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Understanding the relationship between the structure of chemical
reaction networks and their reaction dynamics is essential for un-
veiling the design principles of living organisms. However, while
some network-structural features are known to relate to the steady-
state characteristics of chemical reaction networks, mathematical
frameworks describing the links between out-of-steady-state dynam-
ics and network structure are still underdeveloped. Here, we char-
acterize the out-of-steady-state behavior of a class of artifical chem-
ical reaction networks consisting of the ligation and splitting reac-
tions of polymers and . Within this class we examine minimal net-
works that can convert a given set of inputs (e.g., nutrients) to a
specified set of targets (e.g., biomass precursors). We find three dis-
tinct types of relaxation dynamics after perturbation from a steady-
state: exponential-, power-law-, and plateau-dominated. We show
that we can predict this out-of-steady-state dynamical behavior from
just three features computed from the network’s stoichiometric ma-
trix, namely, (i) the rank gap, determining the existence of a steady-
state; (ii) the left null-space, being related to conserved quantities in
the dynamics; and (iii) the stoichiometric cone, dictating the range
of achievable chemical concentrations. We further demonstrate that
these three quantities also predict the type of relaxation dynamics of
combinations of our minimal networks, larger networks with many re-
dundant pathways, and a real example of a metabolic network. The
unified method to predict the qualitative features of the relaxation
dynamics presented here can provide a basis for understanding the
design of metabolic reaction networks as well as industrially useful
chemical production pathways.
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Origins of chemical reaction network theory can be found
in the discovery of the law of mass action (1). Since

then, mathematical laws governing chemical reactions have
been uncovered, such as Le Chatelier’s principle (2), the Ar-
rhenius equation (3), and the detailed-balance condition for
the feasibility of chemical equilibrium (4).

For the development of quantitative theories of living en-
tities, a deep understanding of the out-of-steady-state dy-
namics of chemical reactions is indispensable. Until recently,
most experimental studies of microbial physiology focused on
steadily-growing cellular populations. In such situations, the
assumption that the concentrations of cellular metabolites are
constant (at steady-state) is reasonable, and static metabolic
analysis such as Flux Balance Analysis (5–10) and steady-
state cell models (11, 12) have provided a useful mathematical
description of stable cell growth.

However, recent experiments have been unveiling the dy-
namic nature of cellular physiology more quantitatively. For
instance, in starved Escherichia coli, the lag time — the dura-
tion that the cell takes to restart growth after the substrate
replenishment — was shown to depend on how long the cells

are starved (13–17) and the death rates of the starved cells dif-
fer depending on the previous culture conditions, even though
the starvation condition is identical (18). Such "memory" is
a unique feature of out-of-steady-state systems. In addition,
the time scales of the memories are much longer than that
in steadily-growing cells. It is therefore desirable to develop
theoretical frameworks to understand how such slow relaxation
dynamics and long-term memory emerge from the structure
of chemical networks.

There are two broad types of approaches one might take
to explore the link between the network structure and the
relaxation characteristics of chemical networks. One is to
examine random networks with structural characteristics (such
as density of links and degree distribution) identical to natural
chemical networks like metabolic networks (19–22). This
approach enables us to explore a large ensemble of network
structures, but due to the simplification into a random network,
it may miss crucial properties of real chemical networks. For
example, the central principle of chemical reactions, the law
of mass conservation, may be violated. Thus, any structure-
dynamics connections uncovered by these approaches may not
always apply to real chemical networks.

On the other hand, data-driven approaches such as reaction
pathway prediction by using machine learning (23–25) gener-
ate realistic chemical reaction networks, which never violate
mass conservation and other necessary properties. However,
it is too computationally costly to explore a wide variety
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of possible chemical reaction networks. The generality of
structure-dynamics connections, or lack of it, uncovered by
these approaches may therefore be unclear.

Here we develop an alternative approach. We construct a
class of the chemical reaction network consisting of chemical
species that can be represented as monomer sequences (poly-
mers), and chemical reactions that ligate (concatenate) and
split (fragment) these polymers. The model can generate a
wide variety of chemical reaction network structures that are
guaranteed to satisfy the mass conservation principle.

Microbial metabolic networks and chemical networks used
in industrial manufacturing processes have the specific func-
tion of converting certain input chemicals into target chemicals.
For instance, in bacterial metabolism, carbon, nitrogen, phos-
phorous sources (e.g., glucose, potassium hydrogen phosphate,
ammonium chloride) and other miscellaneous molecules are
converted into biomass such as proteins, nucleic acids, and
lipids. Therefore, we impose a further constraint on the net-
works we study - the ability to synthesize a given set of targets
from a specified set of input chemicals. The resultant chemical
reaction networks we generate are, of course, a subset of all
possible networks, but they form a well-defined subset so the
generality of the structure-dynamics relationships we find is
also well-defined. Our framework can also easily be extended
to include other kinds of chemical species and reactions as
desired.

We find that for these artificial reaction networks we con-
struct, there is a single stable steady-state for the chemical
concentrations. Computational simulations of the chemical
reaction dynamics upon perturbation of these steady-states
revealed four distinct types of relaxation dynamics. Interest-
ingly, we found that the qualitative features of the relaxation
dynamics are determined by only three properties of the stoi-
chiometric matrix which encodes the chemical network struc-
ture, namely, (i) the rank gap, (ii) the dimension of the left
null space, and (iii) the stoichiometric cone. We will define all
these properties precisely in subsequent sections, but crudely,
a non-zero rank gap indicates that no steady-state exists in
the absence of any degradation of chemicals, and the left null
space determines the existence of conserved quantities in the
dynamics. The stoichiometric cone determines the reachability
of the final steady state. Finally, we tested the applicability
of these three network-structural features to the prediction of
relaxation dynamics of a real biological (metabolic) network.
Our results and the general framework we have developed
provides valuable tools for exploring the relationship between
the network structure and chemical reaction dynamics, which
may be applied both to complex industrial manufacturing pro-
cesses as well as design of synthetic microorganisms designed
to perform certain chemical tasks (26, 27).

Model

Constructing a class of artificial reaction networks. For the
construction of the chemical reaction networks, we define
a set of chemicals C and the set of the reactions R they
participate in. In our artificial reaction network model, we
consider each chemical species to be a one-dimensional chain of
the monomers, such as AA or AABA where A and B represent
different monomer species. Each monomer idealizes chemical
elements such as hydrogen, carbon, nitrogen, and oxygen, or
even larger chemical moeities. The chemical reactions possible

are the splitting or ligation of the chemicals. For instance,
there are three splitting reactions possible with AABA as
the substrate: AABA → A + ABA, AABA → AA + BA,
and AABA → AAB + A. In the present manuscript, we
suppose that all reactions are reversible. That is, if there is
a splitting reaction AABA → A + ABA, the corresponding
ligation reaction A+ABA→ AABA exists.

With this set-up, the set of all possible chemicals C and the
set of all possible reactions R are fully determined by setting
the number of monomers M and the length of the longest
polymer L. For instance, in the case of M = 2 and L = 2, C
and R are given by

C = {A,B,AA,AB,BB},
R = {AA
 2A,AB 
 A+B,BB 
 2B}.

To avoid redundancy, we omit the direction of the polymers,
e.g., the polymer BA is identified as identical to AB. Given
this, the number of chemicals (|C |) and the number of reactions
(|R|) scale with the parameters M and L as

|C | ∼
L∑
l=1

M l ∼ML, |R| ∼
L∑
l=1

(l − 1)M l ∼ LML.

We now construct individual chemical reaction networks
by choosing appropriate subsets of R. Importantly, as each
reaction in R satisfies the mass-conservation principle, all the
reaction networks made by combining the reactions from R
satisfy this principle. The number of possible reaction networks
formed by choosing a subset of R, including disconnected
ones, is roughly given by 2|R| ∼ 2LM

L

. This number grows
astonishingly fast with M and L (256 for M = 2 and L = 2,
but ≈ 1019 for M = 2 and L = 4). Thus, we focus only
on the minimum networks which can produce a given set of
Ntgt target chemicals from a given set of Nin input chemicals
(in metabolic terms, those that can produce biomass from
the available nutrients) using the smallest possible number of
reactions.

We define a globally minimum network to be the set of
reactions R0 ⊂ R with the smallest |R0| which can synthe-
size all the targets from the input chemicals. In contrast a
locally minimum network is one from which no reaction can
be removed while still maintaining production of all targets
from the input chemicals. There are many locally minimum
networks where the number of reactions |R0| is not the global
minimum. Note also that we must choose the input chemicals
and targets such that the network consisting of all reactions in
R satisfies the condition of being able to synthesize the targets
from the input chemicals, otherwise no subset will be able to
do so. However, this ‘fully connected network’ is typically very
far from being locally minimum, let alone globally minimum.
Finding globally minimum reaction networks, where |R0| is
the global minimum, is computationally challenging. Here we
exploit the fact that this computation can be represented in
the form of the 3-satisfiability (3-SAT) problem. Being an
NP-complete problem, no polynomial time algorithm exists
(28). However, sophisticated 3-SAT solvers are available which
work very well in practice — in particular for the present prob-
lem for the minimum networks (see Materials and Methods
for more details). Henceforth, we will use the term ‘minimum
network’ to mean ‘globally minimum network’, and explicitly
specify it if we mean a ‘locally minimum network’.
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In the following, we deal with the minimum networks gener-
ated from the fully-connected network with M = 2 and L = 6,
with Nin = 2 and Ntgt = 1. The fully-connected network and
examples of minimum networks are depicted in Fig.1 A and
B, respectively.

Defining the chemical reaction dynamics of the constructed
networks. There are multiple choices for implementing the
kinetics of a given chemical reaction network. In the present
manuscript, we utilize the simplest and widely used formula-
tion — mass-action kinetics. Consider the following reaction
with ns and np reactants of the forward- and backward reac-
tion, respectively.

ns−1∑
i=1

σ+
s(i)Xs(i) 


np−1∑
i=0

σ−p(i)Xp(i).

By using mass-action kinetics, the rate of the reaction (also
called the ‘flux’) is given by

J = v+

ns−1∏
i=0

x
σ+

s(i)
s(i) − v−

np−1∏
i=0

x
σ−

p(i)
p(i) , [1]

where the capital letter Xi indicates the ith chemical, and its
concentration is denoted by the corresponding lower case letter.
s(i) and p(i) represent the index of the ith reactant of the
forward- and backward reactions, respectively. σ±i specify the
stoichiometric coefficients of the ith chemical in the forward-
(σ+
i ) and backward (σ−i ) reaction, respectively. v± indicates

the rate of the forward (v+) and the backward (v−) reaction.
When we summarize the information of the whole reaction
by using a reaction stoichiometric matrix, the relationship
between σ±ir (now we added the index of the reaction r) and
the stoichiometric matrix S is given by

σ+
ir =

{
−Sir (Sir < 0)
0 (otherwise), [2]

σ−ir =
{

Sir (Sir > 0)
0 (otherwise). [3]

Each (minimum) reaction network is represented by a cor-
responding reaction stoichiometric matrix S0, which denotes
the relationship of the interconversion among the chemicals
by the splitting and ligation reactions. The exponents in the
mass-action kinetics (Eq. (1)), σ±ir’s, are set by S0 according
to Eq. (2) and 3. This matrix however does not represent
the processes of uptake of input chemicals and harvest of the
targets. Therefore, we add the uptake reaction X̃(in)

i 
 X
(in)
i

for Nin inputs, where the symbol with tilde represent the cor-
responding chemical in the external environment. Also, we
suppose that the target chemicals are harvested together, and
once harvested, the target chemicals never returns back to the
reaction system, i.e,

∑Ntgt−1
i=0 X

(prp)
i → ∅. The kinetics of each

of these reactions are also implemented by the mass-action
kinetics given by

J
(in)
i = u

(i)
+ x̃

(in)
i − u(i)

− x
(in)
i , (0 ≤ i < Nin) [4]

J(tgt) = p+

Ntgt−1∏
i=0

x
(prp)
i − p−x̃(pr) [5]

We further suppose that all chemical species are sponta-
neously degraded or deactivated at a uniform rate φ which is
sufficiently smaller than the rates of the other chemical reac-
tions. Additionally, the external environment is large enough
so the concentrations of chemicals there are set to be constant.
Then, by summing up, the dynamics of the concentrations of
chemical species follow the equation below

ẋ = S0v0 + u− p− φx, [6]

where ẋ represents the time-derivative of x, dx/dt. S0 is
the stoichiometric matrix of the network. v0 represents the
reaction flux vector and each element has the form of Eq. (1).
u and p denote the vectors representing the rate of input
chemical uptake and target harvesting, respectively. If the ith
chemical Xi is one of the inputs (target), the ith element of
the vector u (p) is given by the nonzero entity J(in)

i (J(tgt)).
Once a reaction network and the inputs and targets are spec-

ified, the differential equation (Eq. (6)) is fully and uniquely
determined. In this sense, we call the Eq. (6) the accompa-
nying ordinary differential equation (ODE) of the reaction
network. For simplicity, we set all the rate constants except φ
to unity.

Relaxation behaviours and network structures

In the following sections, we study the link between the network
structure and the relaxation behaviour of the accompanying
ODE. First, we generate ca. 2, 000 minimum reaction networks
(see Methods for the parameters we used) and check if there
is a steady-state attractor. As far as we have confirmed, all
the networks each have a unique steady-state attractor.

For probing the relaxation characteristics, we applied per-
turbations to the attractor. Since the concentrations of the
chemicals span a wide range at the attractors, we apply pertur-
bations in a multiplicative manner. In addition, to normalize
the strength of the perturbations, we generated the initial
points on the surface of the |C0|-dimensional hypersphere,
centred at the steady-state attractor, with a given diameter
D. In concrete terms, a single initial point xini is given by
lnxini = lnxatt + D · r/‖r‖ with xatt is the steady-state at-
tractor of the model, and r is a vector of the random numbers
each lying in the interval [0, 1], respectively (see Materials and
Methods section for more details).

For a sufficiently small value of D, such that the dynamics
could be described adequately by linearizing the ODE around
the steady-state, it is known that the relaxation dynamics
would be exponential, with a rate determined by the eigneval-
ues of the Jacobi matrix. Hence, we choose a value of D that is
large enough to go beyond this linear regime so we can explore
how the non-linearities of the ODEs result in non-exponential
relaxation.

We simulated the accompanying ODE (Eq. (6)) of ca. 2, 000
minimum networks with Nptb(= 256) initial points for each
network. Visually, we found three typical types of relaxation:
exponential, plateau, and power-law type. Examples of each
are shown in Figs.1C-F. There appeared to be three groups
in terms of classification of the networks: (i) the networks
exhibiting only exponential relaxation regardless of the initial
concentrations, (ii) the networks showing only the plateau type
relaxation regardless of the initial concentrations, and (iii) the
networks displaying either the plateau or the power-law type
of relaxation depending on the initial concentrations. At this
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stage, we do not know if the plateau exhibited by the second
and the third type of networks are different in any sense, but
for later arguments we refer to them as "Metastable Plateau"
(independent of initial conditions) and "Confined Plateau" ∗

(dependent on initial conditions) in Figs. 1D and E.
To make the classification more quantitative, we computed

two quantities: the relaxation time and the migration length.
Here we define the relaxation time as the time point at which
the Euclidean distance, in logarithmic scale, between the state
and the steady-state attractor first becomes smaller than a
certain threshold value ε, that is

Trelax = min{t | ‖ lnx(t)− lnxatt‖ < ε}. [7]

While we adopted ε = 10−6, it is checked that our conclusions
are unchanged as long as ε value is in the range (10−6, 10−2).

Next, to distinguish between the plateau and the power-
law relaxation types, we quantified the total length of the
trajectory in concentration space during a given time period.
It is measured by the "migration length" defined as

L =
∫ b

a

∥∥∥d lnx
dt

∥∥∥dt, [8]

where we choose a = 100 and b = 0.01/φ in order to quantify
the "motion" of the trajectory in the intermediate time scale
(sufficiently larger than the time scale of the reaction rate
constants, which are unity, and sufficiently smaller than that
of the degradation, 1/φ). The migration length is computed
in the logarithmic scale to take the effect of low-concentration
chemicals into account. Additionally, we compute Lmax given
by Eq. (8) with b = 1010 (the end of the simulation) as the
upper bound of the integral.

Our prior expectation, from visual examination of the tra-
jectories (e.g., Figs.1C-F), was that since plateau type trajec-
tories are almost static in the time range t ∈ [100, 0.01/φ], the
normalized migration length L/Lmax would have a relatively
lower value, compared to that for power-law type dynamics.
We also expected that exponential relaxation dynamics will
result in lower Trelax values than the other two types.

Examples of the distribution of migration length of two
sets of networks are presented in Fig. 1G. The upper panel is
the distribution over all initial conditions for one network that
shows Metastable-plateau dynamics, and the bottom panel is
for one network exhibiting both confined-plateau and power-
law relaxation. The bottom distribution shows a clear double-
peak due to bimodality of the relaxation dynamics, while the
upper distribution is rather unimodal. We suppose that if
networks exhibit a bimodal distribution due to the presence
of both power-law relaxation in addition to confined-plateau
relaxation, the average value of the normalized migration
length L/Lmax (averaged over all initial conditions) would be
larger than the corresponding value for metastable-plateau
networks. Thus, we utilize 〈L/Lmax〉 as an indicator of the
variety of the relaxation behaviour.

The average relaxation time and the average migration
length are computed for each network, and we plotted the
distribution over the networks. As shown in Fig.1H, the
distribution has four distinct peaks, and we classified the

∗"Confined" here means two things: the first meaning is that the initial conditions leading to the
plateau behaviour are confined in a certain region in the phase space. The second meaning is the
confinement of the trajectory in the so-called "stoichiometric cone". See the subsection III for more
details.

networks from type-I to type-IV according to the nearest
peak. While the separation of the type-II and type-IV peaks is
less clear, the distribution-based classification of the networks
matched very well to the visual grouping of the models: the
type-I networks (small Trelax and large L/Lmax) exhibit only
exponential relaxation; most of the type-II networks showed
metastable-plateau relaxation; and, the type-III networks and
most type-IV networks exhibited both the confined-plateau
and the power-law type relaxation depending on the initial
concentrations.

Note that the final steady-state attractor is reached at the
latest by t ∼ 1/φ, which is the timescale of the spontaneous
degradation, and the qualitative differences between the dif-
ferent types of relaxation only appear in the t� 1/φ region.
These observations mean that the difference in the relaxation
behaviour during t� 1/φ highlight structural features of the
reaction networks and would not be changed by varying the
value of 1/φ as long as it is sufficiently large. What structural
features of the networks result in the four different relaxation
types observed in Fig.1H? We now show that the relaxation
behaviour is indeed determined by three features of the stoi-
chiometric matrix (which in turn encodes the structure of the
network), namely, (I) the rank gap, (II) dimension of the left
null-space, and (III) the stoichiometric cone.

I. The rank gap. The distinct relaxation behaviours are ob-
served over timescales shorter than 1/φ, and thus, should
stem from the dynamics (Eq. (6)) without the degradation
term. The clear difference between the exponential relaxation
and the others is the relaxation time. The exponential type
trajectories already reach the attractor well before t exceeds
1/φ. We now show how measuring the ranks of the stoichio-
metric matrix and some enlargements can inform us about the
reachability to the attractor in the absence of the degradation
term.

First, we introduce additional notation. Let S1 denote the
enlarged matrix (S0|U (0)|U (1)| · · · |U (Nn−1)), where U (j)’s are
vectors of the stoichiometry of the input uptake reactions, i.e.,
U

(j)
i is unity if the ith chemical is the jth input chemical and

zero otherwise. By vertically stacking v0 and u in Eq. (6) and
denoting it as v1, we can rewrite Eq. (6) with S1 instead of
S0. Then, removing the degradation term, we obtain

ẋ = S1v1 − p. [9]

Note that Eq. (9) represents the dynamics of chemical
concentration driven by the input chemical uptake, internal re-
actions, and the target synthesis. This equation approximates
the original equation Eq. (6) for t� 1/φ.

For there to exist a steady-state of this equation, there
must be a pair of vectors, v∗1 and p∗, satisfying S1v

∗
1 = p∗.

Since we are not interested in the trivial solution v∗1 = 0,
the necessary and sufficient condition for the existence of a
steady-state is that the rows of S1 and P (The stoichiomet-
ric part of the harvest reaction) are linearly dependent, i.e,
rankS1 = rank(S1|P ), where P is the stoichiometry of the tar-
get synthesis (i.e., the ith element is unity if the ith chemical
is one of the target precursors and zero for the rest).

We found that the rank gap δ ≡ rank(S1|P )− rankS1 for
all type-I networks (showing only the exponential relaxation)
is zero. Interestingly, all type-II networks also satisfied the
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Fig. 1. (A) The fully-connected network for M = 2 and L = 6. (B) Two examples of the minimum network which synthesizes a single target from two inputs. The inputs and
target chemicals are indicated by the red arrows and the blue arrow, respectively. In A and B, the bipartite representation of the chemical reaction network is adopted. For
example, the reaction S1 + S2 → P is depicted as follows (see inset of the panel B); first, the chemical nodes representing S1 and S2 (the gray disks) are wired to the
reaction node (the pink diamond), and then, an edge connects the reaction node and the chemical node of the chemical P (the gray disk). Directions of the reactions are
chosen to be consistent with the steady-state flux distribution. (C to F) Four typical relaxation dynamics emerged from the minimum networks: Exponential, Metastable-Plateau,
Confined-Plateau, and Power-law relaxation. The vertical and horizontal axes are on a logarithmic scale. The four dynamics are classified into three category based on the
networks types that exhibit the corresponding dynamics. (G) Example distributions of the migration length (see text for definition). The top panel is the distribution over all initial
conditions for one network showing metastable-plateau type relaxation, and the bottom panel is from a network showing both the plateau and power-law type relaxations. (H)
Classification of the minimum networks based on the average relaxation time (see text for definition) and the average migration length.
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δ = 0 condition. On the other hand, all the type-III and type-
IV networks have δ = 1, i.e., in the absence of degradation no
steady-state exists.

This implies that there are two types of plateau relaxation.
The plateaux exhibited by type-II networks are the steady-
states of the model equation without degradation (Eq. (6)).
However, the plateaux exhibited by type-III and IV networks
are not the steady-state of Eq. (6), but are extremely slow
transient dynamics towards the final steady-state for the model
with degradation. Indeed, we find that the type-II plateaux
correspond to what we had earlier termed "metastable-plateau",
while the type-III and IV plateux correspond to what we called
"confined-plateau".

II. The left null-space. The rank gap does not distinguish be-
tween type-I and type-II networks (which both have δ = 0).
Fortunately, these networks exhibit a unique type of relax-
ation regardless of the initial concentrations (exponential or
metastable-plateau). Thus, we can expect that the difference
stems from the network structure.

Fig.2 shows two time courses of the same type-II network
but starting from different initial concentrations. The plateau
regions differ not only in the concentrations of the chemicals
but also in the rank order of the chemical concentrations (the
identical color is used for each chemical species in both figure
panels).

10-5 1 105 1010

103

10-1

10-5

C
o
n
c
e
n
tr
a
ti
o
n
s

Time

103

10-1

10-5

Fig. 2. Two time courses emerged from the same minimum type-II network when
started with different initial concentrations. Both the vertical and horizontal axes are
plotted in the logarithmic scale.

Considering that each plateau corresponds to the steady-
state of ẋ = S1v1 − p and the model eventually reaches a
unique final attractor, possible mechanisms to generate the
variations are limited. We hypothesized that such type-II
networks might be have combinations of chemical concen-
trations that, over timescales much shorter than 1/φ, are
constrained to be almost-conserved. If different initial con-
ditions have different values for such conserved quantities,
the system might evolve towards a different steady-state of

ẋ = S1v1 − p for each of these. We therefore computed the
dimension of the left null-space of the enlarged stoichiometry
matrix, I := dim (coker)S2, where S2 = (S1|P ), because the
left null-space of the reaction stoichiometry represents the
conserved quantities of the reaction dynamics. We found that
the left null-space of all the type-I models was {0}. In contrast,
all the type-II models had non-zero I†. Further, we found that
the type-III models had no conserved quantity (I = 0), while
the type-IV networks had at least one (I ≥ 1).

So far, we have fully characterized the type-I and type-II
networks. The type-I networks have no rank gap, δ = rankS1−
rankS2 = 0, and no conserved quantity I = dim (coker S2) =
0. Type-II networks also have no rank gap but have at least
one conserved quantity, I ≥ 1.

III. The stoichiometric cone. Now we move onto the networks
with δ = 1‡. Due to the non-zero rank gap, there is no
steady-state until t becomes comparable with 1/φ, i.e., the
spontaneous degradation starts affecting the dynamics of the
concentration. Thus, in these type-III and type-IV networks,
the relaxation dynamics over timescales smaller than 1/φ is not
to some meta-stable almost-steady-state, but a slow transient
dynamics towards the final attractor with degradation. With
power-law relaxation there is a slow but continuous approach
towards the final attractor, while with the confined-plateau
dynamics the trajectory is practically static for a long time
before suddenly "jumping" to the final attractor.

We therefore hypothesized that in the power-law case, the
attractor is reachable from the initial point, but the degrada-
tion term φx is necessary for making the final concentrations a
stable steady-state. By contrast, in the confined-plateau case
getting close to the attractor may itself be hindered in the
absence of the degradation term. To check this, we introduce
a subset of the phase space defined as

SC(xini) = {x ∈ R|C0|
+ |x = xini+S2v2, v2 ∈ R|R0|, J(tgt) ≥ 0}.

SC(xini) is the region in the phase space "reachable" from the
initial point by controlling the chemical reaction fluxes in any
way except reversely harvesting the target chemicals. Note
that in the definition, no flux balance (steady-state condition)
is required. Due to the non-negativity condition (J(tgt) ≥ 0)
and the non-zero rank gap δ, SC(xini) does not coincide with
the whole space R|C0|

+ . This SC(xini) is equivalent to the
stoichiometric cone in the field of chemical reaction network
theory (29), and thus, we term SC(x) the stoichiometric
cone corresponding to the initial condition x in the following
arguments.

We can now mathematically formulate our hypothesis
on the relationship between reachability and relaxation be-
haviours: for the initial points whose stoichiometric cone
SC(xini) contains the final attractor, relaxation becomes
power-law-like, whereas, if the stoichiometric cone of the initial
point does not include the attractor, plateaux appear during
the relaxation (for the algorithm of judging the inclusion rela-
tionship, see Methods).

To examine the relationship between the relaxation type
and the position of the initial concentrations in the phase

† In the present minimum reaction models, there is a lower limit of I for the models with rankS1 =
rankS2 , given byM −Nn , whereM is the number of monomer types andNn is the number
of input chemicals . For more detail, see SI Text

‡Since the target formation reaction is represented as the single reaction (Eq. (5)), the rank gap
between S1 and S2 is one at most.
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space, we computed the average of the normalized migration
length L/Lmax separately for the initial concentrations whose
stoichiometric cone does and does not contain the final at-
tractor§. Fig. 3 is the scatter plot of the two average values
for all the minimum networks of type-III and IV that we
constructed. The migration length averaged over the initial
concentrations with xatt ∈ SC(xini), 〈L/Lmax〉in, and with
xatt /∈ SC(xini), 〈L/Lmax〉out are plotted in the horizontal
and vertical axis, respectively. In all networks, 〈L/Lmax〉in is
larger than 〈L/Lmax〉out. This result supports our intuition
that some trajectories are confined in a region of the phase
space and cannot get closer to the attractor.

The difference between the initial conditions leading to the
power-law and plateau relaxation is intuitively illustrated by
a simple toy model shown in Fig.4. The model equation is
given by

dx
dt =

(
1 −2
1 −1

)(
C − x(A)x(B)

(x(A))2x(B)

)
− φx, [10]

where we set the direction of the reaction from left to right on
Fig.4, and C is the concentration of the input chemical (the
leftmost chemical in the schematic). In the model, the second
reaction is the target harvesting reaction.

The first reaction produces one molecule each, but the
second reaction consumes two molecules of chemical A and
one molecule of chemical B. As a consequence of the imbalance,
the stoichiometric cone of the model is given by ¶

SC(xini) = {x ∈ R2
+|x(B) − x(A) ≥ x(B)

ini − x
(A)
ini }.

This means that the quantity x(B) − x(A) only increase by the
two reactions. In the model, we need to consume two molecules
of A to consume one molecule of B. However, to increase the
concentration of A, one needs to utilize the first reaction
(note that the second reaction is irreversible), increasing the
concentration of B by the same amount simultaneously.

Therefore, if the initial gap of the concentration is larger
than the gap at the attractor, x(B)

att − x
(A)
att < x

(B)
ini − x

(A)
ini , the

system cannot get closer than a certain distance for t� 1/φ.
For instance, if x(B)

ini −x
(B)
att > x

(A)
ini holds, the closest reacheable

concentration of the chemical B is x(B)
ini − x

(A)
ini > x

(B)
att

‖. In
the contrast, if the stoichiometric cone contains the attractor,
x

(A)
att � x

(A)
ini and x

(B)
att � x

(B)
ini for example, the system can

approach arbitrary close to the attractor even in the absence
of the degradation term.

Typically, the quiescent dynamics on the confined plateau
occur because the concentrations of one or a few chemicals
become pretty low, as the chemical A in the toy example.
Therefore, the concentrations at the plateau are not necessarily
the closest possible state to the attractor in the stoichiometric
cone but close to one of the axes of the Cartesian coordinate.

§Since the type-IV networks have conserved quantities, the stoichiometric cone of an initial point
never contains the attractor unless the values of the conserved quantities at the initial point and
the attractor are equal. This situation never happens by applying random perturbations to generate
the initial points. Thus, we first search for the nearest point from the initial point, x̃ini , that has the
same values as the conserved quantities with the attractor (see Materials and Methods). Then, we
checked if the attractor is in the stoichiometric cone of x̃ini .

¶Note that the stoichiometic matrix S2 for computing the stoichiometic cone in this model is

S2 =
(

1 −2
1 −1

)
‖By inversely running the first reaction.
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Fig. 3. The normalized migration length is averaged separately for the time courses
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Fig. 4. A toy model to illustrate the power-law and plateau relaxation. The leftmost
chemical is the external chemical whose concentration is fixed to a constant value.
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Fig. 5. The summary of the relaxation type and network-structural features. Network
types are classified according to the rank gap δ and the dimension of the cokernel
of the stoichiometry matrix S2, I. In the networks with δ = 1, confined plateau
or power-law dynamics emerges depending on whether the final attractor is in the
stoichiometric cone of the initial point.
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A. Summary of the relaxation-structure relationship. To sum-
marize the above classification: Networks that have zero rank
gap and no conserved quantity (type-I) always exhibit expo-
nential relaxation dynamics. Networks that have zero rank
gap but some conserved quantities (type-II) always exhibit
plateau relaxation. Type III and type IV networks both have
a rank gap of 1, but the former have no conserved quantities,
while the latter have at least one. Both these networks exhibit
either power-law relaxation or plateaux, depending on the
initial conditions. For both types of networks, the type of re-
laxation for a given initial condition is determined by whether
the final attractor is reachable from that initial point. If it is,
then we observe power-law relaxation, and if it is not, then we
observe confined plateau relaxation. Thus, from the stoichio-
metric matrices associated with a given network, by computing
three network-structural quantities, namely, (i) the rank gap
δ, (ii) the dimension of the left null space I = dim (coker)S2,
and (iii) the stoichiometric cone, we can predict whether the
relaxation will be exponential, power-law or plateau-type. A
graphical summary of this result is presented in Fig. 5.

Applicability of the structure-dynamics relationship for
non-minimal networks

So far, we have explored the relationship between the network
structure and emerging relaxation dynamics. There, we fo-
cused on the networks capable of synthesizing the target from
given inputs with the fewest possible reactions. In this section
we show that the three network-structural features predict the
relaxation dynamics well in non-minimal networks also, and
even in a real biological network.

Combining minimum networks. Here we combine two mini-
mum networks which share the same inputs and the targets.
Fig. 6 is one instance of such a combination. The two networks,
labelled G and H, are minimum networks that synthesize the
same target from the same input. Both networks have a
non-zero rank gap δ, and in addition, the dimension of the
left-null space I is zero for network G but 1 for network H.
The combined network is obtained as the union of the sets of
chemical species and reactions of the two networks and, thus,
has redundant reactions (Fig. 6A).

Interestingly, the combined network G∪H has zero rank gap
(δ=0) and no conserved quantity (I = 0). As a consequence,
the relaxation dynamics of the combined network becomes a
simple, exponential-type even though the original networks
exhibit the power-law and the plateau relaxation, respectively
(Fig. 6B-D).

We can also see that the effective structure of the network
varies over time when we combine the two networks with
different rate-constants. We construct a combined network
which has rate constant unity for all reactions from network H,
and rate constant 1/τ � 1 for those reactions only in G. This
combined network has an effective structure with non-zero δ
and I until the dynamics start to "feel" the additional part
brought from G (t . τ). Thus, the relaxation type becomes
the power-law or the plateau type for t . τ . Subsequently,
once the dynamics feel the whole structure of the combined
network, both δ and I are zero, and thus, the relaxation
dynamics transition to the exponential-type and quickly relax
to the steady-state (Fig. 7).

Large networks. Next, we ask if the three quantities, the rank
gap, the left null-spaces, and the stoichiometric cone, also work
as indicators of the relaxation dynamics of large networks. For
this purpose, we generated a number of reaction networks
consisting of a specified number of chemicals and reactions
utilizing Mixed Integer Linear Programming (for details, see
Methods). In the following, we deal with |C0| = |R0| = 64
networks constructed from the fully-connected network with
M = 2 and L = 8 model. We chose the number of the input
chemicals Nin as 2 and the number of target chemicals Ntgt
as 1.

We classified the networks based on the rank gap (δ) and
the dimension of the left null space (I) of the stoichiometric
matrix. Examples of the dynamics of type-I and type-II net-
works are shown in Fig. S1. In line with the analysis of the
minimum networks, most of the type-I and type-II networks
exhibited the exponential-, and plateau-type relaxation, re-
spectively, regardless of the initial concentrations. However,
when the concentrations of the chemicals at the attractor span
a wide range, several reactions having chemicals with low con-
centrations are considerably slowed down, and the relaxation
time course cannot be described simply by the words "expo-
nential" or "plateau". The critical values of the concentration
range are studied in Fig. S2.

The relaxation dynamics get much more complicated for
the networks with a non-zero rank gap δ > 0. Three example
time courses are shown in Fig. S3. Some trajectories are far
from what we can call "power-law" or "plateau" relaxation.
However, since the migration length is still capable of quantify-
ing the differences of the relaxation dynamics, we examine the
relationship between the migration length and the confinement
of the trajectory in the stoichiometric cone.

Fig.8 is the scatter plot showing the relationship between
〈L/Lmax〉in and 〈L/Lmax〉out of each large network we con-
structed. In contrast to the minimum network case, the rela-
tionship 〈L/Lmax〉in > 〈L/Lmax〉out is violated by a few large
networks, but the broad trend remains the same – the trajec-
tories confined in the stoichiometric cone tend to show lower
values of normalized migration length.

A biological example

Lastly, we demonstrate that the features of the network struc-
ture that we have highlighted, also play a role in a real biolog-
ical network, namely, the metabolic network model of glucose
fermentation in Lactococcus lactis (Fig.9A). The model is
adopted from the reference (30). The network takes up glu-
cose (GLC) from the environment and ferments it. The target
of the fermentation — either lactate (LAC), ethanol (ETOH),
acetate (AC), acetoin (ACET), or butanediol (BUT) — is
released into the environment. We briefly note some details
of the model: the reaction rates are given by the Michaelis-
Menten type functions (31), and the spontaneous degradation
term (−φx) is not implemented in the original model. The
reactions depicted in the network diagram are all the reac-
tions in the model (for a full description of the model, see the
original paper).

A significant feature of the model is the balance between
NAD and NADH. Suppose that a single glucose molecule is
converted into either lactate or ethanol, then the production
and consumption of NAD and NADH each balance. However,
when a glucose molecule is converted to acetate and secreted,
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DRAFTFig. 6. A. The two networks G and H, sharing some chemical species, including the input and the target, are combined to form the union network G ∪ H. Each network G
and H has a non-zero rank gap δ, and network H has one conserved quantity. However, the combined network has zero rank gap and no conserved quantity. B and C. The
time courses of the network G (B) and H (C) exhibit the power-law or the confined-plateau type relaxation due to the non-zero rank gap. D. Since δ and I are both zero in the
combined network G ∪ H, the relaxation time courses is of the exponential type.

a single NAD molecule is consumed, and a single molecule
of NADH is produced. Thus, if the pathway GLC → AC is
utilized, the concentrations of NAD and NADH cannot balance
without the NADH oxidase (NOX) reaction (NADH→ NAD)
drawn separately from the main network in Fig.9A. Indeed,
the stoichiometric matrix of the fermentation model will have
a rank gap δ = 1 when NOX is removed from the model, while
with this reaction included it has a zero rank gap.

Here, we expect to observe a qualitative difference in the
relaxation dynamics that originate from the rank gap by com-
paring the relaxation dynamics of the model with- and without
the NOX reaction. However, the model without the NOX reac-
tion can never reach a steady-state attractor. Recall that the
relaxation to the attractor in the polymer models is possible
because of the spontaneous degradation. We cannot introduce
it into this model because the total concentrations of the fol-
lowing chemical pairs are set to be constant: ATP and ADP,
NAD and NADH, and Coenzyme-A (CoA, which does not
appear in the network diagram) and Acetyl-CoA (AcCoA).
Instead, we changed the rate constant of the NOX reaction,
100 times faster and slower than the value used in (30), which
results in the effective structure of the network in a certain
time range to be with- and without the NOX reaction. Here,
the slow down of the NOX reaction corresponds to the de-
crease of oxygen in the medium. Also, we set the external
acetate concentration to be 10−4 (mM), leaving the rest of the
parameter values unchanged.

Figs. 9B and C show the examples of the relaxation time
course with the fast (B) and slow (C) rate constant of the
NOX reaction. As seen from the figures, the relaxations are

exponential-like in the model with a fast NOX reaction, and
are power-law or plateau-like in the model with the slow NOX
reaction.

Discussion

In the present manuscript, we have studied a class of chemical
reaction networks consisting of polymer chemicals that can
split and ligate with each other. The networks satisfy the
law of mass conservation and can generate a variety of mass-
conserving sub-networks. The (globally) minimum networks
capable of synthesizing a specified set of target precursors from
a set of input chemicals are computed within a reasonable
time by utilizing the algorithm for solving the SAT problem.

We generated a large number of such minimum networks
and simulated their chemical reaction dynamics to unveil the
relationship between the network structure and the relaxation
dynamics after perturbation of the steady-state. We found
three types of relaxation dynamics: exponential, power-law
and plateau type. In the first instance it is interesting that
even though we choose all reaction rates to be unity, i.e. we
do not introduce by hand multiple timescales into the sys-
tem, much longer timescales much emerge spontaneously in
the relaxation dynamics. In this simplified setting therefore
such slow dynamics or long-term memory must arise from the
network structure. We found that we could predict which
relaxation behaviour will be exhibited from three structural
features of the reaction networks, namely, (i) the rank gap,
(ii) the dimension of the left null space, and (iii) the stoichio-
metric cone. We showed that these three features determine
the relaxation behaviour not only in the minimum networks,
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Fig. 7. Three time courses exemplifying the dynamics of the combined network
G ∪ H with different rate-constants of the reactions (unity for reactions in H and
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dynamics for t . τ shows the plateau- or the power-law relaxation behaviour, while
after that, the state exponentially converges to the steady-state attractor, except the
left bottom case.
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but also in combinations of the minimum networks, in large
networks with many redundant pathways, as well as in one
example of a real metabolic network.

Our results therefore provide easily computable criteria for
predicting whether a given chemical reaction network can lead
to slow dynamics. By examining the rank gap and the left
null-space, one can predict whether the concentration of the
chemicals will quickly relax to a steady-state or not. A non-
zero rank gap indicates that the reaction network cannot have
a steady state in the intermediate timescale. except reversely
harvesting the target chemicals However, as illustrated by the
network combination example and the metabolic networks
of Lactococcus lactis, the behaviours of the chemical reaction
network reflect the effective network structure at the timescales
of interest. Therefore, over certain timescales, metabolic, and
other real chemical networks, may effectively behave as if
they have a non-zero rank gap, leading to non-exponential
relaxation behaviours.

Finally, we would like to emphasise the flexibility of our
theoretical framework. Even with only polymer chemical
species, the network size is easily controlled by manipulating
the maximum length L and types of the monomersM . Further,
the types of species and chemical reactions used to construct
the networks can easily be expanded without affecting key
chemical properties like mass conservation. For instance, one
could include all species and reactions known to occur in
microbes (32). The SAT formulation can be equally easily
used in such a case also to construct minimum networks. We
expect that our approach for constructing and analyzing such
artificial reaction networks will provide a useful toolbox for
exploring the extensive world of out-of-steady-state dynamics
of chemical reaction networks.

Method

Generating artificial reaction networks. For the set of chemi-
cals C , we wish to identify the smallest set of reactions R0 ⊆ R
such that target chemicals can be produced from the available
inputs.

As input we have the set of available input chemicals U ⊂ C
and the set of target chemicals V ⊂ C that must be produced.
The main idea of our approach is to consider the Boolean
expression

B = (|R0| ≤ K) ∧
∧
v∈V

CanMake(v),

where CanMake(v) depends on the input chemical set U . We
may then iteratively solve this SAT problem starting from
K = 1 (to |R|) and stop when we can satisfy the expression.
This ensures that we find the global minimum solutions.

The Boolean at most expression, |R0| ≤ K, can be ex-
pressed efficiently using auxiliary variables (33). What remains
is the specification of the Boolean function CanMake. We can
define this directly by the binary tree of reactions that leads
from the inputs to the targets. For instance if the required
target is AA and inputs are AB and AC, we could write

CanMake(AA) = (RAB
A,B ∧RAA
A,A)
∨ (RAC
A,C ∧RAA
A,A) .

This fully defines a SAT-problem in the reaction R-variables.
However, this approach makes exponentially long expressions
for large sets of chemicals and reactions.
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Fig. 9. (A) The metabolic model of glucose fermentation in Lactococcus lactis adopted from (30). The red colored metabolites and the blue colored metabolites are the
intracellular- and extracellular metabolites, respectively. (B and C) The representative time courses of the model with the fast NOX reaction (B) and the slow NOX reaction (C).
The time courses shown in the neighboring panels start from the same initial concentrations.

The reason for the long expressions is mainly repetitions:
even in the tiny example above, the reaction variable RAA
A,A
appeared in both sub-expressions. To remedy this, we use the
concept of equisatisfiability to introduce auxiliary variables
that describe if a specific chemical c ∈ C can be produced.
Using these variables we can truncate the binary tree after one
level. We thus intend to write the condition to make targets
as ∧

c∈G

c ∧
∧
c∈C

Relation(c),

where the Boolean Relation function specifies the relationship
between chemicals as specified by the set of reactions. For
instance, for the above example:

Relation(AA) = AA�
[
A ∧RAA
A,A

]
, [11]

i.e. to make AA you need available A and the reaction AA

A,A. Here, � denotes exclusive nor indicating for X�Y that
either both X and Y are True or both are False. Likewise,
for example

Relation(A) = A�
[
(AA ∧RAA
A,A) ∨ (AB ∧RAB
A,B)

∨ (AC ∧RAC
A,C)
]

= A�
[
(AA ∧RAA
A,A) ∨RAB
A,B ∨RAC
A,C

]
,

where we used the fact that AB and AC are input chemicals.
With this approach, however, we need to restrict the direc-

tion of the reactions: reactions should only be used in one direc-
tion as the network of reactions from inputs to targets should
be directed and acyclic (a DAG). To fix the directionality, we
introduce Boolean direction variables {Di} with the convention
that D = True indicates breakdown reactions and D = False
indicates assembly. If we denote the reaction AA
 A,A by k,
Eq. (11) thus becomes DRelation(AA) = AA� [A∧Rk∧¬Dk],
whereas the DRelation for A would use Dk without the nega-
tion. When there is no reaction, we do not care about the
direction of the (non-existent) reaction and we thus include
a term that enforce Dk = True if there is no reaction, i.e.
¬Rk ⇒ Dk = Rk ∨Dk.

The final reformulated expression is

B = (|R0| ≤ K) ∧
∧
c∈G

c ∧
∧
c∈C

DRelation(c) ∧
∧
i∈R

(Ri ∨Di).

The only remaining complexity is the requirement that the
solution of reactions is acyclic. We implement this requirement
outside the language of Boolean expressions and simply discard
such solutions. If only cyclic solutions are found at a certain
K, these solutions are disallowed at larger K, thus avoiding a
large number of degenerate cyclic solutions at large K.

All solutions to the SAT-problem are found using the Glu-
cosamine solver via the boolexpr interface.

Checking if the attractor is in the stoichiometric cone. For
checking if the attractor is in the stoichiometric cone of the ini-
tial point, SC(xini), we computed the L∞ norm between the
attractor and the points in the stoichiometric cone and mini-
mize the norm, by utilizing the following linear optimization
problem.

minimize max
∣∣∣x(i)

att − (x(i)
att +

∑
j

(S2)ijv(j)
2 )
∣∣∣, (0 ≤ i < |C0|)

subject to x
(i)
att +

∑
j

(S2)ijv(j)
2 > 0, (0 ≤ i < |C0|)

J(pr) > 0

If the minimum distance is smaller than 10−12, we regard that
the attractor is in the stoichiometric cone and vice versa.

Finding x̃ini. For obtaining x̃ini, the nearest point to the ini-
tial point with the same value of the conserved quantities Q
with that of the attractor, we utilized the following quadratic
optimization problem with δx as variables

minimize ‖δx‖2

subject to Q(xini+δx) = Q(xatt)
x ≥ 0.

and obtained x̃ini as x̃ini = xini + δx.
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Generating networks with a specified size. Due to the com-
putational cost, we adopt a mixed-integer linear (MIL) op-
timization approach for generating the large (non-minimal)
networks, instead of the SAT approach. To obtain a network
with |C0| chemicals, |R0| reactions, Nin inputs, and Ntgt target
precursors by solving the following MIL problem:

minimize 1|C | · ξ

subject to S̃(v(+)
s − v(−)

s ) + Umaxns + ξ ≥ g,

0 ≤ v(±)
s ≤Mσ,

2−
∑
s

ns − g − T̃σ ≤M(1|C | − θ)

3σ ≤ |S̃|θ
1|C | · ns = 1
1|C | · np = Ntgt

1|C | · θ = |C0|
1|R| · σ = |R0|

[12]

where the continuous variables are ξ ≥ 0 and v(±)
s ≥ 0, and

the bool variables are ns,np, θ,σ. ξ and v(±)
s are the slack

variable and the forward- and backward reaction flux vectors
under the environment s, respectively. ns and np denotes the
choice of the input and the target. If the ith element of the
vector ns (np) is one, the ith chemical is the input supplied
under the environment s (the target). θ and σ denotes which
chemicals (θ) and reactions (σ) are used. If the entity is unity,
it is used.
S̃ and Umax are the stoichiometric matrix of all reactions

in R, and the maximum uptake rate of the input chemicals.
T̃ and |S̃| are defined as T̃ij = |sgn(S̃ij)| and |S̃|ij = |S̃ij |. 1n
is the abbreviated representation of n-dimensional vector with
all the elements being unity.

Each constraint of Eq. (12) represents the following condi-
tions. (First line) The total production rate of the ith chemical
should be larger than pi (= 1 if it is one of the targets and
= 0 otherwise). (Second line) The rth reaction flux can be
turned-on if σr is one. (Third line) If θi can be unity only
if two or more (one or more for the inputs and the targets)
reactions connected to the ith chemical are turned-on. (Forth
line) To turn the r th chemical on, the inputs and the target of
the reaction should be in the network. The fifth to the eighth
line set the number of the inputs, targets, total chemicals, and
total reactions.

Eq. (12) is always feasible and if the optimal value of the
objective is smaller than 10−12, the original network {C ,R}
has a subnetwork of the specified size. For generating multiple
networks, we introduce an additional constraint

σi = 0, i ∈ Koff

where the index set Koff consists of randomly-chosen indices.
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