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Abstract

Spatial transcriptomics (ST) technology, providing spatially resolved transcriptional profiles,
facilitates advanced understanding of key biological processes related to health and disease.
Sequencing-based ST technologies provide whole-transcriptome profiles, but are limited by the
non-single cell level resolution. Lack of knowledge in the number of cells or cell type
composition at each spot can lead to invalid downstream analysis, which is a critical issue
recognized in ST data analysis. Methods developed, however, tend to under-utilize histological
images, which conceptually provide important and complementary information including
anatomical structure and distribution of cells. To fill in the gaps, we present POLARIS, a

versatile ST analysis method that can perform cell type deconvolution, identify anatomical or
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functional layer-wise differentially expressed (LDE) genes and enable cell composition inference
from histology images. Applied to four tissues, POLARIS demonstrates high deconvolution
accuracy, accurately predicts cell composition solely from images, and identifies LDE genes that

are biologically relevant and meaningful.

Introduction

Molecular analysis of messenger RNA patterns in histological tissue sections is a key
component of biomedical research and diagnostics. The development of novel spatial
transcriptomic (ST) technologies has advanced dramatically over the last few years. There are
two main categories of ST technologies: imaging-based or sequencing-based. Technologies
based on imaging directly image individual RNA molecules within single cells [1, 2].
Sequencing-based techniques first label spatial spots on histological tissue sections with unique
barcodes to indicate their two-dimensional spatial positions, and utilize RNA-sequencing to
provide gene expression quantifications for each spot along with the spatial coordinates [3, 4].
Commonly used methods include MERFISH [1], seqFISH+ [5] in the former category and 10X
Genomics’ Visium platform [3] in the latter category. More information can be found in recent
review papers [6-8]. Some of the sequencing-based techniques (exemplary platforms include
Spatial Transcriptomics and Visium) also provide a co-registered hematoxylin and eosin (H&E)
stained histology image for the analyzed sample. Empowered by these technologies, we can
obtain gene expression profiling with retained spatial information and histological images, which

enable researchers and clinicians to gain a new level of insight into complex tissue samples.

In parallel to these technological developments, computational methods to analyze spatial data
derived from tissue samples have substantially advanced. For instance, focusing on histology
images, multiple machine learning and deep learning methods have been developed to
maximally extract information from these images [9-12]. In the presence of pathological
annotations, histology images can be used for various purposes including cell segmentation [13,
14], tissue type registration [15], mutation rate inference [16, 17], and gene expression
prediction [12]. Most of these tasks, however, require pathologists to fully annotate each cell in
the histological image, entailing substantial manual time and human resources. Such
pathologist annotation is currently unavailable for the vast majority of publicly available ST data,
thus making using traditional cell detection methods to perform ST deconvolution inaccessible.

In the field of ST, histology imaging has primarily been used to predict gene expression and
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perform tissue registration, where the image data is usually subject to a pre-trained model to
extract image features [9, 10, 12]. Several popular pre-trained models, such as convolutional
neural networks, stacked sparse autoencoders, and masked autoencoders (MAE), have been
employed as a first step to reduce image dimensions and demonstrate advantages in many
applications [9, 10, 12, 13, 15]. However, cell composition inference hasn’t benefited from these
models yet. In recent literature, histology images have been utilized to improve deconvolution
accuracy [18, 19] but methods that can predict cell composition solely from histology images are

currently unavailable.

Besides the histology image, ST data allow for the extraction and revelation of tissue structure
through coordinated gene expression. Researchers have developed methods such as SPARK
[20] and SpatialDE [21] for identifying genes whose expression varies within a tissue slice,
known as spatially differentially expressed (SDE) genes. Gene expression changes spatially
across spots within a tissue slice, often reflecting some underlying structured heterogeneity
such as anatomical layers, clusters of similar spots, and/or spatial domains. Such structured
heterogeneity motivates the development of ST clustering methods including BayesSpace to
identify layers/clusters within each ST slice [11, 22, 23]. As aforementioned, the identified layers
often correspond to different functions or morphological changes in the tissue [22, 24, 25]. The
across-spot variation in expression can be largely attributed to three factors: variation in cell
number, variation in cell composition, and true spatially driven variation in gene expression

profile (Fig. 1a).

When the expression variation is truly driven by difference in spatial coordinates (in contrast to
difference in cell number or composition), we can consider having sub-cell types located in
different spatial regions (Fig. 1a). However, when SDE genes are detected by the
aforementioned methods, the identified spatial difference is a result of the interplay of all three
factors, and it is difficult to distinguish genes that are truly spatially differentially expressed from
those that merely appear so due to differential cell number or composition across spatial spots.
We would be able to differentiate among the driving factors if we had single-cell resolution data
with the entire transcriptome or at least a large number of genes measured. However, in
practice, we normally do not have this luxury: we have either data from imaging-based
technologies that are single-cell resolution but measure only a small number of genes, or data
from sequencing-based methods that provide transcriptome-wide measurement, but are limited

in resolution. Sequencing-based ST methods have spatial spots of 2-100 um in diameter,
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implying that each spot can easily contain tens of cells of different cell types. Lacking ideal (i.e.,
single-cell resolution with many genes measured) data motivates the development of
computational methods to infer variation in gene expression profile across layers, while

simultaneously estimating and adjusting for the estimated cell number and composition.

As a matter of fact, lack of knowledge in the number of cells at each spot nor the cell type
composition itself has been recognized as a critical issue in ST data analysis, because failure to
adjust for this accurately can lead to invalid downstream analyses. In order to address this
problem, a number of ST deconvolution methods have been developed [18, 26-30]. However,
most ST deconvolution methods assume that the gene expression profile for the same cell type
is invariant across the entire tissue sample, which is a strong assumption whose violation will
result in inaccurate cell composition inference. Methods such as DestVI that assume a
continuous or smoothly changing gene expression profile across the tissue, however, have
exhibited inconsistent performance across tissue types [6, 31]. Therefore, how to model layer-
specific gene expression variation and utilize histological images to infer cell compaosition is a

problem that remains unsolved.

Here we present POLARIS, Probabilistic-based cell cOmposition inference with LAyer
infoRmatlon Strategy, to perform cell type deconvolution and infer layer-wise differentially
expressed (LDE) genes (Fig. 1b). POLARIS integrates single-cell RNA-seq reference and ST
data with annotated layer information. By examining histology images and the coordinated
expression profile, one can reasonably infer layers or sub-regions that correspond to different
biological functions (e.g. cancer vs non-cancer regions in a tumor biopsy, different layers in a
brain cortical sample, ventricle and atrium areas in heart). By explicitly allowing and modeling
layer-specific gene expression patterns, POLARIS is not only capable of identifying cell type
composition with high accuracy, but also could identify LDE genes while simultaneously
correcting for differential cell composition. An additional key characteristic of POLARIS is its
flexibility to optionally leverage histology images. To our knowledge, POLARIS is the first ST
deconvolution method that can predict cell composition purely from a histological image. This
functionality also empowers POLARIS to infer super-resolution cell composition based on
images of areas without gene expression measurements (i.e., areas in between spots), as well
as to predict cellular composition based purely on an original H&E stained image. The
performance of POLARIS was evaluated on data from multiple tissues including the mouse

cortex, developing human heart, and HER2+ breast cancer samples. POLARIS robustly
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demonstrates high deconvolution accuracy across tissues compared to other state-of-the-art
deconvolution methods, accurately predicts cell composition solely from images, and identifies
LDE genes that are biologically relevant and meaningful. Our results showcase the advantages
of POLARIS in the following three aspects: deconvolution accuracy, LDE gene identification and

prediction with image.

Results

POLARIS method overview

POLARIS is a probabilistic-based inference method that assumes that gene expression counts
in both scRNA-seq reference data and ST data follow a negative binomial distribution. As a first
step, POLARIS maximizes likelihood to infer cell-type-specific gene expression profiles from
scRNA-seq reference (Fig. 1b). The gene expression profile of each spot in ST data can then
be viewed as a weighted sum of the negative binomial distribution derived from the scRNA-seq
reference, where the weights are based on spot-level cell composition. As opposed to assuming
that cell-type-specific gene expression profiles are invariant throughout a whole tissue slice,
POLARIS assumes that only spots in similar biological or anatomical layers share the same
gene expression profiles by introducing a layer-specific location parameter. Explicitly modeling
layers is a unique feature of our POLARIS method. POLARIS accepts any user-specified layer
annotations, e.g., derived manually (from pathologist annotation) or computationally (based on
either morphological features or gene expression, e.g., using BayesSpace [22]). Note that the
layer-specific parameters cannot be inferred from single-cell reference because there’s no layer
information by the nature of data generation. Using ST data with layer annotations, POLARIS
enables layer-specific inference. By introducing the layer-specific shift parameters (Online
Methods), we can obtain an updated location parameter for each layer in the ST data, allowing
cell-type-specific gene expression profiles to vary across layers. By multiplying the updated
location parameter with the cell composition parameter as well as the parameter to account for
technical/batch effects, we simultaneously model the impact of cell composition and spatial
location (as reflected by layers) on cell-type-specific gene expression, while controlling for
potential batch effects. Parameters can be estimated using maximum a posteriori estimation
(MAP) (Online Methods). So far, we have focused on inference with gene expression data
only. When a co-registered histology image is available, POLARIS first employs MAE [32] to

extract features from the image tile of each spot and the image tile of its neighborhood. These
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two extracted features are then combined and used as inputs to build POLARIS’s image
network (Fig. 1b). The output of POLARIS’s image network is cell composition for any input
image (which can be from a completely independent histological image). The output of
POLARIS includes inferred spot-level cell type composition and layer-specific gene expression
profiles, as well as a trained POLARIS image network. The layer-specific gene expression
profiles enable identification of LDE genes, and the pre-trained POLARIS image network allows

resolution enhancement and cell composition inference from a new histology image.

POLARIS attains high deconvolution accuracy

The deconvolution accuracy of POLARIS was assessed both through simulation and in single-
cell resolution ST data. Specifically, we simulated cells with gene expression counts from cell-
type and layer-specific negative binomial distributions and randomly selected cells to create
spot-level gene expression. For single-cell resolution real ST datasets, we clumped cells into
spots according to their coordinates to mimic low-resolution spot-level ST data. We used data
where we have cell type labels for the single cells such that we have the true cell type mixture in
each clumped pseudo-spot. We quantified the performance using root mean square error
(RMSE) where a smaller RMSE corresponds to better performance. We compared POLARIS
with five state-of-art methods: CARD [26], DestVI [29], RCTD [28], stereoscope [27] and
SPOTlight [30]. These methods were selected according to their specific methodological
features and/or their high performance in previous benchmarking studies (Online Methods)][6,
31].

We began with a simulated scenario where all spots and layers share a similar composition of
cells, but with layers differing in terms of their gene expression profiles. Under this scenario,
gene expression variations are solely the result of variations in gene expression profiles across
layers. Specifically, we first simulated a dataset with two "biological" layers, with cells from six
cell types and expression values for 100 genes generated. We first simulated the layer of each
cell and then the gene expression values for the cell were drawn from negative binomial
distributions according to its layer and cell type. We then constructed pseudo spots by randomly
selecting 10-16 cells from each layer. Specifically, we generated 200 spots with 50 spots in
layer 1 and 150 spots in layer 2 (Online Methods). Under this simulation framework, genes
could be classified into three categories: up-regulated in layerl (e.g., Gene36), up-regulated in

layer2 (e.g., Genel00) and no significant difference between layers (e.g., Gene95) (Fig. 2a-b,
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Extended Data Fig. 1). The largest log2 fold change is seen in gene 36 and gene 100, and
most genes display similar or non-differential expression patterns across layers. Applied to the
simulated data, POLARIS outperforms all other methods as manifested by its lowest RMSE
(Fig. 2c).

We further assessed POLARIS's deconvolution performance in a real single-cell resolution ST
data from the mouse VISp region, a well-structured region in mouse cortex that has been
extensively studied [2, 33]. Anatomical structure, major cell types, and layer-specific gene
markers provide information about the layered and segmented structure of the mouse VISp
(Fig. 2d-f) [33, 34]. We used single-cell resolution ST data from the STARmap platform [2],
which consists of 1,020 genes measured in 973 cells. We divided the cells into 356 pseudo
spots each of 400x400 square pixels (Fig. 2d). In order to perform deconvolution, we utilized
the internal reference (that is, the STARmap single cell data itself as the reference). In this way,
any systematic differences between the reference and the target ST data are eliminated as
potential factors that may impair performance. This internal reference evaluation provides a
baseline (or upper bound) for measuring the performance of deconvolution methods [6]. Since
layer annotation is required when using POLARIS, we employed BayesSpace [22] to cluster the
constructed pseudo spots, resulting in five distinct clusters , reflecting the expected layer
structure of mouse VISp (Fig. 2e). In this mouse VISp dataset, POLARIS still achieves amongst
the best performance in terms of RMSE (Fig. 2g). Moreover, POLARIS, based on its inferred
cellular composition, successfully recovers the layer structure of mouse VISp (from top to
bottom: Smc, eL2, eL3, eL4, el5, eL6-1, eL6-2, Oligo, HPC, Fig. 2h).

Additionally, we tested POLARIS on the developing human heart tissue generated from the in
situ sequencing (ISS) platform (Fig. 2i) [35]. The heart ISS data is also a single-cell resolution
ST data, consisting of 24,371 cells and with only 65 genes measured in each cell. We gridded
the cells into pseudo spots each of dimension 454 x 424 square pixels (Fig. 2j). The main
purpose of this assessment is to evaluate POLARIS's performance with a limited number of
genes. Instead of using the internal reference (ISS data itself), we used a scRNA-seq reference
obtained from a similar biological sample [36]. Consequently, we can also evaluate the
deconvolution performance when the reference and ST data are not perfectly matched. The
heart ISS data provides us with a DAPI stained histology image, allowing us to measure the
performance of POLARIS by including the histology image as an additional input (Fig. 2i,
Methods). We clustered the spots into four layers using BayesSpace (Fig. 2k). The
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BayesSpace inferred layers correspond reasonably well to the anatomy of the heart (red:
epicardium, green: ventricles, light blue: atria, dark blue: outflow tract). POLARIS has
maintained its best performer position. Specifically, POLARIS achieves the lowest/best mean of
MSE (Fig.2l). In spite of the fact that the DAPI staining only contains one color channel,
POLARIS with image input is able to effectively infer the type of cell, achieving accuracy close

to the best performers.

Polaris identifies layer-specific gene expression pattern

A major feature of POLARIS is its ability to model layer-specific parameters. The layer/structure
of a tissue can be reflected in multiple dimensions, such as morphology, gene expression, and
other omics levels. POLARIS focuses on leveraging the rich gene expression information
provided by ST data. As detailed above, cell density, cellular composition, and the "real”
spatially differentially expressed genes can all contribute to the observed gene expression
variation. By incorporating layer-specific parameters into the cell type deconvolution process,
POLARIS is able to identify such LDE genes while taking into account differential cell
composition. POLARIS quantifies statistical significance for LDE genes using permutation tests,
and magnitude of effect using log2 fold change in mean gene expression, based on the inferred
layer-specific mean parameters (Methods). Through the elimination of potential confounding
effects of cell composition, POLARIS ensures that the LDE genes identified are differentially

expressed genes truly due to spatial factors.

As a starting point for assessing POLARIS' ability to infer LDE genes, we performed simulations
where we know the truth. Following the same simulation framework used above to evaluate
deconvolution efficiency, we evaluated the layer-specific location parameters. Again, since
cellular composition is simulated from the same distribution across spots regardless of layer
status, observed gene expression variation can only be attributed to truly differential expression
patterns across layers (Fig. 2a-b). Consequently, genes could be classified into three
categories: layerl-enriching genes, layer2-enriching genes, and genes with similar expression
levels across layers (Fig. 2b, 3a). We applied POLARIS to perform deconvolution and
simultaneously perform the permutation test and calculate the log2 fold change in mean
expression, layerl over layer2. POLARIS successfully identified genes that have different
expression profiles across layers (Fig. 3b). The predicted log2 fold change well captures the

true log2 fold change (Fig. 3c) when all the genes have layer-specific gene expression profiles.
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In this particular simulation, we generated the genes such that all of them have layer-specific
expression profiles, although the expression difference between layers of some genes could be
small (detailed in Online Methods). To investigate the impact of the proportion of LDE genes
on POLARIS performance, we further conducted simulations using the same setting but varying
the proportion of genes with layer-specific expression profiles (Extended Data Fig. 2). As the
proportion of LDE genes increases from 0 to 1, UMAP representations of cells become more
separated by layers. It is difficult, however, to identify the sub-types of cells based on the UMAP
representation, even with prior knowledge of the layer information when the proportion of LDE
genes is < 0.5, thus failing to capture heterogeneity across layers (Extended Data Fig. 2a).
POLARIS well controlled the type-I error and accurately estimated the true log2 fold change
regardless of the proportion of LDE genes (Extended Data Fig. 2b). POLARIS also shows
satisfactory performance on a sparse simulation setting (Extended Data Fig. 3, Online
Methods). Note that layer-specific parameters are inferred only from the ST data because we

do not have layer information from the scRNA-seq reference.

Encouraged by POLARIS’s performance in simulated data, we proceeded to further test
POLARIS’s capability to detect LDE genes using real datasets. We began with the developing
human heart single-cell resolution ISS ST data. We created pseudo-spots from the dataset and
applied POLARIS to the pseudo-spots, feeding as input spot-level gene expression information
along with layer information inferred from BayesSpace. LDE genes detected by POLARIS
indeed have differential patterns of gene expression in different layers (Fig. 3d-e). Although cell
type affects gene expression, layer status also plays a significant role in shaping the spot-level
expression profile. Furthermore, such layer-specific changes are shared by many cell types. For
example, the expression of EBF2 in most cell types is highest in layer 3 compared to the other
three layers (Fig. 3e). POLARIS, by making accurate inference of gene expression profiles in
different cell types, has successfully captured the LDE gene and has recovered the layer-
specific variation present in most cell types. We further explore the links between LDE genes
and biological functions of each layer. For example, among the LDE genes, TCF21 has the
lowest mean gene expression in layer 3 (Fig. 3d-e) where fibroblast-like cells are enriched (Fig.
2j-k). The transcription factor 21 (TCF21) encoded by TCF21 plays a crucial role in regulating
cell differentiation and cell fate determination through epithelial-mesenchymal transformations
during cardiac development. More specifically, TCF21 has been reported to be capable of
promoting the development of cardiac fibroblasts and inhibiting differentiation of epicardial cells

into vascular smooth muscle cells [37], consistent with our observed down-regulation in layer 3.
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We further applied POLARIS on a more complex tissue: breast cancer samples. There are
several subtypes of breast cancer, among which the HER2-positive subtype is characterized by
the increased expression of ERBB2 (AKA HER2, human epidermal growth factor receptor 2) in
tumor cells [38]. We obtained ST data of HER2-positive tumors from eight individuals (patient A-
H) generated through the Spatial Transcriptomics platform [3, 38]. Each of the eight patients
provided multiple slides, but only one slide from each patient was pathologist annotated.
Annotations mark areas with one of the following five labels: in situ cancer (noninvasive ductal
carcinoma in situ, DCIS), invasive breast cancer (IBC), adipose tissue, immune infiltrate, or
connective tissue [38]. Here we highlight the results of two slides with both IBC and DCIS
regions (results from the Al slide in Fig. 3f-k, Extended Data Fig. 5, results from the G2 slide
in Extended Data Fig. 4,5). We applied POLARIS on the pathologist annotated ST data using
an external scRNA-seq reference [39]. POLARIS made reasonable inference regarding cell
composition on slide Al (Fig. 3f). For example, cancer epithelial cells are inferred to be
enriched in the DCIS and IBC areas. POLARIS also identified several LDE genes in the DCIS
area (Fig. 3i-j). These LDE genes, including S100A14, MUCL1, PITX1, and ERBB2 are mainly
expressed in cancer epithelial cells (Extended Data Fig. 6). In general, genes that are primarily
expressed in cancer epithelial cells are enriched either in the DCIS or the IBC region (Fig. 3h-
k), which is expected since these two regions have similarly high proportions of cancer epithelial
cells. The LDE genes identified by POLARIS successfully capture cancer epithelial cell specific
genes, but differentially expressed in the two regions (Fig. 3h-k). For example, in the DCIS
region, all POLARIS-identified LDE genes except ERBB2 have a positive log2 fold change
estimate (Fig. 3j), consistent with expression patterns shown in Fig. 3k. The observed down-
regulation of ERBB2 in the DCIS area most likely reflects an up-regulation of ERBB2 elsewhere.
As shown in Fig. 3f, the majority of slide Al is the invasive cancer area. Cancer epithelial cells
in the invasive cancer area presumably invade other areas resulting in an increased ERBB2
expression in all other pathologist-identified areas except the DCIS and these invaded areas
also exhibit an increase in the proportion of cancer epithelial cells (Fig. 3h-i, Extended Data
Fig. 4f). ERBB2, the protein encoded by ERBBZ2, plays an important role in breast cancer. The
over-expression of ERBB2 disrupts normal cell-control mechanisms and gives rise of
aggressive tumor cells and leads to increased breast cancer metastasis [40-45]. Interestingly,
when applied to slide G2, ERBB2 shows to be up-regulated in the DCIS area (Extended Data
Fig. 4e,9). Together, these observations reflect the heterogeneity of the samples and are
consistent with the literature that ERBB2 is over-expressed in 30-35% of DCIS, while ERBB2 is
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only expressed in 15-25% of IBC [46-49]. POLARIS reveals such heterogeneity and complexity
by showing differential gene expression profiles between DCIS and IBC regions on the same
slide, and by revealing differential patterns across slides from the same patient as well as
across patients. In addition to ERBB2, other LDE genes identified by POLARIS and the proteins
encoded by those genes also play important roles in breast cancer. For example, copy number
amplification of S100A14, significantly correlated with the increased S100A14 mRNA
expression, is present in 5.4%-20.7% of primary breast cancer patients and in approximately
26.1% of metastatic breast cancer patients [50]. For another example, CXXC5 over-expression
has been observed to be associated with a poor prognosis for estrogen receptor positive (ER+)

breast cancer [51].

Polaris enables prediction purely from histology image

After demonstrating that even a single-color histology image is able to generate high-accuracy
deconvolution inference in the developing human heart tissue, we continued to apply POLARIS
to other spot-level ST data with H&E staining images. We utilized the mouse primary
somatosensory cortex area (SSp) data generated from the 10x Visium platform [52]. Similar to
the mouse VISp region, mouse SSp is also an area in the mouse cortex with well-defined
anatomical and functional structure. Specifically, the glutamatergic neuron types exhibit clear
layered patterns [6, 33, 53]. Using an independent scRNA-seq from similar SSp regions [33] as
the external reference, POLARIS trained an image network using four SSp ST slides. Each slide
was clustered into six groups using BayesSpace (Extended Data Fig. 7). POLARIS
successfully captures expected patterns of glutamatergic composition and reveals layer

structure consistent with data from the Allen Brain Atlas [34].

Spot-level ST technologies cannot measure every part of a tissue slide. As shown in Fig. 4a,
gene expression levels are not available for any region outside the measured spots (Fig. 4a).
POLARIS, through its trained image network, can determine cell type compaosition using the
image of unmeasured areas. Specifically, POLARIS-trained image network can be applied to
cropped images of the same size as the original grid in training. Sliding across the entire
histological image of the SSp slide and applying the POLARIS-trained image network to the
image of each sliding window, one can obtain super-resolution inference, encompassing areas
not initially covered by spatial spots. Such super-resolution inference empowers us to gain finer
details of the layered structure (Fig. 4b). Following the training of POLARIS’s image network,
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we applied it to a new SSp slide to test whether the trained image network is able to make
reasonable inference on images from independent slides (Fig. 4c). We compared cell
compositions inferred using the image network trained by POLARIS from other slides, with
those inferred using the new slide’s own gene expression and histology image on measured
spots (Fig. 4d-e, Extended Data Fig. 8a-b). Although the two sets of inference show
differences, results obtained solely from POLARIS’s pre-trained image network still show strong
correlation with the inference results using its own image and gene expression, especially in
glutamatergic neurons (For example, the Pearson’s correlation for L6b CTX is 0.8). POLARIS-
trained image network successfully recovers the layered structure in most cell types, suggesting
that the approach could be applied to new histology slides as long as we have a network pre-

trained by POLARIS using ST data from similar regions.

POLARIS-trained image network was further examined using breast cancer data. We again
used pathologist annotated ST data and the external scRNA-seq from Wu et al. as reference to
perform deconvolution on slide H1 (Fig. 4f) [38, 39]. Afterwards, we employed the image
network trained by POLARIS from slide H1 to enhance resolution and obtain super-resolution
cell composition inference on the H1 slide itself (Fig. 4g9). The inferred cell compositions are
consistent with those in other slides where cancer epithelial cells are enriched in the DCIS and
IBC regions. It appears that cancer epithelial cell proportion is able to accurately capture the
cancerous areas. For example, spots with >0.4 proportion of cancer epithelial cells are enriched
within regions labeled as DCIS and IBC by pathologists (Extended Data Fig. 8e). We then
further applied the POLARIS image network trained on H1 to two other slides of the same
patients (H2 and H3), which have no pathologist's annotation (Fig. 4h-i, Extended Data Fig.
8c-g). By closely examining the histology images, it is evident that regions characterized by high
proportions of cancer epithelial cells are indeed primarily cancerous areas. Our results therefore
suggest that POLARIS enables a new method of registering histology images to different
anatomical/functional regions, for example cancerous areas in this analysis. By examining cell
composition in each spot, we are able to group the spots into layers. In summary, with a trained
POLARIS image network, we could obtain super-resolution cell composition inference which

reveals finer layer structure of a tissue.

POLARIS allows cell composition inference on new histology images without gene expression
and consequently, is able to identify anatomical and functional regions. Compared to existing

supervised classification methods for registering histology image tiles to different regions or
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layers which require annotated layer information, POLARIS is unsupervised in terms of
histology information and does not require pathologist annotation. Instead, POLARIS relies on

pre-knowledge about the relationship between the targeted layer and the cell composition.

Discussion

ST technologies are rapidly evolving. In the near future, we expect to be able to measure gene
expression levels at single cell resolution and of all genes in the transcriptome. Currently, spot-
level resolution ST technologies such as the Visium and Spatial Transcriptomes still have their
advantages in terms of throughput (both in terms of number of genes measured and number of
spatial spots examined) and the ability to obtain high-resolution H&E staining images. Because
of their advantages, researchers are generating a deluge of these data. It is, however,
imperative to perform cell type deconvolution at each spot in order to mitigate or eliminate
potential confounding caused by differential cell composition across spots. Despite humerous
methods developed for ST deconvolution, two pieces of information have been under-utilized.
First, often there is a layer structure, or at least areas reflecting different anatomical or functional
regions in an ST slide. Second, histological images, carrying information complementary to
spot-level gene expression profiles, have not been fully explored in their value for cell type
decomposition. In this work, we present POLARIS, a unified framework that leverages layer
structure information and/or histological images, for cell type deconvolution both at spots with
expression measurement and in regions with only image information, as well as for the

revelation of LDE genes.

We demonstrate the performance of POLARIS on simulation and real datasets including
developing human heart, mouse cortex VISp and SSp region, and human HER2+ breast cancer
samples. POLARIS robustly achieves best or close to best deconvolution performance
compared to other state-of-the-art methods. POLARIS’s inference on spot-level ST data reveals
layered structures that are consistent with gene expression profiles, histological images, and

known/established anatomical/functional layers/regions in the corresponding tissue samples.

Equally if not more importantly, POLARIS accurately infers layer-specific expression profiles
across different cell types which leads to the identification of LDE genes. We demonstrate
POLARIS’s power to identify LDE genes using simulation data as well as the single-cell

resolution ST data from the developing human heart, where we have knowledge regarding the
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true LDE genes. The LDE genes identified by POLARIS in developing human heart data indeed
exhibit different gene expression profiles across layers, beyond what can be attributed to
differential cell type compositions. Finally, applying POLARIS to ST data from breast cancer
patients, we found that POLARIS identified LDE genes reveal complex heterogeneous across-
layer/region differential expression across samples and/or patients. The detected LDE genes
are consistent with established knowledge regarding breast cancer pathology, including
metastasis and prognosis, but offer more granular sample-level and patient-level information
that can potentially empower personalized diagnosis and treatment. POLARIS assumes that the
layer-specific shift parameter is shared across cell types. This assumption is based on
observations in single-cell resolution ST data (e.g. heart ISS data, Fig. 3e). In addition, due to
the model identification problem, we chose to go with a parsimonious model and therefore did
not implement a layer shift specific to each cell type. Considering that we are inferring both the
cell type proportion and the layer-specific shift at the same time, modeling a layer shift specific
to each cell type will very likely cause the model to confuse the proportion and shift, which will
result in poor and unstable estimation of both parameters. We consider this as a limitation of our

model which will likely to be resolved in future efforts.

Another key feature of POLARIS is its ability to leverage image data. In the ST deconvolution
field, gene expression itself has proved its ability to infer cell composition. Imaging information,
however, has been under-utilized. Recent work [18, 19] showed the potential of histology
images accompanying ST data. We believe that histology images can be further leveraged for
ST inference. For example, histology images alone are widely used to segment cells with deep
learning models [13, 14]. POLARIS can take an accompanying image as input to train an image
network, and employ a pre-trained image network on a completely new image. Our pre-trained
POLARIS image network offers a novel method for tissue registration, which extracts and
reveals tissue anatomical or functional structures either from the histological image alone or
jointly with gene expression. The major barriers that prevent the full potential of integrating
histological images with ST data include quality of the co-registered image and, most
importantly, the absence of pathologist annotations. In order to accomplish the task with the
currently available data, POLARIS incorporates training of the image network into the inference
of cell composition. Instead of training a model with inferred cell compaosition as the goal and
using MSE as the loss function, our intention is to use histology images to help with the
estimation of cell composition, under the rationale that spots with similar histological images and

similar neighborhoods tend to share similar cell composition. Nevertheless, we fail to
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demonstrate that the image improves deconvolution performance due to the limitation of the
current data: single-cell level resolution ST data only provides DAPI stained images which only
comprise one color panel, while spot-level ST data has no gold standard truth. Despite these
limitations to quantify the performance, POLARIS with image input still achieved high accuracy
among the state-of-art methods in single-cell resolution ST data, and in spot-level ST data, cell
type composition inferred by POLARIS agreed with single-cell level data and the expected
biological layers (e.g. glutamatergic neurons in the mouse cortex and cancer epithelial cells in
the breast cancer slides). POLARIS introduces a novel approach for inferring cell composition
purely from histological images that has not previously been explored by ST deconvolution. We
believe that the versatile ability of POLARIS to incorporate histological images to elucidate

layer-specific gene expression patterns will empower novel discoveries in spatial biology.
Material and methods

POLARIS inference algorithm
We use g for gene index, c for cell index, z for cell type index, and L for layer index. Z,. is the cell
type of cell c, L. is the layer of cell c and Ly is the layer of spot s. We assume that in ScCRNA-seq

reference dataset, X.,, expression count of gene g in cell c follows the following negative

gl

binomial distribution:
Xcg ~ NB(S; Softplus(0y,, + T g), By)

Softplus(x) = log(1 + exp(x))) is used to guarantee that R, > 0. B, = Sigmoid(o,), where

. ) 1
Sigmoid(x) = Tro(D

type of cell c. NB is the negative binomial distribution. §,, is the mean location parameter

is the sigmoid function. S, is the library size of cell c and Z,. is the cell

shared across layers. To capture the gene expression variation between layers, we introduce a
new parameter T, 4, a mean shift parameter for layer L and gene g. We assume that for a gene,
all cell types share the same shift parameter across layers. We further assume that 7, ; ~
N(0,1). However, in real world, we do not have the layer information in the sScRNA-seq
reference data. We make the following assumption

Xcg ~ NB(S; Softplus(6y,_), Fy)
when inferring the parameters in the reference data. Estimates for the parameters are then
obtained by finding the MLE (maximum likelihood estimates), given the provided scRNA-seq

reference data via the gradient-based optimization using the PyTorch library in Python.
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In the ST data, we make similar distributional assumption. Specifically, we assume that Xscg
expression count of gene g in cell ¢ in spot s follows the following negative binomial distribution:
Xscg ~ NB(BgSoftplus(6y,. + Ty 4).By)

Bg is the parameter measuring technical bias between ST and scRNA-seq reference for gene g.
Note that the bias parameter is gene-specific. Considering the additive property of negative
binomial distribution and summing across all single cells within spot s, the resulting distribution

of gene g in spot t also follows a negative binomial distribution:

z
Xsg ~ NB (Z BgSoftplus(8,, + TLsg)nsz,I?g>

z=1

Z is total number of cell types and ng, is the number of cells of type z in spot s. All the
parameter are inferred using maximum a posteriori estimation (MAP) with 9;,1@ obtained from
scRNA-seq reference. When image data is utilized in the model, we incorporate a POLARIS
image network to infer the cell type composition. POLARIS image network takes MAE extracted
features as input and the output is the cell composition. The image network is trained using

MAP which means that the loss function is the negative posterior likelihood. At last, cell type

proportion can be calculated as vy, = anfz .
SZ

Image feature extraction using masked autoencoder (MAE)

The MAE codes are obtained from https://github.com/facebookresearch/mae . We only use the

pretrained encoder part to extract the image features [32]. We used
mae_visualize_vit_large_ganloss.pth as the pretrained model. We used MAE to extract image
features for the spot image and spot neighborhood image. The spot image is a r * r square
covering the spot. r is defined specific to the dataset used (details about the used r could be
found in the source code). The neighborhood image is defined as a 3r * 3r square sharing the
same center point as the spot image. The two MAE-extracted 1024-length vectors are combined
as the image input of the spot. The POLARIS image network combines two levels of fully

connected layers (2048 to 512, 512 to the number of cell types). The 6,, and T, 4 are fixed

during the training of image network.

Simulation
We begin by generating a single-cell reference. A total of 100 genes are simulated in six cell

types. The number of cells in each cell type is simulated from N (500, 100?) and rounded to the
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nearest integer. For each cell, we simulate the layer from Binomial(0.3) where we treat a
simulated value of 0 as layer 1 and value of 1 as layer 2. We then simulate the gene expression
of gene g in cell ¢ from NB(Softplus(8,,_ + T, ), F;), where NB denotes the negative binomial
distribution. Z. represents the cell type of cell c and L. represents the layer of cell c. In the first
simulation, both 6,, and T,, are simulated from N(0,1) and F; is simulated from
Uniform(0.2,0.8). In the sparse simulation, 6,, are simulated from N(—2,1). Note T,
represents the layer-specific gene expression profile, thus allowing expression profiles to vary
across layers, even for the same gene g and cell type. We then construct pseudo spots by
randomly selecting cells in layer 1 and layer 2 with replacement from single cells simulated
above. In each spot, the number of cells is determined by sampling a random number from
Uniform(10,16). We simulated 50 spots in layerl and 150 spots in layer2. For simulation with
different proportion of genes with layer-specific expression profiles, we define the proportion as
m. Then the T4 for 100 = (1 —m) % genes are set as 0 while the T, , for the rest 100 * m %

genes are simulated from N(0,1).

Calculate between-layer fold change
To identify LDE genes, we compare the gene expression profile across layers by comparing
layer-specific location parameters:

Softplus(ﬁgz + TLg)
Specifically, the fold change of gene g in layer L compare to other layers in cell type z are
calculated as

Fug = gz + Tig)/ () (6gs +Tisg)/(S = 1)

Lr#L

Where S is the total number of layers. Then we take the maximum fold change across cell types

to quantify the across-layer fold change of gene g.

LDE gene identification

We perform permutation test to identify LDE genes. With a given layer annotation Layer°?S, we
perform cell type deconvolution and infer TL";,’S and Ffjs. Then we randomize the layer
annotation for N times and generate pseudo layer annotation Layers™!, ..., LayersS™V
Consequently, we are able to infer Tféml, Lfém”. Then the p value of gene g in layer L is

defined as
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#ITE| > |TEpS
N

p value =

0.05
Total number of gene.

Genes with p value < . (Bonferroni correction) and |log2 FL";S| > 1 are

considered as the LDE genes in layer L (marked as pink in the figures). We used N = 10000
(permutation times) in all the analysis. For the LDE analysis in the manuscript, we only used
gene expression (i.e., histological images not used) in the deconvolution process in the

permutation test.

Data preprocessing

For the STARmap data, we only keep genes that are present in at least 2% of spots.

In the breast cancer analysis, we only keep HER2+ subtype ST data for deconvolution
evaluation. Similarly, we keep only the HER2+ patients' scRNA-seq data as reference. For
scRNA-seq reference, genes expressed in at least 3 cells and cells expressing at least 200
genes are kept. Similarly for ST data, genes expressed in at least 3 spots and spots expressing
at least 100 genes are kept. Only genes that exist in both scRNA-seq and ST data are
employed in further analysis. Top 2000 highly variable genes (HVGs) are used. The gene
subsettings are accomplished using the R package Seurat [54]. HVGs are selected using
feature variance calculated by the FindVariableFeatures function with default settings. To
reduce the effect of excessive zeros, we recommend removing genes with an expression level
of less than 2%.

For the heart ISS DAPI-stained image, we reverse the color and enhance the contrast using

ImageEnhance function in the Pillow package [55].

Comparing to other state-of-art methods

We compared the performance of POLARIS with several state-of-the-art deconvolution methods
developed for ST data. We included RCTD and stereoscopes because of their top performance
in the probabilistic-based model. Our inclusion of DestVI was based on the fact that it claimed to
identify a continuous state that goes beyond discrete cell types, which we consider to be similar
to our objective. CARD was included because it is capable of inferring the cell type composition
in areas that are directly measured. Because SPOTIlight is the top performer among the
NMF+NNLS techniques, we also included it in our analysis.

We followed the instructions of each method on their corresponding website. Among all the

methods, only RCTD has a built-in gene filtering method, where only genes with normalized
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gene expression >= 0.0002 are included, and it selects cell type marker genes based on a log-
fold-change threshold of 0.75 [28]. We used the default parameters of RCTD and ran RCTD in
full mode. Only selected cell type marker genes were fed into RCTD. For all other methods, we
used all genes without any further filtering from the preprocessed data described in the previous

section.

Tissue detection
To use POLARIS-trained image network, we need to automatically detect the tissue section
from a histological image. We utilized the filter_entropy function in

https://github.com/CODAIT/deep-histopath and followed the instructions in

https://developer.ibm.com/articles/an-automatic-method-to-identify-tissues-from-big-whole-slide-

images-pt3/ . We used entropy, which measures tissue complexity, to detect the percentage of
tissue in each spot. Areas such as the slide background are less complex than the tissue area.
We used the default threshold of 5 in the analysis. Pixels with an entropy value greater than 5
are counted as tissue regions. Spots with greater than 5% tissue area is kept in the super-

resolution composition inference.
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data, infers cell-type-specific gene expression profiles and identifies layer-specific expression

profiles. When a co-registered histology image (as an optional input) is provided, POLARIS will

additionally train an image network. The output of POLARIS includes inferred spot-level cell

type composition, identified layer-wise differentially expressed (DE) genes and a pre-trained

POLARIS image network that can be applied to independent images.
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Fig. 2 | Deconvolution accuracy of POLARIS. Simulation: (a) cell type composition of the
simulated ST data. (b) Three categories of gene expression pattern: up-regulated in layerl, up-
regulated in layer2, no significant difference across layers. (c) RMSE of POLARIS along with

other state-of-the-art methods on simulated data. On mouse VISp STARmap data: (d) (left)
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cell map and (right) clumped pseudo spots along with their cell compaositions visualized by pie
charts (e) BayesSpace identified clusters, consistent with layer structure of mouse VISp (f) Nissl
staining (left) and anatomical annotations (right) from the Allen Mouse Brain Atlas and Allen
Reference Atlas - Mouse Brain. The black lined area indicates the layer structure of the VISp
region. (g) RMSE of POLARIS along with other state-of-the-art methods on mouse VISp
STARmap data. (h) POLARIS inferred spot-level composition of the eight major cell types, along
cortex depth. On developing human heart ISS data: (i) Processed DAPI-stained histology
image of the developing human heart ISS data. (j) clumped pseudo spots in the ISS data along
with their cell compositions visualized by pie charts. (k) BayesSpace identified clusters in the
ISS data. (I) RMSE of POLARIS along with RMSE of other state-of-the-art methods on the heart
ISS data.
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Fig. 3| LDE genes identified by POLARIS on three datasets. On simulated data: (a) true
log2 fold change of mean gene expression, layerl over layer2. (b) POLARIS inferred log2 fold
change of mean gene expression, layerl over layer2. POLARIS identified LDE genes are
colored as pink, otherwise, gray. (c) POLARIS inferred log2 fold change of gene expression
across layers achieves high correlation (Pearson’s correlation = 0.974) with the true log2 fold

change. On developing human heart data: (d) POLARIS inferred log2 fold change of gene
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expression across layers. POLARIS identified LDE genes are colored as pink, otherwise, gray.
(e) (left) Observed mean gene expression in SCRNA-seq data (top) and POLARIS inferred gene
expression location parameter (bottom) of each cell type across layers. Lines are colored by cell
types. X axis indicates layer status: from left to right is layer 0,1,2,3. (right) Gene expression of
TCF21 and EBF2 in the Fibroblast-like (coronary & mediastinal vasculature related) cells. On
HER2+ breast cancer data: (f) Pathologist annotation on slide Al. (g) POLARIS inferred cell
composition (h) POLARIS inferred cancer epithelial cell proportion (i) Distribution of POLARIS
inferred cancer epithelial cell proportions in each layer (color scheme is the same as in Fig. 3e)
(j) POLARIS inferred log2 fold change of gene expression across layers. Points with absolute
value greater than 1 are colored as pink, otherwise, gray. (k) Gene expression profiles of
POLARIS identified LDE genes in the cancer in situ layer.
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Fig. 4 | POLARIS achieves super-resolution cell composition inference when using
histology image as input. On mouse SSp 10x Visium slide ST8059048: (a) The original grid
and POLARIS inferred cell composition. (b) The super-resolution cell composition inferred using
a POLARIS-trained image network. Points in (a) and (b) are colored by the corresponding cell
proportion (from blue to yellow corresponds to low to high). On slide ST8059052: (c) The
original grid of the slide (d) POLARIS inferred cell composition inference using spot-level gene
expression and histology image. (e) Inferred cell composition using a POLARIS-trained image
network (trained on the other 4 slides), based on histology image only. Similarly, points in (d)
and (e) are colored by the corresponding cell proportion (from blue to yellow corresponds to low

to high). On Her2+ breast cancer: (f) pathologist's annotation of slide H1. (g) Super-resolution
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inference of H1 using POLARIS image network trained on H1. (h) Histology image of slide H3.
(i) Super-resolution inference of H3 using POLARIS image network, again trained on H1. The
points in (g) and (i) are colored by the cancer epithelial cell proportion. CTX: isocortex, IT:

intratelencephalic, PT: pyramidal tract, NP: near-projecting.
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