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Abstract 

Periaqueductal gray (PAG) columns mediate affective experience, physiological 

regulation, and survival-related behavior; yet, only 7T imaging can resolve these small structures 

in humans. In a social stress task, participants prepared a speech, and we observed (a) bilateral 

ventrolateral PAG activity, relative to baseline, and (b) distinct spatial patterns of correlation 

between PAG activity and physiological response (i.e., cardiac interbeat interval, reparation rate, 

and tonic electrodermal activity). 
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Functional columns within the periaqueductal gray (PAG) have been identified in human 

and animal research, but limitations in imaging resolution have hindered studies of their 

functional involvement in naturalistic human behavior. The PAG is a small midbrain structure 

(Fig. 1a-d) that plays functional roles in antinociception, blood pressure modulation, migraine 

pain, vocalization, micturition, sexual behavior, affective experience, and survival-related 

behaviors (e.g., coordinating a fight-or-flight response)1. Of these functions, antinociception, 

blood pressure modulation, and survival-related behaviors show different (and sometimes 

opposite) effects following stimulation of dorsolateral and ventrolateral PAG columns1,2. 

Stimulating dorsolateral or lateral PAG elicits a suite of behavioral and physiological reactions 

that have been interpreted as a defensive reaction3—e.g., in rats, it elicits “activity bursts”, such 

as explosive running and jumping4,5, and in cats, it elicits redirection of blood flow from viscera 

to hindlimb muscles and increases in heart rate, blood pressure, and respiratory rate1,6. By 

contrast, ventrolateral PAG stimulation in rats elicits “freezing” behavior, a species-specific 

response to threat that is thought to prevent detection when predators are detected3,7. In humans, 

blood pressure is increased and decreased, respectively, by electrical stimulation near 

dorsolateral and ventrolateral PAG8. Human patients also report intensely unpleasant affective 

sensations after PAG stimulation, which have been hypothesized to result from ascending 

sensory activation relayed from lateral/ventrolateral PAG1. Prior human functional MRI (fMRI) 

studies at 3T (Tesla) observed BOLD (blood-oxygen level-dependent) signal intensity increases 

(i.e., BOLD increases) in PAG during the anticipation of threat9–12; however, 3T studies cannot 

spatially resolve PAG columns, or even clearly separate the PAG from the cerebral aqueduct it 

surrounds, and the few existing 7T studies of the human PAG did not detect bilateral columnar 

effects13,14, likely due to their smaller participant sample size. The present work uses a large 

sample of participants (N = 90), scanned at 7T with simultaneous physiological recording to help 

resolve fine-scale spatial distinctions in human PAG function during a naturalistic social stress 

task.  

We used a social stress task, asking participants to prepare for a speech (Fig. 1e), which 

has elicited PAG BOLD increases in prior work15,16, and is a naturalistic manipulation of fear 

and anxiety-provoking situations that humans regularly encounter. Theoretical models of fear 

and anxiety in humans have suggested that the PAG is active in response to imminent threats9–12, 

but PAG columns have also been hypothesized to support more specific survival-related 
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responses, with ventrolateral PAG controlling conditioned defenses after a predator is 

encountered (e.g., “freezing”), and dorsolateral PAG controlling more imminent fight-or-flight 

reactions, when the predator must be fought or escaped3,17–20. Given this, if columnar differences 

in BOLD increases are observable at 7T during anticipatory social stress, then prior work implies 

that they would most likely be observed in ventrolateral PAG, given the more distant nature of 

the social threat. Following prior work14, we created subject-specific PAG masks (using the 

cerebral aqueduct as a landmark; see Online Methods) and aligned these masks to a common 

space for group-level comparisons. 

Consistent with this hypothesis, we did observe BOLD increases in bilateral ventrolateral 

PAG (Fig 1g-i) as participants prepared to deliver a speech. This result was observed both during 

the speech preparation period, where participants were told the speech topic (“Why am I a good 

friend”) and given two minutes to prepare a seven-minute speech (Fig. 1h), and during a pre-

preparation period, where participants knew they would be asked to give a speech but did not yet 

know the topic (Fig. 1g). All contrasts were performed in comparison to a baseline period, where 

participants were informed that they would not have to give a speech and were instructed to 

relax. The majority of participants  reported fully believing the deception (80%; n = 72), and the 

observed increase in ventrolateral PAG during the speech preparation period was only observed 

in participants that believed they would give a speech (Fig. S1). 

The speech preparation period (but not the pre-preparation period) elicited a midline 

BOLD pattern consistent with observations in previous publications using the speech preparation 

task15,16, and with a sympathetic physiological response (Fig. 1f; Fig S2)—i.e., BOLD increases 

in anterior cingulate cortex, and BOLD decreases in subgenual anterior cingulate (or 

ventromedial prefrontal cortex; vmPFC). Note that prior human-based work, using 3T imaging, 

reported BOLD increases in vmPFC in response to distant or invisible predators and BOLD 

increases in PAG for imminent or visible predators9–12. In contrast, our two-minute delay in 

advance of the speech (i.e., anticipated social threat) is slower than the slowest approaching 

predator used prior work11, yet elicited the putative signature of an imminent threat: a BOLD 

decrease in vmPFC and a BOLD increase in PAG.  

Because the whole-brain BOLD contrast for the speech preparation period was consistent 

with a sympathetic physiological response, we next examined physiological channels—

respiratory rate (RR), cardiac interbeat interval (IBI), and tonic electrodermal activity (EDA)—
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which were simultaneously recorded during scanning. Channels were checked for noise using 

manual inspection and custom software (see Online Methods), leaving a participant sample of 55 

for IBI, 48 for RR, and 68 for EDA. During speech preparation, all physiological measures 

increased relative to the baseline period (Fig. 2a-c), and all but respiratory rate increased relative 

to the pre-preparation period (RR, b = 0.38, t(47.00) = 1.00, p > 0.3; IBI, b = −61.31, t(54.00) = 7.45, 

p < 1e−9; EDA, b = 0.52, t(70.00) = 5.17, p < 1e−5), suggesting that respiratory rates remained 

elevated from the beginning of the scan until the speech was revealed as a deception (Fig. 2a). 

The results also confirms that, on average across participants, the task elicited the intended 

physiological response. 

The PAG is a critical relay point between the brain and viscera, and our simultaneous 

physiological recordings afforded the opportunity to examine in vivo physiological correlations 

with BOLD signal intensity in the PAG. Somewhat to our surprise, we observed clear and 

distinct spatial patterns of correlation in each physiological channel. Across participants, we 

correlated PAG BOLD estimates during speech preparation with average change from baseline 

over the same task period in each physiological channel. Increases in respiratory rate correlated 

with BOLD in clear bands across the rostral and medial segments of the PAG (Fig. 2d). Increases 

in tonic skin conductance correlated with BOLD in a clear band along the dorsomedial column 

(Fig. 2e). Decreases in interbeat interval (i.e., faster heart rates) were correlated with BOLD, 

largely in left-lateralized medial and caudal segments of the PAG (Fig. 2f). The left-lateralization 

of IBI was least consistent with the known columnar and rostral–caudal organization of the PAG; 

but it was also the most internally replicable result of this analysis, as the same topography of 

correlations was observed in the pre-preparation period (Fig S3). Because both whole-brain task 

contrasts were left-lateralized as well (consistent with language lateralization during speech 

preparation; Fig. S2), we speculate that the lateralized IBI-PAG correlation may be driven, in 

part, by top-down projections from cerebral cortex. By contrast, prior work has suggested that 

rostral–caudal organization in the PAG stems from somatotopic spinal projections1,21, meaning 

that the rostral–caudal organization of RR-PAG correlations may be more driven by bottom-up 

spinal projections. These spatial maps of BOLD–physiology correlations should be interpreted 

with caution: although we defined PAG in relation to subject-specific high-variance aqueduct 

voxels, some PAG voxels remained more variable than others. To down-weight high variance 

voxels in group analyses, we used z-score normalized subject-specific BOLD estimates, but 
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despite this, high-variance PAG voxels still generally showed an increase in BOLD-physio 

correlations, especially for IBI and EDA measurements (but much less so for RR; Fig. S4). This 

relationship between BOLD–physio correlation strength and voxel variance was likely driven by 

pulsatile motion in the cerebral aqueduct. 
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Figure 1. PAG identification, segmentation, and task-elicited BOLD signal intensity. A) The 
PAG is a small midbrain structure surrounding the cerebral aqueduct. Using GLM residuals, we 
created subject-specific PAG masks by identifying high variance voxels in the cerebral aqueduct 
and building a PAG mask around them (see Methods). These subject-specific masks were 
warped into alignment to substantially increase mean % overlap across subjects (Dice 
coefficient) from 62.0% [95% CI: 34.3%, 75.1%] to 80.7% [95%CI: 69.3%, 87.3%]. The panel 
plots % overlap in a sagittal slice (x = 0). B) x/y/z coordinates in group-level PAG mask were 
geometrically transformed into radial degrees, and columnar PAG ROIs were drawn 
(ventrolateral = +/- 97.5-135°; lateral = +/- 60-97.5°; dorsolateral = +/- 22.5-60°; dorsomedial = 
+/- 22.5°). C) PAG voxel ROIs are displayed on a 2d plane, after reslicing from native space 
(1.1mm x 1.1mm x 1mm) to 0.5mm isotropic. The x-axis displays PAG radial degrees, and the 
y-axis displays the longitudinal PAG axis (identified by PCA on the native x/y/z PAG 
coordinates). Colors indicate columnar PAG ROIs. D) The 2d PAG plot is faceted by radial 
slices of the PAG to allow easy visualization through the entire cylinder—e.g., the 0-1mm 
column shows voxels abutting the cerebral aqueduct, and the 1-2mm column shows voxels 1-
2mm from the aqueduct center. E) Task design. Subjects were told before the scan run that they 
would be asked to give a seven-minute speech, which would be recorded and evaluated, and for 
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which they would have two minute to prepare after being given the topic. In the pre-preparation 
period, subjects were aware they would have to give the speech, but did not yet know the topic. 
In the speech preparation period, participants knew the topic and believed they would speak at its 
end. Previous studies using this task combined the pre-preparation and final baseline into a single 
baseline, but we separated them given that the two baseline periods might be experienced as 
psychologically distinct15,16. F) Midline visualization of the whole-brain speech preparation 
contrast. We observed midline patterns of BOLD intensity consistent with sympathetic activation 
(top panel), and BOLD signal increases throughout the PAG (bottom panel). Subject-level 
contrast images were smoothed 1.5 mm and warped to align subject-specific PAG masks (see 
Methods) before group-level analyses. G) Pre-preparation 2d PAG BOLD signal intensity 
visualization. PAG voxel z-scores were extracted from each subject’s PAG-aligned, unsmoothed, 
whole-brain contrast using the group-level PAG mask. After masking, subject PAG voxels were 
resampled to 0.5mm isotropic and smoothed 1mm. In each voxel, a t-test compared the 
population of z-score normalized subject estimates to 0. T-tests are plotted using the heatmap, 
with negative scores in blue and positive in red. Z-score normalized subject estimates were used 
to correct for heterogeneous variance across PAG voxels, which was especially apparent in 
voxels bordering the cerebral aqueduct (Fig. S4). H) The same 2d PAG BOLD signal intensity 
visualization is displayed for the speech preparation period. Note the clear bilateral bands of 
positive t-tests in the ventrolateral columns. I) PAG column averages and 95% confidence 
intervals across the subject population, averaging subject ROI z-scores across voxels within each 
columnar PAG ROI (Fig. 1d). 
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Figure 2. Physiological changes and their across-subject correlation with variance-normalized 
PAG BOLD signal intensity. A) Colored bands depict loess-function estimates of subject-
specific respiratory rates across the task run, normalized to subject-specific average respiration 
rate in the baseline period. Black dots and confidence intervals indicate subject population means 
and 95% confidence intervals in pre-preparation and speech preparation periods. The average 
respiration rate increased in both pre-preparation and speech preparation periods relative to 
baseline, and did not increase above pre-preparation rates during speech preparation. B) The 
average tonic EDA activity increased during the speech preparation period relative to baseline, 
and did not differ from baseline estimates during the pre-preparation period. C) The average 
cardiac interbeat interval increased relative to baseline in both pre-preparation and speech 
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preparation periods, and increased above pre-preparation rates during speech preparation. D) 
Across subjects, PAG voxel signal intensity estimates for speech preparation and pre-baseline 
periods (Fig. S3) were correlated with the average change in respiratory rate from baseline in the 
same task-period. Correlations were calculated using bootstrap resampling (1000 resamples), and 
any voxels where the bootstrapped 95% confidence interval included 0 were thresholded. 
Respiratory rate correlations appeared in clear bands across the rostral and medial segments of 
the PAG. E) Thresholded cross-subject correlations between PAG signal intensity and tonic 
EDA change from baseline in the speech preparation period showed a clear band along the 
dorsomedial column of the PAG. F) Thresholded cross-subject correlations between PAG signal 
intensity and cardiac interbeat interval change from baseline in the speech preparation period 
showed a pattern of left lateralization (which was also observed in the pre-preparation period; 
Fig. S3). 
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Supplemental Materials 
 

 
Figure S1. Participants were asked at the end of the study session whether they believed they 
would deliver a speech in the scanner. Free response answers were recorded, and coded by the 
experimenter (JT) into clear “Yes” (N = 72) and “No” (N = 11) responses, with any ambiguous 
responses coded as “Maybe” (N = 6; one participant had no answer recorded). Because of the 
smaller sample size, PAG column estimates are noisier for subjects where deception failed (i.e., 
“No”), but there is no clear evidence of a relative increase in ventrolateral PAG, and a clear trend 
of decreasing PAG signal intensity in the speech preparation period, relative to pre-preparation. 
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Figure S2. Although midline increases/decreases indicative of a sympathetic response (e.g., increase in ACC, decrease in sgACC) 
were observed only during speech preparation, left-lateralized cortical changes relative to baseline were observed in both speech 
preparation and pre-preparation periods. Many clusters observed in the left frontal cortex are associated with language processing 
(green), which is consistent with the task, given that participants were asked to mentally prepare a speech. Whole-brain estimates were 
minimally smoothed (1.5mm) and thresholded at a false decision rate of p < 0.05.  
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Figure S3. Thresholded and unthresholded PAG-physiology correlation estimates. Correlations were calculated using bootstrap 
resampling (1000 resamples), and any voxels where the bootstrapped 95% confidence interval included 0 were thresholded. 
Respiratory rate correlations appeared in clear bands across the rostral and medial segments of the PAG. Note that, for IBI-PAG 
correlations, the left lateralization replicates between pre-preparation and speech preparation periods (although, given that the effect is 
stronger in voxels closer to the aqueduct, this effect may also stem from pulsatile motion within the aqueduct; see Fig S4). 
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Figure S4. Voxelwise variance estimates and their relationship with BOLD-physiology 
correlations in PAG voxels. A) Heatmap of estimated variance from the GLM is plotted for each 
PAG voxel (after resampling to 0.5mm isotropic). X-axis values represent degrees from the PAG 
midline. Y-axis values represent distance along the rostral-caudal PAG axis. B) Across voxels, 
group-level correlation estimates between respiratory rate and PAG signal intensity estimates are 
plotted on the y-axis (see Figs. 2 & S3). The x-axis plots estimated variance for each voxel (i.e., 
from panel A). Because voxelwise variance estimates clearly differ across radial depth in the 
PAG, the plot is facetted to plot the variance-correlation relationship in each radial slice. The y-
axis mean and 95% confidence interval is displayed in red for each facet. C) The same 
relationship between voxelwise correlation strength and variance estimates is plotted, with the y-
axis now plotting voxelwise across-subject correlations between PAG signal intensity and tonic 
EDA. D) The same relationship between voxelwise correlation strength and variance estimates is 
plotted, with the y-axis now plotting voxelwise across-subject correlations between PAG signal 
intensity and cardiac IBI. 
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Online Methods 
 Participants. 90 participants were included in this study (Mage = 26.87 years; SDage = 6.14 years; 

38 female, 51 male, 1 non-response). The participant sample was 87.9% non-Hispanic, 61.5% 

White/Caucasian, 26.4% Asian, and 9.9% Black/African American, and generally well-educated (24.2% 

had some graduate education, 26.4% had completed college/university, 36.2% had some 

college/university, 9.8% had completed high school, and 2.2% had not completed high school). Of the 

140 participants initially recruited, 12 were excluded due to high motion (see fMRI preprocessing), 21 

withdrew participation or ended the scan session before completing the speech task, and 16 were excluded 

due to poor image quality (e.g. subject motion moved large portions of the brain outside the field of view, 

compromising registration), as assessed by visual inspection in Mango v.4.1 (RRID: SCR_009603). 

Peripheral physiology recordings were inspected for noise (see Peripheral physiology recording) and only 

clean recordings were included in analysis. Of the 90 participants with usable fMRI data, 55 had clean 

heart rate data, 48 had clean respiratory data, and 68 had clean electrodermal activity (EDA) data. 26 

participants had clean data in all three physiological channels. Participants were recruited from the greater 

Boston area, were between the ages of 18 and 40 years, were right-handed, had normal or corrected to 

normal vision, were not pregnant, spoke fluent English, and had no known neurological or psychiatric 

illnesses. Exclusion criteria included claustrophobia, or the presence of any metal implants. All 

participants provided written informed consent and study procedures were completed as approved by the 

Partners’ Healthcare Institutional Review Board.  

 Experimental paradigm. Participants prepared to deliver a speech while in the scanner, under 

the impression that it would be recorded and its merit would be rated by a panel of judges (Cribben et al., 

2012, 2013; Lindquist et al., 2007; Lindquist & McKeague, 2009; Wager, van Ast, et al., 2009; Wager, 

Waugh, et al., 2009). Participants were told that the scan would consist of a 2-minute baseline period 

where they were to remain still (pre-baseline), after which they would have 2 minutes to prepare a 7-

minute speech on a presented topic (speech-prep), which would be recorded and graded by a panel of 

experts. In reality, participants did not deliver a speech, and were informed after the speech-prep period 

that they would not deliver a speech should relax for the remaining 2 minutes of the run (post-baseline). 

The topic (“Why I am a good friend”) was presented for 15 seconds between pre-baseline and speech-

prep periods, and the text informing participants they would not give a speech appeared for 15 seconds 

between speech-prep and post-baseline periods. All instructions were presented using the Psychphysics 

Toolbox (RRID:SCR_002881, Kleiner et al., 2007) in MATLAB (RRID:SCR_001622, MathWorks). 

 fMRI acquisition. Gradient-echo echo-planar imaging BOLD-fMRI was performed on a 7 Tesla 

MRI scanner at the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General 

Hospital (MGH), Boston, MA. The scanner was built by Magnex Scientific (Oxford, UK), with  
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the MRI console, gradient and gradient drivers, and patient table provided by Siemens. A custom-built 

32-channel radiofrequency coil head array was used for reception. Radiofrequency transmission was 

provided by a 20etonable band-pass birdcage coil. Functional images were acquired using a GRAPPA-

EPI sequence (GRAPPA acceleration factor = 3, TE = 28ms, TR = 2.34s, flip angle = 75°, 123 axial 

slices, A > P phase encoding, partial Fourier in the phase encode direction = 7/8). Structural images were 

also acquired using a GRAPPA-EPI sequence (GRAPPA acceleration factor  = 3, TE = 22 ms, TR = 8.52 

s, flip angle = 90°, 126 axial slices, A > P phase encoding, , partial Fourier in the phase encode direction 

= 6/8). This structural EPI image was reconstructed (via freesurfer and custom scripts) into a T1-like 

image, which improved anatomical-functional registration and reduced blurring of functional signals by 

ensuring that anatomical and functional images had similar spatial distortions (Renvall et al., 2016). In 

both structural and functional images, voxels were 1.1mm isotropic (0mm gap between slices, FOV = 205 

x 205mm2), echo spacing was 0.81ms, and bandwidth was 1415 Hz per pixel.  

fMRI preprocessing. Preprocessing of the anatomical and functional data was performed using 

the fmriprep pipeline, version 1.1.2 (Esteban et al., 2019; Esteban, Markiewicz, Goncalves, et al., 2020; 

RRID: SCR_016216), a Nipype-based tool (Esteban, Markiewicz, Johnson, et al., 2020; Gorgolewski et 

al., 2011; RRID: SCR_002502). Pipeline details can be found at 

https://fmriprep.org/en/1.1.2/workflows.html. Each T1w (T1-weighted) volume was corrected for INU 

(intensity non-uniformity) using N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010). Subject 

brain masks were computed by dilating a binary image of their skull-stripped T1 image by 2 voxels to 

remove gaps in coverage. Spatial normalization to the 2009c ICBM 152 Nonlinear Asymmetrical 

template (Fonov et al., 2009; RRID: SCR_008796) was performed through nonlinear registration with the 

antsRegistration tool of ANTs v2.1.0 (Avants et al., 2008; RRID: SCR_004757), using brain-

extracted versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid 

(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast 
(Zhang et al., 2001) in FSL v5.0.9 (RRID: SCR_002823). Functional data were slice time corrected 

using 3dTshift in AFNI v16.2.07 (Cox, 1996; RRID: SCR_005927) and motion corrected using 

mcflirt in FSL (Jenkinson et al., 2002). This was followed by co-registration to the corresponding 

T1w using boundary-based registration (Greve & Fischl, 2009) with 9 degrees of freedom, using flirt 

in FSL. Motion correcting transformations, BOLD-to-T1w transformation and T1w-to-template (MNI) 

warp were concatenated and applied in a single step using antsApplyTransforms in ANTs using 

Lanczos interpolation. Physiological noise regressors were extracted using the aCompCor method 

(Muschelli et al., 2014), taking the top five principle components from subject-specific CSF and WM 

masks, where the masks were generated by thresholding the WM/CSF masks derived from fast at 99% 

probability, constraining the CSF mask to the ventricles (using the ALVIN mask; Kempton et al., 2011), 
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and eroding the WM mask using the binary_erosion function in SciPy v.1.6.1 (Virtanen et al., 

2020). Frame-wise displacement (Power et al., 2014) was calculated for each functional run using the 

implementation of Nipype. Many internal operations of fmriprep use Nilearn (Abraham et al., 2014; 

RRID: SCR_001362), principally within the BOLD-processing workflow. For all participants, the quality 

of brain masks, tissue segmentation, and MNI registration was visually inspected for errors using the html 

figures provided by the fmriprep pipeline. 

 fMRI analysis. To estimate BOLD activity during the speech-prep period, first-level 

preprocessed functional time series were prewhitened and fit with a general linear model (GLM), using 

FILM (FSL). Four boxcar task regressors were convolved with FSL’s double-gamma hemodynamic 

response function and included in the GLM to model the onset and duration of the pre-baseline (120 sec.), 

speech-topic instruction (15 sec.), speech-prep (120 sec.), and no-speech instruction (15 sec.) periods. 

This modeling strategy differed from previous implementations of this task, which combined pre-/post-

baseline periods, but avoids assumptions that participants are equally relaxed in the both periods. 

Nuisance regressors included framewise displacement, aCompCor components (see fMRI Preprocessing), 

an intercept, and single-TR spike regressors (Satterthwaite et al., 2013), where framewise displacement > 

0.5mm. All modeling was performed using wrapper scripts in Nipype v.1.4.2 (Esteban, Markiewicz, 

Johnson, et al., 2020). Whole brain contrast maps were masked by the MNI 2009c asymmetric grey 

matter probability mask (> 20% probability) and thresholded using a false decision rate of  p < 0.05.  

 Long task periods are somewhat unusual for an fMRI design, which typically involves brief 

events or blocks. On account of this design feature, we omitted translation and rotation motion parameters 

and high-pass filtering (or equivalently, discrete cosine transform (DCT) functions), instead modeling 

framewise displacement and a linear trend. Comparisons with alternative models showed that these 

choices reduced the average variance inflation factor (VIF) across subjects for the speech-prep period 

(VIFmean = 1.59, VIFSD = 0.13), relative to replacing framewise displacement with translation and rotation 

(VIFmean = 9.57, VIFSD = 8.61), or replacing the linear trend with a set of 240 second DCT functions 

(VIFmean = 7.34, VIFSD = 0.94). VIF remained inflated when pre-/post-baseline periods were combined, as 

in earlier studies using this task  (e.g. Wager, Waugh, et al., 2009). 

 PAG identification and alignment. An additional alignment step, beyond the alignment to MNI 

space, was taken to ensure that BOLD activity estimates in the PAG were aligned across subjects, similar 

to techniques used in prior work (Kragel et al., 2019; Satpute et al., 2013). The PAG was identified in 

each subject’s MNI normalized brain and aligned to a common space by: (a) using high-variability model 

residuals to identify the cerebral aqueduct and create a subject-specific aqueduct mask; (b) drawing a 

subject-specific PAG mask, dilating the aqueduct mask by 2 voxels (2.2mm), and masking any voxels 

that were in the original aqueduct mask, that were outside the MNI coordinates range of [-42 < y < -22] 
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and [-14 < z], or that were not in the subject-specific gray-matter segmentation (>50% probability); (c) 

creating a custom group PAG-aligned template using DARTEL (Ashburner, 2007), which was in 

approximate MNI space due to first-pass normalization; and (d) warping contrast estimates into the PAG-

aligned space. After warping, mean % overlap among subject-specific PAG masks (i.e. the Dice 

coefficient) increased from 62.0% [95% CI: 34.3%, 75.1%] to 80.7% [95%CI: 69.3%, 87.3%].  

 The group-aligned PAG template was subdivided into columnar ROIs and ROIs along the PAG 

rostral-caudal axis (Fig. 1b-d). Voxel x/y/z coordinates were submitted to PCA to identify the PAG 

longitudinal axis (factor 1), and a geometric transformation on the remaining PCA components gave the 

radius and degree of each PAG voxel (relative to the y axis, at 0°). PAG columns were defined by their 

degree range: dorsomedial (+/-22.5°), left/right dorsal (22.5° - 60°), left/right lateral (60° - 97.5°), and 

left/right ventral (97.5° - 135°), with the ventromedial quarter of the mask excluded from analysis.  
 Peripheral physiology recording. All peripheral physiology measures were collected at 1kHz 

using an AD Instruments Powerlab data acquisition system with MR-compatible sensors and LabChart 

software. Data were continuously acquired throughout the entire scan session and partitioned for 

alignment with fMRI data using experimenter annotations in LabChart and scanner TR events. A piezo-

electric pulse transducer (AD Instruments) measured heart rate from the left-hand index fingertip. A 

respiratory belt with a piezo-electric transducer (UFI) measured respiratory rate and was placed around 

the lower sternum. Wired Ag/AgCl finger electrodes measured electrodermal activity from sensors 

containing isotonic paste on the left middle and ring fingertips, with signals amplified by an FE116 GSR 

amplifier.  

Physiological time series data were visually inspected for quality in Biopac Student Lab and in 

custom visualizations using R (v.3.6.2; R Core Team, 2016) and ggplot2 (v.3.2.1; Wickham, 2009). Time 

series were classified as clean (i.e. clean of artifacts), noisy (i.e. containing artifacts among periods of 

usable data), and unusable (i.e. containing artifacts and little to no usable data). Contamination of 

electrodermal activity by respiration was also recorded when present, and a percentage of time course 

contamination was recorded for each participant and run. Among the 90 participants with usable fMRI 

data, 55 had clean cardiac data, 17 had noisy cardiac data, 12 had unusable cardiac data, and 7 had no 

recorded data. For respiratory data, 48 time series were clean, 27 were noisy, 12 were unusable, and 4 had 

no recorded data. For electrodermal activity, 68 participant time series were clean, 10 were noisy, 9 were 

unusable, and 4 had no recorded data; and orthogonal to this, 37 time series contained some respiratory 

contamination (mean % of run contaminated = 59.05%, SD = 32.76%), with 34 of these respiratory-

contaminated runs occurring in otherwise clean electrodermal samples. Only clean time series were used 

in analysis. Among electrodermal activity, clean time series contaminated by respiratory noise were 

included as this noise was irrelevant to the tonic measures of skin conductance used in analysis. 
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Peripheral physiology analysis. Physiological time series data were analyzed using MATLAB 

toolboxes and custom R scripts. Heart rate was calculated using the PhysIO MATLAB toolbox (Kasper et 

al., 2017), which used a 0.3 to 9 Hz band-pass filter, and identified cardiac peaks using a two-pass 

process. The first-pass estimated run average heart rate, detecting peaks exceeding 40% of normalized 

amplitude, assuming a minimum peak spacing consistent with < 90 beats per minute. First-pass peaks are 

used to create an averaged template, and the first-pass estimated average heart rate is used as a prior to 

detect peaks on the second-pass (for more details, see Kasper et al., 2017). PhysIO pipeline peaks were 

compared with peaks identified in Biopac by trained coders. Discrepancies between the two methods 

were rare (0.5% of peaks across all runs and participants), and occurred more rarely in the dataset scored 

by a more experienced coder (0.323% of peaks), compared to the dataset scored by a less experienced 

coder (0.878% of peaks). Heart rates were smoothed with a 6 second rolling average, downsampled into 

scan slices, and converted into interbeat intervals. Respiratory rates were calculated using custom R 

scripts. A 1Hz low-pass filter was applied to respiratory time courses, and local peaks were identified in a 

sliding 500ms window, removing peaks that fell within 0.5 SD of the run average respiratory value. 

Respiratory rates were smoothed with a 6 second rolling average and downsampled into scan slices. Tonic 

electrodermal activity was calculated using Discrete Deconvolution Analysis, as implemented in the 

Ledalab MATLAB toolbox (Benedek & Kaernbach, 2010).  
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