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ABSTRACT

Responses to natural stimuli in area V4 – a mid-level area of the visual ventral stream – are well
predicted by features from convolutional neural networks (CNNs) trained on image classification.
This result has been taken as evidence for the functional role of V4 in object classification. However,
we currently do not know if and to what extent V4 plays a role in solving other computational
objectives. Here, we investigated normative accounts of V4 by predicting macaque single-neuron
responses to natural images from the representations extracted by 23 CNNs trained on different
computer vision tasks including semantic, geometric, 2D, and 3D visual tasks. We found that
semantic classification tasks do indeed provide the best predictive features for V4. Other tasks
(3D in particular) followed very closely in performance, but a similar pattern of tasks performance
emerged when predicting the activations of a network exclusively trained on object recognition.
Thus, our results support V4’s main functional role in semantic processing. At the same time, they
suggest that V4’s affinity to various 3D and 2D stimulus features found by electrophysiologists
could be a corollary of a semantic functional goal.
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Figure 1. Experimental paradigm and diverse task modeling of neural responses. a, natural images were
shown in sequence to two fixating rhesus macaques for 120ms while neural activity was recorded with a
laminar silicon probe. Following careful spike-sorting, spike counts were extracted in time windows
40–160ms (V1) and 70–160ms (V4) after image onset. The screen covered ∼ 17◦×30◦ of visual field with a
resolution of ∼ 63px/◦. For each area, we showed approx. 10k unique images once (train set). A random set
of 75 images, identical for both areas, was repeated 40-55 times (test set). b, For V1 recordings (left), the
fixation spot was centered on the screen. Square, gray-scale, 420px ImageNet images (6.7◦) were placed at
the center of each session’s population receptive field (size: ∼ 2◦, eccentricities: 2◦−3◦). In the V4
recordings sessions (right), the fixation spot was accommodated to bring the population receptive field as
close to the center of the screen as possible (size: ∼ 8◦, eccentricities: 8◦−12◦). All images were up-sampled
and cropped to cover the whole screen. We isolated 458 (V1) and 255 (V4) neurons from 32 sessions of each
area. c, Predictive model. Cropped input images covering 2.7◦ (V1) and 12◦ (V4) were resized and forwarded
through the first l layers of a pretrained convolutional neural network (CNN) to produce features that are then
batch-normalized and shared by all neurons. The input scale factor was a hyper-parameter, cross-validated on
a held-out subset of the train set (validation set). The point readout1 extracts features at a single spatial
location and computes a regularized linear mapping to the neural responses for each neuron separately (see
Methods). The readout and batch-normalization parameters were jointly learned to minimize the Poisson loss
between predicted and observed response rates. d, taskonomy networks used for feature extraction (Adapted
with permission from Zamir et al. (2018)2). We used the pretrained encoder CNNs of these tasks, which share
a Resnet50 architecture3, to build our models and compare their predictive abilities on V1 and V4.
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Introduction
What is the functional role of area V4 in primate visual information processing? One line of
evidence suggests that V4 is tuned in a high-dimensional space that facilitates the joint encoding
of shape and surface characteristics of object parts4,5 (e.g. sensitivity to luminance6, texture7 and
chromatic contrasts8, blurry boundaries9, and luminance gradients10). Although very insightful,
these experiments are constrained to a relatively small number of stimulus feature directions that
potentially miss other important aspects of V4 function that could be unlocked with richer natural
stimuli. Recent work showed that features extracted by convolutional neural networks (CNNs)
trained on object classification provided strong predictive performance of V4 responses to natural
stimuli11,12. This result has been interpreted as evidence that object recognition is one of the major
goals of V4 processing. A natural question that arises is: Do other computational goals beyond
object classification explain V4 responses equally well? Recent work using fMRI in humans has
attempted to assign different functional goals to different regions of interest in the brain (including
V4)13–15, but it remains unclear whether single neurons express the same patterns of selectivity as
the highly aggregated, indirect fMRI signal.

Here, we investigated how well the representations learned by CNNs trained on 23 different
visual tasks from the taskonomy project [2] predict single-cell responses to natural images recorded
in macaque area V4 and V1 for comparison. We found that a diverse set of tasks explained V1
responses almost equally well. In contrast, scene and object classification provided better accounts
for V4 responses than all the alternative tasks tested, solidifying V4’s semantic functional role.
However several 3D tasks like estimating 3D keypoints or surface normals explained as much as
90% of the gap between an untrained baseline and the best semantic task in V4. To understand
whether this amounts to evidence for multiple viable functional goals in the ventral stream beyond
semantic tasks, we computed the pattern of predictive performances of the tasks’ feature spaces on
target representations from a separate network solely trained on object classification, and compared
it to our results with target neural data. We found that the predictive patterns on V4 and the features
of this network were strongly correlated. These results suggest that V4’s strong similarity to the
features from different tasks (e.g. 3D) result from its primary role as an intermediate step towards
solving object recognition.

Results
We built upon the taskonomy project2, a recent large-scale effort of the computer vision community,
in which CNN architectures consisting of encoder-decoder parts were trained to solve various visual
tasks. The encoder provides a low-dimensional representation of the input images from which each
task can be (nonlinearly) read-out by the decoder. We considered the encoder network of 23 of
these tasks, which have been previously categorized into semantic, geometric, 2D, and 3D groups
(listed in Fig. 1d) based on hierarchical clustering of their encoder representations2. We chose these
networks because of two key features: 1) all of them were trained on the same set of images, and 2)
all encoder networks have the same architecture (ResNet-503). Any differences we observe across
the learned representations are thus caused by the training objective targeted to solve a specific task.

To quantify the match between the representations extracted by intermediate layers of the
taskonomy networks and V4 representations, we used these networks to built task-driven models16,17

of single-neuron recordings in response to natural stimuli: We presented the images that were shown
to the monkey to each pretrained network, then extracted the resulting output feature maps from
several intermediate layers and fed these to a regularized linear-nonlinear (LN) readout that was
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specific to each recorded neuron (Fig. 1c). This readout acted on the features at a single spatial
location [1], preventing any additional nonlinear spatial integration beyond what has been computed
by the task-trained network. For each taskonomy network, we built one model for each readout layer
and optimized regularization parameters for each model. To ensure that the resulting correspondence
between network layers and neural data is not merely driven by the confound between growing
receptive field sizes and feature complexity along the network’s depth, we optimized the resolution
of the input images on held-out data from the training set (Supplementary Fig. S1). This prevented
us from assigning V4 to a layer simply because of the matching receptive field coverage that could
result from an arbitrary input resolution, but instead allowed us to find for each model the layer with
the best aligned nonlinearities to the data.

Figure 2. Comparison of diverse task-driven models on V1 and V4. a,b, Average performance of task
clusters (see Fig. 1f) on V1 (a) and V4 (b) as a function of network layer. Error bands represent 95%
confidence intervals across individual tasks (see Supplementary Fig. S2). Performance is measured as the
average test-set correlation across neurons between model predictions and mean spike counts over repeated
presentations. All tasks outperform an untrained, random baseline that shares the same architecture (dark
gray). The best predictive features for V1 can be found at an early layer (Layer1.0) for all models, while
deeper layers yielded peak performance for V4 with semantic and 3D task-clusters outperforming the others.
c, The individual task-model performance on V1 (left) and V4 (right), maximized over layers and other
hyper-parameters in the validation set. Error bars show 1 s.e. of the mean for five random initializations of the
same model configuration. Task-models are sorted by performance on V4. Hues represent cluster types
(inset). The baseline is the average performance of an untrained network. d,e, Comparisons between pairs of
task-clusters. Individual task-models as circles, and box-plots depict their distribution for each task-cluster.
The number of stars represent the p-value upper thresholds (0.05,10−2,10−3,10−3) of each comparison test
between pairs of clusters. For each pair, we ran a pairwise Wilcoxon signed rank test between the group
contrast performance of individual units n = 458 (V1), and n = 255 (V4), and applied Holm-Bonferroni
correction to account for the six multiple comparisons. f, The normalized performance (increment over
untrained baseline divided by the mean) for all individual tasks on V1 and V4. The variance across tasks in
V4 is significantly different than in V1, rendering it more functionally specialized (P = .0018, n = 23,
Levene’s test for equality of variances)
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We collected datasets of well-isolated single-cell responses from V4 and primary visual cortex
(V1) for comparison. We measured the spiking activity of individual neurons in these areas from
two awake, fixating rhesus macaques (M1, M2) using a 32-channel linear array spanning multiple
cortical layers [17, 18], in response to tens of thousands of grayscale natural images presented in
sequence over many trials (Fig. 1a). These images were sampled uniformly from the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC-2012) dataset19 and displayed for 120 ms
each without interleaving blanks (see Methods). Most of these images were shown only once
(train-set) while a selection of 75 images was repeated multiple times (test-set). We isolated 458
V1 neurons from 15 (M1) and 17 (M2) sessions at eccentricities 2–3°; and 255 V4 neurons from
11 (M1) and 21 (M2) sessions at eccentricities 8–12°. For the V1 sessions, we centered the stimuli
on the population receptive field of the neurons. For the V4 sessions, the stimuli covered the entire
screen. We obtained image–response pairs by extracting spike counts in the windows 40–160 ms
(V1) and 70–160 ms (V4) after image onset (Fig. 1a–c), which corresponded to the typical response
latency of the neurons in the respective brain area. With these image–response pairs, we fitted our
taskonomy-based task-driven models.

We evaluated the predictive performance of our fitted task-driven models and found consistent
results to a body of prior neurophysiology work that corroborate our approach: First, when account-
ing for input scale (Supplementary S1), we found that the predictive performance on V4 peaks at a
higher layer than V1 (Fig. 2a–b, Supplementary Fig. S2), a signature of hierarchical correspondence
and increased complexity of V4 over V1 found in anatomical and latency studies20. This functional
hierarchy was present in most cases, but could not be explained by the architecture alone: V1 and
V4 were assigned to the same layer for networks trained on texture edges, jigsaw, vanishing points,
and the untrained baseline (a network with matching architecture and random weights). Moreover,
for several 2D tasks, the hierarchical assignment was not so strict as higher layers in the network
retained high predictive power in comparison to other tasks. Second, we found that although V1’s
performance peaks at an early layer (Supplementary Fig. S2), it is still four linear-nonlinear steps
away from input pixels, highlighting the nonlinear nature of its computations17. Finally, the optimal
input resolutions (the image scale that leads to best performance) for V4 and V1 differed by roughly
a factor of four (Fig. S3), which corresponds to the difference in average eccentricity of the neurons
recorded in both areas (2–3° in V1 and 8–12° in V4) and roughly matches others’ observations21–24.

The two best predictive task-models on V4, after optimizing over layers, were the two semantic
classification tasks: scene classification, and – consistent with prior work11,12 – object classification
(test correlation with averaged trials of 0.369 and 0.361; Fig. 2c; right). Although these two
networks learned similar representations at their mid-level layers14, the superior performance of the
scene classification model suggests that its task-relevant stimulus cues that go beyond individual
object parsing (e.g. detecting background colors or textures) are relevant to V4 function. Semantic
segmentation, on the other hand, did not yield a high performance (0.337) in comparison. A possible
explanation is that solving this pixel-wise task with the taskonomy architecture requires retaining
deep into the network more precise information about the exact location of semantic boundaries
than is retained in V4, which has been shown to exhibit translation invariance to the exact location
of shape borders5,25.

In contrast to V4, we found that V1’s top predictive models were more diverse and not specifically
tied to semantic-related tasks – the top five predictive models also came from 3D, and 2D task groups:
semantic segmentation, 2D segmentation, euclidean depth, scene classification, and surface normals
(Fig. 2c, left). We found that V4 responses were harder to predict than V1’s with our task-driven
representations. For instance, the mean top five model performance in V1 (0.650±0.001) was higher
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and less variable than in V4 (0.358±0.006). However, the stimulus-driven variability between the
two areas was not significantly different (explainable variances of 0.31±0.18 (V1) and 0.32±0.9
(V4); two-sided t-test, t(711) = −1.152,P = .2). This performance discrepancy could be partly
explained by differences in sparsity – measured by the selectivity index (SI; see Methods) – between
V1 and V4 responses (selectivity indices of 0.40±0.23 [V1] and 0.56±0.26 [V4]; two-sided t-test,
t(711) =−9.09,P = 9.49 ·10−19) as the SI of individual neurons was negatively correlated to the
performance yielded by a top model (ρ =−0.35,P < 1e−8 on V4 neurons). Nonetheless, we found
that most models in both areas were non-trivially effective as they widely outperformed the untrained
(weights randomly initialized) baseline – the two exceptions comparable to the baseline on V4 were
texture edges and 2D keypoints (Fig. 2c). These results highlight key differences between primate
and mouse visual processing: in the mouse, a similar approach revealed that the performance of
untrained features is much closer to that of features trained for an image classification task26.

How important is the specific task objective over the untrained baseline to obtain better predictive
performances? We found that the choice of task – or task cluster – in V1 was less detrimental to
changes in performance than in V4 (Fig. 2 e,d,f). We quantified this functional specialization by
computing the variance of the performance of all task-models normalized to their mean (excluding
the untrained network). The variance for V4 was higher than V1 (P < .002, n = 23, Levene’s
test; Fig. 2f), rendering it more specialized. This can be largely explained by the fact that V4’s
optimal layer is deeper than V1’s as more nonlinear representations likely have more divergent
representations. These results back the traditional notion of generality in the features extracted by
V1, as they support multiple downstream tasks, while they also reveal the specialized role of V4 in
visual processing.

To unveil trends that apply beyond individual tasks, but that are consistent for functionally related
task-groups (i.e. task clusters semantic, geometric, 3D, 2D), we compared the average performances
of each task cluster. We found that the specialized role of V4 towards semantic tasks was also
prevalent at this coarser level: there were significant differences between all pairs of clusters (Fig. 2
e; Supplementary Fig. S2) and the order of clusters was semantic, 3D, geometric, and 2D. For V1,
the semantic group also came on top, followed by 2D and 3D (no significant differences), and finally
the Geometric cluster (Fig. 2 d).

Our comparisons at the individual and cluster levels support that semantic tasks drive represen-
tations that best match ventral visual areas in the brain, especially area V4. However, semantic
tasks only outperformed the next high-predictive tasks by a relatively small margin (Fig. 2c, right),
making it difficult to dismiss them altogether as computational goals of V4 function. Moreover,
task-models that extract features relevant for 3D understanding directly followed object classification
and reached ∼90% of the gap between the untrained and scene classification networks: these tasks
were 3D keypoints, 2.5D segmentation, and surface normals estimation (see Methods). The 3D
keypoints task, for example, aims to find points of interest that could be reliably detected even
if an object in the scene is observed from different perspectives, and then to extract local surface
features at these points. Detecting 3D borders is essential to solve this task because these keypoints
tend to be around object corners27, likely capturing useful information for downstream invariant
object recognition. Most classical approaches characterizing V4 function are mainly focused on its
tuning properties to flat (2D) stimuli5, but recent studies suggest that many cells in V4 are tuned to
solid-shape properties as well28. In line with these findings, our results also support the affinity of
V4 for 3D representations.

The fair success of other (3D) tasks at explaining V4 responses in addition to semantic tasks
– coupled with their consistency with neurophysiologists’ observations – raises the hypothesis
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that there might be other computational goals that V4 – or the ventral stream at large – could
be optimized to solve. To check if other tasks are capturing relevant aspects of V4’s nonlinear
responses that diverge from those capture by the semantic tasks, we replicated our previous analyses
using all taskonomy networks to predict the outputs of the relevant layers of a model where object
classification is the only ground-truth task driving the representations – namely, a Resnet503 trained
on ImageNet19 (see Methods). We chose it because ImageNet-trained networks have proven to be
the most effective to predict V1 and V4 responses17,29. We found that the prediction patterns across
tasks for V4 responses and Resnet50 (layer3.0) activations was strongly correlated (Fig. 3, right).
This suggests that our observations of V4’s affinity to 3D representations are largely explained by
a single semantic task objective. On the other hand, the tasks predictions on Resnet50 activations
(layer1.0) and V1 responses were only weakly correlated (Fig. 3, left). This result supports our
previous observations highlighting V4’s specialized role in extracting semantic information over
V1’s generality to support multiple downstream tasks.

Figure 3. Predictive performance of task-model features on neural data vs. ImageNet-trained Resnet50.
Each point in both panels represents a task-model and their task clusters are colored according to Fig. 2C. For
V1 (left), we used Layer1.0 of the representations of the network to predict the very same layer of Resnet50
(x-axis). The correlation between the ability of these representations to predict V1 data and ImageNet
features was weak (r = 0.45). On the other hand, for V4 (right) and using Layer3.0, we found a much
stronger correlation (r = 0.8). These results suggest that for a semantically specialized area like V4, object
recognition alone can largely explain the order and pattern of performances across tasks.

Discussion
We explored multiple normative accounts beyond object classification of V4 and V1 single neuron
responses to natural stimuli using CNNs with matching architectures trained on the same dataset
but different computer vision tasks. We found that semantic objectives drive representations that
best match V4 and V1 responses, solidifying existing evidence provided by goal-driven models
of the ventral stream using features pretrained for object classification. Although tasks related
to 3D processing reached comparably good performances in V4, we found that their success is
mainly a corollary of their similarity to semantic-driven representations. This implies that we can
predict – to a large extend – V4’s affinity to a candidate task-driven representation by evaluating its
similarity to semantic representations. In particular, our work predicts a strong relationship between
3D visual processing and V4 function, shifting the long-standing focus of V4’s functional role in
flat shape processing, and supporting recent discoveries showing that V4 and early layers of CNNs
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trained on object classification exhibit solid shape coding28. In addition to probing similarity to
semantic-trained networks, our work suggests that we can use CNNs trained on object or scene
classification to probe multiple stimulus features in-silico – as opposed to the expensive in-vivo
alternatives – to find tuning directions that are relevant for the neurons.

In contrast to similar efforts applied to measurements of aggregated neural activity (i.e. fMRI
data) from multiple visual areas13,30, we evaluated the intermediate representations of taskonomy
networks – not just their final layers – to evaluate their affinities to single-cell responses. We indeed
found that intermediate layers provided the best match to the data – regardless of the task – and
that diverse tasks offered comparable top performances in V1 and mostly semantic tasks were
optimal in V4. Recent goal-driven efforts to characterize ventral stream responses (including V1
and V4) have found that unsupervised objectives lead to comparable predictive performance to
object classification31. Although these self-supervised methods contain no explicit semantic training
objective, their inherent data augmentation strategies enforce similar invariances as required for
object recognition32 and their learned representations predict semantic labels well33. Thus, it is to
some extent expected that self-supervised methods fare similar to the object classification task.

Taken together, our results provide evidence for semantic tasks as a normative account of area
V4 and explain why particular tasks (e.g. 3D) have strong affinities to V4 representations. Promising
directions to improve the predictive power of V4 responses require training with richer and larger
datasets and exploring different architectures.

Methods

Ethics statement
All behavioral and electrophysiological data were obtained from two healthy, male rhesus macaque
(Macaca mulatta) monkeys aged 15 and 16 years and weighing 16.4 and 9.5 kg, respectively, during
the time of study. All experimental procedures complied with guidelines of the NIH and were
approved by the Baylor College of Medicine Institutional Animal Care and Use Committee (permit
number: AN-4367). Animals were housed individually in a large room located adjacent to the
training facility, along with around ten other monkeys permitting rich visual, olfactory and auditory
interactions, on a 12h light/dark cycle. Regular veterinary care and monitoring, balanced nutrition
and environmental enrichment were provided by the Center for Comparative Medicine of Baylor
College of Medicine. Surgical procedures on monkeys were conducted under general anesthesia
following standard aseptic techniques. To ameliorate pain after surgery, analgesics were given for
seven days. Animals were not sacrificed after the experiments.

Electrophysiological recordings
We performed non-chronic recordings using a 32-channel linear silicon probe (NeuroNexus V1x32-
Edge-10mm-60-177). The surgical methods and recording protocol were described previously18.
Briefly, form-specific titanium recording chambers and headposts were implanted under full anes-
thesia and aseptic conditions. The bone was originally left intact and only prior to recordings, small
trephinations (2 mm) were made over medial primary visual cortex at eccentricities ranging from
1.4 to 3.0 degrees of visual angle. Recordings were done within two weeks of each trephination.
Probes were lowered using a Narishige Microdrive (MO-97) and a guide tube to penetrate the dura.
Care was taken to lower the probe slowly, not to penetrate the cortex with the guide tube and to
minimize tissue compression).
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Data acquisition and spike sorting
Electrophysiological data were collected continuously as broadband signal (0.5Hz–16kHz) digitized
at 24 bits. Our spike sorting methods mirror those in17,18, code available at https://github.
com/aecker/moksm. We split the linear array of 32 channels into 14 groups of 6 adjacent
channels (with a stride of two), which we treated as virtual electrodes for spike detection and sorting.
Spikes were detected when channel signals crossed a threshold of five times the standard deviation of
the noise. After spike alignment, we extracted the first three principal components of each channel,
resulting in an 18-dimensional feature space used for spike sorting. We fitted a Kalman filter mixture
model to track waveform drift typical for non-chronic recordings34,35. The shape of each cluster
was modeled with a multivariate t-distribution (d f = 5) with a ridge-regularized covariance matrix.
The number of clusters was determined based on a penalized average likelihood with a constant cost
per additional cluster36. Subsequently, we used a custom graphical user interface to manually verify
single-unit isolation by assessing the stability of the units (based on drifts and health of the cells
throughout the session), identifying a refractory period, and inspecting the scatter plots of the pairs
of channel principal components.

Visual stimulation and eye tracking
Visual stimuli were rendered by a dedicated graphics workstation and displayed on a 16:9 HD
widescreen LCD monitor (23.8”) with a refresh rate of 100 Hz at a resolution of 1920×1080 pixels
and a viewing distance of 100 cm (resulting in ∼ 63px/◦). The monitors were gamma-corrected to
have a linear luminance response profile. A camera-based, custom-built eye tracking system verified
that monkeys maintained fixation within ∼ 0.95◦ around a ∼ 0.15◦-sized red fixation target. Offline
analysis showed that monkeys typically fixated much more accurately. After monkeys maintained
fixation for 300 ms, a visual stimulus appeared. If the monkeys fixated throughout the entire stimulus
period, they received a drop of juice at the end of the trial.

Receptive field mapping and stimulus placing
We mapped receptive fields relative to a fixation target at the beginning of each session with a sparse
random dot stimulus. A single dot of size 0.12◦ of visual field was presented on a uniform gray
background, changing location and color (black or white) randomly every 30 ms. Each fixation trial
lasted for two seconds. We obtained multi-unit receptive field profiles for every channel using reverse
correlation. We then estimated the population receptive field location by fitting a 2D Gaussian to
the spike-triggered average across channels at the time lag that maximizes the signal-to-noise-ratio.
During V1 recordings, we kept the fixation spot at the center of the screen and centered our natural
image stimulus at the mean of our fit on the screen (Fig. 1b). During V4 recordings, the natural
image stimulus covered the entire screen. We accommodated the fixation spot so that the mean
of the population receptive field was as close to the middle of the screen as possible. Due to the
location of our recording sites in both monkeys, this equated to locating the fixation spot close to the
upper border of the screen, shifted to the left (Fig. 1c).

Natural image stimuli
We sampled a set of 24075 images from 964 categories (∼ 25 images per category) from ImageNet37,
converted them to gray-scale, and cropped them to keep the central 420×420px. All images had 8
bit intensity resolution (values in [0,255]). We then sampled 75 as our test-set. From the remaining
24000 images, we sampled 20% as validation-set, leaving 19200 as train-set. We used the same sets
of images for V1 and V4 recordings. During a recording session, we recorded ∼ 1000 successful
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trials, each consisting of uninterrupted fixation for 2.4 seconds including 300ms of gray screen
(128 intensity) at the beginning and end of the trial, and 15 images shown consecutively for 120ms
each with no blanks in between. Each trail contained either train and validation, or test images. We
randomly interleaved trials throughout the session so that our test-set images were shown 40-50
times. The train and validation images were sampled without replacement throughout the session,
so each train / validation image was effectively shown once or not at all. In V1 sessions, the images
were shown at their original resolution and size covering 6.7◦ (screen resolution of 63 degrees per
visual angle). The rest of the screen was kept gray (128 intensity). In V4 sessions, the images
were upscaled preserving their aspect ratio with bicubic interpolation to match the width of the
screen (1920px). We cropped out the upper and bottom 420px bands to cover the entire screen. As a
result, we effectively stimulated both the classical and beyond the classical receptive fields of both
areas. Once the neurons were sorted, we counted the spikes associated to each image presentation
in a specific time window following the image onset. These windows were 40-160ms (V1) and
70-160ms (V4).

Explainable variance
We estimated the fraction of the stimulus-driven variability by computing the ratio between the
total variance of the flattened responses minus the variance of the observation noise, over the total
variance (Eq. 1). We estimated the variance of the observation noise by averaging across images the
variance across repetitions of responses: σ2

noise = E j[Vart [rt |x j]] where t indexes the trials (repeats)
and x j represents a unique image.

EV =
Var[r]−σ2

noise
Var[r]

(1)

Measuring Sparseness
We computed the selectivity index38 (SI) as a measure of sparseness for every neuron on its test-set
average responses. To do this, we first plotted the fraction of images whose responses where above a
threshold, as a function of normalized thresholds. We considered 100 threshold bins ranging from
the minimum to the maximum response values. The area under this curve (A) is close to zero for
sparse neurons, and close to 0.5 for a uniform distribution of responses. Thus, following Quiroga
et. al (2007)38, we computed the selectivity index as SI = 1−2A. SI approaches 0 for a uniform
distribution, and 1 the sparser the neuron is. In this study, we reported the mean and standard
deviation of SI for both brain areas and found sparser responses in V4 than in V1 (see Results).

Image preprocessing and resizing
An important step of our modeling pipeline was to adjust the size and resolution of the input images
to our computational models (Supplementary Fig. S1). In V1, we effectively cropped the central
2.65◦ (167px) at its original 63px/◦ resolution and downsampled with bicubic interpolation to
different target resolutions: 3.5, 7.0, 14, 21, 24.5, and 28px/◦. For practical and legacy reasons17,
in our codebase we first downsampled the images to a resolution of 35px/◦, followed by cropping
and another downsampling step to obtained the target sizes and resolutions just reported. In V4, we
cropped the images up to the bottom central 12◦, corresponding to 168px at the original 14px/◦

resolution (63px/◦×420/1920), in accordance with the neuron’s RF positions. These images were
similarly downsampled to multiple target resolutions: 1.4, 2.8, 5.6, 8.4, and 11.2px/◦.
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Model architecture
Our models of cell responses consisted of two main parts: A pretrained core that outputs nonlinear
features of input images, and a spatial point readout1 that maps these features to each neuron’s
responses. We built separate model instances for each visual area, input image resolution, task-
dependent pretrained CNN, intermediate convolutional layer, regularization strength, and random
initialization. Input images x were forwarded through all layers up to the chosen layer l, to output
a tensor of feature maps l(x) ∈ Rw×h×c (width, height, channels). Importantly, the parameters of
the pretrained network were always kept fixed. We then applied batch-normalization39 (Eq. 2),
with trainable parameters for scale (γ) and shift (β ), and running statistics mean (µ) and standard
deviation (σ ). These parameters were held fixed at test time (i.e. when evaluating our model). Lastly,
we rectified the resulting tensor to obtain the final nonlinear feature space (Φ(x)) shared by all
neurons, with same dimensions as l. The normalization of CNN features ensured that the activations
of each feature map (channel) have zero mean and unit variance (before rectification), facilitating
meaningfully regularized readout weights for all neurons with a single penalty – having input
features with different variances would implicitly apply different penalties on their corresponding
readout weights.

BN(x) = γ · x−µ

σ
+β (2)

The goal of the readout was to find a linear-nonlinear mapping from Φ(x) to a single scalar firing
rate for every neuron. Previous approaches have attempted to 1) do dimensionality reduction on
this tensor and regress from this components (e.g. partial least squares)11; 2) learn a dense readout
with multiple regularization penalties over space and features17; and 3) factorize the 3D readout
weights into a lower-dimensional representation consisting of a spatial mask matrix and a vector of
feature weights40. In this work we used the recently proposed spatial point readout1 – also called
Gaussian readout by the authors – that goes a step further and restricts the spatial mask to a single
point. Per neuron, it computes a linear combination of the feature activations at a spatial position,
parametrized as (x,y) relative coordinates (the middle of the feature map being (0,0)). Training this
readout poses the challenge of maintaining gradient flow when optimizing the objective function. In
contrast to previous approaches that tackle this challenge by recreating multiple subsampled versions
of the feature maps and learn a common relative location for all of them41, the Gaussian readout
learns the parameters of a 2D Gaussian distribution N (µn,Σn) and samples a location during each
training step for every nth neuron. Σn is initialized large enough to ensure gradient flow, and is then
shrunken during training to have a more reliable estimate of the mean location µn. At inference time
(i.e. when evaluating our model), the readout is deterministic and uses position µn. Although this
framework allows for rotated and elongated Gaussian functions, we found that for our monkey data,
an isotropic formulation of the covariance – parametrized by a single scalar σ2

n – was sufficient (i.e.
offer similar performance as the fully parametrized Gaussian). Thus, the total number of parameters
per neuron of the readout were c+ 4 (channels, bivariate mean, variance, and bias). Finally, the
resulting dot product between the features of Φ(x) at the chosen location with an L1 regularized
weight vector wn ∈Rc was then followed by f , a point-wise nonlinear function ELU42 offset by one
(ELU+1) to make responses positive (Eq. 3).

r̂n(x) = f

(
∑
k

Φµn,x,µn,y,k(x)wn,k +bn

)
(3)
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Beyond offering competitive performance compared to the factorized readout alternative with far
less parameters, the most important motivation to use a single point readout was to make sure that
all spatial nonlinear computations happen in the pretrained core feature extractor. We could draw
mistaken claims about the nonlinear power of a feature space by computing new ones in the readout
that combine rectified features computed at different spatial positions. For example, a readout that
rectifies features produced by multiple simple cells with similar orientation at different locations can
easily approximate phase invariance (i.e. complex cells)43.

Model training
We trained every model to minimize the summed Poisson loss across N neurons between observed
spike counts r and our predicted spike rate r̂ (Eq. 4, first term) in addition to the L1 regularization of
the weights (Eq. 4, second term) with respect to the batch-normalization, and readout parameters.

L =
N

∑
i=1

(r̂n − rn log r̂n)+λ ∑
n,k

|wnk| (4)

Since neurons across session from the same visual area didn’t necessarily see the same images
(they were differently drawn over sessions), during each training step, we cycled through all sessions
of the same visual area, sampling for each of them a fixed batch size of image-response pairs without
replacement and kept track of the gradients of the loss with respect of our trainable parameters.
Once a cycle was through, the gradients were added to execute an update of the weights of the
weights based on the Adam optimizer44 – an improved version of stochastic gradient descent. The
initial learning rate was 3 · 10−4 and momentum 0.1. We continued to exhaust image-response
pair batches from all sessions until the longest session was exhausted to count a full epoch. Once
all image-response pairs had been drawn from a session, we restarted sampling batches from all
available image-response pairs.

Every epoch, we temporarily switched our model into evaluation mode (i.e. we froze the
batch-normalization running statistics), and computed the Poisson loss on the entire single trial
validation-set. We then used early stopping to decide whether to decay the learning rate: we scaled
the learning rate by a factor of 0.3 once the validation loss did not improve over five consecutive
epochs. Before decaying the learning rate, we restored the weights to the best ones up to that point
(in terms of validation loss). We ran the optimization until four early stopping steps were completed.
On average, this resulted in ∼ 50 training epochs (or ∼ 40 minutes on one of our GPUs) per model
instance.

Taskonomy networks
The taskonomy networks2 are encoder-decoder CNNs trained on multiple computer vision tasks.
The original goal of the authors was to identify a taxonomy of tasks that would facilitate efficient
transfer learning based on the encoder representations of these networks. Importantly for our study,
all these networks were trained by the authors on the same set of images, which have labels for
all tasks. These images consisted of 120k indoor room scenes. In this work, we used the encoder
architecture of these networks, which was based on a slightly modified version of Resnet503 that
excluded average-pooling, and replaced the last stride 2 convolution with stride 1. However, these
modifications did not change the number of output features of the intermediate layers we considered,
keeping our taskonomy -based results fairly comparable with those of the original Resnet50.
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The Resnet50 architecture – originally developed to solve ImageNet37 – is made up of a series
of hierarchical stages that include 1) an initial strided convolutional layer (conv1) followed by
batch normalization, rectification, and max-pooling; 2) four processing layers, with 3,4,6, and 3
residual blocks, respectively; and 3) a final average pooling layer that maps features to the number
of classes. Each residual block amounts to the rectified sum of two pathways: one that simply
projects the input to the end (i.e. skip connection), and a second that consists of three successive
convolutional layers with sizes 1, 3, and 1. In this work we trained models on the output of the first
convolutional layer (conv1), and the output of the first residual block of each processing layer (i.e.
layer1.0, layer2.0, layer3.0, layer4.0). The corresponding number of output feature
maps (channels) for these layers was 64, 256, 512, 1024, and 2048, respectively.

We used several taskonomy encoder networks, listed in (Fig. 1c). The structure of the repre-
sentations of these networks was presented by the authors via a metric of similarity across tasks:
with agglomerative clustering of the tasks based on their transferring-out behavior, they built a
hierarchical tree of tasks (see Figure 13 of their paper2). They found that the tasks can be grouped
into 2D, 3D, low dimensional geometric, and semantic tasks based on how close (i.e. how similar)
they are on the tree. We now briefly describe the tasks (for more details, see Supplementary Material
from2):

2D tasks. Autoencoding PCA finds a low-dimensional latent representation of the data. Edge
Detection responds to changes in texture. It is the output of a Canny edge detector without nonmax
suppression to enable differentiation. Inpainting reconstructs missing regions in an image. Key-
point Detection(2D) both detects locally important regions in an image (keypoints), and extracts
descriptive features of them that are invariant across multiple images. The output of SURF45 was
the ground-truth output of this task. Unsupervised 2D Segmentation uses as ground-truth the output
of Normalized cuts46 which tries to segment images into perceptually similar groups.

3D tasks. Keypoint Detection (3D) are like the 2D counterpart, but derived from 3D data, account-
ing for scene geometry. The output of the NARF algorithm27 was the ground-truth output of this
task. Unsupervised 2.5D Segmentation uses the same algorithm as 2D, but the labels are not only
computed from RGB image, but also jointly from aligned depth, and surface normal images. It
thus has access to ground-truth 3D information. Surface Normal Estimation are trained directly
on the ground-truth surface normal vectors of the 3D meshes of the scene. Curvature Estimation
extracts principal curvatures at each fix point of the mesh surface. Edge Detection (3D) (Occlusion
Edges) are the edges where an object in the foreground obscures the background. It depends on
3D geometry and it is invariant to changes in color and lighting. In Reshading, the label for an
RGB image is the shading function that results from having a single light point at the camera origin,
multiplied by a constant albedo (amount of diffuse reflection of light radiation). Depth Estimation,
Z-Buffer. Depth Estimation, Euclidian measures the distance between each pixel to the camera’s
optic center.

Geometric tasks. Relative Camera Pose Estimation, Non-Fixated predicts the relative six degrees
of freedom (yaw, pitch, roll, x, y, z) of the camera pose between two different views with same
optical centers. Relative Camera Pose Estimation, Fixated is a simpler variant of the previous
one where the center pixel of the two inputs is always the same physical 3D point – yielding only
five degrees of freedom. Relative Camera Pose Estimation, Triplets (Egomotion) matches camera
poses for input triplets with a fixed center point. Room Layout Estimation estimates and aligns 3D
bounding boxes around parts of the scene. Point Matching learns useful local feature descriptors that
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facilitate matching scene points across images. Content Prediction (Jigsaw) unscrambles a permuted
tiling of the image. Vanishing Point Estimation predicts the analytically computed vanishing points
corresponding to an x, y, and z axis.

Semantic tasks. Object Classification uses knowledge distillation from a high-performing network
trained on ImageNet37 where its activations serve as a supervised signal (within the manually
selected 100 object classes appearing in the taskonomy dataset). Scene Classification follows a
similar approach, but uses a network trained on MITPlaces47 with 63 applicable indoor workplace
and home classes for supervised annotation of the dataset. Semantic Segmentation also follows
the same supervised annotation procedure using a network trained on COCO48 dataset with 17
applicable classes.

Finally, we included a control with matching architecture (Resnet50) but with random initializa-
tion.

Model configurations
In this study, we fitted a large set of task-models (> 10,000) that include all viable combinations of
1) brain areas (2: V1, V4); 2) input resolutions (5); 3) pretrained CNNs (23 taskonomy , 1 random);
4) intermediate convolutional layers (5), 5) L1 regularization strengths (1-3 for most models); and 6)
random initialization (5 seeds). Because of the receptive field size of higher layers in all networks,
only large enough input resolutions were permitted in those cases. We used only 1-3 regularization
penalties for most model configurations because we found that the optimal parameters from a fine-
grained search of a single model where also appropriate for the corresponding layers of the taskonomy
networks – actual optimal penalties led to negligibly differences in validation performance (within
the noise of random seeds). The specific values we cross-validated over (after the fine-grained search)
were: λconv1 = {0.33,1,3},λlayer1.0 = {3},λlayer2.0 = {3,6},λlayer3.0 = {3,9},λlayer4.0 = {6,12}.

Performance evaluation
The purpose of our work was to thoroughly compare the effectiveness of diverse task representations
at predicting V1 and V4, rather than to establish a stat-of-the-art performance of the two visual areas.
We thus simply computed the correlation between a model’s predictions with the average response
over multiple presentations. Any potential method to normalize these values according to estimates
of the trial-to-trial variability would similarly scale these measures and not affect the ranking of the
models.

Linear prediction of Resnet50 activations
We extracted the outputs of layers Layer1.0 and Layer3.0 of Resnet503 trained on ImageNet19 to all
of our training and testing images and kept all features (depth) at the center spatial point of these
tensors. We did the same for all taskonomy networks. We then used standard linear regression using
the output features for training images (L1 and L2 regularizations did not change results much)
to predict the Resnet50 activations from each of the representations from the corresponding layer
of the taskonomy networks. We then evaluated this fits on the test set responses by computing the
correlation between true Resnet50 activations and those predicted by linearly reading out from each
taskonomy network.
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Data availability
The datasets of V1 and V4 recordings will be made available at (https://gin.g-node.org/)
upon publication.

Code availability
Our coding framework uses general tools like Pytorch49, Numpy50, scikit-image51, matplotlib52,
seaborn53, DataJoint54, Jupyter55, and Docker56. We also used the following custom libraries and
code: neuralpredictors (https://github.com/sinzlab/neuralpredictors)
for torch-based custom functions for model implementation, nnfabrik (https://github.
com/sinzlab/nnfabrik) for automatic model training pipelines using DataJoint, nnvision
(https://github.com/sinzlab/nnvision) for specific model definitions, ptrnets
(https://github.com/sacadena/ptrnets) for readily available pretrained CNNs and
access to their intermediate layers. Example code to train models on our data will be made available
upon publication.
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Supplementary Figures
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Figure S1. A case for input scale optimization. a, A single excitatory neuron from visual cortex, recorded
from a head-anchored monkey sitting at a certain distance from a screen and fixating on a spot; extracts a
nonlinear function of the input stimulus with a specific receptive field coverage. b, A pretrained deep
convolutional neural network (CNN) extracts several nonlinear feature maps at each of its intermediate layers.
A single output unit of a feature map computes a nonlinear function on its analytical receptive field with a
fixed size in pixels. Even if the real neuron’s nonlinear function was exactly matched to that of a CNN unit,
we would have troubles finding it if we were to forward the input image at the wrong input resolution (in
terms of pixels per visual angle). It is oftentimes difficult to predict a priori the optimal resolution at which a
certain layer extracts the right nonlinearities that best match our responses, especially when the receptive field
sizes of neurons are difficult to estimate for higher visual areas, and when recording beyond the foveal region
of the visual field. We thus treated the input resolution as a hyperparameter that we cross-validate on the
validation set. This facilitates removing the confound between the degree of nonlinearity and receptive field
growth when trying to establish hierarchical correspondence between CNN layers and the biological visual
system.
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Figure S2. Individual task-model performances on V1 (upper row) and V4 (bottom row) as a function of
network layer organized in columns by the task-clusters2. The task-model labels are shared between V1 and
V4, and placed to the right of each column. Each line represents the average performance over seeds of the
mean performance over neurons of the best task-model configuration in the validation set. That means that
these lines represent the test set performance after pooling over input scales, and hyper-parameters (i.e.
regularization penalty). Bars represent 95% confidence intervals of 1 s.e. of the mean for five seeds. We
measured performance as the average test score over single units (nV 1 = 458, nV 4 = 255) calculated as the
correlation between model predictions and mean responses over repetitions.
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Figure S3. Optimal input scale and layers for task-models on V4. In contrast to area V1 where the optimal
layer and scale was shared among all task-models (Layer1.0 and 21px/◦), there was variability of the optimal
layer in the V4 task-models. In some models, including the untrained network, Layer1.0 with a low input
resolution was optimal. The top performing models, including the two semantic classification, and most of
3D tasks (see Fig. 2c) chose an intermediate resolution (∼ 5.6px/◦) at Layer3.0. Interestingly, most
geometric and 2D tasks yielded optimal performances at the same layer, but at a higher resolution.

20/21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.492503doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492503
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S4. Comparison of the average task-cluster performance on single-neurons in V1 (a) and V4 (b).
The dotted line in each pairwise comparison represents the identity and the panels in the main diagonal shows
the performance distribution of each task-cluster. A pairwise Wilcoxon signed rank test reveal that the
differences between task-clusters were significant (see Fig. 2d,e)

21/21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.18.492503doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492503
http://creativecommons.org/licenses/by-nc-nd/4.0/

