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ABSTRACT

Objective: Parkinson’s disease (PD) is the second most common neurodegenerative disorder
symptom, and is closely related to the dysfunction of the basal ganglia-thalamocortical network.
Deep Brain Stimulation (DBS) is an effective treatment for suppressing PD motor symptoms;
however, the underlying mechanisms of DBS remain elusive. A recent study demonstrated that
different nuclei of the basal ganglia and thalamus respond differently to various frequencies of
DBS. Despite the capability of existing models in interpreting experimental data qualitatively,
there are very few unified computational models that quantitatively capture the dynamics of the
neuronal activity of varying stimulated nuclei—including subthalamic nucleus (STN), substantia
nigra pars reticulate (SNr) and ventralis intermedius (Vim)—across different DBS frequencies.
Materials and Methods: Both synthetic and experimental data were utilized in model fits; the
synthetic data were the simulations from an established spiking neuron model, and the
experimental data were the single-unit recordings during DBS (microstimulation). Based on these
data, we developed a novel mathematical model to represent the firing rate of neurons receiving
DBS, including neurons in STN, SNr and Vim—across different DBS frequencies. In our model,
the DBS pulses are filtered through a synapse model and a nonlinear transfer function to formulate
the firing rate variability. To consistently fit the model in varying frequencies of DBS, we
developed a novel parameter optimization method based on the concatenated data from all DBS
frequencies.

Results: Our model accurately reproduces the firing rates observed and calculated from both

synthetic and experimental data. The optimal model parameters are consistent across different
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DBS frequencies, and this consistency conforms to the relatively static synaptic structures in short
durations of DBS.
Conclusion: Our model can detect the firing rate dynamics in response to DBS, and potentially

implemented in navigating the DBS parameter space and improving DBS clinical effects.

Keywords: Deep Brain Stimulation, basal ganglia, thalamus, rate model, short-term synaptic

plasticity

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disorder ', and is
characterized by motor symptoms like stooped posture, shuffling gait (festination), akinesia,
rigidity, and rest tremor *. Development of these symptoms is thought to be mostly related to the
pathological changes in the basal ganglia-thalamocortical network (BGTCN) [3]. Deep brain
stimulation (DBS) has become a standard therapy for movement disorders, including PD °,
essential tremor *, and dystonia °. DBS has also been investigated for therapeutic effects of
psychiatric and cognitive disorders, including obsessive-compulsive disorder °, Alzheimer’s
disease ' and epilepsy . Despite the established benefits of DBS, its therapeutic mechanism on
neuronal activity is not yet well understood *'°. Moreover, efforts on optimizing DBS parameters
(e.g., stimulation frequency, pulse width) to achieve the maximal clinical benefit have largely
relied on trial-and-error strategies in which neurologists observe the immediate effects of DBS
9,11,12

. Boutet et al. ° have recently developed a machine learning algorithm to infer the optimal

DBS parameters based on the physiological consequences of the related brain circuits recorded
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with functional magnetic resonance imaging (fMRI). However, the detailed physiological effects
of the critical DBS parameters, e.g. the stimulation frequency, remained elusive. Synaptic
depression, which can stem from synaptic and axonal failure ", was suggested as the main
biophysical explanation to the intermittent firing patterns of stimulated nuclei (specifically for
STN) in high frequency DBS '*. Recently, Milosevic et al. '° demonstrated that different
frequencies of DBS modulate the firing rate of the stimulated nuclei differently. During low
frequency DBS, the ratio of excitatory and inhibitory pre-synaptic inputs influences the firing rate
of stimulated neurons. In high frequency DBS, stimulated neurons are mostly suppressed due to
synaptic depression '°. Nevertheless, detailed quantified dynamics underpinning the experimental
firing rate of the stimulated neurons in response to different DBS frequencies were left unknown.
Additionally, there is no systematic or automatic method to optimize the model parameters across
different DBS frequencies.

The firing rate of a population of neurons—which might be modulated by DBS—is a
representative feature of the underlying neuronal dynamics, and has been widely used in the

15,16

modeling of the sensory cortex , the visual cortex ', Parkinson’s Disease ' and cultured

network '°. Despite the significance of firing rate, the existing models on DBS-induced neuronal
dynamics are often based on the variability in the membrane potential, or oscillations observed in
the local field potentials (LFP) '*'"*°_ The spiking neuron models aim to replicate the neuronal

10,13

dynamics of single neurons >, while abstract models were developed to track neuronal activities

1121 ‘Milosevic et al. '° utilized a model for short-term

recorded by macro electrodes, e.g., LFP
synaptic plasticity, together with a leaky integrate-and-fire (LIF) model, to track firing patterns of

stimulated nuclei qualitatively. Yousif et al. ''*' developed macroscopic Wilson-Cowan ** mean-

field models on the neuronal network underlying neurological movement disorders, including PD
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and essential tremor (ET); they implemented the models to approximate the pathological LFP
oscillations, including the tremor-range oscillations of ET and the Parkinsonian beta band
oscillations. Despite the recognized benefits of these models, they cannot track changes in the
instantaneous firing rate quantitatively; in particular, these models cannot capture the dynamics
of the firing rate of the stimulated nuclei across various DBS frequencies. In this work, we
developed a firing rate model to reproduce the instantaneous firing rate of stimulated neurons
during various frequencies of DBS.

The developed rate model was utilized to mimic instantaneous firing rates of neurons
receiving DBS in three basal ganglia and thalamic nuclei, namely, STN, SNr and Vim. We
explored the firing rate dynamics in response to different ratios of excitatory and inhibitory
presynaptic inputs, during various frequencies of DBS (5 to 200Hz). Importantly, we incorporated
the dynamics of short-term synaptic plasticity (STP) ** in modeling the presynaptic inputs. STP
reflects immediately reversible effects of the synapses upon the removal of external stimuli '°, and
is essentially important in various brain functions, e.g., motor control '°, speech recognition ** and
working memory **. The integration of STP in the computational modelling can greatly enrich the
model’s information processing capability and neuronal behavior predictability *. Moreover, we
developed a robust optimization method based on the concatenated signal across different DBS
frequencies. For fitting our rate model to DBS data, our “concatenated-frequencies” optimization
method is different from the commonly used methods that consider only a single DBS frequency

2! or adjust the model parameters manually '

. With our concatenated-frequencies optimization
method, we obtained a single set of optimal model parameters—which is consistent across varying

DBS frequencies—for each targeted nuclei. Such consistency in model parameters conforms to

the short duration of our DBS recordings (< 10s for all DBS frequencies) on each nuclei; the
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synaptic anatomical structure mostly remains static in response to short (seconds to minutes)
external stimuli *°. Furthermore, our concatenated-frequencies optimization method is
significantly more accurate than the method incorporating only a single DBS frequency (see
Results). Our developed rate model and the parameter optimization method could accurately
reproduce the instantaneous firing rates of various basal ganglia and thalamic neurons receiving
different frequencies of DBS. Our model fits well for both synthetic and experimental DBS data.
Our work can provide a framework to study the instantaneous effects of DBS parameters on
neuronal activity, and may help navigating the DBS parameter space and improve DBS clinical

effects.

MATERIALS AND METHODS

We implemented the same experimental single-unit recordings as published in Milosevic et al.
' Thus, the commitment to ethics policies have already been validated '°. All experiments
conformed to the guidelines set by the Tri-Council Policy on Ethical Conduct for Research
Involving Humans and were approved by the University Health Network Research Ethics Board

1% Moreover, each patient provided written informed consent prior to taking part in the studies .

Method Overview

We developed a rate model to describe the instantaneous firing rate of a population of local
neurons receiving DBS. We utilized a sigmoid function to transfer the impact of DBS-induced
short-term synaptic plasticity '° to the variability of the firing rate that is expressed by a first order

ordinary differential equation (ODE). Specifically, DBS pulses were filtered by the Tsodyks &
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Markram (TM) model of short-term synaptic plasticity >, and fed to the firing rate differential
equation through a sigmoid nonlinear function. In order to estimate the parameters for the
nonlinear function and the differential equation, we constructed peristimulus time histograms
(PSTH) of recorded spikes (for both synthetic and experimental data) as a reference for modeling
instantaneous firing rates. The synthetic data are the simulations from the LIF model in Milosevic
et al. ' (see Supplementary Method A), and the experimental data are the single-unit recordings
from 4 basal ganglia and thalamic nuclei—STN, SNr, Vim and Rt—across specific sets of DBS
frequencies in 5~200Hz. Unlike the limitation in experimental data, we can simulate the synthetic
data with arbitrary DBS frequencies. Thus, the purpose of fitting our rate model to the synthetic
data is to validate the model generalizability, and to fully compare with other modeling methods.
The model fits to synthetic and experimental data are also compared to investigate the
improvements of the experimental data fit.

In both synthetic and experimental data, we inferred the optimal model parameters for each
nuclei by concatenating spikes across different DBS frequencies. Using such concatenated-
frequencies optimization method >, we obtained the optimal rate model parameters by
minimizing the sum of squared error (SSE) between the model output and the reference PSTH

across all DBS frequencies.

The Synthetic Data
The synthetic data is the firing rate computed with PSTH on 20 spike trains simulated from the
LIF model (see Supplementary Method A). By superimposing these spike trains from the LIF

neurons, we compute the PSTH firing rate (P(t)) as follows:

P(t) =S ny, (1)
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where M is the number of neurons, L (ms) is the length of the PSTH kernel, n; ; is the number of

spikes generated by the i*" neuron in the PSTH kernel at time t, i.e., the interval [t — %ms, t+

%ms]. The PSTH firing rate is updated with a time resolution dt = 0.1ms. The appropriate PSTH

kernel length L should depend on individual data ***°. We use L = 20ms for data from Vim, Rt,
and SNr; L = 50ms is used for data from STN.

We simulate LIF neurons with different DBS frequencies, including {5, 10, 20, 30, 50, 100,
and 200Hz}. For each DBS frequency of each BGTCN nuclei, the simulation time is 1,000ms,
with time step of dt = 0.1ms; the simulation stops at 1,000ms because the firing rate always reaches
the steady state before 500ms. The maximal DBS frequency considered in this work for Vim, Rt,
STN, and SNr are 200Hz, 200Hz, 100Hz, and 50Hz, respectively. Experimental data has
demonstrated that the firing rate of STN and SNr for DBS frequencies (using 100pA and

symmetric 0.3ms biphasic pulses) larger than these max frequencies is close to zero '°.

The Experimental Data

The experimental single-unit recordings and data protocols are from Milosevic et al. '°.
Microelectrodes were used to deliver DBS and record data, using 100pA and symmetric 0.3ms
biphasic pulses (150us cathodal followed by 150us anodal) '°. The recordings in STN, SNr and Rt
were from patients with Parkinson’s disease, and Vim recordings were obtained from patients with
essential tremor '°. For Vim and Rt, we recorded {5, 10, 20, 30, 50, 100, and 200Hz} DBS data of
length {10, 5, 3, 2, 1, 5, and 2s}, respectively. The recording length of the SHz DBS data was 5
seconds for STN, and 10 seconds for SNr; we recorded {10, 20, 30, and S0Hz} DBS data of length

{5, 3, 2, and 1s} for both STN and SNr. The recording length of the 100Hz DBS data for STN is

3 seconds.
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For each DBS frequency on each nuclei, we recorded 5 to 8 spike trains from different patients.
The time stamps of the DBS pulses have small deviations (~2%) because of the imperfect internal
clock of the stimulator *'; in the MATLAB script, we adjust the time stamps so that the DBS pulses
are delivered with the accurate frequencies. Using the PSTH formulated in (1), we computed the
reference firing rate from these spike trains. Thus, the PSTH firing rate is essentially the average
firing rate across spike trains recorded from different patients, and we observed that the data from

different individual patients are consistent .

DBS-induced Input into the Rate Model

The input to our rate model is the DBS-induced post-synaptic current (I, ), and we formulate
Igy, with the Tsodyks & Markram (TM) model on short-term synaptic plasticity (STP) ** Our
formulation of the DBS input is more physiological than the common approach that model DBS
effects as rectangular pulses *>' "',

For the neurons receiving DBS, we assume that each neuron receives inputs from 500 synapses
' and the ratio of the number of excitatory synapses to inhibitory synapses is different for varying
BGTCN nuclei, and is shown in Supplementary Table 1. The excitatory-inhibitory synaptic ratio
has high variability in STN neurons '***. The synaptic inputs to a minority of STN neurons are
dominantly excitatory, whereas to a majority of STN neurons are dominantly inhibitory **. In this
work, we analyze data recorded from STN neurons receiving evident inhibitory inputs (inhibitory
synapses occupies 70%).

Each DBS pulse activates all pre-synaptic inputs simultaneously, and generates DBS-evoked

spikes on the presynaptic terminals. The DBS-evoked spikes are filtered by the TM model,
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generating the post-synaptic current, I,,,,, that is obtained by a linear combination of presynaptic
excitatory (I,,.) and inhibitory (I;,;) currents as follows:

Isyn(t) = Wexc Lexc(t) = Winnlinn () 2)
where w,,. and w;,;, denote the synaptic weights of the modeled excitatory and inhibitory
currents, respectively; W,y and Wiy, vary for different BGTCN nuclei '°. The values for these
weights are summarized in Supplementary Table 2.

... (respectively, I;,;) is the total post-synaptic current from all excitatory (respectively,
inhibitory) synapses. Each synapse (excitatory or inhibitory) is modeled by the TM model for

short-term synaptic plasticity.

du u —

E=—;+U(1—u )6(t—t5p) 3)
ar 1-r —

w= o utr=6(t —tgp) (4)
dl 1 -

o —Z+Au+r 8(t — tsp) (%)

where u indicates the utilization probability, i.e., the probability of releasing neurotransmitters in
synaptic cleft due to calcium ion flux in the presynaptic terminal. The variable r indicates the
fraction of available resources after the neurotransmitter depletion caused by neuronal spikes. We
denote as u~ and r~ the corresponding variables just before the arrival of the spike; similarly, u*
and 1™ refer to the moment just after the spike. Upon the arrival of each presynaptic spike tg,,, u
increases by U(1 — u™). If there is no presynaptic activity, u exponentially decays to zero; this
decay rate is the facilitation time constant, 7. As well, the vesicle depletion process—due to the
release of neurotransmitters—was modeled by (4) where r denotes the fraction of resources that
remains available after the neurotransmitter depletion. In contrast to the increase of u upon the

arrival of each presynaptic spike, r drops and then recovers to its steady state value of 1 (this
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recovery rate is given by the depression time constant 7). The competition between the depression
(tp) and facilitation () time constants determines the dynamics of the synapse. In the TM model,
U, tr, and T, are three parameters that determine the types of the synapse, namely, facilitation,
pseudo-linear, and depression. The values of the TM model parameters differ across excitatory
and inhibitory synapses, and are summarized in Supplementary Tables 3(A) & 4(A). In (5), [
and 7, indicate the post-synaptic current and its time constant, respectively. For an excitatory
(respectively, inhibitory) synapse, T, is denoted as 7., (respectively, 7;,5); these time constants
are shown in Supplementary Table 2. The absolute response amplitude A = 1 for all situations.

We obtain I, (respectively, I;,;) by adding the post-synaptic currents from all excitatory
(respectively, inhibitory) synapses. Each BGTCN nuclei has different proportions of excitatory
and inhibitory synapses. Within excitatory (respectively, inhibitory) synapses, the ratio of the 3
types of synapses, namely, facilitation, pseudo-linear, and depression, are also different among

BGTCN nuclei (Supplementary Tables 3(B) & 4(B)).

The Rate Model and the Parameter Optimization Method
We used a sigmoid transfer function to link the post-synaptic current (I, as defined in (2)) to
the rate model on the firing rate of the stimulated nuclei. The rate model underlying a neuronal

ensemble receiving DBS is stated as follows:

c
1+exp [—s*(Isyn—k)]

T% =—(r—-n)+ F(Isyn)' where F(Isyn) N

(6)
where r(t) is the neuronal firing rate at time t and t is the membrane time constant. For the
sigmoid transfer function F (I, ), ¢ is the scaling parameter, s is the shape parameter, and k is the

shift parameter. 1, is the baseline firing rate of the modelled nuclei. We confine 13, in biological

constraints, based on experimental and synthetic data from both human and mammalian recordings.
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For Vim, r, € [10, 50] Hz '***; for Rt, 1, € [3, 40] Hz '®'%; for SNr, 1, € [40, 120] Hz '*'°; for
STN, 7, € [5, 100] Hz '**°. The initial value of 7(t) (denoted as 7;,,;) is computed by simulating a
10s spike train from the LIF model in Milosevic et al. '* with the DBS — OFF condition for the
modelled nuclei. 1;,; is computed as: “total number of spikes”/10s; 1;,,;(Vim) = 39.3Hz, 1;,,;(Rt) =
5.0Hz, 1;,,;(SNr) = 57.4Hz, and 1;,,;(STN) = 27.6Hz. The rate model fit results for Vim, STN and
SNr are shown in Results; Rt-DBS is a less common choice in clinics to obtain therapeutic effects
1 and the corresponding fit result is shown in Supplementary Figure 2.

We then inferred the parameter set @ = {t, 13, ¢, s, k} by minimizing the sum of squared
errors (SSE) between the model output, r(t), and the reference firing rate, P(t) (the PSTH firing
rate defined in (1)). We fit the parameters separately for different basal ganglia and thalamus nuclei.
For each nuclei, the optimal parameter set @, is the same across all DBS frequencies; such
consistency in model parameters conforms to the relatively static synaptic anatomical structure in
response to short (seconds to minutes) external stimuli ** (in our case, < 10s for all DBS data).

In the case of both experimental and synthetic data, for the fitting process in the simulation, the
sampling resolution is dt = 0.1ms. We ran independent simulations for each DBS frequency and
the simulated signal is denoted as 144 (®,t) = { 174(@, t1), ... , 174 (P, ty)}, which corresponds to
a certain DBS frequency (fq) and parameter set @; N is the total number of time points. Similarly,
the reference PSTH is denoted as Prq(t) = { Prq(ty), ... , Prq(ty)}. Given the rate model and
reference PSTH, the SSE function is:

SSErq(@) =l 174(®,8) — P (1) 17= Sy [1yq (@, £) — By (£)]? (7)

The objective function J(®) for the parameter optimization is formulated with the
concatenated-frequencies method, which is the total SSE across all DBS frequencies:

](¢) = SSEtotal((p) = qu SSEfq((p) (8)
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J(®) is minimized with the MATLAB custom function “fininsearch”, which uses the Nelder —

Mead simplex method *"**

with the 5 variables in the parameter set @. Starting from an initial
point @y = (Tg, Tp 0, Co» So, ko), the Nelder — Mead algorithm forms a simplex consisting of 6
vertices around @,. Then the simplex is modified based on 5 operations: reflection, expansion,
inside contraction, outside contraction and shrink. In the modified simplex, the algorithm searches
for the vertex @, that minimizes the objective function J(®) and the next iteration starts from @;.
Compared with the traditional gradient-descent type optimization methods, the advantages of the
the simplex method are (i) computation load is reduced because the derivative of the objective
function is eliminated; and (ii) the searching direction is not restricted to the local gradient, and

the algorithm can quickly approach the minimum in the first few iterations **. We implement the

simplex method in “fininsearch” ** to find the optimal parameter set DPopt = {Topt> Th,opts Copts

Sopt»> Kopt} that minimizes the objective function /(&) defined in (8).

RESULTS

The Rate Model on Neuronal Dynamics across Multiple DBS Frequencies

We developed a firing rate model that can capture the dynamics of the neuronal activity of
varying BGTCN nuclei across different DBS frequencies. Based on single-unit recordings of the
neuron receiving DBS in a specific nuclei, we computed the reference firing rate with PSTH.
Recordings across DBS frequencies were concatenated, and the optimal parameters were obtained
by minimizing the distance to the reference PSTH firing rate (by Equation (8)) across all DBS

27,28
d

frequencies using the Nelder — Mead simplex metho . Figure 1 illustrates our rate model and

the parameter optimization method.
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Figure 1. Schematic representation of the rate model (SNr - DBS as the example)
A local group of substantia nigra pars reticulata (SNr) neurons are stimulated by Deep Brain Stimulation (DBS) 10

LR T3

The 3 synapse types “F”, “P”, and “D” represent “facilitation”, “pseudo-linear”, and “depression”, respectively. SNr

neurons mostly receive the inhibitory gamma-aminobutyric acid (GABA) transmitter. For data from each DBS
frequency, we computed the reference firing rate with peristimulus time histogram (PSTH) from the raster plot. Using
the rate model, we performed independent simulations for each DBS frequency with the same parameter set @, and
the objective function /(@) is defined as the total sum of squared error (SSE). We then minimized J (@) with the Nelder
— Mead simplex method, and obtained the optimal parameter set @,,,. We simulated the rate model with @,,, and
obtain the optimal total fit, which minimizes the SSE from the concatenated PSTH firing rates. Finally, we separate

the total fit and get the optimal fit for each DBS frequency.

Results — Synthetic Data

We compared firing rates of the rate model simulation with the synthetic data across different
DBS frequencies in three different nuclei of the basal ganglia and thalamus, namely, Vim, STN,
and SNr. For each nuclei, the synthetic data is the firing rate computed by PSTH with 20 simulated
LIF model neurons (see Materials and Methods). Figure 2 shows the model fitted firing rate (red)

on top of the reference PSTH firing rate (black) for Vim, STN and SNr across different DBS
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frequencies. We included a sample spike train of the LIF model neuron to better visualize the

relationship between the PSTH and generated spikes.

—PSTH firing rate (synthetic data) —rate model estimated firing rate ——spike train
DBS frequency 5 ~ 50Hz

Vim STN SNr
500 5Hz DBS 0 5Hz DBS 8 5Hz DBS
& MMW

cnsianaml \ina cmrn s ol | LI OO Tl LI | |
500 10Hz DBS 40 10Hz DBS 80 10Hz DBS
| S| o] 1 =0 Lo | oo V] Il I LU [T |
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Figure 2. Rate model result for the synthetic data

The rate model is fitted to the synthetic data from the nuclei receiving Deep Brain Stimulation (DBS) in three basal
ganglia and thalamic nuclei: ventralis intermedius (Vim), subthalamic nucleus (STN), and substantia nigra pars
reticulate (SNr). The synthetic data are the simulated membrane potentials from the leaky integrate-and-fire (LIF)
model in Milosevic et al. '°. We compare the firing rate computed by peristimulus time histogram (PSTH) from the
synthetic data, firing rate predicted by our rate model and the spike timings from one spike train. DBS stimuli with
varying pulse frequencies (5~200Hz) are delivered to the related basal ganglia and thalamic nuclei. The data from
stimulated nuclei receiving lower frequency DBS (5~50Hz) are recorded in all three nuclei, whereas higher frequency

DBS (=100Hz) is delivered to Vim and STN.

As can be seen in Figure 2, the estimated instantaneous firing rate reliably matched the PSTHs

generated by ensemble of spiking neurons for all four different nuclei and across all DBS
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frequencies. In addition, both the steady-state and transient part of the neurons’ firing rate were
replicated using the rate model.

It should be noted that the conventional approach for modeling DBS-evoked neural response—
regardless the optimization technique or the modeling framework—were based on data recorded
from a single DBS frequency *', ignoring frequency-dependent behavior of DBS neural responses.
High frequency DBS was often used to fit the model *'; however, therapeutic effective DBS

0 .
363710 11y some certain

frequencies are often undetermined and depend on individual situations
case studies, the effective DBS frequencies are ~130Hz for Vim **, >100Hz for STN * and below
70Hz for SNr *. Unlike other studies, we developed a “concatenated-frequencies method” in
optimizing model parameters, by incorporating the contribution of various DBS frequencies in our
rate model and estimated model parameters that are consistent across those frequencies. The
concatenated-frequencies method includes all the previously mentioned DBS frequencies, i.e., {5,
10, 20, 30, 50, 100, and 200Hz} (for STN and SNr, the maximum is 100Hz and 50Hz, respectively).
To compare the concatenated-frequencies method with the parameter estimation based on only a
single DBS frequency (‘“single-frequency method”), we fit our model using a single DBS
frequency for Vim-DBS = 100Hz, STN-DBS = 100Hz and SNr-DBS = 20Hz; the comparison
result is shown in Figure 3. For both optimization methods, we used the estimated model
parameters to replicate the firing rate for 24 observed and unobserved DBS frequencies in 0~200
Hz, including {2.5, 5, 7.5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160,
170, 180, 190, and 200Hz} (for STN and SNr, the maximum is 100Hz and 50Hz, respectively).
We used the normalized mean squared error (NMSE) to measure the error between the estimated

firing rate and the reference firing rate computed by PSTH. Figure 3(A) shows a sample of

estimated firing rates using single-frequency and concatenated-frequencies methods for Vim. For
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the parameter estimation based on a single DBS frequency, model parameters were obtained from
Vim-DBS = 100Hz and the estimated firing rate was plotted for DBS of 5Hz & 100Hz. The
estimated firing rate based on a single DBS frequency worked well for that frequency but failed
for the other (SHz). However, the estimated firing rate based on multiple DBS frequencies reliably
reproduced both the transient- and steady-states of the instantaneous firing rate. For the parameter
estimation based on a single DBS frequency, we observed (data not shown) that the estimated
firing rate could only replicate the original instantaneous firing rates for DBS frequencies of 100Hz

and 50Hz; it produced large deviations for smaller DBS frequencies.

(A) sample comparison

400 Vim 5Hz DBS 400 \ Vim 100Hz DBS

model estimated firing rate
T ¥ —_—

(concatenated-frequencies method)

model estimated firing rate
(single-frequency method)

[T - e

time (ms) 1000 0 time (ms) 1000

(B) NMSE comparison

Vim STN SNr
=0.0286
1 1 1 P *
concatenated
081 H . 091 [ concatenated 0.9
0.8 single 08 single 0.8
=8.45x 10
0.7 p=2 07 071 5 concatenated
0.6 — 06 0.6 ;
P =4.66x 104 single
05 05 o 05
0.4 0.4 — 0.4
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03{ u=46% 031k _1111~39{;’/a 03] p=9.8%
SD =4.5% Y SD =9.5%
029 0745 02{ n=14 02¢ °° =7
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x
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ANOVA test *p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001

Figure 3. Comparison of two optimization methods in the rate model

“Single-frequency” and “concatenated-frequencies” optimization methods are compared for three basal ganglia and
thalamic nuclei: ventralis intermedius (Vim), subthalamic nucleus (STN), and substantia nigra pars reticulate (SNr).
(A) The two plots compare the prediction results of the two methods on Vim with varying DBS frequencies. We

compare the firing rate computed by peristimulus time histogram (PSTH), and the firing rate predicted by our rate
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model with each of the two optimization methods. PSTH firing rate is computed based on the synthetic data, i.e., the
simulated spike trains of the spiking model in Milosevic et al. 1. For Vim, data from 100Hz DBS is used to train
model parameters in the single-frequency method. (B) Normalized mean squared error (NMSE) of the model
prediction of multiple DBS frequencies (see text for details) is calculated based on the reference PSTH firing rate. The
NMSE results are presented with the box-whisker plot; “concatenated” and “single” mean concatenated-frequencies
method and single-frequency method, respectively. “u” represents the mean value, “SD” represents the standard

deviation, and “n” represents the number of samples. ANOVA represents “the one-way analysis of variance test”.

The NMSE calculated using single and multiple DBS frequencies were shown in Figure 3(B)
for all nuclei. The NMSE’s calculated by multiple DBS frequencies were significantly smaller
(with regard to mean and standard deviation) than those obtained by a single DBS frequency. For
the parameter estimation based on multiple DBS frequencies, the mean NMSE for Vim, STN and
SNr is 4.6%, 11.8% and 9.8%, respectively; the standard deviation of NMSE for Vim, STN and
SNr is 4.5%, 11.9% and 9.5%, respectively. The small NMSE compared to that based on single
DBS frequency indicates that our proposed rate model with the concatenated-frequencies
optimization method could much better reproduce the PSTH firing rate (ANOVA, p < 0.05 for all
nuclei; p = 8.45 x 107 for Vim, p = 4.66 x 10 for STN, p = 0.0286 for SNr). It is worth
mentioning that the low NMSE of the parameter estimation based on multiple (observed)
frequencies was obtained across all observed and unobserved frequencies, confirming the
generalizability of the proposed model and the consistency of estimated parameters. We anticipate
that such a reliable predictive model can be used in clinical applications and it outperforms trial-

. 9,12
and-error DBS frequency selection processes ~* ~.

Results — Experimental Data
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To test the potential of the rate model to reproduce instantaneous firing rate of an ensemble of
neurons recorded from human brain during DBS, we fit the rate model to experimental data
obtained from single-unit recordings '° on three different nuclei of basal ganglia and thalamus:
Vim, STN, and SNr. To calculate the firing rate of an ensemble of neurons for each nuclei, spikes
recorded from 5 to 8 different individuals were combined, and the instantaneous firing rate was
then obtained by calculating the PSTH. Similar to the results for the synthetic data, we estimated
model parameters that fit the rate model output to the PSTH. Figure 4 shows the results of the fit

model output with the PSTH for different nuclei and different DBS frequencies.
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Figure 4. Rate model result for the experimental data
The rate model is fitted to the experimental data (single-unit recordings) from the nuclei receiving Deep Brain
Stimulation (DBS) in three basal ganglia and thalamic nuclei: ventralis intermedius (Vim), subthalamic nucleus (STN),

and substantia nigra pars reticulate (SNr). We compare the firing rate computed by peristimulus time histogram (PSTH)
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from the experimental data and the firing rate predicted by our rate model. The experimental data are from single-unit
DBS recordings in the specific basal ganglia and thalamic nuclei. The recording length for 50 Hz DBS data is ~1s.
The data from stimulated nuclei receiving lower frequency DBS (5~50Hz) are recorded in all 3 nuclei, whereas higher

frequency DBS (=100Hz) is delivered to Vim and STN.

Firing rates estimated by the rate model track both transient- (mostly apparent for DBS
frequencies >30 Hz) and steady-state components of PSTHs of all nuclei. The NMSE computed
based on the concatenated signal from all DBS frequencies for Vim, STN and SNr is 14.1%, 18.1%
and 9.5%, respectively. However, the rate model could not reproduce the transient response of the
Vim for DBS frequencies of 100 Hz and 200 Hz as accurately as it could for other nuclei. The rate
model generated a shorter transient response compared to that observed in experimental recordings.
This mismatch between transient responses might be originated from network effects and is further

addressed in Discussions.

Physiological Implications of the Model Parameters
The optimal rate model parameters, @o,r = {Topt» Th,opts Copts Sopt> Kopt)» Of €ach nuclei, for
both synthetic and experimental data, are listed in Table 1:

Table 1: Rate model optimal parameters (3 significant figures)

source site Topt Tb,opt Copt Sopt kopt
Vim 10.4 10.0 433 4.40 x 107 616
STN 36.0 27.5 51.5 -0.470 -14.0

synthetic data

SNr 11.1 77.1 -96.6 -0.273 -17.8

Rt 11.9 2.53 392 3.20 x 102 112
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Vim | 45.1 13.4 687 5.81 x 107 548
experimental
STN 24.7 27.6 -34.4 -0.425 -5.42
data
SNr 11.5 953 -88.6 -0.236 -21.5
Rt 32.2 3.00 578 329 533

The optimal model parameters are in distinct ranges for different nuclei of the basal ganglia
and thalamus. For the same nuclei, the optimal parameters of synthetic and experimental data are
generally similar but differences exist. The combination of these abstract parameters forms the

firing rate response to the input synaptic current I, through the sigmoid function as defined in

Cc

. To better assess the effect of these
Trexp [5+(Isyn—K)]

(6): T% =—(r—-n)+ F(Isyn), F(Isyn) =
parameters on the rate model, we plotted the model estimated firing rate () versus Ig,,,, in Figure
5 to detect the firing rate dynamics of each nuclei across varying DBS frequencies. In other words,
this figure describes the f-I curve for each nuclei receiving DBS. The f-I curve was created by the
estimated parameters in Table 1 for both synthetic and experimental data. The firing rate and Iy,
were ordered according to their percentiles (from 0 to 100), and the percentiles were matched at
each point in the curve to qualitatively represent the relationship between the firing rate and input
current *"**. A similar curve was created in Lim et al. ** for the rate network model to calculate
the current-rate transfer function. In our proposed model, see (6), the sigmoid transfer function

F (Isyn) models the firing rate variability caused by the input synaptic current ([, ); see

Supplementary Figure 1 for F (I Syn) in each nuclei across different DBS frequencies.
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Figure 5. Rate model estimated firing rate in response to the input synaptic current

The rate model is fitted to both synthetic and experimental data; the synthetic data are from the spiking model in
Milosevic et al. '°, and the experimental data are single-unit recordings. We present the model fits across all Deep
Brain Stimulation (DBS) frequencies, in each of the three basal ganglia and thalamic nuclei: ventralis intermedius
(Vim), subthalamic nucleus (STN), and substantia nigra pars reticulate (SNr). We plot the relationship between the
rate model estimated firing rate and the simulated input synaptic current (Isyn) to the nuclei receiving DBS. Each
point in a curve represents that the corresponding firing rate and the input synaptic current have the same percentile

(in the range 0 to 100).

In Figure 5, the model estimated firing rate monotonically increases as the input synaptic
current becomes more excitatory or less inhibitory, in both synthetic and experimental data. Note
that the minus sign of I, indicates inhibition and the positive sign denotes excitation. For SNr
and STN with predominantly inhibitory inputs, the f~/ curve is monotonically decreasing, across
all DBS frequencies, indicating that neurons in this nuclei receive more inhibitory synaptic inputs
when DBS is ON. When DBS is active, the firing rate quickly drops from its baseline value given
negative net current received by SNr neurons. The slope of this fast decay is facilitated in higher
frequencies of DBS. Unlike SNr neurons that receive more inhibitory synaptic inputs given DBS
pulses, the firing rate of Vim neurons increase monotonically with respect to total synaptic current

whose net effect is positive when DBS is ON. The slope of the f-/ curve increases for higher
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frequencies of DBS in Vim neurons. One can note that in experimental and synthetic data, for each
nuclei, the calculated f-I curves (Figure 5) are generally similar, although some differences exist.
The differences between the f~I curves in experimental and synthetic data (Figure 5) are mostly
not from the rate model fits in this work, but mainly lie in the mismatch between the experimental

data and simulation of the LIF model in Milosevic et al. '°.

DISCUSSIONS

In this paper, we developed a firing rate model on three BGTCN nuclei receiving DBS: Vim,
STN and SNr. With our rate model, we have accurately reproduced the firing rate dynamics
obtained from both synthetic and experimental data. Compared with the spiking network models
#20_ the firing rate model is much faster and more robust in implementations, because of the fewer
number of equations and lower dimensionality in model parameters *°. We also developed a
concatenated-frequencies optimization method that systematically computes the optimal model
parameters that are fitted across different DBS frequencies. Compared with the manual parameter
tuning in Milosevic et al. '°, the optimization method in this work can systematically and
automatically compute the model parameters, so it is conveniently implementable in practice.
Since the same set of model parameters can be implemented across varying DBS frequencies, we
can potentially use the model to target the optimal DBS frequency with the maximal clinical

benefits, without extensive additional experimental data recordings constrained by the patients’

consents 9.

Other Methods for Modeling Firing Rate
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Various firing rate models have been developed to infer physiological mechanisms underlying

16,43,46

neuronal networks . Lim et al. ¥ developed a rate model on the recurrent network of the

monkey visual cortex, and investigated the learning rules that differentiate novel and familiar
external visual stimuli; the result is in good consistency with experimental data. Murphy et al. *°
developed a rate model on a general recurrent network consisting of interacting excitatory and
inhibitory nuclei, and investigated the role of inhibitory nuclei in balancing the firing rates of
strongly coupled excitatory neurons receiving external stimuli.

In modeling neuronal firing rate, one critical challenge is to appropriately transfer the
postsynaptic input current to the corresponding firing rate variability. In our model, we used a
sigmoid function to transfer the impact of filtered (by synaptic model) DBS to a firing rate model
ODE (Equation (6)). Our approach for computing firing rate with the sigmoid-ODE is significantly
more accurate than the commonly implemented simplified approach, which obtains firing rate

directly from the average membrane potential through a transfer function *'%%%%

(see
Supplementary Figure 3). In Supplementary Method B, we constructed a typical method on

computing firing rate directly from the average membrane potential, and this alternative method

was compared with our model.

Further Discussions on Model Physiological Implications
For Vim neurons, the large excitatory I, (Figure S) is caused by the high proportion of
glutamate pre-synapses '°, which induces fast changes of the firing rates. In general, the firing rate

increases as we stimulate with higher DBS frequency. The modeled firing rate from either
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experimental or synthetic data (Figure 5) has similar patterns (across different DBS frequencies)

based on the amplitude of I5y,: (i) When I, is small, the firing rate increases quickly as the
excitatory input increases; (ii) When I, is large, the firing rate slowly increases and finally
saturates as [, increases. This probably indicates that when the input excitatory postsynaptic
current () is strong, the increase of firing rate is restricted due to the limited amount of ions to

support the neuronal firing.
For SNr (Figure 5), we see that the firing rate is low and close to zero in most of the range of

Igyy, in both experimental and synthetic data across all DBS frequencies. The modeled firing rate
(Figure 5) has similar patterns (across different DBS frequencies) based on the I, amplitude: (i)
When the inhibition is strong (i.e., large Iy, amplitude), the firing rate is low and mostly close to
0; (i) When the inhibition is removed (i.e., I5y, ~ 0), the firing rate returns to the baseline at ~60Hz
' The large inhibitory I syn 18 consistent with the high proportion (~90%) of gamma-aminobutyric
acid (GABA) pre-synapses of SNr neurons '°.

In Supplementary Figure 1, we can see that the sigmoid nonlinearity F (Isyn) in response to
Igyy, is generally similar between synthetic and experimental data for each of the three BGTCN
nuclei (Vim, STN and SNr). For each nuclei, the differences between F (I Syn) in experimental and
synthetic data (Supplementary Figure 1) are mostly not from the rate model fits in this work, but
mainly lie in the mismatch between the experimental data and simulation of the LIF model in
Milosevic et al. '°. For SNr and STN (dominant inhibitory), F (Isyn) is mostly negative with the
evidently inhibitory I5,,. For Vim, as I, increases, F (Isyn) first increases then plateaus; this

indicates that the increase of the firing rate is restricted due to the limitation of ions, although the
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postsynaptic current (Isyn) is large . Since Igy, incorporates the STP rules in the synapse,

F (I Syn) partially reflects the firing rate regulation of the neuron beyond the synaptic contacts.

Limitations and Future Work

Our model represents local groups of neurons, but we did not model the network interactions
among the connected neuronal groups. For example, the afferent synaptic connections to Vim
neurons consist of both excitatory and inhibitory effects ''. For a Vim neuron, the excitatory pre-
synapses are mainly from the cortex and the cerebellum ', and the inhibitory pre-synapses are

mainly from Rt and the interneurons >’

. We modelled the local Vim neurons receiving DBS,
whereas the DBS-induced upsteam / downsteam network effects from other nuclei are not included
in the model.

From Figure 4 (experimental data, Vim), we see that the firing rate prediction with our model
is not very accurate at high DBS frequencies (100Hz and 200Hz). In Vim experimental data at
high frequency DBS, the initial transient large firing rate response (~400ms) is clearly longer than
the model simulation (~200ms). We hypothesize that the model firing rate predictions in response
to DBS at high frequencies can be better explained if we include network effects into the rate
model in this work.

From the experimental data fit of STN in Figure 4, we observe that our model misses some
firing rate oscillations, in particular for the SHz & 10Hz DBS data. The oscillation in STN nuclei
is mainly caused by interaction of inputs from the cortex ** and the external globus pallidus (GPe)
> In particular, the STN-GPe recurrent network contributes much to the oscillatory behaviors in

STN ****_ Thus, in order to completely model the firing rate oscillations in STN, the single ODE

model in this work may not be sufficient. However, although the current model focuses on a single
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STN population, the fitting error is small; the average NMSE across varying DBS frequencies is

11.8% for the synthetic data (Figure 3), and 18.1% for the experimental data (Figure 4). We

anticipate that the fitting accuracy will be improved in our future work by incorporating the
network effects and oscillations.

The synaptic input to STN neurons is diverse; some STN neurons receive predominantly

103395 In this work,

excitatory whereas other STN neurons receive predominately inhibitory inputs
we only modelled STN nuclei with dominant inhibitory inputs, that have been shown to be
persistent at high frequency both in rat °> and human *. In the future work, we aim to incorporate
STN neurons that receive predominantly excitatory synapses, that have been shown to be governed
by different short-term synaptic depression (STD) dynamics than inhibitory inputs to STN .
Furthermore, incorporating both dynamics of inhibitory and excitatory inputs to STN will help us
predict the firing rate oscillations in the STN and its (sub-)cortical network.

In clinical applications, the appropriate choice of DBS parameters, in particular the DBS

9,56

frequency, is critical for successful therapeutic results and reducing side effects ”°. However, the

process of choosing DBS parameters relies largely on inefficient trial-and-error approaches that

#1112 Based on the relationship

are based on neurologist experience and clinical observations
between neuronal pathological firing rates and the disease symptoms, our rate model has a
potential to provide a quantitative method for choosing the optimal DBS frequency that is
therapeutically effective (i.e., symptom relieving). The determination of the optimal DBS
parameters depends on the further understanding of the neuronal network mechanisms underlying
the disease and the therapeutic effects of DBS ''. It is noted that we focused on tuning DBS
frequencies in this work; although the DBS frequency is the most commonly tuned parameter in

10,39

clinical applications , the optimization of other DBS parameters (e.g., pulse width and
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amplitude) may also contribute to a better clinical performance. Even with the limitations in not
modeling DBS pulse width and amplitude, our model fits the clinically recorded experimental data

consistently across varying DBS frequencies, for each BGTCN nuclei (STN, SNr, Vim and Rt).

Conclusion

In this paper, we developed a firing rate model on the basal ganglia and thalamic neurons
receiving DBS. We developed a concatenated-frequencies optimization method that computes the
consistent model parameters fitted across different DBS frequencies. Our model can accurately
reproduce the firing rate obtained from both synthetic data and experimental single-unit recordings.
Such consistency and accuracy of the model fits demonstrate that our model can be potentially

implemented in optimizing the DBS frequency, and improving the clinical performances of DBS.

Data Availability Statement

The human experimental datasets and codes have not been deposited in a public repository due to
restrictions related to the ethics protocol, but the data and codes are available from the

corresponding author upon request and completion of a data transfer agreement.
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SUPPLEMENTARY INFORMATION

Supplementary Method A — The Leaky Integrate-and-Fire (LIF) Spiking Model
The LIF model in Milosevic et al. '’ was implemented to generate the synthetic data used in
our analysis. In this LIF model, the total input current (I;,¢4;) to a stimulated neuron consists of
two components: the post-synaptic current (g,,,,) and background noise (I,;se ), i.€.
Liotar = Isyn + Lnoise )

I

syn 18 obtained with the Tsodyks & Markram model formulated in Materials and Methods. I,,;s,

is modeled by the Ornstein-Uhlenbeck (OU) process with time constant of 5ms °’, and is written

as:
Alnoise _ _ Inoise(®)—p 2 §(0)
a T ta T Vat (10)

where &(t) is white noise with mean = 0 and variance = 1. T = 5ms is the time constant, 4 and a
indicate the mean and standard deviation of I,,;5., respectively. {u, a} is different for each
BGTCN nuclei; the different values are shown in Supplementary Table 5.

The dynamics of the membrane potential of a stimulated neuron in an LIF model can be written

as:

dV(t) — _(V(t)_EL)"'R*ItOtal(t) (1 1)
dt Ty

where E;= —70mV is the equilibrium potential, R (scaling parameter) = 1, and 7, (membrane time
constant) = 10ms. I;,¢,; 1S the total input current (Equations (9) — (10)). Spikes occur when V >

Vin, for Vy, = —40mV. The reset voltage is —90mV and the absolute refractory period is 1ms.
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Supplementary Method B — Alternative Approach to Model Instantaneous Firing Rate
Different from our rate model, the commonly used simplified approach to obtain firing rate is
by directly implementing a transfer function from the average membrane potential *'**** We
construct such an alternative method by modeling the average membrane potential (V/), and then
implementing a sigmoid transfer function *"'®,
We fit the alternative method to the same synthetic data as in Materials and Methods. In the
synthetic data, we assumed that DBS is delivered to a local group of homogeneous LIF neurons,

and the average membrane potential (V) of this homogeneous group is modeled with the following

equations:

av(t) —(V(t)-EL)+RxItorqi(t)
dac LTV fotal s leotar = Isyn + Lnoise (12)

where I;,:4; 1 the total input current computed with Equations (9) — (10). Compared with the

model of an individual neuron with Equation (11), the parameters related to Equation (12) are

a

determined as follows: (i) The standard deviation (= a) of [,,,;5. in Equation (10) is reduced to N

to compute the variability of 7 on ~50 representative stimulated local homogeneous neurons **;
(ii) In terms of the amplitude of membrane potential, the average value (V) needs to be consistent
with each individual LIF neuron. Thus, we tuned the scaling parameter R to be 0.07, so that the
mean of the VV simulation with Equation (12) is consistent with the mean membrane potential
obtained from simulating a single LIF neuron with Equation (11); (iii) All the remaining
parameters are the same as the model of an individual neuron with Equation (11).

After modeling the average membrane potential (), we obtain the firing rate directly from V

through a sigmoid transfer function:

(2]
1+exp [-s*(V—-k)]

r(t) =

(13)
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In (13), the undetermined parameter set is @ = {0,s,k}; we optimize @ with the same
concatenated-frequencies optimization method (see Materials and Methods) as in our rate model.
This alternative approach to obtain the instantaneous firing rate is compared with our rate model
using Vim synthetic data (Supplementary Figure 3).

In Supplementary Figure 3, we see that the alternative approach has large deviations in
synthetic data from both low-frequency and high-frequency DBS on Vim. The firing rate
amplitude is not captured in both 10Hz and 100Hz DBS, and the transient response (initial ~200ms)
in 100Hz DBS is much longer than the reference (PSTH firing rates). In terms of the NMSE of 24
varying DBS frequencies {2.5, 5, 7.5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,
140, 150, 160, 170, 180, 190, and 200Hz}, the alternative approach is significantly larger than our
rate model (ANOVA, p = 8.99 x 10”). Thus, the alternative approach is not sufficient for
reproducing firing rate dynamics; our rate model is the more sophisticated approach, and is

efficient in detecting the firing rate mechanism consistent across various DBS frequencies.


https://doi.org/10.1101/2022.06.28.497834
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.28.497834; this version posted August 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

34

Supplementary Table 1 — Proportions of excitatory and inhibitory synapses

number of excitatory synapses number of inhibitory synapses

STN 150 (30%) 350 (70%)
SNr 50 (10%) 450 (90%)
Vim / Rt 450 (90%) 50 (10%)

Supplementary Table 2 — Weights & time constants of excitatory and inhibitory synaptic currents

in gy
Wexc Winh Texc (MS) Tinp (MS)
STN 1.2 1 3 5
SNr 6 4 3 10
Vim 37.5 90 5 8.5
Rt 4.37 11.4 5 8.5

Supplementary Table 3 — the three types of excitatory synapses

(A). Parameters

facilitation depression pseudo linear
tp(ms) | zp(ms) | U | zp(ms) | zp(ms) | U | tp(ms) | zp(ms) | U
STN, SNr,
138 670 |0.09 671 17 0.5 329 326 | 0.29
Vim / Rt
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(B). The ratio of excitatory synaptic types
facilitation depression pseudo linear

STN 0.1 0.6 0.3

SNr 0.3 0.4 0.3

Vim 0.5 0.3 0.2

Rt 0.5 0.3 0.2
Supplementary Table 4 — the three types of inhibitory synapses
(A). Parameters
facilitation depression pseudo linear
Tp (ms) | 7r(ms) U tp(ms) | zp(ms) | U |rp(ms) | 7p(ms) | U
STN, SNr,
45 376 | 0.016 706 21 0.25 144 62 0.29
Vim / Rt
(B). The ratio of inhibitory synaptic types
facilitation depression pseudo linear

STN 0.4 0.3 0.3

SNr 0.3 0.4 0.3

Vim 0.3 0.4 0.3

Rt 0.3 0.4 0.3
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Supplementary Table 5 — Parameters of the background noise current I,,,;s, (in pA) in the LIF

model '
mean (u) st. dev. (a)
STN 32 11
SNr 55 10
Vim 30 45
Rt 12 10
Vim STN SNr

—— synthetic data
- -+ experimental data

——  synthetic data
0 - -+ experimental data

~
=3

I

S

—  synthetic data
- -+ experimental data

30
(H2)

F(lsyn ) )(H2)

F(Isyn )(H2)

0
200 5

. 50 20
10 20 0 % 10
o DpBS frequency (H2) % s Bs frequency

Supplementary Figure 1. Sigmoid nonlinearity in response to the input synaptic current

The firing rate variability caused by the input synaptic current is modeled by the sigmoid transfer
function (Equation (6)). We present the transfer functions in both synthetic and experimental data;
the synthetic data are from the spiking model in Milosevic et al. '°, and the experimental data are
single-unit recordings. We show the transfer functions across all Deep Brain Stimulation (DBS)
frequencies, in each of the three basal ganglia and thalamic nuclei: ventralis intermedius (Vim),

subthalamic nucleus (STN), and substantia nigra pars reticulate (SNr).
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Supplementary Figure 2. Rate model results for Rt

The rate model is fitted to both synthetic and experimental data from reticular thalamic nucleus
(Rt) receiving Deep Brain Stimulation (DBS). The synthetic data are the simulated membrane
potentials from the leaky integrate-and-fire (LIF) model established in Milosevic et al. '°, and the
experimental data are the single-unit recordings. We compare the firing rate computed by

peristimulus time histogram (PSTH), firing rate predicted by our rate model and the spike timings
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from one spike train (for synthetic data only). DBS stimuli with varying pulse frequencies are
delivered, and the normalized mean squared error (NMSE) is computed based on the concatenated

signal from all DBS frequencies.

NMSE
— PSTH firing rate — our rate model alternative approach p=8.99x 10°
0.5 kel
. . 0.45
Vim 10Hz DBS Vim 100Hz DBS
400 400 0.4
£ £ 0351 5 our rate model

0.3 alternative approach

I g
U J JJ\J\J\» SIS - * oxs) pesm
’ time (ms) 1000 0 time (ms) 1000 oos{ "7 —L"Ll

ANOVA test **** p-value < 0.0001

Supplementary Figure 3. Comparison of our rate model with an alternative approach

We compare our rate model with the alternative approach (Supplementary Method B) of
obtaining firing rate, in the synthetic data on ventralis intermedius (Vim). The synthetic data are
the simulated membrane potentials from the leaky integrate-and-fire (LIF) model in Milosevic et
al. '°. The alternative approach represents that the firing rate is obtained directly from the average
membrane potential through a sigmoid transfer function (Supplementary Method B). Normalized
mean squared error (NMSE) is based on the ground truth firing rate computed by the peristimulus
time histogram (PSTH) with the synthetic data. NMSE is compared based on data from the same
set of DBS frequencies as in Figure 3 (also see text), and presented with the box-whisker plot. “p”

represents the mean value, “SD” represents the standard deviation, and “n” represents the number

of samples. ANOVA represents “the one-way analysis of variance test”.
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