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Abstract 

 

Spatial transcriptomics (ST) technology, providing spatially resolved transcriptional profiles, 

facilitates advanced understanding of key biological processes related to health and disease. 

Sequencing-based ST technologies provide whole-transcriptome profiles, but are limited by the 

non-single cell level resolution. Lack of knowledge in the number of cells or cell type 

composition at each spot can lead to invalid downstream analysis, which is a critical issue 

recognized in ST data analysis. Methods developed, however, tend to under-utilize histological 

images, which conceptually provide important and complementary information including 

anatomical structure and distribution of cells. To fill in the gaps, we present POLARIS, a 

versatile ST analysis method that can perform cell type deconvolution, identify anatomical or 
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functional layer-wise differentially expressed (LDE) genes and enable cell composition inference 

from histology images. Applied to four tissues, POLARIS demonstrates high deconvolution 

accuracy, accurately predicts cell composition solely from images, and identifies LDE genes that 

are biologically relevant and meaningful. 

 

Introduction 

 

Molecular analysis of messenger RNA patterns in histological tissue sections is a key 

component of biomedical research and diagnostics. The development of novel spatial 

transcriptomic (ST) technologies has advanced dramatically over the last few years. There are 

two main categories of ST technologies: imaging-based or sequencing-based. Technologies 

based on imaging directly image individual RNA molecules within single cells [1, 2]. 

Sequencing-based techniques first label spatial spots on histological tissue sections with unique 

barcodes to indicate their two-dimensional spatial positions, and utilize RNA-sequencing to 

provide gene expression quantifications for each spot along with the spatial coordinates [3, 4]. 

Commonly used methods include MERFISH [1], seqFISH+ [5] in the former category and 10X 

Genomics’ Visium platform [3] in the latter category. More information can be found in recent 

review papers [6-8]. Some of the sequencing-based techniques (exemplary platforms include 

Spatial Transcriptomics and Visium) also provide a co-registered hematoxylin and eosin (H&E) 

stained histology image for the analyzed sample. Empowered by these technologies, we can 

obtain gene expression profiling with retained spatial information and histological images, which 

enable researchers and clinicians to gain a new level of insight into complex tissue samples. 

 

In parallel to these technological developments, computational methods to analyze spatial data 

derived from tissue samples have substantially advanced. For instance, focusing on histology 

images, multiple machine learning and deep learning methods have been developed to 

maximally extract information from these images [9-12]. In the presence of pathological 

annotations, histology images can be used for various purposes including cell segmentation [13, 

14], tissue type registration [15], mutation rate inference [16, 17], and gene expression 

prediction [12]. Most of these tasks, however, require pathologists to fully annotate each cell in 

the histological image, entailing substantial manual time and human resources. Such 

pathologist annotation is currently unavailable for the vast majority of publicly available ST data, 

thus making using traditional cell detection methods to perform ST deconvolution inaccessible. 

In the field of ST, histology imaging has primarily been used to predict gene expression and 
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perform tissue registration, where the image data is usually subject to a pre-trained model to 

extract image features [9, 10, 12]. Several popular pre-trained models, such as convolutional 

neural networks, stacked sparse autoencoders, and masked autoencoders (MAE), have been 

employed as a first step to reduce image dimensions and demonstrate advantages in many 

applications [9, 10, 12, 13, 15]. However, cell composition inference hasn’t benefited from these 

models yet. In recent literature, histology images have been utilized to improve deconvolution 

accuracy [18, 19] but methods that can predict cell composition solely from histology images are 

currently unavailable. 

 

Besides the histology image, ST data allow for the extraction and revelation of tissue structure 

through coordinated gene expression. Researchers have developed methods such as SPARK 

[20] and SpatialDE [21] for identifying genes whose expression varies within a tissue slice, 

known as spatially differentially expressed (SDE) genes. Gene expression changes spatially 

across spots within a tissue slice, often reflecting some underlying structured heterogeneity 

such as anatomical layers, clusters of similar spots, and/or spatial domains. Such structured 

heterogeneity motivates the development of ST clustering methods including BayesSpace to 

identify layers/clusters within each ST slice [11, 22, 23]. As aforementioned, the identified layers 

often correspond to different functions or morphological changes in the tissue [22, 24, 25]. The 

across-spot variation in expression can be largely attributed to three factors: variation in cell 

number, variation in cell composition, and true spatially driven variation in gene expression 

profile (Fig. 1a).  

 

When the expression variation is truly driven by difference in spatial coordinates (in contrast to 

difference in cell number or composition), we can consider having sub-cell types located in 

different spatial regions (Fig. 1a). However, when SDE genes are detected by the 

aforementioned methods, the identified spatial difference is a result of the interplay of all three 

factors, and it is difficult to distinguish genes that are truly spatially differentially expressed from 

those that merely appear so due to differential cell number or composition across spatial spots. 

We would be able to differentiate among the driving factors if we had single-cell resolution data 

with the entire transcriptome or at least a large number of genes measured. However, in 

practice, we normally do not have this luxury: we have either data from imaging-based 

technologies that are single-cell resolution but measure only a small number of genes, or data 

from sequencing-based methods that provide transcriptome-wide measurement, but are limited 

in resolution. Sequencing-based ST methods have spatial spots of 2-100 𝜇𝑚 in diameter, 
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implying that each spot can easily contain tens of cells of different cell types. Lacking ideal (i.e., 

single-cell resolution with many genes measured) data motivates the development of 

computational methods to infer variation in gene expression profile across layers, while 

simultaneously estimating and adjusting for the estimated cell number and composition.  

 

As a matter of fact, lack of knowledge in the number of cells at each spot nor the cell type 

composition itself has been recognized as a critical issue in ST data analysis, because failure to 

adjust for this accurately can lead to invalid downstream analyses. In order to address this 

problem, a number of ST deconvolution methods have been developed [18, 26-30]. However, 

most ST deconvolution methods assume that the gene expression profile for the same cell type 

is invariant across the entire tissue sample, which is a strong assumption whose violation will 

result in inaccurate cell composition inference. Methods such as DestVI that assume a 

continuous or smoothly changing gene expression profile across the tissue, however, have 

exhibited inconsistent performance across tissue types [6, 31]. Therefore, how to model layer-

specific gene expression variation and utilize histological images to infer cell composition is a 

problem that remains unsolved. 

 

Here we present POLARIS, Probabilistic-based cell cOmposition inference with LAyer 

infoRmatIon Strategy, to perform cell type deconvolution and infer layer-wise differentially 

expressed (LDE) genes (Fig. 1b). POLARIS integrates single-cell RNA-seq reference and ST 

data with annotated layer information. By examining histology images and the coordinated 

expression profile, one can reasonably infer layers or sub-regions that correspond to different 

biological functions (e.g. cancer vs non-cancer regions in a tumor biopsy, different layers in a 

brain cortical sample, ventricle and atrium areas in heart). By explicitly allowing and modeling 

layer-specific gene expression patterns, POLARIS is not only capable of identifying cell type 

composition with high accuracy, but also could identify LDE genes while simultaneously 

correcting for differential cell composition. An additional key characteristic of POLARIS is its 

flexibility to optionally leverage histology images. To our knowledge, POLARIS is the first ST 

deconvolution method that can predict cell composition purely from a histological image. This 

functionality also empowers POLARIS to infer super-resolution cell composition based on 

images of areas without gene expression measurements (i.e., areas in between spots), as well 

as to predict cellular composition based purely on an original H&E stained image. The 

performance of POLARIS was evaluated on data from multiple tissues including the mouse 

cortex, developing human heart, and HER2+ breast cancer samples. POLARIS robustly 
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demonstrates high deconvolution accuracy across tissues compared to other state-of-the-art 

deconvolution methods, accurately predicts cell composition solely from images, and identifies 

LDE genes that are biologically relevant and meaningful. Our results showcase the advantages 

of POLARIS in the following three aspects: deconvolution accuracy, LDE gene identification and 

prediction with image. 

 

Results 

 

POLARIS method overview 

 

POLARIS is a probabilistic-based inference method that assumes that gene expression counts 

in both scRNA-seq reference data and ST data follow a negative binomial distribution. As a first 

step, POLARIS maximizes likelihood to infer cell-type-specific gene expression profiles from 

scRNA-seq reference (Fig. 1b). The gene expression profile of each spot in ST data can then 

be viewed as a weighted sum of the negative binomial distribution derived from the scRNA-seq 

reference, where the weights are based on spot-level cell composition. As opposed to assuming 

that cell-type-specific gene expression profiles are invariant throughout a whole tissue slice, 

POLARIS assumes that only spots in similar biological or anatomical layers share the same 

gene expression profiles by introducing a layer-specific location parameter. Explicitly modeling 

layers is a unique feature of our POLARIS method. POLARIS accepts any user-specified layer 

annotations, e.g., derived manually (from pathologist annotation) or computationally (based on 

either morphological features or gene expression, e.g., using BayesSpace [22]). Note that the 

layer-specific parameters cannot be inferred from single-cell reference because there’s no layer 

information by the nature of data generation.  Using ST data with layer annotations, POLARIS 

enables layer-specific inference. By introducing the layer-specific shift parameters (Online 

Methods), we can obtain an updated location parameter for each layer in the ST data, allowing 

cell-type-specific gene expression profiles to vary across layers. By multiplying the updated 

location parameter with the cell composition parameter as well as the parameter to account for 

technical/batch effects, we simultaneously model the impact of cell composition and spatial 

location (as reflected by layers) on cell-type-specific gene expression, while controlling for 

potential batch effects. Parameters can be estimated using maximum a posteriori estimation 

(MAP) (Online Methods). So far, we have focused on inference with gene expression data 

only. When a co-registered histology image is available, POLARIS first employs MAE [32] to 

extract features from the image tile of each spot and the image tile of its neighborhood. These 
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two extracted features are then combined and used as inputs to build POLARIS’s image 

network (Fig. 1b). The output of POLARIS’s image network is cell composition for any input 

image (which can be from a completely independent histological image). The output of 

POLARIS includes inferred spot-level cell type composition and layer-specific gene expression 

profiles, as well as a trained POLARIS image network. The layer-specific gene expression 

profiles enable identification of LDE genes, and the pre-trained POLARIS image network allows 

resolution enhancement and cell composition inference from a new histology image. 

 

POLARIS attains high deconvolution accuracy 

 

The deconvolution accuracy of POLARIS was assessed both through simulation and in single-

cell resolution ST data. Specifically, we simulated cells with gene expression counts from cell-

type and layer-specific negative binomial distributions and randomly selected cells to create 

spot-level gene expression. For single-cell resolution real ST datasets, we clumped cells into 

spots according to their coordinates to mimic low-resolution spot-level ST data. We used data 

where we have cell type labels for the single cells such that we have the true cell type mixture in 

each clumped pseudo-spot. We quantified the performance using root mean square error 

(RMSE) where a smaller RMSE corresponds to better performance. We compared POLARIS 

with five state-of-art methods: CARD [26], DestVI [29], RCTD [28], stereoscope [27] and 

SPOTlight [30]. These methods were selected according to their specific methodological 

features and/or their high performance in previous benchmarking studies (Online Methods)[6, 

31]. 

 

We began with a simulated scenario where all spots and layers share a similar composition of 

cells, but with layers differing in terms of their gene expression profiles. Under this scenario, 

gene expression variations are solely the result of variations in gene expression profiles across 

layers. Specifically, we first simulated a dataset with two "biological" layers, with cells from six 

cell types and expression values for 100 genes generated. We first simulated the layer of each 

cell and then the gene expression values for the cell were drawn from negative binomial 

distributions according to its layer and cell type. We then constructed pseudo spots by randomly 

selecting 10-16 cells from each layer. Specifically, we generated 200 spots with 50 spots in 

layer 1 and 150 spots in layer 2 (Online Methods). Under this simulation framework, genes 

could be classified into three categories: up-regulated in layer1 (e.g., Gene36), up-regulated in 

layer2 (e.g., Gene100) and no significant difference between layers (e.g., Gene95) (Fig. 2a-b, 
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Extended Data Fig. 1). The largest log2 fold change is seen in gene 36 and gene 100, and 

most genes display similar or non-differential expression patterns across layers. Applied to the 

simulated data, POLARIS outperforms all other methods as manifested by its lowest RMSE 

(Fig. 2c).  

 

We further assessed POLARIS's deconvolution performance in a real single-cell resolution ST 

data from the mouse VISp region, a well-structured region in mouse cortex that has been 

extensively studied [2, 33]. Anatomical structure, major cell types, and layer-specific gene 

markers provide information about the layered and segmented structure of the mouse VISp 

(Fig. 2d-f) [33, 34]. We used single-cell resolution ST data from the STARmap platform [2], 

which consists of 1,020 genes measured in 973 cells. We divided the cells into 356 pseudo 

spots each of 400x400 square pixels (Fig. 2d). In order to perform deconvolution, we utilized 

the internal reference (that is, the STARmap single cell data itself as the reference). In this way, 

any systematic differences between the reference and the target ST data are eliminated as 

potential factors that may impair performance. This internal reference evaluation provides a 

baseline (or upper bound) for measuring the performance of deconvolution methods [6]. Since 

layer annotation is required when using POLARIS, we employed BayesSpace [22] to cluster the 

constructed pseudo spots, resulting in five distinct clusters , reflecting the expected layer 

structure of mouse VISp (Fig. 2e). In this mouse VISp dataset, POLARIS still achieves amongst 

the best performance in terms of RMSE (Fig. 2g). Moreover, POLARIS, based on its inferred 

cellular composition, successfully recovers the layer structure of mouse VISp (from top to 

bottom: Smc, eL2, eL3, eL4, eL5, eL6-1, eL6-2, Oligo, HPC, Fig. 2h). 

 

Additionally, we tested POLARIS on the developing human heart tissue generated from the in 

situ sequencing (ISS) platform (Fig. 2i) [35]. The heart ISS data is also a single-cell resolution 

ST data, consisting of 24,371 cells and with only 65 genes measured in each cell. We gridded 

the cells into pseudo spots each of dimension 454 x 424 square pixels (Fig. 2j). The main 

purpose of this assessment is to evaluate POLARIS's performance with a limited number of 

genes. Instead of using the internal reference (ISS data itself), we used a scRNA-seq reference 

obtained from a similar biological sample [36]. Consequently, we can also evaluate the 

deconvolution performance when the reference and ST data are not perfectly matched. The 

heart ISS data provides us with a DAPI stained histology image, allowing us to measure the 

performance of POLARIS by including the histology image as an additional input (Fig. 2i, 

Methods). We clustered the spots into four layers using BayesSpace (Fig. 2k). The 
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BayesSpace inferred layers correspond reasonably well to the anatomy of the heart (red: 

epicardium, green: ventricles, light blue: atria, dark blue: outflow tract). POLARIS has 

maintained its best performer position. Specifically, POLARIS achieves the lowest/best mean of 

MSE (Fig.2l). In spite of the fact that the DAPI staining only contains one color channel, 

POLARIS with image input is able to effectively infer the type of cell, achieving accuracy close 

to the best performers. 

 

Polaris identifies layer-specific gene expression pattern 

 

A major feature of POLARIS is its ability to model layer-specific parameters. The layer/structure 

of a tissue can be reflected in multiple dimensions, such as morphology, gene expression, and 

other omics levels. POLARIS focuses on leveraging the rich gene expression information 

provided by ST data. As detailed above, cell density, cellular composition, and the "real" 

spatially differentially expressed genes can all contribute to the observed gene expression 

variation. By incorporating layer-specific parameters into the cell type deconvolution process, 

POLARIS is able to identify such LDE genes while taking into account differential cell 

composition. POLARIS quantifies statistical significance for LDE genes using permutation tests, 

and magnitude of effect using log2 fold change in mean gene expression, based on the inferred 

layer-specific mean parameters (Methods). Through the elimination of potential confounding 

effects of cell composition, POLARIS ensures that the LDE genes identified are differentially 

expressed genes truly due to spatial factors. 

 

As a starting point for assessing POLARIS' ability to infer LDE genes, we performed simulations 

where we know the truth. Following the same simulation framework used above to evaluate 

deconvolution efficiency, we evaluated the layer-specific location parameters. Again, since 

cellular composition is simulated from the same distribution across spots regardless of layer 

status, observed gene expression variation can only be attributed to truly differential expression 

patterns across layers (Fig. 2a-b). Consequently, genes could be classified into three 

categories: layer1-enriching genes, layer2-enriching genes, and genes with similar expression 

levels across layers (Fig. 2b, 3a). We applied POLARIS to perform deconvolution and 

simultaneously perform the permutation test and calculate the log2 fold change in mean 

expression, layer1 over layer2. POLARIS successfully identified genes that have different 

expression profiles across layers (Fig. 3b). The predicted log2 fold change well captures the 

true log2 fold change (Fig. 3c) when all the genes have layer-specific gene expression profiles.  
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In this particular simulation, we generated the genes such that all of them have layer-specific 

expression profiles, although the expression difference between layers of some genes could be 

small (detailed in Online Methods). To investigate the impact of the proportion of LDE genes 

on POLARIS performance, we further conducted simulations using the same setting but varying 

the proportion of genes with layer-specific expression profiles (Extended Data Fig. 2). As the 

proportion of LDE genes increases from 0 to 1, UMAP representations of cells become more 

separated by layers. It is difficult, however, to identify the sub-types of cells based on the UMAP 

representation, even with prior knowledge of the layer information when the proportion of LDE 

genes is < 0.5, thus failing to capture heterogeneity across layers (Extended Data Fig. 2a). 

POLARIS well controlled the type-I error and accurately estimated the true log2 fold change 

regardless of the proportion of LDE genes (Extended Data Fig. 2b). POLARIS also shows 

satisfactory performance on a sparse simulation setting (Extended Data Fig. 3, Online 

Methods). Note that layer-specific parameters are inferred only from the ST data because we 

do not have layer information from the scRNA-seq reference.  

 

Encouraged by POLARIS’s performance in simulated data, we proceeded to further test 

POLARIS’s capability to detect LDE genes using real datasets. We began with the developing 

human heart single-cell resolution ISS ST data. We created pseudo-spots from the dataset and 

applied POLARIS to the pseudo-spots, feeding as input spot-level gene expression information 

along with layer information inferred from BayesSpace. LDE genes detected by POLARIS 

indeed have differential patterns of gene expression in different layers (Fig. 3d-e). Although cell 

type affects gene expression, layer status also plays a significant role in shaping the spot-level 

expression profile. Furthermore, such layer-specific changes are shared by many cell types. For 

example, the expression of EBF2 in most cell types is highest in layer 3 compared to the other 

three layers (Fig. 3e). POLARIS, by making accurate inference of gene expression profiles in 

different cell types, has successfully captured the LDE gene and has recovered the layer-

specific variation present in most cell types. We further explore the links between LDE genes 

and biological functions of each layer. For example, among the LDE genes, TCF21 has the 

lowest mean gene expression in layer 3 (Fig. 3d-e) where fibroblast-like cells are enriched (Fig. 

2j-k). The transcription factor 21 (TCF21) encoded by TCF21 plays a crucial role in regulating 

cell differentiation and cell fate determination through epithelial-mesenchymal transformations 

during cardiac development. More specifically, TCF21 has been reported to be capable of 

promoting the development of cardiac fibroblasts and inhibiting differentiation of epicardial cells 

into vascular smooth muscle cells [37], consistent with our observed down-regulation in layer 3.  
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We further applied POLARIS on a more complex tissue: breast cancer samples. There are 

several subtypes of breast cancer, among which the HER2-positive subtype is characterized by 

the increased expression of ERBB2 (AKA HER2, human epidermal growth factor receptor 2) in 

tumor cells [38]. We obtained ST data of HER2-positive tumors from eight individuals (patient A-

H) generated through the Spatial Transcriptomics platform [3, 38]. Each of the eight patients 

provided multiple slides, but only one slide from each patient was pathologist annotated. 

Annotations mark areas with one of the following five labels: in situ cancer (noninvasive ductal 

carcinoma in situ, DCIS), invasive breast cancer (IBC), adipose tissue, immune infiltrate, or 

connective tissue [38]. Here we highlight the results of two slides with both IBC and DCIS 

regions (results from the A1 slide in Fig. 3f-k, Extended Data Fig. 5, results from the G2 slide 

in Extended Data Fig. 4,5). We applied POLARIS on the pathologist annotated ST data using 

an external scRNA-seq reference [39]. POLARIS made reasonable inference regarding cell 

composition on slide A1 (Fig. 3f). For example, cancer epithelial cells are inferred to be 

enriched in the DCIS and IBC areas. POLARIS also identified several LDE genes in the DCIS 

area (Fig. 3i-j). These LDE genes, including S100A14, MUC1, PITX1, and ERBB2 are mainly 

expressed in cancer epithelial cells (Extended Data Fig. 6). In general, genes that are primarily 

expressed in cancer epithelial cells are enriched either in the DCIS or the IBC region (Fig. 3h-

k), which is expected since these two regions have similarly high proportions of cancer epithelial 

cells.  The LDE genes identified by POLARIS successfully capture cancer epithelial cell specific 

genes, but differentially expressed in the two regions (Fig. 3h-k). For example, in the DCIS 

region, all POLARIS-identified LDE genes except ERBB2 have a positive log2 fold change 

estimate (Fig. 3j), consistent with expression patterns shown in Fig. 3k. The observed down-

regulation of ERBB2 in the DCIS area most likely reflects an up-regulation of ERBB2 elsewhere. 

As shown in Fig. 3f, the majority of slide A1 is the invasive cancer area. Cancer epithelial cells 

in the invasive cancer area presumably invade other areas resulting in an increased ERBB2 

expression in all other pathologist-identified areas except the DCIS and these invaded areas 

also exhibit an increase in the proportion of cancer epithelial cells (Fig. 3h-i, Extended Data 

Fig. 4f). ERBB2, the protein encoded by ERBB2, plays an important role in breast cancer. The 

over-expression of ERBB2 disrupts normal cell-control mechanisms and gives rise of 

aggressive tumor cells and leads to increased breast cancer metastasis [40-45]. Interestingly, 

when applied to slide G2, ERBB2 shows to be up-regulated in the DCIS area (Extended Data 

Fig. 4e,g). Together, these observations reflect the heterogeneity of the samples and are 

consistent with the literature that ERBB2 is over-expressed in 30-35% of DCIS, while ERBB2 is 
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only expressed in 15-25% of IBC [46-49]. POLARIS reveals such heterogeneity and complexity 

by showing differential gene expression profiles between DCIS and IBC regions on the same 

slide, and by revealing differential patterns across slides from the same patient as well as 

across patients. In addition to ERBB2, other LDE genes identified by POLARIS and the proteins 

encoded by those genes also play important roles in breast cancer. For example, copy number 

amplification of S100A14, significantly correlated with the increased S100A14 mRNA 

expression, is present in 5.4%-20.7% of primary breast cancer patients and in approximately 

26.1% of metastatic breast cancer patients [50]. For another example, CXXC5 over-expression 

has been observed to be associated with a poor prognosis for estrogen receptor positive (ER+) 

breast cancer [51].  

 

Polaris enables prediction purely from histology image 

 

After demonstrating that even a single-color histology image is able to generate high-accuracy 

deconvolution inference in the developing human heart tissue, we continued to apply POLARIS 

to other spot-level ST data with H&E staining images. We utilized the mouse primary 

somatosensory cortex area (SSp) data generated from the 10x Visium platform [52]. Similar to 

the mouse VISp region, mouse SSp is also an area in the mouse cortex with well-defined 

anatomical and functional structure. Specifically, the glutamatergic neuron types exhibit clear 

layered patterns [6, 33, 53]. Using an independent scRNA-seq from similar SSp regions [33] as 

the external reference, POLARIS trained an image network using four SSp ST slides. Each slide 

was clustered into six groups using BayesSpace (Extended Data Fig. 7). POLARIS 

successfully captures expected patterns of glutamatergic composition and reveals layer 

structure consistent with data from the Allen Brain Atlas [34].  

 

Spot-level ST technologies cannot measure every part of a tissue slide. As shown in Fig. 4a, 

gene expression levels are not available for any region outside the measured spots (Fig. 4a). 

POLARIS, through its trained image network, can determine cell type composition using the 

image of unmeasured areas.  Specifically, POLARIS-trained image network can be applied to 

cropped images of the same size as the original grid in training. Sliding across the entire 

histological image of the SSp slide and applying the POLARIS-trained image network to the 

image of each sliding window, one can obtain super-resolution inference, encompassing areas 

not initially covered by spatial spots. Such super-resolution inference empowers us to gain finer 

details of the layered structure (Fig. 4b). Following the training of POLARIS’s image network, 
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we applied it to a new SSp slide to test whether the trained image network is able to make 

reasonable inference on images from independent slides (Fig. 4c). We compared cell 

compositions inferred using the image network trained by POLARIS from other slides, with 

those inferred using the new slide’s own gene expression and histology image on measured 

spots (Fig. 4d-e, Extended Data Fig. 8a-b). Although the two sets of inference show 

differences, results obtained solely from POLARIS’s pre-trained image network still show strong 

correlation with the inference results using its own image and gene expression, especially in 

glutamatergic neurons (For example, the Pearson’s correlation for L6b CTX is 0.8). POLARIS-

trained image network successfully recovers the layered structure in most cell types, suggesting 

that the approach could be applied to new histology slides as long as we have a network pre-

trained by POLARIS using ST data from similar regions. 

 

POLARIS-trained image network was further examined using breast cancer data. We again 

used pathologist annotated ST data and the external scRNA-seq from Wu et al. as reference to 

perform deconvolution on slide H1 (Fig. 4f) [38, 39]. Afterwards, we employed the image 

network trained by POLARIS from slide H1 to enhance resolution and obtain super-resolution 

cell composition inference on the H1 slide itself (Fig. 4g). The inferred cell compositions are 

consistent with those in other slides where cancer epithelial cells are enriched in the DCIS and 

IBC regions. It appears that cancer epithelial cell proportion is able to accurately capture the 

cancerous areas. For example, spots with >0.4 proportion of cancer epithelial cells are enriched 

within regions labeled as DCIS and IBC by pathologists (Extended Data Fig. 8e). We then 

further applied the POLARIS image network trained on H1 to two other slides of the same 

patients (H2 and H3), which have no pathologist's annotation (Fig. 4h-i, Extended Data Fig. 

8c-g). By closely examining the histology images, it is evident that regions characterized by high 

proportions of cancer epithelial cells are indeed primarily cancerous areas. Our results therefore 

suggest that POLARIS enables a new method of registering histology images to different 

anatomical/functional regions, for example cancerous areas in this analysis. By examining cell 

composition in each spot, we are able to group the spots into layers. In summary, with a trained 

POLARIS image network, we could obtain super-resolution cell composition inference which 

reveals finer layer structure of a tissue.  

 

POLARIS allows cell composition inference on new histology images without gene expression 

and consequently, is able to identify anatomical and functional regions. Compared to existing 

supervised classification methods for registering histology image tiles to different regions or 
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layers which require annotated layer information, POLARIS is unsupervised in terms of 

histology information and does not require pathologist annotation. Instead, POLARIS relies on 

pre-knowledge about the relationship between the targeted layer and the cell composition. 

 

Discussion 

 

ST technologies are rapidly evolving. In the near future, we expect to be able to measure gene 

expression levels at single cell resolution and of all genes in the transcriptome. Currently, spot-

level resolution ST technologies such as the Visium and Spatial Transcriptomes still have their 

advantages in terms of throughput (both in terms of number of genes measured and number of 

spatial spots examined) and the ability to obtain high-resolution H&E staining images. Because 

of their advantages, researchers are generating a deluge of these data. It is, however, 

imperative to perform cell type deconvolution at each spot in order to mitigate or eliminate 

potential confounding caused by differential cell composition across spots. Despite numerous 

methods developed for ST deconvolution, two pieces of information have been under-utilized. 

First, often there is a layer structure, or at least areas reflecting different anatomical or functional 

regions in an ST slide. Second, histological images, carrying information complementary to 

spot-level gene expression profiles, have not been fully explored in their value for cell type 

decomposition. In this work, we present POLARIS, a unified framework that leverages layer 

structure information and/or histological images, for cell type deconvolution both at spots with 

expression measurement and in regions with only image information, as well as for the 

revelation of LDE genes.  

 

We demonstrate the performance of POLARIS on simulation and real datasets including 

developing human heart, mouse cortex VISp and SSp region, and human HER2+ breast cancer 

samples. POLARIS robustly achieves best or close to best deconvolution performance 

compared to other state-of-the-art methods. POLARIS’s inference on spot-level ST data reveals 

layered structures that are consistent with gene expression profiles, histological images, and 

known/established anatomical/functional layers/regions in the corresponding tissue samples.  

 

Equally if not more importantly, POLARIS accurately infers layer-specific expression profiles 

across different cell types which leads to the identification of LDE genes. We demonstrate 

POLARIS’s power to identify LDE genes using simulation data as well as the single-cell 

resolution ST data from the developing human heart, where we have knowledge regarding the 
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true LDE genes. The LDE genes identified by POLARIS in developing human heart data indeed 

exhibit different gene expression profiles across layers, beyond what can be attributed to 

differential cell type compositions. Finally, applying POLARIS to ST data from breast cancer 

patients, we found that POLARIS identified LDE genes reveal complex heterogeneous across-

layer/region differential expression across samples and/or patients. The detected LDE genes 

are consistent with established knowledge regarding breast cancer pathology, including 

metastasis and prognosis, but offer more granular sample-level and patient-level information 

that can potentially empower personalized diagnosis and treatment. POLARIS assumes that the 

layer-specific shift parameter is shared across cell types. This assumption is based on 

observations in single-cell resolution ST data (e.g. heart ISS data, Fig. 3e). In addition, due to 

the model identification problem, we chose to go with a parsimonious model and therefore did 

not implement a layer shift specific to each cell type. Considering that we are inferring both the 

cell type proportion and the layer-specific shift at the same time, modeling a layer shift specific 

to each cell type will very likely cause the model to confuse the proportion and shift, which will 

result in poor and unstable estimation of both parameters. We consider this as a limitation of our 

model which will likely to be resolved in future efforts. 

 

Another key feature of POLARIS is its ability to leverage image data. In the ST deconvolution 

field, gene expression itself has proved its ability to infer cell composition. Imaging information, 

however, has been under-utilized. Recent work [18, 19] showed the potential of histology 

images accompanying ST data. We believe that histology images can be further leveraged for 

ST inference. For example, histology images alone are widely used to segment cells with deep 

learning models [13, 14]. POLARIS can take an accompanying image as input to train an image 

network, and employ a pre-trained image network on a completely new image. Our pre-trained 

POLARIS image network offers a novel method for tissue registration, which extracts and 

reveals tissue anatomical or functional structures either from the histological image alone or 

jointly with gene expression. The major barriers that prevent the full potential of integrating 

histological images with ST data include quality of the co-registered image and, most 

importantly, the absence of pathologist annotations. In order to accomplish the task with the 

currently available data, POLARIS incorporates training of the image network into the inference 

of cell composition. Instead of training a model with inferred cell composition as the goal and 

using MSE as the loss function, our intention is to use histology images to help with the 

estimation of cell composition, under the rationale that spots with similar histological images and 

similar neighborhoods tend to share similar cell composition. Nevertheless, we fail to 
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demonstrate that the image improves deconvolution performance due to the limitation of the 

current data: single-cell level resolution ST data only provides DAPI stained images which only 

comprise one color panel, while spot-level ST data has no gold standard truth. Despite these 

limitations to quantify the performance, POLARIS with image input still achieved high accuracy 

among the state-of-art methods in single-cell resolution ST data, and in spot-level ST data, cell 

type composition inferred by POLARIS agreed with single-cell level data and the expected 

biological layers (e.g. glutamatergic neurons in the mouse cortex and cancer epithelial cells in 

the breast cancer slides). POLARIS introduces a novel approach for inferring cell composition 

purely from histological images that has not previously been explored by ST deconvolution. We 

believe that the versatile ability of POLARIS to incorporate histological images to elucidate 

layer-specific gene expression patterns will empower novel discoveries in spatial biology. 

 

Material and methods 

 

POLARIS inference algorithm 

We use g for gene index, c for cell index, z for cell type index, and L for layer index. 𝑍𝑐 is the cell 

type of cell c, 𝐿𝑐 is the layer of cell c and 𝐿𝑠 is the layer of spot s. We assume that in scRNA-seq 

reference dataset, 𝑋𝑐𝑔, expression count of gene g in cell c follows the following negative 

binomial distribution: 

𝑋𝑐𝑔 ∼ 𝑁𝐵(𝑆𝑐  𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝜃𝑔𝑧𝑐
+ 𝑇𝐿𝑐𝑔), 𝑃𝑔) 

𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = log(1 + exp(𝑥))) is used to guarantee that 𝑅𝑔𝑧𝑐
> 0. 𝑃𝑔 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑜𝑔), where 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+exp(−𝑥)
 is the sigmoid function. 𝑆𝑐 is the library size of cell c and 𝑍𝑐 is the cell 

type of cell c. 𝑁𝐵 is the negative binomial distribution. 𝜃𝑔𝑧𝑐
 is the mean location parameter 

shared across layers. To capture the gene expression variation between layers, we introduce a 

new parameter 𝑇𝐿𝑔, a mean shift parameter for layer L and gene g. We assume that for a gene, 

all cell types share the same shift parameter across layers. We further assume that 𝑇𝐿𝑔 ∼

𝑁(0,1). However, in real world, we do not have the layer information in the scRNA-seq 

reference data. We make the following assumption 

𝑋𝑐𝑔 ∼ 𝑁𝐵(𝑆𝑐 𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝜃𝑔𝑧𝑐
), 𝑃𝑔) 

when inferring the parameters in the reference data. Estimates for the parameters are then 

obtained by finding the MLE (maximum likelihood estimates), given the provided scRNA-seq 

reference data via the gradient-based optimization using the PyTorch library in Python. 
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In the ST data, we make similar distributional assumption. Specifically, we assume that 𝑋𝑠𝑐𝑔 , 

expression count of gene g in cell c in spot s follows the following negative binomial distribution:  

𝑋𝑠𝑐𝑔 ∼ 𝑁𝐵(𝛽𝑔𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝜃𝑔𝑧𝑐
+ 𝑇𝐿𝑐𝑔), 𝑃𝑔) 

𝛽𝑔 is the parameter measuring technical bias between ST and scRNA-seq reference for gene g. 

Note that the bias parameter is gene-specific. Considering the additive property of negative 

binomial distribution and summing across all single cells within spot s, the resulting distribution 

of gene g in spot t also follows a negative binomial distribution: 

𝑋𝑠𝑔 ∼ 𝑁𝐵 (∑ 𝛽𝑔𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝜃𝑔𝑧 + 𝑇𝐿𝑠𝑔)𝑛𝑠𝑧

𝑍

𝑧=1

, 𝑃𝑔) 

Z is total number of cell types and 𝑛𝑠𝑧 is the number of cells of type z in spot s. All the 

parameter are inferred using maximum a posteriori estimation (MAP) with 𝜃𝑔̂ , 𝑃𝑔̂   obtained from 

scRNA-seq reference. When image data is utilized in the model, we incorporate a POLARIS 

image network to infer the cell type composition. POLARIS image network takes MAE extracted 

features as input and the output is the cell composition. The image network is trained using 

MAP which means that the loss function is the negative posterior likelihood. At last, cell type 

proportion can be calculated as 𝑣𝑠𝑧 =
𝑛𝑠𝑧

∑𝑛𝑠𝑧
.  

 

 

Image feature extraction using masked autoencoder (MAE) 

The MAE codes are obtained from https://github.com/facebookresearch/mae . We only use the 

pretrained encoder part to extract the image features [32]. We used 

mae_visualize_vit_large_ganloss.pth as the pretrained model. We used MAE to extract image 

features for the spot image and spot neighborhood image. The spot image is a 𝑟 ∗ 𝑟 square 

covering the spot. 𝑟 is defined specific to the dataset used (details about the used r could be 

found in the source code). The neighborhood image is defined as a 3𝑟 ∗ 3𝑟 square sharing the 

same center point as the spot image. The two MAE-extracted 1024-length vectors are combined 

as the image input of the spot. The POLARIS image network combines two levels of fully 

connected layers (2048 to 512, 512 to the number of cell types). The 𝜃𝑔𝑧 and 𝑇𝐿𝑠𝑔 are fixed 

during the training of image network. 

 

Simulation  

We begin by generating a single-cell reference. A total of 100 genes are simulated in six cell 

types. The number of cells in each cell type is simulated from 𝑁(500, 1002) and rounded to the 
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nearest integer. For each cell, we simulate the layer from 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(0.3) where we treat a 

simulated value of 0 as layer 1 and value of 1 as layer 2. We then simulate the gene expression 

of gene g in cell c from 𝑁𝐵(𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝜃𝑔𝑧𝑐
+ 𝑇𝐿𝑐𝑔), 𝑃𝑔), where NB denotes the negative binomial 

distribution. 𝑍𝑐 represents the cell type of cell c and 𝐿𝑐 represents the layer of cell c. In the first 

simulation, both 𝜃𝑔𝑧𝑐
 and 𝑇𝐿𝑔 are simulated from 𝑁(0,1) and 𝑃𝑔  is simulated from 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.2,0.8). In the sparse simulation, 𝜃𝑔𝑧𝑐
 are simulated from 𝑁(−2,1). Note 𝑇𝐿𝑔 

represents the layer-specific gene expression profile, thus allowing expression profiles to vary 

across layers, even for the same gene g and cell type. We then construct pseudo spots by 

randomly selecting cells in layer 1 and layer 2 with replacement from single cells simulated 

above. In each spot, the number of cells is determined by sampling a random number from 

Uniform(10,16). We simulated 50 spots in layer1 and 150 spots in layer2. For simulation with 

different proportion of genes with layer-specific expression profiles, we define the proportion as 

𝑚. Then the 𝑇𝐿𝑔 for 100 ∗ (1 − 𝑚) % genes are set as 0 while the 𝑇𝐿𝑔 for the rest 100 ∗ 𝑚 % 

genes are simulated from 𝑁(0,1). 

 

Calculate between-layer fold change 

To identify LDE genes, we compare the gene expression profile across layers by comparing 

layer-specific location parameters: 

𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝜃𝑔𝑧 + 𝑇𝐿𝑔) 

Specifically, the fold change of gene g in layer 𝐿 compare to other layers in cell type z are 

calculated as  

𝐹𝐿𝑔 = (𝜃𝑔𝑧 + 𝑇𝐿𝑔)/( ∑ (𝜃𝑔𝑧 + 𝑇𝐿′𝑔)/(𝑆 − 1)

𝐿′≠𝐿

) 

Where S is the total number of layers. Then we take the maximum fold change across cell types 

to quantify the across-layer fold change of gene g. 

 

LDE gene identification 

We perform permutation test to identify LDE genes. With a given layer annotation 𝐿𝑎𝑦𝑒𝑟𝑜𝑏𝑠, we 

perform cell type deconvolution and infer 𝑇𝐿𝑔
𝑜𝑏𝑠 and 𝐹𝐿𝑔

𝑜𝑏𝑠. Then we randomize the layer 

annotation for 𝑁 times and generate pseudo layer annotation 𝐿𝑎𝑦𝑒𝑟𝑠𝑖𝑚1, … , 𝐿𝑎𝑦𝑒𝑟𝑠𝑖𝑚𝑁. 

Consequently, we are able to infer 𝑇𝐿𝑔
𝑠𝑖𝑚1, … , 𝑇𝐿𝑔

𝑠𝑖𝑚𝑁 . Then the p value of gene g in layer 𝐿 is 

defined as  
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𝑝 𝑣𝑎𝑙𝑢𝑒 =
# |𝑇𝐿𝑔

𝑠𝑖𝑚| > |𝑇𝐿𝑔
𝑜𝑏𝑠|

𝑁
 

Genes with 𝑝 𝑣𝑎𝑙𝑢𝑒 <
0.05

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑠
 (Bonferroni correction) and |log2 𝐹𝐿𝑔

𝑜𝑏𝑠| > 1 are 

considered as the LDE genes in layer 𝐿 (marked as pink in the figures). We used 𝑁 = 10000 

(permutation times) in all the analysis. For the LDE analysis in the manuscript, we only used 

gene expression (i.e., histological images not used) in the deconvolution process in the 

permutation test. 

 

Data preprocessing 

For the STARmap data, we only keep genes that are present in at least 2% of spots. 

In the breast cancer analysis, we only keep HER2+ subtype ST data for deconvolution 

evaluation. Similarly, we keep only the HER2+ patients' scRNA-seq data as reference. For 

scRNA-seq reference, genes expressed in at least 3 cells and cells expressing at least 200 

genes are kept. Similarly for ST data, genes expressed in at least 3 spots and spots expressing 

at least 100 genes are kept. Only genes that exist in both scRNA-seq and ST data are 

employed in further analysis. Top 2000 highly variable genes (HVGs) are used. The gene 

subsettings are accomplished using the R package Seurat [54]. HVGs are selected using 

feature variance calculated by the FindVariableFeatures function with default settings. To 

reduce the effect of excessive zeros, we recommend removing genes with an expression level 

of less than 2%. 

For the heart ISS DAPI-stained image, we reverse the color and enhance the contrast using 

ImageEnhance function in the Pillow package [55].  

 

Comparing to other state-of-art methods 

We compared the performance of POLARIS with several state-of-the-art deconvolution methods 

developed for ST data. We included RCTD and stereoscopes because of their top performance 

in the probabilistic-based model. Our inclusion of DestVI was based on the fact that it claimed to 

identify a continuous state that goes beyond discrete cell types, which we consider to be similar 

to our objective. CARD was included because it is capable of inferring the cell type composition 

in areas that are directly measured. Because SPOTlight is the top performer among the 

NMF+NNLS techniques, we also included it in our analysis. 

 

We followed the instructions of each method on their corresponding website. Among all the 

methods, only RCTD has a built-in gene filtering method, where only genes with normalized 
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gene expression >= 0.0002 are included, and it selects cell type marker genes based on a log-

fold-change threshold of 0.75 [28]. We used the default parameters of RCTD and ran RCTD in 

full mode. Only selected cell type marker genes were fed into RCTD. For all other methods, we 

used all genes without any further filtering from the preprocessed data described in the previous 

section.  

 

Tissue detection 

To use POLARIS-trained image network, we need to automatically detect the tissue section 

from a histological image. We utilized the filter_entropy function in 

https://github.com/CODAIT/deep-histopath and followed the instructions in 

https://developer.ibm.com/articles/an-automatic-method-to-identify-tissues-from-big-whole-slide-

images-pt3/ . We used entropy, which measures tissue complexity, to detect the percentage of 

tissue in each spot. Areas such as the slide background are less complex than the tissue area. 

We used the default threshold of 5 in the analysis. Pixels with an entropy value greater than 5 

are counted as tissue regions. Spots with greater than 5% tissue area is kept in the super-

resolution composition inference. 
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Fig. 1 | POLARIS overview. (a) Three reasons that can explain gene expression variation 

across spots. Each circle represents a spatial spot. Compared to the leftmost spot, the three 

spots on the right differ primarily in cell number, cell composition and gene expression profile. 

(b) POLARIS workflow. POLARIS takes as input single-cell reference and annotated spatial 

data, infers cell-type-specific gene expression profiles and identifies layer-specific expression 

profiles. When a co-registered histology image (as an optional input) is provided, POLARIS will 

additionally train an image network. The output of POLARIS includes inferred spot-level cell 

type composition, identified layer-wise differentially expressed (DE) genes and a pre-trained 

POLARIS image network that can be applied to independent images. 
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Fig. 2 | Deconvolution accuracy of POLARIS. Simulation: (a) cell type composition of the 

simulated ST data. (b) Three categories of gene expression pattern: up-regulated in layer1, up-

regulated in layer2, no significant difference across layers. (c) RMSE of POLARIS along with 

other state-of-the-art methods on simulated data. On mouse VISp STARmap data: (d) (left) 
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cell map and (right) clumped pseudo spots along with their cell compositions visualized by pie 

charts (e) BayesSpace identified clusters, consistent with layer structure of mouse VISp (f) Nissl 

staining (left) and anatomical annotations (right) from the Allen Mouse Brain Atlas and Allen 

Reference Atlas - Mouse Brain. The black lined area indicates the layer structure of the VISp 

region. (g) RMSE of POLARIS along with other state-of-the-art methods on mouse VISp 

STARmap data. (h) POLARIS inferred spot-level composition of the eight major cell types, along 

cortex depth. On developing human heart ISS data: (i) Processed DAPI-stained histology 

image of the developing human heart ISS data. (j) clumped pseudo spots in the ISS data along 

with their cell compositions visualized by pie charts. (k) BayesSpace identified clusters in the 

ISS data. (l) RMSE of POLARIS along with RMSE of other state-of-the-art methods on the heart 

ISS data. 
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Fig. 3 | LDE genes identified by POLARIS on three datasets. On simulated data: (a) true 

log2 fold change of mean gene expression, layer1 over layer2. (b) POLARIS inferred log2 fold 

change of mean gene expression, layer1 over layer2. POLARIS identified LDE genes are 

colored as pink, otherwise, gray. (c) POLARIS inferred log2 fold change of gene expression 

across layers achieves high correlation (Pearson’s correlation = 0.974) with the true log2 fold 

change. On developing human heart data: (d) POLARIS inferred log2 fold change of gene 
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expression across layers. POLARIS identified LDE genes are colored as pink, otherwise, gray. 

(e) (left) Observed mean gene expression in scRNA-seq data (top) and POLARIS inferred gene 

expression location parameter (bottom) of each cell type across layers. Lines are colored by cell 

types. X axis indicates layer status: from left to right is layer 0,1,2,3. (right) Gene expression of 

TCF21 and EBF2 in the Fibroblast-like (coronary & mediastinal vasculature related) cells. On 

HER2+ breast cancer data: (f) Pathologist annotation on slide A1. (g) POLARIS inferred cell 

composition (h) POLARIS inferred cancer epithelial cell proportion (i) Distribution of POLARIS 

inferred cancer epithelial cell proportions in each layer (color scheme is the same as in Fig. 3e) 

(j) POLARIS inferred log2 fold change of gene expression across layers. Points with absolute 

value greater than 1 are colored as pink, otherwise, gray. (k) Gene expression profiles of 

POLARIS identified LDE genes in the cancer in situ layer. 
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Fig. 4 | POLARIS achieves super-resolution cell composition inference when using 

histology image as input. On mouse SSp 10x Visium slide ST8059048: (a) The original grid 

and POLARIS inferred cell composition. (b) The super-resolution cell composition inferred using 

a POLARIS-trained image network. Points in (a) and (b) are colored by the corresponding cell 

proportion (from blue to yellow corresponds to low to high). On slide ST8059052: (c) The 

original grid of the slide (d) POLARIS inferred cell composition inference using spot-level gene 

expression and histology image. (e) Inferred cell composition using a POLARIS-trained image 

network (trained on the other 4 slides), based on histology image only. Similarly, points in (d) 

and (e) are colored by the corresponding cell proportion (from blue to yellow corresponds to low 

to high). On Her2+ breast cancer: (f) pathologist’s annotation of slide H1. (g) Super-resolution 
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inference of H1 using POLARIS image network trained on H1. (h) Histology image of slide H3. 

(i) Super-resolution inference of H3 using POLARIS image network, again trained on H1. The 

points in (g) and (i) are colored by the cancer epithelial cell proportion. CTX: isocortex, IT: 

intratelencephalic, PT: pyramidal tract, NP: near-projecting. 
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