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Abstract 
We developed SAHMI, a computational resource to identify truly present microbial nucleic acids 
and filter contaminants and spurious false-positive taxonomic assignments from standard 
transcriptomic sequencing of mammalian tissues. In benchmark studies, SAHMI correctly 
identifies known microbial infections present in diverse tissues. The application of SAHMI to 
single-cell and spatial genomic data enables co-detection of somatic cells and microorganisms and 
joint analysis of host-microbiome ecosystems.  
 
 
Main text 

The microbiome plays an integral role in healthy development, aging, and multiple diseases, 
however the nature of its influence in many contexts remains poorly understood1. This is because 
integrated analyses of host-microbiome ecosystems in vivo have been difficult to achieve in part 
due to the lack of relevant model systems2, technological barriers to directly profiling host-
microbial interactions at high resolution in human tissues, and substantial heterogeneity across 
patients3,4.  

While targeted detection of microbial antigens and 16s rRNA gene sequencing are standard 
microbiome profiling approaches, recent studies have reported detection of microbial nucleic acids 
in polyA-selected RNA sequencing of clinical samples from humans5–7. This is remarkable, but 
not surprising given increasing observations of polyadenylated transcripts in prokaryotes8,9 and 
that non-polyadenylated mammalian sequences are routinely captured in RNA-seq10. However, in 
samples that have low microbiome-biomass and are without matched and co-processed negative 
controls, denoising true microbial signals and removing contaminating species is a major 
challenge11–13. Important issues in the field that limit the use of emerging sequencing data to probe 
host-microbiome ecosystems include: (1) lack of gold standard contamination controls in most 
genomic experiments, (2) the usual lack of benchmarking for spurious, false-positive taxonomic 
assignments derived from human samples, and (3) the lack of benchmarking of metagenomic read 
capture from single-cell RNA sequencing (scRNA-seq) protocols. 
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To overcome these problems, we developed and benchmarked SAHMI (Single-cell 
Analysis of Host-Microbiome Interactions), a computational pipeline to identify microbial nucleic 
acid sequences and remove false positives and contaminants from bulk, single cell, and spatial 
transcriptomic data of mammalian tissues (Fig. 1a). SAHMI denoises and decontaminates the 
output of taxonomic classifiers (e.g. Kraken2Uniq14,15). It identifies taxa that are truly present in a 
tissue specimen by examining the relationship between the number of total and unique k-mers for 
each taxon, and it removes contaminants by comparing taxa profiles to an extensive negative 
control reference dataset. We now show that SAHMI successfully identifies known infections from 
scRNA-seq and spatial transcriptomic data sets from human tissues, and that microbes can be 
paired and jointly analyzed with somatic cells. SAHMI thus unlocks the potential for retrospective 
host-microbiome interaction analysis from a wealth of existing transcriptomic studies at different 
resolutions. 

First, we asked whether known pathogens could be differentially detected in a dose-
dependent manner in samples with known infection. We analyzed scRNA-seq data for human 
samples in which the host had a clinically verified infection16–18 or in which a pathogen was 
experimentally introduced19–22; these represented a variety of bacteria, fungi, viruses, and tissue 
types (Table S1). We used Kraken2Uniq14,15 to map all reads to a database of human and microbial 
genomes. The infection scRNA-seq data contained 107-1010 reads, of which a mean of 1.3% 
(median 0.05%, standard deviation 3%) mapped to the microbiome. Across all studies, pathogen 
reads were successfully identified and were significantly increased in the samples with known or 
experimental infection with respect to the pathogen load (Fig. 1b). To validate that these 
assignments were not artifacts, we mapped pathogen reads from the clinical samples using STAR23, 
a slower but dedicated RNA-seq aligner. For all studies, >90% of Kraken2Uniq classified pathogen 
reads were aligned uniquely by STAR to regions throughout their respective genomes (Fig. 1c). 
These results indicate that true microbial nucleic acid sequences are quantitively captured in 
scRNA-seq. 

Some scRNA-seq barcodes tagging microbial reads also tagged somatic cellular RNA, 
suggesting that these microbes and cells were co-localized. To determine if barcode sharing 
reflected the pairing of somatic and microbial cells in vivo, we examined the data for known 
microbe-cell-type specific interactions. Using the same samples from the clinical infection studies, 
we identified the somatic cell types and highlighted cells that were paired with a pathogen (Fig. 
1d). Within a cell-type, and across all studies, microbe-associated cells generally clustered together, 
indicating shared, broad gene expression changes compared to unassociated cells. Mycobacterium 
leprae was most commonly found with T-cells, keratinocytes, and myeloid cells, consistent with 
its ability to directly infect macrophages and keratinocytes and reflecting the importance of T-cells 
in the immune responses related to granulomata24. Helicobacter pylori was mostly associated with 
a major subset of gastric epithelial cells and with mucosal immune cells. Severe acute respiratory 
syndrome related coronavirus 2 (SARS-CoV-2) was found broadly in epithelial and immune cells, 
and especially in alveolar macrophages (Fig. 1d). In all studies, pathogen-associated host cells 
were significantly more likely to be in the same shared nearest-neighbor network with other 
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pathogen-associated cells compared to pathogen-unassociated cells, indicating their transcriptional 
similarity (Wilcoxon, p<2e-16; Fig. 1e).  

Microenvironmental contexts of infection are important and can be studies with SAHMI 
by utilizing shared barcodes in spatial transcriptomic data. We analyzed spatial sequencing data of 
a lepromatic lesion and identified the predominant cell-type from each spatial spot as well as spots 
that captured M. leprae RNA (Fig. 1f). Inspection of the spatial map shows M. leprae primarily 
overlapping with immune regions of the tissue, reflecting granuloma response to infection. These 
data demonstrate how the increased precision afforded by molecular barcoding localizes microbes 
to specific host cells and can enable downstream examination of cell-type specific gene expression 
as it relates to the presence of a microorganism.  

While these analyses showcase the reliable detection of known microbes using SAHMI, 
filtering contaminants and spurious false positive taxonomic assignments is crucial for the study 
of tissues with unknown microbial burden. In above analyses, a mean of 4735 other species (range 
801-7084) were classified in the benchmark datasets, and this number correlated with the total 
number of reads per study (r=0.7, p=0.08, Fig. 2a). These included common contaminants such as 
Mycoplasma spp. and Cutibacterium acnes, but also unexpectedly ubiquitous species such as 
Xanthomonas euvesicatoria and proteus virus Isfahan. This was especially surprising because five 
of the eight benchmark studies had pathogens experimentally introduced under strict aseptic 
technique and suggests that the majority of reported taxa were spurious false-positive assignments. 
We also observed that reported microbial profiles differed significantly depending on the mapping 
parameters used. For example, mapping reads from the clinical studies to the microbiome alone 
without including the host genome led to significantly increased reads that mapped to bacteria in 
general but to only negligible differences in the number of reads that mapped to the verified 
pathogen (t-test p<1e-4, Fig. 2b) – again underscoring the presence of false-positives as well as 
the importance of including all relevant reference genomes during taxonomic classification. The 
number of unique k-mer sequences assigned to a taxon has been used to filter false positives; 
however, we observed a wide range in these values across taxa, and they did not clearly distinguish 
the known pathogens (Fig. 2c).   

The issue of false positive taxonomic assignments is well-known11,25; these may arise from 
multiple sources, including sequence homology, sequencing errors, off-target amplification, or 
mapping errors. To limit such identifications, we posited that in the setting of low-microbiome 
biomass, a proportional number of total and unique RNA transcripts will be captured for true 
species. When we examined the pairwise correlations across samples between the numbers of 
reads, k-mers, and unique k-mers assigned to each species in each benchmark study, we found a 
wide spectrum of values (Fig. 2d), with the true pathogens having extremely high correlation 
values (median r>0.92, p<2e-16, Fig. 2e, Table S1). The strong correlation between the number 
of total and unique k-mers also held true for the known pathogens across barcodes, allowing us to 
identify microbes in individual samples (Fig. 2f). These k-mer correlation tests served as a 
significant filter; while 6063 species were classified in the tested samples, only 1207 species had 
significant values in all tests.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2022. ; https://doi.org/10.1101/2022.06.29.498176doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498176
http://creativecommons.org/licenses/by-nc-nd/4.0/


We next sought to identify contaminants based on the observation that contaminants appear 
in higher frequencies in negative control samples12,13. In the absence of matched controls, we 
posited that sterile cell line data could serve as a substitute. We profiled the microbiome from 
publicly available RNA-seq data for 2,491 samples involving >1500 human cell lines representing 
healthy and diseased tissues from >400 sources from around the world (Table S2), thereby creating 
a negative control resource and identifying common contaminants and false positives (Table S3). 
From these studies, we identified a mean of 1035 species per sample (range: 124-6731). Our k-
mer correlation tests again found a range of values for the cell line taxa (Fig. 2g). These 
correlations were significantly weaker than those from the benchmark studies (Wilcoxon, p<2e-
16) due to the cell line microbiome data being enriched in false positives. The most ubiquitous 
species included cutaneous microbiota and common environmental or laboratory species (Table 
S3).  

Comparing taxa reads counts from the benchmark studies to their distribution in the cell 
line data using a quantile test clearly distinguished true positive signal and identified background 
contamination or noise in all studies (Wilcoxon p<2e-16, Fig. 2h). The known pathogens had 
significantly higher reads per million microbiome reads compared to what was found in the cell 
line data, whereas most taxa did not. Our procedures significantly reduced false positives: only a 
minority of all reported species (median: 2.8%, range: 0.26-22%) and initially classified microbial 
reads (median: 12%, range: 3.2-81%) passed both the k-mer correlation and cell line quantile tests 
(Fig. 2i). In the studies with an introduced pathogen (e.g. HSV-1, S. enterica), only a median of 3 
species per sample passed our pipeline (range: 1-6). To validate that our pipeline enriched for true 
signal, we used STAR23 to map reads for a subset of species from the skin leprosy study and found 
that species that passed both k-mer correlation and cell line quantile tests had significantly more 
mapped reads than all other initially reported taxa (Fig. 2j), despite comprising a minority of reads 
and species. These validation and benchmarking analyses collectively demonstrate how SAHMI 
can systematically enrich for true taxa and eliminate contaminants and false positives across a 
range of datasets from diverse tissues.  

SAHMI offers a resource to study microbial-cell-type-specific interactions at single cell 
resolution and in spatial contexts in vivo. It enables the detection, localization, and association of 
microbes with host cell gene expression in existing and new human or other mammalian scRNA-
seq data from a variety of tissue types, including cancer30. SAHMI is available on Github 
(https://github.com/sjdlabgroup/SAHMI). 
 
Methods 
SAHMI pipeline for microbiome detection and denoising from transcriptomic data  

We developed SAHMI, a statistical pipeline for detection of microbes and analysis of host-
microbiome interactions from scRNA-seq and other transcriptomic data. After sequencing and 
taxonomic classifications, SAHMI has two primary functions: (1) it identifies true microbial signal 
by running correlation analyses across barcodes and samples (k-mer correlation tests), and (2) it 
filters contaminants and false positives by comparing metagenomic counts to distributions of 
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profiles in negative control samples (cell line quantile test). This enables systematic retrospective 
identification of microbes in host tissues. Downstream analysis of associations can be done at the 
sample level or at the level of individual cells for somatic cells and microbes that are tagged with 
the same cell barcodes.  

Taxonomic classification: metagenomic classification of paired-end reads from bulk 
RNAseq, scRNA-seq, or spatial transcriptomic sequencing fastq files can be performed using a k-
mer based mapper that identifies a taxonomic ID for each k-mer and read. While SAHMI can work 
with any k-mer-mapper, we reported the results for SAHMI with Kraken2Uniq14,15, a popular and 
benchmarked tool which finds exact matches of candidate 35-mer genomic substrings to the lowest 
common ancestor of genomes in a reference metagenomic database. It is essential that all 
realistically possible genomes are included as mapping references at this stage, or that host 
mappable reads are excluded. The required outputs from this step are: a Kraken summary report 
with sample level metagenomic counts, a Kraken output file with read and k-mer level taxonomic 
classifications, and raw sequencing fastq files with taxonomic classification for each read, or the 
equivalent data.  

Barcode level signal denoising (barcode k-mer correlation test): SAHMI first extracts 
microbiome reads from the raw data given their taxonomic IDs and removes reads that contain k-
mers that map to the host genome. Next, for each taxon in the sample, SAHMI identifies the 
corresponding reads and removes reads with less than a default of 50% of the k-mers mapped 
directly to the taxon or to a parent taxon in its lineage. While analyzing scRNA-seq data, the cell 
barcode ID is used to identify reads originating from the same droplet. The number of total and 
unique k-mers mapping to the taxon or its lineage is then tabulated. For computational efficiency, 
a default of 1000 barcodes per taxon are randomly sampled. The Spearman correlation between 
the number of total and unique k-mers across barcodes for each taxon is computed. SAHMI reports 
the correlation and p-value and recommends removing taxa with non-significant correlations. This 
enables identification of true microbes in an individual sample.  

Sample-level signal denoising (sample k-mer correlation test): the correlation analysis is 
also conducted across samples when possible. The Kraken report tabulates the total number of 
reads, minimizers (k-mers), and an estimate of unique k-mer counts for each taxon, or the 
equivalent data can be obtained from mappers. For each taxon, SAHMI correlates the number of 
k-mers vs. unique k-mers, reads vs. k-mers, and reads vs. unique k-mers across all samples in a 
study. True taxa are identified as those having significant positive Spearman correlation values 
and p-values for all three tests.  

Identifying contaminants and false positives (cell line quantile test): these can be identified 
in the SAHMI workflow based on the widely observed pattern that contaminants appear at higher 
frequencies in low concentration or negative control samples12,13. We observed that this pattern 
also extends to false positive assignments. In the absence of experimentally matched negative 
controls, we provide a negative control resource comprised of microbiome profiles from 2,491 
sterile cell experiments from around the world. For each taxon in a test sample, SAHMI compares 
the fraction of microbiome reads assigned to the taxon [i.e. taxon counts/sum(all bacterial, fungal, 
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viral counts), in reads per million] to the microbiome fraction assigned to the taxon in all cell line 
experiments. Using the microbiome fraction comparison normalizes for experiments having a 
varying number of total sequencing reads or varying underlying contamination. SAHMI tests 
whether the taxon microbial fraction in the test sample is > 99th percentile (by default) of the 
taxon’s microbiome fraction distribution in cell line data using a one-sample quantile test. Taxa 
whose counts fall within the cell line distribution are identified as below the cell-line noise 
threshold. Users may choose how stringently to select the quantile threshold for significance 
testing.  

Quantitation of microbes and creating the barcode-metagenome counts matrix: after 
identifying true taxa, reads assigned to those taxa are extracted and passed though a series of filters. 
ShortRead is used to remove low complexity reads (< 20 non-sequentially repeated nucleotides), 
low quality reads (PHRED score < 20), and PCR duplicates tagged with the same unique molecular 
identifier and cellular barcode. Non-sparse cellular barcodes can be selected by using an elbow-
plot of barcode rank vs. total reads, smoothed with a moving average of 25, and using a cutoff at 
a change in slope < 10-3, in a manner analogous to how cellular barcodes are typically selected in 
single-cell sequencing data (CellRanger (10x Genomics), Drop-seq Core Computational Protocol 
v2.0.0 (McCarroll laboratory)). Lastly, the full taxonomic classification of all resulting reads and 
the number of reads assigned to each clade are tabulated.  
 
Assembling the negative control cell lines microbiome data 

The Sequence Read Archive (SRA) was queried using the following search: 
(((("public"[Access]) AND "rna seq"[Strategy]) AND "transcriptomic"[Source]) AND cell line) 
AND "Homo sapiens"[orgn:__txid9606] to identify sequencing runs with human cell lines. This 
resulted in 52,397 sample entries. We then selected for samples with “library selection = cDNA 
OR library selection = PolyA”, and we removed experiments with mouse strain information, 
experiments involving infection, runs without a submitting center name, and runs with “cell line” 
designated as “none”. From each remaining submitting center, we randomly selected 5 runs. We 
combined these run IDs with the run IDs for the complete Cancer Cell Line Encyclopedia26. We 
downloaded raw RNA-seq fastq files for these samples and profiled their microbiome using 
Kraken2Uniq14,15. Samples were retained in the data base only if >90% of the reads were classified 
as human (taxid=9606). We then manually checked each sample’s metadata to ensure they did not 
involve infection or stimulation with microbial agents. The resulting samples and their metadata 
are tabulated in Table S2 and cell line microbiome data are available in Table S3.  
 
True positive datasets selection, metagenomic mapping, and scRNA-seq data processing 

We analyzed scRNA-seq data from patient samples with the following clinically verified 
infections: Mycobacterium leprae (skin)17, Helicobacter pylori (stomach)18, and severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2, bronchoalveolar lavage fluid)16, in addition to 
data from scRNA-seq experiments for tissues in which the following pathogens introduced: 
Candida albicans (PBMCs)20, Salmonella enterica (PBMCs)19, Mycobacterium tuberculosis 
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(lung)21, human alpha herpesvirus 1 (HSV-1) (PBMCs)27, and human immunodeficiency virus 1 
(HIV-1) (PBMCs)22. Taxonomic classification was done using Kraken2Uniq14,15 using a combined 
reference database including the human genome and all bacterial, fungal, and viral reference 
genomes recorded in  RefSeq as of April 2022. Microbial read alignment was done for a subset of 
samples using the STAR23 RNA-seq aligner with the following parameters: alignIntronMax=1 and 
outFilterScoreMinOverLread=0.05. For the clinical datasets, scRNA-seq data were processed 
using the standard Seurat28 pipeline. Cell types were identified by comparing cluster marker genes 
to the PanglaoDB29 reference database. Cell-types in the spatial transcriptomic map of a lepromatic 
lesion were identified as follows. Marker gene for each cell-type were identified from scRNA-seq 
data of lepromatic lesions using the FindAllMarkers function with logfc.threshold=1 and 
min.pct.diff=0.25. Cell-type scores for each spatial spot were computed as the mean expression of 
cell-type marker genes, and these were scaled per cell-type. The predominant cell-type at a spatial 
spot was identified as the cell-type with the highest score at that spot.  
 
Statistical analyses 

All statistical analyses were performed using R version 3.6.1. All p-values were corrected 
for false-discovery rate (fdr) for multiple hypotheses using the p.adjust function with method= 
“fdr”, unless otherwise stated. The ggpubr package (https://github.com/kassambara/ggpubr) was 
used to compare group means with nonparametric tests and to perform multiple hypothesis 
correction for statistics that are noted in the figures. P-values reported as <2.2x10-16 result from 
reaching the calculation limit for the native R statistical test functions and indicate values below 
this number, not a range of values. Barcode level analyses (Fig. 2g, 2j) were done for the 
benchmark studies in which reads had identifiable cell barcodes, unique molecular identifiers, and 
poly-A sequences. Comparisons to the human cell line negative control dataset were done for the 
benchmark studies that used human cells.  
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Figure Legends 
Figure 1. Host scRNA-seq captures true microbial reads. a, Schematic of the SAHMI pipeline. 
SAHMI identifies taxa that are truly present in tissues using a k-mer correlation test and identifies 
false positives and contaminants by comparing taxa distributions to an extensive negative control 
reference. b, Differential detection of known pathogens in infected samples in multiple studies. 
Boxplots show median (line), 25th and 75th percentiles (box) and 1.5xIQR (whiskers). Points 
represent outliers; all Wilcoxon testing. rpm, reads per million classified microbiome reads. c, 
Histograms of genomic mapping positions for the known pathogens in clinical studies. Reads map 
throughout the genomes. d, Uniform manifold approximation and projection (UMAP) plots of 
somatic cells from the clinical studies identifying cell types and cell barcodes paired with the 
known pathogen (red color).  Microbe-associated host cells cluster together. Tissue sources: left, 
gastric biopsy; middle, skin; right: bronchoalveolar lavage fluid. e, Boxplots of the probability a 
pathogen-associated or unassociated host cell is in the same shared nearest-neighbor network as a 
pathogen-associated cell. Boxplots are as in (b). f, Spatial transcriptomic map of a lepromatous 
cutaneous lesion colored by predominant cell-type (left), cell compartment (middle), or presence 
of detected M. leprae (right).  
 
Figure 2. Distinguishing true signal from false positives and contaminants. a, Scatter plot 
showing the total number of sequencing reads and species detected in each study. Blue, 
experimentally introduced pathogen; red, existing infection in a human tissue. b, Boxplots showing 
significantly increased reads assigned to bacteria when the human genome is not included as a 
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reference during taxonomic classification. Boxplots show median (line), 25th and 75th percentiles 
(box) and 1.5xIQR (whiskers). Points represent outliers; t-tests; **** p<1e-3; *** p<1e-2; ns, not 
significant. c, Histogram of the number of unique k-mers per sample assigned to the known 
pathogens and to all detected species in the benchmark studies. d, Scatter plot of the k-mer 
correlation tests for species in the benchmark studies. Each point represents an individual species. 
Correlations are run across samples within a study. The x-axis represents the Spearman correlation 
values between #k-mers vs. #unique k-mers. The y-axis represents the correlation value between 
#k-mers vs. #reads; colors represent correlation value between #reads vs. #unique k-mers. Lines 
represent contour density. e, Scatter plot of the number of total and unique k-mers for the known 
pathogens. Each point represents a sample. The points are colored by study as detailed below the 
plot. f, Scatter plot of the number of total and unique k-mers for the known pathogens. Each point 
represents an individual barcode. Points are colored as in (e). g, Similar to (d) but for taxa detected 
in cell line experiments. h, Overlaid histograms of reads per million microbiome reads assigned to 
the known pathogens (top row) and to example contaminants (bottom row) in the benchmark 
studies as well as in the cell line data. Bars are colored by study of origin. i, Bar plots of relative 
proportions of species (left panel) and reads (right panel) that passed or failed the k-mer correlation 
and cell-line quantile tests. j, Boxplots showing the number of reads per taxon mapped by STAR 
for microbial reads from the leprosy study grouped by k-mer correlation and cell line quantile test 
results. Colors are as in (i) and boxplots are as in (b). Wilcoxon testing performed.  
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