pars reticulate (SNr) and ventralis intermedius (Vim)—across different DBS frequencies. 

Materials and Methods: Both synthetic and experimental data were utilized in model fits; the 

synthetic data were the simulations from an established spiking neuron model, and the 

experimental data were the single-unit recordings during DBS (microstimulation). Based on these 

data, we developed a novel mathematical model to represent the firing rate of neurons receiving 

DBS, including neurons in STN, SNr and Vim—across different DBS frequencies. In our model, 

the DBS pulses are filtered through a synapse model and a nonlinear transfer function to formulate 

the firing rate variability. To consistently fit the model in varying frequencies of DBS, we 

developed a novel parameter optimization method based on the concatenated data from all DBS 

frequencies.  

Results: Our model accurately reproduces the firing rates observed and calculated from both 

synthetic and experimental data. The optimal model parameters are consistent across different 
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DBS frequencies, and this consistency conforms to the relatively static synaptic structures in short 

durations of DBS.  

Conclusion: Our model can detect the firing rate dynamics in response to DBS, and potentially 

implemented in navigating the DBS parameter space and improving DBS clinical effects. 

 

Keywords: Deep Brain Stimulation, basal ganglia, thalamus, rate model, short-term synaptic 

plasticity 

 

INTRODUCTION 

 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder 1, and is 

characterized by motor symptoms like stooped posture, shuffling gait (festination), akinesia, 

rigidity, and rest tremor 2. Development of these symptoms is thought to be mostly related to the 

pathological changes in the basal ganglia-thalamocortical network (BGTCN) [3]. Deep brain 

stimulation (DBS) has become a standard therapy for movement disorders, including PD 3, 

essential tremor 4, and dystonia 5. DBS has also been investigated for therapeutic effects of 

psychiatric and cognitive disorders, including obsessive-compulsive disorder 6, Alzheimer’s 

disease 7 and epilepsy 8. Despite the established benefits of DBS, its therapeutic mechanism on 

neuronal activity is not yet well understood 9,10. Moreover, efforts on optimizing DBS parameters 

(e.g., stimulation frequency, pulse width) to achieve the maximal clinical benefit have largely 

relied on trial-and-error strategies in which neurologists observe the immediate effects of DBS 

9,11,12. Boutet et al. 9 have recently developed a machine learning algorithm to infer the optimal 

DBS parameters based on the physiological consequences of the related brain circuits recorded 
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with functional magnetic resonance imaging (fMRI). However, the detailed physiological effects 

of the critical DBS parameters, e.g. the stimulation frequency, remained elusive. Synaptic 

depression, which can stem from synaptic and axonal failure 13, was suggested as the main 

biophysical explanation to the intermittent firing patterns of stimulated nuclei (specifically for 

STN) in high frequency DBS 14. Recently, Milosevic et al. 10 demonstrated that different 

frequencies of DBS modulate the firing rate of the stimulated nuclei differently. During low 

frequency DBS, the ratio of excitatory and inhibitory pre-synaptic inputs influences the firing rate 

of stimulated neurons. In high frequency DBS, stimulated neurons are mostly suppressed due to 

synaptic depression 10. Nevertheless, detailed quantified dynamics underpinning the experimental 

firing rate of the stimulated neurons in response to different DBS frequencies were left unknown. 

Additionally, there is no systematic or automatic method to optimize the model parameters across 

different DBS frequencies.  

The firing rate of a population of neurons—which might be modulated by DBS—is a 

representative feature of the underlying neuronal dynamics, and has been widely used in the 

modeling of the sensory cortex 15,16, the visual cortex 17, Parkinson’s Disease 18 and cultured 

network 19. Despite the significance of firing rate, the existing models on DBS-induced neuronal 

dynamics are often based on the variability in the membrane potential, or oscillations observed in 

the local field potentials (LFP) 10,11,20. The spiking neuron models aim to replicate the neuronal 

dynamics of single neurons 10,13, while abstract models were developed to track neuronal activities 

recorded by macro electrodes, e.g., LFP 11,21. Milosevic et al. 10 utilized a model for short-term 

synaptic plasticity, together with a leaky integrate-and-fire (LIF) model, to track firing patterns of 

stimulated nuclei qualitatively. Yousif et al. 11,21 developed macroscopic Wilson-Cowan 22 mean-

field models on the neuronal network underlying neurological movement disorders, including PD 
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and essential tremor (ET); they implemented the models to approximate the pathological LFP 

oscillations, including the tremor-range oscillations of ET and the Parkinsonian beta band 

oscillations. Despite the recognized benefits of these models, they cannot track changes in the 

instantaneous firing rate quantitatively; in particular, these models cannot capture the dynamics 

of the firing rate of the stimulated nuclei across various DBS frequencies. In this work, we 

developed a firing rate model to reproduce the instantaneous firing rate of stimulated neurons 

during various frequencies of DBS. 

 The developed rate model was utilized to mimic instantaneous firing rates of neurons 

receiving DBS in three basal ganglia and thalamic nuclei, namely, STN, SNr and Vim. We 

explored the firing rate dynamics in response to different ratios of excitatory and inhibitory 

presynaptic inputs, during various frequencies of DBS (5 to 200Hz). Importantly, we incorporated 

the dynamics of short-term synaptic plasticity (STP) 23 in modeling the presynaptic inputs. STP 

reflects immediately reversible effects of the synapses upon the removal of external stimuli 10, and 

is essentially important in various brain functions, e.g., motor control 10, speech recognition 23 and 

working memory 24. The integration of STP in the computational modelling can greatly enrich the 

model’s information processing capability and neuronal behavior predictability 23. Moreover, we 

developed a robust optimization method based on the concatenated signal across different DBS 

frequencies. For fitting our rate model to DBS data, our “concatenated-frequencies” optimization 

method is different from the commonly used methods that consider only a single DBS frequency 

21, or adjust the model parameters manually 11,14. With our concatenated-frequencies optimization 

method, we obtained a single set of optimal model parameters—which is consistent across varying 

DBS frequencies—for each targeted nuclei. Such consistency in model parameters conforms to 

the short duration of our DBS recordings (≤ 10s for all DBS frequencies) on each nuclei; the 
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synaptic anatomical structure mostly remains static in response to short (seconds to minutes) 

external stimuli 25. Furthermore, our concatenated-frequencies optimization method is 

significantly more accurate than the method incorporating only a single DBS frequency (see 

Results). Our developed rate model and the parameter optimization method could accurately 

reproduce the instantaneous firing rates of various basal ganglia and thalamic neurons receiving 

different frequencies of DBS. Our model fits well for both synthetic and experimental DBS data. 

Our work can provide a framework to study the instantaneous effects of DBS parameters on 

neuronal activity, and may help navigating the DBS parameter space and improve DBS clinical 

effects. 

 

MATERIALS AND METHODS  

 

      We implemented the same experimental single-unit recordings as published in Milosevic et al. 

10. Thus, the commitment to ethics policies have already been validated 10. All experiments 

conformed to the guidelines set by the Tri-Council Policy on Ethical Conduct for Research 

Involving Humans and were approved by the University Health Network Research Ethics Board 

10. Moreover, each patient provided written informed consent prior to taking part in the studies 10. 

 

Method Overview 

We developed a rate model to describe the instantaneous firing rate of a population of local 

neurons receiving DBS. We utilized a sigmoid function to transfer the impact of DBS-induced 

short-term synaptic plasticity 10 to the variability of the firing rate that is expressed by a first order 

ordinary differential equation (ODE). Specifically, DBS pulses were filtered by the Tsodyks & 
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Markram (TM) model of short-term synaptic plasticity 26, and fed to the firing rate differential 

equation through a sigmoid nonlinear function. In order to estimate the parameters for the 

nonlinear function and the differential equation, we constructed peristimulus time histograms 

(PSTH) of recorded spikes (for both synthetic and experimental data) as a reference for modeling 

instantaneous firing rates. The synthetic data are the simulations from the LIF model in Milosevic 

et al. 10 (see Supplementary Method A), and the experimental data are the single-unit recordings 

from 4 basal ganglia and thalamic nuclei—STN, SNr, Vim and Rt—across specific sets of DBS 

frequencies in 5~200Hz.  Unlike the limitation in experimental data, we can simulate the synthetic 

data with arbitrary DBS frequencies. Thus, the purpose of fitting our rate model to the synthetic 

data is to validate the model generalizability, and to fully compare with other modeling methods. 

The model fits to synthetic and experimental data are also compared to investigate the 

improvements of the experimental data fit. 

In both synthetic and experimental data, we inferred the optimal model parameters for each 

nuclei by concatenating spikes across different DBS frequencies. Using such concatenated-

frequencies optimization method 27,28, we obtained the optimal rate model parameters by 

minimizing the sum of squared error (SSE) between the model output and the reference PSTH 

across all DBS frequencies. 

 

The Synthetic Data 

The synthetic data is the firing rate computed with PSTH on 20 spike trains simulated from the 

LIF model (see Supplementary Method A). By superimposing these spike trains from the LIF 

neurons, we compute the PSTH firing rate (P(t)) as follows:  

                                                      𝑃 𝑡 = %
&'

𝑛),+&
),%                                                                         (1) 
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where M is the number of neurons, L (ms) is the length of the PSTH kernel, 𝑛),+ is the number of 

spikes generated by the i./ neuron in the PSTH kernel at time t, i.e., the interval [𝑡 − '
2
𝑚𝑠, 𝑡 +

'
2
𝑚𝑠]. The PSTH firing rate is updated with a time resolution dt = 0.1ms. The appropriate PSTH 

kernel length L should depend on individual data 29,30. We use L = 20ms for data from Vim, Rt, 

and SNr; L = 50ms is used for data from STN. 

We simulate LIF neurons with different DBS frequencies, including {5, 10, 20, 30, 50, 100, 

and 200Hz}. For each DBS frequency of each BGTCN nuclei, the simulation time is 1,000ms, 

with time step of dt = 0.1ms; the simulation stops at 1,000ms because the firing rate always reaches 

the steady state before 500ms. The maximal DBS frequency considered in this work for Vim, Rt, 

STN, and SNr are 200Hz, 200Hz, 100Hz, and 50Hz, respectively. Experimental data has 

demonstrated that the firing rate of STN and SNr for DBS frequencies (using 100µA and 

symmetric 0.3ms biphasic pulses) larger than these max frequencies is close to zero 10. 

 

The Experimental Data 

The experimental single-unit recordings and data protocols are from Milosevic et al. 10. 

Microelectrodes were used to deliver DBS and record data, using 100µA and symmetric 0.3ms 

biphasic pulses (150us cathodal followed by 150us anodal) 10. The recordings in STN, SNr and Rt 

were from patients with Parkinson’s disease, and Vim recordings were obtained from patients with 

essential tremor 10. For Vim and Rt, we recorded {5, 10, 20, 30, 50, 100, and 200Hz} DBS data of 

length {10, 5, 3, 2, 1, 5, and 2s}, respectively. The recording length of the 5Hz DBS data was 5 

seconds for STN, and 10 seconds for SNr; we recorded {10, 20, 30, and 50Hz} DBS data of length 

{5, 3, 2, and 1s} for both STN and SNr. The recording length of the 100Hz DBS data for STN is 

3 seconds. 
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For each DBS frequency on each nuclei, we recorded 5 to 8 spike trains from different patients. 

The time stamps of the DBS pulses have small deviations (~2%) because of the imperfect internal 

clock of the stimulator 31; in the MATLAB script, we adjust the time stamps so that the DBS pulses 

are delivered with the accurate frequencies. Using the PSTH formulated in (1), we computed the 

reference firing rate from these spike trains. Thus, the PSTH firing rate is essentially the average 

firing rate across spike trains recorded from different patients, and we observed that the data from 

different individual patients are consistent 10.  

 

DBS-induced Input into the Rate Model 

      The input to our rate model is the DBS-induced post-synaptic current (𝐼89:), and we formulate 

𝐼89: with the Tsodyks & Markram (TM) model on short-term synaptic plasticity (STP) 26. Our 

formulation of the DBS input is more physiological than the common approach that model DBS 

effects as rectangular pulses 32,11,21. 

For the neurons receiving DBS, we assume that each neuron receives inputs from 500 synapses 

10, and the ratio of the number of excitatory synapses to inhibitory synapses is different for varying 

BGTCN nuclei, and is shown in Supplementary Table 1. The excitatory-inhibitory synaptic ratio 

has high variability in STN neurons 10,33. The synaptic inputs to a minority of STN neurons are 

dominantly excitatory, whereas to a majority of STN neurons are dominantly inhibitory 33. In this 

work, we analyze data recorded from STN neurons receiving evident inhibitory inputs (inhibitory 

synapses occupies 70%). 

Each DBS pulse activates all pre-synaptic inputs simultaneously, and generates DBS-evoked 

spikes on the presynaptic terminals. The DBS-evoked spikes are filtered by the TM model, 
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generating the post-synaptic current, 𝐼89:, that is obtained by a linear combination of presynaptic 

excitatory (𝐼;<=) and inhibitory (𝐼):>) currents as follows: 

                            	𝐼89: 𝑡 = 	𝑤;<=	𝐼;<= 𝑡 −	𝑤):>𝐼):>(𝑡)                                     (2)   

where 𝑤;<=  and 𝑤):>  denote the synaptic weights of the modeled excitatory and inhibitory 

currents, respectively; 𝑤;<= and 𝑤):> vary for different BGTCN nuclei 10. The values for these 

weights are summarized in Supplementary Table 2. 

      𝐼;<=  (respectively, 𝐼):> ) is the total post-synaptic current from all excitatory (respectively, 

inhibitory) synapses. Each synapse (excitatory or inhibitory) is modeled by the TM model for 

short-term synaptic plasticity.  

                                        CD
C+
= − D

EF
+ 𝑈 1 − 𝑢J 𝛿 𝑡 − 𝑡8L       (3)  

                                        CM
C+
= 	 %JM

EN
− 𝑢O𝑟J𝛿 𝑡 − 𝑡8L                                                  (4) 

                                       	CQ
C+
= − Q

ER
+ 𝐴𝑢O𝑟J𝛿(𝑡 − 𝑡8L)                              (5) 

where 𝑢 indicates the utilization probability, i.e., the probability of releasing neurotransmitters in 

synaptic cleft due to calcium ion flux in the presynaptic terminal. The variable 𝑟 indicates the 

fraction of available resources after the neurotransmitter depletion caused by neuronal spikes. We 

denote as 𝑢J and 𝑟J the corresponding variables just before the arrival of the spike; similarly, 𝑢O 

and 𝑟O refer to the moment just after the spike. Upon the arrival of each presynaptic spike 𝑡8L, 𝑢 

increases by 𝑈 1 − 𝑢J .	If there is no presynaptic activity, 𝑢 exponentially decays to zero; this 

decay rate is the facilitation time constant, 𝜏V. As well, the vesicle depletion process—due to the 

release of neurotransmitters—was modeled by (4) where 𝑟 denotes the fraction of resources that 

remains available after the neurotransmitter depletion. In contrast to the increase of 𝑢 upon the 

arrival of each presynaptic spike, 𝑟 drops and then recovers to its steady state value of 1 (this 
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recovery rate is given by the depression time constant 𝜏W). The competition between the depression 

(𝜏W) and facilitation (𝜏V) time constants determines the dynamics of the synapse. In the TM model, 

𝑈,	𝜏V, and 𝜏W are three parameters that determine the types of the synapse, namely, facilitation, 

pseudo-linear, and depression. The values of the TM model parameters differ across excitatory 

and inhibitory synapses, and are summarized in Supplementary Tables 3(A) & 4(A). In (5), 𝐼 

and 𝜏8	indicate the post-synaptic current and its time constant, respectively. For an excitatory 

(respectively, inhibitory) synapse,  𝜏8 is denoted as 𝜏;<= (respectively, 𝜏):>); these time constants 

are shown in Supplementary Table 2. The absolute response amplitude A = 1 for all situations.  

We obtain 𝐼;<=  (respectively, 𝐼):>) by adding the post-synaptic currents from all excitatory 

(respectively, inhibitory) synapses. Each BGTCN nuclei has different proportions of excitatory 

and inhibitory synapses. Within excitatory (respectively, inhibitory) synapses, the ratio of the 3 

types of synapses, namely, facilitation, pseudo-linear, and depression, are also different among 

BGTCN nuclei (Supplementary Tables 3(B) & 4(B)). 

 

The Rate Model and the Parameter Optimization Method 

We used a sigmoid transfer function to link the post-synaptic current (𝐼89: as defined in (2)) to 

the rate model on the firing rate of the stimulated nuclei. The rate model underlying a neuronal 

ensemble receiving DBS is stated as follows: 

            𝜏 CM
C+
= − 𝑟 − 𝑟X + 𝐹 𝐼89: ,				where	𝐹 𝐼89: = =

%O^_`	[J8∗ QRbcJd ]
                                   (6) 

where 𝑟(𝑡) is the neuronal firing rate at time 𝑡  and 𝜏 is the membrane time constant. For the 

sigmoid transfer function 𝐹(𝐼89:), 𝑐 is the scaling parameter, 𝑠 is the shape parameter, and 𝑘 is the 

shift parameter. 𝑟X is the baseline firing rate of the modelled nuclei. We confine 𝑟X in biological 

constraints, based on experimental and synthetic data from both human and mammalian recordings. 
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For Vim, 𝑟X ∈ [10, 50] Hz 10,34; for Rt, 𝑟X ∈ [3, 40] Hz 18,10; for SNr, 𝑟X ∈ [40, 120] Hz 18,10; for 

STN, 𝑟X ∈ [5, 100] Hz 10,35. The initial value of 𝑟(𝑡) (denoted as 𝑟):)) is computed by simulating a 

10s spike train from the LIF model in Milosevic et al. 10 with the DBS – OFF condition for the 

modelled nuclei. 𝑟):) is computed as: “total number of spikes”/10s; 𝑟):)(Vim) = 39.3Hz, 𝑟):)(Rt) = 

5.0Hz, 𝑟):)(SNr) = 57.4Hz, and 𝑟):)(STN) = 27.6Hz. The rate model fit results for Vim, STN and 

SNr are shown in Results; Rt-DBS is a less common choice in clinics to obtain therapeutic effects 

10, and the corresponding fit result is shown in Supplementary Figure 2. 

We then inferred the parameter set 𝛷 = {𝜏, 𝑟X , 𝑐, 𝑠, 𝑘} by minimizing the sum of squared 

errors (SSE) between the model output, 𝑟(𝑡), and the reference firing rate, 𝑃 𝑡  (the PSTH firing 

rate defined in (1)). We fit the parameters separately for different basal ganglia and thalamus nuclei. 

For each nuclei, the optimal parameter set 𝛷iL+  is the same across all DBS frequencies; such 

consistency in model parameters conforms to the relatively static synaptic anatomical structure in 

response to short (seconds to minutes) external stimuli 25 (in our case, ≤ 10s for all DBS data). 

In the case of both experimental and synthetic data, for the fitting process in the simulation, the 

sampling resolution is dt = 0.1ms. We ran independent simulations for each DBS frequency and 

the simulated signal is denoted as 𝑟jk 𝛷, 𝑡 = {	𝑟jk 𝛷, 𝑡% , ... , 𝑟jk 𝛷, 𝑡m }, which corresponds to 

a certain DBS frequency (𝑓𝑞) and parameter set 𝛷; N is the total number of time points. Similarly, 

the reference PSTH is denoted as 𝑃jk 𝑡 = 	 {	𝑃jk 𝑡% , ... , 𝑃jk 𝑡m }. Given the rate model and 

reference PSTH, the SSE function is: 

                𝑆𝑆𝐸jk 𝛷 =∥ 𝒓jk 𝛷, 𝒕 − 𝑷jk 𝒕 ∥2= [rjk	(𝛷	,	𝑡)) − Pjk(	𝑡))]2m
),%                         (7) 

The objective function 𝐽(𝛷)  for the parameter optimization is formulated with the 

concatenated-frequencies method, which is the total SSE across all DBS frequencies: 

                                       𝐽 𝛷 = 	𝑆𝑆𝐸+i+yz 𝛷 = 𝑆𝑆𝐸jk 𝛷jk                                                     (8) 
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𝐽 𝛷  is minimized with the MATLAB custom function “fminsearch”, which uses the Nelder – 

Mead simplex method 27,28 with the 5 variables in the parameter set 𝛷. Starting from an initial 

point 𝛷{ = (𝜏{, 𝑟X,{, 𝑐{, 𝑠{, 𝑘{), the Nelder – Mead algorithm forms a simplex consisting of 6 

vertices around 𝛷{. Then the simplex is modified based on 5 operations: reflection, expansion, 

inside contraction, outside contraction and shrink. In the modified simplex, the algorithm searches 

for the vertex 𝛷% that minimizes the objective function 𝐽 𝛷  and the next iteration starts from 𝛷%. 

Compared with the traditional gradient-descent type optimization methods, the advantages of the 

the simplex method are (i) computation load is reduced because the derivative of the objective 

function is eliminated; and (ii) the searching direction is not restricted to the local gradient, and 

the algorithm can quickly approach the minimum in the first few iterations 28. We implement the 

simplex method in “fminsearch” 28 to find the optimal parameter set 𝛷iL+ = {𝜏iL+, 𝑟X,iL+, 𝑐iL+, 

𝑠iL+, 𝑘iL+} that minimizes the objective function 𝐽 𝛷  defined in (8). 

 

RESULTS 

 

The Rate Model on Neuronal Dynamics across Multiple DBS Frequencies 

      We developed a firing rate model that can capture the dynamics of the neuronal activity of 

varying BGTCN nuclei across different DBS frequencies. Based on single-unit recordings of the 

neuron receiving DBS in a specific nuclei, we computed the reference firing rate with PSTH. 

Recordings across DBS frequencies were concatenated, and the optimal parameters were obtained 

by minimizing the distance to the reference PSTH firing rate (by Equation (8)) across all DBS 

frequencies using the Nelder – Mead simplex method 27,28. Figure 1 illustrates our rate model and 

the parameter optimization method. 
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Figure 1. Schematic representation of the rate model (SNr - DBS as the example) 

A local group of substantia nigra pars reticulata (SNr) neurons are stimulated by Deep Brain Stimulation (DBS) 10. 

The 3 synapse types “F”, “P”, and “D” represent “facilitation”, “pseudo-linear”, and “depression”, respectively. SNr 

neurons mostly receive the inhibitory gamma-aminobutyric acid (GABA) transmitter. For data from each DBS 

frequency, we computed the reference firing rate with peristimulus time histogram (PSTH) from the raster plot. Using 

the rate model, we performed independent simulations for each DBS frequency with the same parameter set ∅, and 

the objective function 𝐽(∅) is defined as the total sum of squared error (SSE). We then minimized 𝐽(∅) with the Nelder 

– Mead simplex method, and obtained the optimal parameter set ∅iL+. We simulated the rate model with ∅iL+ and 

obtain the optimal total fit, which minimizes the SSE from the concatenated PSTH firing rates. Finally, we separate 

the total fit and get the optimal fit for each DBS frequency. 

 

Results — Synthetic Data  

We compared firing rates of the rate model simulation with the synthetic data across different 

DBS frequencies in three different nuclei of the basal ganglia and thalamus, namely, Vim, STN, 

and SNr. For each nuclei, the synthetic data is the firing rate computed by PSTH with 20 simulated 

LIF model neurons (see Materials and Methods). Figure 2 shows the model fitted firing rate (red) 

on top of the reference PSTH firing rate (black) for Vim, STN and SNr across different DBS 
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frequencies. We included a sample spike train of the LIF model neuron to better visualize the 

relationship between the PSTH and generated spikes.  

 

Figure 2. Rate model result for the synthetic data 

The rate model is fitted to the synthetic data from the nuclei receiving Deep Brain Stimulation (DBS) in three basal 

ganglia and thalamic nuclei: ventralis intermedius (Vim), subthalamic nucleus (STN), and substantia nigra pars 

reticulate (SNr). The synthetic data are the simulated membrane potentials from the leaky integrate-and-fire (LIF) 

model in Milosevic et al. 10. We compare the firing rate computed by peristimulus time histogram (PSTH) from the 

synthetic data, firing rate predicted by our rate model and the spike timings from one spike train. DBS stimuli with 

varying pulse frequencies (5~200Hz) are delivered to the related basal ganglia and thalamic nuclei. The data from 

stimulated nuclei receiving lower frequency DBS (5~50Hz) are recorded in all three nuclei, whereas higher frequency 

DBS (≥100Hz) is delivered to Vim and STN. 

 

As can be seen in Figure 2, the estimated instantaneous firing rate reliably matched the PSTHs 

generated by ensemble of spiking neurons for all four different nuclei and across all DBS 
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frequencies. In addition, both the steady-state and transient part of the neurons’ firing rate were 

replicated using the rate model. 

It should be noted that the conventional approach for modeling DBS-evoked neural response—

regardless the optimization technique or the modeling framework—were based on data recorded 

from a single DBS frequency 21, ignoring frequency-dependent behavior of DBS neural responses. 

High frequency DBS was often used to fit the model 21; however, therapeutic effective DBS 

frequencies are often undetermined and depend on individual situations 36,37,10. In some certain 

case studies, the effective DBS frequencies are ~130Hz for Vim 38, ≥100Hz for STN 39 and below 

70Hz for SNr 40. Unlike other studies, we developed a “concatenated-frequencies method” in 

optimizing model parameters, by incorporating the contribution of various DBS frequencies in our 

rate model and estimated model parameters that are consistent across those frequencies. The 

concatenated-frequencies method includes all the previously mentioned DBS frequencies, i.e., {5, 

10, 20, 30, 50, 100, and 200Hz} (for STN and SNr, the maximum is 100Hz and 50Hz, respectively). 

To compare the concatenated-frequencies method with the parameter estimation based on only a 

single DBS frequency (“single-frequency method”), we fit our model using a single DBS 

frequency for Vim-DBS = 100Hz, STN-DBS = 100Hz and SNr-DBS = 20Hz; the comparison 

result is shown in Figure 3. For both optimization methods, we used the estimated model 

parameters to replicate the firing rate for 24 observed and unobserved DBS frequencies in 0~200 

Hz, including {2.5, 5, 7.5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 

170, 180, 190, and 200Hz}  (for STN and SNr, the maximum is 100Hz and 50Hz, respectively). 

We used the normalized mean squared error (NMSE) to measure the error between the estimated 

firing rate and the reference firing rate computed by PSTH. Figure 3(A) shows a sample of 

estimated firing rates using single-frequency and concatenated-frequencies methods for Vim. For 
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the parameter estimation based on a single DBS frequency, model parameters were obtained from 

Vim-DBS = 100Hz and the estimated firing rate was plotted for DBS of 5Hz & 100Hz. The 

estimated firing rate based on a single DBS frequency worked well for that frequency but failed 

for the other (5Hz). However, the estimated firing rate based on multiple DBS frequencies reliably 

reproduced both the transient- and steady-states of the instantaneous firing rate. For the parameter 

estimation based on a single DBS frequency, we observed (data not shown) that the estimated 

firing rate could only replicate the original instantaneous firing rates for DBS frequencies of 100Hz 

and 50Hz; it produced large deviations for smaller DBS frequencies. 

 

 

Figure 3. Comparison of two optimization methods in the rate model  

“Single-frequency” and “concatenated-frequencies” optimization methods are compared for three basal ganglia and 

thalamic nuclei: ventralis intermedius (Vim), subthalamic nucleus (STN), and substantia nigra pars reticulate (SNr). 

(A) The two plots compare the prediction results of the two methods on Vim with varying DBS frequencies. We 

compare the firing rate computed by peristimulus time histogram (PSTH), and the firing rate predicted by our rate 
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model with each of the two optimization methods. PSTH firing rate is computed based on the synthetic data, i.e., the 

simulated spike trains of the spiking model in Milosevic et al. 10. For Vim, data from 100Hz DBS is used to train 

model parameters in the single-frequency method. (B) Normalized mean squared error (NMSE) of the model 

prediction of multiple DBS frequencies (see text for details) is calculated based on the reference PSTH firing rate. The 

NMSE results are presented with the box-whisker plot; “concatenated” and “single” mean concatenated-frequencies 

method and single-frequency method, respectively. “𝜇” represents the mean value, “SD” represents the standard 

deviation, and “n” represents the number of samples. ANOVA represents “the one-way analysis of variance test”.  

 

The NMSE calculated using single and multiple DBS frequencies were shown in Figure 3(B) 

for all nuclei. The NMSE’s calculated by multiple DBS frequencies were significantly smaller 

(with regard to mean and standard deviation) than those obtained by a single DBS frequency. For 

the parameter estimation based on multiple DBS frequencies, the mean NMSE for Vim, STN and 

SNr is 4.6%, 11.8% and 9.8%, respectively; the standard deviation of NMSE for Vim, STN and 

SNr is 4.5%, 11.9% and 9.5%, respectively. The small NMSE compared to that based on single 

DBS frequency indicates that our proposed rate model with the concatenated-frequencies 

optimization method could much better reproduce the PSTH firing rate (ANOVA, p < 0.05 for all 

nuclei; p = 8.45 × 10-3 for Vim, p = 4.66 × 10-4 for STN, p = 0.0286 for SNr). It is worth 

mentioning that the low NMSE of the parameter estimation based on multiple (observed) 

frequencies was obtained across all observed and unobserved frequencies, confirming the 

generalizability of the proposed model and the consistency of estimated parameters. We anticipate 

that such a reliable predictive model can be used in clinical applications and it outperforms trial-

and-error DBS frequency selection processes 9,12. 

 

Results — Experimental Data  
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To test the potential of the rate model to reproduce instantaneous firing rate of an ensemble of 

neurons recorded from human brain during DBS, we fit the rate model to experimental data 

obtained from single-unit recordings 10 on three different nuclei of basal ganglia and thalamus: 

Vim, STN, and SNr. To calculate the firing rate of an ensemble of neurons for each nuclei, spikes 

recorded from 5 to 8 different individuals were combined, and the instantaneous firing rate was 

then obtained by calculating the PSTH. Similar to the results for the synthetic data, we estimated 

model parameters that fit the rate model output to the PSTH. Figure 4 shows the results of the fit 

model output with the PSTH for different nuclei and different DBS frequencies.   

 

 

 

Figure 4. Rate model result for the experimental data 

The rate model is fitted to the experimental data (single-unit recordings) from the nuclei receiving Deep Brain 

Stimulation (DBS) in three basal ganglia and thalamic nuclei: ventralis intermedius (Vim), subthalamic nucleus (STN), 

and substantia nigra pars reticulate (SNr). We compare the firing rate computed by peristimulus time histogram (PSTH) 
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from the experimental data and the firing rate predicted by our rate model. The experimental data are from single-unit 

DBS recordings in the specific basal ganglia and thalamic nuclei. The recording length for 50 Hz DBS data is ~1s. 

The data from stimulated nuclei receiving lower frequency DBS (5~50Hz) are recorded in all 3 nuclei, whereas higher 

frequency DBS (≥100Hz) is delivered to Vim and STN. 

 

Firing rates estimated by the rate model track both transient- (mostly apparent for DBS 

frequencies ≥30 Hz) and steady-state components of PSTHs of all nuclei. The NMSE computed 

based on the concatenated signal from all DBS frequencies for Vim, STN and SNr is 14.1%, 18.1% 

and 9.5%, respectively. However, the rate model could not reproduce the transient response of the 

Vim for DBS frequencies of 100 Hz and 200 Hz as accurately as it could for other nuclei. The rate 

model generated a shorter transient response compared to that observed in experimental recordings. 

This mismatch between transient responses might be originated from network effects and is further 

addressed in Discussions.  

 

Physiological Implications of the Model Parameters 

The optimal rate model parameters, 𝛷iL+ = {𝜏iL+, 𝑟X,iL+, 𝑐iL+, 𝑠iL+, 𝑘iL+}, of each nuclei, for 

both synthetic and experimental data, are listed in Table 1: 

Table 1: Rate model optimal parameters (3 significant figures)  

source site 𝜏iL+ 𝑟X,iL+ 𝑐iL+ 𝑠iL+ 𝑘iL+ 

synthetic data 

Vim 10.4 10.0 433 4.40 × 10-3 616 

STN 36.0 27.5 -51.5 -0.470 -14.0 

SNr 11.1 77.1 -96.6 -0.273 -17.8 

Rt 11.9 2.53 392 3.20 × 10-2 112 
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experimental 

data 

 

Vim 45.1 13.4 687 5.81 × 10-2 548 

STN 24.7 27.6 -34.4 -0.425 -5.42 

SNr 11.5 95.3 -88.6 -0.236 -21.5 

Rt 32.2 3.00 578 32.9 53.3 

       

      The optimal model parameters are in distinct ranges for different nuclei of the basal ganglia 

and thalamus. For the same nuclei, the optimal parameters of synthetic and experimental data are 

generally similar but differences exist. The combination of these abstract parameters forms the 

firing rate response to the input synaptic current 𝐼89: through the sigmoid function as defined in 

(6): 𝜏 CM
C+
= − 𝑟 − 𝑟X + 𝐹 𝐼89: , 𝐹 𝐼89: = =

%O^_`	[J8∗ QRbcJd ]
 . To better assess the effect of these 

parameters on the rate model, we plotted the model estimated firing rate (𝑟) versus 𝐼89: in Figure 

5 to detect the firing rate dynamics of each nuclei across varying DBS frequencies. In other words, 

this figure describes the f-I curve for each nuclei receiving DBS. The f-I curve was created by the 

estimated parameters in Table 1 for both synthetic and experimental data. The firing rate and 𝐼89: 

were ordered according to their percentiles (from 0 to 100), and the percentiles were matched at 

each point in the curve to qualitatively represent the relationship between the firing rate and input 

current 41,42. A similar curve was created in Lim et al. 43 for the rate network model to calculate 

the current-rate transfer function. In our proposed model, see (6), the sigmoid transfer function 

𝐹 𝐼89:  models the firing rate variability caused by the input synaptic current ( 𝐼89: ); see 

Supplementary Figure 1 for 𝐹 𝐼89:  in each nuclei across different DBS frequencies. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2022. ; https://doi.org/10.1101/2022.06.28.497834doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497834
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

 

Figure 5.  Rate model estimated firing rate in response to the input synaptic current 

The rate model is fitted to both synthetic and experimental data; the synthetic data are from the spiking model in 

Milosevic et al. 10, and the experimental data are single-unit recordings. We present the model fits across all Deep 

Brain Stimulation (DBS) frequencies, in each of the three basal ganglia and thalamic nuclei: ventralis intermedius 

(Vim), subthalamic nucleus (STN), and substantia nigra pars reticulate (SNr). We plot the relationship between the 

rate model estimated firing rate and the simulated input synaptic current 𝐼89:  to the nuclei receiving DBS. Each 

point in a curve represents that the corresponding firing rate and the input synaptic current have the same percentile 

(in the range 0 to 100).  

  

In Figure 5, the model estimated firing rate monotonically increases as the input synaptic 

current becomes more excitatory or less inhibitory, in both synthetic and experimental data. Note 

that the minus sign of 𝐼89: indicates inhibition and the positive sign denotes excitation. For SNr 

and STN with predominantly inhibitory inputs, the f-I curve is monotonically decreasing, across 

all DBS frequencies, indicating that neurons in this nuclei receive more inhibitory synaptic inputs 

when DBS is ON. When DBS is active, the firing rate quickly drops from its baseline value given 

negative net current received by SNr neurons. The slope of this fast decay is facilitated in higher 

frequencies of DBS. Unlike SNr neurons that receive more inhibitory synaptic inputs given DBS 

pulses, the firing rate of Vim neurons increase monotonically with respect to total synaptic current 

whose net effect is positive when DBS is ON. The slope of the f-I curve increases for higher 
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frequencies of DBS in Vim neurons. One can note that in experimental and synthetic data, for each 

nuclei, the calculated f-I curves (Figure 5) are generally similar, although some differences exist. 

The differences between the f-I curves in experimental and synthetic data (Figure 5) are mostly 

not from the rate model fits in this work, but mainly lie in the mismatch between the experimental 

data and simulation of the LIF model in Milosevic et al. 10. 

 

DISCUSSIONS 

 

 In this paper, we developed a firing rate model on three BGTCN nuclei receiving DBS: Vim, 

STN and SNr. With our rate model, we have accurately reproduced the firing rate dynamics 

obtained from both synthetic and experimental data. Compared with the spiking network models 

44,20, the firing rate model is much faster and more robust in implementations, because of the fewer 

number of equations and lower dimensionality in model parameters 45. We also developed a 

concatenated-frequencies optimization method that systematically computes the optimal model 

parameters that are fitted across different DBS frequencies. Compared with the manual parameter 

tuning in Milosevic et al. 10, the optimization method in this work can systematically and 

automatically compute the model parameters, so it is conveniently implementable in practice. 

Since the same set of model parameters can be implemented across varying DBS frequencies, we 

can potentially use the model to target the optimal DBS frequency with the maximal clinical 

benefits, without extensive additional experimental data recordings constrained by the patients’ 

consents 9. 

 

Other Methods for Modeling Firing Rate 
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Various firing rate models have been developed to infer physiological mechanisms underlying 

neuronal networks 16,43,46. Lim et al. 43 developed a rate model on the recurrent network of the 

monkey visual cortex, and investigated the learning rules that differentiate novel and familiar 

external visual stimuli; the result is in good consistency with experimental data. Murphy et al. 46 

developed a rate model on a general recurrent network consisting of interacting excitatory and 

inhibitory nuclei, and investigated the role of inhibitory nuclei in balancing the firing rates of 

strongly coupled excitatory neurons receiving external stimuli. 

In modeling neuronal firing rate, one critical challenge is to appropriately transfer the 

postsynaptic input current to the corresponding firing rate variability. In our model, we used a 

sigmoid function to transfer the impact of filtered (by synaptic model) DBS to a firing rate model 

ODE (Equation (6)). Our approach for computing firing rate with the sigmoid-ODE is significantly 

more accurate than the commonly implemented simplified approach, which obtains firing rate 

directly from the average membrane potential through a transfer function 47184849 (see 

Supplementary Figure 3). In Supplementary Method B, we constructed a typical method on 

computing firing rate directly from the average membrane potential, and this alternative method 

was compared with our model. 

 

 

 

Further Discussions on Model Physiological Implications 

For Vim neurons, the large excitatory 𝐼89:  (Figure 5) is caused by the high proportion of 

glutamate pre-synapses 10, which induces fast changes of the firing rates. In general, the firing rate 

increases as we stimulate with higher DBS frequency. The modeled firing rate from either 
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experimental or synthetic data (Figure 5) has similar patterns (across different DBS frequencies) 

based on the amplitude of 𝐼89:: (i) When 𝐼89: is small, the firing rate increases quickly as the 

excitatory input increases; (ii) When 𝐼89:  is large, the firing rate slowly increases and finally 

saturates as 𝐼89: increases. This probably indicates that when the input excitatory postsynaptic 

current (𝐼89:) is strong, the increase of firing rate is restricted due to the limited amount of ions to 

support the neuronal firing.  

For SNr (Figure 5), we see that the firing rate is low and close to zero in most of the range of 

𝐼89:, in both experimental and synthetic data across all DBS frequencies. The modeled firing rate 

(Figure 5) has similar patterns (across different DBS frequencies) based on the 𝐼89: amplitude: (i) 

When the inhibition is strong (i.e., large 𝐼89: amplitude), the firing rate is low and mostly close to 

0; (ii) When the inhibition is removed (i.e., 𝐼89: ~ 0), the firing rate returns to the baseline at ~60Hz 

10. The large inhibitory 𝐼89: is consistent with the high proportion (~90%) of gamma-aminobutyric 

acid (GABA) pre-synapses of SNr neurons 10.  

In Supplementary Figure 1, we can see that the sigmoid nonlinearity 𝐹 𝐼89:  in response to 

𝐼89: is generally similar between synthetic and experimental data for each of the three BGTCN 

nuclei (Vim, STN and SNr). For each nuclei, the differences between 𝐹 𝐼89:  in experimental and 

synthetic data (Supplementary Figure 1) are mostly not from the rate model fits in this work, but 

mainly lie in the mismatch between the experimental data and simulation of the LIF model in 

Milosevic et al. 10. For SNr and STN (dominant inhibitory), 𝐹 𝐼89:  is mostly negative with the 

evidently inhibitory 𝐼89: . For Vim, as 𝐼89:  increases, 𝐹 𝐼89:  first increases then plateaus; this 

indicates that the increase of the firing rate is restricted due to the limitation of ions, although the 
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postsynaptic current 𝐼89:  is large 13. Since 𝐼89:  incorporates the STP rules in the synapse, 

𝐹 𝐼89:  partially reflects the firing rate regulation of the neuron beyond the synaptic contacts. 

 

Limitations and Future Work 

Our model represents local groups of neurons, but we did not model the network interactions 

among the connected neuronal groups. For example, the afferent synaptic connections to Vim 

neurons consist of both excitatory and inhibitory effects 11. For a Vim neuron, the excitatory pre-

synapses are mainly from the cortex and the cerebellum 10, and the inhibitory pre-synapses are 

mainly from Rt and the interneurons 50,51. We modelled the local Vim neurons receiving DBS, 

whereas the DBS-induced upsteam / downsteam network effects from other nuclei are not included 

in the model. 

From Figure 4 (experimental data, Vim), we see that the firing rate prediction with our model 

is not very accurate at high DBS frequencies (100Hz and 200Hz). In Vim experimental data at 

high frequency DBS, the initial transient large firing rate response (~400ms) is clearly longer than 

the model simulation (~200ms). We hypothesize that the model firing rate predictions in response 

to DBS at high frequencies can be better explained if we include network effects into the rate 

model in this work.  

From the experimental data fit of STN in Figure 4, we observe that our model misses some 

firing rate oscillations, in particular for the 5Hz & 10Hz DBS data. The oscillation in STN nuclei 

is mainly caused by interaction of inputs from the cortex 52 and the external globus pallidus (GPe) 

53. In particular, the STN-GPe recurrent network contributes much to the oscillatory behaviors in 

STN 53,54. Thus, in order to completely model the firing rate oscillations in STN, the single ODE 

model in this work may not be sufficient. However, although the current model focuses on a single 
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STN population, the fitting error is small; the average NMSE across varying DBS frequencies is 

11.8% for the synthetic data (Figure 3), and 18.1% for the experimental data (Figure 4). We 

anticipate that the fitting accuracy will be improved in our future work by incorporating the 

network effects and oscillations. 

The synaptic input to STN neurons is diverse; some STN neurons receive predominantly 

excitatory whereas other STN neurons receive predominately inhibitory inputs 10,33,55. In this work, 

we only modelled STN nuclei with dominant inhibitory inputs, that have been shown to be 

persistent at high frequency both in rat 55 and human 33. In the future work, we aim to incorporate 

STN neurons that receive predominantly excitatory synapses, that have been shown to be governed 

by different short-term synaptic depression (STD) dynamics than inhibitory inputs to STN 55. 

Furthermore, incorporating both dynamics of inhibitory and excitatory inputs to STN will help us 

predict the firing rate oscillations in the STN and its (sub-)cortical network.  

In clinical applications, the appropriate choice of DBS parameters, in particular the DBS 

frequency, is critical for successful therapeutic results and reducing side effects 9,56. However, the 

process of choosing DBS parameters relies largely on inefficient trial-and-error approaches that 

are based on neurologist experience and clinical observations 9,11,12. Based on the relationship 

between neuronal pathological firing rates and the disease symptoms, our rate model has a 

potential to provide a quantitative method for choosing the optimal DBS frequency that is 

therapeutically effective (i.e., symptom relieving). The determination of the optimal DBS 

parameters depends on the further understanding of the neuronal network mechanisms underlying 

the disease and the therapeutic effects of DBS 11. It is noted that we focused on tuning DBS 

frequencies in this work; although the DBS frequency is the most commonly tuned parameter in 

clinical applications 10,39, the optimization of other DBS parameters (e.g., pulse width and 
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amplitude) may also contribute to a better clinical performance. Even with the limitations in not 

modeling DBS pulse width and amplitude, our model fits the clinically recorded experimental data 

consistently across varying DBS frequencies, for each BGTCN nuclei (STN, SNr, Vim and Rt). 

 

Conclusion 

In this paper, we developed a firing rate model on the basal ganglia and thalamic neurons 

receiving DBS. We developed a concatenated-frequencies optimization method that computes the 

consistent model parameters fitted across different DBS frequencies. Our model can accurately 

reproduce the firing rate obtained from both synthetic data and experimental single-unit recordings. 

Such consistency and accuracy of the model fits demonstrate that our model can be potentially 

implemented in optimizing the DBS frequency, and improving the clinical performances of DBS. 

 

Data Availability Statement 

The human experimental datasets and codes have not been deposited in a public repository due to 

restrictions related to the ethics protocol, but the data and codes are available from the 

corresponding author upon request and completion of a data transfer agreement. 
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SUPPLEMENTARY INFORMATION 

 

Supplementary Method A — The Leaky Integrate-and-Fire (LIF) Spiking Model 

The LIF model in Milosevic et al. 10 was implemented to generate the synthetic data used in 

our analysis. In this LIF model, the total input current (𝐼+i+yz) to a stimulated neuron consists of 

two components: the post-synaptic current (𝐼89:) and background noise (𝐼:i)8;), i.e. 

                                                             𝐼+i+yz = 	 𝐼89: +	𝐼:i)8;                                                                (9)  

𝐼89: is obtained with the Tsodyks & Markram model formulated in Materials and Methods. 𝐼:i)8; 

is modeled by the Ornstein-Uhlenbeck (OU) process with time constant of 5ms 57, and is written 

as:  

                                           	CQc��R�
C+

= − Qc��R� + J�
E

+ a 2
E
	� +
C+

                                 (10) 

where 𝜉 𝑡  is white noise with mean = 0 and variance = 1. 𝜏 = 5ms is the time constant, 𝜇 and a 

indicate the mean and standard deviation of 𝐼:i)8; , respectively. {𝜇 , a}  is different for each 

BGTCN nuclei; the different values are shown in Supplementary Table 5. 

The dynamics of the membrane potential of a stimulated neuron in an LIF model can be written 

as: 

                                               C�(+)
C+

= J � + J�� O�∗Q�����(+)
E�

                (11)       

where 𝐸'= −70mV is the equilibrium potential, R (scaling parameter) = 1, and 𝜏� (membrane time 

constant) = 10ms. 𝐼+i+yz is the total input current (Equations (9) – (10)). Spikes occur when 𝑉 ≥

𝑉+>, for 𝑉+> = −40mV.  The reset voltage is −90mV and the absolute refractory period is 1ms. 
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Supplementary Method B — Alternative Approach to Model Instantaneous Firing Rate  

Different from our rate model, the commonly used simplified approach to obtain firing rate is 

by directly implementing a transfer function from the average membrane potential 47,18,48,49. We 

construct such an alternative method by modeling the average membrane potential (𝑉), and then 

implementing a sigmoid transfer function 47,18.  

We fit the alternative method to the same synthetic data as in Materials and Methods. In the 

synthetic data, we assumed that DBS is delivered to a local group of homogeneous LIF neurons, 

and the average membrane potential (𝑉) of this homogeneous group is modeled with the following 

equations: 

                              C�(+)
C+

= J � + J�� O�∗Q�����(+)
E�

 ; 𝐼+i+yz = 	 𝐼89: +	𝐼:i)8;         (12) 

where 𝐼+i+yz  is the total input current computed with Equations (9) – (10). Compared with the 

model of an individual neuron with Equation (11), the parameters related to Equation (12) are 

determined as follows: (i) The standard deviation (= a) of 𝐼:i)8; in Equation (10) is reduced to �
�{

 

to compute the variability of 𝑉 on ~50 representative stimulated local homogeneous neurons 58; 

(ii) In terms of the amplitude of membrane potential, the average value (𝑉) needs to be consistent 

with each individual LIF neuron. Thus, we tuned the scaling parameter R to be 0.07, so that the 

mean of the 𝑉 simulation with Equation (12) is consistent with the mean membrane potential 

obtained from simulating a single LIF neuron with Equation (11); (iii)  All the remaining 

parameters are the same as the model of an individual neuron with Equation (11). 

After modeling the average membrane potential (𝑉), we obtain the firing rate directly from 𝑉 

through a sigmoid transfer function: 

                                                      𝑟 𝑡 = �
%O^_`	[J8∗ �Jd ]

                                                          (13) 
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In (13), the undetermined parameter set is ∅ = {𝜃, 𝑠, 𝑘} ; we optimize ∅  with the same 

concatenated-frequencies optimization method (see Materials and Methods) as in our rate model. 

This alternative approach to obtain the instantaneous firing rate is compared with our rate model 

using Vim synthetic data (Supplementary Figure 3). 

       In Supplementary Figure 3, we see that the alternative approach has large deviations in 

synthetic data from both low-frequency and high-frequency DBS on Vim. The firing rate 

amplitude is not captured in both 10Hz and 100Hz DBS, and the transient response (initial ~200ms) 

in 100Hz DBS is much longer than the reference (PSTH firing rates). In terms of the NMSE of 24 

varying DBS frequencies {2.5, 5, 7.5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 

140, 150, 160, 170, 180, 190, and 200Hz}, the alternative approach is significantly larger than our 

rate model (ANOVA, p = 8.99 ×  10-9). Thus, the alternative approach is not sufficient for 

reproducing firing rate dynamics; our rate model is the more sophisticated approach, and is 

efficient in detecting the firing rate mechanism consistent across various DBS frequencies. 
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Supplementary Table 1 – Proportions of excitatory and inhibitory synapses 

 number of excitatory synapses number of inhibitory synapses 

STN 150 (30%) 350 (70%) 

SNr 50 (10%) 450 (90%) 

Vim / Rt 450 (90%) 50 (10%) 

 

Supplementary Table 2 – Weights & time constants of excitatory and inhibitory synaptic currents 

in 𝐼89: 

 𝒘𝒆𝒙𝒄 𝒘𝒊𝒏𝒉 𝝉𝒆𝒙𝒄 (ms) 𝝉𝒊𝒏𝒉 (ms) 

STN 1.2 1 3 5 

SNr 6 4 3 10 

Vim 37.5 90 5 8.5 

Rt 4.37 11.4 5 8.5 

 

Supplementary Table 3 – the three types of excitatory synapses 

(A). Parameters 

 
facilitation depression pseudo linear 

τD (ms) τF (ms) U τD (ms) τF (ms) U τD (ms) τF (ms) U 

STN, SNr, 

Vim / Rt 
138 670 0.09 671 17 0.5 329 326 0.29 
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(B). The ratio of excitatory synaptic types 

 facilitation depression pseudo linear 

STN 0.1 0.6 0.3 

SNr 0.3 0.4 0.3 

Vim 0.5 0.3 0.2 

Rt 0.5 0.3 0.2 

 

 

Supplementary Table 4 – the three types of inhibitory synapses 

 

(A). Parameters 

 
facilitation depression pseudo linear 

τD (ms) τF (ms) U τD (ms) τF (ms) U τD (ms) τF (ms) U 

STN, SNr, 

Vim / Rt 
45 376 0.016 706 21 0.25 144 62 0.29 

 

(B). The ratio of inhibitory synaptic types 

 facilitation depression pseudo linear 

STN 0.4 0.3 0.3 

SNr 0.3 0.4 0.3 

Vim 0.3 0.4 0.3 

Rt 0.3 0.4 0.3 
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Supplementary Table 5 – Parameters of the background noise current 𝐼:i)8; (in pA) in the LIF 

model 10 

 mean (𝜇) st. dev. (a) 

STN 32 11 

SNr 55 10 

Vim 30 45 

Rt 12 10 

 

 

 

 

Supplementary Figure 1. Sigmoid nonlinearity in response to the input synaptic current 

The firing rate variability caused by the input synaptic current is modeled by the sigmoid transfer 

function (Equation (6)). We present the transfer functions in both synthetic and experimental data; 

the synthetic data are from the spiking model in Milosevic et al. 10, and the experimental data are 

single-unit recordings. We show the transfer functions across all Deep Brain Stimulation (DBS) 

frequencies, in each of the three basal ganglia and thalamic nuclei: ventralis intermedius (Vim), 

subthalamic nucleus (STN), and substantia nigra pars reticulate (SNr). 
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Supplementary Figure 2. Rate model results for Rt 

The rate model is fitted to both synthetic and experimental data from reticular thalamic nucleus 

(Rt) receiving Deep Brain Stimulation (DBS). The synthetic data are the simulated membrane 

potentials from the leaky integrate-and-fire (LIF) model established in Milosevic et al. 10, and the 

experimental data are the single-unit recordings. We compare the firing rate computed by 

peristimulus time histogram (PSTH), firing rate predicted by our rate model and the spike timings 
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from one spike train (for synthetic data only). DBS stimuli with varying pulse frequencies are 

delivered, and the normalized mean squared error (NMSE) is computed based on the concatenated 

signal from all DBS frequencies. 

 

Supplementary Figure 3. Comparison of our rate model with an alternative approach  

We compare our rate model with the alternative approach (Supplementary Method B) of 

obtaining firing rate, in the synthetic data on ventralis intermedius (Vim). The synthetic data are 

the simulated membrane potentials from the leaky integrate-and-fire (LIF) model in Milosevic et 

al. 10. The alternative approach represents that the firing rate is obtained directly from the average 

membrane potential through a sigmoid transfer function (Supplementary Method B). Normalized 

mean squared error (NMSE) is based on the ground truth firing rate computed by the peristimulus 

time histogram (PSTH) with the synthetic data. NMSE is compared based on data from the same 

set of DBS frequencies as in Figure 3 (also see text), and presented with the box-whisker plot. “µ” 

represents the mean value, “SD” represents the standard deviation, and “n” represents the number 

of samples. ANOVA represents “the one-way analysis of variance test”. 
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