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Abstract

Periaqueductal gray (PAG) columns mediate affective experience, physiological
regulation, and survival-related behavior; yet, only 7T imaging can resolve these small structures
in humans. In a social stress task, participants prepared a speech, and we observed (a) bilateral
ventrolateral PAG activity, relative to baseline, and (b) distinct spatial patterns of correlation
between PAG activity and physiological response (i.e., cardiac interbeat interval, reparation rate,

and tonic electrodermal activity).
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Functional columns within the periaqueductal gray (PAG) have been identified in human
and animal research, but limitations in imaging resolution have hindered studies of their
functional involvement in naturalistic human behavior. The PAG is a small midbrain structure
(Fig. 1a-d) that plays functional roles in antinociception, blood pressure modulation, migraine
pain, vocalization, micturition, sexual behavior, affective experience, and survival-related
behaviors (e.g., coordinating a fight-or-flight response)'. Of these functions, antinociception,
blood pressure modulation, and survival-related behaviors show different (and sometimes
opposite) effects following stimulation of dorsolateral and ventrolateral PAG columns'.
Stimulating dorsolateral or lateral PAG elicits a suite of behavioral and physiological reactions
that have been interpreted as a defensive reaction’—e.g., in rats, it elicits “activity bursts”, such
as explosive running and jumping®°, and in cats, it elicits redirection of blood flow from viscera
to hindlimb muscles and increases in heart rate, blood pressure, and respiratory rate:S. By
contrast, ventrolateral PAG stimulation in rats elicits “freezing” behavior, a species-specific
response to threat that is thought to prevent detection when predators are detected®’. In humans,
blood pressure is increased and decreased, respectively, by electrical stimulation near
dorsolateral and ventrolateral PAG®. Human patients also report intensely unpleasant affective
sensations after PAG stimulation, which have been hypothesized to result from ascending
sensory activation relayed from lateral/ventrolateral PAG'. Prior human functional MRI (fMRI)
studies at 3T (Tesla) observed BOLD (blood-oxygen level-dependent) signal intensity increases
(i.e., BOLD increases) in PAG during the anticipation of threat®~'%; however, 3T studies cannot
spatially resolve PAG columns, or even clearly separate the PAG from the cerebral aqueduct it
surrounds, and the few existing 7T studies of the human PAG did not detect bilateral columnar
effects!>!4, likely due to their smaller participant sample size. The present work uses a large
sample of participants (N = 90), scanned at 7T with simultaneous physiological recording to help
resolve fine-scale spatial distinctions in human PAG function during a naturalistic social stress
task.

We used a social stress task, asking participants to prepare for a speech (Fig. 1e), which
has elicited PAG BOLD increases in prior work!>!®, and is a naturalistic manipulation of fear
and anxiety-provoking situations that humans regularly encounter. Theoretical models of fear
and anxiety in humans have suggested that the PAG is active in response to imminent threats®!2,

but PAG columns have also been hypothesized to support more specific survival-related
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responses, with ventrolateral PAG controlling conditioned defenses after a predator is
encountered (e.g., “freezing”), and dorsolateral PAG controlling more imminent fight-or-flight
reactions, when the predator must be fought or escaped®!’~2°. Given this, if columnar differences
in BOLD increases are observable at 7T during anticipatory social stress, then prior work implies
that they would most likely be observed in ventrolateral PAG, given the more distant nature of
the social threat. Following prior work!4, we created subject-specific PAG masks (using the
cerebral aqueduct as a landmark; see Online Methods) and aligned these masks to a common
space for group-level comparisons.

Consistent with this hypothesis, we did observe BOLD increases in bilateral ventrolateral
PAG (Fig 1g-1) as participants prepared to deliver a speech. This result was observed both during
the speech preparation period, where participants were told the speech topic (“Why am I a good
friend”) and given two minutes to prepare a seven-minute speech (Fig. 1h), and during a pre-
preparation period, where participants knew they would be asked to give a speech but did not yet
know the topic (Fig. 1g). All contrasts were performed in comparison to a baseline period, where
participants were informed that they would not have to give a speech and were instructed to
relax. The majority of participants reported fully believing the deception (80%; n = 72), and the
observed increase in ventrolateral PAG during the speech preparation period was only observed
in participants that believed they would give a speech (Fig. S1).

The speech preparation period (but not the pre-preparation period) elicited a midline
BOLD pattern consistent with observations in previous publications using the speech preparation
task!'>16, and with a sympathetic physiological response (Fig. 1f; Fig S2)—i.e., BOLD increases
in anterior cingulate cortex, and BOLD decreases in subgenual anterior cingulate (or
ventromedial prefrontal cortex; vmPFC). Note that prior human-based work, using 3T imaging,
reported BOLD increases in vmPFC in response to distant or invisible predators and BOLD
increases in PAG for imminent or visible predators®'2. In contrast, our two-minute delay in
advance of the speech (i.e., anticipated social threat) is slower than the slowest approaching
predator used prior work!!, yet elicited the putative signature of an imminent threat: a BOLD
decrease in vimPFC and a BOLD increase in PAG.

Because the whole-brain BOLD contrast for the speech preparation period was consistent
with a sympathetic physiological response, we next examined physiological channels—

respiratory rate (RR), cardiac interbeat interval (IBI), and tonic electrodermal activity (EDA)—
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which were simultaneously recorded during scanning. Channels were checked for noise using
manual inspection and custom software (see Online Methods), leaving a participant sample of 55
for IBI, 48 for RR, and 68 for EDA. During speech preparation, all physiological measures
increased relative to the baseline period (Fig. 2a-c), and all but respiratory rate increased relative
to the pre-preparation period (RR, b= 0.38, #47.00) = 1.00, p > 0.3; IBI, b =—61.31, #54.00) = 7.45,
p<1le?; EDA, b=0.52,£70.00) = 5.17, p < 1e"°), suggesting that respiratory rates remained
elevated from the beginning of the scan until the speech was revealed as a deception (Fig. 2a).
The results also confirms that, on average across participants, the task elicited the intended
physiological response.

The PAG is a critical relay point between the brain and viscera, and our simultaneous
physiological recordings afforded the opportunity to examine in vivo physiological correlations
with BOLD signal intensity in the PAG. Somewhat to our surprise, we observed clear and
distinct spatial patterns of correlation in each physiological channel. Across participants, we
correlated PAG BOLD estimates during speech preparation with average change from baseline
over the same task period in each physiological channel. Increases in respiratory rate correlated
with BOLD in clear bands across the rostral and medial segments of the PAG (Fig. 2d). Increases
in tonic skin conductance correlated with BOLD in a clear band along the dorsomedial column
(Fig. 2e). Decreases in interbeat interval (i.e., faster heart rates) were correlated with BOLD,
largely in left-lateralized medial and caudal segments of the PAG (Fig. 2f). The left-lateralization
of IBI was least consistent with the known columnar and rostral-caudal organization of the PAG;
but it was also the most internally replicable result of this analysis, as the same topography of
correlations was observed in the pre-preparation period (Fig S3). Because both whole-brain task
contrasts were left-lateralized as well (consistent with language lateralization during speech
preparation; Fig. S2), we speculate that the lateralized IBI-PAG correlation may be driven, in
part, by top-down projections from cerebral cortex. By contrast, prior work has suggested that

rostral-caudal organization in the PAG stems from somatotopic spinal projections!-?!

, meaning
that the rostral-caudal organization of RR-PAG correlations may be more driven by bottom-up
spinal projections. These spatial maps of BOLD—physiology correlations should be interpreted
with caution: although we defined PAG in relation to subject-specific high-variance aqueduct
voxels, some PAG voxels remained more variable than others. To down-weight high variance

voxels in group analyses, we used z-score normalized subject-specific BOLD estimates, but
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despite this, high-variance PAG voxels still generally showed an increase in BOLD-physio
correlations, especially for IBI and EDA measurements (but much less so for RR; Fig. S4). This
relationship between BOLD—physio correlation strength and voxel variance was likely driven by

pulsatile motion in the cerebral aqueduct.
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Figure 1. PAG identification, segmentation, and task-elicited BOLD signal intensity. A) The
PAG is a small midbrain structure surrounding the cerebral aqueduct. Using GLM residuals, we
created subject-specific PAG masks by identifying high variance voxels in the cerebral aqueduct
and building a PAG mask around them (see Methods). These subject-specific masks were
warped into alignment to substantially increase mean % overlap across subjects (Dice
coefficient) from 62.0% [95% CI: 34.3%, 75.1%] to 80.7% [95%CI: 69.3%, 87.3%]. The panel
plots % overlap in a sagittal slice (x = 0). B) x/y/z coordinates in group-level PAG mask were
geometrically transformed into radial degrees, and columnar PAG ROIs were drawn
(ventrolateral = +/- 97.5-135°; lateral = +/- 60-97.5°; dorsolateral = +/- 22.5-60°; dorsomedial =
+/- 22.5°). C) PAG voxel ROIs are displayed on a 2d plane, after reslicing from native space
(1.Imm x 1.Imm x Imm) to 0.5mm isotropic. The x-axis displays PAG radial degrees, and the
y-axis displays the longitudinal PAG axis (identified by PCA on the native x/y/z PAG
coordinates). Colors indicate columnar PAG ROIs. D) The 2d PAG plot is faceted by radial
slices of the PAG to allow easy visualization through the entire cylinder—e.g., the 0-lmm
column shows voxels abutting the cerebral aqueduct, and the 1-2mm column shows voxels 1-
2mm from the aqueduct center. E) Task design. Subjects were told before the scan run that they
would be asked to give a seven-minute speech, which would be recorded and evaluated, and for


https://doi.org/10.1101/2022.12.29.522243
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.29.522243; this version posted December 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

which they would have two minute to prepare after being given the topic. In the pre-preparation
period, subjects were aware they would have to give the speech, but did not yet know the topic.
In the speech preparation period, participants knew the topic and believed they would speak at its
end. Previous studies using this task combined the pre-preparation and final baseline into a single
baseline, but we separated them given that the two baseline periods might be experienced as
psychologically distinct!>!®. F) Midline visualization of the whole-brain speech preparation
contrast. We observed midline patterns of BOLD intensity consistent with sympathetic activation
(top panel), and BOLD signal increases throughout the PAG (bottom panel). Subject-level
contrast images were smoothed 1.5 mm and warped to align subject-specific PAG masks (see
Methods) before group-level analyses. G) Pre-preparation 2d PAG BOLD signal intensity
visualization. PAG voxel z-scores were extracted from each subject’s PAG-aligned, unsmoothed,
whole-brain contrast using the group-level PAG mask. After masking, subject PAG voxels were
resampled to 0.5mm isotropic and smoothed 1mm. In each voxel, a t-test compared the
population of z-score normalized subject estimates to 0. T-tests are plotted using the heatmap,
with negative scores in blue and positive in red. Z-score normalized subject estimates were used
to correct for heterogeneous variance across PAG voxels, which was especially apparent in
voxels bordering the cerebral aqueduct (Fig. S4). H) The same 2d PAG BOLD signal intensity
visualization is displayed for the speech preparation period. Note the clear bilateral bands of
positive t-tests in the ventrolateral columns. I) PAG column averages and 95% confidence
intervals across the subject population, averaging subject ROI z-scores across voxels within each
columnar PAG ROI (Fig. 1d).
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Figure 2. Physiological changes and their across-subject correlation with variance-normalized
PAG BOLD signal intensity. A) Colored bands depict loess-function estimates of subject-
specific respiratory rates across the task run, normalized to subject-specific average respiration
rate in the baseline period. Black dots and confidence intervals indicate subject population means
and 95% confidence intervals in pre-preparation and speech preparation periods. The average
respiration rate increased in both pre-preparation and speech preparation periods relative to
baseline, and did not increase above pre-preparation rates during speech preparation. B) The
average tonic EDA activity increased during the speech preparation period relative to baseline,
and did not differ from baseline estimates during the pre-preparation period. C) The average
cardiac interbeat interval increased relative to baseline in both pre-preparation and speech
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preparation periods, and increased above pre-preparation rates during speech preparation. D)
Across subjects, PAG voxel signal intensity estimates for speech preparation and pre-baseline
periods (Fig. S3) were correlated with the average change in respiratory rate from baseline in the
same task-period. Correlations were calculated using bootstrap resampling (1000 resamples), and
any voxels where the bootstrapped 95% confidence interval included 0 were thresholded.
Respiratory rate correlations appeared in clear bands across the rostral and medial segments of
the PAG. E) Thresholded cross-subject correlations between PAG signal intensity and tonic
EDA change from baseline in the speech preparation period showed a clear band along the
dorsomedial column of the PAG. F) Thresholded cross-subject correlations between PAG signal
intensity and cardiac interbeat interval change from baseline in the speech preparation period

showed a pattern of left lateralization (which was also observed in the pre-preparation period;
Fig. S3).
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Figure S1. Participants were asked at the end of the study session whether they believed they
would deliver a speech in the scanner. Free response answers were recorded, and coded by the
experimenter (JT) into clear “Yes” (N = 72) and “No” (N = 11) responses, with any ambiguous
responses coded as “Maybe” (N = 6; one participant had no answer recorded). Because of the
smaller sample size, PAG column estimates are noisier for subjects where deception failed (i.e.,
“No”), but there is no clear evidence of a relative increase in ventrolateral PAG, and a clear trend
of decreasing PAG signal intensity in the speech preparation period, relative to pre-preparation.
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Figure S2. Although midline increases/decreases indicative of a sympathetic response (e.g., increase in ACC, decrease in sgACC)
were observed only during speech preparation, left-lateralized cortical changes relative to baseline were observed in both speech
preparation and pre-preparation periods. Many clusters observed in the left frontal cortex are associated with language processing

(green), which is consistent with the task, given that participants were asked to mentally prepare a speech. Whole-brain estimates were
minimally smoothed (1.5mm) and thresholded at a false decision rate of p < 0.05.



https://doi.org/10.1101/2022.12.29.522243
http://creativecommons.org/licenses/by-nc-nd/4.0/

BOLD ~ Respiratory Rate

BOLD ~ Heart RatBOLD ~ Tonic EDA

Correlation (N

=48)

Correlation (N

68)

Rostral-Caudal Axis (mm)

58)orrelation (N

Pre-preparation

Rostral-Caudal Axis (mm)

0-1mm

Thresholded Unthresholded

(A @ @ M @ @ @ W

1-2mm 2-3mm 3-4mm 0-imm 1-2mm 2-3mm 3-4mm

Rostral-Caudal Axis (mm)

RERXERXK
PAG Degree (°)

PAG Degree (°)

Rostral-Caudal Axis (mm)

Rostral-Caudal Axis (mm)

P 07 808 07 D7
PAG Degree (°) PAG Degree (°)

s
Seecesess
Rostral-Caudal Axis (mm)

+9° 1° 0 %6 9 09
PAG Degree (°) PAG Degree (°)

Correlation
Coefficient

o
-UA

Correlation
Coefficient
-

Correlation
Coefficient

Speech preparation

Rostral-Caudal Axis (mm)

Thresholded Unthresholded

(@ @ G @ @ @ G

1-2mm 2-3mm

0-imm 1-2mm 2-3mm 3-4mm 0-1mm 3-4mm

Rostral-Caudal Axis (mm)

Rostral-Caudal Axis (mm)

PAG Degree

PAG Degree (°)

Rostral-Caudal Axis (mm)

Rostral-Caudal Axis (mm)

PAG Degree (°) PAG Degree (°)

Rostral-Caudal Axis (mm)

P S S 8
PAG Degree (°)

PAG Degree ()
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Figure S4. Voxelwise variance estimates and their relationship with BOLD-physiology
correlations in PAG voxels. A) Heatmap of estimated variance from the GLM is plotted for each
PAG voxel (after resampling to 0.5mm isotropic). X-axis values represent degrees from the PAG
midline. Y-axis values represent distance along the rostral-caudal PAG axis. B) Across voxels,
group-level correlation estimates between respiratory rate and PAG signal intensity estimates are
plotted on the y-axis (see Figs. 2 & S3). The x-axis plots estimated variance for each voxel (i.e.,
from panel A). Because voxelwise variance estimates clearly differ across radial depth in the
PAG, the plot is facetted to plot the variance-correlation relationship in each radial slice. The y-
axis mean and 95% confidence interval is displayed in red for each facet. C) The same
relationship between voxelwise correlation strength and variance estimates is plotted, with the y-
axis now plotting voxelwise across-subject correlations between PAG signal intensity and tonic
EDA. D) The same relationship between voxelwise correlation strength and variance estimates is
plotted, with the y-axis now plotting voxelwise across-subject correlations between PAG signal
intensity and cardiac IBI.
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Online Methods

Participants. 90 participants were included in this study (Mag. = 26.87 years; SDag = 6.14 years;
38 female, 51 male, 1 non-response). The participant sample was 87.9% non-Hispanic, 61.5%
White/Caucasian, 26.4% Asian, and 9.9% Black/African American, and generally well-educated (24.2%
had some graduate education, 26.4% had completed college/university, 36.2% had some
college/university, 9.8% had completed high school, and 2.2% had not completed high school). Of the
140 participants initially recruited, 12 were excluded due to high motion (see fMRI preprocessing), 21
withdrew participation or ended the scan session before completing the speech task, and 16 were excluded
due to poor image quality (e.g. subject motion moved large portions of the brain outside the field of view,
compromising registration), as assessed by visual inspection in Mango v.4.1 (RRID: SCR_009603).
Peripheral physiology recordings were inspected for noise (see Peripheral physiology recording) and only
clean recordings were included in analysis. Of the 90 participants with usable fMRI data, 55 had clean
heart rate data, 48 had clean respiratory data, and 68 had clean electrodermal activity (EDA) data. 26
participants had clean data in all three physiological channels. Participants were recruited from the greater
Boston area, were between the ages of 18 and 40 years, were right-handed, had normal or corrected to
normal vision, were not pregnant, spoke fluent English, and had no known neurological or psychiatric
illnesses. Exclusion criteria included claustrophobia, or the presence of any metal implants. All
participants provided written informed consent and study procedures were completed as approved by the
Partners’ Healthcare Institutional Review Board.

Experimental paradigm. Participants prepared to deliver a speech while in the scanner, under
the impression that it would be recorded and its merit would be rated by a panel of judges (Cribben et al.,
2012, 2013; Lindquist et al., 2007; Lindquist & McKeague, 2009; Wager, van Ast, et al., 2009; Wager,
Waugh, et al., 2009). Participants were told that the scan would consist of a 2-minute baseline period
where they were to remain still (pre-baseline), after which they would have 2 minutes to prepare a 7-
minute speech on a presented topic (speech-prep), which would be recorded and graded by a panel of
experts. In reality, participants did not deliver a speech, and were informed after the speech-prep period
that they would not deliver a speech should relax for the remaining 2 minutes of the run (post-baseline).
The topic (“Why I am a good friend”’) was presented for 15 seconds between pre-baseline and speech-
prep periods, and the text informing participants they would not give a speech appeared for 15 seconds
between speech-prep and post-baseline periods. All instructions were presented using the Psychphysics
Toolbox (RRID:SCR 002881, Kleiner et al., 2007) in MATLAB (RRID:SCR_001622, MathWorks).

fMRI acquisition. Gradient-echo echo-planar imaging BOLD-fMRI was performed on a 7 Tesla
MRI scanner at the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General

Hospital (MGH), Boston, MA. The scanner was built by Magnex Scientific (Oxford, UK), with
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the MRI console, gradient and gradient drivers, and patient table provided by Siemens. A custom-built
32-channel radiofrequency coil head array was used for reception. Radiofrequency transmission was
provided by a 20etonable band-pass birdcage coil. Functional images were acquired using a GRAPPA-
EPI sequence (GRAPPA acceleration factor = 3, TE = 28ms, TR = 2.34s, flip angle = 75°, 123 axial
slices, A > P phase encoding, partial Fourier in the phase encode direction = 7/8). Structural images were
also acquired using a GRAPPA-EPI sequence (GRAPPA acceleration factor =3, TE =22 ms, TR = 8.52
s, flip angle = 90°, 126 axial slices, A > P phase encoding, , partial Fourier in the phase encode direction
= 6/8). This structural EPI image was reconstructed (via freesurfer and custom scripts) into a T1-like
image, which improved anatomical-functional registration and reduced blurring of functional signals by
ensuring that anatomical and functional images had similar spatial distortions (Renvall et al., 2016). In
both structural and functional images, voxels were 1.1mm isotropic (Omm gap between slices, FOV = 205
x 205mm?), echo spacing was 0.81ms, and bandwidth was 1415 Hz per pixel.

fMRI preprocessing. Preprocessing of the anatomical and functional data was performed using
the fmriprep pipeline, version 1.1.2 (Esteban et al., 2019; Esteban, Markiewicz, Goncalves, et al., 2020;
RRID: SCR _016216), a Nipype-based tool (Esteban, Markiewicz, Johnson, et al., 2020; Gorgolewski et
al., 2011; RRID: SCR_002502). Pipeline details can be found at
https://fmriprep.org/en/1.1.2/workflows.html. Each T1w (T1-weighted) volume was corrected for INU
(intensity non-uniformity) using N4dBiasFieldCorrection v2.1.0 (Tustison et al., 2010). Subject
brain masks were computed by dilating a binary image of their skull-stripped T1 image by 2 voxels to
remove gaps in coverage. Spatial normalization to the 2009¢ ICBM 152 Nonlinear Asymmetrical
template (Fonov et al., 2009; RRID: SCR_008796) was performed through nonlinear registration with the
antsRegistration tool of ANTs v2.1.0 (Avants et al., 2008; RRID: SCR_004757), using brain-
extracted versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid
(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast
(Zhang et al., 2001) in FSL v5.0.9 (RRID: SCR_002823). Functional data were slice time corrected
using 3dTshift in AFNI v16.2.07 (Cox, 1996; RRID: SCR_005927) and motion corrected using
mcflirt in FSL (Jenkinson et al., 2002). This was followed by co-registration to the corresponding
T1w using boundary-based registration (Greve & Fischl, 2009) with 9 degrees of freedom, using £1irt
in FSL. Motion correcting transformations, BOLD-to-T 1w transformation and T1w-to-template (MNI)
warp were concatenated and applied in a single step using antsApplyTransforms in ANTs using
Lanczos interpolation. Physiological noise regressors were extracted using the aCompCor method
(Muschelli et al., 2014), taking the top five principle components from subject-specific CSF and WM
masks, where the masks were generated by thresholding the WM/CSF masks derived from fast at 99%
probability, constraining the CSF mask to the ventricles (using the ALVIN mask; Kempton et al., 2011),
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and eroding the WM mask using the binary erosion function in SciPy v.1.6.1 (Virtanen et al.,
2020). Frame-wise displacement (Power et al., 2014) was calculated for each functional run using the
implementation of Nipype. Many internal operations of fmriprep use Nilearn (Abraham et al., 2014;
RRID: SCR _001362), principally within the BOLD-processing workflow. For all participants, the quality
of brain masks, tissue segmentation, and MNI registration was visually inspected for errors using the html
figures provided by the fmriprep pipeline.

fMRI analysis. To estimate BOLD activity during the speech-prep period, first-level
preprocessed functional time series were prewhitened and fit with a general linear model (GLM), using
FILM (FSL). Four boxcar task regressors were convolved with FSL’s double-gamma hemodynamic
response function and included in the GLM to model the onset and duration of the pre-baseline (120 sec.),
speech-topic instruction (15 sec.), speech-prep (120 sec.), and no-speech instruction (15 sec.) periods.
This modeling strategy differed from previous implementations of this task, which combined pre-/post-
baseline periods, but avoids assumptions that participants are equally relaxed in the both periods.
Nuisance regressors included framewise displacement, aCompCor components (see fMRI Preprocessing),
an intercept, and single-TR spike regressors (Satterthwaite et al., 2013), where framewise displacement >
0.5mm. All modeling was performed using wrapper scripts in Nipype v.1.4.2 (Esteban, Markiewicz,
Johnson, et al., 2020). Whole brain contrast maps were masked by the MNI 2009¢ asymmetric grey
matter probability mask (> 20% probability) and thresholded using a false decision rate of p <0.05.

Long task periods are somewhat unusual for an fMRI design, which typically involves brief
events or blocks. On account of this design feature, we omitted translation and rotation motion parameters
and high-pass filtering (or equivalently, discrete cosine transform (DCT) functions), instead modeling
framewise displacement and a linear trend. Comparisons with alternative models showed that these
choices reduced the average variance inflation factor (VIF) across subjects for the speech-prep period
(VIFmean = 1.59, VIFsp = 0.13), relative to replacing framewise displacement with translation and rotation
(VIFmean = 9.57, VIFsp = 8.61), or replacing the linear trend with a set of 240 second DCT functions
(VIFmean = 7.34, VIFsp = 0.94). VIF remained inflated when pre-/post-baseline periods were combined, as
in earlier studies using this task (e.g. Wager, Waugh, et al., 2009).

PAG identification and alignment. An additional alignment step, beyond the alignment to MNI
space, was taken to ensure that BOLD activity estimates in the PAG were aligned across subjects, similar
to techniques used in prior work (Kragel et al., 2019; Satpute et al., 2013). The PAG was identified in
each subject’s MNI normalized brain and aligned to a common space by: (a) using high-variability model
residuals to identify the cerebral aqueduct and create a subject-specific aqueduct mask; (b) drawing a
subject-specific PAG mask, dilating the aqueduct mask by 2 voxels (2.2mm), and masking any voxels

that were in the original aqueduct mask, that were outside the MNI coordinates range of [-42 <y < -22]
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and [-14 < z], or that were not in the subject-specific gray-matter segmentation (>50% probability); (c)
creating a custom group PAG-aligned template using DARTEL (Ashburner, 2007), which was in
approximate MNI space due to first-pass normalization; and (d) warping contrast estimates into the PAG-
aligned space. After warping, mean % overlap among subject-specific PAG masks (i.e. the Dice
coefficient) increased from 62.0% [95% CI: 34.3%, 75.1%] to 80.7% [95%CI: 69.3%, 87.3%].

The group-aligned PAG template was subdivided into columnar ROIs and ROIs along the PAG
rostral-caudal axis (Fig. 1b-d). Voxel x/y/z coordinates were submitted to PCA to identify the PAG
longitudinal axis (factor 1), and a geometric transformation on the remaining PCA components gave the
radius and degree of each PAG voxel (relative to the y axis, at 0°). PAG columns were defined by their
degree range: dorsomedial (+/-22.5°), left/right dorsal (22.5° - 60°), left/right lateral (60° - 97.5°), and
left/right ventral (97.5° - 135°), with the ventromedial quarter of the mask excluded from analysis.

Peripheral physiology recording. All peripheral physiology measures were collected at 1kHz
using an AD Instruments Powerlab data acquisition system with MR-compatible sensors and LabChart
software. Data were continuously acquired throughout the entire scan session and partitioned for
alignment with fMRI data using experimenter annotations in LabChart and scanner TR events. A piezo-
electric pulse transducer (AD Instruments) measured heart rate from the left-hand index fingertip. A
respiratory belt with a piezo-electric transducer (UFI) measured respiratory rate and was placed around
the lower sternum. Wired Ag/AgCl finger electrodes measured electrodermal activity from sensors
containing isotonic paste on the left middle and ring fingertips, with signals amplified by an FE116 GSR
amplifier.

Physiological time series data were visually inspected for quality in Biopac Student Lab and in
custom visualizations using R (v.3.6.2; R Core Team, 2016) and ggplot2 (v.3.2.1; Wickham, 2009). Time
series were classified as clean (i.e. clean of artifacts), noisy (i.e. containing artifacts among periods of
usable data), and unusable (i.e. containing artifacts and little to no usable data). Contamination of
electrodermal activity by respiration was also recorded when present, and a percentage of time course
contamination was recorded for each participant and run. Among the 90 participants with usable fMRI
data, 55 had clean cardiac data, 17 had noisy cardiac data, 12 had unusable cardiac data, and 7 had no
recorded data. For respiratory data, 48 time series were clean, 27 were noisy, 12 were unusable, and 4 had
no recorded data. For electrodermal activity, 68 participant time series were clean, 10 were noisy, 9 were
unusable, and 4 had no recorded data; and orthogonal to this, 37 time series contained some respiratory
contamination (mean % of run contaminated = 59.05%, SD = 32.76%), with 34 of these respiratory-
contaminated runs occurring in otherwise clean electrodermal samples. Only clean time series were used
in analysis. Among electrodermal activity, clean time series contaminated by respiratory noise were

included as this noise was irrelevant to the tonic measures of skin conductance used in analysis.
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Peripheral physiology analysis. Physiological time series data were analyzed using MATLAB
toolboxes and custom R scripts. Heart rate was calculated using the PhysIO MATLAB toolbox (Kasper et
al., 2017), which used a 0.3 to 9 Hz band-pass filter, and identified cardiac peaks using a two-pass
process. The first-pass estimated run average heart rate, detecting peaks exceeding 40% of normalized
amplitude, assuming a minimum peak spacing consistent with < 90 beats per minute. First-pass peaks are
used to create an averaged template, and the first-pass estimated average heart rate is used as a prior to
detect peaks on the second-pass (for more details, see Kasper et al., 2017). PhyslIO pipeline peaks were
compared with peaks identified in Biopac by trained coders. Discrepancies between the two methods
were rare (0.5% of peaks across all runs and participants), and occurred more rarely in the dataset scored
by a more experienced coder (0.323% of peaks), compared to the dataset scored by a less experienced
coder (0.878% of peaks). Heart rates were smoothed with a 6 second rolling average, downsampled into
scan slices, and converted into interbeat intervals. Respiratory rates were calculated using custom R
scripts. A 1Hz low-pass filter was applied to respiratory time courses, and local peaks were identified in a
sliding 500ms window, removing peaks that fell within 0.5 SD of the run average respiratory value.
Respiratory rates were smoothed with a 6 second rolling average and downsampled into scan slices. Tonic
electrodermal activity was calculated using Discrete Deconvolution Analysis, as implemented in the

Ledalab MATLAB toolbox (Benedek & Kaernbach, 2010).
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