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Abstract 26 

Background 27 

Cystic fibrosis (CF) and non-CF bronchiectasis (BX) are characterised by severe 28 

chronic infections. Fungal and bacterial components of infection are both 29 

recognized. Little however is known about how fungal and bacterial organisms 30 

interact and whether these interactions impact on disease outcomes.  31 

Methods 32 

Quantitative PCR and next-generation sequencing of ITS2 and 16S rRNA gene 33 

was carried out on 107 patients with CF or BX with clinically defined fungal 34 

infection status for all patients. The relationship between fungal and bacterial 35 

community composition was extensively explored using: random forest 36 

modelling, correlation network analysis, multi-omics factor analysis, and sample-37 

wise clustering, to understand associations both within and between the 38 

microbial communities and their relationship to respiratory disease.  39 

Results 40 

Random forest modelling demonstrated distinct fungal and bacterial 41 

communities within CF and BX patients. The inclusion of  both kingdoms in the 42 

models did not improve discrimination between the two diseases. Within the CF 43 

patients, bacterial community composition was independent of clinical fungal 44 

disease status. Bacterial and fungal communities did not relate to the presence of 45 

CF pulmonary exacerbations (CFPE). Correlation network analysis found intra-46 

kingdom interactions were predominant in the data. Multi-omics factor analysis 47 

(MOFA) revealed latent factors corresponding to single kingdoms. Thus, in the 48 

bacterial community we identified two distinct clusters characterised by the 49 

presence or absence of Pseudomonas-domination. This was independent of 50 
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fungal community which was characterised by a second set of independent 51 

clusters dominated by Saccharomycetes. 52 

Conclusions 53 

In this study we were unable to detect clear evidence of clinically significant 54 

inter-kingdom interactions between the bacterial and fungal communities. While 55 

further work is required to fully understand microbial interaction within the 56 

lung, our data suggests that interkingdom interactions may not be the primary 57 

driver of patient outcomes, particularly in the context of fungal infection.  58 

 59 
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Introduction 76 

Chronic respiratory infections are the leading causes of morbidity and mortality 77 

for the chronic suppurative lung diseases (CSLD) cystic fibrosis (CF) and non-CF 78 

bronchiectasis (BX) (1, 2). Bacterial infections are a major pathophysiological 79 

factor in disease progression in these patients (3, 4). The impact of fungal 80 

infections is increasingly being recognised and fungal infections have been 81 

associated with higher disease burdens, increased exacerbation rates, and 82 

accelerated clinical decline (5, 6). 83 

The development of robust microbial sequencing protocols has revealed complex 84 

fungal communities within the lungs of patients with CF and BX, exhibiting a 85 

range of clinical disease manifestations (7, 8). The recognition of these fungal 86 

communities has led to the investigation of bacterial and fungal interactions and 87 

their roles in disease progression. Insights into these complex associations and 88 

interactions are helped through evolving statistical methodology (8). 89 

Machine learning techniques have proven to be effective for host phenotype 90 

prediction from microbiome profiles with random forests exhibiting the 91 

strongest predictive performance in host-trait prediction tasks (9). This superior 92 

performance is driven in part by their ability to model non-linear interactions 93 

between variables. This property is especially useful in microbiome studies, in 94 

which the covariates represent a dynamic and interacting ecological system of 95 

microbes. Random forests are therefore often preferred over more interpretable 96 

linear models, with a recent systematic review finding that random forest was 97 

the most popular machine learning model for differential abundance testing in 98 

microbiome studies (10). 99 
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In this study we aimed to explore fungal and bacterial interactions within the 100 

lung of patients with chronic respiratory diseases (CF and BX) and understand 101 

their relationship to underlying disease, fungal disease diagnosis and CF 102 

pulmonary exacerbations (CFPE). Using random forest analysis we explored the 103 

predictive power of bacterial and fungal community composition and the 104 

presence of CF (n=83) or BX (n=24). This pipeline was subsequently applied to 105 

two fungal disease sub-groups within the CF disease group (see Table 1), defined 106 

by the presence (n=20) or absence (n=39) of clinical diagnoses of fungal 107 

bronchitis (FB).  Due to the small number of patients with BX (n=24), we 108 

confined this sub-group analysis to CF patients only. Motivated by recent work 109 

by Soret et al. (8), we also investigated CFPEs. 110 

The random forest analyses were complemented by unsupervised approaches 111 

investigating both intra- and inter-kingdom associations between taxa 112 

(correlation network analysis and multi-omics factor analysis (11)) and samples 113 

(Dirichlet multinomial mixtures (12)). The focus of both sets of the analyses was 114 

to find evidence of interactions between the two kingdoms. 115 

 116 

Table 1. Patient demographics. Data for all samples included in this 117 

manuscript. Only samples with paired fungal and bacterial sequencing that 118 

passed all quality control steps (see Supplementary Material) were taken 119 

forward for analysis. Differences in continuous variables were calculated using a 120 

one-way t-test, while a chi-square test was used for categorical variables.  121 

 122 

  BX (n = 24) CF (n = 83) P 

Age/yrs (mean [SD]) 59.79 (11.06) 32.00 (11.90) <0.001 

Male (%) 10 (41.7) 47 (56.6) 0.288 
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BMI (mean [SD]) 26.51 (8.73) 22.51 (6.50) 0.029 

FEV1 % predicted (mean 

[SD]) 
58.24 (25.23) 48.81 (17.79) 0.047 

Disease Group (%)     <0.001 

   ABPA 8 (33.3) 14 (16.9)  

   CNPA 5 (20.8) 0 (0.0)  

   FB 0 (0.0) 20 (24.1)  

   NAFD 8 (33.3) 39 (47.0)  

   NTM 3 (12.5) 10 (12.0)  

Exacerbation* (%) 1 (4.2) 36 (43.4) 0.001 

CF: Cystic fibrosis, BX: Non-CF bronchiectasis, BMI: Body mass index, FEV1: 123 

Forced expiratory volume in 1 second, ABPA: Allergic bronchopulmonary 124 

aspergillosis, CNPA: Chronic necrotising pulmonary aspergillosis, FB: Fungal 125 

bronchitis, NAFD: No active fungal disease, NTM: Non-tuberculosis mycobacteria.  126 

* Patients were defined as exacerbating by a change in clinical status from 127 

baseline that resulted in a new pulmonary antibiotic treatment.  128 

 129 

 130 

Methods 131 

Study Design 132 

A prospective, cross-sectional study of spontaneously expectorated sputum from 133 

adults with CF and BX was carried out at the Royal Brompton NHS trust between 134 

April 2013 and July 2014 (7). Ethical approval was obtained from the Royal 135 

Brompton and Harefield Hospital Biomedical Research Unit Ethics Committee 136 

(Advanced Lung Disease Biobank study number: 10/H0504/9). Written 137 

informed consent was obtained from all study participants prior to sample 138 

collection. This study was conducted in accordance with the International 139 

Conference for Harmonisation of Good Clinical Practice and the guiding 140 

principles of the Declaration of Helsinki and the Research Governance 141 
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Framework for Health and Social Care. 142 

Patient details, including treatments, were collected and subjects were 143 

partitioned into defined clinical subgroups according to the diagnostic criteria 144 

defined in Cuthbertson et al. 2020 (7) (Table 1). Participants within the study 145 

cohort were classified into four clinically defined fungal disease groups (see 146 

Table 1): (i) fungal bronchitis (FB), (ii) Allergic bronchopulmonary aspergillosis 147 

(ABPA), (iii) chronic necrotising pulmonary aspergillosis (CNPA, BX only); and 148 

(iv) non-tuberculous mycobacteria (NTM). 149 

Sputum samples were collected and processed as previously described, with half 150 

the sample sent for routine clinical microbiological culture and the other half 151 

stored at -80°C for DNA analysis (7). DNA extraction was performed using the 152 

DNA fast spin kit for soil (MPBio, California, USA) according to the 153 

manufacturer’s instructions. Extraction controls were blinded and processed 154 

along with patient samples (7). 155 

 156 

Quantitative PCR 157 

Bacterial biomass was quantified by SYBR green quantitative PCR (qPCR) (13). 158 

Fungal biomass was estimated using a modified Taqman based qPCR assay as 159 

previously described (7). All qPCR reactions were performed in triplicate.  160 

 161 

DNA sequencing 162 

16S rRNA gene and ITS2 sequencing were performed on the Illumina MiSeq 163 

platform using dual barcode fusion primers. Bacterial sequencing was performed 164 

on the V4 region of the 16S rRNA gene as previously described (13).  ITS2 165 

sequencing was performed using the primers, ITS2F (5’-CAR CAA YGG ATC TCT 166 
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TGG-3’) and ITS2R (5’-GAT ATG CTT AAG TTC AGC GGG T-3’) with ligated 167 

adaptors (7). Extraction controls, PCR negative and mock communities were 168 

included on all sequencing runs. 169 

Sequence processing of 16S rRNA gene and ITS2 data was carried out using 170 

QIIME 1.9 as described previously in Cuthbertson et al. 2017 (13) and 171 

Cuthbertson et al. 2020 (7) respectively.  172 

All sequences were submitted to the European nucleotide database. Bacterial 173 

data can be accessed under project number PRJEB33064 with the fungal data 174 

accessible under project number PRJEB33434. 175 

 176 

Statistical analysis  177 

Statistical analysis was carried out in R version 3.5.1. Data was analysed in 178 

phyloseq version 1.24.2 (14). Decontamination of the data was carried out using 179 

decontam version 1.1.2 (15); full details are available in Supplementary Material.   180 

Differences between categorical variables were calculated using Wilcoxon rank 181 

sum test and Kruskal-Wallis. Pearson correlation was used for tests between 182 

continuous variables. Differences in microbial community composition were 183 

tested with PERMANOVA using the Adonis function from vegan version 2.5-6 184 

[23]. Random forests models were fitted using the caret (version 6.0) and ranger 185 

(version 0.12) packages 4. The DirichletMultinomial package (version 1.36) was 186 

used for sample-wise clustering (16). MOFA analysis used the MOFA2 package 187 

(version 1.7) (11). P-values were adjusted for multiple corrections using false 188 

discovery rate (FDR) throughout. 189 

 190 

Random forest-based two-sample testing 191 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.01.11.475678doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475678
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

Random forest (RF) binary classifiers were used to investigate associations 192 

between microbial community composition and the three groups described in 193 

Table 2. We agglomerated the OTU counts to each rank in Class, Order, Family, 194 

Genus and Species. For each rank we trained three models with the following 195 

covariates: 196 

1. the agglomerated counts of the bacterial OTUs; 197 

2. the agglomerated counts of the fungal OTUs; or 198 

3. the agglomerated counts of both the bacterial and fungal OTUs. 199 

The five different agglomeration ranks were used in order to investigate the 200 

differences between groups at different levels of the taxonomic hierarchy. For all 201 

models, any agglomerated taxa present in fewer than 20% of samples were 202 

removed. Removal of rare samples has been shown to improve stability and 203 

reproducibility of random forest analyses while still retaining discriminative taxa 204 

and leaving predictive performance unchanged (17).  205 

 206 

Table 2. Patient groups investigated using random forest. These groups 207 

were chosen to maximise sample sizes and power of the analyses. The Group 208 

phenotype was limited to the FB (n = 20) and NAFD (n = 39) groups within the 209 

CF population. BX samples were removed from the group analysis due to the low 210 

numbers.   211 

 212 
Group Description Classes n 
Disease Whether a patient has CF or 

BX 
CF or BX 83 CF, 24 BX (107 total) 

Fungal disease 
(CF only) 

Whether a CF patient has 
been diagnosed with FB or 
NAFD 

FB or NAFD 20 FB, 39 NAFD (59 total) 
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CFPE (CF only) Whether a CF patient was 
experiencing pulmonary 
exacerbation when the 
sample was collected 
(clinician defined). 

Yes or No 36 Yes, 47 No (83 total) 

 213 

CF: cystic fibrosis, BX: non-cystic fibrosis bronchiectasis, FB: fungal bronchitis, 214 

NAFD: no active fungal disease. 215 

 216 

The predictive performance of each RF model was estimated using 5-fold nested 217 

cross-validation with 5 folds in the inner loop. The inner loop performed model 218 

selection using a random hyperparameter search of ten combinations of mtry 219 

and splitrule. Both inner and outer folds were sampled in a stratified manner 220 

meaning that the class proportions in each fold reflected the proportions of the 221 

entire dataset. The predictive performance of the models was evaluated using 222 

area under receiver-operating characteristic (ROC) and precision-recall (PR) 223 

curves. Ninety-five % confidence intervals on the cross-validated area under the 224 

curves (AUCs) were computed using the precrec package (18). The statistical 225 

significance of AUC values were computed using a label permutation test, where 226 

observed AUCs were compared to AUCs from random forest models trained on 227 

permuted labels. The dependence of the random forest results to the number of 228 

outer-loop folds was investigated by repeating all analyses using 10 outer folds 229 

(Supplementary Table S1). 230 

Similar results for this dataset showing the robustness of the predictive metrics 231 

(area under ROC and PR curves) and the increased stability of variable 232 

importance scores under different transformations are included in the 233 

Supplementary Material (Table S1 and Figure S1-5). For the results in the main 234 
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text, taxa reads were converted to relative abundances by dividing by the total 235 

per-sample reads. The random forest AUC and variable importance results were 236 

robust under four additional transformations (identity, centre log-ratio (CLR), 237 

log(x+1), and division by the sum of dataset reads). Please see Supplementary 238 

Table S1 for AUC results for the random forest models under the different 239 

transformations. 240 

 241 

Random forest variable importance and differential abundance analysis 242 

One of the primary benefits of random forest modelling is the ability to perform a 243 

variable importance analysis.  Here, we use both of the two most popular 244 

variable importance measures for random forest - Mean Decrease Gini and Mean 245 

Decrease Accuracy. In addition, we include the de-biased Mean Decrease Gini 246 

scores proposed by Nembrini et al. (19). 247 

Each random forest was grown using 1,000 trees to achieve stability in the 248 

variable importance scores. The statistical significance of MDA and de-biased 249 

MDG scores were assessed using P-values calculated using the permutation 250 

method of Altmann et al. with 1,000 permutations (20). Random forest variable 251 

importance scores are unsigned (do not give an effect direction), although an 252 

approximate effect direction can be obtained using partial dependence plots. 253 

Such plots visualise the marginal effect of a variable on the predictions of a 254 

model and are used here to gain further insight into the dependence of model 255 

prediction on the relative abundance of different taxa (21). 256 

 257 

Correlation analysis, MOFA and sample-wise clustering 258 
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We analysed the correlation structure amongst the taxa included in the random 259 

forest analysis. Samples were centred log-ratio (CLR) transformed prior to 260 

calculating correlations to account for the compositional nature of 16S rRNA 261 

gene and ITS2 sequencing data. The CLR transformation was applied separately 262 

to the 16S rRNA gene and ITS2 samples, as has been previously applied to find 263 

accurate cross-omic interactions (22). This pre-transformation requires that the 264 

resulting correlations are interpreted as the log-ratios abundance relative to the 265 

sample geometric mean rather than in absolute terms. MOFA was run using the 266 

same pre-processing as Haak et al. (23) (agglomeration to Genus and 267 

transformation using CLR prior to analysis). Sample-wise clustering was 268 

performed using Dirichlet Multinomial mixtures (12) on the un-transformed 269 

reads of each kingdom separately. The number of clusters was selected by 270 

comparing the Akaike and Bayesian information criteria and the Laplace 271 

approximation of the model evidence for 1 to 15 clusters. 272 

 273 

 274 

Results 275 

Description of data 276 

After decontamination and removal of samples with less than 2,000 reads (n = 277 

2), 107 samples were retained for downstream analyses (for demographics see 278 

Table 1). For the ecological analyses, bacterial reads were rarefied to 2,357 while 279 

fungal reads were rarefied to 2,542. All other analyses used un-rarefied reads. 280 

 281 

Ecological analysis 282 

Differences between diseases  283 
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We performed an ecological analysis on the rarefied data (full details are 284 

available in Supplementary Material). In short, Wilcoxon rank sum tests revealed 285 

both bacterial and fungal diversity were significantly higher in patients with BX 286 

than CF (P < 0.001). Similarly, bacterial biomass was significantly higher in the 287 

BX group (W = 1,100, effect size = 0.241, P = 0.018) but no significant difference 288 

in fungal biomass was observed. PERMANOVA revealed significant but small 289 

differences in community composition between CF and BX (bacterial, R2 = 0.066, 290 

P <0.001; fungal R2 = 0.028, P = 0.004). 291 

 292 

Differences between fungal disease groups in cystic fibrosis 293 

Within the CF group, we compared the two largest fungal disease groups, FB 294 

(n=20) and NAFD (n=39). We observed significant differences in fungal alpha 295 

diversity between the NAFD and FB groups (Wilcoxon rank sum test, P < 0.05). 296 

There were no significant differences, however, in bacterial biomass or diversity.  297 

 298 

CFPE 299 

There was no significant difference in bacterial or fungal, biomass or alpha 300 

diversity measures (Wilcoxon rank sum test, P > 0.1) between CFPE subjects and 301 

those that were stable.  302 

 303 

Random forest analysis 304 

Discriminative power of bacterial and fungal communities 305 

We further investigated differences in fungal and bacterial community 306 

composition between groups of patients using random forest modelling (Figure 307 
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1). For each set of group labels, we trained a random forest binary classifier with 308 

covariates being OTU reads agglomerated to Class, Order, Family, Genus, or 309 

Species level. Differences between groups were quantified using the area under 310 

ROC or PR curve (AU-ROC and AU-PRC). The null hypothesis (no difference 311 

between the groups) implies an AU-ROC=0.5 and an AU-PR equal to the 312 

proportion of the positive class. The baseline AU-PRC therefore varies between 313 

the different sets of group definitions. 314 

 315 

 316 

Figure 1: Discriminative power (quantified using area under ROC and PR curve) 317 

of random forest models predicting (a,b): disease status; (c,d): fungal disease 318 

status (CF only); and (e,f) and CFPE (CF only). The expected values for a random 319 

classifier (indicating no difference between groups) is denoted by a black dotted 320 

line. For AU-ROC (plots a,c,e) this is 0.5, while for AU-PRC (plots b,d,f)  while for 321 

AU-PRC the value is the proportion of samples in the positive class. Error bars 322 

are 95% confidence intervals.  *: P < 0.10, **: P < 0.05 for 100 replicates of a label 323 

permutation test. P-values adjusted using false discovery rate. 324 

 325 

 326 

Statistically significant differences between the CF and BX groups were evident 327 

at every taxonomic rank. These differences were detected using both the AU-ROC 328 

(Figure 1a) or AU-PRC (Figure 1b) metrics. We also found that the differences 329 

between CF and BX did not differ significantly between the two kingdoms (label 330 
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permutation test, P > 0.10), meaning that both kingdoms have equally distinct 331 

communities between CF and BX. In addition, including both communities in a 332 

random forest does not increase the predictive power (label permutation test, P 333 

> 0.10). 334 

Figures 1c and 1d show that fungal disease group within the CF patients is 335 

independent of bacterial community composition. As expected, fungal 336 

community composition is a good predictor of fungal disease status within the 337 

CF group. Adding the bacteria to the random forest model decreased predictive 338 

power at all ranks. The bacterial covariates represent additional noise in the 339 

context of fungal disease group however, the models still have better than-340 

random performance due to the inclusion of the fungal taxa (label permutation 341 

test, P < 0.05). 342 

Finally, CFPE was found to be independent of both bacterial and fungal 343 

community composition (Figures 1e and 1f), none of the random forest models 344 

had predictive power significantly better than random (label permutation test, P 345 

> 0.10).  346 

 347 

Differential abundance analysis 348 

Random forest models that detected a significant difference between their two 349 

classes were then analysed using three variable importance measures: mean 350 

decrease accuracy (MDA); mean decrease Gini (MDG); and de-biased mean 351 

decrease Gini (corrected MDG, (19)). Statistical significance can only be assessed 352 

for the MDA and de-biased MDG scores. Only Genus-level agglomeration was 353 
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included as it is the highest reliable taxonomic resolution for both 16S rRNA 354 

gene and ITS2 sequencing (24). The four random forest models that detected a 355 

difference between their respective groups were: 356 

1. distinguishing CF/BX using bacterial and fungal genera; 357 

2. distinguishing CF/BX using bacterial genera; 358 

3. distinguishing CF/BX using fungal genera; and 359 

4. distinguishing FB/NAFD using fungal genera (CF group only). 360 

The most highly-ranked taxa for these four models are shown in Figure 2(a-d). 361 

For Model 1, Penicillium (direction BX) is the most highly-ranked genus 362 

according to all three of the variable importance methods. Pseudomonas 363 

(direction CF), Malassezia and Neisseria (direction BX) are also highly-ranked. All 364 

four of these associations are significant (p<0.05) when using the de-biased MDG 365 

scores, but not for MDA scores. 366 

 367 

 368 

Figure 2: Each row shows the four top-ranked taxa and partial dependence for a 369 

random forest model distinguishing (a,b): BX/CF from bacterial and fungal 370 

genera; (c,d): Bx/CF from bacterial genera; (e,f): Bx/CF from bacterial genera ; 371 

and (g,h): FB/NAFD from fungal genera (CF group only). *: P < 0.10, **: P < 0.05 372 

for 100 replicates of a label permutation test. P-values adjusted using false 373 

discovery rate. 374 

 375 

 376 
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Importance rankings can be augmented by partial dependence plots (Figure 2 377 

b,d,f,h) which visualise the marginal effect of a single variable on the prediction 378 

of the model. These provide effect directions for the unsigned variable 379 

importance scores as well as insight into the type of dependence. For example, 380 

the majority of the effect of the important taxa for Model 1 (Figure 2b) occurs 381 

when the relative abundance increases from zero to non-zero relative 382 

abundance. This is the case for Pseudomonas, where the likelihood of a BX 383 

prediction quickly decreases as its relative abundance increases, before the rate 384 

of decrease slows. 385 

Model 2 ranks Treponema, Neisseria (direction BX), Pseudomonas and Tanerella 386 

(direction CF) highly (Figure 2c). Overlap is observed with Model 1 as the two 387 

models share bacterial covariates. The partial dependence (Figure 2d) shows 388 

that increasing Pseudomonas relative abundance does not increase the likelihood 389 

of CF until it increases beyond 50%. 390 

Model 3 (Figure 2e), clearly indicates that Penicillium is the most important taxa 391 

and is significantly associated with an increased probability of BX in this cohort. 392 

Once again, there is overlap with Model 1 due to shared fungal covariates. 393 

Compared to Model 1, however, this fungal-only model places higher importance 394 

on Penicillium, which can be seen from the much steeper increase in the partial 395 

dependence (Figure 2f) at small relative abundance. 396 

Model 4 (Figure 2g) ranks Candida (direction NAFD) as the most important taxa, 397 

followed by Exophiala, Aspergillus and Scedosporium (direction FB). Candida is an 398 

opportunistic pathogen, but these partial dependence plots (Figure 1h) show a 399 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.01.11.475678doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475678
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

lower likelihood of FB prediction from the model as a sample becomes 400 

increasingly Candida-dominated.  401 

 402 

Correlation analysis and clustering 403 

Correlation network analysis is a useful tool to explore microbial associations (8, 404 

25, 26). Strong correlations are commonly observed in microbiome studies and 405 

correlations can be positive; associated with microbes inhabiting common 406 

ecological niches, or negative; indicating competition. In this dataset we observe 407 

clear structure at the genus level (Figure 3a), with blocks of positively correlated 408 

bacterial (Steptococcus, Veillonella, Rothia, Selemonas, Prevotella, Fusobacterium, 409 

Atopobium, Neisseria, Haemophilus and others) and fungal genera (Serratia, 410 

Talaromyces, Filobasildea, Fusarium and Trichosporon). The genera in these 411 

blocks come from a single kingdom and so do not indicate prominent cross-412 

kingdom dependencies in the community structure. In addition, there are no 413 

significant correlations between members of these two blocks of taxa (P > 0.01), 414 

suggesting that the two blocks are largely independent of one another. This may 415 

be because they occupy separate niches in the respiratory tract or due to 416 

sampling bias.  417 

 418 

 419 

Figure 3: (a) Pearson correlation analysis shows that taxa form correlated 420 

clusters with members of the same kingdom. Bacterial and fungal abundances 421 

are agglomerated to Genus level and transformed (separately) using centred log-422 

ratio prior to calculating correlations. Genera accounting for more than 0.1% of 423 

reads in their respective kingdom are shown. * indicates pairwise correlations 424 
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for which P < 0.01. (b): The P-values for the correlations in panel (a) are smaller 425 

for correlations within each kingdom than between the two kingdoms (c): Multi-426 

omics factor analysis (MOFA) identifies latent factors that describe the variance 427 

in the composition of both kingdoms. However, these latent factors each describe 428 

variance in a single kingdom. 429 

 430 

 431 

The relative importance of intra- and inter-kingdom correlations was further 432 

explored by considering the P-values from the pairwise correlations (Figure 3b), 433 

which indicated that significant correlations occur within each kingdom more 434 

than between. Figure 3b also shows that, while the most extreme correlations 435 

are between pairs of fungal genera, the correlation patterns within the bacterial 436 

genera are overall more significant. 437 

A dedicated multi-omics integration approach was used to further investigate 438 

the underlying drivers of cross kingdom community structure by applying Multi-439 

omics factor analysis (MOFA, (11)). MOFA is an unsupervised method that finds 440 

latent factors that explain the variance across different “views” of the same 441 

samples: in this analysis, bacterial and fungal abundances only identify latent 442 

factors that explain variance in a single kingdom (Figure 3c). This is true at five 443 

different taxonomic levels of agglomeration (Class, Order, Family, Genus, 444 

Species). This provides further evidence on the lack of detectable cross-kingdom 445 

dependencies in this dataset.  446 

Community structure within the microbial kingdoms across samples was further 447 

analysed with Dirichlet mixture components, grouping samples into distinct 448 

clusters with similar composition (12). This unsupervised approach provides 449 
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insight into community-level structure across samples, which may or may not 450 

correspond to the pre-defined clinical labels.  451 

All 107 samples were clustered using Dirichlet Multinomial Mixture models 452 

using raw count values agglomerated to one of the taxonomic ranks. This was 453 

performed separately on the two kingdoms and resulted in two sets of cluster 454 

labels for each agglomeration rank. Using information-theoretic goodness of fit 455 

measures (Figure S6), two distinct bacterial clusters were found at Genus level 456 

and two fungal clusters were found at Class level. Both the bacterial (Figure 4a, 457 

top) and fungal (Figure 4a, bottom) clusters are separable in Bray-Curtis 458 

principal coordinate space. 459 

The clusters for bacterial genera are defined by Pseudomonas domination (Figure 460 

4d) while the fungal class clusters are defined by Saccharomycetes domination 461 

(Figure 4e).  462 

 463 

 464 

Figure 4: (a, left) Clustering of samples based on bacterial genera abundances 465 

identifies two clusters that are separable in Bray-Curtis principle co-ordinate 466 

analysis (PCoA) space. (a, right) Clustering using fungal class abundance also 467 

finds two clusters that are separable in Bray-Curtis space. The two sets of cluster 468 

labels do not correspond to one another nor to clinical labels (see Table 3).  (b): 469 

Random forest two-sample testing shows that the bacterial cluster assignments 470 

are independent of fungal community composition. (c) The fungal cluster 471 

assignments show a weak association with bacterial community composition, 472 

with only the PR-curves suggesting an association. (d) The bacterial composition 473 

of the samples when ordered by cluster clearly shows that they correspond to 474 
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presence or absence of domination by Pseudomonas species. (e) The two fungal 475 

clusters are defined by presence or absence of Saccharomycetes domination. *: P 476 

< 0.10, **: P < 0.05 for 100 replicates of a label permutation test. P-values 477 

adjusted using false discovery rate. 478 

 479 

 480 

Neither the bacterial nor the fungal clusters agree (Adjusted Rand index=-0.01). 481 

There is also very low similarity between the cluster labels and clinical labels 482 

(Table 3). The ARI values are close to zero, other than for fungal Class cluster and 483 

fungal disease status within the CF group (ARI=0.26), however, values still show 484 

low levels of agreement. The random forest two-sample testing procedure 485 

showed that fungal class is independent of the bacterial community at all levels 486 

of agglomeration (Figure 4b).  A weak (ROC curves not significantly better than 487 

random) association between Saccharomycetes domination and bacterial 488 

Species, Genus and Family abundance was, however, observed (Figure 4c).  489 

 490 

Table 3. Adjusted Rand Index (ARI). ARI between bacterial/fungal cluster 491 

assignments and clinical labels show that there is low similarity between the 492 

either set of cluster labels and other clinical labels used in this study. The ARI 493 

between the fungal and bacterial clustering labels was -0.01. 494 

 Disease Group (CF only) CFPE (CF only) 

ARI(bacterial cluster, 

clinical label) 

-0.02 -0.02 -0.01 

ARI(fungal cluster, 

clinical label) 

0.06 0.26 -0.01 

 495 

 496 
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Discussion 497 

Identifying factors predicting the prevalence and severity of chronic respiratory 498 

infections may be crucial for improving clinical outcomes in CSLDs. To date the 499 

majority of research has been focused on bacterial pathogens. An increasing 500 

number of recent studies however, are showing that fungal infection plays a key 501 

role in chronic disease progression both independently of and in concert with 502 

the bacterial airway community (8, 27, 28). As such, understanding the inter-503 

kingdom association present within the lungs is an essential step towards 504 

effective antimicrobial treatments. 505 

A primary motivation of this study was to explore inter-kingdom interactions. 506 

Such interactions have been reported previously in both CF and BX (8, 28), as 507 

well as in many other settings (29-31). Despite using a range of statistical 508 

approaches, we did not however in this present study find strong evidence of 509 

such interactions in our dataset (either in general or in relation to CF or BX). 510 

Including both kingdoms in the random forest models did not increase the 511 

discriminative power of any of the random forest models, while fungal disease 512 

status of the CF group was independent of bacterial community composition. 513 

Both the correlation and MOFA analysis failed to find evidence of cross-kingdom 514 

interactions and instead identified sets of kingdom-specific features that were 515 

largely independent of one another. Finally, the sample-wise clustering found 516 

that a characteristic feature of fungal community composition (domination by 517 

Saccharomycetes) was distinct from Pseudomonas domination. 518 

Taken together, these results suggest no important cross-kingdom interactions 519 

present in this dataset. This is surprising given that both the fungal and bacterial 520 

communities are sharing the same niche and so must compete for resources, as 521 
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well as being affected by common environmental changes. Given the results of 522 

previous studies, it is unclear whether such interactions biologically exist but are 523 

simply not detectable in this dataset.  524 

A recent study carried out by Hughes et al. established that using culture-based 525 

methodologies, the known CF pathogens, Pseudomonas aeruginosa and 526 

Aspergillus fumigatus are rarely cultured from the same sample (32). Despite 527 

this, our culture independent techniques clearly show the common presence of 528 

both Pseudomonas aeruginosa and Aspergillus fumigatus reads in the samples. It 529 

is possible that microbial interactions within the lungs may not be detected by 530 

DNA-based methods. Future work may require functional analyses to explore 531 

relative microbial gene expression within the lung. 532 

Despite many similarities in the symptoms and treatments of CF and BX, we 533 

identified fundamental differences in their microbial communities. Using random 534 

forest modelling we found that CF/BX status depends on both fungal and 535 

bacterial community composition in this cohort. Furthermore, we found that 536 

both communities are equally discriminative of CF/BX status, but the inclusion of 537 

both communities in the models does not increase predictive power. This is 538 

further evidence that the fungal and bacterial communities are independently 539 

distinct between CF and BX and does not provide any evidence of clinically 540 

relevant cross-kingdom interactions.  541 

These observed differences between the CF and BX groups are likely to be driven 542 

by the physiological differences underlying the individual diseases and their 543 

effect on the host environment (33). These differences may also be influenced by 544 

age, which is a perfect confounder for disease status in this cohort. It is not 545 
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possible to correct for this confounding effect as CF is a disease affecting 546 

individuals from childhood and BX affects older age groups.  547 

Variable importance analysis with these random forest models identified a set of 548 

genera from both kingdoms that are associated with increased likelihood of CF 549 

(Pseudomonas and Scedosporium) and BX (Penicillium, Neisseria, Campylobacter, 550 

Trichocomaceae, Malassezia, Enterobacteriaceae and Talaromyces).  551 

These results are consistent with the known role of Pseudomonas aeruginosa as 552 

one of the most common pathogens associated with CF lung disease. In non-CF 553 

bronchiectasis, Pseudomonas infection may be associated with more severe 554 

disease (34) but it was not a prominent factor in our BX patients. 555 

Members of the Neisseria genus are commonly isolated in the upper respiratory 556 

tract with some species being known pathogens (35). Our results may suggest 557 

that a pathogenic role for Neisseria spp. could be considered for BX and warrants 558 

further investigation. Fungal species associated with BX were primarily part of 559 

the Penicillium genus. Symptomatic infections with Penicillium spp. are rare (36) 560 

and Penicillum spp. are widely present in the air making it a logical part of the 561 

normal respiratory flora.   562 

The microbiota between patients with and without a clinical fungal infection 563 

using the random forest pipeline found that the fungal disease status of the CF 564 

group was independent of bacterial community composition, but not fungal 565 

community composition. The analysis identified several drivers of fungal 566 

bronchitis (Trichocomaceae, Scedosporium, Exophiala and Aspergillus) while also 567 

finding that increasing Candida decreases the likelihood of a fungal bronchitis 568 

diagnosis, consistent with previous findings (7).  569 
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Despite the association with the NAFD group, members of the Candida genus 570 

(including Candida albicans and Candida parapsilosis) are well-known 571 

opportunistic human pathogens, particularly in immunocompromised patients 572 

(6). In adult CF patients, Candida spp. colonization has been shown to be 573 

associated with use of inhaled steroids, diabetes mellitus and antibiotic 574 

treatment. Despite these observations the virulence potential of C. albicans in CF 575 

is still being explored (6). In the current study Candida spp. were present with a 576 

lower relative abundance in the FB group suggesting that dominance of 577 

filamentous fungi may out-compete Candida spp. in these patients. More work is 578 

therefore needed to understand the role members of the Candida genus play in 579 

CF disease progression.  580 

Pulmonary exacerbations are major clinical events in patients with CF resulting 581 

in lung function decline and clinical disease progression (37). The presence of 582 

bacteria and viruses is commonly associated with poor outcomes during CFPE 583 

but defining their exact role is challenging. Recent evidence has suggested fungal 584 

infections are also associated with increased CFPE although to date few studies 585 

have explored this area. A recent publication by Soret et al. investigated CFPE 586 

using an adapted penalised linear model and cross-sectional data and identified 587 

two fungal genera, Aspergillus and Malassezia, associated with CFPE (8). Our 588 

analyses however found that CFPE status was independent of both bacterial and 589 

fungal community composition.  590 

The importance of viruses has been shown by the sharp reduction in the 591 

incidence of CFPE during the COVID pandemic (38).  Future studies should 592 

include assays for respiratory viruses, and longitudinal measurements may be 593 
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used to test if intra-patient variation within the bacterial and fungal communities 594 

is a contributing factor. 595 

We further explored the bacterial and fungal communities and their cross-596 

kingdom dependencies using a series of unsupervised statistical analyses. 597 

Correlation network analysis identified two blocks of positively co-correlated 598 

genera, where each block contained taxa from a single kingdom. Positive 599 

correlations are often interpreted to imply mutualistic relationships between 600 

organisms and are often observed between phylogenetically related microbes 601 

(39). Negative correlations may imply competition within a niche due to 602 

competition for resources. These correlations have previously been observed in 603 

multi-omic analyses of CFPE (8). Both positive and negative correlations 604 

however are often due to unmeasured factors affecting the host environment 605 

and so do not necessarily imply a direct relationship between taxa. 606 

Multi-omics analysis using MOFA also found no evidence of cross-kingdom 607 

interactions, as the analysis identified a set of kingdom-specific latent factors. 608 

The lack of strong cross-kingdom correlation patterns and the results of the 609 

MOFA analysis indicates a surprising degree of independence between the two 610 

kingdoms although this is inconsistent with previous studies that have indicated 611 

a number of inter-kingdom interactions existing within the lung (8, 28).  612 

Unsupervised sample-wise clustering analysis identified characteristic features 613 

of the dataset identifying two bacterial clusters at the Genus level and two fungal 614 

clusters at the Class level. These two sets of cluster labels had low similarity with 615 

one another and with the clinical labels from the random forest analyses, 616 

suggesting that the relevant structure of the communities may be primarily due 617 

to other (possibly environmental) factors.  The bacterial clusters were driven by 618 
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dominance of Pseudomonas within individual samples. Pseudomonas was also 619 

identified by the random forest analysis as being associated with CF, but these 620 

clustering results suggest that Pseudomonas-dominance is not the only predictor 621 

of CF in this cohort. The bacterial cluster label was independent from fungal 622 

community composition, providing additional evidence of independence 623 

between the bacterial and fungal communities. 624 

Inter-kingdom correlations were generally weaker than those within either 625 

kingdom (measured by proportion of significant correlations at different 626 

significance thresholds). This further indicates that intra-kingdom interactions 627 

may play a minor role in these subjects. In addition, correlation patterns 628 

between bacterial genera were stronger than those between fungal genera. 629 

Our analysis has several limitations that should be considered when interpreting 630 

the results. Machine learning is a powerful tool for exploring microbial 631 

interactions and drivers of disease, but understanding the limitations of the 632 

models is vital for interpretation. Most importantly, associations identified by 633 

machine learning models such as random forest do not imply causal links. 634 

Furthermore, the importance scores from random forests should be interpreted 635 

with care. Using multiple random forest variable importance scores and 636 

transformations in the differential abundance analysis reduces the danger of 637 

spurious associations but does not provide a framework that allows quantitative 638 

statements to be made. 639 

A further limitation of this study is the use of 16S rRNA gene sequencing and 640 

ITS2 sequencing for the exploration of these communities. This technology 641 

allows us to understand the microbial community present within the lung but 642 

provides no information on their activity or function. 643 
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 644 

 645 

Conclusions 646 

Our study suggests that the role the fungal microbiota play in chronic respiratory 647 

disease is independent of that played by the bacterial microbiota. Longitudinal 648 

studies are required to understand the full impact of fungal infection in CF and 649 

BX. Importantly improvements in clinical diagnosis of fungal infections, whether 650 

by sequence analysis, transcriptomics, or advanced cultures, could underpin the 651 

improvement of patient outcomes. While further work is required to fully 652 

understand microbial interaction within the lung, our data suggests that inter-653 

kingdom interactions may not be a major driver of patient outcomes particularly 654 

those associated with fungal infection. 655 
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