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26  Abstract

27  Background

28  Cystic fibrosis (CF) and non-CF bronchiectasis (BX) are characterised by severe
29  chronic infections. Fungal and bacterial components of infection are both
30 recognized. Little however is known about how fungal and bacterial organisms
31 interact and whether these interactions impact on disease outcomes.

32  Methods

33  Quantitative PCR and next-generation sequencing of ITS2 and 16S rRNA gene
34  was carried out on 107 patients with CF or BX with clinically defined fungal
35 infection status for all patients. The relationship between fungal and bacterial
36 community composition was extensively explored using: random forest
37 modelling, correlation network analysis, multi-omics factor analysis, and sample-
38 wise clustering, to understand associations both within and between the
39  microbial communities and their relationship to respiratory disease.

40  Results

41 Random forest modelling demonstrated distinct fungal and bacterial
42  communities within CF and BX patients. The inclusion of both kingdoms in the
43  models did not improve discrimination between the two diseases. Within the CF
44  patients, bacterial community composition was independent of clinical fungal
45  disease status. Bacterial and fungal communities did not relate to the presence of
46  CF pulmonary exacerbations (CFPE). Correlation network analysis found intra-
47  kingdom interactions were predominant in the data. Multi-omics factor analysis
48 (MOFA) revealed latent factors corresponding to single kingdoms. Thus, in the
49  bacterial community we identified two distinct clusters characterised by the

50 presence or absence of Pseudomonas-domination. This was independent of
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51 fungal community which was characterised by a second set of independent
52  clusters dominated by Saccharomycetes.

53  Conclusions

54 In this study we were unable to detect clear evidence of clinically significant
55  inter-kingdom interactions between the bacterial and fungal communities. While
56 further work is required to fully understand microbial interaction within the
57 lung, our data suggests that interkingdom interactions may not be the primary
58  driver of patient outcomes, particularly in the context of fungal infection.

59
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76  Introduction

77  Chronic respiratory infections are the leading causes of morbidity and mortality
78  for the chronic suppurative lung diseases (CSLD) cystic fibrosis (CF) and non-CF
79  bronchiectasis (BX) (1, 2). Bacterial infections are a major pathophysiological
80 factor in disease progression in these patients (3, 4). The impact of fungal
81 infections is increasingly being recognised and fungal infections have been
82  associated with higher disease burdens, increased exacerbation rates, and
83  accelerated clinical decline (5, 6).

84  The development of robust microbial sequencing protocols has revealed complex
85 fungal communities within the lungs of patients with CF and BX, exhibiting a
86 range of clinical disease manifestations (7, 8). The recognition of these fungal
87 communities has led to the investigation of bacterial and fungal interactions and
88  their roles in disease progression. Insights into these complex associations and
89 interactions are helped through evolving statistical methodology (8).

90 Machine learning techniques have proven to be effective for host phenotype
91 prediction from microbiome profiles with random forests exhibiting the
92  strongest predictive performance in host-trait prediction tasks (9). This superior
93  performance is driven in part by their ability to model non-linear interactions
94  between variables. This property is especially useful in microbiome studies, in
95  which the covariates represent a dynamic and interacting ecological system of
96 microbes. Random forests are therefore often preferred over more interpretable
97  linear models, with a recent systematic review finding that random forest was
98 the most popular machine learning model for differential abundance testing in

99  microbiome studies (10).
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100 In this study we aimed to explore fungal and bacterial interactions within the
101 lung of patients with chronic respiratory diseases (CF and BX) and understand
102  their relationship to underlying disease, fungal disease diagnosis and CF
103  pulmonary exacerbations (CFPE). Using random forest analysis we explored the
104  predictive power of bacterial and fungal community composition and the
105 presence of CF (n=83) or BX (n=24). This pipeline was subsequently applied to
106  two fungal disease sub-groups within the CF disease group (see Table 1), defined
107 by the presence (n=20) or absence (n=39) of clinical diagnoses of fungal
108 bronchitis (FB). Due to the small number of patients with BX (n=24), we
109  confined this sub-group analysis to CF patients only. Motivated by recent work
110 by Soret et al. (8), we also investigated CFPEs.

111 The random forest analyses were complemented by unsupervised approaches
112  investigating both intra- and inter-kingdom associations between taxa
113 (correlation network analysis and multi-omics factor analysis (11)) and samples
114  (Dirichlet multinomial mixtures (12)). The focus of both sets of the analyses was
115  to find evidence of interactions between the two kingdoms.

116

117 Table 1. Patient demographics. Data for all samples included in this
118 manuscript. Only samples with paired fungal and bacterial sequencing that
119  passed all quality control steps (see Supplementary Material) were taken
120 forward for analysis. Differences in continuous variables were calculated using a

121  one-way t-test, while a chi-square test was used for categorical variables.

122
BX (n = 24) CF (n=83) P
Age/yrs (mean [SD]) 59.79 (11.06) 32.00(11.90) <0.001
Male (%) 10 (41.7) 47 (56.6) 0.288
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BMI (mean [SD]) 26.51 (8.73) 22.51 (6.50) 0.029
10 i
FSEl;/]) % predicted (mean | o5y 5 93y 48.81 (17.79) 0.047
Disease Group (%) <0.001
ABPA 8 (33.3) 14 (16.9)
CNPA 5 (20.8) 0 (0.0)
FB 0 (0.0) 20 (24.1)
NAFD 8 (33.3) 39 (47.0)
NTM 3 (12.5) 10 (12.0)
Exacerbation™ (%) 1(4.2) 36 (43.4) 0.001

123  CF: Cystic fibrosis, BX: Non-CF bronchiectasis, BMI: Body mass index, FEV:
124  Forced expiratory volume in 1 second, ABPA: Allergic bronchopulmonary
125  aspergillosis, CNPA: Chronic necrotising pulmonary aspergillosis, FB: Fungal
126  bronchitis, NAFD: No active fungal disease, NTM: Non-tuberculosis mycobacteria.
127  * Patients were defined as exacerbating by a change in clinical status from
128  baseline that resulted in a new pulmonary antibiotic treatment.

129

130

131 Methods

132 Study Design

133 A prospective, cross-sectional study of spontaneously expectorated sputum from
134  adults with CF and BX was carried out at the Royal Brompton NHS trust between
135  April 2013 and July 2014 (7). Ethical approval was obtained from the Royal
136 Brompton and Harefield Hospital Biomedical Research Unit Ethics Committee
137 (Advanced Lung Disease Biobank study number: 10/H0504/9). Written
138 informed consent was obtained from all study participants prior to sample
139  collection. This study was conducted in accordance with the International
140  Conference for Harmonisation of Good Clinical Practice and the guiding
141 principles of the Declaration of Helsinki and the Research Governance

6
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142 Framework for Health and Social Care.

143 Patient details, including treatments, were collected and subjects were
144  partitioned into defined clinical subgroups according to the diagnostic criteria
145  defined in Cuthbertson et al. 2020 (7) (Table 1). Participants within the study
146  cohort were classified into four clinically defined fungal disease groups (see
147  Table 1): (i) fungal bronchitis (FB), (ii) Allergic bronchopulmonary aspergillosis
148 (ABPA), (iii) chronic necrotising pulmonary aspergillosis (CNPA, BX only); and
149  (iv) non-tuberculous mycobacteria (NTM).

150 Sputum samples were collected and processed as previously described, with half
151 the sample sent for routine clinical microbiological culture and the other half
152  stored at -80°C for DNA analysis (7). DNA extraction was performed using the
153 DNA fast spin kit for soil (MPBio, California, USA) according to the
154  manufacturer’s instructions. Extraction controls were blinded and processed
155 along with patient samples (7).

156

157  Quantitative PCR

158 Bacterial biomass was quantified by SYBR green quantitative PCR (qPCR) (13).
159  Fungal biomass was estimated using a modified Tagman based qPCR assay as
160  previously described (7). All gPCR reactions were performed in triplicate.

161

162 DNA sequencing

163  16S rRNA gene and ITS2 sequencing were performed on the Illumina MiSeq
164  platform using dual barcode fusion primers. Bacterial sequencing was performed
165 on the V4 region of the 16S rRNA gene as previously described (13). ITS2

166  sequencing was performed using the primers, ITS2F (5’-CAR CAA YGG ATC TCT

7
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167 TGG-3") and ITS2R (5’-GAT ATG CTT AAG TTC AGC GGG T-3") with ligated
168 adaptors (7). Extraction controls, PCR negative and mock communities were
169 included on all sequencing runs.

170  Sequence processing of 16S rRNA gene and ITS2 data was carried out using
171  QIIME 1.9 as described previously in Cuthbertson et al. 2017 (13) and
172  Cuthbertson et al. 2020 (7) respectively.

173  All sequences were submitted to the European nucleotide database. Bacterial
174  data can be accessed under project number PRJEB33064 with the fungal data
175  accessible under project number PRJEB33434.

176

177  Statistical analysis

178  Statistical analysis was carried out in R version 3.5.1. Data was analysed in
179  phyloseq version 1.24.2 (14). Decontamination of the data was carried out using
180  decontam version 1.1.2 (15); full details are available in Supplementary Material.
181 Differences between categorical variables were calculated using Wilcoxon rank
182  sum test and Kruskal-Wallis. Pearson correlation was used for tests between
183  continuous variables. Differences in microbial community composition were
184  tested with PERMANOVA using the Adonis function from vegan version 2.5-6
185 [23]. Random forests models were fitted using the caret (version 6.0} and ranger
186  (version 0.12) packages 4. The DirichletMultinomial package (version 1.36) was
187  used for sample-wise clustering (16). MOFA analysis used the MOFAZ package
188  (version 1.7) (11). P-values were adjusted for multiple corrections using false
189  discovery rate (FDR) throughout.

190

191 Random forest-based two-sample testing

8
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192 Random forest (RF) binary classifiers were used to investigate associations
193  between microbial community composition and the three groups described in
194  Table 2. We agglomerated the OTU counts to each rank in Class, Order, Family,
195  Genus and Species. For each rank we trained three models with the following

196  covariates:

197 1. the agglomerated counts of the bacterial 0TUs;
198 2. the agglomerated counts of the fungal OTUs; or
199 3. the agglomerated counts of both the bacterial and fungal OTUs.

200 The five different agglomeration ranks were used in order to investigate the
201  differences between groups at different levels of the taxonomic hierarchy. For all
202  models, any agglomerated taxa present in fewer than 20% of samples were
203  removed. Removal of rare samples has been shown to improve stability and
204  reproducibility of random forest analyses while still retaining discriminative taxa

205  and leaving predictive performance unchanged (17).

206

207 Table 2. Patient groups investigated using random forest. These groups
208 were chosen to maximise sample sizes and power of the analyses. The Group
209  phenotype was limited to the FB (n = 20) and NAFD (n = 39) groups within the
210  CF population. BX samples were removed from the group analysis due to the low

211 numbers.

212
Group Description Classes n
Disease Whether a patient has CF or | CF or BX 83 CF, 24 BX (107 total)
BX
Fungal disease | Whether a CF patient has FB or NAFD 20 FB, 39 NAFD (59 total)
(CF only) been diagnosed with FB or
NAFD
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CFPE (CF only) | Whether a CF patient was Yes or No 36 Yes, 47 No (83 total)
experiencing pulmonary
exacerbation when the
sample was collected
(clinician defined).

213

214  CF: cystic fibrosis, BX: non-cystic fibrosis bronchiectasis, FB: fungal bronchitis,

215  NAFD: no active fungal disease.

216

217  The predictive performance of each RF model was estimated using 5-fold nested
218  cross-validation with 5 folds in the inner loop. The inner loop performed model
219  selection using a random hyperparameter search of ten combinations of mtry
220  and splitrule. Both inner and outer folds were sampled in a stratified manner
221 meaning that the class proportions in each fold reflected the proportions of the
222  entire dataset. The predictive performance of the models was evaluated using
223  area under receiver-operating characteristic (ROC) and precision-recall (PR)
224  curves. Ninety-five % confidence intervals on the cross-validated area under the
225  curves (AUCs) were computed using the precrec package (18). The statistical
226  significance of AUC values were computed using a label permutation test, where
227  observed AUCs were compared to AUCs from random forest models trained on
228 permuted labels. The dependence of the random forest results to the number of
229  outer-loop folds was investigated by repeating all analyses using 10 outer folds

230  (Supplementary Table S1).

231  Similar results for this dataset showing the robustness of the predictive metrics
232  (area under ROC and PR curves) and the increased stability of variable
233 importance scores under different transformations are included in the

234  Supplementary Material (Table S1 and Figure S1-5). For the results in the main

10
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235  text, taxa reads were converted to relative abundances by dividing by the total
236  per-sample reads. The random forest AUC and variable importance results were
237  robust under four additional transformations (identity, centre log-ratio (CLR),
238 log(x+1), and division by the sum of dataset reads). Please see Supplementary
239  Table S1 for AUC results for the random forest models under the different

240  transformations.

241

242 Random forest variable importance and differential abundance analysis

243 One of the primary benefits of random forest modelling is the ability to perform a
244  variable importance analysis. Here, we use both of the two most popular
245  variable importance measures for random forest - Mean Decrease Gini and Mean
246  Decrease Accuracy. In addition, we include the de-biased Mean Decrease Gini

247  scores proposed by Nembrini et al. (19).

248 Each random forest was grown using 1,000 trees to achieve stability in the
249  variable importance scores. The statistical significance of MDA and de-biased
250 MDG scores were assessed using P-values calculated using the permutation
251 method of Altmann et al. with 1,000 permutations (20). Random forest variable
252 importance scores are unsigned (do not give an effect direction), although an
253 approximate effect direction can be obtained using partial dependence plots.
254  Such plots visualise the marginal effect of a variable on the predictions of a
255  model and are used here to gain further insight into the dependence of model
256  prediction on the relative abundance of different taxa (21).

257

258  Correlation analysis, MOFA and sample-wise clustering

11
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259  We analysed the correlation structure amongst the taxa included in the random
260 forest analysis. Samples were centred log-ratio (CLR) transformed prior to
261  calculating correlations to account for the compositional nature of 16S rRNA
262  gene and ITS2 sequencing data. The CLR transformation was applied separately
263  to the 16S rRNA gene and ITS2 samples, as has been previously applied to find
264  accurate cross-omic interactions (22). This pre-transformation requires that the
265  resulting correlations are interpreted as the log-ratios abundance relative to the
266  sample geometric mean rather than in absolute terms. MOFA was run using the
267 same pre-processing as Haak et al (23) (agglomeration to Genus and
268 transformation using CLR prior to analysis). Sample-wise clustering was
269 performed using Dirichlet Multinomial mixtures (12) on the un-transformed
270 reads of each kingdom separately. The number of clusters was selected by
271  comparing the Akaike and Bayesian information criteria and the Laplace
272  approximation of the model evidence for 1 to 15 clusters.

273

274

275 Results

276  Description of data

277  After decontamination and removal of samples with less than 2,000 reads (n =
278  2), 107 samples were retained for downstream analyses (for demographics see
279  Table 1). For the ecological analyses, bacterial reads were rarefied to 2,357 while
280  fungal reads were rarefied to 2,54 2. All other analyses used un-rarefied reads.
281

282  Ecological analysis

283  Differences between diseases

12
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284 We performed an ecological analysis on the rarefied data (full details are
285  available in Supplementary Material). In short, Wilcoxon rank sum tests revealed
286  both bacterial and fungal diversity were significantly higher in patients with BX
287  than CF (P < 0.001). Similarly, bacterial biomass was significantly higher in the
288  BX group (W = 1,100, effect size = 0.241, P = 0.018) but no significant difference
289 in fungal biomass was observed. PERMANOVA revealed significant but small
290 differences in community composition between CF and BX (bacterial, R? = 0.066,
291 P<0.001; fungal R2=0.028, P = 0.004).

292

293  Differences between fungal disease groups in cystic fibrosis

294  Within the CF group, we compared the two largest fungal disease groups, FB
295  (n=20) and NAFD (n=39). We observed significant differences in fungal alpha
296  diversity between the NAFD and FB groups (Wilcoxon rank sum test, P < 0.05).
297  There were no significant differences, however, in bacterial biomass or diversity.
298

299 CFPE

300 There was no significant difference in bacterial or fungal, biomass or alpha
301 diversity measures (Wilcoxon rank sum test, P > 0.1) between CFPE subjects and
302  those that were stable.

303

304 Random forest analysis

305  Discriminative power of bacterial and fungal communities

306 We further investigated differences in fungal and bacterial community

307 composition between groups of patients using random forest modelling (Figure

13
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308 1).Foreach set of group labels, we trained a random forest binary classifier with
309 covariates being OTU reads agglomerated to Class, Order, Family, Genus, or
310 Species level. Differences between groups were quantified using the area under
311 ROC or PR curve (AU-ROC and AU-PRC). The null hypothesis (no difference
312  Dbetween the groups) implies an AU-ROC=0.5 and an AU-PR equal to the
313 proportion of the positive class. The baseline AU-PRC therefore varies between

314  the different sets of group definitions.

315

316

317  Figure 1: Discriminative power (quantified using area under ROC and PR curve)
318 of random forest models predicting (a,b): disease status; (c,d): fungal disease
319  status (CF only); and (e,f) and CFPE (CF only). The expected values for a random
320 classifier (indicating no difference between groups) is denoted by a black dotted
321 line. For AU-ROC (plots a,c,e) this is 0.5, while for AU-PRC (plots b,d,f) while for
322  AU-PRC the value is the proportion of samples in the positive class. Error bars
323  are 95% confidence intervals. *: P < 0.10, **: P < 0.05 for 100 replicates of a label

324  permutation test. P-values adjusted using false discovery rate.

325

326

327  Statistically significant differences between the CF and BX groups were evident
328 atevery taxonomic rank. These differences were detected using both the AU-ROC
329  (Figure 1a) or AU-PRC (Figure 1b) metrics. We also found that the differences

330 Dbetween CF and BX did not differ significantly between the two kingdoms (label

14
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331 permutation test, P > 0.10), meaning that both kingdoms have equally distinct
332  communities between CF and BX. In addition, including both communities in a
333 random forest does not increase the predictive power (label permutation test, P

334 > 0.10).

335 Figures 1c and 1d show that fungal disease group within the CF patients is
336 independent of bacterial community composition. As expected, fungal
337 community composition is a good predictor of fungal disease status within the
338  CF group. Adding the bacteria to the random forest model decreased predictive
339 power at all ranks. The bacterial covariates represent additional noise in the
340 context of fungal disease group however, the models still have better than-
341 random performance due to the inclusion of the fungal taxa (label permutation

342  test, P<0.05).

343  Finally, CFPE was found to be independent of both bacterial and fungal
344  community composition (Figures le and 1f), none of the random forest models
345 had predictive power significantly better than random (label permutation test, P

346 > 0.10).

347

348  Differential abundance analysis

349 Random forest models that detected a significant difference between their two
350 classes were then analysed using three variable importance measures: mean
351 decrease accuracy (MDA); mean decrease Gini (MDG); and de-biased mean
352  decrease Gini (corrected MDG, (19)). Statistical significance can only be assessed

353 for the MDA and de-biased MDG scores. Only Genus-level agglomeration was

15


https://doi.org/10.1101/2022.01.11.475678
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.11.475678; this version posted November 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

354 included as it is the highest reliable taxonomic resolution for both 16S rRNA
355 gene and ITS2 sequencing (24). The four random forest models that detected a

356 difference between their respective groups were:

357 1. distinguishing CF/BX using bacterial and fungal genera;

358 2. distinguishing CF/BX using bacterial genera;

359 3. distinguishing CF/BX using fungal genera; and

360 4. distinguishing FB/NAFD using fungal genera (CF group only).

361 The most highly-ranked taxa for these four models are shown in Figure 2(a-d).
362 For Model 1, Penicillium (direction BX) is the most highly-ranked genus
363 according to all three of the variable importance methods. Pseudomonas
364  (direction CF), Malassezia and Neisseria (direction BX) are also highly-ranked. All
365  four of these associations are significant (p<0.05) when using the de-biased MDG

366  scores, but not for MDA scores.

367

368

369  Figure 2: Each row shows the four top-ranked taxa and partial dependence for a
370 random forest model distinguishing (a,b): BX/CF from bacterial and fungal
371  genera; (c,d): Bx/CF from bacterial genera; (e,f): Bx/CF from bacterial genera ;
372  and (gh): FB/NAFD from fungal genera (CF group only). *: P < 0.10, **: P < 0.05
373 for 100 replicates of a label permutation test. P-values adjusted using false

374  discovery rate.

375

376
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377 Importance rankings can be augmented by partial dependence plots (Figure 2
378 b,d,f,h) which visualise the marginal effect of a single variable on the prediction
379 of the model. These provide effect directions for the unsigned variable
380 importance scores as well as insight into the type of dependence. For example,
381 the majority of the effect of the important taxa for Model 1 (Figure 2b) occurs
382 when the relative abundance increases from zero to non-zero relative
383 abundance. This is the case for Pseudomonas, where the likelihood of a BX
384  prediction quickly decreases as its relative abundance increases, before the rate

385 of decrease slows.

386 Model 2 ranks Treponema, Neisseria (direction BX), Pseudomonas and Tanerella
387  (direction CF) highly (Figure 2c). Overlap is observed with Model 1 as the two
388 models share bacterial covariates. The partial dependence (Figure 2d) shows
389 thatincreasing Pseudomonas relative abundance does not increase the likelihood

390 of CF until itincreases beyond 50%.

391 Model 3 (Figure 2e), clearly indicates that Penicillium is the most important taxa
392  and is significantly associated with an increased probability of BX in this cohort.
393  Once again, there is overlap with Model 1 due to shared fungal covariates.
394  Compared to Model 1, however, this fungal-only model places higher importance
395  on Penicillium, which can be seen from the much steeper increase in the partial

396 dependence (Figure 2f) at small relative abundance.

397 Model 4 (Figure 2g) ranks Candida (direction NAFD) as the most important taxa,
398 followed by Exophiala, Aspergillus and Scedosporium (direction FB). Candida is an

399  opportunistic pathogen, but these partial dependence plots (Figure 1h) show a
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400 lower likelihood of FB prediction from the model as a sample becomes
401 increasingly Candida-dominated.

402

403 Correlation analysis and clustering

404  Correlation network analysis is a useful tool to explore microbial associations (8,
405 25, 26). Strong correlations are commonly observed in microbiome studies and
406 correlations can be positive; associated with microbes inhabiting common
407  ecological niches, or negative; indicating competition. In this dataset we observe
408 clear structure at the genus level (Figure 3a), with blocks of positively correlated
409  Dbacterial (Steptococcus, Veillonella, Rothia, Selemonas, Prevotella, Fusobacterium,
410  Atopobium, Neisseria, Haemophilus and others) and fungal genera (Serratia,
411  Talaromyces, Filobasildea, Fusarium and Trichosporon). The genera in these
412  blocks come from a single kingdom and so do not indicate prominent cross-
413  kingdom dependencies in the community structure. In addition, there are no
414  significant correlations between members of these two blocks of taxa (P> 0.01),
415  suggesting that the two blocks are largely independent of one another. This may
416 be because they occupy separate niches in the respiratory tract or due to
417  sampling bias.

418

419

420  Figure 3: (a) Pearson correlation analysis shows that taxa form correlated
421  clusters with members of the same kingdom. Bacterial and fungal abundances
422  are agglomerated to Genus level and transformed (separately) using centred log-
423  ratio prior to calculating correlations. Genera accounting for more than 0.1% of

424  reads in their respective kingdom are shown. * indicates pairwise correlations

18
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425  for which P < 0.01. (b): The P-values for the correlations in panel (a) are smaller
426  for correlations within each kingdom than between the two kingdoms (c): Multi-
427  omics factor analysis (MOFA) identifies latent factors that describe the variance
428  in the composition of both kingdoms. However, these latent factors each describe
429  wvariance in a single kingdom.

430

431

432  The relative importance of intra- and inter-kingdom correlations was further
433  explored by considering the P-values from the pairwise correlations (Figure 3b),
434  which indicated that significant correlations occur within each kingdom more
435  than between. Figure 3b also shows that, while the most extreme correlations
436  are between pairs of fungal genera, the correlation patterns within the bacterial
437  genera are overall more significant.

438 A dedicated multi-omics integration approach was used to further investigate
439  the underlying drivers of cross kingdom community structure by applying Multi-
440  omics factor analysis (MOFA, (11)). MOFA is an unsupervised method that finds
441 latent factors that explain the variance across different “views” of the same
44?7  samples: in this analysis, bacterial and fungal abundances only identify latent
443  factors that explain variance in a single kingdom (Figure 3c). This is true at five
444  different taxonomic levels of agglomeration (Class, Order, Family, Genus,
445  Species). This provides further evidence on the lack of detectable cross-kingdom
446  dependencies in this dataset.

447  Community structure within the microbial kingdoms across samples was further
448 analysed with Dirichlet mixture components, grouping samples into distinct

449  clusters with similar composition (12). This unsupervised approach provides
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450 insight into community-level structure across samples, which may or may not
451  correspond to the pre-defined clinical labels.

452  All 107 samples were clustered using Dirichlet Multinomial Mixture models
453  using raw count values agglomerated to one of the taxonomic ranks. This was
454  performed separately on the two kingdoms and resulted in two sets of cluster
455 labels for each agglomeration rank. Using information-theoretic goodness of fit
456 measures (Figure S6), two distinct bacterial clusters were found at Genus level
457  and two fungal clusters were found at Class level. Both the bacterial (Figure 4a,
458 top) and fungal (Figure 4a, bottom) clusters are separable in Bray-Curtis
459  principal coordinate space.

460  The clusters for bacterial genera are defined by Pseudomonas domination (Figure
461  4d) while the fungal class clusters are defined by Saccharomycetes domination
462  (Figure 4e).

463

464

465  Figure 4: (a, left) Clustering of samples based on bacterial genera abundances
466 identifies two clusters that are separable in Bray-Curtis principle co-ordinate
467  analysis (PCoA) space. (a, right) Clustering using fungal class abundance also
468 finds two clusters that are separable in Bray-Curtis space. The two sets of cluster
469 labels do not correspond to one another nor to clinical labels (see Table 3). (b):
470 Random forest two-sample testing shows that the bacterial cluster assignments
471 are independent of fungal community composition. (c) The fungal cluster
472  assignments show a weak association with bacterial community composition,
473  with only the PR-curves suggesting an association. (d) The bacterial composition

474  of the samples when ordered by cluster clearly shows that they correspond to
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475  presence or absence of domination by Pseudomonas species. (e) The two fungal
476  clusters are defined by presence or absence of Saccharomycetes domination. *; P
477 < 0.10, **: P < 0.05 for 100 replicates of a label permutation test. P-values

478  adjusted using false discovery rate.

479

480

481 Neither the bacterial nor the fungal clusters agree (Adjusted Rand index=-0.01).
482  There is also very low similarity between the cluster labels and clinical labels
483  (Table 3). The ARI values are close to zero, other than for fungal Class cluster and
484  fungal disease status within the CF group (ARI=0.26), however, values still show
485 low levels of agreement. The random forest two-sample testing procedure
486  showed that fungal class is independent of the bacterial community at all levels
487  of agglomeration (Figure 4b). A weak (ROC curves not significantly better than
488 random) association between Saccharomycetes domination and bacterial
489  Species, Genus and Family abundance was, however, observed (Figure 4c).

490

491 Table 3. Adjusted Rand Index (ARI). ARI between bacterial/fungal cluster
492  assignments and clinical labels show that there is low similarity between the
493  either set of cluster labels and other clinical labels used in this study. The ARI

494  between the fungal and bacterial clustering labels was -0.01.

Disease Group (CF only) CFPE (CF only)
ARI(bacterial cluster, | -0.02 -0.02 -0.01
clinical label)
ARI(fungal cluster, | 0.06 0.26 -0.01
clinical label)
495
496
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497  Discussion

498 Identifying factors predicting the prevalence and severity of chronic respiratory
499  infections may be crucial for improving clinical outcomes in CSLDs. To date the
500 majority of research has been focused on bacterial pathogens. An increasing
501 number of recent studies however, are showing that fungal infection plays a key
502 role in chronic disease progression both independently of and in concert with
503  the bacterial airway community (8, 27, 28). As such, understanding the inter-
504 kingdom association present within the lungs is an essential step towards
505 effective antimicrobial treatments.

506 A primary motivation of this study was to explore inter-kingdom interactions.
507  Such interactions have been reported previously in both CF and BX (8, 28), as
508 well as in many other settings (29-31). Despite using a range of statistical
509 approaches, we did not however in this present study find strong evidence of
510 such interactions in our dataset (either in general or in relation to CF or BX).
511 Including both kingdoms in the random forest models did not increase the
512  discriminative power of any of the random forest models, while fungal disease
513  status of the CF group was independent of bacterial community composition.
514  Both the correlation and MOFA analysis failed to find evidence of cross-kingdom
515 interactions and instead identified sets of kingdom-specific features that were
516 largely independent of one another. Finally, the sample-wise clustering found
517 that a characteristic feature of fungal community composition (domination by
518  Saccharomycetes) was distinct from Pseudomonas domination.

519 Taken together, these results suggest no important cross-kingdom interactions
520 present in this dataset. This is surprising given that both the fungal and bacterial

521 communities are sharing the same niche and so must compete for resources, as
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522  well as being affected by common environmental changes. Given the results of
523  previous studies, it is unclear whether such interactions biologically exist but are
524  simply not detectable in this dataset.

525 A recent study carried out by Hughes et al. established that using culture-based
526 methodologies, the known CF pathogens, Pseudomonas aeruginosa and
527  Aspergillus fumigatus are rarely cultured from the same sample (32). Despite
528 this, our culture independent techniques clearly show the common presence of
529  both Pseudomonas aeruginosa and Aspergillus fumigatus reads in the samples. It
530 is possible that microbial interactions within the lungs may not be detected by
531 DNA-based methods. Future work may require functional analyses to explore
532  relative microbial gene expression within the lung.

533  Despite many similarities in the symptoms and treatments of CF and BX, we
534  identified fundamental differences in their microbial communities. Using random
535 forest modelling we found that CF/BX status depends on both fungal and
536  bacterial community composition in this cohort. Furthermore, we found that
537  both communities are equally discriminative of CF/BX status, but the inclusion of
538 both communities in the models does not increase predictive power. This is
539  further evidence that the fungal and bacterial communities are independently
540 distinct between CF and BX and does not provide any evidence of clinically
541 relevant cross-kingdom interactions.

542  These observed differences between the CF and BX groups are likely to be driven
543 by the physiological differences underlying the individual diseases and their
544  effect on the host environment (33). These differences may also be influenced by

545  age, which is a perfect confounder for disease status in this cohort. It is not
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546  possible to correct for this confounding effect as CF is a disease affecting
547  individuals from childhood and BX affects older age groups.

548  Variable importance analysis with these random forest models identified a set of
549  genera from both kingdoms that are associated with increased likelihood of CF
550 (Pseudomonas and Scedosporium) and BX (Penicillium, Neisseria, Campylobacter,
551 Trichocomaceae, Malassezia, Enterobacteriaceae and Talaromyces).

552  These results are consistent with the known role of Pseudomonas aeruginosa as
553  one of the most common pathogens associated with CF lung disease. In non-CF
554  bronchiectasis, Pseudomonas infection may be associated with more severe
555  disease (34) but it was not a prominent factor in our BX patients.

556  Members of the Neisseria genus are commonly isolated in the upper respiratory
557  tract with some species being known pathogens (35). Our results may suggest
558 thata pathogenic role for Neisseria spp. could be considered for BX and warrants
559  further investigation. Fungal species associated with BX were primarily part of
560 the Penicillium genus. Symptomatic infections with Penicillium spp. are rare (36)
561 and Penicillum spp. are widely present in the air making it a logical part of the
562 normal respiratory flora.

563 The microbiota between patients with and without a clinical fungal infection
564  using the random forest pipeline found that the fungal disease status of the CF
565 group was independent of bacterial community composition, but not fungal
566 community composition. The analysis identified several drivers of fungal
567  bronchitis (Trichocomaceae, Scedosporium, Exophiala and Aspergillus) while also
568 finding that increasing Candida decreases the likelihood of a fungal bronchitis

569 diagnosis, consistent with previous findings (7).
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570  Despite the association with the NAFD group, members of the Candida genus
571 (including Candida albicans and Candida parapsilosis) are well-known
572  opportunistic human pathogens, particularly in immunocompromised patients
573  (6). In adult CF patients, Candida spp. colonization has been shown to be
574  associated with use of inhaled steroids, diabetes mellitus and antibiotic
575 treatment. Despite these observations the virulence potential of C. albicans in CF
576 s still being explored (6). In the current study Candida spp. were present with a
577 lower relative abundance in the FB group suggesting that dominance of
578 filamentous fungi may out-compete Candida spp. in these patients. More work is
579 therefore needed to understand the role members of the Candida genus play in
580 CF disease progression.

581  Pulmonary exacerbations are major clinical events in patients with CF resulting
582  in lung function decline and clinical disease progression (37). The presence of
583  bacteria and viruses is commonly associated with poor outcomes during CFPE
584  but defining their exact role is challenging. Recent evidence has suggested fungal
585 infections are also associated with increased CFPE although to date few studies
586 have explored this area. A recent publication by Soret et al. investigated CFPE
587  using an adapted penalised linear model and cross-sectional data and identified
588 two fungal genera, Aspergillus and Malassezia, associated with CFPE (8). Our
589  analyses however found that CFPE status was independent of both bacterial and
590 fungal community composition.

591 The importance of viruses has been shown by the sharp reduction in the
592 incidence of CFPE during the COVID pandemic (38). Future studies should

593 include assays for respiratory viruses, and longitudinal measurements may be
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594  used to testif intra-patient variation within the bacterial and fungal communities
595 isa contributing factor.

596 We further explored the bacterial and fungal communities and their cross-
597 kingdom dependencies using a series of unsupervised statistical analyses.
598 Correlation network analysis identified two blocks of positively co-correlated
599 genera, where each block contained taxa from a single kingdom. Positive
600 correlations are often interpreted to imply mutualistic relationships between
601 organisms and are often observed between phylogenetically related microbes
602  (39). Negative correlations may imply competition within a niche due to
603 competition for resources. These correlations have previously been observed in
604 multi-omic analyses of CFPE (8). Both positive and negative correlations
605 however are often due to unmeasured factors affecting the host environment
606 and so do not necessarily imply a direct relationship between taxa.

607  Multi-omics analysis using MOFA also found no evidence of cross-kingdom
608 interactions, as the analysis identified a set of kingdom-specific latent factors.
609  The lack of strong cross-kingdom correlation patterns and the results of the
610 MOFA analysis indicates a surprising degree of independence between the two
611 kingdoms although this is inconsistent with previous studies that have indicated
612  anumber of inter-kingdom interactions existing within the lung (8, 28).

613  Unsupervised sample-wise clustering analysis identified characteristic features
614  of the dataset identifying two bacterial clusters at the Genus level and two fungal
615 clusters at the Class level. These two sets of cluster labels had low similarity with
616 one another and with the clinical labels from the random forest analyses,
617  suggesting that the relevant structure of the communities may be primarily due

618  to other (possibly environmental) factors. The bacterial clusters were driven by
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619 dominance of Pseudomonas within individual samples. Pseudomonas was also
620 identified by the random forest analysis as being associated with CF, but these
621  clustering results suggest that Pseudomonas-dominance is not the only predictor
622  of CF in this cohort. The bacterial cluster label was independent from fungal
623 community composition, providing additional evidence of independence
624  between the bacterial and fungal communities.

625 Inter-kingdom correlations were generally weaker than those within either
626 kingdom (measured by proportion of significant correlations at different
627  significance thresholds). This further indicates that intra-kingdom interactions
628 may play a minor role in these subjects. In addition, correlation patterns
629  between bacterial genera were stronger than those between fungal genera.

630  Our analysis has several limitations that should be considered when interpreting
631  the results. Machine learning is a powerful tool for exploring microbial
632 interactions and drivers of disease, but understanding the limitations of the
633  models is vital for interpretation. Most importantly, associations identified by
634 machine learning models such as random forest do not imply causal links.
635  Furthermore, the importance scores from random forests should be interpreted
636  with care. Using multiple random forest variable importance scores and
637  transformations in the differential abundance analysis reduces the danger of
638  spurious associations but does not provide a framework that allows quantitative
639  statements to be made.

640 A further limitation of this study is the use of 16S rRNA gene sequencing and
641 ITS2 sequencing for the exploration of these communities. This technology
642  allows us to understand the microbial community present within the lung but

643  provides no information on their activity or function.
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Conclusions

Our study suggests that the role the fungal microbiota play in chronic respiratory
disease is independent of that played by the bacterial microbiota. Longitudinal
studies are required to understand the full impact of fungal infection in CF and
BX. Importantly improvements in clinical diagnosis of fungal infections, whether
by sequence analysis, transcriptomics, or advanced cultures, could underpin the
improvement of patient outcomes. While further work is required to fully
understand microbial interaction within the lung, our data suggests that inter-
kingdom interactions may not be a major driver of patient outcomes particularly

those associated with fungal infection.
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