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Abstract

We developed SAHMI, a computational resource to identify truly present microbial nucleic acids
and filter contaminants and spurious false-positive taxonomic assignments from standard
transcriptomic sequencing of mammalian tissues. In benchmark studies, SAHMI correctly
identifies known microbial infections present in diverse tissues. The application of SAHMI to
single-cell and spatial genomic data enables co-detection of somatic cells and microorganisms and
joint analysis of host-microbiome ecosystems.

Main text

The microbiome plays an integral role in healthy development, aging, and multiple diseases,
however the nature of its influence in many contexts remains poorly understood'. This is because
integrated analyses of host-microbiome ecosystems in vivo have been difficult to achieve in part
due to the lack of relevant model systems?, technological barriers to directly profiling host-
microbial interactions at high resolution in human tissues, and substantial heterogeneity across
patients®#.

While targeted detection of microbial antigens and 16s rRNA gene sequencing are standard
microbiome profiling approaches, recent studies have reported detection of microbial nucleic acids
in polyA-selected RNA sequencing of clinical samples from humans®~. This is remarkable, but
not surprising given increasing observations of polyadenylated transcripts in prokaryotes®® and
that non-polyadenylated mammalian sequences are routinely captured in RNA-seq!?. However, in
samples that have low microbiome-biomass and are without matched and co-processed negative
controls, denoising true microbial signals and removing contaminating species is a major
challenge!'-13. Important issues in the field that limit the use of emerging sequencing data to probe
host-microbiome ecosystems include: (1) lack of gold standard contamination controls in most
genomic experiments, (2) the usual lack of benchmarking for spurious, false-positive taxonomic
assignments derived from human samples, and (3) the lack of benchmarking of metagenomic read
capture from single-cell RNA sequencing (scRNA-seq) protocols.
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To overcome these problems, we developed and benchmarked SAHMI (Single-cell
Analysis of Host-Microbiome Interactions), a computational pipeline to identify microbial nucleic
acid sequences and remove false positives and contaminants from bulk, single cell, and spatial
transcriptomic data of mammalian tissues (Fig. 1a). SAHMI denoises and decontaminates the
output of taxonomic classifiers (e.g. Kraken2Uniq'*!5). It identifies taxa that are truly present in a
tissue specimen by examining the relationship between the number of total and unique k-mers for
each taxon, and it removes contaminants by comparing taxa profiles to an extensive negative
control reference dataset. We now show that SAHMI successfully identifies known infections from
scRNA-seq and spatial transcriptomic data sets from human tissues, and that microbes can be
paired and jointly analyzed with somatic cells. SAHMI thus unlocks the potential for retrospective
host-microbiome interaction analysis from a wealth of existing transcriptomic studies at different
resolutions.

First, we asked whether known pathogens could be differentially detected in a dose-
dependent manner in samples with known infection. We analyzed scRNA-seq data for human
samples in which the host had a clinically verified infection!®!® or in which a pathogen was
experimentally introduced!*-??; these represented a variety of bacteria, fungi, viruses, and tissue
types (Table S1). We used Kraken2Uniq'*!5 to map all reads to a database of human and microbial
genomes. The infection scRNA-seq data contained 107-10'° reads, of which a mean of 1.3%
(median 0.05%, standard deviation 3%) mapped to the microbiome. Across all studies, pathogen
reads were successfully identified and were significantly increased in the samples with known or
experimental infection with respect to the pathogen load (Fig. 1b). To validate that these
assignments were not artifacts, we mapped pathogen reads from the clinical samples using STAR?,
a slower but dedicated RNA-seq aligner. For all studies, >90% of Kraken2Uniq classified pathogen
reads were aligned uniquely by STAR to regions throughout their respective genomes (Fig. 1c).
These results indicate that true microbial nucleic acid sequences are quantitively captured in
scRNA-seq.

Some scRNA-seq barcodes tagging microbial reads also tagged somatic cellular RNA,
suggesting that these microbes and cells were co-localized. To determine if barcode sharing
reflected the pairing of somatic and microbial cells in vivo, we examined the data for known
microbe-cell-type specific interactions. Using the same samples from the clinical infection studies,
we identified the somatic cell types and highlighted cells that were paired with a pathogen (Fig.
1d). Within a cell-type, and across all studies, microbe-associated cells generally clustered together,
indicating shared, broad gene expression changes compared to unassociated cells. Mycobacterium
leprae was most commonly found with T-cells, keratinocytes, and myeloid cells, consistent with
its ability to directly infect macrophages and keratinocytes and reflecting the importance of T-cells
in the immune responses related to granulomata*. Helicobacter pylori was mostly associated with
a major subset of gastric epithelial cells and with mucosal immune cells. Severe acute respiratory
syndrome related coronavirus 2 (SARS-CoV-2) was found broadly in epithelial and immune cells,
and especially in alveolar macrophages (Fig. 1d). In all studies, pathogen-associated host cells
were significantly more likely to be in the same shared nearest-neighbor network with other
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pathogen-associated cells compared to pathogen-unassociated cells, indicating their transcriptional
similarity (Wilcoxon, p<2e-16; Fig. 1e).

Microenvironmental contexts of infection are important and can be studies with SAHMI
by utilizing shared barcodes in spatial transcriptomic data. We analyzed spatial sequencing data of
a lepromatic lesion and identified the predominant cell-type from each spatial spot as well as spots
that captured M. leprae RNA (Fig. 1f). Inspection of the spatial map shows M. leprae primarily
overlapping with immune regions of the tissue, reflecting granuloma response to infection. These
data demonstrate how the increased precision afforded by molecular barcoding localizes microbes
to specific host cells and can enable downstream examination of cell-type specific gene expression
as it relates to the presence of a microorganism.

While these analyses showcase the reliable detection of known microbes using SAHMI,
filtering contaminants and spurious false positive taxonomic assignments is crucial for the study
of tissues with unknown microbial burden. In above analyses, a mean of 4735 other species (range
801-7084) were classified in the benchmark datasets, and this number correlated with the total
number of reads per study (r=0.7, p=0.08, Fig. 2a). These included common contaminants such as
Mycoplasma spp. and Cutibacterium acnes, but also unexpectedly ubiquitous species such as
Xanthomonas euvesicatoria and proteus virus Isfahan. This was especially surprising because five
of the eight benchmark studies had pathogens experimentally introduced under strict aseptic
technique and suggests that the majority of reported taxa were spurious false-positive assignments.
We also observed that reported microbial profiles differed significantly depending on the mapping
parameters used. For example, mapping reads from the clinical studies to the microbiome alone
without including the host genome led to significantly increased reads that mapped to bacteria in
general but to only negligible differences in the number of reads that mapped to the verified
pathogen (t-test p<le-4, Fig. 2b) — again underscoring the presence of false-positives as well as
the importance of including all relevant reference genomes during taxonomic classification. The
number of unique k-mer sequences assigned to a taxon has been used to filter false positives;
however, we observed a wide range in these values across taxa, and they did not clearly distinguish
the known pathogens (Fig. 2c¢).

The issue of false positive taxonomic assignments is well-known!!?; these may arise from
multiple sources, including sequence homology, sequencing errors, off-target amplification, or
mapping errors. To limit such identifications, we posited that in the setting of low-microbiome
biomass, a proportional number of total and unique RNA transcripts will be captured for true
species. When we examined the pairwise correlations across samples between the numbers of
reads, k-mers, and unique k-mers assigned to each species in each benchmark study, we found a
wide spectrum of values (Fig. 2d), with the true pathogens having extremely high correlation
values (median r>0.92, p<2e-16, Fig. 2e, Table S1). The strong correlation between the number
of total and unique k-mers also held true for the known pathogens across barcodes, allowing us to
identify microbes in individual samples (Fig. 2f). These k-mer correlation tests served as a
significant filter; while 6063 species were classified in the tested samples, only 1207 species had
significant values in all tests.
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We next sought to identify contaminants based on the observation that contaminants appear
in higher frequencies in negative control samples'>!. In the absence of matched controls, we
posited that sterile cell line data could serve as a substitute. We profiled the microbiome from
publicly available RNA-seq data for 2,491 samples involving >1500 human cell lines representing
healthy and diseased tissues from >400 sources from around the world (Table S2), thereby creating
a negative control resource and identifying common contaminants and false positives (Table S3).
From these studies, we identified a mean of 1035 species per sample (range: 124-6731). Our k-
mer correlation tests again found a range of values for the cell line taxa (Fig. 2g). These
correlations were significantly weaker than those from the benchmark studies (Wilcoxon, p<2e-
16) due to the cell line microbiome data being enriched in false positives. The most ubiquitous
species included cutaneous microbiota and common environmental or laboratory species (Table
S3).

Comparing taxa reads counts from the benchmark studies to their distribution in the cell
line data using a quantile test clearly distinguished true positive signal and identified background
contamination or noise in all studies (Wilcoxon p<2e-16, Fig. 2h). The known pathogens had
significantly higher reads per million microbiome reads compared to what was found in the cell
line data, whereas most taxa did not. Our procedures significantly reduced false positives: only a
minority of all reported species (median: 2.8%, range: 0.26-22%) and initially classified microbial
reads (median: 12%, range: 3.2-81%) passed both the k-mer correlation and cell line quantile tests
(Fig. 2i). In the studies with an introduced pathogen (e.g. HSV-1, §. enterica), only a median of 3
species per sample passed our pipeline (range: 1-6). To validate that our pipeline enriched for true
signal, we used STAR? to map reads for a subset of species from the skin leprosy study and found
that species that passed both k-mer correlation and cell line quantile tests had significantly more
mapped reads than all other initially reported taxa (Fig. 2j), despite comprising a minority of reads
and species. These validation and benchmarking analyses collectively demonstrate how SAHMI
can systematically enrich for true taxa and eliminate contaminants and false positives across a
range of datasets from diverse tissues.

SAHMI offers a resource to study microbial-cell-type-specific interactions at single cell
resolution and in spatial contexts in vivo. It enables the detection, localization, and association of
microbes with host cell gene expression in existing and new human or other mammalian scRNA-
seq data from a variety of tissue types, including cancer®. SAHMI is available on Github
(https://github.com/sjdlabgroup/SAHMI).

Methods
SAHMI pipeline for microbiome detection and denoising from transcriptomic data

We developed SAHMI, a statistical pipeline for detection of microbes and analysis of host-
microbiome interactions from scRNA-seq and other transcriptomic data. After sequencing and
taxonomic classifications, SAHMI has two primary functions: (1) it identifies true microbial signal
by running correlation analyses across barcodes and samples (k-mer correlation tests), and (2) it
filters contaminants and false positives by comparing metagenomic counts to distributions of
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profiles in negative control samples (cell line quantile test). This enables systematic retrospective
identification of microbes in host tissues. Downstream analysis of associations can be done at the
sample level or at the level of individual cells for somatic cells and microbes that are tagged with
the same cell barcodes.

Taxonomic classification: metagenomic classification of paired-end reads from bulk
RNAseq, scRNA-seq, or spatial transcriptomic sequencing fastq files can be performed using a k-
mer based mapper that identifies a taxonomic ID for each k-mer and read. While SAHMI can work
with any k-mer-mapper, we reported the results for SAHMI with Kraken2Uniq'#!*, a popular and
benchmarked tool which finds exact matches of candidate 35-mer genomic substrings to the lowest
common ancestor of genomes in a reference metagenomic database. It is essential that all
realistically possible genomes are included as mapping references at this stage, or that host
mappable reads are excluded. The required outputs from this step are: a Kraken summary report
with sample level metagenomic counts, a Kraken output file with read and k-mer level taxonomic
classifications, and raw sequencing fastq files with taxonomic classification for each read, or the
equivalent data.

Barcode level signal denoising (barcode k-mer correlation test): SAHMI first extracts
microbiome reads from the raw data given their taxonomic IDs and removes reads that contain k-
mers that map to the host genome. Next, for each taxon in the sample, SAHMI identifies the
corresponding reads and removes reads with less than a default of 50% of the k-mers mapped
directly to the taxon or to a parent taxon in its lineage. While analyzing scRNA-seq data, the cell
barcode ID is used to identify reads originating from the same droplet. The number of total and
unique k-mers mapping to the taxon or its lineage is then tabulated. For computational efficiency,
a default of 1000 barcodes per taxon are randomly sampled. The Spearman correlation between
the number of total and unique k-mers across barcodes for each taxon is computed. SAHMI reports
the correlation and p-value and recommends removing taxa with non-significant correlations. This
enables identification of true microbes in an individual sample.

Sample-level signal denoising (sample k-mer correlation test): the correlation analysis is
also conducted across samples when possible. The Kraken report tabulates the total number of
reads, minimizers (k-mers), and an estimate of unique k-mer counts for each taxon, or the
equivalent data can be obtained from mappers. For each taxon, SAHMI correlates the number of
k-mers vs. unique k-mers, reads vs. k-mers, and reads vs. unique k-mers across all samples in a
study. True taxa are identified as those having significant positive Spearman correlation values
and p-values for all three tests.

ldentifying contaminants and false positives (cell line quantile test): these can be identified
in the SAHMI workflow based on the widely observed pattern that contaminants appear at higher
frequencies in low concentration or negative control samples'?!3. We observed that this pattern
also extends to false positive assignments. In the absence of experimentally matched negative
controls, we provide a negative control resource comprised of microbiome profiles from 2,491
sterile cell experiments from around the world. For each taxon in a test sample, SAHMI compares
the fraction of microbiome reads assigned to the taxon [i.e. taxon counts/sum(all bacterial, fungal,
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viral counts), in reads per million] to the microbiome fraction assigned to the taxon in all cell line
experiments. Using the microbiome fraction comparison normalizes for experiments having a
varying number of total sequencing reads or varying underlying contamination. SAHMI tests
whether the taxon microbial fraction in the test sample is > 99 percentile (by default) of the
taxon’s microbiome fraction distribution in cell line data using a one-sample quantile test. Taxa
whose counts fall within the cell line distribution are identified as below the cell-line noise
threshold. Users may choose how stringently to select the quantile threshold for significance
testing.

Quantitation of microbes and creating the barcode-metagenome counts matrix: after
identifying true taxa, reads assigned to those taxa are extracted and passed though a series of filters.
ShortRead is used to remove low complexity reads (< 20 non-sequentially repeated nucleotides),
low quality reads (PHRED score < 20), and PCR duplicates tagged with the same unique molecular
identifier and cellular barcode. Non-sparse cellular barcodes can be selected by using an elbow-
plot of barcode rank vs. total reads, smoothed with a moving average of 25, and using a cutoff at
a change in slope < 107, in a manner analogous to how cellular barcodes are typically selected in
single-cell sequencing data (CellRanger (10x Genomics), Drop-seq Core Computational Protocol
v2.0.0 (McCarroll laboratory)). Lastly, the full taxonomic classification of all resulting reads and
the number of reads assigned to each clade are tabulated.

Assembling the negative control cell lines microbiome data

The Sequence Read Archive (SRA) was queried using the following search:
(((("public"[Access]) AND "rna seq"[Strategy]) AND "transcriptomic"[Source]) AND cell line)
AND "Homo sapiens"[orgn:__txid9606] to identify sequencing runs with human cell lines. This
resulted in 52,397 sample entries. We then selected for samples with “library selection = cDNA
OR library selection = PolyA”, and we removed experiments with mouse strain information,
experiments involving infection, runs without a submitting center name, and runs with “cell line”
designated as “none”. From each remaining submitting center, we randomly selected 5 runs. We
combined these run IDs with the run IDs for the complete Cancer Cell Line Encyclopedia?. We
downloaded raw RNA-seq fastq files for these samples and profiled their microbiome using
Kraken2Uniq'*!5. Samples were retained in the data base only if >90% of the reads were classified
as human (taxid=9606). We then manually checked each sample’s metadata to ensure they did not
involve infection or stimulation with microbial agents. The resulting samples and their metadata
are tabulated in Table S2 and cell line microbiome data are available in Table S3.

True positive datasets selection, metagenomic mapping, and scRNA-seq data processing
We analyzed scRNA-seq data from patient samples with the following clinically verified
infections: Mycobacterium leprae (skin)'’, Helicobacter pylori (stomach)'®, and severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2, bronchoalveolar lavage fluid)'®, in addition to
data from scRNA-seq experiments for tissues in which the following pathogens introduced:
Candida albicans (PBMCs)®, Salmonella enterica (PBMCs)"°, Mycobacterium tuberculosis
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(lung)?', human alpha herpesvirus 1 (HSV-1) (PBMCs)?’, and human immunodeficiency virus 1
(HIV-1) (PBMCs)?*. Taxonomic classification was done using Kraken2Uniq'#!> using a combined
reference database including the human genome and all bacterial, fungal, and viral reference
genomes recorded in RefSeq as of April 2022. Microbial read alignment was done for a subset of
samples using the STAR? RNA-seq aligner with the following parameters: alignIntronMax=1 and
outFilterScoreMinOverLread=0.05. For the clinical datasets, scRNA-seq data were processed
using the standard Seurat® pipeline. Cell types were identified by comparing cluster marker genes
to the PanglaoDB? reference database. Cell-types in the spatial transcriptomic map of a lepromatic
lesion were identified as follows. Marker gene for each cell-type were identified from scRNA-seq
data of lepromatic lesions using the FindAllMarkers function with logfc.threshold=1 and
min.pct.diff=0.25. Cell-type scores for each spatial spot were computed as the mean expression of
cell-type marker genes, and these were scaled per cell-type. The predominant cell-type at a spatial
spot was identified as the cell-type with the highest score at that spot.

Statistical analyses

All statistical analyses were performed using R version 3.6.1. All p-values were corrected
for false-discovery rate (fdr) for multiple hypotheses using the p.adjust function with method=
“fdr”, unless otherwise stated. The ggpubr package (https://github.com/kassambara/ggpubr) was
used to compare group means with nonparametric tests and to perform multiple hypothesis
correction for statistics that are noted in the figures. P-values reported as <2.2x10°'¢ result from
reaching the calculation limit for the native R statistical test functions and indicate values below
this number, not a range of values. Barcode level analyses (Fig. 2g, 2j) were done for the
benchmark studies in which reads had identifiable cell barcodes, unique molecular identifiers, and
poly-A sequences. Comparisons to the human cell line negative control dataset were done for the
benchmark studies that used human cells.
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Figure Legends

Figure 1. Host scRNA-seq captures true microbial reads. a, Schematic of the SAHMI pipeline.
SAHMI identifies taxa that are truly present in tissues using a k-mer correlation test and identifies
false positives and contaminants by comparing taxa distributions to an extensive negative control
reference. b, Differential detection of known pathogens in infected samples in multiple studies.
Boxplots show median (line), 25" and 75" percentiles (box) and 1.5xIQR (whiskers). Points
represent outliers; all Wilcoxon testing. rpm, reads per million classified microbiome reads. c,
Histograms of genomic mapping positions for the known pathogens in clinical studies. Reads map
throughout the genomes. d, Uniform manifold approximation and projection (UMAP) plots of
somatic cells from the clinical studies identifying cell types and cell barcodes paired with the
known pathogen (red color). Microbe-associated host cells cluster together. Tissue sources: left,
gastric biopsy; middle, skin; right: bronchoalveolar lavage fluid. e, Boxplots of the probability a
pathogen-associated or unassociated host cell is in the same shared nearest-neighbor network as a
pathogen-associated cell. Boxplots are as in (b). f, Spatial transcriptomic map of a lepromatous
cutaneous lesion colored by predominant cell-type (left), cell compartment (middle), or presence
of detected M. leprae (right).

Figure 2. Distinguishing true signal from false positives and contaminants. a, Scatter plot
showing the total number of sequencing reads and species detected in each study. Blue,
experimentally introduced pathogen; red, existing infection in a human tissue. b, Boxplots showing
significantly increased reads assigned to bacteria when the human genome is not included as a
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reference during taxonomic classification. Boxplots show median (line), 25" and 75" percentiles
(box) and 1.5xIQR (whiskers). Points represent outliers; t-tests; **** p<le-3; *** p<le-2; ns, not
significant. ¢, Histogram of the number of unique k-mers per sample assigned to the known
pathogens and to all detected species in the benchmark studies. d, Scatter plot of the k-mer
correlation tests for species in the benchmark studies. Each point represents an individual species.
Correlations are run across samples within a study. The x-axis represents the Spearman correlation
values between #k-mers vs. #unique k-mers. The y-axis represents the correlation value between
#k-mers vs. #reads; colors represent correlation value between #reads vs. #unique k-mers. Lines
represent contour density. e, Scatter plot of the number of total and unique k-mers for the known
pathogens. Each point represents a sample. The points are colored by study as detailed below the
plot. f, Scatter plot of the number of total and unique k-mers for the known pathogens. Each point
represents an individual barcode. Points are colored as in (e). g, Similar to (d) but for taxa detected
in cell line experiments. h, Overlaid histograms of reads per million microbiome reads assigned to
the known pathogens (top row) and to example contaminants (bottom row) in the benchmark
studies as well as in the cell line data. Bars are colored by study of origin. i, Bar plots of relative
proportions of species (left panel) and reads (right panel) that passed or failed the k-mer correlation
and cell-line quantile tests. j, Boxplots showing the number of reads per taxon mapped by STAR
for microbial reads from the leprosy study grouped by k-mer correlation and cell line quantile test
results. Colors are as in (i) and boxplots are as in (b). Wilcoxon testing performed.
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