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Abstract 

RNA-binding proteins (RBPs) control RNA metabolism to orchestrate gene expression, and 

dysfunctional RBPs underlie many human diseases. Proteome-wide discovery efforts predict 

thousands of novel RBPs, many of which lack canonical RNA-binding domains. Here, we 

present a hybrid ensemble RBP classifier (HydRA) that leverages information from both 

intermolecular protein interactions and internal protein sequence patterns to predict RNA-

binding capacity with unparalleled specificity and sensitivity using support vector machine, 

convolutional neural networks and transformer-based protein language models. HydRA 

enables Occlusion Mapping to robustly detect known RNA-binding domains and to predict 

hundreds of uncharacterized RNA-binding domains. Enhanced CLIP validation for a diverse 

collection of RBP candidates reveals genome-wide targets and confirms RNA-binding activity 

for HydRA-predicted domains. The HydRA computational framework accelerates construction 

of a comprehensive RBP catalogue and expands the set of known RNA-binding protein 

domains.   

 

Highlights: 

• HydRA combines protein-protein interaction and amino acid sequence information to 

predict RNA binding activity for 1,487 candidate genes. 

• HydRA predicts RNA binding with higher specificity and sensitivity than current 

approaches, notably for RBPs without well-defined RNA-binding domains. 

• Occlusion Mapping with HydRA enables RNA-binding domain discovery. 

• Enhanced CLIP confirms HydRA RBP predictions with RNA-binding domain resolution.   
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INTRODUCTION 

 

Individually or in ribonucleoparticle protein (RNP) complexes, RNA binding proteins (RBPs) 

orchestrate every step of the RNA life cycle 1. The recognition that an increasing number of 

human diseases are associated with perturbed RBP function 2–4 has fueled a resurgence in 

RBP discovery efforts.  In the past decade, RNA-interactome capture and organic phase 

separation-based technologies have uncovered thousands of proteins that contact RNA5,6. 

These experimental RBP-discovery approaches reveal that the RNA-binding proteome is cell 

type- and context-specific, indicating that completing the catalog of known RBPs will require 

resource-intensive RNA-interactome interrogations across many tissues and conditions. 

Furthermore, approximately half of the recently discovered RNA-interacting proteins are 

unconventional RBPs that lack both annotated RNA-related biological functions and annotated 

RNA-binding domains 5,6, which poses problems for prioritizing candidates for validation and 

characterization.      

An exciting strategy to these affinity-based and phase-separation-based RNA-

interactome capture assays is to utilize machine or deep learning approaches to predict 

proteome-wide RNA-binding capacity. RBP classifiers that utilize primary sequence 

information, known as sequence-based classifiers, such as RNApred 7, SPOT-seq 8, 

catRAPID signature 9, RBPPred 10 and TriPepSVM 11 have been developed that require only 

sequence information as input. Apart from SPOT-seq, all of these classifiers utilize classical 

machine learning models, such as Support Vector Machines (SVMs), trained on features 

extracted from protein sequence such as amino acid composition, k-mers (the set of all the k-

length sequences) and predicted physicochemical properties to distinguish RBPs from non-

RBPs. Each of these algorithms suffers from its own notable limitations. Machine learning 

based methods that rely on human-defined features such as global protein properties (e.g. 

amino acid compositions) and primary sub-sequence count (e.g. k-mer) are not sensitive to 

relatively small regions of RNA binding. SPOT-seq, instead, uses a template-based strategy 

that aligns query proteins to known protein-RNA complex structures and evaluates query 

protein RNA-binding affinity 8. However, SPOT-seq depends on the quality and 

comprehensiveness of the template set of protein-RNA complex structures. While these 

classifiers categorize “conventional” RBPs (with known RNA-binding domains) with some 

degree of accuracy, they demonstrate limited predictive ability for the entire catalog of 

experimentally defined human RBPs, of which > 50% are anticipated to be unconventional 

RBPs lacking known RNA-binding domains 11. This limited predictive ability is due to the 

simplicity of the sequence-based machine learning models employed by these classifiers as 

well as the inherent complexities of RBP prediction. In practice, low numbers of positive 
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training samples prevent the modeling of the implicit and complicated sequence patterns that 

exist in unconventional RBPs. 

To identify unconventional RBPs, we previously developed a machine learning 

algorithm termed SVM Obtained from Neighborhood Associated RBPs (SONAR) that utilized 

protein-protein interaction (PPI) networks 12. SONAR leveraged our empirical findings that 

RBPs often physically interact with one another (either in RNA-dependent or –independent 

mode) and identified unconventional RBPs with a high validation rate. However, SONAR failed 

to classify a portion of conventional RBPs with known RNA-binding domains, likely because 

SONAR’s high dependency on experimentally defined PPI networks limits its application for 

proteins underrepresented in these networks. Here we set out to develop computational 

algorithms capable of recognizing both conventional and unconventional patterns exclusive to 

RBPs by integrating both external (PPI-based) and internal (sequence-based) information 

layers. 

State-of-the-art machine learning algorithms, such as deep learning, have not only 

improved the precision of predictive models but have revolutionized the way data is processed. 

For example, convolutional neural network (CNN), a widely used class of deep learning 

algorithms in computer vision (CV), and Transformer, powerful for natural language 

processing (NLP) problems, are able to extract useful information automatically from raw data 

such as photographs or text and make predictions without hand-engineered and intrinsically 

biased features. Several applications have been developed with CNN and Transformer to 

solve biological problems such as protein folding13, SNP calling14, and protein family 

classification 13, demonstrating their predictive strengths in biological sequence classification. 

However, to avoid overfitting and maintain robustness of these models, large training datasets 

are necessary. To alleviate this problem of small positive training sizes, pretraining methods 

such as self-supervised learning and transfer learning have been used successfully for CV 

and NLP implementations 14. These methods have also been applied in protein classification 

problems. A Transformer-based protein language model named ProteinBERT recently 

achieved state-of-the-art performance on multiple protein classification tasks covering diverse 

protein properties (including protein structure, post translational modifications and biophysical 

attributes) 15. Traditional machine learning models, such as SVM and Random Forest, work 

well on small datasets and address the problem of overfitting. Thus, intuitively, ensemble 

learning that integrates deep learning with traditional machine learning models offers a 

promising strategy to design more precise and robust RNA-binding classifiers.  

Here, we introduce a new machine learning-based algorithm, Hybrid ensemble 

classifier for RNA-binding proteins (HydRA), that predicts not only the RNA-binding capacity 

of proteins but also regions of proteins that are involved in RNA-protein interaction. This 
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algorithm applies an ensemble learning method that integrates convolutional neural network 

(CNN), Transformer and SVM in RBP prediction by utilizing both intermolecular protein context 

and sequence-level information. Pretraining methods including self-supervised and transfer 

learning are used to alleviate model overfitting and increase model robustness in the CNN 

and Transformer. We show HydRA outperforms all available state-of-the-art RBP classifiers 

and additionally recognizes known RNA-binding related elements with Occlusion Map, a 

model interpretation approach originally developed in the computer vision arena. Our results 

also suggest that intermolecular protein context is critical for identifying novel RBPs whose 

sequence or structural patterns may not be easily captured. 

In summary, HydRA predicted 1,487 unclassified RBPs. Using enhanced CLIP 

(eCLIP), we validated a subset of HydRA predictions, including previously reported but not 

characterized RBPs HSP90A and the YWHA family of proteins, as well as the novel RBP 

candidates INO80B, PIAS4, NR5A1, ACTN3, and MCCC1, corroborating bona-fide RBPs and 

providing molecular insights into biological functions. For these RBP candidates, we 

experimentally verified RNA-binding activity for novel RNA-binding domains predicted by 

Occlusion Map.  These results showcase HydRA as the highest accuracy RBP classifier to 

date, and the first capable of predicting RNA-binding domains from unconventional RBP 

candidates at amino-acid resolution.    

 

RESULTS 

 

Improved SONAR models penalize low PPI neighborhood and increasing network 

density.  

 

We previously developed SONAR (1.0), an SVM-based machine learning algorithm that 

leverages large-scale experimental protein-protein interaction (PPI) data (without protein 

sequence information) to predict unannotated RBPs 16. Employing the BioPlex PPI dataset 17, 

SONAR was able to predict RBPs with high specificity and sensitivity with BioPlex proteins 

and previously compiled RBP list.  The success of SONAR was based on observations that 

an unusually high proportion of proteins that associate with RBPs (via RNA-dependent and 

independent interactions) are themselves RBPs. As such, SONAR’s ability to accurately 

identify RBPs depended on the density of protein-protein interactions centered on an 

interrogated protein (the number of “edges”) or the completeness of the local PPI network. To 

illustrate, known RBPs that were assigned low SONAR scores (false negatives) harbored 

significantly fewer PPI edges than correctly predicted known RBPs (true positives) (Figure 

1A). To evaluate the extent that the density of PPI networks affects the predictive power of 
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SONAR, we constructed a more comprehensive PPI network by combining BioPlex2.0 17 with 

Mentha 18, a collection of physical protein-protein interaction from MINT 19, BioGRID 20 and 

IntAct 21. We refer to this ensemble network as Mentha-BioPlex (MB). Next, we incrementally 

reduced the network density of Mentha-BioPlex by randomly removing a percentage of edges 

and determined the ROC-AUC value of SONAR by 10-fold cross-validation. Indeed, both 

sensitivity and specificity (measured by ROC-AUC values) of SONAR improves with more 

comprehensive PPI networks (Figure 1B). To evaluate the predictive power of SONAR on a 

corrupted network, we incrementally removed edges from a shuffled Mentha-BioPlex network 

such that the number of edges were unchanged, but edges were randomly connected to 

maintain network topological properties (i.e. node degree distribution). The resulting ROC-

AUC values of SONAR models using shuffled Mentha-BioPlex networks were significantly 

lower (< 0.65) with large standard error of the mean compared with that of the unshuffled 

network (Figure 1B). This result demonstrates that low quality PPI data will weaken the 

predictive power of SONAR. To alleviate the impact of PPI sparsity on SONAR performance, 

we added an indicator feature in our algorithm to mark proteins with limited PPI information, 

which led to an increase in ROC-AUC value by 0.016 (from 0.767 to 0.783) for the SONAR 

model with BioPlex network (Figures 1C and 1D) and an increase in Precision-Recall-Area 

Under Curve (PR-AUC) value by 0.108 (from 0.347 to 0.455) (Figure S1B). We refer to this 

revised model as SONAR2.0. By replacing BioPlex network with the denser Mentha-BioPlex 

network (Figures 1C and S1A), we improve SONAR1.0’s performance by another 0.078 (from 

0.783 to 0.861, Figure 1D) in ROC-AUC and 0.108 (from 0.455 to 0.563) in PR-AUC (Figure 

S1B).  

Next, we evaluated if adding functional protein association data from the Search Tool 

for the Retrieval of Interacting Genes/Proteins (STRING) database would further improve 

SONAR2.0 as functional protein association data had previously been successfully applied in 

other PPI-based protein prediction tasks22. Like SONAR2.0, we set an indicator feature to 

penalize proteins with few interacting neighbors within its local neighborhood in the STRING 

network. With the extended protein networks, we obtained an improved RBP classifier 

(SONAR3.0) using an SVM model with a radial basis function (RBF) kernel (Figures 1E and 

S1A), where the prediction performance increased by 0.020 in ROC-AUC and 0.051 in PR-

AUC (Figures 1D and S1B). Specifically, the precision-recall analysis highlights the 

advantage of incorporating more protein-protein interaction and functional association 

information to densify our networks and minimize false positives (Figure S1B). For instance, 

the precision of the model increased from 0.41 to 0.57, 0.73 and 0.76 at the 0.3 recall level. 

Setting a cutoff to recover the top 30% of known RBPs ranked by classification scores, we 

obtain 86 false positive predictions (precision = 0.41) using SONAR1.0, 43 false positives 
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using SONAR1.0 with an updated BioPlex network, 21 false positives using SONAR2.0 (with 

Mentha-BioPlex) and only 18 false positives using SONAR3.0 (Figure S1B).  

 

HydRA-seq classifies RNA-binding proteins from protein sequence by ensemble 

learning.   

We next set out to augment the HydRA workflow to enable classification of RBPs and non-

RBPs based on the combination of two components: 1) SONAR3.0 which captures the RNA-

binding-related intermolecular patterns (Figure 1E), and 2) RNA-binding-related patterns from 

primary amino acid sequences (referred to as HydRA-seq) (Figures 2A-2D). The primary 

amino acid sequence of protein domains has been previously leveraged by RBP classifiers 

with classic machine learning models to predict RNA binding capacity of canonical RBPs with 

well-defined RNA binding domains 7–11. Expectedly, these sequence-based classifiers perform 

poorly on experimentally defined RBPs that do not have canonical RNA binding domains 

(Figures S2A and S2B).  

To combine the strength of both traditional machine learning models and deep learning 

models, we constructed three RBP classifiers with state-of-the-art machine learning 

technology using classical and novel sequence-based features which are generated from 

protein sequence. In the first classifier termed seqSVM, k-mer (sub-sequence of length k) and 

amino acid composition extracted from the amino acid sequences were used to train a support 

vector machine (SVM) with a radial basis function kernel (Figure 2A). For the second classifier 

called seqCNN, we employed a convolutional neural network (CNN) to learn features of RBPs 

from full-length amino acid sequences (Figure 2B). Briefly, an embedding layer pre-trained 

by BioVec 23 was employed to obtain a comprehensive representation of the biophysical and 

biochemical properties from each protein sequence, followed by convolutional and pooling 

layers that automatically extract and compress sequence-level features. Fully connected 

layers with non-linear activation units were added to further process the compressed features 

and generate final predictions. To avoid convergence of suboptimal solutions and accelerate 

the training process, seqCNN was initialized with weights from a convolutional autoencoder 

pretrained with all the protein sequences in our dataset before model training (see Methods). 

For the third classifier called ProteinBERT-RBP, protein sequences are fed into an attention-

based Transformer architecture designed for proteins (ProteinBERT) 15 to obtain predicted 

RNA-binding propensities (Figure 2C). ProteinBERT-RBP was pretrained with ~106 million 

UniRef90 protein sequences and their corresponding functional annotations from the Gene 

Ontology database in a self-supervised manner, and then fine-tuned using our human RBP 

annotations. As a result, ProteinBERT-RBP digests each input protein sequence in two 

parallel paths, (1) local features of the sequence and (2) global function of the sequence based 

on the knowledge obtained in the pretraining stage, while the two paths interact and guide the 
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learning process of each other via attention mechanism and generate predictions on RNA-

binding propensity. 

ROC-AUC and precision-recall analysis with the held-out test set demonstrates good 

predictive power of seqCNN, seqSVM and ProteinBERT-RBP for individually identifying RBPs 

(Figures 2E and S2C). These classifiers identify RBPs with characterized RNA targets (CLIP-

based data, collected in CLIPdb 24) or known RNA-binding or RNA-processing related 

domains (referred to as “characterized RBPs”) with approximate ROC-AUC values of 0.80, 

but performance is diminished for identifying RBPs lacking known RNA-binding domains 

(referred to as “uncharacterized RBPs”) (Figures S2D and S2E). To improve the prediction 

performance for both characterized and uncharacterized RBPs we designed a false discovery 

rate (FDR)-based ensemble approach to integrate the predictions from seqCNN, seqSVM and 

ProteinBERT-RBP (Figure 2D). This strategy utilizes the joint probability of each classifier’s 

predictions of being false discoveries and outputs the complementary probability of this joint 

probability as the ensemble classification score (more details in Methods). We referred to this 

ensemble classifier as HydRA-seq and find that HydRA-seq outperforms all of its sub-

components (i.e. seqCNN, seqSVM and ProteinBERT-RBP) (ROC-AUC=0.842 and PR-

AUC=0.643, Figures 2E and S2C). In particular, HydRA-seq exhibits better predictive power 

for identifying uncharacterized RBPs (ROC-AUC=0.782 and PR-AUC=0.347) when compared 

to individual seqCNN, seqSVM and ProteinBERT-RBP predictions (Figures S2D and S2E). 

HydRA-seq, trained with data only from the human proteome, also showed better performance 

on both characterized and uncharacterized RBPs than the current state-of-the-art sequence-

based RBP classifier, TriPepSVM, which was trained with all the RBPs and non-RBPs in 

human, Salmonella and E.coli (Figures S2D and S2E, HydRA-seq: ROC-AUC = 0.913 and 

PR-AUC = 0.693 for characterized RBPs; TriPepSVM: ROC-AUC = 0.890 and PR-AUC = 

0.508 for characterized RBPs, ROC-AUC = 0.719 and PR-AUC = 0.293 for uncharacterized 

RBPs).  

We next tested whether HydRA-seq can distinguish known RNA-binding domains from 

other protein domains. We computed HydRA-seq classification scores for sequences 

collected from Pfam database corresponding to RNA binding domains (K homology domain, 

RNA recognition motif, DEAD box, cold-shock domain and like-SM domain) in different 

species. Expectedly, these sequences generally resulted in high classification scores (Figure 

2F). In contrast, sequences from protein domains that are not commonly found in RBPs such 

as protein-protein interaction (BTB, IgG), membrane associated (transmembrane, C2), and 

src homology 2 domains overall had lower classification scores than the known RBDs (Figure 

2F). These results demonstrate the capacity of our sequence-based RBP classifiers to 

distinguish sequence patterns that contribute to RNA-binding activity with domain level 

resolution. 
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HydRA achieves state-of-the-art RBP classification performance. 

Given that SONAR3.0 and HydRA-seq individually predict RBPs with high accuracy even 

though they are trained using different protein features, we reasoned that a combined model 

would show enhanced performance compared to the individual ones. Indeed, we observed 

that combining prediction scores from SONAR3.0 and HydRA-seq components (i.e. seqCNN, 

seqSVM and ProteinBERT-RBP) using the FDR-based probabilistic ensemble approach 

(Figure 3A), produced a new model (herein termed HydRA) which outperformed its sub-

classifiers with higher specificity and sensitivity displayed by AUC of 0.895 in ROC analysis 

and an AUC of 0.745 in precision-recall analysis within the hold-out test set (Figures S3A and 

S3B, Table S1). We next compared the performance of HydRA with other published RBP 

classifiers, namely SONAR, TriPepSVM, SPOT-seq, RNApred, catRAPID signature and 

RBPPred, and observed higher specificity and sensitivity than all other classifiers in the hold-

out test set as shown in ROC-AUC and PR-AUC analyses (Figures 3B and S3C). High-quality 

protein structures predicted from amino acid sequences have recently become available for 

most natural proteins with AlphaFold225. To test if predicted protein structures can further 

improve our RBP predictions, we constructed a group of structure-based RBP classifiers with 

AphalFold2 predictions as input using a graph neural network widely used in structure-based 

models for protein prediction problems 26–28. Optimal models (referred to as strucGNN1) were 

chosen after iterative feature selection and model tunning with our validation set (Table S4). 

We also obtained another structure-based RBP classifier by finetuning a pre-trained GNN-

based protein model with our training set (see Methods), referred to as strucGNN-MIF.  These 

strucGNNs achieve 0.813 - 0.827 in ROC-AUC analysis and 0.563 – 0.607 in PR-AUC 

analysis in the hold-out test set (Figures 3B and S3C).  

Next, we again grouped known RBPs into characterized and uncharacterized sets 

(Figure 3E) and showed that HydRA had higher recall, specificity, and precision than other 

classifiers (including HydRA sub-classifiers) for both characterized RBPs and uncharacterized 

RBPs that lack RNA-binding or -processing related domains and defined RNA targets (ROC-

AUC=0.945 and PR-AUC=0.784 for uncharacterized RBPs, ROC-AUC=0.854 and PR-

AUC=0.493 for uncharacterized RBPs, Figures 3F, S3E, S3F, and S3G). Notably, as shown 

above, TriPepSVM performed well for characterized RBPs but showed more degeneration for 

uncharacterized RBPs (Figure 3F). These results demonstrate that HydRA achieves state-of-

the-art predictive power for RBPs either with or without annotated RNA-binding domains, 

indicating that utilizing protein interaction and association information increases predictive 

power for RBPs with unknown RNA-binding signatures. This is also evident when we compare 

the performance of SONAR3.0 with the combination of HydRA’s sub-classifiers for 

uncharacterized RNA-binding proteins (Figures S3E and S3F). StrucGNNs displayed slightly 
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better performance than HydRA-seq for recognizing uncharacterized RBPs but showed 

inferior predictive power for characterized RBPs (Figures S2D and S2E). Similarly, we 

observed that incorporating predicted protein structure features into HydRA (referred to as 

“strucGNN1+HydRA” and “strucGNN-MIF+HydRA”) leads to a slight improvement for 

recognizing uncharacterized RBPs over HydRA but a slight degeneration on recognizing 

characterized RBPs (Figures 3F and S3G). Because these “strucGNNs+HydRA” models do 

not significantly improve the prediction performance on the overall RBP set (ROC-AUC=0.891 

– 0.896, PR-AUC=0.731 – 0.742) shown in Figure 3B, we chose not to include strucGNNs in 

the final HydRA model. 

Incidentally, while the HydRA model was only trained with human proteome and 

human RBP annotations, we observe that this model can also recognize RBPs from mouse, 

yeast and fly with substantial accuracy producing ROC-AUC values of ~0.8 and a PR-AUC 

range from 0.433 – 0.639 (Figures S4A and S4B). This result indicates the model succeeds 

in capturing the general RNA-binding associated features across species even just with 

learning from human RBPs. 

 We next examined the association between HydRA classification scores and RBP 

conservation. RBP annotations across multiple organisms (i.e. Homo sapiens, Mus musculus, 

Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans) and 

human cell lines (i.e. HeLa, HuH7, HEK293 and K562) collected from a previous study 29 

revealed that HydRA classifier scores positively correlate with the number of organisms in 

which a given RBP has been defined (Figure 3C). HydRA classification scores also positively 

correlated with the number of cell-types with validated RNA-binding activity for a given RBP 

(Figure 3D). These results indicate that HydRA scores are clear indicators of the reliability of 

RBP annotations and establish HydRA analysis as a complementary technique for 

experimental high-throughput RBP discovery approaches.  

 HydRA predicts 1,487 human RBP candidates out of the 18,659 proteins that exist in 

the Mentha-BioPlex network, at a false positive rate of 10% (Figure 3E, Table S2). We 

observed that HydRA-predicted candidate RBPs are, like known RBPs, significantly enriched 

in intrinsically disordered regions (IDRs) compared to a background of all human proteins (p 

< 10-23, Mann–Whitney U test). We defined negatively scored predictions as proteins with 

HydRA scores lower than 50% of the human proteins and these were not statistically different 

from the background (Figure 3G). We also found candidate RBPs had significantly larger 

proportion of the amino acids arginine, tyrosine and lysine inside intrinsically disordered 

regions (IDRs), which are biophysical hallmarks of RNA-binding 29,30, compared to background 

(p < 1e-20, Mann–Whitney U test)) and negative predictions (p < 1e-55, Mann–Whitney U test) 

(Figure 3G). These observations demonstrate that HydRA candidate RBPs share similar 

properties with known RBPs and that mechanisms of IDR-based RNA binding may be 
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widespread among known and unconventional RBPs. Gene ontology analysis of HydRA RBP 

candidates shows an enrichment for functional categories such as histone modification, DNA 

replication, and actin cytoskeleton organization, potentially implying RNA-binding functionality 

for co-transcriptional processes and RNA localization (Figure S3H). Uncharacterized RBPs 

and candidate RBPs can be prioritized by implied biological functions and HydRA predictive 

scores to explore new RBP classes and RNA-binding landscapes.   

 

HSP90 is an RBP that binds 3’UTRs of mRNA encoding other heat-shock proteins  

HydRA predicts functional RNA-binding for 1,721 uncharacterized RBPs without known RNA-

binding domains, RNA-binding functionality, or RNA-targets (Figure 3H). To illustrate the 

utility of HydRA to discover novel RBPs with no previous experimental evidence to support a 

role in RNA binding, we selected the Heat Shock Protein 90 Alpha Family Class A Member 1 

(HSP90AA1) as a high-scoring (HydRA score: 0.968), uncharacterized RBP of substantial 

biological interest with a classical role as a molecular chaperone that controls cellular 

homeostasis (Figure 3H). While an HSP90 homolog in tobacco plants was found to interact 

with the genomic RNA of the Bamboo mosaic virus 31, there has been no transcriptome-wide 

characterization of HSP90AA1 as a functional RBP in mammalian systems. We performed 

eCLIP analysis using V5-tagged HSP90AA1 transiently expressed in HEK293 cells (Figure 

S5A). We obtained highly reproducible binding profiles when compared to control eCLIP of 

V5 tag expressed without HSP90AA1(Figure S5B). Combined HSP90AA1 eCLIP replicate 

libraries yielded 30,406,215 non-redundant sequenced reads that uniquely mapped to 17,340 

annotated protein-coding pre-mRNAs (23,551,600 reads, 77.46%) and noncoding genes such 

as lincRNAs (929,961 reads, 3.06%), miRNAs (19,498 reads, 0.06%) and tRNAs (9,590 reads, 

0.03%). We identified 480 reproducible binding sites (eCLIP peaks) on 225 target genes. 

Enriched binding motifs were determined from these binding sites with HOMER 32 (Figure 

S5E).  We found that HSP90 RNA binding sites were highly enriched in the 5' and 3' UTRs of 

target RNAs (Figures S5C and S5D). Gene ontology analysis of the top HSP90AA1 RNA 

targets revealed an enrichment for genes related to heat response, RNA metabolism, and 

G2/M phase cell cycle regulation (Figure 4A). Interestingly, most mRNA-targets related to 

these terms contained HSP90AA1 binding sites within 3'UTR regions. Many of the mRNA-

targets related to heat response terms, such as transcripts encoding the HSP70 components 

HSPA1B and HSPA6, are involved in the HSP90 protein folding pathway (Figure 4B). HSP40, 

HSP70 (composed of subunits that include HSPA1B, HSPA6, and HSPA13), and 

PTGES3/p23, which itself is more recently discovered as an RBP 33, are HSP90 chaperones 

that help recognize unfolded client proteins, deliver the unfolded proteins to HSP90, and 

facilitate release of the folded client protein (Figure 4C) 34. As an orthogonal validation of 

these HSP90AA1 mRNA-targets, we performed RNA immunoprecipitation followed by qPCR 
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(Figures S5F and S5G) and observed significant enrichment of mRNAs that encode proteins 

involved in HSP90 protein folding (HSPA1B, HSP6, HSP40) and RNA metabolism (MBNL1 

and CNOT1) but not the mRNAs encoding ACTIN or GAPDH. These results reveal a highly 

specific RNA-binding landscape for HSP90AA1 that likely regulates chaperone responses to 

cellular stress.   

 

Whole-transcriptome characterization of YWHAG/H/E/Z as RNA-binding proteins 

YWHA (14-3-3) is a family of multifunctional proteins that work as phosphor-binding adapters, 

scaffolding proteins, and protein chaperones. They are known for their involvement in the 

critical processes of cancers (such as apoptosis, cell cycle progression and autophagy) and 

neurological disorders 35–39. Interestingly, all the members of this family were assigned with 

high HydRA scores (Figure 3H); and while they have been identified as RBP candidates in 

one or more high-throughput screens 5,6,30,40,41, genome-wide RNA targets and RNA-binding 

functionality have not been confirmed for this protein family.  

Here, we present a transcriptome-wide characterization of RNA-binding sites of 

YWHAH, YWHAG, YWHAE and YWHAZ proteins with eCLIP technology using V5-tagged 

proteins transiently expressed in HEK293 cells (Figure S6B). With the peak calling algorithm 

CLIPper, we identified 11,187 binding sites (eCLIP peaks) over the transcriptome with 

stringent threshold (see Methods) shared by YWHAG eCLIP replicates, 4,506 common 

binding sites in YWHAH replicates, 2,939 common binding sites for YWHAE and 308 common 

binding sites for YWHAZ (Figure S6A) with their enriched binding motifs on the RNA targets 

determined by HOMER 32 (Figure S6E). Three of the four proteins (viz. YWHAG, YWHAH and 

YWHAE) have their binding sites enriched in the protein coding (CDS) and 5'UTR regions of 

mRNA molecules and under-presenting in intronic regions, while the binding sites of YWHAZ 

are slightly enriched in 5'UTR and proximal intronic (defined as the intronic regions that are 

with the distance < 500 bp from exon-intron junction) regions (Figures 4D and S6C). 

Furthermore, we found high overlap in the RNA targets of YWHAG, YWHAH and YWHAE, 

where about 70% of the RNA targets of YWHAH and YWHAE are shared with YWHAG 

(Figure 4E). The locations of the binding sites of YWHAH and YWHAE are also highly 

correlated with YWHAG as we plotted the density of sequence reads around YWHAG binding 

sites (Figure 4F) while YWHAZ, RBFOX2 and negative controls (i.e. the reads from size-

match INPUT sample of YWHAG and empty vector) shows no significant binding behaviors 

around YWHAG’s binding sites. An example of YTDC1, a regulator of alternative splicing, was 

shown with genome browser tracks (Figure S6D). GO analysis of the common RNA targets 

of these three proteins shows an enrichment in RNA splicing and translational regulation 

process (Figure S6F). All of these results suggest that YWHAG, YWHAH and YWHAE are 
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probably working synergistically or antagonistically on RNAs and may participate in the 

regulation of RNA splicing and translation processes.  

 

Occlusion Mapping interprets sequence-based RBP prediction and highlights 

functional elements in RBPs  

In computer vision, occlusion analysis is widely used to interpret the validity of machine 

learning models. This analysis tests the impact of occluding a sub-region of the image on the 

inference step to determine if this sub-region is essential for the model to recognize the identity 

of the image. We carried out an equivalent procedure for RBP classification with the sequence-

based component of HydRA, referred to here as Occlusion Mapping (Figure S7A). Occlusion 

Mapping eliminates a window of twenty consecutive amino acids from the protein sequence 

in the inference step and compares the model output score with the score from the intact 

protein sequence i.e. the difference of the scores is denoted by ∆score after accounting for 

protein lengths and model-specific score distributions to determine whether or not the 

sequence is pertinent to the protein’s ability to bind RNAs (Figure S7A, details in Methods). 

A negative ∆score indicates that the corresponding region of the occluded window contributed 

positively to the RNA binding activity. We determined a region’s (occlusion window) predicted 

ability to bind RNA from the p-values generated from the ∆scores of a that specific region. We 

define continuous stretches of occlusion windows with p-values < 0.05 as “predicted RNA-

binding regions” (pRBRs) and with p-values < 0.001 as stringent pRBRs. 

  We display the occlusion maps for eight well known RBPs that are involved with distinct 

roles in RNA processing ranging from splicing to mRNA decay and translation (RBFOX2, 

ZFP36, ATXN2 and RPLP0 in Figure 5A; and PUF60, LSM11, EIF4E and YBX2 in Figure 

S8A). In RBFOX2 (Figure 5A), we observed a contiguous area of negative ∆scores with 

stringent pRBRs that correspond well with its known RNA recognition motif (RRM). We also 

found a contiguous area with weaker but significant occlusion signals (pRBRs) (p<0.05, 

Figure 5A) in a Calcitonin gene-related peptide regulator C terminal domain (Fox-1_C), which 

has been described to regulate alternative splicing events by binding to 5’-UGCAUGU-3’ 

elements 42. Similarly, we observed two peaks of stringent pRBRs in the two zinc finger 

domains (zf-CCCH) described to bind RNA in ZFP36 43. Since this zinc-finger domain consists 

of 22 amino acids, this demonstrates that our sequence-based classifier with occlusion map 

can recognize RNA-binding protein regions at high resolution. There are also strong 

correspondences between ∆score peaks within pRBRs/stringent pRBPs and diverse 

annotated RNA-binding domains found in ATXN2, RPLP0, PUF60, LSM11, EIF4E and YBX2 

(Figures 5A and S8A).  

In general, we discover that annotated RNA-binding or -processing related domains 

are 2.5X more likely to contain pRBRs (p<0.05) than non-RNA-binding regions of the human 
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proteins (Figure 5B) as evaluated by positive likelihood ratios (see Methods), while the ratio 

increases to 4.5X when observing stringent pRBRs (p<0.001) (Figure S8D). Additionally, the 

high-confidence RBDs, which are supported by experimentally identified RNA-binding 

peptides (referred to as RBDpeps) studies 6,44–46, are more enriched by pRBRs and stringent 

RBRs than the RBDs or RNA processing domains without no experimental evidence (Figure 

5B and S8D), indicating the robustness of Occlusion Map to detect bona fide RNA binding 

domains. In addition, although HydRA was not trained explicitly with RNA-binding annotations, 

it achieves slightly better performance on the domain-level characterization of RNA-binding 

elements than the baseline tools in the field, i.e. RNABindPlus and DRNApred, which were 

originally designed to predict RNA-binding residues in RBPs (Figure 5C). To discover 

potential new RNA-binding domains (RBDs) from the perspective of HydRA, we obtained 

occlusion score distributions for each human protein domain from the human protein 

sequences and visualized them as heatmaps (Figures 5D, S8B, and S8C), where domains 

are sorted by the mean of their occlusion score distributions. One-sample t-test and Benjamini-

Hochberg method for multiple test correction recognized the domains that have ∆scores 

significantly less than 0 (predicted RBDs) or larger than 0 (predicted non-RBDs). Domains 

with greater than 5 human protein members are included, 1,165 domains in total. We observed 

the majority of the RNA-binding and RNA-processing related domains (including LSM, CSD, 

RRM, KH, zf-CCCH, etc.) appear in the top 100 of the sorted domain list with significant p-

values (Figure S8B). A large majority of the bottom 100 domains are unrelated to RNA-binding 

or RNA-processing except RNA polymerase Rpb2 domain 7, which is known for DNA-binding 
47 and is not statistically significant (FDR-adjusted p-value = 0.102) (Figure S8C).  GSEA 

analysis also shows most of the known RBDs and RNA processing related domains are 

enriched in the top panel of this sorted list (normalized enrichment score = 3.237, p value < 

0.001, Figure 5E). Furthermore, many of the top binding domains with significant p-values (76 

out of 104 domains, FDR-adjusted p < 0.05) are not canonical RNA-binding domains or known 

to be related to RNA processing, thus we obtained a list of 76 new RNA binding domains from 

this analysis (Table S3). 

 

Validation of RNA Binding Activity and RNA-binding elements of Candidate RBPs. 

We next evaluated HydRA’s ability to predict RNA binding activity at the region level for a 

selection of candidate RBPs harboring domains with significant Occlusion delta scores.  We 

selected candidates with representative domains, such as zinc-finger (zf) and EF hand 

domains, that received top RBD predictive scores from occlusion map analysis (Figure S8B).  

Individual occlusion mapping across the 5 candidate RBPs INO80B, PIAS4, NR5A1, ACTN3, 

and MCCC1 revealed specific domain regions that are predicted to bind RNA (Figure 6A).  

We performed eCLIP on these V5 tagged RBP candidates, with and without these occlusion-
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predicted RNA-binding elements and assessed transcriptome-wide RNA targets (Figure 6B). 

In total, we obtained 48 eCLIP libraries (including SMInput) for these 5 candidate RBPs.  Each 

library was sequenced to 5.7 – 57.0 million reads, of which ~ 0.42 – 16.0 million reads mapped 

uniquely to the human genome.  We used a stringent peak-calling workflow that included both 

size-matched and V5-tag-only inputs as well as both Clipper48 and ChIP-R reproducible peak-

calling algorithms49 (Figure S9C), which identified between 110 (INO80B) and 2,849 (ACTN3) 

RNA-binding peaks per candidate (Figure 6D).  Ontology analysis of bound targets revealed 

that INO80B bound genes are involved in translation and have binding sites enriched in 5’UTR 

regions, PIAS4 bound genes are involved in signaling and differentiation and have sites in 

proximal intronic regions, NR5A1 bound genes are involved in mitosis with CDS binding sites, 

ACTN3 bound genes are involved in ER-stress with sites in 5’UTR regions, and MCCC1 bound 

genes are involved in cell morphology and polarity with sites broadly across 5’UTR, CDS and 

3’UTR regions (Figures 6C and S9D).  These RNA-binding profiles suggest roles for these 

candidates in regulating the cytoplasmic localization and/or translation of target genes in the 

cases of UTR and CDS binding, and alternative splicing regulation in the case of intronic 

binding.  

Removal of putative RNA-binding domains with significant delta-occlusion scores for 

these candidates did not influence expression of V5-fusions as assessed by western blot 

analysis (Figure S9A). However, absence of these predicted domains did result in 

substantially higher PCR cycle requirements (eCT values) to obtain eCLIP libraries from 

immunoprecipitated RNA (Figure S9B), indicating the importance of the removed domains for 

RNA-binding activity. By comparing the eCLIP peaks of the full-length proteins (FL) and 

domain-deleted proteins (DD) (Figure 6D), we observed that these putative RNA-binding 

domain deletions coincided with a global loss of 2,779 eCLIP peaks on 2,089 targets (out of 

2,849 peaks on 2,123 targets) for ACTN3, and 1,820 peaks on 1,576 targets (out of 1,855 

peaks on 1,597 targets) for MCCC1, 110 peaks on 151 targets (out of 110 peaks on 151 

targets) for INO80B, 2,308 peaks for eCLIP peaks on 1,187 targets (out of 2,308 peaks on 

1,187 targets)  for PIAS4, 232 peaks on 235 targets (out of 235 peaks on 238 targets) for 

NR5A1.  Analysis of the top 100 binding peaks for these RBP candidates upon candidate 

domain deletion revealed highly reproducible reduction in RNA-binding across these high 

confidence binding sites (Figure 6E).  This drastic loss of RNA-binding upon domain deletion 

demonstrates the high-resolution accuracy with which HydRA predicts RNA-protein 

interactions. Together these results validate the power of the HydRA workflow for both RNA-

binding protein (gene-level) and RNA-binding domain (amino-acid level) discovery.    

 

 

DISCUSSION 
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The rapidly growing importance of RBP biology and function in development and disease 

necessitates a comprehensive RBP census. Recently, several high-throughput biochemical 

approaches have expanded the number of putative RBPs in several cell-lines. In parallel, 

several computational approaches (RBP classifiers) have been developed to complement 

these RNA-interactome assays and achieve higher-accuracy RBP discovery. The resultant 

expanding RBP catalog presents a growing diversity of “unconventional” RBPs that do not 

contain well-defined RNA-binding domains29. These unconventional RBPs present obstacles 

to current RBP classifiers (see Figures S2A, S2B, 3B and S3C) resulting in impaired accuracy. 

To overcome these obstacles, we developed HydRA as a learning based RBP classifier, that 

recognizes RNA-binding proteins based on both external protein context (using protein-protein 

interaction networks) and internal amino acid sequence signatures. HydRA employs this 

external-context:internal-pattern combination analysis to achieve unprecedented sensitivity, 

specificity and precision for predicting protein-RNA interactions. The use of deep learning 

enabled our Occlusion Map application that interprets the HydRA model to predict RNA-

binding amino acid sequence regions within proteins without additional training or prior RNA-

binding domain information. A proteome-wide HydRA search produced extensive candidate 

lists of both RNA-binding proteins and RNA-binding domains. We experimentally 

characterized the transcriptome-wide RNA-binding sites of five new RBPs identified by both 

HydRA and RNA-interactome capture studies, adding new insights into the functions of these 

proteins. We further experimentally validated the RNA-binding capability of five HydRA-

predicted RBP-candidates at amino acid level resolution, thereby elucidating previously 

unknown, conserved RNA-binding domains.   

In previous work, we proposed a PPI-based RBP classification algorithm, SONAR, 

which optimized performance across the proteomes of several species 12. One drawback of 

the SONAR approach is the emergence of false-negative predictions when the selected PPI 

information is limited (Figures 1A and 1B). HydRA alleviates this limitation with an upgraded 

protein-context component (SONAR3.0) which inherits the main features of SONAR but 

markedly improves performance by (1) employing a more comprehensive collection of 

experimental PPI data in place of any single high-throughput PPI study (2) incorporating more 

context information with a sub-component retrieving features from functional protein 

association network; (3) penalizing predictions inferred from inadequate PPI or functional 

association data. We combined SONAR3.0 with an added sequence-based component 

(HydRA-seq) aimed at recognizing new RBPs by detecting sequence-level patterns 

overrepresented in known RBPs. In this component, the RBP-exclusive sequence patterns 

are modelled and processed with a support vector machine model (seqSVM), a convolutional 

neural network (seqCNN), and an attention-based protein language model (ProteinBERT-
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RBP) respectively to infer RNA-binding capacity for any given protein. Using a probability-

based ensemble approach, we integrated the predictions of these three classifier pieces to 

obtain an ensemble classifier that achieves higher performance than each individual classifier 

alone, especially in the recognition of RBPs without annotated RNA-binding domains. The 

HydRA sequence-based component (HydRA-seq) not only outperforms current state-of-the-

art sequence-based RBP classifiers (such as TriPepSVM) but also enables the first domain-

level RNA-binding predictions using an Occlusion Map application.  Surprisingly, without 

including RNA-binding information (such as RBD annotations and RNA-binding residues) in 

the training process, the HydRA-powered Occlusion Map outperforms the baseline RNA-

binding residue predictors in recognizing RNA-binding domains. Notably, the SONAR3.0 

component of HydRA outperforms the sequence-based component and all other published 

RBP classifiers, all of which are sequence based. This PPI-component behavior suggests that 

a large portion of the RBP catalog, particularly unannotated RBP candidates, lack common 

sequence-level patterns that can be easily captured by current machine learning models, and 

that protein-protein interaction and functional protein association data provides highly 

informative patterns for classifying RBPs. Integrating the output from these two HydRA 

components yields an overall performance improvement compared to individual components, 

revealing that RNA-binding proteins are most accurately predicted when both external protein 

context and internal sequence signatures are leveraged.  

HydRA scores are highly correlated with the number of experimental studies that 

identify a given RBP as cross-linkable to RNA. This correlation demonstrates that HydRA can 

serve as a valuable complement for high-throughput RBP discovery approaches by scoring 

high probability candidates and reducing the false discovery rates. The sensitivity of the 

Occlusion Map approach from the sequence-based component of HydRA potentially extends 

HydRA’s applicability to in silico perturbation analyses to evaluate how protein sequence 

variations influence RNA-binding capacity. Moreover, since the HydRA framework does not 

depend on prior knowledge of RBPs (such as RNA-binding domains), this framework can be 

easily transferred and applied to RBP prediction in other species and even other protein 

function prediction problems with appropriate training dataset.  

We evaluated a representative set of HydRA-predicted RBPs by eCLIP to characterize 

transcriptome-wide targets. The previously uncharacterized RBP HSP90AA1 preferentially 

binds to transcripts encoding heat response proteins involved in the HSP90 protein folding 

pathway, and the uncharacterized RBP members of the 14-3-3 (YWHA) family of proteins 

targets genes involved in RNA splicing and translation processes. The 14-3-3 domain shared 

by the YWHA family members was predicted by occlusion analysis to contribute to RNA-

binding activity, and thus represents a previously uncharacterized RNA binding domain. 
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Enhanced CLIP binding profiles indicated potential synergistic or antagonistic cooperation of 

YWHAG/E/H binding to RNA targets. 

Many new candidate RBPs predicted by HydRA contain significant occlusion delta 

scores in domains not previously known to confer RNA-binding activity. These domains 

represent valuable additions to the existing catalogue of characterized RNA-binding domains.   

To verify RNA-binding for some of these candidate proteins and domains, we performed 

eCLIP using full-length and putative RNA-binding domain-deleted expression constructs. This 

approach demonstrated RNA-binding that was dependent on Occlusion Map-predicted 

domains including the PAPA-1 domain of INO80B, the PINIT domain of PIAS4, the zf-C4 

domain NR5A1, the EF-hand-CA-insen domain ACTN3, and the CPSase_L_D2 domain of 

MCCC1.  With future validation efforts, HydRA predicted RBPs from this study (with FPR=0.1) 

would add 1,487 new RBPs, with potentially a hundred new RNA-binding domains, to the 

catalog of annotated human RBPs.   

In conclusion, the HydRA algorithm is a powerful protein context and sequence-based 

method for the de novo identification of candidate RBPs and RNA binding regions. In silico 

analysis with HydRA accurately predicts the properties of known and novel RBPs including 

functional domains. Future efforts to validate and characterize the extensive list of HydRA 

predicted RBP candidates and novel RNA-binding domains will deepen our understanding of 

RBP roles in diverse biological processes. HydRA suggests a general machine learning 

framework for integrating protein-protein interaction and protein sequence information for the 

predictions of RBPs, and potentially other protein classes, whenever both features contribute 

substantially to functional activity. Lastly, given the accurate knowledge learned from RBPs, 

HydRA, particularly its generative component (i.e. ProteinBERT-RBP), also provide an 

opportunity for novel RBP design, which could be coupled with current protein design workflow 

and other protein properties classifiers to design novel RBPs that are more suitable for specific 

biological tasks.  
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MAIN FIGURE TITLES AND LEGENDS 

Figure 1. Protein Interaction and Association based (SONAR3.0) classifier presents 

upgraded RBP classification performance from SONAR. 

A. Violin plots showing the number of Level 1, Level 2, and Level 3 neighbors for RBPs that 

were scored correctly (true positive) or incorrectly (false negative) by SONAR. The median 

and mean between true positive and false negative RBPs is significant for all levels (Level 1, 

p<1e-23; Level 2, p<1e-37; Level 3, p<1e-33 by one-side Mann-Whitney U test). The median 

of each population is shown.  

B. Positive correlation between network density and ROC-AUC value. Random shuffling of 

edges resulted in no correlation with ROC-AUC value. Error bars represent variability from 10 

replicates. 

C. The evolution from SONAR1.0 to SONAR3.0 where new PPI data type was introduced in 

each version. 

D. Schematic of the PIA-based classifier that takes features extracted from protein-protein 

interaction (PPI) network and protein association network as input. Support vector machine 

(SVM) with radial basis function (RBF) kernel was employed for mathematical modelling. The 

local PPI network (the first three levels of neighborhoods) and the local protein association 

network (only the direct neighbors) are first retrieved for the protein of interest. Features are 

obtained by calculating the percentage of known RBPs in each neighborhood and an indicator 

variable is added for each network to penalize the case with low number of protein neighbors. 

E. ROC-AUC analysis to compare the predictive power of SONAR1.0 with BioPlex network, 

SONAR2.0 with BioPlex network, SONAR2.0 with mentha-BioPlex (MB) network and 

SONAR3.0 with mentha-BioPlex and STRING (MBS). Inset: Bar graph of ROC-AUC values 

 

Figure 2. HydRA-seq classifies RNA-binding proteins. 
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A-D. HydRA-seq model that consists of sub-classifiers including seqSVM, seqCNN and 

ProteinBERT.  

A. Schematic of seqSVM model that is based on SVM with RBF kernel employing k-mer, 

predicted secondary structures and amino acid composition in the prediction.  

B. Schematic of seqCNN model that is comprised of 1 embedding layer, 2 set of convolutional 

and pooling layers, 1 global pooling layer, 2 fully connected layers and 1 output layer and 

takes protein sequence and predicted secondary structures as input. Only 1 set of 

convolutional and pooling layers are shown. Each layer (except embedding and pooling layers) 

is coupled with a batch-normalization layer which is not shown in the diagram.  

C. Schematic of ProteinBERT classifier. The query protein sequence was first fed into 6 

sequential ProteinBERT modules in each of which two parallel neural networks were applied 

to extract and process the sequence (i.e. local presentation) and functional properties (i.e. 

global presentation) of the protein respectively while attention mechanism were used to 

integrate these two types of information. The output embedding vector was then conveyed 

into a fully connected neural layer to generate the classification score (ScoreProteinBERT-

RBP). 

D. Probability-based ensembling approach that convert the classification scores from the three 

RBP classifiers into the  overall sequence-based RBP score (ScoreHydRA-seq). False 

discovery rate of each classifier’s prediction was calculated for each protein and was used to 

generate the ScoreHydRA-seq. 

E. We used ROC-AUC analysis to evaluate the performance of seqCNN, seqSVM, 

ProteinBERT and the ensemble classifier (denoted as “HydRA-seq”) of these three classifiers. 

Inset: Bar graph comparing ROC-AUC values. Inset: Bar graph comparing ROC-AUC values.  

F. Classification scores that are generated by the ensemble classifier of seqCNN, seqSVM 

and ProteinBERT for the amino acid sequences from five RNA-binding domains (RBDs) and 

five domains unrelated to RNA processing (non-RBDs). Th five RBDs are K homology (KH) 

domain, RNA recognition motif (RRM) domain, DEAD box (DEAD) domain, cold-shock domain 

(CSD) and like-SM (LSM) domain. The non-RBDs are C2 domain, BTB domain, Src homology 

2 (SH2) domain, immunoglobulin (Ig) domainand 7 transmembrane (7tm) domain. 

 

Figure 3. A novel sequence-based approach to recognize RBPs.  

A. The HydRA architecture. The sequence and protein interaction/association neighborhoods 

of the query protein are fed into four sub-classifiers (i.e. SONAR3.0, seqCNN, seqSVM and 

ProteinBERT) whose output scores are further integrated by the probability-based ensembling 

method into final RBP prediction score (ScoreHydRA).  

B. Comparison of current available RBP classifiers according to ROC-AUC analysis within the 

hold-out test set. Area under curve (AUC) values are indicated for each classifier. 
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C. Box plots showing the correlation between the HydRA scores of RBPs and the number of 

species in which these RBPs have been reported to bind RNA according to the review by 

Hentze et al.(Hentze et al., 2018b). 

In the box plots, the lower and upper hinges denote the first and third quartiles, with the 

whiskers extending to the largest value less than 1.5× the interquartile range. Flier points are 

those past the ends of whiskers, considered as outliers.  

D. Box plots showing the correlation between the HydRA scores of RBPs and the number of 

human cell lines in which these RBPs have been reported to bind RNA according to the review 

by Hentze et al.(Hentze et al., 2018b).  

E. We grouped human proteins into 4 categories. For proteins that are previously reported as 

known RBPs, we further grouped them to “Characterized known RBPs” and “other known 

RBPs” based on whether they have characterized RNA-binding domains or CLIP data 

showing their binding preference. For the rest of proteins, we marked them as “HydRa RBP 

candidates” if the proteins have HydRA score higher than the score threshold (with false 

positive rate  equal to 0.1), otherwise as “Others”. 

F. We explored the performance of each available RBP classifiers by looking at their 

recognition capacity on sub-categories of known RNA-binding proteins via ROC-AUC analysis 

within the test dataset.  

G. We obtained a list of 1,487 candidate RBPs (previously unknown for RNA-binding) with 

HydRa by setting the false positive rate as 0.1. We compared the physicochemical properties 

(i.e. the isoelectric points of the proteins, the proportion of intrinsic disordered regions in the 

protein and the amino acid composition of the intrinsic disordered regions in the proteins) 

among known RBPs, candidate RBPs, low scored proteins by HydRA (referred to as non-

candidate proteins) and all proteins in our protein set. Density curve was plotted to show the 

difference of each categories in isoelectric points and reverse cumulative frequency curves 

are showing the difference of each categories in the relative size of intrinsically disordered 

regions (IDRs) in each proteins and the composition of several RNA-binding-related amino 

acids in the IDRs of each proteins. 

H. Venn diagram presents the relationship among previously reported RBPs (“Known RBPs”), 

HydRa predicted RBPs and characterized RBPs. Highly scored uncharacterized RBPs, 

HSP90AA1, YWHAH, YWHAE and YWHAZ together with YWHAG, are selected for further 

exploration in this study. 

 

Figure 4. eCLIP analysis discovers HSP90 as an RBP that binds mRNA encoding other 

heat-shock proteins, and YWHA (14-3-3) family that binds RNAs with similar binding 

preference across the transcriptome. 
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A. Gene ontology enrichment analysis for the 100 top HSP90 RNA targets using the Enrichr 

Gene Ontology enrichment tool identified GO terms related to heat response, mRNA 

metabolism/processing, and cell cycle G2/M phase. RNAs related to the GOs are indicated by 

the orange box. The blue box indicates the RNAs that are bound by HSP90A in their 3' UTR. 

B. Genome browser shots of HSPA1B (top) and HSPA6 (bottom), which both belong to the 

HSP70B complex, showing an enrichment of sequening reads in the 3' UTRs of both mRNAs 

in the HSP90A eCLIP-seq library but not in the input library or Control eCLIP-seq library. 

C. Shematic of the HSP90 protein folding pathway shows that many of the constituients in this 

pathway are RNA targets of HSP90A. 

D. Binding preference of YWHAG, YWHAH, YWHAE, and YWHAZ on different genomic 

regions measured by log2-transformed region enrichment Eregion (see Methods). The 

following genomic regions of a transcript are shown: 5'UTR (blue), 3'UTR (yellow), coding 

sequence (CDS, green), proximal introns (red), and distal intron (purple). 

E. The venn diagram for the overlap of RNA targets of YWHAG, YWHAH and YWHAE. 

F. Read density plot around the binding peak center of YWHAG across the transcriptome. The 

read density of the eCLIP IP samples of YWHAG, YWHAH, YWHAZ, RBFOX2, vector control 

and the size-match input samples of YWHAG is shown. 

 

Figure 5. Occlusion map enables model interpretation of HydRA Sequence Classifier 

and novel RNA-binding domain discovery.  

A. Occlusion Maps of several known RBPs (including RBFOX2, ZFP36, ATXN2 and RPLP0). 

The coordinates of protein domains, compositional bias and RBDpeps are shown. Protein 

regions that have ∆score < 0 are colored with purple, while those with ∆score > 0 are colored 

with blue in the middle panel. The regions with significant p values are also marked in the 

bottom track: skyblue for p<0.05 and dark blue for p<0.001. 

B. We grouped the protein domains in known RBPs to four categories: RNA-binding domains 

(RBDs) that are supported by RNA-binding peptide studies, RBDs that lack support from 

current RNA-binding peptide studies, other domains with and without evidence from RNA-

binding peptide studies. The bar plot represents the percentage of the domains within each 

category that have  ≥ 1 occluders with significant negative ∆scores (p-value < 0.05). 

C. To evaluate the domain-level RBD detection performance, the positive likelihood ratio at 

different sensitivity level were visualized for baseline algorithms for RNA binding-residue 

prediction (DNAPred and RNABindPlus) and HydRa occlusion map. 

D. A heatmap showing the distribution of occlusion scores for each human protein domains 

(with more than 5 human protein members). Domains are sorted by their average occlusion 

scores from small to large. Protein domains that are already known for RNA-binding or 

involvement in RNA processing are marked in red in the first annotation bar (on the right side) 
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of the heatmap. The second annotation bar shows the predicted RBD (mean > 0 and FDR 

adjusted p-value < 0.05, one-sample t-test) in green and predicted non-RBD (mean > 0 and 

FDR adjusted p-value < 0.05) in dark blue. 

E. A GSEA plot showing that the set of RNA binding or RNA-processing related domains are 

enriched in the top part of the ranked list of human domains shown in B. The top portion of 

the plot shows the running Enrichment Score (ES) for the domain set of RBD/RNA-processing 

as the analysis walks down the ranked list. 

The middle portion of the plot shows where the domains with RNA--binding or RNA processing 

function appear in the ranked list of human domains. The bottom portion of the plot shows the 

value of the ranking metric as you move down the list of ranked genes. 

 

Figure 6. Novel RBPs and functional regions related to RNA-binding were predicted 

using HydRA and experimentally validated. 

A. Occlusion Maps of INO80B, NR5A1, PIAS4, ACTN3, and MCCC1. The coordinates of 

protein domains and compositional bias are shown. Protein regions that have ∆score < 0 are 

colored with purple, while those with ∆score > 0 are colored with blue in the middle panel. The 

regions with significant p values are also marked in the bottom track: skyblue for p<0.05 and 

dark blue for p<0.001. 

B. The workflow to experimentally validate candidate RBPs and its corresponding predicted 

functional domain for RNA binding behavior. 

Original and truncated protein (with predicted functional domain deleted) were expressed in 

HEK293T cells followed by applying eCLIP experiments to explore their RNA-binding 

behaviors. 

C. Binding preference of INO80B, NR5A1, PIAS4, ACTN3, and MCCC1 on different genomic 

regions measured by log2-transformed region enrichment Eregion (see Methods). The 

following genomic regions of a transcript are shown: 5'UTR (blue), 3'UTR (yellow), coding 

sequence (CDS, green), proximal introns (red), and distal intron (purple). 

D. The bar plots showing the number of reproducible eCLIP peaks for full-length and truncated 

protein of INO80B, NR5A1, PIAS4, ACTN3, and MCCC1. 

E. The heatmap showing the binding strength (measured by log transformed fold-enrichment) 

across full-length (FL) and truncated (DD) protein samples on the 100 most significant peaks 

found in the full-length proteins. 

 

 

SUPPLEMENTAL FIGURE TITLES AND LEGENDS 

Figure S1: Related to Figure 1. Protein Interaction and Association based (SONAR3.0) 

classifier presents upgraded RBP classification performance from SONAR.  
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A. PPI network summary for BioPlex, Mentha-BioPlex and STRING. Notably, only predicted 

PPIs of STRING network were used in this study. 

B. Precision-recall AUC analysis of classifiers using SONAR1.0 with BioPlex network, 

SONAR2.0 with BioPlex network, SONAR2.0 with MB network and SONAR3.0 with MBS 

networks. The grey dashed line represents the expected performance of random models and 

the black dashed lines mark the precision of each classifier at a recall of 30%. 

 

Figure S2: Related to Figure 2. The performance of our sequence-based classifiers. 

A. ROC-AUC analysis showing the performance of TriPepSVM, SPOT-seq, RNApred, 

catRAPID and RBPPred on recognizing “uncharacterized known RBPs” in our test dataset. 

B. Precision-recall analysis showing the performance of TriPepSVM, SPOT-seq, RNApred, 

catRAPID and RBPPred on recognizing “uncharacterized known RBPs” in our test dataset.  

C. Plot of the precision-recall analysis of seqCNN, seqSVM, ProteinBERT and Sequence 

Classifier (Combined). The theoretical random performance is shown as a dashed line. 

D-E. We explored the performance of sequence-based HydRa classifiers by looking at their 

recognition capacity on sub-categories of known RNA-binding proteins (i.e. “characterized” 

and “uncharacterized” known RBPs) via ROC-AUC and precision-recall analysis within the 

test dataset. The performance of TripPepSVM and strucGNNs are also shown in the plots. 

 

Figure S3: Related to Figure 3. Comparing classification performance of RBP classifiers. 

A. Plot showing the ROC-AUC analysis of each sub-classifier (component) in HydRA. The 

theoretical random performance is shown as a dashed line. 

B. Plot showing the precision-recall analysis of each sub-classifier (component) in HydRa. 

The theoretical random performance is shown as a dashed line. 

C. The plot of precision-recall analysis that compares the classification performance of current 

RBP classifiers (HydRA, SONAR (trained and test with Mentha-BioPlex network), TriPepSVM, 

SPOT-seq, RNApred (aac mode), catRAPID signature and RBPPred). The theoretical random 

performance is shown as a dashed line.  

D. Bar plots showing the classification performance of current RBP classifiers with metrics 

such as sensitivity, specificity, precision, accuracy, Matthews correlation coefficient (MCC), 

balanced accuracy and f1 score. The classification score threshold for each classifier was 

defined by their original papers (or the default setting of the software), while the classification 

score threshold of SONAR and HydRa was determined by keep the false positive rate as 0.1 

(as mentioned in the main text). 

E-G. We explored the performance of each sub-classifiers of HydRA, strucGNN+HydRa and 

other available RBP classifiers  by looking at their recognition capacity on sub-categories of 
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known RNA-binding proteins (i.e. “characterized” and “uncharacterized” known RBPs) via 

ROC-AUC and precision-recall analysis within the test dataset.  

H. The enriched GO terms in HydRA candidate RBPs. 

 

Figure S4: Related to Figure 3. HydRA model trained with human RBPs displays decent 

predictive power on RBPs from other organisms.  

A-B. Plot showing the ROC-AUC (A) and Precision-Recall (B) performance of HydRA and its 

sub-classifiers (SONAR3.0 and HydRA-seq) on RBPs from mouse, fly and yeast respectively. 

To be noticed, the HydRA model and its sub-classifiers are trained with human proteome only. 

The theoretical random performance is shown as a dashed line. 

 

Figure S5: Related to Figure 4. eCLIP analysis discovers HSP90 as an RBP that binds 

mRNA encoding other heat-shock proteins, and YWHA (14-3-3) family that binds RNAs 

with similar binding preference across the transcriptome. 

A. Western blot showing immunoprecipitation of HSP90-V5 in HEK293 cells transiently 

transfected with plasmids expressing V5-tagged HSP90 but not in cells transfected with empty 

vector (Control). The orange dotted box shows the region of the membrane that excised and 

RNA isolated for library preparation. 

B. eCLIP-seq reads were mapped to the human genome (hg19) to evaluate RNA expression. 

Overlap of significant binding peaks on RNAs for each of the replicate HSP90-V5 eCLIP-seq 

libraries and control library is shown. 

C. Binding preference of HSP90A on different genomic regions measured by log2-transformed 

region enrichment Eregion (see Methods). The following genomic regions of a transcript are 

shown: 5'UTR (blue), 3'UTR (yellow), coding sequence (CDS, green), proximal introns (red), 

and distal intron (purple). 

D. Histogram of region-based fold enrichment of sequencing reads for HSP90 (compared to 

its paired SMInput). 3’UTRs of genes show a higher enrichment of eCLIP signals than the 

other regions of genes. 

E. Motif logos with corresponding p value generated from significant eCLIP peaks of HSP90A. 

Top two motifs (ranked by p value) are shown for each protein. 

F. Western blot analysis to show successful immunoprecipitation of HSP90-V5 for RNA 

immunoprecipitation. HEK293 cells were transiently transfected with plasmids expressing 

empty vector (Control) or HSP90-V5. Endogenous HSP90B and HNRNPA2B1 serve as 

negative controls. TUBULIN serves as a loading control. Experiments were performed in 

biological duplicates. 

G. RNA immunoprecipitation was performed using a V5 antibody as validated in (G). The 

relative fold change enrichement of mRNAs by HSP90 was determined by qPCR. Values are 
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fold change ± s.d. for biological duplicates. Student's t-test was performed between HSP90 

and the negative control. Asterisk indicates p < 0.05 and p-values are as follows: HSPAB, 

0.00035; HSP6, 0.00364; DNABJ, 0.00114; CNOT6, 0.04792; MBNL1, 0.04532; ACTIN, 

0.11138; GAPDH, 0.19121. 

 

Figure S6: Related to Figure 4. eCLIP analysis discovers that YWHA (14-3-3) family 

binds RNAs with similar binding preference across the transcriptome. 

A. Overlap of significant binding peaks for each replicate eCLIP-seq libraries and control 

library for YWHAG, YWHAH, YWHAE and YWHAZ. 

B. Western blot showing immunoprecipitation of YWHAG-V5, YWHAH-V5, YWHAE-V5, 

YWHAZ-V5, MACROD1-V5 and PIM1-V5 respectively in HEK293 cells transiently transfected 

with plasmids expressing V5-tagged YWHAG, YWHAH, YWHAE, YWHAZ, MACROD1 or 

PIM1 but not in cells transfected with empty vector (Control). Re-immunoprecipitation results 

after immunoprecipitation are also shown for MACROD1 and PIM1 proteins. 

C. Histogram of region-based fold enrichment of sequencing reads for YWHA family members 

YWHAH, YWHAE, YWHAG and YWHAZ (each compared to its paired SMInput), showing 

sequencing reads from YWHAH/E/G eCLIP libraries are all enriched in CDS regions, while  

those from YWHAZ’s are not. 

D. An example of genome browser shots of eCLIP peaks on YTHDC1 gene of YWHAH, 

YWHAG, YWHAE and YWHAZ eCLIP libraries, showing an shared binding sites of YWHAH 

and YWHAE with YWHAG, but not with YWHAZ and the SMInput libraries of YWHAG (control). 

Both the two biological replicates for each proteins are shown.  

E. Motif logos with corresponding p value generated from significant eCLIP peaks of YWHAG, 

YWHAE, YWHAH and YWHAZ. Top two motifs (ranked by p value) are shown for each protein.  

F. GO enrichment of the common RNA targets shared by YWHAH, YWHAG and YWHAE. 

Enriched terms (FDR p < 0.05) with fold-change greater than 2 and with more than 5 observed 

gene members are shown. To be more informative, only the GO terms from the 7th level in 

the hierarchy of each GO category are presented. 

 

Figure S7: Related to Figure 5. Occlusion map enables model interpretation of HydRA 

Sequence Classifier and novel RNA-binding domain discovery. 

A. The workflow that calculating the occlusion score (∆Score) for each occlusion window along 

the protein sequence. For simpilicity, occlusion window index j was omitted in the equations. 

B. Scatter plots showing the ∆scoremodel distribution for proteins in different length, where 

model ∈ {seqSVM, seqCNN, ProteinBERT-RBP}. 

C. Scatter plots showing the final ∆score distribution from for proteins in different length where 

no adjustment was done about protein length. 
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D. Scatter plots showing the ∆zscoremodel distribution for proteins in different length, where 

model ∈ {seqSVM, seqCNN, ProteinBERT}. The standardization step was done within groups 

of proteins with similar length. 

E. Scatter plots showing the final ∆score distribution from for proteins in different length where 

the standardization step was done within groups of proteins with similar length. 

 

Figure S8: Related to Figure 5. Known and candidate RNA-binding domain discovery 

with Occlusion Mapping. 

A. Occlusion Maps of several known RBPs (including PUF60, LSM11, EIF4E and YBX2). The 

coordinates of protein domains, compositional bias and RBDpeps are shown. Protein regions 

that have ∆score < 0 are colored with purple, while those with ∆score > 0 are colored with blue 

in the middle panel. The regions with significant p values are also marked in the bottom track: 

skyblue for p<0.05 and dark blue for p<0.001. 

B, C. The heatmap of top 100 and bottom 100 domains of Figure 5C. Domains are sorted by 

their average occlusion scores from small to large. Protein domains that are already known 

for RNA-binding or involvement in RNA processing are  marked in red in the first annotation 

bar (on the right side) of the heatmap. The second annotation bar shows the predicted RBD 

(mean < 0 and FDR adjusted p-value < 0.05, one-sample t-test) in green and predicted non-

RBD (mean > 0 and  FDR adjusted p-value < 0.05) in dark blue. 

D. We grouped the protein domains in known RBPs to four categories: RNA-binding domains 

(RBDs) that are supported by RNA-binding peptide studies, RBDs that lack support from 

current RNA-binding peptide studies, other domains with and without evidence from RNA-

binding peptide studies. The bar plot represents the percentage of the domains within each 

category that have  ≥ 1 occluders with significant negative ∆scores (p-value < 0.001). 

 

Figure S9: Related to Figure 6. Novel RBPs and functional regions related to RNA-

binding were predicted using HydRA and experimentally validated. 

A. Western blot showing immunoprecipitation of V5 tagged candidate RBPs and their 

corresponding truncated proteins with predicted functional domains deleted in HEK293 cells. 

U2AF1 is a positive control. 

B. eCT values from the qPCR experiments of eCLIP samples for full-length and truncated 

candidate RBPs. 

C. The workflow to call reproducible peaks across samples with background signals from V5 

tag removed.  

D. Dot plot showing the biological process GO terms enriched in the reliable reproducible 

protein-coding targets of the candidate RBPs. Statistically significant terms (FDR p < 0.01) are 

shown. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 24, 2022. ; https://doi.org/10.1101/2022.12.23.521837doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources and reagents should be directed to and will 

be fulfilled by the lead contact, Gene Yeo (geneyeo@ucsd.edu). 

Materials availability 

Materials generated by the authors in this study will be distributed upon request. 

Data and code availability 

The HydRA software and Occlusion Map are open source and available 

at https://github.com/YeoLab/HydRA. The repository also includes trained model weights for 

human RBPs classification. 

 

STAR Methods 

METHOD DETAILS 

Mentha-BioPlex network 

We obtained a comprehensive protein-protein interaction (PPI) network, i.e. Mentha-BioPlex, 

by combining BioPlex2.0 50 a high-quality PPI dataset generated by robust affinity purification–

mass spectrometry, with a meta-database Mentha 18 that collects experimental evidence from 

different PPI database such as MINT 19, IntAct 21, DIP 51, MatrixDB 52 and BioGRID 20. Each 

interaction in the network was assigned a reliability score taking into account all the 

aggregated experimental evidence, according to the formula defined in MINT database and 

Mentha: 

" = 1 − &!" 

a is a constant. It determines the growth rate of the curve. To keep the scores in a convenient 

range, we chose a=1.4 as Mentha did. x is calculated by adding up all the experimental 

evidence considering type and size of the experiments and the number of publications that 

support the interaction: 

' =()#*#
#

+ ,/10 

i is the index of all experimental evidence supporting the interaction, while d takes into 

consideration the experiment size (d=0.5 for large scale experiment reporting more than 50 

interactions, otherwise d=1) and e reflects the type of information the experiment provides 

(e=1.0 for evidence of direct interaction and e=0.5 for evidence that only support and 
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association). Additionally, x also takes into account the number (n) of experiments 

(publications) that support this interaction. 

We then presented this network, consisting of only experimentally demonstrated 

physical protein-protein interactions, as an undirected graph with each protein as the node 

and the interaction between proteins as the edge. In total, this network contains 19,066 nodes 

and 309,653  edges. 

The functional protein association network 

To supplement current PPI network with extra extrinsic association information of proteins, we 

introduced functional protein association data into our modelling. We take STRING 53 as our 

functional protein association resource in this study. STRING is a database consisting of 

protein-protein association data from several sources, i.e. genomic context predictions, high-

throughput lab experiments, conserved co-expression, automated text-mining and other PPI 

databases. To construct the functional protein association network, we kept all the STRING 

interactions that has at least one protein existing in Mentha-BioPlex network, while the 

experimentally demonstrated physical protein-protein interactions from STRING are removed 

to avoid redundancies. 

Protein dataset and Known RBPs collection 

On one hand, all the proteins in Mentha-BioPlex network constituted our protein dataset and 

the corresponding protein sequences were retrieved from Uniprot database. On the other 

hand, we collected currently known RBPs from published studies 1,30,40,41,54–58, and merged 

them with proteins in the GO term of “RNA-binding” (GO:0003723) and its descendent terms 

from AmiGO 2 database (version released in July 2016) 59,60, where we removed those 

proteins assigned by automated methods without curatorial judgement in order to guarantee 

the high quality. After that, each protein in our protein dataset was assigned a class label, viz. 

known RBP or not known for RBP (we referred to it as non-RBP for simplicity), based on this 

RBP list. In all, our dataset contained 18,951 UniProt protein IDs with sequences retrieved, 

among which 3,762 are known RBPs (also referred to as annotated RBPs). 

Network properties’ effects on SONAR  

We studied the effects of PPI network’s properties on the performance of SONAR, such as 

network density (also referred to as completeness) and the reliability of PPI edges. In this 

analysis, we first randomly removed certain numbers of edges from the original network that 

led to a couple of induced networks with retained edges in percentage of 20%, 40%, 60% and 

80% respectively from the whole network. For each percentage, we generated 10 different 

networks as replicates. SONAR was then run with each of these induced networks and the 

performance was evaluated by ROC-AUC analysis with the output from SONAR software 
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which was obtained by a cross-validation-like (10-fold) approach 16.  To test if the reliability of 

PPI edges in the network matters, we also generated a group of induced networks in the same 

way as above but from a random network that came from an edges-shuffle operation with the 

original network. ROC-AUC analysis was also done to evaluate the performance of SONAR 

with these induced networks. 

On the other hand, to determine if the degree of reliability of the experimental PPI data 

matters, we sort the edges in the network based on their corresponding reliability scores (from 

high to low) and generated a couple of subnetworks from the original network by keeping the 

top 20%, 30%, 40%, 60% and 80% edges. Similar to the analysis of network density, those 

induced subnetworks were then run with SONAR and the performance of SONAR was 

evaluated by ROC-AUC analysis. 

Rationale for HydRA  

HydRA is a classification model (also called classifier) aimed at recognizing the RNA-binding 

capacity of a given protein. It’s the revised version of SONAR 12 by introducing new protein 

features and new machine learning techniques into RBP prediction.  HydRA consists of two 

main components: 1) the first component, referred to as extrinsic classifier, utilizes information 

describing the extrinsic context of proteins to predict RNA-binding potential from experimental 

protein interaction data and predicted protein association data (i.e. STRING 53); 2) the second 

component, referred to as HydRA-seq, measures proteins’ RNA-binding potential from their 

intrinsic properties with their amino acid sequence -based information. Specifically, the second 

component comprises three sub-classifiers, including a SVM model (seqSVM), a convolutional 

neural network (seqCNN) model and an attention-based model following Transformer 

architecture (named ProteinBERT-RBP). The outputs of all the classifiers from the two main 

components are then combined with a simple probabilistic model to give the final prediction of 

the input proteins. 

Dataset for modeling 

Under the criterion where the class ratio (i.e. known RBPs versus other proteins) in each set 

keeps same, we first randomly took out 20% of the data in our protein dataset as the hold-out 

test set, which is only used for the final evaluation of the final RBP classifier and the 

comparison among different RBP classifiers/software. The rest 80% of data constitutes the 

training/validation set that is used to train and select model, select features and tune the hyper-

parameters of the RBP classifiers. In the evaluation and comparisons of classifiers that utilize 

proteins sequences, we discarded the proteins in the test dataset whose sequences are highly 

similar to any protein’s sequence (>90% similarity and >90% coverage) in the 
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training/validation dataset. The similarity between protein sequences was calculated by cd-hit 

program 61.  

Protein interaction and association based classifier 

A classifier exploiting the data from physical protein-protein interaction network (i.e. Mentha-

BioPlex) and functional protein association network (i.e. STRING), which described the 

extrinsic context of the protein, was constructed using support vector machine (SVM) model 

with radial basis function as its kernel. We referred to this classifier as Protein Interaction and 

Association based (PIA) classifier (also referred to as SONAR3.0). The feature extraction and 

classifier construction process are modified from that of SONAR.  

Firstly, we extracted the local network around the given protein and split the local 

network into different neighborhoods (level-1, level-2, etc.) according to the length of the path 

from the protein to the given protein (more details can be found in SONAR (Brannan & Jin & 

Huelga et al. 2016)). Specifically, we found all the paths with length k  that start from the given 

protein and collect all the end nodes of these paths into level-k neighborhoods. Notably, a 

protein can be in both level-1 and level-2 neighborhoods if there are paths in length 1 and 2 

between this protein and the given protein. In addition, a protein node can appear more than 

once in the level-k neighborhoods if there are more than one path of length k between this 

protein and the given protein.  

Secondly, the proportion of nodes that are annotated RBPs in each neighborhood 

represents the feature of that neighborhood. In details, for a given protein, its feature Fk of the 

k-th level neighborhood is calculated as  

                                                          /$ = 
∑ ['()!,#*	∈	$-./-	0123]$!,#∈&!	

|2!|
. 

Pk is the set of paths with length = k in the network that start from the given protein, pk,i denotes 

a specific path in Pk  while i is the index of the path. N(p) denotes the end node of path p. 

Here […] are the Iverson brackets. [0] is defined to be 1 if 0 is true, and 0 if it is false. 

The first three levels of neighborhoods in physical PPI network and the first level 

neighborhood in functional protein association network are considered in this classifier. 

Different from SONAR, we also added an indicator feature for each local network (i.e. physical 

PPI local network and functional protein association local network) to penalize those proteins 

with few level 1 neighbors, whose PPI information is not adequate for confident predictions. 

We set the indicator feature as 1 if the query protein has no less than  1 level-1 neighbors, 

otherwise the feature was set as 0. By optimal threshold searching, we set 1 = 5.  

Lastly, we took the six network-based features of each given protein as the input of 

SVM model. Cross-validation (10-fold) method was used to search for the optimal hyper-

parameters and threshold (such as the number of PPI neighborhoods included and the 
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indicator threshold 1) of this model within our training/validation set. Additionally, to handle the 

class imbalance issue in our training process, we chose oversampling out of a couple of  

widely used approaches, where we oversampled the number of our RBP training samples by 

equally replicating current RBP samples in the training set. 

Sequence-based SVM classifier 

In line with many previous studies on sequence-based RBP prediction, a support vector 

machine (SVM) model with radial basis function (RBF) kernel was used to construct one of 

the sequence-based RBP sub-classifiers from protein sequence. We referred to this classifier 

as seqSVM. 

Firstly, protein sequences were preprocessed to generate three categories of protein 

features:  

(1) k-mer: all the possible substrings of length k (k=3, 4) that are contained in a protein’s 

amino acid sequence were counted. The counts of all k-mers were subsequently 

encoded into an integer vector. To alleviate the computational cost, for each protein, 

we only look at the 1000 most frequent k-mers that appeared in the known RNA-

binding proteins. 

(2) Amino acid composition (AAC): We calculated AAC for each protein with propy 62 

package. A vector of 20 descriptors per protein was gained. 

(3) k-mer of predicted secondary structure (SS-kmer): Secondary structure type of each 

amino acid in the protein was predicted by SPIDER2 software 63. The induced 

sequence of secondary structures of the protein was then used to generate the k-mer 

(k=11, 15) feature vector in the same way described in (1) except that we look at the 

1500 most frequent SS-kmers that appeared in the known RBPs. 

Secondly, feature selection was done in order to reduce the dimension of feature vectors. 

Chi-square test was used to filter out unimportant features within each feature category 

respectively via their p values controlled for false discovery rate (FDR) at level 0.01.  For k-

mer and SS-kmer, features were further selected by linear SVM model by keeping the features 

the absolute value of whose weights are larger than the average of those of all input features. 

Thirdly, the seqSVM classifier was built with the features selected from last step utilizing 

SVM model and RBF kernel. We only use proteins shorter than 1500 amino acids in our 

training step to alleviate the involvement of unrelated information carried by proteins, 

particularly those long ones.  

We used the training/validation set with cross-validation approach to search for optimal 

values for k (in k-mer and SS-kmer) and parameters or hyper-parameters used in feature 

selection pipeline and SVM model construction. The same oversampling approach as 
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mentioned in SONAR3.0 construction was employed to overcome the class imbalance issue 

in the training process. 

Convolutional neural network for sequence-based RBP classification  

Parallel to seqSVM, we also created a feed forward convolutional neural network (CNN) to 

recognize RBPs by automatically learning the pattern underlying the protein sequence with 

convolutional layers. We referred to this CNN model as seqCNN. The seqCNN model 

consisted of 8 different hidden layers of neuron-like computational units that are stacked up in 

a certain order (shown in Figure 2A). The first layer was an embedding layer that mapped 

amino acids to dense vectors encoded with biophysical and biochemical properties of the 

amino acids using a pre-trained weight matrix called ProtVec 23. This layer not only enriches 

protein sequence information with the knowledge from available database, but also alleviates 

the difficulties on deep learning caused by sparse one-hot encoded matrix of the protein 

sequence. Following this layer were two 1D convolutional layers (kernel size = 5) with a 

pooling layer for each to extract patterns from sub-sequences and condense the information 

for downstream layers. The output was then followed by a global pooling layer for further 

condensation. Next, the condensed information was conveyed to last 2 hidden layers, which 

are regular fully-connected neural network layers (also called dense layers), for more 

processing. An output layer in the form of fully connected neurons after the last hidden layers 

is used to encode all learned protein information into the form of probability (i.e. the 

classification score), showing how likely the input protein is a RNA-binding protein. The binary-

cross-entropy loss was used to measure the agreement between the output predictions and 

the true class labels the on the training set. Besides, regularization methods such as dropout 

and batch normalization are applied to avoid overfitting. We choose this model structure from 

a broad range of CNN topologies (i.e. the number of CNN layers, the number of kernels in 

each layer and the ) and alternative CNN architectures, such as residual convolutional neural 

network.  

This model was trained with backpropagation algorithm that adjusts and optimizes the 

weight matrix in each layer during the training process to minimize the binary-cross-entropy 

loss on the training set. Specifically, Adam optimization was used in the process. To prevent 

the training process from getting stuck in undesired local optima, we pre-trained the hidden 

layers with auto-encoder technique 64 where the convolutional layers and fully-connected 

layers were pre-trained separately. Similar to seq SVM, only proteins with length shorter than 

1500 amino acids are used to train the model and all the optimal hyper-parameters of this 

model were obtained using cross-validation within our training/validation set. The seqCNN 

classifier was implemented with TensorFlow kernel 65 utilizing its high-level API, Keras 66. The 
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class imbalance issue in the training process was handled by adjusting the class weight 

argument in Keras model. 

Attention-based protein language model for RBP classification 

ProteinBERT is an attention-based Transformer/BERT architecture specifically designed for 

protein classification problems 15. It originally takes protein sequence and protein GO 

annotations as input. The key component in this architecture is a the transformer block with 

two parallel neural networks: (1) one takes the representation matrix from the protein 

sequence (denoted by local representations) and uses convolutional layers with skip 

connections and layer normalizations to extract and compress location-wise signals followed 

by (location-wise) fully connected layer; (2) the other consists of two fully-connected layers 

with skip connections and layer normalizations and takes a global representation vector 

encoded from the GO annotations of the protein as input. In each transformer block, 

information between local and global representations flows to each other via two attention 

layers respectively allowing the local and global signals to guide the learning process of each 

other easily 15. We employed the same ProteinBERT architecture as proposed in their original 

paper which includes 6 transformer blocks with 4 global attention heads in each block.  

This ProteinBERT model was pretrained following the original paper via a self-

supervised training strategy with ~106M proteins and their corresponding GO annotations 

from UniRef90 67. We next fine-tune the model with our training set with RNA-binding 

annotations (mentioned above) allowing the model to exclusively focus on the supervised 

learning of RNA-binding related sequence patterns and to classify RBP and non-RBPs. In the 

fine-tuning, all layers of the pretrained model were first frozen except a newly added fully-

connected layer in the end of the model, which was used to connect the pretrained model to 

RBP classification output layer. Similar to seqCNN, binary-cross-entropy loss was used to 

measure the agreement between the output predictions and the true class labels and Adam 

was used in the optimization process. The model was trained for up to 40 epochs. Next, we 

unfroze all the layers and trained the model for up to 40 additional epochs. Lastly, we did a 1 

final epoch of training with a larger sequence length following the original paper 15. We 

evaluate the model using the same strategy of the classifiers above with training and test set 

while 10% of the training set was used as “validation  set”. The model was fine-tuned using 

Adam optimizer for the backpropagation, and we reduced the learning rate on plateau and 

used early-stopping base on the “validation set” to avoid overtraining. This ProteinBERT 

model for RBP classification (referred to as ProteinBERT-RBP) was implemented using Keras 
66 with Tensorflow kernel 65. 

Graph neural network modelling on protein structures 
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The protein structure backbone is represented as graphs G = (V, E), where each node 3 ∈ V 

is an amino acid connected by edge 4 ∈ E to its amino acid neighbors in the 3D space whose 

corresponding Ca atoms are less than 10Å distant from the C! atom of 3 or within the k-

neareast neighbor set of the C! atom of 3. To obtain the optimal features to represent each 

amino acid and their spatial relationship to their neighbors, we select node features from 

various types of amino acid features including (1) one-hot representation, (2) main chain 

torsion angles (Phi and Psi), (3) the structural features encoded by FoldSeek68, and the latent 

representations learned by large pre-trained protein language models, such as (4) DeepFRI26, 

(5) ProteinBERT69, and (6) HydRA’s ProteinBERT-RBP. Similarly, we select edge features 

from an edge attribute pool including (1) using the same attributes for each edge (i.e. no edge 

features) (2) distance between C! atom of the two amino acids, (3) the structural features 

encoded by FoldSeek between the two amino acids, (4) the average confidence score (pLDDT) 

from AlphaFold2 prediction of the two amino acids. The feature selection was done using the 

forementioned training set and validation set where the models with different combination of 

the node and edge features were trained on the protein structures with RBP labels in the 

training set and evaluated on the validation set. The optimal graph neural network architecture 

was also selected in this step from the widely used architectures, e.g. graph convolutional 

network (GCN), graph attention network (GAT) and PointTransformer 70. The optimal model 

was selected and denoted as strucGNN1 which employs PointTransformer as the main 

architecture. The local presentation output for amino acid (node 3#) by the last transformer 

block in ProteinBERT-RBP model was selected as the node features in strucGNN1, defined 

as '1# = 	ProteinBERT_RBP(3#),	   while no edge feature was used as PointTransformer 

architecture does not support edge feature input.  

To update the node features of each amino acid according to the protein structure 

graph, strucGNN1 use 3 PointTransformer blocks. Each PointTransformer block firstly down-

samples the nodes in the graph using farthest point sampling and then aggregates information 

from the neighboring nodes for each node using self-attention mechanism 70. In details, the 

node-wise aggregation operation in k-th PointTransformer block is defined as: 

  '#
$ =	∑ F(G(HI'#

$!6J − KI'7
$!6J + L))⨀(NI'7

$!6J + L)"(∈'(#)  

, where O(P)denotes	the	neighbors	of	3# , and	3# 	is	denoted	as	P	here	for	simplicity.and '#: ∈ '1# . 

As defined in the original paper for PointTransformer 70, H,K,	and N are pointwise feature 

transformations using fully-connected layers, L is a position encoding function used to encode 

the relative position between two nodes. L is defined as L = 	1I^# − ^7J, where ^# and ^7 are 

the 3D coordinates of the CN atom for each node and the encoding function θ is two linear 

layers with one ReLU nonlinearity. F is a normalization function softmax, while the mapping 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 24, 2022. ; https://doi.org/10.1101/2022.12.23.521837doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521837
http://creativecommons.org/licenses/by-nc-nd/4.0/


function γ is also two linear layers and one ReLU nonlinearity. In this way, each block applies 

self-attention locally, within a local neighborhood around each amino acid. 

The global features of the protein are then calculated by taking the channel-wise 

average across the node dimension output by the PointTransformer blocks using a global 

mean pool layer, followed by two fully-connected layers (with 64 neurons each) with ReLU 

non-linear activation function to further process the global features. The final output is 

computed as a linear mapping of the fully-connected layer’s output followed by Sigmoid 

transformation. Binary-cross-entropy loss was used to measure the agreement between the 

output predictions and the true class labels and Adam was used in the optimization process. 

The strucGNN1 were implemented using PyTorch71 and PyTorch-Geometric 72. 

Finetuning pretrained Graph neural network on RNA-binding protein structures 

To exploit the recent advancement in the structure-based protein pretraining models, we 

adjusted and finetuned Masked Inverse Folding (MIF) model for RBP classification task and 

referred this new model as strucGNN-MIF. MIF is a pretrained graph neural network model 

which achieved state-of-the-art performance in many protein prediction tasks 73, MIF was pre-

trained with the CATH4.2 database74, and is built on structured graph neural network 

architecture with the pretraining task of reconstructing a corrupted protein sequence 

conditioned on its backbone structure.  

Similar to the graph construction in strucGNN1 and strucGNN2, the protein structure 

backbone is represented as graphs G = (V, E) with each amino acid as a node 3 ∈ V. But 

instead of taking the other amino acids with the distance less than 10 Å to the given amino 

acid as neighbors, each given amino acid node is connected by edge 4 ∈ E to its k-nearest 

amino-acid neighbors in the structure. 

To adjust MIF to binary RBP classification task, we took the encoder layers of MIF and 

connected it to a global mean pool layer to average node features across the node dimension. 

The pooled features were then fed to three fully-connected layers with ReLU non-linear 

activation before connecting to the output layer with sigmoid activation function.  

We finetuned this model with our RBP training set and evaluate the performance on 

the validation and test set. Similar to strucGNN1 and strucGNN2, binary-cross-entropy loss 

was used to measure the agreement between the output predictions and the true class labels. 

Adam was used to adjusts and optimizes the weight matrix in each layer and to minimize the 

binary-cross-entropy loss on the training set. 

Meta ensembling of classifiers 

For simplicity, we denoted the aforementioned three classifiers (i.e. SONAR3.0, seqSVM and 

seqDNN) as primary classifiers. A simple probability-based ensemble approach was then 
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derived to integrate predictions from these primary classifiers. This approach consists of three 

steps:  

(1)  We collected the classification scores generated by each primary classifier during the 

cross-validation step and took these scores and corresponding class labels as 

reference lists S and L: 

"# = I_#,6, _#,<, … , _#,-J ∶ _#,7 	 ∈ [0, 1] 

d# = Ie#,6, e#,<, … , e#,-J ∶ e#,7 ∈ {0, 1} 

where i is the index of the primary classifier, j is the index of the proteins and n 

represents the total number of protein scores collected from the cross-validation step. 

(2)  For a query protein, given a classification score x from a primary classifier, we 

calculated the probability of this protein being a false discovery (i.e. false discovery 

rate) for this primary classifier, based on x and the reference lists S and L: 

/0#('#) =(i_#,7 > '# 	&,)	e#,7 = 0k

-

7=6

 

0#('#) =(i_#,7 > '#k

-

7=6

 

/lm#('#) =
/0#('#)

0#('#)
 

where FDR represents false discovery rate, FP represents the number of false 

positives and P represents the number of all the positive prediction. Here […] are the 

Iverson brackets. [0] is defined to be 1 if 0 is true, and 0 if it is false. 

 

(3)  For this query protein, we then got its probability of being a false discovery for all these 
primary classifiers as follows: 

o /lm#('#)
#∈)>#?@>A
	BC@33#D#E>3

 

(4)  Thus, the probability of this query protein not to be a false discovery for at least one 

of the primary classifiers was got as follows. This is taken as the output score of this 

ensemble approaches. 

 

"qrs* = 1 − o /lm#('#)
#∈)>#?@>A
	BC@33#D#E>3
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Besides constructing the final RBP classifier (i.e. HydRA), this ensemble approach was also 

used to integrate the results from intrinsic classifiers (i.e. seqSVM and seqDNN) 

This ensemble approach is chosen from a couple of other classifier ensemble methods, 

including other variant of this probability-based approach (i.e. the false positive rate based 

version) and machine learning based approaches such as SVM and logistic regression.  

Software comparisons 

We applied other publicly available RBP classifiers, i.e. RNApred 7, SPOT-seq 8, catRAPID 

signature 9 and RBPPred 10 to predict all the proteins in our test dataset. The predicted scores 

and class labels were then collected to calculate model evaluation metrics such as accuracy, 

sensitivity, specificity, precision, ROC-AUC, F1 score, Matthews Correlation Coefficient and 

balanced accuracy. 

RNA-binding domain sequences and RNA-binding peptide 

Amino acid sequences corresponding to different protein domains (i.e. KH, RRM, DEAD, CSD, 

LSM, BTB, SH2, Ig, UBA and 7 transmembrane domains)) are downloaded from Pfam 

database. RNA-binding peptides are collected from five recent studies of four technologies 

that experimentally identify the regions that interact with RNA molecules in RNA-binding 

proteins: RBDmap 6,44, pCLAP 45, RBR-ID 75 and RNPxl 46.  

Protein domain annotation 

The domain annotations in each protein are obtained by homology search using hmmscan 

(HMMER 3.1b1) against Pfam-A.hmm from Pfam database (v27.0). Overlapped and 

redundant domain hits are merged using hmmscan-parser.sh (from 

https://github.com/carden24/Bioinformatics_scripts/blob/master/hmmscan-parser.sh). Only 

domain annotations with E-value < 0.1 were kept for downstream analysis. 

Occlusion Map 

Occlusion map (also referred to as occlusion analysis) aims at interpreting the foci of the 

machine learning classifier on their target object by detecting the changes in predictions when 

a part of the object is deliberately “occluded”. This analysis has been widely used in computer 

vision. Here, we use it to interpret which parts of the protein our intrinsic-feature classifier is 

“paying attention” to. Specifically, shown in Figure S7A, we occluded a subsequence of fixed 

length k (k=20 in this study) within the protein sequences by setting a window of consecutive 

sites to be zero or null (referred to as “occlusion window"). The occluded protein then went 

through all our feature generation stages and was fed to seqCNN, seqSVM and ProteinBERT-

RBP to generate new classification scores (noted as Scoreocc, seqCNN , Scoreocc, seqSVM and 

Scoreocc, ProteinBERT). We defined the difference between the new classification scores and 
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original scores without occlusion (denoted by Scoreorig, seqSVM, Scoreorig, seqDNN and Scoreorig, 

ProteinBERT) as  ∆	_qrs*?.FEC,7 = "qrs*.BBCGFEF,?.FEC,7 − 	"qrs*.>#H#-@C,?.FEC, where j indicates the 

index of the occluded part and model is either seqCNN, seqSVM or ProteinBERT-RBP. In this 

case, a negative ∆ score represents a negative effect on categorizing this protein to RBP, 

indicating the occluded part are considered as important for RNA-binding by our classifier. To 

integrate occlusion information from seqCNN, seqSVM and ProeinBERT-RBP, ∆	_qrs*3EIJ'',  

∆	_qrs*3EIKLM  and ∆	_qrs*2>.NE#-1O0P 	 were first standardized (i.e. z-score transformed) 

respectively as ∆	u_qrs*?.FEC,7 =
∆	3B.>E)*+,-,(	!	R)*+,-

S)*+,-
, where v and w represents the mean and 

standard deviation of all ∆	_qrs*_ we have obtained from all the training proteins for specific 

model (i.e. seqCNN or seqSVM). The normality of ∆	_qrs*3EIJ'' , 

∆	_qrs*3EIKLM	and	∆	_qrs*2>.NE#-1O0P  populations were confirmed with D’Agostino and 

Pearson’s test. The integrated ∆	_qrs* was then generated by averaging the standardized 

∆	_qrs* from seqCNN and seqSVM: ∆	_qrs*7 =	
∆	T3B.>E.,/011,(U	∆	T3B.>E.,/234,(5∆	7.8*9,&9*:,#;<=>?,(

V
. 

To get a map of ∆ score for the whole protein, we slid the occlusion window within each protein 

from N terminal to C terminal and repeated the calculations. P-value was obtained for each 

occlusion window based on the ∆ score population which follows a normal distribution. We 

defined a predicted RNA-binding region (pRBR) as the occlusion window with significantly 

lower ∆	_qrs*	with p-value < 0.05 and a strong predicted RNA-binding region (strong pRBP) 

with p-value < 0.001. Notably, ∆	_qrs*?.FEC  tends to get smaller as the protein length 

increases (see Figures S7B and S7C) so that occlusion windows in short proteins are more 

likely to be called as pRBR or strong pRBR than those in long proteins. To alleviate this bias, 

we grouped the proteins based on their protein lengths and do the standardization within each 

group in the standardization step and this results in a more balanced ∆	_qrs*?.FEC distribution 

(Figures S7D and S7E). 

Criteria of RBP candidacy 

After all the aforementioned steps of model selection and optimization, we got the final RBP 

classifier (i.e. HydRA) and trained it with all the samples in our protein dataset. With this trained 

classifier, we got a classification score to each protein in the protein dataset. We set a cutoff 

as 0.8927 for the classification scores by fixing the false positive rate to 10% within the test 

dataset. Thus, all those proteins with classification scores higher than the cutoff but with 

negative class labels (i.e. previously not known for RNA-binding) were collected in the list of 

candidate RBPs. 

Biophysical properties of proteins 
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Within each RBP candidate, isoelectric points were calculated with ExPASy web server 76. A 

score describing intrinsic disorder was assigned to each amino acid position using IUPred 77. 

Intrinsic disordered region (IDR) or sites were defined as positions with score < 0.4. 

Complexity of each amino acid within the protein was calculated as Shannon entropy of the 

neighbor amino acids within a window of size 21 centering the given amino acid’s position. 

Positions with entropy < 3 were regarded as low complexity region or sites. One-side Mann-

Whitney U test was used to statistically examine the difference between different protein 

populations in the distributions of isoelectric points, amino acid composition and the proportion 

of disordered and low-complexity regions. 

Antibodies for western blot and immunoprecipitation 

The primary antibodies used are as follows: anti-V5 (Proteintech, 66007-1-Ig), anti-V5 (Bethyl 

A190-120A), anti-His (Proteintech, 66005-1-Ig), anti-His (Invitrogen, MA1-21315), anti-a-

Tubulin (Sigma, Clone B-5-1-2), anti-HSP90B (Sigma, SAB4501463) and anti-HNRNPA2B1 

(Proteintech, 14813-1-AP)  

 

 

Plasmid construction  

All RBP mammalian expression constructs were in one of two lentiviral Gateway (Invitrogen) 

destination vector backbones: (1) pLIX403_V5_mRuby or (2) pLIX403_V5. The pLIX403 

inducible lentiviral expression vector was adapted from pLIX_403 (deposited by D. Root; 

Addgene plasmid no. 41395) to contain TRE-gateway-mRuby and PGK-puro-2A-rtTA 

upstream of mRuby by Gibson assembly reaction of PCR products (Cloneamp, Takara Bio). 

RBP open-reading frames (ORFs) were obtained from human Orfeome 8.1 (2016 release) 

donor plasmids (pDONR223) when available, or amplified (Cloneamp, Takara Bio) from cDNA 

obtained by SuperScript III (Invitrogen) RT–PCR of HEK293XT cell purified RNA (Direct-zol, 

Zymogen) and inserted into pDONR223 by Gateway BP Clonase II reactions (Invitrogen). 

Donor ORFs were inserted in frame upstream of V5 and mRuby fusion cassettes by gateway 

LR Clonase II reactions (Invitrogen).  

Putative RNA binding domains (as determined by occlusion analysis) were removed 

via site-directed mutagenisis (NEB E0554S) by amplifying entire entry clone plasmids 

(candidate RBP ORFs within pDONR221 or pDONR223 plasmids) using standard, non-

mutagenic forward and reverse primers flanking the deletion region, followed by PCR product 

ligation.  The resulting deletion clones were used for Gateway insertion into V5 or V5-mRuby 

for stable expression and eCLIP as was done for deletion or full-length expression clones. 
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Generation of Cell lines  

Stable lines were made in human lenti-X HEK293T cells (HEK293XT, Takara Bio), maintained 

in DMEM (4.5 g l−1 D-glucose) supplemented with 10% FBS (Gibco) at 37 °C with 5% CO2. 

Cells were passaged at 70-90% confluency by rinsing cells gently with DPBS without calcium 

and magnesium (Corning) then dissociating with TrypLE Express Enzyme (Gibco) at a ratio 

of 1:10. The stable HEK293XT cell lines expressing RBP full-length and domain-deleted RBP 

candidates and were generated as described below by transducing ~1 million cells with 8 µg 

m l−1 polybrene and 1 ml viral supernatant in DMEM + 10% FBS at 37 °C for 24 h, followed by 

subsequent puromycin resistance selection (2 µg ml−1). 

 Lentivirus was packaged using HEK293XT cells seeded approximately 24 h before 

transfection at 30–40% in antibiotic-free DMEM and incubation at 37 °C and 5% CO2 to 70–

90% confluency along with the Lipofectamine 3000 reagent (ThermoFisher Scientific) 

following the manufactures protocol 

(https://tools.thermofisher.com/content/sfs/manuals/lipofectamine3000_protocol.pdf).  DNA 

ratios used for transfection is as follows: 10:1:10 proportion of lentiviral 

vector:pMD.2g:psPAX2 packaging plasmids. Six hours following transfection, medium was 

replaced with fresh DMEM + 10% FBS. At 48 h after medium replacement, virus-containing 

medium was filtered through a 0.45-μm low-protein binding membrane. Filtered viral 

supernatant was then used directly for line generation by transducing ~1 million cells (one well 

of a six-well dish) with 8 µg ml−1 polybrene and 1 ml viral supernatant in DMEM + 10% FBS 

at 37 °C for 24 h. After 24 h of viral transduction, cells were split into 2 g l−1 puromycin and 

selected for 72 h before passaging for storage and downstream validation and 

experimentation. 

RNA immunoprecipitation and qPCR 

HEK293 cells were transfected with plasmids to express V5-tagged HSP90AA1 (pcDNA6-

HSP90AA1-V5) or empty vector. 24 hours later, cells were lysed in lysis buffer (50 mM Tris 

pH 7.4, 100 mM NaCl, 1% NP-40, 0.1% SDS and 0.5% sodium deoxycholate) supplemented 

with 1 Protease Inhibitor cocktail (Roche) and 80 U of RNAse Inhibitor (Roche). Clarified 

lysates were pre-cleared with Protein G agarose beads (Life Technologies). Aliquots of the 

supernatant (equivalent to 5% of supernatant) were saved as input protein and RNA. The 

remainder of the supernatant was incubated with 2 mg of V5 antibody at 4 C for 4 h. The 

protein–RNA–antibody complex was precipitated by incubation with Protein G magnetic beads 

overnight at 4 C. Beads were washed twice with lysis buffer and three times with wash buffer 

(5 mM Tris pH 7.5, 150 mM NaCl, 0.1% Triton X-100). Ten per cent of the bead slurry was 

reserved for western blot analysis. The remaining bead slurry was resuspended in TRIzol (Life 
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Technologies), and RNA was extracted as per the manufacturer’s instructions. Input and 

immunoprecipitated RNA was converted into cDNA and gene expression was measured with 

qPCR in technical triplicates. RNA immunoprecipitation qPCR studies were performed in 

biological duplicates.  

eCLIP Library Preparation for YWHAG/H/E/Z and HSP90AA1  

The open reading frame of human HSP90AA1 was cloned into pEF5/FRT/V5-DEST 

(Invitrogen) by Gateway cloning, positioning the gene in frame with a 3’ V5 tag. The open 

reading frames of human YWHAG, YWHAH, YWHAE, YWHAZ, and HSP90AA1 were cloned 

into pcDNA6/myc-His B (Invitrogen) by restriction digest, positioning the gene in frame with a 

3’ myc-his tag. HEK293T cells transfected with the protein of interest were cultured to 

confluency in 10 cm dishes. The cells were UV crosslinked (254 nm, 400 mJ/cm2 constant 

energy) then pelleted and frozen on dry ice. eCLIP procedure was performed as described 48. 

Briefly, cell pellets were lysed in eCLIP lysis buffer and sonicated (BioRuptor). Lysates were 

treated with RNase I (Ambion) to fragment the RNA and incubated with antibodies against V5-

tag or His-tag (both from Proteintech) to immunoprecipitate RBP-RNA complexes. 2% of the 

lysate:antibody mixture was saved as input sample. The remaining immunoprecipitated (IP) 

samples were stringently washed, followed by dephosphorylation of RNA by FastAP 

(ThermoFisher Scientific) and T4 Polynucleotide Kinase (NEB), and ligation of a 3′ RNA 

adapter with T4 RNA Ligase (NEB). Immunoprecipitates and input samples were resolved by 

SDS-PAGE, transferred to nitrocellulose membrane, and then the region of membrane 

corresponding to the molecular weight of the protein of interest up to 75 kDa above it was 

excised for each immunoprecipitate and input sample. RNA was isolated from the membrane, 

reverse transcribed with AffinityScript (Agilent), free primers were removed (ExoSap-IT, 

Affymetrix), and a 5’ DNA adapter was ligated onto the cDNA product with T4 RNA ligase 

(NEB). Libraries were then amplified with Q5 PCR mix (NEB), size selected using AMPure XP 

beads (Beckman Coulter, Inc.) and on a 3% agarose gel, and then quantified with a 

Bioanalyzer instrument (Agilent). Paired-end (50 base pair) sequencing of the eCLIP libraries 

were performed on Illumina HiSeq 3500. 

 

eCLIP Library Preparation for INO80B, PIAS4, NR5A1, ACTN3, and MCCC1 

All eCLIPs were conducted following induction or transient transfections and IP was conducted 

using anti-V5 tag (Bethyl A190-120A). eCLIP experiments were performed as previously 

described in a detailed standard operating procedure6 (6. Van Nostrand, E. L. et al. Robust 

transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP 

(eCLIP). Nat. Methods 13, 508–514 (2016). ) which is provided as associated documentation 
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with each eCLIP experiment on the ENCODE portal 

(https://www.encodeproject.org/documents/fa2a3246-6039-46ba-b960-

17fe06e7876a/@@download/attachment/CLIP_SOP_v1.0.pdf/). In brief, 20 million cross-

linked cells were lysed and sonicated, followed by treatment with RNase I (Thermo Fisher) to 

fragment RNA. Antibodies were precoupled to species-specific (anti-rabbit IgG) dynabeads 

(Thermo Fisher), added to lysate and incubated overnight at 4 °C. Before IP washes, 2% of 

sample was removed to serve as the paired-input sample. For IP samples, high-salt and low-

salt washes were performed, after which RNA was dephosphorylated with FastAP (Thermo 

Fisher) and T4 PNK (NEB) at low pH, and a 3′ RNA adapter was ligated with T4 RNA ligase 

(NEB). Ten percent of IP and input samples were run on an analytical PAGE Bis-Tris protein 

gel, transferred to PVDF membrane, blocked in 5% dry milk in TBST, incubated with the same 

primary antibody used for IP (typically at 1:4,000 dilution), washed, incubated with secondary 

horseradish peroxidase-conjugated species-specific TrueBlot antibody (Rockland) and 

visualized with standard enhanced chemiluminescence imaging to validate successful IP. 

Ninety percent of IP and input samples were run on an analytical PAGE Bis-Tris protein gel 

and transferred to nitrocellulose membranes, after which the region from the protein size to 

75 kDa above protein size was excised from the membrane, treated with proteinase K (NEB) 

to release RNA and concentrated by column purification (Zymo). Input samples were then 

dephosphorylated with FastAP (Thermo Fisher) and T4 PNK (NEB) at low pH, and a 3′ RNA 

adapter was ligated with T4 RNA ligase (NEB) to synchronize with IP samples. Reverse 

transcription was then performed with AffinityScript (Agilent), followed by ExoSAP-IT 

(Affymetrix) treatment to remove unincorporated primer. RNA was then degraded by alkaline 

hydrolysis, and a 3′ DNA adapter was ligated with T4 RNA ligase (NEB). Quantitative PCR 

was then used to determine the required amplification, followed by PCR with Q5 (NEB) and 

gel electrophoresis for size selection of the final library. Libraries were sequenced on the 

HiSeq 2000, 2500 or 4000 platform (Illumina). Each ENCODE eCLIP experiment consisted of 

IP from two independent biosamples, along with one paired size-matched input (sampled from 

one of the two IP lysates before IP washes).  

eCLIP Library Preparation for V5 tag control 

A plasmid encoding the V5 peptide was transfected in HEK293XT cells using Lipofectamine 

3000 in biological duplicates (10 cm plates). After 72hr, cells were UV-crosslinked and 

subjected to the eCLIP protocol using anti-V5 antibody (Bethyl A190-120A, 10 ug per sample), 

as previously described. At the SDS-PAGE step, each sample was divided equally between 

three lanes. Membrane regions corresponding to each possible 75 kDa window, each 

separated by 25 kDa, were excised and prepared separately for sequencing. Samples were 
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compared against a size-matched input without V5 IP for each size range. We referred to this 

set of data to as “V5 tag only” samples. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 

Evaluating domain-level RNA-binding element prediction 

To evaluate HydRA’s capability of recognizing RNA-binding elements on domain level, we ran 

HydRA-powered Occlusion Map with all the known RBPs and measure the performance of 

recognizing high-confidence RNA-binding domains (RBDs) in the RBPs over other domains 

using positive likelihood ratio (discussed below). To obtain the annotation of high-confidence 

RNA binding domains, we first retrieved the homology-annotated domains (see Protein 

domain annotation above) for each RBP and retained the domain hits that exist in the list of 

RNA-binding and -processing domains from Gerstberger et al. 1. Next, those homology-

annotated RBDs that were also supported by the experimentally identified RNA-binding 

peptides (referred to as RBDpeps) studies 6,44–46 were annotated as high-confidence RBDs. 

Similarly, high-confidence non-RNA-binding domains were those homology-annotated 

domains in the RBPs that are not in the RNA-binding and -processing domain list and not 

supported by RBDpeps studies. Within the occlusion map output, we observed the percentage 

of the high-confidence RBDs that have at least one pRBR (p-value < 0.05) or stringent pRBRs 

(p-value < 0.001)  (akin to sensitivity), and also the percentage of the high-confidence non-

RBDs have at least one pRBR or stringent pRBRs (akin to false positive rate (FPR)). Positive 

likelihood ratio (also called fold-enrichment) was then calculated as the ratio of sensitivity 

versus FPR, to demonstrate how well the pRBRs are enriched in high-confidence RBDs over 

high-confidence non-RBDs in the proteins. Similarly, we ran the baseline tools RNABindPlus 

and DRNApred, which are designed to predict RNA-binding residues in RBPs, on the same 

set of RBPs. We obtained positive likelihood ratio by observing the percentage of the high-

confidence RBDs that have at least one predicted RNA-binding residue (i.e. sensitivity) and 

the percentage of the high-confidence non-RBDs that have at least one predicted RNA-

binding residue (i.e. FPR). By using different p-value/ score threshold when defining pRBR 

and predicted RNA-binding residues, we got the positive likelihood ratio changes at different 

sensitivity level. 

eCLIP Data Processing and Analysis 

eCLIP sequence reads were processed and analyzed as previously described 48. For each 

protein of YWHAG/H/E/Z and HSP90AA1, a total of six eCLIP libraries, 2 replicates for each 

of the IP, SMInput and control group, were sequenced, while YWHA family shares the same 
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control libraries. For each protein of INO80B, PIAS4, NR5A1, ACTN3, and MCCC1, 2 or 3 

replicates for each of the IP, SMInput were sequenced,  Reads were first mapped to repetitive 

elements and only the unmapped reads were retained and were next mapped to human 

genome (hg19). The uniquely mapped reads were kept for downstream analysis. PCR 

duplicates were further removed to obtain ‘usable reads’ with use of a randomer (N10) 

sequence positioned one of the adapter oligos. Next, usable reads were counted for both 

eCLIP (immunoprecipitation) and size-matched input (SMInput) samples across different 

genomic regions (i.e. 5′UTR, 3′UTR, coding exons (CDS), and intronic regions) for all coding 

genes annotated in UCSC Known Gene table (hg19). To identify the enrichment of binding 

signals in CLIP samples above SMInput in certain genomic region of certain gene, fold-

enrichment was calculated as the ratio of read counts within this region in CLIP versus 

SMInput. Only regions with at least 10 reads in both of eCLIP and SMInput samples were 

considered. Sequencing read peaks were identified using CLIPper algorithm 78 for both eCLIP 

and SMInput libraries. CLIPper-defined peaks were then normalized to size-matched input 

(SMInput) by comparing the read density in immunoprecipitation (IP) and SMInput samples 

(referred to as INPUT normalization). Significant peaks were defined as the peaks whose 

number of reads from the IP sample were 8-fold greater than the number of reads from the 

SMInput sample with a p-value < 0.001. P-value was calculated by Yates’ Chi-Square test 

(Fisher Exact Test was performed when the observed or expected read number was below 

five). For HSP90AA1 and YWHA G/H/E/Z, reproducible peak across both biological replicates 

were identified using an irreproducible discovery rate (IDR) approach used in our previous 

study 79. To validate the new RBPs (i.e. INO80B, PIAS4, NR5A1, ACTN3, and MCCC1) and 

their predicted functional domains, we applied a more stringent strategy to identify the reliable 

reproducible peaks using eCLIP output from size-matched “V5 tag only” experiments (shown 

in Figure S9C). In this strategy, the sequencing reads are processed in the same way above 

except we did two sets of normalization in the INPUT normalization step: (1) the standard 

normalization, i.e. protein IP against protein SMinput; (2) the normalization against V5 tag only 

output, i.e. protein IP against the IP sample from the size-matched V5 tag experiment. ChIP-

R49 algorithm was then used to identify the reproducible peaks for each of these outputs 

because of its capability of handling more than 2 replicates. The shared reproducible peaks 

from these two normalization ways form the final list of reproducible peaks where at least 5 

mapped reads are found in the peak for each IP sample of the protein are also required.  

Peak Enrichment Analysis 

Significantly enriched eCLIP peaks (described above) were assigned to different 

transcriptomic regions (i.e. 5′UTR, 3′UTR, coding exons (CDS), and intronic regions) with 

BEDTools 80 using annotations from GENCODE. For peaks whose coordinates overlap with 
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multiple transcriptomic regions, the following priority were applied to assign these peaks each 

with a single region: CDS, 5′UTR, 3′UTR, then proximal (as defined as less than 500 bp from 

an exon–intron boundary) or distal introns (as defined as 500 bp or greater from an exon–

intron boundary). The fraction of peaks in a specific transcriptomic region (PCLIP) was obtained 

by dividing the number of peaks in this region by the total number of peaks in all regions 

(5′UTR, 3′UTR, CDS, proximal intron and distal intron). Fold-enrichment (E) was then 

calculated as x>EH#.- = ery<(0>EH#.-/">EH#.-) to measure the binding preference of the tested 

RBP over this transcriptomic region, where Sregion is the fractional region size derived by 

dividing the total number of base pairs in that region relative to the total number of base pairs 

in all regions. Eregion with positive values indicate overrepresentation of peaks in this region 

and negative values indicate the underrepresentation. To be noticed, if a base pair is 

associated with multiple transcriptomic regions, this base pair was assigned to regions in the 

following priority: CDS, 5′UTR, 3′UTR, then proximal or distal introns. 

GO enrichment for candidate RBPs 

We retrieved the enriched Gene Ontology (GO) terms for the candidate RBPs (YWHA family, 

INO80B, PIAS4, NR5A1, ACTN3, and MCCC1)  with overrepresentation test implemented by 

PANTHER classification system 81. To simplify the output, we only observed the enrichment 

in GO terms from level 5 of the GO hierarchy system. 

Gene ontology enrichment analysis for HSP90A was performed using the Enrichr Gene 

Ontology enrichment tool (Kuleshov et al., 2016). Results were ranked by the "combined 

score", which combines p-value and z-score by multiplication, i.e. combined score = log(p) * 

z-score. 

Other Statistical Analysis 

Other Statistical analysis was performed using Scipy package in Python 3.  

 

Supplementary Tables 

 

Table S1. Classification performance of each components of HydRA. 

 

Table S2. HydRA Classification scores for human proteins. 

 

Table S3. Statistics of occlusion scores for human domains. 

 

Table S4. Feature and model selection for structure-based GNN models. 
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KEY RESOURCES TABLE 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
anti-V5 Proteintech 66007-1-Ig 
anti-His Proteintech 66005-1-Ig 
anti-His Invitrogen MA1-21315 
anti-a-Tubulin Sigma Clone B-5-1-2 
anti-HSP90B Sigma SAB4501463 
anti-HNRNPA2B1 Proteintech 14813-1-AP 
Bethyl anti-V5 Bethyl Bethyl A190-

120A 
Bacterial and virus strains  
One Shot E. Coli TOP10 Thermo Scientific Cat# C404003 
DH5α Competent Cells Thermo Scientific Cat# 

18265017 
Lentivirus Lenti-X HEK293T Cat# 632180 
   
   
Biological samples   
   
   
   
   
   
Chemicals, peptides, and recombinant proteins 
Puromycin Sigma Aldrich P8833-10MG 
Lipofectamine 3000 Invitrogen Cat# 

L3000008 
Doxycycline  Sigma Aldrich Cat# D9891-

5G 
Polybrene Millipore Sigma Cat# TR-

1003-G 
   
Critical commercial assays 
Pierce BCA Protein Assay Kit ThermoFisher 

Scientific 
Cat# 23225 

QIAprep Spin Miniprep Kit  Qiagen Cat# 27106 
QIAquick PCR Purification Kit Qiagen Cat# 28106 
Gateway BP Clonase II Invitrogen Cat# 

11789020 
Gateway LR Clonase II Invitrogen Cat# 

11791020 
Deposited data 
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eCLIP sequencing data for the over-
expressed full-length protein 
HSP90A, YWHAH, YWHAG, 
YWHAE, YWHAZ, INO80B, PIAS4, 
NR5A1, ACTN3, and MCCC1. 

GW Yeo lab, UCSD  

eCLIP sequencing data for the over-
expressed domain deleted protein 
INO80B, PIAS4, NR5A1, ACTN3, and 
MCCC1. 

GW Yeo lab, UCSD  

   
   
   
Experimental models: Cell lines 
Lenti-X HEK293T Takara Bio Cat# 632180 
   
   
   
   
Experimental models: Organisms/strains 
   
   
   
   
   
   
Oligonucleotides 
qPCR primers (table)   
Deletion cloning primers (table)   
   
   
   
Recombinant DNA 
pcDNA6-HSP90AA1-V5   
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eCLIP analysis pipeline Van Nostrand et 

al.48 
https://github.c
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ChIP-R Newell et al.49 https://github.c
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