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The tissue module (TM) was defined as an architectural area containing recurrent cellular
communities executing specific biological functions at different tissue sites. However, the
computational identification of TMs poses challenges owing to their various length scales,
convoluted biological processes, not well-defined molecular features, and irregular spatial
patterns. Here, we present a hypothesis-free graph Fourier transform model, SpaGFT, to
characterize TMs. For the first time, SpaGFT transforms complex gene expression patterns
into simple, but informative signals, leading to the accurate identification of spatially
variable genes (SVGs) at a fast computational speed. Based on clustering the transformed
signals of the SVGs, SpaGFT provides a novel computational framework for TM
characterization. Three case studies were used to illustrate TM identities, the biological
processes of convoluted TMs in the lymph node, and conserved TMs across multiple
samples constituting the complex organ. The superior accuracy, scalability, and
interpretability of SpaGFT indicate that it is a novel and powerful tool for the investigation
of TMs to gain new insights into a variety of biological questions.

A tissue module (TM) is a critical concept for investigating molecular tissue biology based on
molecule compositions and functions in either homogenous or heterogeneous tissues. However,
there is no rigorous computational formulation for TM identification because of the following: (/)
TMs exhibit a wide range of length scales, and the repository of TM spatial patterns is unknown;
and (i/) the molecular features of a TM and the relevant feature crosstalk of convoluted TMs are
not well-defined’. Among the to-be-discovered molecular features, a group of spatially variable
genes (SVGs) can be used to represent and define TMs if they share recurrent and similar spatial
expression patterns within one or across multiple datasets. Particularly, the prediction of SVGs
can be fully enabled using spatially-resolved transcriptomics (e.g., 10X Genomics Visium and
Slide-seqV2?), which simultaneously measures gene expression and spatial locations of spots
within healthy or pathogenic tissues®. Existing SVG prediction methods are mainly hypothesis-
driven and developed based on statistical frameworks (e.g., SpatialDE) or graph neural networks
(e.g., SpaGCN)"*. Although these methods exhibit good SVG detection performance, are
equipped with rigorous statistical evaluation, and provide valuable biological insights, they exhibit
two main limitations: (/) these methods can effectively identify certain well-defined patterns (e.g.,
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radial hotspot, curve belt, or gradient streak), but they exhibit a lesser detection performance for
irregular patterns, such as the T cell zone, B cell zone, or germinal center (GC) in the lymph node’;
and (ii) although existing tools exhibit a competitive SVG identification accuracy with sacrificing
scalability (e.g., SpatialDE and SPARK work well for Visium data), the accuracy decreases if a
tool significantly improves the efficiency (e.g., SPARK-X)® of datasets with a large number of
spots/cells®’.

To solve these challenges, we proposed a hypothesis-free graph Fourier transform framework
(GFT), named SpaGFT, for SVG and TM identification from spatial transcriptomics data. Our
framework transforms obscure spatial gene expression patterns from the spatial domain to simple,
informative, and quantifiable frequency signals in the Fourier domain. First, by taking advantage
of Fourier domain signals, SVGs can be identified quickly and accurately without relying on the
spatial pattern hypothesis. To demonstrate the superior performance and efficiency of the
SpaGFT, 31 public datasets were used to compare the performance of SpaGFT to those of other
state-of-the-art tools. Furthermore, SVGs with similar Fourier domain signal patterns can also be
grouped into clusters, which are defined as TMs in our framework. We used three cases to explain
the major applications and biological insights of the identified TMs from the gene-centric
perspective. In the first case, we proposed a TM ID card to define TMs by showing the following:
(/) the signature Fourier domain signal patterns; (ii) the corresponding SVGs with similar spatial
patterns; (iii) the enriched biological functions of these TM-associated SVGs; and (iv) the relevant
cell type annotations. In the second case, SpaGFT showed its capability of identifying short-length
scale TMs and revealing convoluted biological processes among distinct TMs in human lymph
nodes. Lastly, we used seven mouse samples from two anatomical views to (/) demonstrate the
contribution of tissue motifs to understanding the 3D structures of the mouse brain from a 2D
perspective; and (ii) conclude that conserved and connected TMs shared by multiple samples
compose the basic functional units of complex organs. Overall, the results revealed that SpaGFT
can accurately identify SVGs at a fast computational speed, and for the first time, provide a
computational formulation and strong biological interpretation for TM identification from a gene-
centric perspective.

Results

SpaGFT is a graph Fourier transform framework for SVG identification and TM
characterization. SpaGFT generates a novel representation of gene expression and the
corresponding spot graph topology in a Fourier space (Fig. 1a), which enables TM identification
and enhances SVG prediction and interpretation. This transform does not rely on predefined
spatial pattern® assumptions, which ensures its generalizability in identifying both well-defined
and irregular SVG patterns across various datasets (Fig. 1b). Particularly, the core algorithm of
SpaGFT projects spatial transcriptomics data on an orthogonal basis, known as Fourier modes
(FM), which is represented in the increasing order of its frequency, with FM; having the lowest
frequency (Supplementary Fig. 1a). A low-frequency FM contributes to a slow signal variation,
which results in a more recognizable spatial pattern (Supplementary Fig. 1b). To project a
specific gene, each FM exhibits a signal intensity associated with the spot graph topology and
retains the diverse orthogonal basis of the oscillation patterns. The signal intensity can be used
to identify SVGs effectively and efficiently in SpaGFT using the rule: a gene with a high intensity
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of low-frequency FM signals compared to high-frequency FM signals is typically an SVG, whereas
a gene with a low intensity of low-frequency FM signals indicates random expression patterns
(Supplementary Fig. 1c). To determine TMs using SpaGFT, the low-frequency SVG FM signals
are selected as features to identify SVG clusters using Louvain clustering (Fig. 1c). Spatial
regions (a group of spots) with high SVG expression patterns are considered as one TM. Multiple
downstream analyses and interpretations can be given to elucidate a TM, including Uniform
Manifold Approximation and Projection (UMAP) visualizations, TM-specific SVG functional
enrichment, low SVG expression enhancement, sub-TM identification, short length-scaled TM
identification (e.g., the GC of lymph nodes at ~55 um diameter spots), and tissue motif® (basic
compartment of a specific tissue) identification across multiple samples. Notably, due to SpaGFT
transforming SVG spatial expressions into FM signals, signal processing approaches can be used
for complementary applications. For example, due to the dropout issue'®, some SVGs may have
retained a low expression in a given TM, and SpaGFT offers an additional function the SVG
enhancement (Fig. 1d and Methods): a low-pass filter enhances low-frequency FM signals and
denoises high-frequency FM signals to form enhanced FM signals. The new signal will then
recover the SVG spatial expression with an enhanced magnitude via inverse graph Fourier
transform (iGFT).
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Fig.1 | Overview and validation of SpaGFT. a. SpaGFT considers a gene-spot expression count
matrix (m X n) and spatial locations as inputs. The spatial expression of three genes, ENC1,
MOBP, and GPS1, are shown as examples. A KNN graph is generated by calculating the
Euclidean distance among spots based on spatial locations between any two spots. Spot location
is used to construct the spot graph using the KNN method, where K is half of the square root of
n. By combining gene expressions and spot KNN graph, the graph signal f, of gene g can be
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projected to a series of FM U and transformed into a frequency signal fg using a graph Fourier
transform. b. The spatial expression of three genes, including two known SVGs (MOBP and ENCT)
and one non-SVG (GPS1), are shown as examples. All genes can be decomposed into multiple
FMs (a series of periodic signals with gradually faded patterns) and corresponding frequency
signals. The FMs in the Fourier space can be separated into low-frequency (red) and high-
frequency (blue) domains. For each gene, a GFTscore was designed to quantitatively measure
the frequency signal intensity in the low-frequency domain. The threshold (inflection point) of the
GFTscore was determined using the Kneedle algorithm, and the significance of a GFTscore (p-
value) was determined using a non-parametric test. A gene is defined as an SVG (red dots) if its
GFTscore is greater than the inflection point and its false discovery rate (FDR) adjusted p-value
is less than 0.05. Additionally, for sample 151673, we observed an SVG with a significantly higher
intensity of low-frequency FM signals than high-frequency FM signals (box plot in the right-bottom
corner, with a p-value<1e™® by Wilcoxon rank-sum test). c. Workflow of TM identification in
SpaGFT. d. The low SVG expression signal can be enhanced by a low-pass filter and iGFT using
low-frequency FM signals.

SpaGFT accurately identifies SVGs in human and mouse brains. In this study, we collected
31 spatial transcriptome datasets from human and mouse brains from public domains, and the
samples were sequenced using scales from two different spatial technologies (i.e., Visium
measures ~55 um diameter per spot and Slide-seqV2 measures ~10 ym diameter per spot
[Supplementary Table 1]). Grid-search tests were conducted under a wide range of parameter
combinations in all the benchmarking tools using three high-quality brain datasets. As no golden-
standard SVG database is available, we collected 849 SVG candidates from the brain regions of
mice and humans from five studies'''* and selected 458 genes as curated benchmarking SVGs
based on cross-validation with the In Situ Hybridization (ISH) database of Allen Brain Atlas
(Supplementary Tables 2 and 3, Methods). The SVG prediction performance was evaluated
using six reference-based metrics, and the results revealed that SpaGFT outperformed the other
five tools on the three datasets in terms of the Jaccard score and the other five metrics (Fig. 2a,
Supplementary Fig. 2a, and Supplementary Table 4). It is essential to note that the
computational speed of SpaGFT was two-fold faster than that of SPARK-X and hundreds-fold
faster than those of the other four tools on the two Visium datasets. Although SpaGFT exhibited
a slower performance than SPARK-X on the Slideseq-2 dataset, it exhibited a remarkably
enhanced SVG prediction performance compared to SPARK-X (Supplementary Table 5). Based
on the above grid-search result, we considered the parameter combination with the highest
median Jaccard scores across the three datasets as the default parameter in SpaGFT.
Subsequently, the performance of SpaGFT on an additional 28 independent datasets was
compared to those of the other five tools (all using their default parameters) to test its applicability
and robustness. The results revealed that it achieved the best performance among the
investigated tools on all six metrics (Fig. 2b, Supplementary Table 6). In addition, the SVG
prediction performance without the above curated benchmarking SVGs was evaluated using
Moran's | and Geary's C statistics (two reference-free evaluation metrics, Methods), and the
results revealed that the overall performance of SpaGFT was lower than that of MERINGUE
(second best) because Moran's | was implemented in MERINGUE's model for SVG prediction
(Supplementary Fig. 2b).
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Two classical markers in the hippocampus and cortical region in Fig. 2c show SpaGFT'’s ability
to identify SVGs that are detectable by other tools'®'’, and Fig.2d shows its ability to identify
unique SVGs (Supplementary Table 7), which were validated using the ISH database
(Supplementary Fig. 3) and reported by previous studies'®?'. For example, the Calb2 gene
encoding calretinin was employed as one of the traditionally used markers to categorize
interneurons'®. Hert was associated with controlling sleepiness'®. Gal has been implicated in
many behavioral processes, including anxiety, and thus represents a potential target for novel
strategies aimed the pharmacological treatment of depression and anxiety disorders?. In addition,
Asb4 was associated with obesity?'. Furthermore, to demonstrate and visualize the strength of
the FM signals for distinguishing SVGs and non-SVG patterns, we projected the top 50 low-
frequency FM signals on a two-dimensional UMAP space and compared them to those of a UMAP
that utilizes the top 50 principal components (Methods). The results revealed that SVGs identified
by SpaGFT were distinguishably separated from non-SVGs on the FM-based UMAP with a linear
boundary, whereas SVGs were irregularly distributed on the principal components analysis
(PCA)-based gene UMAP (Fig. 2e). This indicates that the FM signal is a better low-dimensional
representation for characterizing SVG patterns, which lays a solid foundation for TM identification
and interpretation.
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Fig.2 | SVG identification performance comparison. a. The SVG prediction evaluation of
SpaGFT was compared to those of the five benchmarking tools in terms of the Jaccard similarity
score. To evaluate the robustness of the tool, a grid-search method was used on all tools and
three datasets (HE-coronal, 151673, and Puck-200115-08) under different parameter
combinations. The running time (seconds with log-transformation) of each tool is represented as
the line graph. In addition, the median of five additional matrices (i.e., F1 score, precision, recall,
Tversky index, and odds ratio of Fisher's exact test) on all parameter combinations for each tool
is also shown as heatmaps. b. We selected the parameter combination showing the highest
median Jaccard scores among all three benchmark datasets as the default parameter in SpaGFT.
Using such parameter selection, the SVG prediction performance of SpaGFT on additional 28
independent datasets was compared to those of the five benchmark tools using their own default
parameters. The black line in each box indicates the median Jaccard score of all the 28 datasets.
c. Two SVGs in the mouse brain coronal plane (proved by Allen Brain Atlas) that can be
simultaneously identified within the top 100 SVGs by SpaGFT, SpaGCN, SPARK-X, MERINGUE,
and SpatialDE. The spatial map results from SpaGFT are shown with a brighter color, which
represents higher expressions. d. Spatial map visualization and Allen Brain Atlas ISH data of
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eight SVGs that are uniquely identified by SpaGFT, showing distinct patterns in the spatial domain.
Red circles in the ISH data indicate the expression region of the mouse brain. e. Comparison of
the UMAPSs obtained using the top 50 principal components (PCs) (left) and the top 50 FMs (right)
of the Mouse Visium data (HE-coronal, 2702 spots). The principal component analysis (PCA)
dimensions were generated directly from the gene-spot expression matrix using PCA analysis in
Scanpy. Red dots indicate the 1,456 SVGs identified by SpaGFT using default settings, whereas
the grey color suggests non-SVGs.

SpaGFT characterizes TM in the mouse brain based on the gene-centric perspective. We
believe a rigorous computational formulation for TM identification is non-travail, and a clear TM
definition should be multi-angled and involve multi-omics. From a spatial transcriptomics
perspective, we characterize a specific TM using an ID card, including a spatial expression map,
TM digital map, transformed FM signals, associated SVG list, and underlying biological pathways.
We applied SpaGFT to identify TMs by determining SVG clusters, which share similar signal
patterns in the FM space. Taking the HE-coronal data as an example, seven SVG clusters were
identified from a total of 1,456 SVGs, which corresponded to seven TMs (TM 1-7) (Fig. 3a).
Particularly, we revealed the ID card for each identified TM (Fig. 3b and Supplementary Figs.
4-9). The top four SVGs (e.g., Ctxn1, Ngef, Hpcal4, and Tspan7) were selected to support the
spatial expression pattern of TM 1. The enrichment of ontologies, pathways, and transcriptional
factors was also performed for TM-associated SVGs to elucidate the underlying biological process
of the TM'62223_Using this identified TM pattern, SpaGFT enhanced the expression signal of the
SVGs using a signal processing method followed by a low-pass filter and iGFT (Fig. 1d). For
example, JunB is a validated SVG in the cornu ammonis field 1 (CA1) region (Supplementary
Fig. 10a) with a regulatory role on memory?*. However, the rank of the JunB GFT score was 214"
among 275 SVGs in TM 1, indicating that the strength of the SVG signal in the spatial domain
was lower than that of the other SVGs (Supplementary Table 8). Moreover, JunB could be
enhanced by SpaGFT to obtain a more distinguishable pattern, and the granularity of the
enhanced gene expression signals also increased (figure looks sharper) when the number of
selected low-frequency FMs was used (Fig. 3c). Next, we observed that TMs remain sub-patterns.
For example, TM 3 could be further clustered into four sub-TM patterns (Fig. 3d), which
corresponded to preferred regions in the hippocampus, hypothalamus, cortical subplate, and
thalamus. Similar sub-structures were also identified in the other six TMs and were associated
with corresponding brain structures (Supplementary Figs. 10 and 11).

We further investigated the cell composition of the TMs and corresponding sub-TMs. Based on
the deconvolution result of 59 mouse brain cell types from the cell2location framework
(Supplementary Table 9)*, we observed that TM 1, TM 2, TM 5, and their sub-TMs were
composed of similar cell compositions (shown in the red rectangular box), including major
neuronal cells, and supported the anatomical structures of the mouse cerebral cortex. This cellular
composition could also be validated by TM-associated SVGs. For example, Gad1 (TM 1-
associated SVG), Vip (TM 2-associated SVG), and Snap25 (TM 5-associated SVG) are classic
markers of GABAergic neurons™. In addition, C1q/3 (TM 1-associated SVGs), Slc17a7 (TM 2-
associated SVGs), and Arf5 (TM 5-associated SVGs)'#' are known markers of glutamatergic
neurons®. Similarly, TM 3, TM 4, and the corresponding sub-TMs were enriched with major
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inhibitory neurons (Fig. 3e). Calb2 (TM 3-associated SVG) and Pvalb (TM 4-associated SVG) are
documented markers of inhibitory neurons™. TM 6 and TM 7 mainly contained cell types from the
white matter and thalamus region (Fig. 3f and Supplementary Fig. 12). For example, Mog (TM
6-associated SVG) and Tcf7I2 (TM 7-associated SVG) are the markers of oligodendrocyte and
thalamocortical neurons '*#’. Interestingly, although the sub-TM 4 of TM 6 was classified as a TM
6-alike category, the tissue module pseudo-expression and cell-type distribution supported that it
belonged to the caudoputamen region (CP), which was a distinct region from the other sub-TMs,
including sub-TM 1, sub-TM 2, and sub-TM 3 (Fig. 3g). For example, Meis2-positive inhibitory
neurons enriched in the CP were also enriched in this region®®, and the CP regional marker
Adora2a was also the TM-associated SVGs (sub-TM 4 of TM 6, i.e., TM 6_4)?. By investigating
the TM-associated SVGs, their enriched biological functions, and cell type compositions, a TM
can be defined and characterized from both the genetic perspective (i.e., how to define SVGs and
functions in a specific region) and cellular perspective (i.e., what is the cell type composition in a
specific region). In conclusion, these results demonstrated the ability of SpaGFT to identify,
characterize, and interpret TMs based on SVGs, and it is complementary to the current state-of-
the-art deconvolution tool for further TM interpretation™.
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Fig.3 | TM identification in mouse brain. a. All 1,456 SVGs identified in the Mouse Visium data
(HE-coronal) were grouped into seven clusters, which represent seven TMs (TM 1-7), and it is
shown in a UMAP space, which is shown in Fig.1g with all genes located in the left-bottom corner
(red: SVGs, grey: non-SVGs). b. An ID card is created to display fundamental information of each
TM. Here, we use TM 1 as an example. The spatial map shows the pseudo-expression of TM1
with 275 SVGs, where brighter color indicates higher pseudo-expressions. The TM map is a
binarized pseudo-expression map with an expression cutoff of 85 percentile. The low-frequency
FM signals of TM 1 is displayed below. The spatial maps of the top four SVGs ranked by their
GFTscore from high to low are shown on the right. Functional enrichment tests of the 275 SVGs
are performed on three databases (i.e., GO Biological Process 2021, BioPlanet 2019, and ChEA
2016) via Enrichr R package to provide insights on the functional and regulation information
enriched in TM 1. ¢. SpaGFT can enhance the low SVG expression signal of JunB (an SVG in
TM1) using an inverse graph Fourier transform (iGFT) for low-frequency FM signals. The spatial
maps of JunB using original expression and enhanced expression are shown. d. Four sub-TMs
were identified in TM 3 by re-clustering SVGs in TM 3. Each sub-TM possesses a group of unique
SVGs, which exhibits varying spatial expression patterns. The number in the parenthesis
indicates gene numbers in each sub-TM. e. The heatmap visualizes the TM-cell type matrix,
where a row represents a sub-TM and a column represents a specific cell type. An element in this
matrix represents the Pearson correlation coefficient between the proportion of a cell type and
the pseudo-expression of a sub-TM across all the spots. A red color block in the heatmap
indicates a high association between the corresponding cell type and sub-TM. f and g. The figures
showcase cell type composition and distribution of TM 7 sub-TM 2 and TM 6 sub-TM 4,
respectively.

SpaGFT identifies short-length scale TMs and the crosstalk among convoluted TMs in a
human lymph node sample. Lymph node belongs to the secondary lymphoid organ, containing
T cell zones, B follicles, and a GC (a short length-scale TM under a ~55 pm resolution)®. We
applied SpaGFT to lymph node Visium data® to investigate the organization of the three functional
regions and their convoluted crosstalk at the molecular level. SpaGFT identified 1,490 SVGs,
leading to nine TMs (Fig. 4a and Supplementary Table 10). The cell proportion of 34 cell types
in this Visium data were predicted using cell2location (Supplementary Table 11). Each TM (and
sub-TMs) was correlated with a set of cell types based on cell proportions (Fig. 4b). Particularly,
TM 6 was highly correlated with six GC signature cell types defined by cell2location, including T
follicular helper cells (T_CD4_TfH_GC), follicular dendritic cells (FDC), pre-GC B cells
(B_GC_prePB), cycling B cells (B_cycling), dark zone B cells (B_GC-DZ), and light zone B cells
(B_GC-LZ). TM 7 was highly correlated with eight T cell related cell types, and TM 8 was highly
correlated with five B cell related cell types. Altogether, 143 SVGs were associated with TM 6,
including PCNA, CDK1, and CDC20, which were marker genes of cell proliferation in the GC
enriched in the cell cycle pathway®*>! (Fig. 4¢). In addition, TM 7 exhibited a higher proportion of
the seven T cell types and 132 SVGs, including several T cell zone markers relevant to T cell
survival, such as CD3E, IL7R, CCR7, and CCL19%*. The pathway analysis result showed that the
132 SVGs were enriched in the T cell activation and differentiation pathway (Supplementary Fig.
13). Additionally, a B cell-enriched niche was identified in TM 8, where several B cell markers
(e.g., CD19, CD79B, and CR2) and relevant pathways (e.g., antigen processing and presentation)
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were identified (Fig. 4¢)*®. Therefore, we defined TMs 6, 7, and 8 as GC, T cell zone, and B follicle,
respectively. We visualized the three TM locations and found that they were spatially close to
each other, indicating potential convoluted functions among these three TM regions (Fig. 4d).

To further reveal the crosstalk among these three regions, we projected spots (assigned to all
three regions) to the Barycentric coordinate (the equilateral triangle in Fig. 4e and
Supplementart Table 12) to display the distribution differences of cell type components and the
abundance of spots in the three TMs and adjacent regions between the GC and T cell zone or B
follicles. There were 174 spots assigned to the interactive region between the GC and B follicle,
and the region was indicated by the local spatial map (Fig. 4f). Furthermore, the B follicle-
associated SVG, CXCL13, supports one of the major lymph node functions for B cell maturation
and antibody production 3**°. The 66 spots aligned from the interactive region between the GC
and T cell zone also showed another convoluted collaboration (Fig. 4g). This could be supported
by the T cell zone-associated SVG, /ICOS, which was one of the signature follicular helper T cell
genes for GC formation and high-affinity antibody development®*. Overall, we reasoned that
SpaGFT could be used to identify short length-scale TMs and interpret the crosstalk among
convoluted TMs to support complex biological processes®*“°. Future studies will address if
SpaGFT can be used to discern functionally specific TMs associated with effective immune
responses (such as in the case of vaccination) and/or pathology (such as in the case of cancer
metastasis to the lymph node)*' .
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Fig.4 | Case study of a human lymph node to demonstrate short-length scale TM
identification. a. UMAP visualization of nine SVG clusters in the Human lymph nodes data
identified by SpaGFT using default parameters. b. The heatmap visualizes the transposed TM-
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cell type matrix defined at Fig. 3e. According to the transposed TM-cell type matrix, TM 6, TM 7,
and TM 8 correspond to the GC, T cell zone, and B follicle, respectively. ¢. The figure
demonstrates the pseudo-expression and binary TM of GC, T cell zone, B follicle, and
corresponding signature genes. d. By combining all three TMs on the graph, different colors
correspond to spots in each TM, and the spots overlapped in the three TMs, and non-assigned
spots were colored grey. e. The barycentric coordinate plot shows cell-type components and the
abundance of spots in interactive and functional regions. If the spot is closer to the vertical of the
equilateral triangle, the cell type composition of the spot tends to be signature cell types of the
functional region (Methods). The spots were colored by functional region and interactive region
categories. f. The spot distribution of spots from a local spatial map of the interactive region
between GC and B follicle. g. The spot distribution of spots from a local spatial map of the
interactive region between GC and T cell zone.

SpaGFT reveals the 3D structures of the cerebrum, hypothalamus, and white matter in
terms of tissue motifs in the mouse brain. Tissue motif is a newly computational concept for
investigating the tissue organization and collaboration of fundamental structures®. In our study,
we extended the definition of a tissue motif to include a conserved tissue structure across multiple
samples of a complex organ (e.g., mouse brain), and hypothesized that the conserved TMs,
defined as a group of TMs representing the fundamental structure of the same organ, should have
similar SVG components regardless of sampling strategies or sources. Seven mouse brain
samples were collected from the Visium website and one independent study®®*?, including two
anatomical planes (i.e., sagittal and coronal planes). The four samples in the sagittal plane were
obtained from frozen fresh samples. Regarding the three samples from the coronal plane, HE-
coronal and GSM5519054 were frozen fresh samples from different sources and sampling
locations, and IF-FFPE was preserved in formalin and paraffin (Fig. 5a and Supplementary
Table 1). Using the default parameter settings, SpaGFT identified 67 TMs among the seven
samples (Supplementary Table 13). The 67 TMs were grouped into 14 clusters using the
Louvain algorithm based on their associated SVGs (Methods). If two TMs contain similar
components of TM-associated SVGs, they are typically grouped into the same cluster and
represent the same fundamental structure, even if they were from different anatomical views.

As a result, we focused on the three colored TM clusters (TM clusters 1, 2, and 3 in Fig. 5b), each
of which contained conserved TMs from at least six samples (Supplementary Table 14). First,
we investigated the cell components of each TM using cell2location, and the results showed that
TM clusters 1, 2, and 3 were highly correlated with excitatory neurons, inhibitory neurons, and
non-neuronal cells, respectively (Fig. 5¢). For example, TM cluster 3 was enriched with
oligodendrocytes and was also in agreement with the white matter anatomical structure from the
Allen Brain Atlas'®® (Fig. 5d). TM clusters 1 and 2 were highly correlated with the partial
cerebrum and hypothalamus regions, respectively (Supplementary Fig. 14). Particularly,
regarding TM cluster 3, Mbp and Mobp (white matter signature genes) were simultaneously
captured by all seven conversed TMs'®, while the two genes were not conserved TM-associated
SVGs of the cerebrum and the hypothalamus regions. We concluded that conserved TMs forming
one TM cluster typically contained conserved cell types and reflected the organ structure in the
3D view (Fig. 5d).
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We then defined TM clusters 2 and 3 as tissue motif 1 and all three TM clusters as tissue motif 2.
Based on the spot label assigned by the TM clusters (Fig. 5e and Supplementary Table 15), we
found that tissue motif 1 co-occurred and was conserved in all seven samples, which was not
affected by sample status and sampling strategies. The overlapped spots between TM clusters 2
and 3 indicated the convolution of elements in tissue motif 1, reflecting a potential collaboration
between the hypothalamus region and white matter**. Compared with tissue motif 1, tissue motif
2 was a complex conserved structure in the mouse brain that was repeated in six samples rather
than seven samples. Furthermore, TM cluster 1 (enriched with excitatory neurons) showed a
strong association with TM cluster 2 (enriched with inhibitory neurons), indicating the neuronal
circuit activity of inhibitory and excitatory neurons in the hypothalamus region****. In addition, TM
cluster 3 displayed possible collaborations with either TM cluster 1 or 2, indicating potential
connectivity among the partial cerebrum, hypothalamus region, and white matter*>¢. Notably, the
two identified tissue motifs could be observed from two anatomical views, which strengthened the
claim that tissue motifs contributed to understanding the 3D structures of the cerebrum,
hypothalamus, and white matter. Based on multiple anatomical views of mouse brain samples,
our results demonstrated that SpaGFT provided a novel gene-centric perspective for investigating
conserved TMs among multiple samples and their convolution, and helped to discover insights
into the 3D functional structures in a complex organ.
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Fig.5 | Case study for tissue motifs in mouse brain based on TM clustering. a. The figure
demonstrates seven sample sources, including sagittal (Sagittal Anterior 1, Sagittal Anterior 2,
Sagittal posterior 1, Sagittal posterior 2) and coronal planes (HE-coronal, GSM5519054-coronal,
and IF-FFPE-coronal). b. The pipeline of TM cluster (Methods) identification. UMAP showcases
the results of clustering 67 TMs identified by seven samples. c. Three heatmaps show the
binarized TM-cell type matrix, indicating consistent cell types shared within three TM clusters,
where a red-color block means cell type existence in the corresponding TM and a white-color
block means non-existence. d. Interpretation of TMs from multiple samples with similar SVG
components. Seven samples are used to demonstrate the commonality of SVG-similar TMs in
multiple samples. Heatmap color indicates the log-odds ratio of the Fisher exact test. The p-value
(Benjamini-Hochberg adjusted) and the number of shared SVGs between the two samples are
shown on the heatmap. White matter anatomical structure is derived from Allen Brain Altas, and
was indicated by the purple color. e. The figure demonstrates two conserved tissue motifs shared
by multiple samples. The spatial map indicates spot localization where a spot is colored according
to TM clusters assignment (brown for TM cluster 1; purple for TM cluster 2; and blue TM cluster
3). The tissue motif below each spatial map demonstrates the colocalization of TM clusters. A
node represents one specific TM cluster, and the value of the node means the number of spots
in the corresponding sample of a TM cluster. An edge will be added if there are existing
overlapped spots between the two nodes. The weight of an edge is the number of overlapped
spots between the two nodes. The green edge denotes the edge with the largest weight in one
tissue motif.

Discussion

We present SpaGFT as a fast and accurate SVG identifier and a novel computational formulation
for TM characterization using spatial transcriptome data. For the first time, SpaGFT introduced a
graph Fourier transform ideology to transform complex spatial gene expression signals into
informative FM signals from a gene-centric perspective. The benchmarking results of 31 spatial
transcriptome data revealed that SpaGFT achieved superior SVG detection performances
compared to existing tools, indicating that the FM signals can effectively capture gene expression
signals spatially and distinguish SVGs from non-SVGs. In addition, TMs defined by SVG clusters
in SpaGFT were confirmed to maintain diverse TM-associated biological processes, and we
demonstrated that SpaGFT can effectively complement the cell/spot-centric tool (e.g.,
cell2location) for investigating molecular tissue biology. Moreover, three case studies provided
biological insights from the TM ID card and demonstrated the capability of identifying short length-
scale TMs, convoluted TM collaborations, and fundamental elements constituting the complex
organ in the 3D structure. Furthermore, the tissue motif concept was originally proposed using
high-resolution spatial proteomic data at the cellular level®, defined as basic structural units (a
small region containing simple cell types), and played an important role in propagating biological
signals (e.g., molecular diffusion or cellular movement) to support organ functions. We extended
this concept to spatial transcriptomics data and demonstrated that TMs conserved in multiple
samples could form tissue motifs that allowed us to study convoluted collaborations among TMs
and the 3D structure of functional regions (i.e., white matter and hypothalamus region in the
mouse brain) from multiple anatomical views.
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Overall, SpaGFT is a computational framework geared towards the accurate identification and
characterization of a TM, which may significantly enhance our understanding of molecular tissue
biology. However, there is still room for improving prediction performance and understanding the
TM mechanism. First, although the SpaGFT computation speed is very competitive, it can be
further improved by reducing the computational complexity from 0(n?) to 0(n x log(n)) using
fast Fourier transform algorithms*’“8. Second, the alteration of the spot graph and TM topology
represents a potential challenge in identifying TMs across spatial samples from different tissues
or experiments, which results in diverse FM signal spaces and renders the FM signals
incomparable. This is similar to the “batch effect” issue in multiple single-cell RNA sequencing
(scRNA-seq) integration analyses®.

SpaGFT bridges the gap left by existing SVG prediction methods and provides a method for
investigating molecular tissue biology from the gene-centric perspective. In the future, we expect
that SpaGFT could potentially be used for spatial multi-omics data harmonization and integration
by discovering conserved spatial FM signal patterns of metabolic, proteomic, morphogenetic, and
epigenetics in nature in both healthy and pathological state. Meanwhile, there is an increasing
need for building connections between spatial spots using multi-omics at the single-cell level'.
Based on the SpaGFT framework, it is feasible to decompose the graph signals to match the
spots with single cells using the graph Fourier transform to align spatial TMs with single cells.
Such an alignment can provide further insight into understanding the underlying gene regulatory
networks in TMs and facilitate the identification of cell-cell communications using the spatial
information within a TM or between TMs.
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Online Methods

We introduce Spatial Graph Fourier Transform (SpaGFT) to identify SVGs and characterize TMs
based on spatial transcriptomics data. The core concept of SpaGFT is to transform spatial gene
expressions into a kind of frequency signals in Fourier space. The main framework of SpaGFT
includes three major steps: graph signal transform, SVG identification, and TM characterization.

Graph signal transform

K-nearest neighbor (KNN) Graph construction. Given a gene expression matrix containing n
spots, including their spatial coordinates and m genes, SpaGFT calculates the Euclidean
distances between each pair of spots based on spatial coordinates first. In the following, an
undirected graph G = (V,E) will be constructed, where V = {v,, v,, ..., v,} is the node set
corresponding to n spots; E is the edge set while there exists an edge e;; between v; and v; in E
if and only if v; is the KNN of v; or v; is the KNN of v; based on Euclidean distance, where i,j =
1,2,..,n;and i # j. Note that, all the notations of matrices and vectors are bolded, and all the
vectors are treated as column vectors in the following description. An adjacent binary matrix A =
(a;;) with rows and columns as n spots is defined as:

_ 1, eij EE
@y = {O, else. 1)

A diagonal matrix D = diag(d,,d,, ..., d,), where d; = }7_, a;;jrepresents the degree of v;.

Fourier mode calculation. Using matrices 4 and D, a Laplacian matrix L can be obtained by
L=D-A. (2)
The Laplacian matrix L can be decomposed using spectral decomposition
L=UAUT 3)
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A =diag(Ay, 23, ..., An),
U= (13, . 1),
where the diagonal elements of A are the eigenvalues of L with 1, <1, <:- <1, and the
columns of U are the unit eigenvector of L. p,, is the k™ Fourier mode (FM), u, € R®, k = 1,2, ...,n,
and the set {u,, u,, ..., ui } is an orthogonal basis for the linear space (Supplementary Figs. 1a
and 1b). For p;, = (u, u2, ..., u), where u indicates the value of the k™ FM on node v;, the
smoothness of u, reflects the total variation of the k™ FM in all mutual adjacent spots, which can

be formulated as
1 ) .2
IDRACEOR @)

ViEV v;EV
The form can be derived by matrix multiplication as

30 D i) =31 ) =2 Y Y g+ Y ()’

ViEV v;EV V;EV Vi€V v;EV v;EV
.2 .
= 2 di(ui)” - Z 2 aijiic Wi
V;EV Vi€V v;EV (5)
= Dy — P Apy
= Ly
= Ak

where u! is the transpose of u,. According to the definition of smoothness, if an eigenvector
corresponds to a small eigenvalue, it indicates the variation of FM values on adjacent nodes is
low. The increasing trend of eigenvalues corresponds to an increasing trend of oscillations of
eigenvectors; hence, the eigenvalues and eigenvectors of L are used as frequencies and FMs in
our SpaGFT, respectively. Intuitively, a small eigenvalue corresponds to a low-frequency FM,
while a large eigenvalue corresponds to a high-frequency FM.

Graph Fourier transform. The graph signal of a gene g is defined as f, = (fgl,fgz, ...,fg") € R",
which is a n-dimensional vector and represents the gene expression values across n spots. The
graph signal f, is transformed to a frequency signal fg by
fg =Ufg, fg = (fgl'ﬁzz' fgn) (6)

In such a way, fg" is the projection of f, on FM p,, representing the contribution of FM g, to
graph signal f,, k = 1,2, ...,n.This Fourier transform harmonizes gene expression and its spatial
distribution to represent gene g in the frequency domain. The details of SVG identification using
f 4 can be found below.

SVG identification
We designed a GFTscore to quantitatively measure the randomness of gene expressions
distributed in the spatial domain, defined as

GFTscore(f;) = » 2724 fk, (7)
g ; g
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where 1y is the pre-calculated eigenvalue of L, and the normalized frequency signal fg" is defined
as:

" A

fo =t (®)

i=1 /gl

The gene with a high GFTscore tends to be a non-random distributed gene in the spatial domain,
and vice versa. Therefore, all m genes are decreasingly ranked based on their GFTscore from
high to low and denote these GFTscore values as y; =y, = - = y,,,. In order to determine the
cutoff y, to distinguish SVG and non-SVGs based on GFTscore, we applied the Kneedle
algorithm® to search for the inflection point of a GFTscore curve described below. The GFTscore
y: of gene g, is converted by y. =max{y;, ¥z .,¥m} — Vet =1.2,..,m, where y. is the
converted value of y,. Each point (x., = ¢, y.,), where x., is the rank number of y. , is processed
by a smoothing spline to preserve the curve shape and obtain (xs,,ys,),t = 1,2,...,m. Denote
coordinate set D = {(xs,,¥5,)|t = 1,2,...,m} and can be normalized to corrdinate set D, as
follows:

D, = {(xnt,ynt)|t =1,2, ...,m}
X, = (xst - min(xs))/(max(xs) — min(x;)) 9)

Yne = (¥, = min(y) )/ (max(ys) — min(yy)),
where min(xs) and max(x;) are the minimum and maximum in {xsl,xSZ, ...,xsm}, respectively.
Analogously, min(y;) and max(ys) are the minimum and maximum in {ysl,ySZ,...,ysm},

respectively. In addition, let D, represents the set of differences between the x- and y-values,
and one has:

Dy = {(xdt,ydt)|xdt =XnpVd, = Yn, — Xnpt = 1,2, ,m} (10)
In the following, the question of determining the cutoff y, can be converted to the determination
of the inflection point y, if it satisfies y4, , <ya,, Ya,,, <Ya,,» and yq, <T,,h=2z2+1,..,m,
where

- S

Sn n
T, = e 11
z ydz t—1 ( )

In equation (11), S is a coefficient that can be used to determine the level of aggression for the
inflection point.

A non-parametrical test is used for testing the difference between median values of low-frequency
signals and high-frequency signals. Especially, the null hypothesis is that the median of low-
frequency signals of a SVG is equal to or lower than the median of high-frequency elements. The
alternative hypothesis is that the median of low-frequency signals of a SVG is higher than the
median of high-frequency signals. The p-value of each gene is calculated based on Wilcoxon
one-sided rank-sum test and then adjusted using the false discovery rate (FDR) method.
Eventually, a gene with GFTscore higher than y, and adjusted p-value less than 0.05 is
considered as an SVG.

Visualization of frequency signal of SVGs in low-dimensional latent spaces
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The novel SVG presentation fg is a simple and distinguishable one-dimensional vector. It can be
visualized in two-dimensional space. First, frequency signals were computed by SpaGFT based
on optimized parameters. Second, the top 2vn low-frequency signals were selected and then
followed by L1 normalization method to normalize selected low-frequency signals.

TM identification and characterization

SVGs with similar patterns also have similar low-frequency signals in the frequency domain, which
provides the fundamental basis of clustering. Louvain clustering method was applied to group
SVGs based on the top 2v/n low-frequency signals in the frequency domain. For a total number
of p SVGs donated as g4, g, ..., gp in @ SVG cluster, a pseudo-expression value Pseudo’ for spot
i can be calculated as

P
Pseudo’ = 2 log(1+ f}), (12)
=1

where i = 1,2, ...,n. The pseudo-expression value was further transformed into a binary value by
1, if Pseuc.ioi > cutoff, (13)
0, otherwise,

where the cutoff is a given number of percentiles of the pseudo-expression across all spots. We
define those spots with binary-expression as 1 as a TM, and the corresponding SVGs are TM-
associated SVGs. The pseudo-expression and binary-expression profiles can be visualized in a
spatial map and TM map, respectively. The low-frequency signals of TM are calculated using
Pseudo-expression values by SpaGFT.

Binary' = {

SVG signal enhancement

A SVG of a specific TM may suffer from low expression or dropout issues. To solve this problem,
SpaGFT implemented the low-pass filter to enhance the SVG expressions. For a SVG with a
measured expression value f, € R", we define fg € R™ as the expected expression value of this
SVG, and f, = fg + €4, where €, € R" represents noises. SpaGFT estimates an approximated
f to f4 in the following way, resisting the noise €,. The approximation has two requirements (i)
the enhanced signal (estimated gene expression) should be similar to the measured signals, and
(i) keep low variation within estimated gene expression to prevent inducing new noises. Therefore,
the following optimization problem is proposed to find an optimal solution f7 for fg

£y = argming[lf ~ folE 4 c5 Y . ay (F = )]
ViEV vEV (14)
= argming[|If = f4lI + cfTLf]

where ||-|| is the L2-norm, f = (f1,f2,...,f™) € R" is the variable in solution space, and i,j =
1,2,...,n. cis a coefficient to determine the importance of variation of the estimated signals, and
¢ > 0. According to the convex optimization, the optimal solution f7 can be formulated as:
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2(fy —fg) +2cLfy =0

= (I +cL)fy =f,

= (UU" + cUAUD)fy = f, (15)

=UI+cDUTfy =f,

= fi=UI+cD)UTf, =UU+cA)f,
where A = diag(4, 15, ...,A,,), and I is an identity matrix. (I + cA)~! is the low-pass filter and
(I+cA)~*f, is the enhanced frequency signal. f; = U(I + cA)~'f, represents the enhanced
SVG expression by inverse graph Fourier transform.

Benchmarking data setup

Dataset description. Thirty-two spatial transcriptome datasets were collected from the public
domain, including 30 10X Visium datasets (18 human brain data, 11 mouse brain data, and one
human lymph node data) and two Slide-seq V2 datasets (mouse brain). More details can be found
in Supplementary Table 1. Three datasets were selected as the training sets for grid-search
parameter optimization in SpaGFT, including two highest read-depth datasets in Visium (HE-
coronal) and Slide-seq V2 (Puck-200115-08), one signature dataset in Maynard's study'®. The
rest of the 28 datasets (excluding lymph node) were used as independent test datasets.

Data preprocessing. For all the 32 datasets, we adopt the same preprocessing steps based on
scanpy®' and squidpy®? (version 1.2.1), including filtering genes that have expression values in
less than ten spots, normalizing the raw count matrix by counts per million reads method, and
implementing log-transformation to the normalized count matrix. No specific preprocessing step
was performed on the spatial location data.

Benchmarking SVG collection. We collected SVG candidates from five publications''"®, with data
from either human or mouse brain subregions. (/) A total number of 130 layer signature genes
were collected from Maynard's study'. These genes are potential multiple-layer markers
validated in the human dorsolateral prefrontal cortex region. (ii) A total number of 397 cell-type-
specific (CTS) genes in the adult mouse cortex were collected from the Tasic's study (2016
version)™. The authors performed scRNA-seq on the dissected target region, and identified 49
cell types, and constructed a cellular taxonomy of the primary visual cortex in the adult mouse.
(iii) A total number of 182 CTS genes in mouse neocortex were collected from the Tasic's study.
Altogether, 133 cell types were identified from multiple cortical areas at single-cell resolution. (iv)
A total number of 260 signature genes across different major regions of the adult mouse brain
were collected from the Ortiz's study''. The authors' utilized spatial transcriptomics data to
systematically profile subregions and delivered the subregional genes using consecutive coronal
tissue sections. (v) A total of 86 signature genes in the cortical region shared by humans and mice
were collected from the Hodge's study'2. Collectively, a total number of 849 genes were obtained,
among which 153 genes were documented by multiple papers. More details, such as gene names,
targeted regions, and sources, can be found in Supplementary Table 2.

Next, the above 849 genes were manually validated on the in-situ hybridization (ISH) database
deployed on the Allen Brain Atlas (https://mouse.brain-map.org/). The ISH database provided ISH
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mouse brain data across 12 anatomical structures (i.e., Isocortex, Olfactory area, Hippocampal
formation, Cortical subplate, Striatum, Pallidum, Thalamus, Hypothalamus, Midbrain, Pons,
Medulla, and Cerebellum). We filtered the 849 genes as follows: (/) If a gene is showcased in
multiple anatomical plane experiments (i.e., coronal plane and sagittal plane), it will be counted
multiple times with different expressions in the corresponding experiments. Such that, 1,327
genes were archived (Supplementary Table 3). (i) All 1,327 genes were first filtered by low gene
expressions (cutoff is 1.0), and the FindVariableFeatures function ("vst” method) in the Seurat
(v4.0.5) was used for identifying highly variable genes across twelve anatomical structures.
Eventually, 458 genes were kept and considered as curated benchmarking SVGs.

SpaGFT implementation and grid search of parameter optimization

Herein, partial FMs were used, including low-frequency FMs, which reflect smooth spatial patterns,
and high-frequency FMs, which can measure noises. And such a scheme reduced running time
significantly. We set K = +/n /2 as the default parameter for constructing the KNN graphs in
SpaGFT. The number of selected low-frequency signals was set to be vn/2, and the high-
frequency FMs were set to be 3v/n. These elements with low values in the frequency domain were
filtered out in the rank_gene_smooth function. SVGs were determined by genes with high
GFTscore via the KneeLocator function (curve="convex', direction="deceasing', and S=5) in the
kneed package (version 0.7.0) and FDR (cutoff is less than 0.05). To obtain the optimized
parameters of SpaGFT, we set a grid-search test for six parameters, including ratio_neighbors (1,
2) for KNN selection, normalize_lap (TRUE or FALSE) for Laplacian matrix normalization,
filter_peaks (TRUE or FALSE) for noise low-frequency signal filtering, ratio_low_freq (0.5, 1, 1.5,
2) for the number of low-frequency signals, ratio_high_freq (1, 2, 3) for the number of high-
frequency signals, and S (3, 5, 10) for the inflection point coefficient, resulting in 288 parameter
combinations. Detailed implementation and tutorial can be found on SpaGFT GitHub:
https://github.com/OSU-BMBL/SpaGFT.

Parameter setting of other tools

(/) SpatialDE (version 1.1.3) is a method for identifying and describing SVGs based on Gaussian
process regression used in geostatistics. SpatialDE consists of four steps, establishing SpatialDE
model, predicting statistical significance, selecting the model, and expressing histology
automatically. We selected two key parameters, design_formula (‘0 and ‘1’) in the
NaiveDE.regress_out function and kernel_space ("{'SE"[5.,25.,50.],'const":0}",
"{'SE"[6.,16.,36.],'const":0}", "{'SE"[7.,47.,57 ],'const"0}", "{'SE"[4.,34.,64.],'const"0}",
"{'PER"[5.,25.,50.],'const".0}",  "{'PER"[6.,16.,36.],'const":0}",  "{'PER"[7.,47.,57.],'const"0}",
"{'PER"[4.,34.,64.],'const".0}",and "{linear":0,'const0}") in the SpatialDE.run function for
parameter tunning, resulting in 18 parameter combinations.

(i) SPARK (version 1.1.1) is a statistical method for spatial count data analysis through
generalized linear spatial models. Relying on statistical hypothesis testing, SPARX identifies
SVGs via predefined kernels. First, raw count and spatial coordinates of spots were used to create
the SPARK object via filtering low-quality spots (controlled by min_total _counts) or genes
(controlled by percentage). Then the object was followed by fitting the count-based spatial model
to estimate the parameters via spark.vc function, which is affected by the number of iterations
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(fit. maxiter) and models (fit. model). Lastly, ran spark.test function to test multiple kernel matrices
and obtain the results. We selected four key parameters, percentage (0.05, 0.1, 0.15),
min_total _counts (10, 100, 500) in Create SPARKObject function, fit. maxiter (300, 500, 700), and

fit model ( “poisson”, “gaussian”) in spark.vc function for parameter tunning, resulting in 54
parameter combinations.

(iify SPARK-X (version 1.1.1) is a non-parametric method that tests whether the expression level
of the gene

displays any spatial expression pattern via a general class of covariance tests. We selected three
key parameters, percentage (0.05, 0.1, 0.15), min_total counts (10, 100, 500) in the

Create SPARKObject function, and option (“single”, “mixture”) in the sparkx function for parameter
tunning, resulting in 18 parameter combinations.

(iv) SpaGCN (version 1.2.0) is a graph convolutional network approach that integrates gene
expression, spatial location, and histology in spatial transcriptomics data analysis. SpaGCN
consisted of four steps, integrating data into a chart, setting graph convolutional layer, detecting
spatial domains by clustering, and identifying SVGs in spatial domains. We selected two
parameters, the value of ratio (1/3, 1/2, 2/3, and 5/6) in the find_neighbor_cluster function and
res (0.8, 0.9, 1.0, 1.1, and 1.2) in the SpaGCN.train function for parameter tunning, resulting in
20 parameter combinations.

(v) MERINGUE (version 1.0) is a computational framework based on spatial autocorrelation and
cross-correlation analysis. It composes of three major steps to identify SVGs. Firstly, Voronoi
tessellation was utilized to partition the graph to reflect the length scale of cellular density.
Secondly, the adjacency matrix is defined using geodesic distance and the partitioned graph.
Finally, gene-wise autocorrelation (e.g., Moran's 1) is conducted, and a permutation test is
performed for significance calculation. We selected min.read (100, 500, 1000), min.lib.size (100,
500, 1000) in the cleanCounts function and filterDist (1.5, 2.5, 3.5, 7.5, 12.5, 15.5) in the
getSpatialNeighbors function for parameter tunning, resulting in 54 parameter combinations .

Metrics used in benchmarking experiments

Denote P = {p;,py, ...,pp}, Where p is the total number of SVGs predicted by a tool in the
performance comparison. The set of 458 curated benchmarking SVGs denoted as R =
{ry, 1, ...,1:}, where t = 458. In addition, C is the complete collection of all genes in a dataset. In
addition, some notions are necessary to understand the following metrics, including, TP = |P N R|,
FP=|P—-PNR|, TN =|(C—-P)Nn(C—R)| and FN =|R —P NR|, where TP, FP, TN, and FN
represent true positive, false positive, true negative, and false negative, respectively. The
following metrics were used to test the performances of various methods. All scores were
calculated using customed scripts unless specifically mentioned.

(/) Jaccard index, also named the Jaccard similarity coefficient, is used to compare the similarity
and difference between limited sample sets. Define the Jaccard index between sets P and R as:

|P N R|
,Jaccard € [0,1]

Jaccard = m
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Alarger Jaccard index indicates a higher similarity between the two sets.

(i) Odds ratio of Fisher exact test is a statistical significance test used in the analysis of
contingency tables, whose definition is:

TP/FP TP-FN

TN/FN TN-FN

A higher odds ratio indicates a better prediction performance. Function newGeneOverlap and
testGeneOverlap from R package GeneOverlap (Version 1.26.0) were used for the score
calculation.

odds ratio =

(iii) Precision (also called positive predictive value) is the fraction of relevant instances among the
retrieved instances, which is defined as:
TP

TP + FP
A higher precision indicates that an algorithm returns more relevant results than irrelevant ones.

recision = ,precision € [0,1
p p

(iv) Recall (also known as sensitivity) is the fraction of relevant instances that were retrieved,
which is defined as:

TP
recall = TP_l_—FN,recall € [0,1]

A higher recall indicates that an algorithm returns most of the relevant results (whether irrelevant
ones are also returned).

(v) F1 score is a measure of a test's accuracy in statistical analysis of binary classification. It is
calculated from the precision and recall of the test, defined as:
presion * recall
F1=2 - ,F1 € [0,1]
presion + recall

A higher F1 score indicates a better prediction performance of the algorithm.

(vi) Tversky index is an asymmetric similarity measure on sets that compares a variant to a
prototype, defined as

TP
TP + 0.5FN + 0.5FP
A higher Tversky signifies the better prediction performance of the algorithm. The tversky.index
function from R package tcR (Version 2.3.2) was used for calculating the Tversky index.

Tversky = ,Tversky € [0,1]

(vil) Moran's Index used statistics to quantify the degree of spatial autocorrelation, defined as

= EZLZJ[WU(fg fa) (fg fg)]’l e[-1,1]

S —\2
w Zi(fgl - fg)
where f, = (f;,fgz, g”) represents the gene expression values on n spots for gene g. w;; is

the spatial weight between spots i and j calculated using the 2D spatial coordinates of the spots
and W =%, ¥, w;;. For each spot, we find the top K nearest neighbors according to Euclidean
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distances where K = 6 and w;; = 1 if spot j is one of the nearest neighbors of spot i while w;; =
0 otherwise. A Moran's Index close to 1 indicates a clear spatial pattern, a value close to 0
indicates random spatial expressions, and a value close to —1 indicates a negative correlation
between two adjacent spots. We applied the moran.test function from the spdep R package to
generate the score.

(viii) Geary's C is a metric measuring spatial autocorrelation, defined as
_n ZiZj[Wij(fgi—f;)]z
= " - — 2
2w Zi(fgl - fg)
where a small C indicates strong spatial autocorrelation, and all notations used here are the same

as the notations when defining Moran's Index. Generally, to convert it to range -1 to 1, the
following formula is adopted

,C €0,2]

cC*=1-¢C
Here, the meaning of the value C* is similar to Moran's Index mentioned above. We used
geary.test function from R package spdep to generate the score C, and then obtained C* using a
customized script.

Analysis on HE-coronal sample

SVG prediction. The spot number of mouse brain (HE coronal sample) is 2,702, so the first 50
low-frequency signals were used for UMAP dimension reduction and visualization. To
demonstrate the advantage of low-frequency signals in terms of SVG representation, PCA was
also used for producing low-dimension representation. The transposed and normalized
expression matrix was decomposed via using the sc.tl.pca function from the scanpy package
(version 1.9.1). The top 50 principal components (PC) were used for UMAP dimension reduction
and visualization. The function sc.tl.umap was applied to further conduct dimension reduction for
the top 104 low-frequency signals and the top 50 PCs in two-dimensional latent space,
respectively.

TM and TM-associated SVG identification. We applied SpaGFT on the HE-coronal mouse data
(Figs. 2b-2e) to identify TMs and sub-TMs using default parameters. The Louvain clustering
algorithm (neighbors = 15 and resolution = 1) was applied on the top 104 low-frequency signals
of SVGs (104 = 2v/n, n = 2702 spots), followed by the pseudo-expression calculation. To
demonstrate the biological functions of identified TMs, pathway enrichment analysis was
conducted using the Enrichr package®®* based on the hypergeometric test for SVGs within
individual TMs. Three databases were selected, (/) ChEA (2016 version) for transcription factor
enrichment analysis, (i/) BioPlanet (2019 version) for functional pathway enrichment analysis, and
(7if) GO Biological Process (2021 version). To further investigate sub-TMs, the SVGs in one TM
were re-clustered via Louvain clustering with resolution=0.5, leading to the calculation of the
pseudo-expression and binary-expression for sub-TMs.

Low-expression gene signal enhancement. Specifically, in HE-coronal mouse brain data analysis,
we selected the 260 (= 5vn,n = 2702), 780 (= 15vn,n = 2702), and 1,300 (= 25vVn,n = 2702)
low-frequency signals in the frequency domain and performed the inverse graph Fourier transform
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with ¢ = 0.0001 to smooth spatial patterns.

Cell2location deconvolution for generating TM-cell type matrix. To generate the TM-cell type
matrix, defined in Fig. 3e, we first followed the online tutorial of cell2location
(https://cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.html) and
calculated the cell proportion of each of the 59 cell types for the HE-coronal data across all spots
(Supplementary Table 9). Then, pseudo-expression values across all spots for one sub-TM were
computed using the method from the TM identification and characterization section. Then, an
element of the TM-cell type matrix was calculated by computing the Pearson correlation
coefficient between the proportion of a cell type and the pseudo-expression of a sub-TM across
all the spots. Lastly, the TM-cell type matrix was obtained by calculating all elements as described
above, with rows representing TMs and coloumns representing cell types.

Analysis of the lymph node sample

TM identification and interpretation. SVGs were identified on the human lymph node data (Visium)
with default setting of SpaGFT, and TMs and TM-associated SVGs were determined as described
above. Binary TMs were determined using 0.85 percentile as cutoff. To demonstrate the relations
between cell composition and TMs, cell2location®® was implemented to deconvolute spot and
resolve fine-grained cell types in spatial transcriptomic data. Cell2location was used to generate
the spot-cell type proportion matrix as described above, resulting in cell proportion of 34 cell types
(Supplementary Table 11). A TM-cell type matrix was calculated using 34 lymph node cell types
via the same method as previously described (the Method section of Cell2location deconvolution
for generating TM-cell type matrix). Then, the TM-cell type matrix was generated and visualized
on a heatmap, and three major TMs in the lymph node were annotated, i.e., the T cell zone, GC,
and B follicle.

Visualization of GC, T cell zone, and B follicles in the Barycentric coordinate system. Spot-cell
proportion matrix was used to select and merge signature cell types of GC, T cell zone, and B
follicles for generating a merged spot-cell type proportion matrix (an N-by-3 matrix, N is equal to
the number of spots). For GC, B_Cycling, B_GC_DZ, B_GC_LZ, B_GC_prePB, FDC, and
T_CD4_TfH_GC were selected as signature cell types. For T cell zone, T_CD4, T_CD4_TfH,
T_TfR, T_Treg, T_CD4_naive, and T_CD8_naive were selected as signature cell types. For B
follicle, B_mem, B_naive, and B_preGC were regarded as signature cell types. The merged spot-
cell type proportion matrix was calculated by summing up the proportion of signature cell types
for GC, T cell zone, and B follicle, respectively. Finally, GC, T-cell zone, and B follicle assigned
spots (spot assignment in Supplementary Table 12) were selected from the merged spot-cell
type proportion matrix for visualization. The subset spots from the merged matrix were projected
on an equilateral triangle via Barycentric coordinate project methods®. The projected spots were
colored by TM assignment results.

Identification of TM clusters among seven samples. The SVGs and TMs of HE-coronal had
been identified from previous Methods section (Analysis on HE-coronal sample), and the SVGs
and TMs of othe other six samples (SA1, SA2, SP1, SP2, GSM5519054, and IF-FFPE) were
identified using SpaGFT with the default parameters. Then, SVGs identified from the seven
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samples were concatenated into an SVG-TM matrix (with 3,690 SVGs and 67 TMs), where values
in the matrix were marked as 1 (existence) and 0 (not existence). The SVG-TM matrix was fit into
PCA for dimension reduction and Louvain algorithm for TM clustering, resulting in 14 TM clusters.
Among those 14 TM clusters, three TM clusters contains conserved TMs from at least six samples.
To investigate the cell type composition of three TM clusters, 59 mouse brain cell types were used
for generating seven TM-cell type matrices as previously described (the Method section of
Cell2location deconvolution for generating TM-cell type matrix). the cell type-TM matrix was
binarized using a cutoff of 0.1, with the correlation larger than 0.1 as a colored element (Fig. 5c),.
To obtain the overlapping SVGs across identified TMs, Fisher's exact test was performed, and
the p-values were adjusted using the Benjamini-Hochberg method. The overlapped SVGs
between any two modules were calculated, and the odds ratio and adjusted p-values were shown
on the heatmap (Fig. 5d).

Computational environment and running time

All experiments were performed on our lab server set up at the Ohio Supercomputing Center. The
server has a 2.6GHz AMD EPYC 7H12 processor, 64 cores, and 1 TB RAM. We tested the
computing time of SpaGFT and other tools on three datasets, (/) HE-coronal mouse brain datasets
with 2,702 spots. (ii) the 151673 Visium human brain datasets with 3,639 spots, and (iii) the Puck-
200115-08 slide-seq v2 datasets with 53,208 spots. For the first dataset, SpaGFT, SPARK,
SPARK-X, MERINGUE, SpatialDE, and SpaGCN used 25 seconds, 6 hours, 52 seconds, 3 hours,
1.5 hours, and 17 minutes. For the second dataset, SpaGFT, SPARK, SPARK-X, MERINGUE,
SpatialDE, and SpaGCN spent 21 seconds, 6 hours, 50 seconds, 3 hours, 72 minutes, and 25
minutes. For the third dataset, only SpaGFT (15 minutes) and SPARK-X (56 seconds)
successfully completed the SVG identification, while the rest of the tools spent over 48 hours or
failed.

Data Availability

The 11 datasets from 10x Visium (ten mouse brain datasets and one human lymph node
sample)® can be accessed from https://www.10xgenomics.com/products/spatial-gene-
expression. GSM5519054 Visium_MouseBrain dataset is available from the GEO database with
an accession number GSM5519054%?, Regarding the human brain dataset'®, twelve samples can
be accessed via endpoint “jhpce#HumanPilot10x” on Globus data transfer platform at
http://research.libd.org/globus/.  The  other six human brain datasets (2-3-
AD_Visium_HumanBrain, 2-8-AD_Visium_HumanBrain, T4857-AD_Visium_HumanBrain, 2-
5 Visium_HumanBrain, 18-64_ Visium_HumanBrain, and 1-1_Visium_HumanBrain) are
available in a BioRxiv study®®. The two Slide-seq V2 datasets? are available as accession number
SCP815 in the Single Cell Portal via the link https://singlecell.broadinstitute.org/single_cell.

Code Availability

SpaGFT is a python package for modeling and analyzing spatial transcriptomics data. The
SpaGFT source code and the analysis scripts for generating results and figures in this paper are
available at https://github.com/OSU-BMBL/SpaGFT.
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Supplementary Tables

Supplementary Table 1 | Data information. The table includes information on 32 spatial
transcriptome datasets from the public domain. The first column shows the data ID in the original
paper or data source; the second column shows the use of the data (i.e., for grid-search
optimization, independent test, or case study); the third column shows the sequencing platform;
the fourth to the sixth columns show the sample information, including species, conditions, and
tissue sources; the rest of the columns shows the statistical information of each data, including
the number of spots, the number of genes, the number of total reads, the mean read per spot, the
standard deviation of the number of reads per spot, the mean number of genes per spot, and the
standard deviation of genes per spots.

Supplementary Table 2 | 849 SVG candidates collected from the public domain. The table
collects 849 unique cell-type- or layer-specific markers from five different kinds of literature. The
first column records the mouse gene symbol. The second column records the paper source. The
third column records the experiment object in each gene, where "M," "H," and "M&H" represent
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mouse, human, and both. The fourth column records the human gene symbol. The fifth column
records the original source in the paper for each gene, either figures or supplementary files.

Supplementary Table 3 | 458 curated benchmarking SVGs validated by the Allen Brain
Atlas. The first six columns correspond to general information on gene identifiers, including gene
symbol (mouse), gene symbol (human), UniquelD, probe name, plane, and the experiment ID in
the ISH database. The ISH intensity on 12 brain regions was recorded from column G to Column
R, respectively, including Isocortex, Olfactory area (OLF), Hippocampal formation (HPF), Cortical
subplate (CTXsp), Striatum (STR), Pallidum (PAL), Thalamus (TH), Hypothalamus (HY), Midbrain
(MB), Pons (P), Medulla (MY), and Cerebellum (CB). All the records were downloaded from the
ISH database. Column S records the mean ISH intensity of 12 mouse brain regions. Column T
records variance calculated based on the FindVariableFeatures function in the Seurat package.
Column U records whether the gene is considered as a curated benchmarking SVG in this paper.

Supplementary Table 4 | Grid-search of parameter combination for SVG prediction. The
table records the details of the performance comparison in terms of the grid-search of parameter
optimization. The first four columns correspond to sample ID, tested software, sequence
technology, and parameter combinations. The rest of the columns records eight evaluation
matrices, including the Jaccard index, Tversky index, the odds ratio of Fisher's exact test,
precision, recall, F1 score, Moran's |, and Geary's C. If an element in this table is "NA," the
software shows an error or ran out of time (running time was greater than 48 hours) during testing.

Supplementary Table 5 | Running time of SpaGFT and other tools on the three grid-search
test data. The table records the running time and memory cost of SpaGFT, SPARK, SPARK-X,
MERINGUE, SpatialDE, and SpaGCN on the HE-coronal, 151673, and Puck-200115-08 datasets.
All tools and experiments were carried out in the same computing environment introduced in
Methods. Columns A and B show tool names and sample names; Column C and D records the
running time with the unit as second (S) and log1o(S), respectively. Column E is memory cost with
the unit as a megabyte. For any experiments spent over 24 hours, we labeled them as "NA".

Supplementary Table 6 | SVG prediction performance on 28 independent test datasets
using default parameters. The table records the details of the performance comparison in terms
of the independent test. The first column indicates the dataset ID, corresponding to the Dataset
ID in Supplementary Table 1. The second column shows eight evaluation matrices, including the
Jaccard index, Tversky index, the odds ratio of Fisher's exact test, precision, recall, F1 score,
Moran's |, and Geary's C. The other columns are the software. If an element in this table is "NA,"
the software shows an error or runs out of time (running time was greater than 48 hours) during
testing.

Supplementary Table 7 | Summary of top 100 genes identified by SpaGFT, and the fix
benchmarking tools. The table records the unique and consistent SVGs of the top 100 SVGs
identified by six tools for mouse brain data (HE-coronal). The first column is the gene name.
Columns B, C, D, E, F, and G are software names. The values in Columns B to G indicate whether
the gene is identified by this tool. If the value is equal to 1, it means the gene is the output of the


https://doi.org/10.1101/2022.12.10.519929
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.10.519929; this version posted December 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

top 100 SVGs in this software, and vice versa. Column H is the sum of values from Columns B to
G, indicating the consistency of identified genes (the higher value, the higher consistency). When
the value in Column H is "1," it means that this gene is uniquely identified by this one of the tools
from Columns B to G.

Supplementary Table 8 | SVG results in the HE coronal data. The table records all SVGs
predicted from SpaGFT on the HE-coronal data. Column A is the SVG name; Column B is the
number of spots having this SVG expressed; Column C is the corresponding GFTscore; Column
D is the ranking of GFTscore. Columns E and F are the p-value and g-value of SVG, respectively;
Columns H and | are the TM labels and sub-TM labels, respectively. SVGs are arranged based
on the SVG_rank from high to low.

Supplementary Table 9 | Deconvolution results for HE-coronal sample. The table shows the
proportions of 59 cell types calculated by cell2location. The first column is the spot ID of the
mouse sample. The rest of the columns are the cell proportions in 59 cell types, respectively.

Supplementary Table 10 | SVG results in the lymph node data. The table records all SVGs
predicted from SpaGFT on the lymph node data. Column A is the SVG name; Column B is the
number of spots having this SVG expressed; Column C is the corresponding GFTscore; Column
D is the ranking of GFTscore. Columns E and F are the p-value and g-value of SVG, respectively;
Columns H and | are the TM labels and sub-TM labels, respectively. SVGs are arranged in the
decreasing order of the SVG_rank score.

Supplementary Table 11 | Cell2location cell deconvolution results for Human lymph node.
The table shows the proportions of 34 cell types calculated by cell2location. The first column is
the spot ID of the human lymph node sample. The rest of the columns are the cell proportions in
34 cell types, respectively.

Supplementary Table 12 | TM assignment to each spot from lymph node data in terms of
GC, T cell zone, and B follicle. The table demonstrates GC, T cell zone, B follicle, and their
interactive region assignment label. The first column is the spot ID. The second column is the
assignment label, where “0” is no assignment; “T.zone” is the spot assigned as T cell zone;
“B.follicle” is the spot assigned as B follicle; “GC” is the spot assigned as germinal center; “T.zone-
B.follicle” is the spot assigned as the interactive region between T cell zone and B follicle; “GC-
T.zone” is the spot assigned as the interactive region between GC and T cell zone; “GC-B.follicle”
is the spot assigned as the interactive region between GC and B follicle; “GC-T.zone-B.follicle” is
the spot assigned as interactive region among GC, T zone, and B follicle.

Supplementary Table 13 | SVG results in the seven mouse brain data. The table records all
SVGs predicted from SpaGFT in the seven mouse brain data. Column A is the SVG name;
Column B is the number of spots having this SVG expressed; Column C is the corresponding
GFTscore; Column D is the ranking of GFTscore. Columns E and F are the p-value and g-value
of SVG, respectively; Columns H is the TM labels; Column | indicates the sample names.
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Supplementary Table 14 | TM-associated SVG and TM assignment to each spot from seven
samples in terms of TM cluster 1, TM cluster 2, and TM cluster 3. The table shows 3690 SVG,
TMs, and two labels for TMs. The first row is the clustering results of the Louvain algorithm. The
second row is the TM clusters label assignment, including TM cluster 1, TM cluster 2, and TM
cluster 3. The rest rows are SVGs (3690 SVGs). Columns indicate samples and their TMs.

Supplementary Table 15 | The overlapped SVGs across seven mouse brain samples in
terms of TM cluster 1, TM cluster 2, and TM cluster 3. The table records overlapped SVGs
among TMs in tissue motif 1 and tissue motif 2. Column A indicates TM cluster label and
overlapped names. Column B indicates tissue motif ID. The other columns indicate sample ID.
The value from column C to column | represents the number of spots. If an element in this table
is "NA," the no overlapping spot between two TM clusters.

Supplementary Figures

Supplementary Fig. 1 | FM identification and visualization. a, Workflow of FM identification.
Spot graph is constructed by KNN, where K is equal to the number of spot n. The degree and
adjacency matrix are generated, then the Laplacian matrix can be calculated by subtracting the
degree matrix and adjacency matrix. Through decomposing the Laplacian matrix, eigenvalue and
eigenvector are obtained, where eigenvectors are the FMs. b, Visualizations of FM patterns in
the different frequency domains of the Visium 151673 dataset, where LFM means low-frequency
FM and HFM means high-frequency FM. ¢, Impact of the number of FMs in identifying SVGs.
Different numbers of FMs were selected, i.e., 0.5vn, Vvn, 2vn, 3vn, 4Vn, 5vn, 8Vn, and 10vn.
Under each selection, the top 1,000 genes with high GFTscore are kept for pair-wise comparison,
where the number in the heatmap block indicates the number of overlapped genes. The results
showed high consistency of SVG results even if we selected different numbers of FMs, which
demonstrates the robustness of SpaGFT.

Supplementary Fig. 2 | Comparison of evaluation matrices (Morans' | and Gearys'C). a,
Moran's | and Geary's C score on the grid-search testing for the HE-coronal sample. The boxplot
indicates the Moran's | and Geary's C score distribution for six tools' grid-search results,
respectively. The Black line in the box indicates the median value. b, Moran's | and Geary's C
score on 28 independent datasets using optimized parameters of SpaGFT and default parameters
in the five benchmarking tools. The black line in the box indicates the median value.

Supplementary Fig. 3 | ISH evidence of four SVGs uniquely identified by SpaGFT. The ISH
database webpage shows four major information, including experiment information (top left), ISH
high-resolution image (right), 3D expression (middle left), and ISH intensity of 12 mouse brain
regions (bottom). In addition, we used a dashed line to circle out ISH high-intensity regions on
ISH high-resolution image. a, The screenshot of gene Calb2, which is in the coronal plane, shows
a highly consistent expression pattern of HE-coronal spatial data. b, The screenshot of gene Hcrt.
Due to the lack of coronal plane data, we use sagittal instead of the coronal plane. Interestingly,
the ISH intensity is not high in the 12 regions on the barplot (bottom), but we can clearly observe
enriched intensity in the hypothalamus region. c-h, The screenshot of gene Gda, Zfhx3, Gal,
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Cacnb3, Asb4, and Mpped1, which is also in the coronal plane, shows a highly consistent
expression pattern of HE-coronal spatial data, respectively.

Supplementary Fig. 4 | The ID card of TM 2 for the HE-coronal data. TM 2 includes 256 SVGs,
and all components on the ID card are the same as TM 1 in Fig. 1c, including a spatial map, a TM
map, the frequency signal histogram, the spatial map of the top four SVGs, and the top five
functional enrichment results in three databases using Enrichr.

Supplementary Fig. 5 | The ID card of TM 3 for the HE-coronal data. TM 3 includes 251 SVGs,
and all components on the ID card are the same as TM 1 in Fig. 1c, including a spatial map, a TM
map, the frequency signal histogram, the spatial map of the top four SVGs, and the top five
functional enrichment results in three databases using Enrichr.

Supplementary Fig. 6 | The ID card of TM 4 for the HE-coronal data. TM 4 includes 227 SVGs,
and all components on the ID card are the same as TM 1 in Fig. 1c, including a spatial map, a TM
map, the frequency signal histogram, the spatial map of the top four SVGs, and the top five
functional enrichment results in three databases using Enrichr.

Supplementary Fig. 7 | The ID card of TM 5 for the HE-coronal data. TM 5 includes 192 SVGs,
and all components on the ID card are the same as TM 1 in Fig. 1c, including a spatial map, a TM
map, the frequency signal histogram, the spatial map of the top four SVGs, and the top five
functional enrichment results in three databases using Enrichr.

Supplementary Fig. 8 | The ID card of TM 6 for the HE-coronal data. TM 6 includes 159 SVGs,
and all components on the ID card are the same as TM 1 in Fig. 1c, including a spatial map, a TM
map, the frequency signal histogram, the spatial map of the top four SVGs, and the top five
functional enrichment results in three databases using Enrichr.

Supplementary Fig. 9 | The ID card of TM 7 for the HE-coronal data. TM 7 includes 96 SVGs,
and all components on the ID card are the same as TM 1 in Fig. 1c, including a spatial map, a TM
map, the frequency signal histogram, the spatial map of the top four SVGs, and the top five
functional enrichment results in three databases using Enrichr.

Supplementary Fig. 10 | Brain region atlas. The figure shows the mouse brain's six structures
obtained from Allen Brain Atlas, including Field CA1 (a), Hippocampal region (b), Hypothalamus
(c), Cortical subplate (d), Thalamus (e), and Fiber tracts (f). The purple color highlights the
corresponding brain regions.

Supplementary Fig. 11 | The sub-TMs of TM 1-7 in the HE-coronal data. The figure shows
the sub-TMs (in TMs 1, 2, 4, 5, 6, and 7) by reclustering SVGs in each TM (from left to right and
top to bottom), similar to Fig. 3e. Each sub-TM has a group of unique SVGs, showing different
spatial expression patterns among each other.
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Supplementary Fig. 12 | Cell type distribution of other TMs. The figures show TMs 1-7 and
TM6 Sub-TM 4 cell type component and distribution generated from cell2location. The left box
represents TM pseudo-expression and its binary form. The right box represents cell-type
compositions.

Supplementary Fig. 13 | Pathway and other gene signatures enriched within GC, T cell zone,
and B follicle region. The figure shows pseudo-expression TM, binary TM, TM enriched
functional pathway (left), TM associated SVG (upright), and TM correlated cell types (downright)
for GC, T cell zone, and B follicle.

Supplementary Fig. 14 | The intact heatmap of TM intersections across three TM clusters.
The heatmap shows gene overlapping of 22 TMs derived from three TM clusters. The color
indicates the log-odds ratio of the Fisher exact test. p-value (Benjamini-Hochberg adjusted)
between two samples is showcased on the heatmap. Three anatomical structures (cerebrum,
hypothalamus, and white matter) were derived from Allen Brain Altas, and targeted regions are
indicated by the purple color.
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