

1 A common venomous ancestor? Prevalent bee venom genes evolved before 2 the aculeate stinger while few major toxins are bee-specific

3 Ivan Koludarov^{1,2*}, Mariana Velasque³, Thomas Timm⁴, Carola Greve⁵, Alexander Ben Hamadou⁵,
4 Deepak Kumar Gupta⁵, Günter Lochnit⁴, Michael Heinzinger², Andreas Vilcinskas^{1,6}, Rosalyn Gloag⁷,
5 Brock A. Harpur⁸, Lars Podsiadlowski⁹, Burkhard Rost², Timothy N. W. Jackson¹⁰, Sébastien
6 Dutertre¹¹, Eckart Stolle⁹, and Björn M von Reumont^{4,12*}

7

8 ¹ Justus Liebig University of Gießen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 58, 35392
9 Gießen, atjcoludar@gmail.com

10 ² Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of
11 Munich, Boltzmannstr. 3, Garching, 85748 Munich, Germany.

12 ³ Genomics & Regulatory Systems Unit, Okinawa Institute of Science & Technology, 1919, Tancha,
13 Okinawa, Japan, marianavelasque@gmail.com

14 ⁴ Protein Analytics, Institute of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392
15 Giessen, Germany, Thomas.Timm@biochemie.med.uni-giessen.de;
16 Guenter.Lochnit@biochemie.med.uni-giessen.de

17 ⁵ LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325
18 Frankfurt, Germany, carola.greve@senckenberg.de; tbg-laborzentrum@senckenberg.de;
19 deepak.gupta@senckenberg.de

20 ⁶ Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources,
21 Ohlebergsweg 12, 35392 Gießen, Germany, andreas.vilcinskas@ime.fraunhofer.de

22 ⁷ Rosalyn Gloag - School of Life and Environmental Sciences, The University of Sydney, NSW 2006,
23 Australia, ros.gloag@sydney.edu.au

24 ⁸ Brock A. Harpur – Dept of Entomology, Purdue University, 901 W. State Street, West Lafayette, IN
25 47907, USA, bharpur@purdue.edu

26 ⁹ Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander
27 Koenig, Centre of Molecular Biodiversity Research, Adenauerallee 160, 53113 Bonn, Germany,
28 lars@cgae.de; E.Stolle@leibniz-lib.de

29 ¹⁰ Australian Venom Research Unit, Department of Biochemistry and Pharmacology, Grattan Street,
30 Parkville, Victoria, 3010, University of Melbourne, Australia, timothy.jackson@unimelb.edu.au

31 ¹¹ IBMM, Université Montpellier, CNRS, ENSCM, 34095 Montpellier, France,
32 sebastien.dutertre@umontpellier.fr

33 ¹² Faculty of Biological Sciences, Group of Applied Bioinformatics, Max-von-Laue Str. 13, 60438
34 Frankfurt, Goethe University Frankfurt, Germany

35 *Corresponding authors

36 BMvR: bmvr@reumont.net, IK: atjcoludar@gmail.com

37 **Keywords**

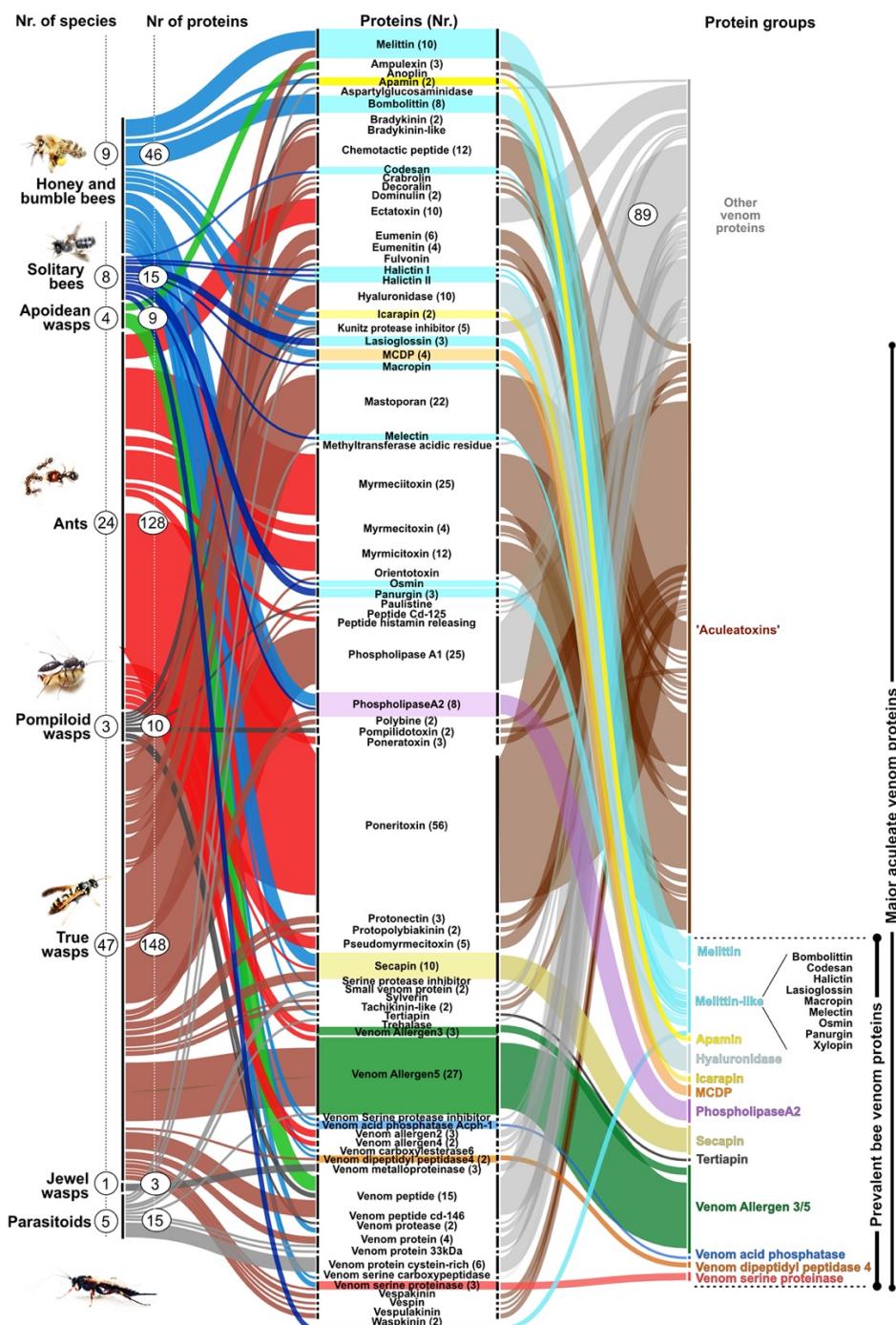
38 Hymenoptera venom, bee toxins, solitary bee venom, proteo-transcriptomics, genomics, venom gene
39 evolution, machine learning, melittin, apamin, aculeatoxins

40 **Abstract**

41 Venoms, which have evolved numerous times in animals, are ideal models of convergent trait evolution.
42 However, detailed genomic studies of toxin-encoding genes exist for only a few animal groups. The
43 hyper-diverse hymenopteran insects are the most speciose venomous clade, but investigation of the
44 origin of their venom genes has been largely neglected. Utilising a combination of genomic and proteo-
45 transcriptomic data, we investigated the origin of 11 toxin genes in 29 published and three new
46 hymenopteran genomes and compiled an up-to-date list of prevalent bee venom proteins. Observed
47 patterns indicate that bee venom genes predominantly originate through single gene co-option with gene
48 duplication contributing to subsequent diversification. Most Hymenoptera venom genes are shared by
49 all members of the clade and only melittin and the new venom protein family anthophilin1 appear
50 unique to the bee lineage. Most venom proteins thus predate the mega-radiation of hymenopterans and
51 the evolution of the aculeate stinger.

52 **Introduction**

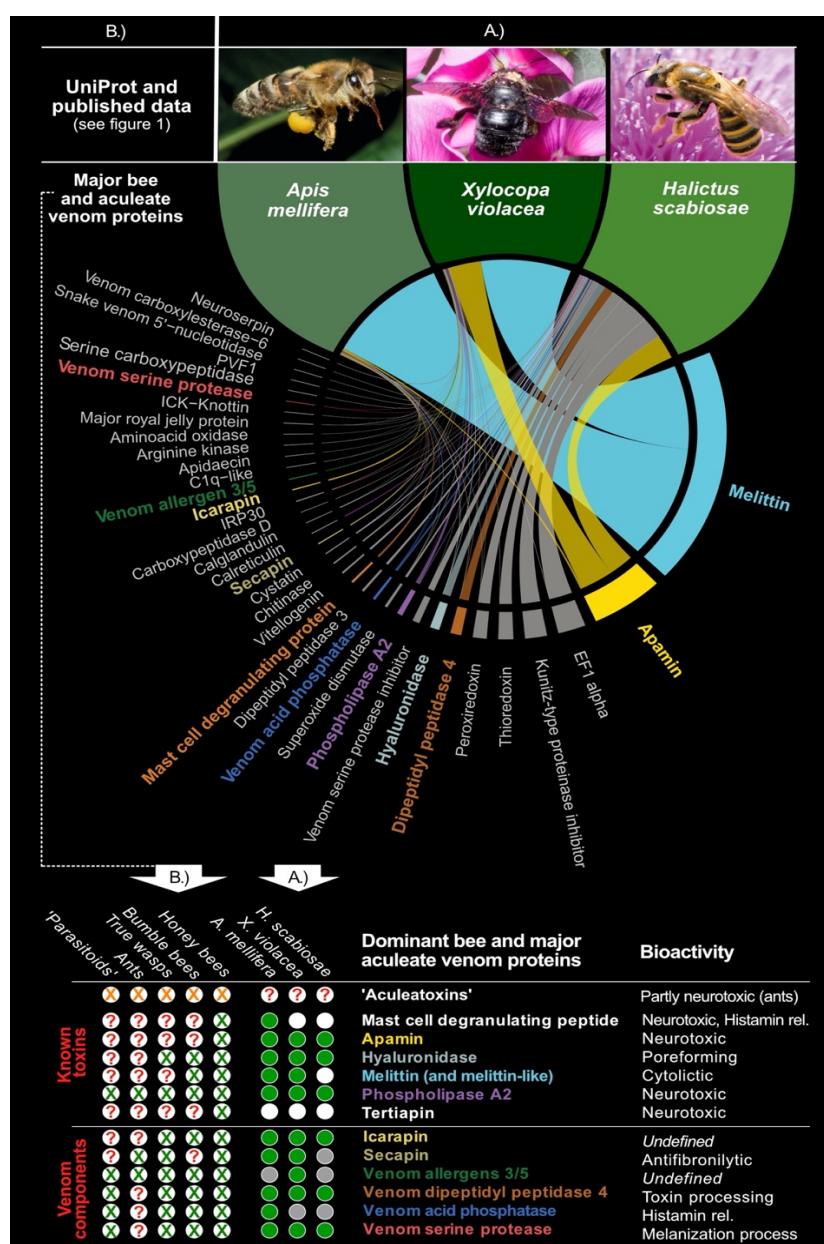
53 Molecular processes involved in the evolution of adaptive traits are among the most widely discussed
54 topics in biology^{1,2}. Venoms are complex secretory mixtures that are injected into other organisms for
55 predation, defence or competition, using a specialized morphological structure known as the venom
56 apparatus. Venom toxins – the molecules associated with the venomous function – are typically short
57 peptides, enzymes and other proteins³. Because the function of many toxin-encoding genes is relatively
58 free from pleiotropic and epistatic complications – one gene typically encodes one toxin with a clear
59 functional role – toxins provide an excellent opportunity for investigation of the molecular mechanisms
60 that facilitate the evolution of adaptive traits. Advances in comparative genomics and sequencing are
61 furthering our efforts to understand these mechanisms at the genomic level^{4–7}. Nevertheless, there have
62 been only few large comparative studies focusing on the genomic origins of toxin genes and their
63 weaponization, mostly in snakes and only few other clades such as cnidarians^{2,7–11}. One reason for this
64 is the predominant interest in venoms for their pharmacological and agrochemical applications or
65 clinical toxinology^{12,13}. Researchers have therefore prioritized groups such as snakes, scorpions,
66 spiders, and cone snails that may not be species-rich compared to insects but are known for powerful
67 venom components of which many cause strong envenomation effects on humans^{4,12,13}. This taxonomic
68 bias hinders a deeper understanding of the origins and evolution of venoms, and leaves the vast body
69 of knowledge hidden in the mega-radiations of insects relatively untapped.


70 Hymenopterans (sawflies, parasitoid wasps, true wasps, ants and bees) are the most species-rich insect
71 group and are of tremendous ecological and economical importance ¹⁴. However, they also feature the
72 largest number of venomous species. Furthermore, their venom delivery system exists in a variety of
73 states within the order, from its origin as an ovipositor that co-injected immunomodulatory “venom”
74 along with eggs into plant hosts (as in extant Symphyta), to the high-pressure venom systems of
75 majority of wasps and bees, to secondary losses in both bee and ant lineages ^{15,16}. Like snakes, therefore,
76 Hymenoptera provide an opportunity to investigate the co-evolution of toxin genes and associated
77 anatomy within a larger clade. Unsurprisingly, given their economic significance, honeybee and
78 bumblebee venoms have received the lion’s share of toxinological attention, and are among the best-
79 characterized venoms in the animal kingdom ^{16,17}. The venoms of the remaining species of the
80 hymenopteran radiation, however, including the majority of bees, remain largely unexplored despite
81 recent proteo-transcriptomic studies on several ant and wasp species ¹⁸⁻²¹. Where studies of lesser-
82 known Hymenoptera have been conducted, they typically deal with single crude fractions or even
83 individual components either due to technical limitations at the time or because of applied research
84 focus ^{16,22,23}. In general, proteo-transcriptomic studies focused on injected and functionally described
85 components are rather sparse and often focus on small peptides and/or are available for only few smaller
86 groups or single taxa of hymenopterans, such as honey bees ²⁴, ants ^{25,26}, spider wasps ²⁷, and true wasps
87 ²⁸. Only the recent study by Robinson et al. ²⁶ proposed that short toxin peptides of ants, bees and wasps
88 compose a family of aculeatoxins based on the similarity of aligned propeptides sequences, however, a
89 detailed phylogenetic analysis is not provided, see **Figure 1**.

90 Our study represents the first taxon-wide comparative genomics analysis of bee venoms. We address
91 two key questions: (1) whether bee venoms are predominantly comprised of toxins that are novel and
92 unique to this clade, and (2) whether single gene co-option is the major mechanism of venom gene
93 evolution in bees, as is the case for parasitoid wasps. We then utilise the insights generated to conjecture
94 as to whether or not ecological and anatomical adaptations are reflected in the patterns of venom gene
95 evolution. Throughout the paper, we distinguish between “venom proteins” (or the genes that encode
96 them) and “toxins” (or toxin-encoding genes). The former are those proteins *associated* with the venom
97 system (often secreted in the venom itself) but not necessarily having toxic functions themselves – we
98 reserve the designation “toxin” for those gene products with *characterised toxic functions within venom*.
99 Given a permissive definition of the label “venomous” (see discussion), our results suggest that the
100 entire extant Hymenoptera lineage may be descended from a “common venomous ancestor”, and indeed
101 that the argument for this may be stronger than the similar argument made for the squamate lineage
102 *Toxicofera* ²⁹.

103 **Results**

104 **The most prevalent bee venom proteins and their genomic framework**


105 We establish here a set of 12 proteins that we identify as the most prevalent injected bee venom
 106 components based on mining of published sequences, data of toxins with known activity^{18,24,30} (see
 107 **Figure 1**), and own proteo-transcriptome data.

108

109 **Figure 1: Reviewed venom proteins for hymenopteran taxa in respect to protein and species numbers from UniProt.**
 110 Major hymenopteran clades are shown on the left (species numbers in circles). The second numbers in circles within the
 111 colour-coded lines indicate venom proteins (Grouped according to their names). The twelve herein proposed prevalent bee
 112 venom protein families (PBVP) are illustrated on the right, together with the toxins proposed as 'Aculeatoxins' (brown)
 113 according to Robinson et al.²⁶. Novel, and further undescribed peptides and proteins are shown in grey. The hymenopteran
 114 groups are based on the recent phylogeny according to Peters et al.³¹.

115 New venom profiles were generated for two phylogenetically distant solitary bees, the great-banded
 116 furrow-bee (*Halictus scabiosae*), the violet carpenter bee (*Xylocopa violacea*) and the honeybee (*A. mellifera*) as complementary data (Figure 2 and Supplementary Tables 1-3). All three venoms
 117 predominantly contained low-molecular-weight peptides, in particular melittin, apamin and mast-cell
 118 degranulating peptide (MCDP). Larger proteins such as phospholipase A2, venom acid phosphatase,
 119 venom dipeptidyl peptidase 4 and venom allergens made up less than 10% of the transcripts based on
 120 expression values (see Figure 2 and Material and Methods).
 121

122

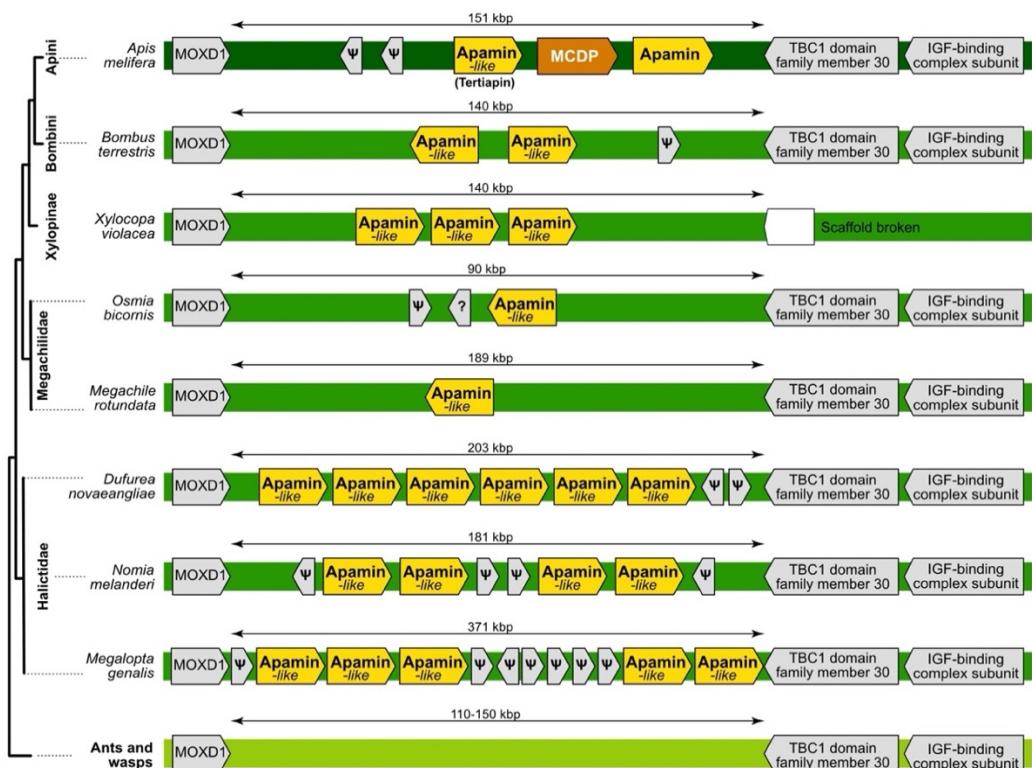
123 **Figure 2: The most prevalent bee venom proteins.** Components selected from our own data (A.) *A. mellifera*, *H. scabiosae*
 124 and *X. violacea* profiles, and (B.) published bee and aculeate venom components. In A.) only venom protein transcripts
 125 validated by the proteome data are listed. Transcript expression is shown as thickness of the circus plot lines and based on the
 126 percentage of scaled transcript per million (TPM) values including only proteome-validated sequences. The twelve selected
 127 venom proteins that we discuss herein further as dominant bee venom proteins are printed in bold in the colour code used for
 128 these proteins in this manuscript. Peptide names in white were not identified by our proteo-transcriptome data but are present
 129 in published data. For our new proteo-transcriptome data (A.) the green circles indicate venom proteins identified by proteo-

130 transcriptomics, grey circles indicate transcriptome-only hits. White circles illustrate missing data. For published data the
131 green X indicate major components identified in literature, red question marks highlight missing/unclear data. Orange X
132 highlight the ‘aculeatoxin’ peptides (According to Robison et al.²⁶ melittin is also a member of the proposed aculeatoxin
133 family, which is separately shown as part of the PBVPs).

134

135 We have to state critically that the heterogeneous picture of venom expression (Figure 2A) could be
136 reasoned by the difficulty to synchronize the physiological state of venom glands, especially for solitary
137 bees. The venom compositions and species-specific differences (especially for *H. scabiosa*) will be
138 discussed in-depth elsewhere (see von Reumont et al. 2022 for *X. violacea*²¹). In general, the new
139 profiles corroborate our selection of prevalent bee venom proteins (Figure 2). Further analysis is
140 restricted to these 12, which include toxins and six auxiliary venom peptide and protein families mostly
141 with known function, but also including two prevalent venom protein families of currently unknown
142 function (Venom allergen 3/5 and Icarapin), see **Supplementary Table 4**. We refer to these venom
143 components from here on as prevalent bee venom proteins (PBVP).

144 Two major groups are distinguishable in the PBVP – toxins with characterised acutely toxic functions
145 such as neurotoxicity (e.g. Apamin) or cytotoxicity (e.g. Mellitin), and proteins consistently present in
146 the crude venom presumably as accessory components (**Figure 2**). To uncover the evolutionary history
147 of the prevalent bee venom proteins, we analysed corresponding genomic regions by searching for
148 homologs in 29 published genomes (see **Supplementary Table 5**) of bees and outgroups (sawflies,
149 jewel wasp, ants, paper wasps) and our three genomes of two sweat bees and the violet carpenter bee
150 (See material and methods for further details and **Supplementary Table 6**). The selected taxa span 300
151 million years of evolution and include representatives of the phytophagous sawflies (Symphyta), the
152 most basal hymenopteran group. We used the well-annotated *A. mellifera* reference genome to trace
153 venom genes and their flanking genes based on exon regions. We identified orthologs for each exon in
154 other genomes, which were collected into an extended database. We searched all genomes using this
155 database and the manually inspected the results to establish completeness and microsynteny, which
156 reflects the arrangement and position of flanking exons of genes around venom protein genes (see
157 details in material and methods). “Synteny” refers to shared patterns of gene arrangement (“colinearity”)
158 in homologous genomic regions across taxa. When sufficiently high-quality genomic sequences are
159 available and genes of interest are located in stable regions, the ability to utilise microsyntenic analyses
160 – comparisons of synteny/colinearity in short stretches of the genome – is a key advantage of
161 comparative genomics. Where sequencing is sufficiently contiguous, these analyses reveal the
162 arrangement of genes and their neighbours as physically instantiated in a chromosomal region. By
163 mapping such regions (see, e.g., **Figures 3 and 4**), including genes of interest and their neighbours, it
164 is possible to catalogue rearrangements that occur in diverse taxa. Put simply, observation of the spatial
165 relations between genes of interest and their neighbours (both complete genes and gene fragments) in
166 one species, enables identification of homologous genes in additional taxa by examination of the

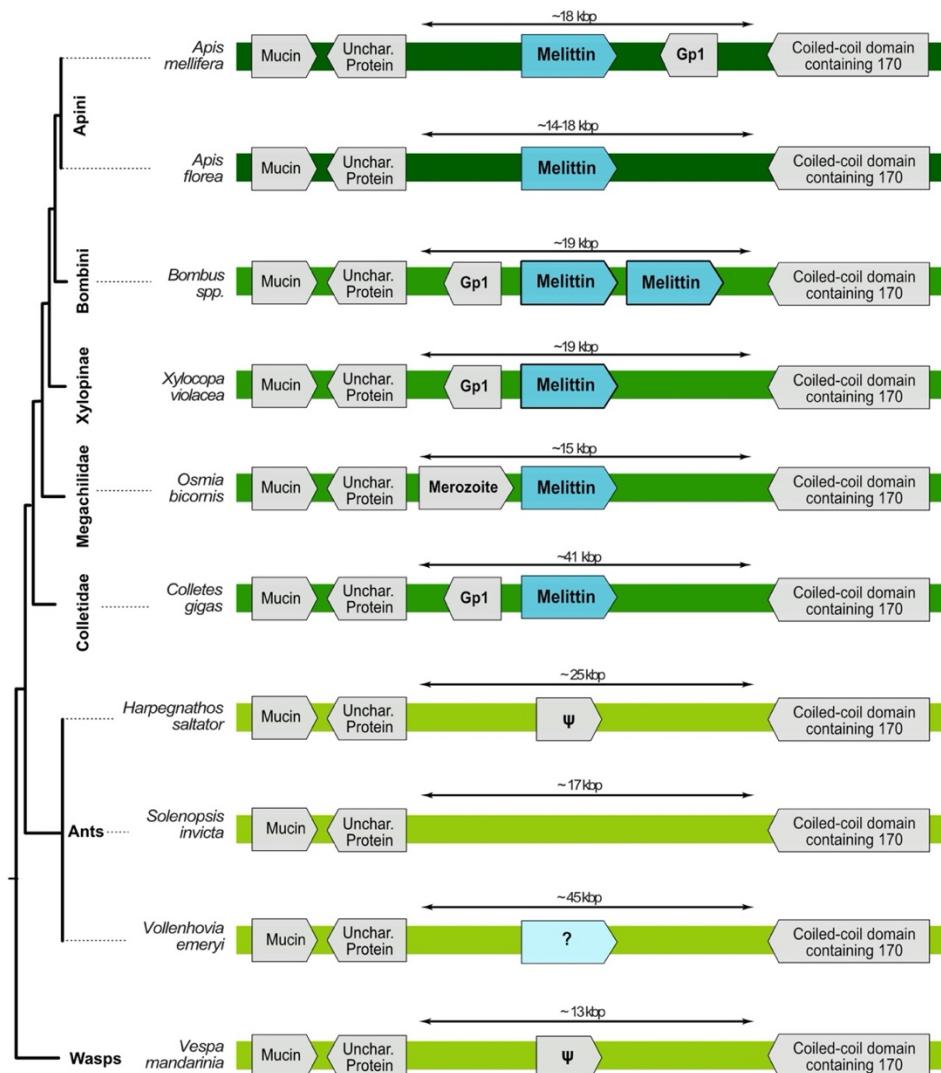

167 sequences that flank these genes. Attention to “genomic context”, therefore, enables a clearer
168 identification of orthologs than phylogenetic analyses alone, and provides insight into the mechanisms
169 of duplication and regulation operative within gene families ^{6,32}. Our results indicate that PBVP,
170 including enzymatic components, are present as multi- or single-copy genes in genomic regions stable
171 enough to facilitate comparative microsyntetic analyses. The stability of these regions across
172 investigated taxa suggests that the origins of these genes are ancient, probably occurring in the most
173 recent common ancestor of sawflies, parasitic wasps, and aculeate wasps. Exceptions to this pattern are
174 the short, single-copy genes encoding toxic peptides known from bees such as apamin/MCDP/tertiapin,
175 and melittin, which appear unique to bees or honeybees, indicating much more recent origins.

176 **Apamin is restricted to honeybees and is part of the larger bee unique toxin family**

177 **Anthophilin1**

178 Apamin, a dominant *A. mellifera* venom component, is encoded by a three-exon gene located next to a
179 very similar three-exon gene encoding MCDP. This tandem duplication is flanked by MOXD1 homolog
180 2 and TBC1 domain family member 30. Although the two flanking genes are present and identically
181 arranged in the genomes of all the bees we surveyed, we did not detect the full set of apamin or MCDP
182 exons outside of the genus *Apis* (Figure 3). Genomic analysis confirmed that apamin and MCDP (from
183 *Apis*) are restricted to the Apini clade (*Apis* spp.). In addition, we identified a novel apamin-like gene
184 locus in *Apis mellifera* located right next to MCDP gene. This gene encodes the described honeybee
185 toxin peptide named tertiapin ³³. Multiple uncharacterised genes that share microsyntetic position and
186 intron-exon structure with this apamin-homologue (Tertiapin) were observed in Bombini and some
187 other non-*Apis* bees. These apamin-like genes encode peptides that share the cysteine scaffold and
188 signal peptide structure of apamin, MCDP, and tertiapin. They were widespread in bee genomes and
189 we identified six copies in the *Dufourea* genome, five in *Nomia* and *Megachile*, two in *B. terrestris*,
190 and a single copy in *Osmia bicornis*, *Habropoda* and *Megachile*. This pattern may be indicative of the
191 derivation of apamin and MCDP from the more widespread tertiapin. We identified no similar genes or
192 exons of apamin in homologous regions from other hymenopterans or in other parts of their genomes.

193 The apamin-like sequences we discovered in the core venom profile of *Xylocopa* and *Halictus* indicate
194 that apamin and MCDP are members of a variable bee-unique family of apamin-like peptides that
195 undergoes independent duplication events in different lineages. We propose here to name this novel
196 family Anthophilin1, reflecting its uniqueness to several lineages within bees (Anthophila), see
197 **Supplementary Figure 1 and Supplementary File 1** for phylogenetic alignment and tree.



198

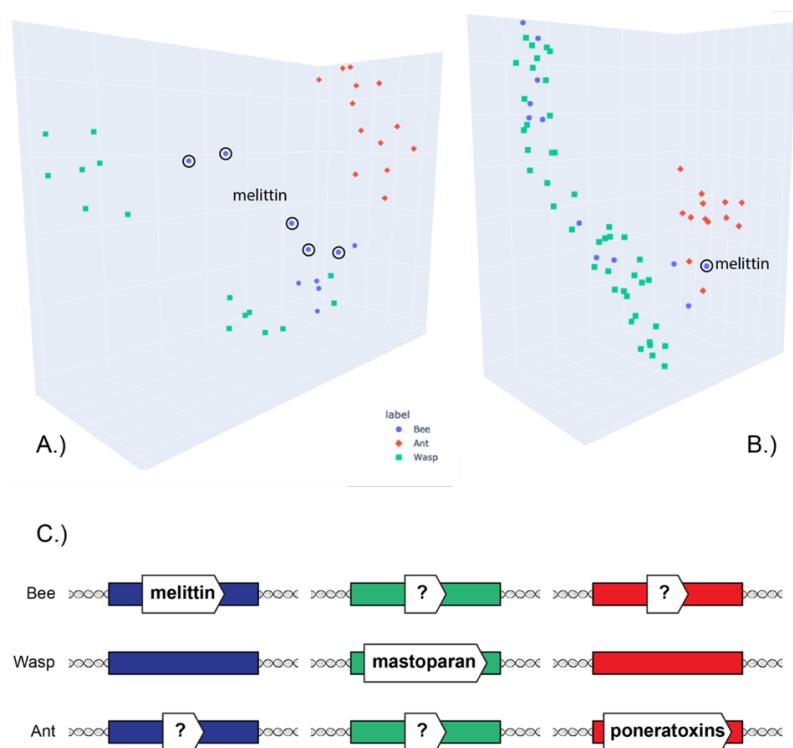
199 **Figure 3. Microsyntetic pattern for the apamin family (Anthophilin1).** Question marks indicate coding sequences with
200 products of unknown functions. Pseudogenes are symbolized by ψ. The arrows reflect gene orientation. We show here only
201 species for which the genomic sequence in the region with apamin genes is contiguous. Note that “apamin-like” genes are also
202 known as “tertiapin”.

203 Melittin is restricted to the bee lineage

204 Melittin is a pain-inducing peptide in *A. mellifera* venom^{24,34}. The synteny of the *A. mellifera* genome
205 shows that melittin is encoded by a two-exon single-copy gene located between two four-exon genes,
206 one of which encodes *vegetative cell wall protein gp1* while the other remains uncharacterized. Melittin-
207 like sequences in other *Apis* species (*A. dorsata*, *A. cerana* and *A. florea*) feature similar microsynteny
208 (**Figure 4**). Other bee species also possess melittin-like sequences (bombolittin, osmin, collectin,
209 lasioglossin, melectin, codesane, halictin and macropin³⁵⁻³⁹). Microsynteny analysis provided evidence
210 that osmin, collectin, bombolittin and xylopin are orthologous in at least some species from the genera
211 *Colletes*, *Osmia* and *Bombus* (**Figure 4**).

212

213 **Figure 4: Microsynteny around the melittin sequence.** All species for which the genome data allowed for microsyntetic
 214 analysis are shown. *Vollenhovia emeryi* was not included in other genomic analyses due to its relatively low genome quality.
 215 However, it is shown because it was the only one of the eight analysed ant species that features a seemingly related gene in
 216 the correct position but with a very different mature sequence. Genes labelled with ψ in ants and wasps bear little similarity
 217 with melittin genes, however, they might be sister genes to the melittin group that underwent severe pseudogenisation. Note,
 218 that *Osmia* melittin is also called “osmin”, *Colletes* – collectin, *Bombus* – bombolittin, *Xylocopa* – xylopin.


219

220 In *Bombus vosnesenskii*, the melittin gene has undergone a tandem duplication that is apparently unique
 221 to *Bombus*. Some *Bombus* genomes show assembly gaps in this region, preventing the detection of all
 222 exons, but recently published genomes of several *Bombus* species⁴⁰ show the same sequence and
 223 duplication pattern in the microsyntetic region identified in *B. vosnesenskii* (Figure 4). Although tracing
 224 the corresponding genomic region in non-bee Aculeata proved to be difficult because of its relative
 225 instability (low synteny/colinearity), we successfully located it in ants and wasps, which lacked melittin
 226 homologues. However, one ant genome – *Vollenhovia emeryi* (excluded from our main genomic
 227 analysis due to the relatively low genome contiguity) – had a superficially similar looking gene in

228 almost the exact location (**Figure 4**). That gene has a proline-rich propeptide resembling that of melittin,
229 nevertheless, its mature form is very different. We conclude here that our results support the hypothesis
230 that melittin is restricted to bee lineages, however, its ancestral gene might have had homologs in
231 ancestors of wasps and ants, see **Supplementary Figure 2** and **Supplementary File 2** for phylogenetic
232 alignment and tree.

233 **A machine learning model of “protein space” does not support the aculeatoxin hypothesis**

234 Given the short peptide sequences and consequent challenges for phylogenetic analyses we utilised a
235 novel, sequence-independent machine learning approach (see methods section for the detail) focused
236 on melittin to test the proposition by Robinson et al.²⁶ that based on signal and propeptide melittin is a
237 member of ‘aculeatoxins’ a family that originates with aculeates (**See Figure 1**). These analyses generate
238 a model of the relations of proteins to each other in a 3-dimensional “protein space” similar to the
239 concept of a “configuration space” in physics, or an “arbitrary space” in multi-scale cognition⁴¹. Our
240 protein space incorporates data concerning the structure and function of mature proteins to generate a
241 3-dimensional model of protein relations. By observing the clustering patterns of proteins within this
242 3-dimensional space, we can infer their evolutionary relations to one another. These analyses used all
243 sequences that Robinson et al.²⁶ presented in their study (kindly provided to us by the authors) and all
244 melittin-like toxins known from bees included in our study. We created two datasets – with
245 (**Supplementary File 3**) and without (**Supplementary File 4**) signal/propeptides – the latter dataset
246 includes more sequences since bee melittins are mostly known from proteomic studies and therefore
247 only their mature sequence is known. The protein space occupied by peptides from wasps and bees was
248 distinct from that occupied by ant peptides, and thus these analyses do not support the aculeatoxin
249 hypothesis (**Figure 5**). However, the results reveal a close similarity between bee and wasp peptides,
250 which was even more apparent when signal peptides were removed (in contrast to the reasoning of
251 Robinson et al., which is based on similarity amongst signal peptides). Microsyntetic analyses reveal
252 that melittin, mastoporans, and poneratoxins are non-homologous, however the protein space analyses
253 may reveal evidence of convergence. Taken together, the results of these analyses indicate that melittin
254 is likely unique to bees but gravitates towards mastoporans (in particular) and poneratoxins (to a lesser
255 extent) in protein space, possibly because of functional convergence. However, addressing the
256 aculeatoxins hypothesis in detail goes beyond the scope of this manuscript and therefore will be a
257 subject of a follow-up study. Nevertheless, it is worth mentioning that all of the proposed members of
258 aculeatoxins are processed by the same enzyme DPP4, which might explain similarities in signal and
259 propeptide sequences.

260

261 **Figure 5: "Protein space" of small peptidic aculeatan toxins as revealed by machine learning analysis and their genomic**
262 **position in respect to each other.** Combined data of available verified toxin sequences from Robinson et al., and the present

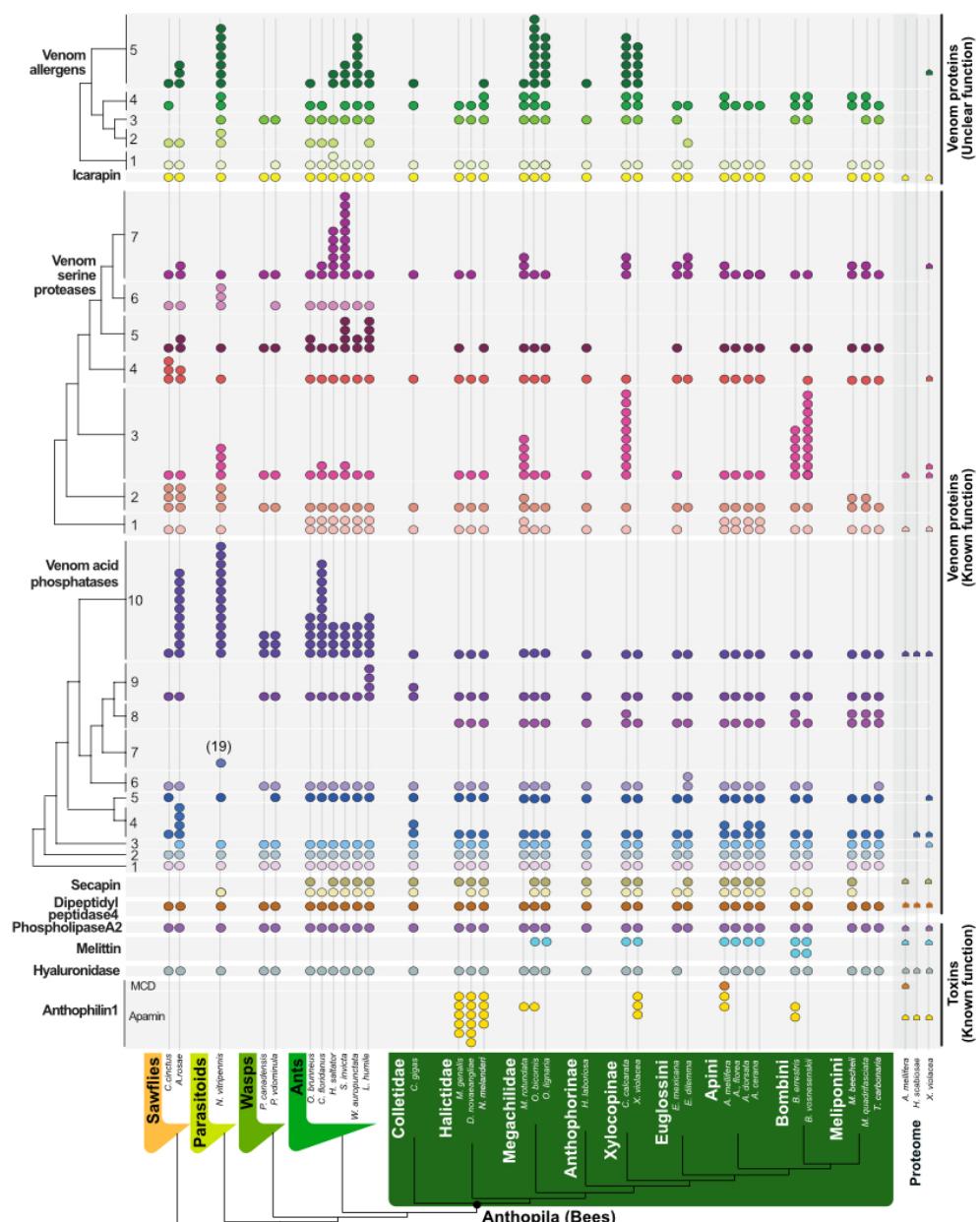
263
264
265
266
267

268
269 **genomic position in respect to each other.** Combined data of available verified toxin sequences from Robinson et al., and the present

268 **Abundant venom proteins are encoded by more widespread single-copy genes**

269 Phospholipase A2, hyaluronidase and icarapin are among the most abundant bee venom components
270 ^{16,17,24}. Phospholipase A2 and icarapin are encoded by four-exon single-copy genes, whereas the
271 hyaluronidase single copy-gene features nine exons. Dipeptidyl peptidase-4 has a strongly conserved
272 single gene, which was present in all hymenopterans in our dataset, probably due to its enzymatic role
273 in the maturation of some toxins. These protein families were highly conserved and ubiquitously present
274 in the genomes of bees, wasps and ants (**Figure 6**, see also **Supplementary Files 7-10** and
275 **Supplementary Figures 3-6** for phylogenetic alignments and trees). Our results support the hypothesis
276 that these genes were recruited into venom functions without any associated duplication – similar to co-
277 option of single-copy genes proposed as the main process of venom protein evolution in *Nasonia*⁴². In
278 comparison, phospholipase A2 genes in viperid snakes had multiplied and diversified before
279 recruitment into the venom system^{43,44}.

280 **Some venom proteins form multi-copy gene families with ancient duplication events**


281 Larger duplication and diversification events appear restricted to families of enzymatic or larger

282 proteins and not toxin peptides or proteins. Three venom protein classes in the PBVP showed copy
283 number variation across the dataset: venom allergens 3/5, venom acid phosphatases, and serine
284 proteases (**Figure 6**). These genes were in stable genomic regions allowing for the tracing of
285 homologous regions between species by screening for microsynteny.

286 Among the 10 subfamilies of venom acid phosphatases (**Figure 6**) the largest expansion of genes
287 occurred in subfamily 7, found exclusively in parasitoid wasps. This may support the hypothesis that
288 ancestral APHs functioned as pre-digestion factors that allowed the offspring of parasitoid wasps to
289 feed more easily on their host ⁴⁵. In contrast, gene expansion in subfamily 10 appears to be an ancient
290 pattern found in sawflies (9 genes) and parasitoid wasps (13 genes). In all remaining hymenopterans
291 only one or occasionally two to three genes are present. A similar pattern was observed for subfamily
292 5 with ant species having 2-4 copies, while all other hymenopterans (with the exception of *Athalia*)
293 have 1. Subfamily 3 seems to have undergone multiple duplication events in some bee species with up
294 to 10 copies in *Ceratina* and *Bombini*, while other species have 1-2 copies or lost all genes (*Meliponini*),
295 see **Supplementary File 11** and **Supplementary Figure 7** for phylogenetic alignment and tree. In bees,
296 the retained APHs may be adapted to defensive functions, a conjecture potentially supported by the
297 origin of APH subfamily 8, which is unique to bees.

298 Our analyses divided venom serine proteases (VSPs) are into seven subfamilies. Subfamily 7 is
299 represented by 1–4 genes in all hymenopterans but has expanded in ants (10 genes). All seven
300 subfamilies are present in the basal lineages of sawflies and parasitoid wasps, with more diversification
301 in families 2, 3 and 4. In bees subfamily 6 appears to have been lost (**Figure 6**; see **Supplementary**
302 **File 12** and **Supplementary Figure 8** for phylogenetic alignment and tree). VSPs are dual function
303 toxins in bees, triggering the phenoloxidase cascade leading to melanization when injected into insects
304 but acting as spreading factors when injected into mammals, similar to snake VSPs with fibrinogen-
305 degrading activity ⁴⁶. We hypothesize that the expansion of VSP genes may be linked to this dual
306 function, achieving more effective defense against insects, arthropods and mammals.

307 Venom allergens 3/5 have been identified in many hymenopterans ^{16,47} and we distinguished five
308 subfamilies in our study. Subfamily 5 appears to have undergone greater diversification in sawflies,
309 parasitoid wasps, ants and the solitary bees (*Ceratina*, *Osmia*). Only a single member of subfamily 5 is
310 present in the solitary bees *Habropoda*, *Colletes* and *Nomia*. Eusocial wasps and bees of the family
311 Apidae (*Apis*, *Bombus*, *Melipona*, *Frieseomelitta* and *Eufriesea*) appear to have lost all subfamily 5
312 genes. Subfamily 1 is present only in parasitoid wasps and ants with a single gene in *Euglossa*. Other
313 subfamilies generally have a single copy in every species with subfamily 4 occasionally experiencing
314 duplication. In general, the distribution of genes in the venom allergen family is dynamic but shows
315 some phylogenetic patterns (see **Supplementary File 13** and **Supplementary Figure 9** for
316 phylogenetic alignment and tree).

317

318 **Figure 6. Overview of prevalent bee venom genes.** The presence of venom gene orthologs and copy number
 319 variation is mapped onto the phylogenetic relationship between the species we surveyed according to Peters et al
 320 ³¹. Coloured circles represent genes with identical microsynteny in the genomes of the surveyed species. Please
 321 note that tertiapin is now included within anthophilin1 as variant of apamin.

322

323 Two secapin genes were present in most genomes, but were absent in sawflies (indicating an origin in
 324 the stem Apocrita) and wasps of the genus *Polistes*. This class of peptides displayed N-terminal
 325 sequence variation but strong C-terminal conservation (see **Supplementary File 14** and
 326 **Supplementary Figure 10** for phylogenetic alignment and tree). The location of both genes was also
 327 strongly conserved, with one always present between exons of the neurexin-1 gene and the other located
 328 near the carbonic anhydrase-related protein 10. Our inability to locate both genes in some species may
 329 reflect technical issues relating to genome quality and/or the more general challenges associated with

330 the location of small and highly variable genes.

331 **Discussion**

332 **Gene expansions are restricted to few venom protein families in major taxa**

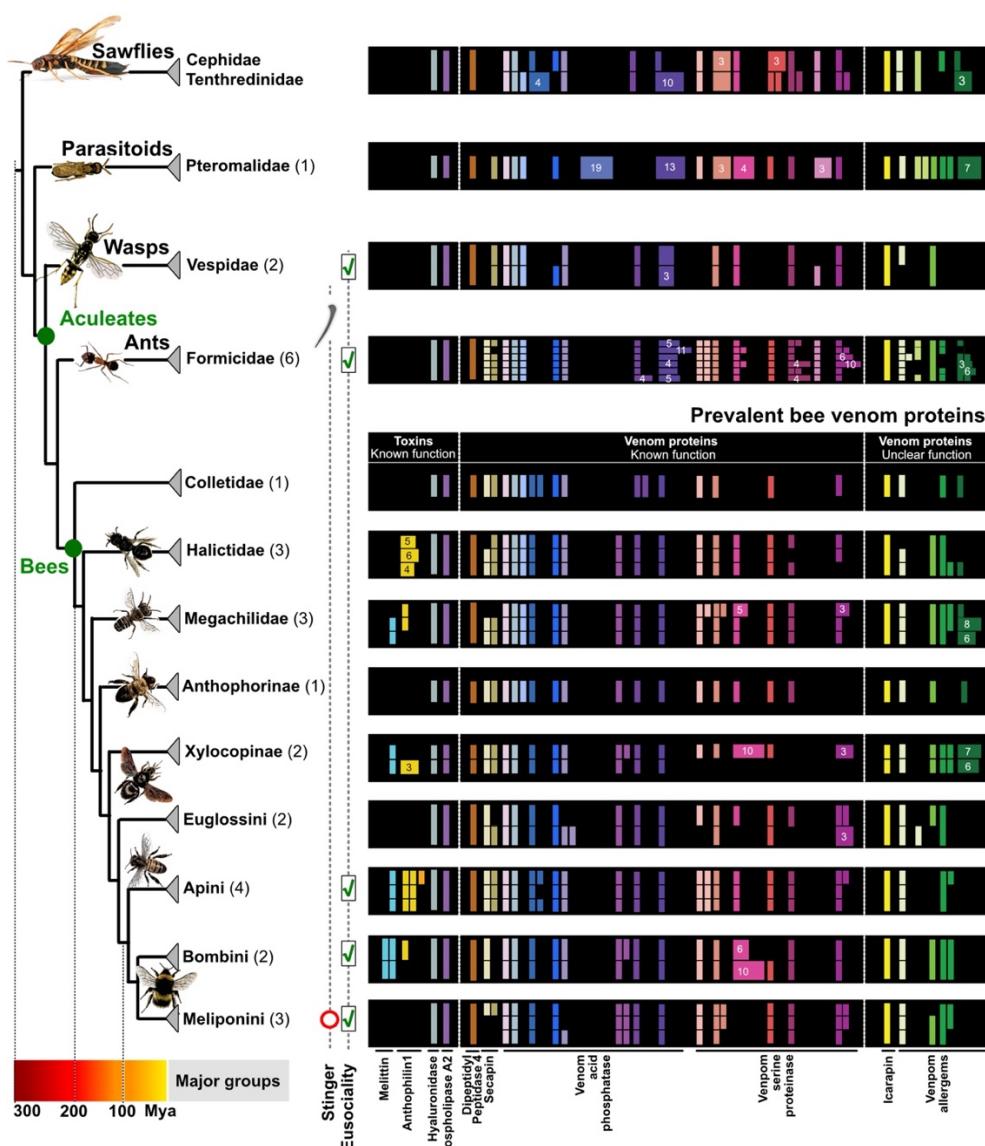
333 Most PBVP are encoded as single-copy genes (**Figure 6**), indicative of single gene co-option. Our data
334 supports the hypothesis that gene duplications are a less prevalent evolutionary mechanism in the
335 evolution of hymenopteran venom components than is claimed for (e.g.) snakes. This pattern was
336 previously observed in parasitoid wasps (*Nasonia*)⁴². However, our results indicate a more distinct
337 pattern in which heavier protein and enzyme components represent those families of venom proteins in
338 which large gene duplications and expansions have occurred in conserved genomic regions. These
339 expansions are restricted to particular subfamilies and larger hymenopteran clades (**Figure 6**). The gene
340 duplications and subsequent gene expansions of venom serine proteases, venom allergens and venom
341 acid phosphatases appear to be 'simple' events restricted to the expansion of few genes. This is in
342 contrast to other venomous organisms that have been studied more extensively, such as snakes and cone
343 snails, in which venom genes have evolved rapidly by extensive multiplication, expansion and
344 subsequent deletion ^{8,48-51}. It should be noted, however, that this picture is based on our preselected
345 PBVP, which includes the most common venom components described.

346

347 Venoms are secretions which primarily function (when "actively delivered" via bites or stings) to deter
348 or subdue target organisms. Venoms contain a variety of molecules and not all are necessarily associated
349 with the primary function of the secretion. Some are of as yet unknown function, or may be
350 epiphenomenal (i.e. present in venoms for contingent reasons not associated with any particular
351 functional role). Whilst we use the term "venom protein" (or "component", or "gene") to refer to any
352 molecule *associated* with venom (i.e. detected proteomically or transcriptomically within the venom
353 system), we reserve the term "toxin" for those venom components with a *characterised functional role*
354 in the subjugation or deterrence of target organisms. Our results indicate that genes encoding
355 (characterised) toxins and those encoding other (associated) venom proteins evolve differently in bees,
356 suggesting a genuine functional distinction between these groups. This finding should be tested further
357 in the future using extended venom profiles. Complementary activity studies are important to address
358 the still undefined biological functions of many venom components, for example venom "allergens",
359 which would in turn support a better interpretation of evolutionary patterns. Venom allergens (3/5)
360 show a more heterogeneous pattern of gene duplications than other gene families, especially in
361 subfamily 5. This subfamily has expanded in parasitoid wasps, leafcutter bees (Megachilidae) and
362 carpenter bees (Xylocopinae), but has been lost in other Apidae lineages. We can only speculate about

363 the original and actual biological function of venom allergens in general because until today the only
364 *activities* characterised are related to immune responses in mice and humans linked to allergic reactions
365 ⁵². No study so far has addressed the possible bioactivity linked to the ancestral and venom variant's
366 biological *function*. However, the strong allergenic activity may reflect an ancestral immunomodulatory
367 function in sawflies linked to the modulation of the immune response of plants, which was later adapted
368 to animal hosts in more derived aculeate lineages.

369 **Bee-specific toxin genes encoding for short peptides**


370 Bees produce apamin and melittin as predominant venom components²⁴, but their genomic origin
371 beyond the honeybee lineage has not been investigated before. One major difference between these
372 toxin peptides and previously discussed venom components is that the genomic region in which they
373 are encoded appears more dynamic. This picture is also reflected by taxon-restricted gene duplications.
374 The genomic region containing a tandem repeat of apamin and mast cell degranulating peptide in *Apis*
375 was identifiable in other bee genomes based on microsynteny and the characteristic cysteine scaffold.
376 Interestingly, we discovered multiple duplication events each restricted to single bee lineages. Our
377 conclusion based on this pattern is that apamin and mast cell degranulating peptide are members of a
378 so far unrecognized, highly variable bee-unique peptide family, which we named Anthophilin1. The
379 genes of this family seem to diversify independently in different bee lineages. Interesting is, that in
380 snakes and sea anemones the expansion of toxin gene families is shown to be linked to their selection
381 to generate larger quantities of the venom than novel function ^{9,11}. Whether the duplication events are
382 linked to neofunctionalization or co-option (as one dominant venom component) remains to be
383 addressed in future studies, the scenarios of gene duplication in venom evolution can be more complex
384 than they often appear ⁶. These should include more contiguous genomic data from additional bee
385 lineages and complementary venom proteomes to better understand the recruitment and diversification
386 processes of members of this family in bee venom.

387 We identified melittin in a genomic region with conserved synteny in the genera *Apis*, *Osmia*, *Ceratina*
388 and *Bombus* (families Megachilidae and Apidae), with a tandem duplication in bumblebees. Synteny
389 confirmed that melittin-like peptides produced by solitary bees are members of the melittin family.
390 Accordingly, melittin is not unique to *Apis* but originated before the divergence of megachilid and apid
391 bees. We did not find a syntenic region or sequences similar to melittin in genomes of bees from the
392 families Andrenidae, Halictidae and Colletidae. Whether or not melittin evolved in earlier bee lineages
393 and underwent secondary loss in some families remains unclear from our data due to the lack of high-
394 quality genome assemblies for the early-diverging bee lineages. Our data further indicates that the ant
395 *Vollenhovia* features a gene which may be distantly related to melittin, however, the mature sequence
396 looks very different. Nevertheless, we cannot rule out the possible origin of melittin in earlier aculeate
397 lineages until a larger sampling of taxa from these and earlier bee lineages are available with high-

398 quality proteo-transcriptome-genome data. Regardless, our data suggests that melittin is co-opted as a
 399 single copy gene as one major component in bees. In future studies this hypothesis should be further
 400 tested by analysing more proteo-transcriptomic venom profiles linked to genomic data.

401 **Most bee core venom proteins originated in early hymenopterans**

402 The pattern we infer reveals an ancient origin for most of the PBVP in bees (**Figure 7**). Most subgroups
 403 of major venom protein gene families exhibit clear-cut orthology with genes already present in the
 404 earliest hymenopteran lineage (sawflies). Female sawflies use their ovipositor to lay eggs in plants but
 405 also co-inject proteins that biochemically interfere with the physiology and immune response of plants
 406 to ensure the offspring's survival, thus resembling a primitive venom system ¹⁵. The composition of
 407 these original hymenopteran venoms has not yet been studied in detail.

408
 409 **Figure 7. Simplified visualization of the prevalent bee venom proteins and their representation in outgroup taxa. The**

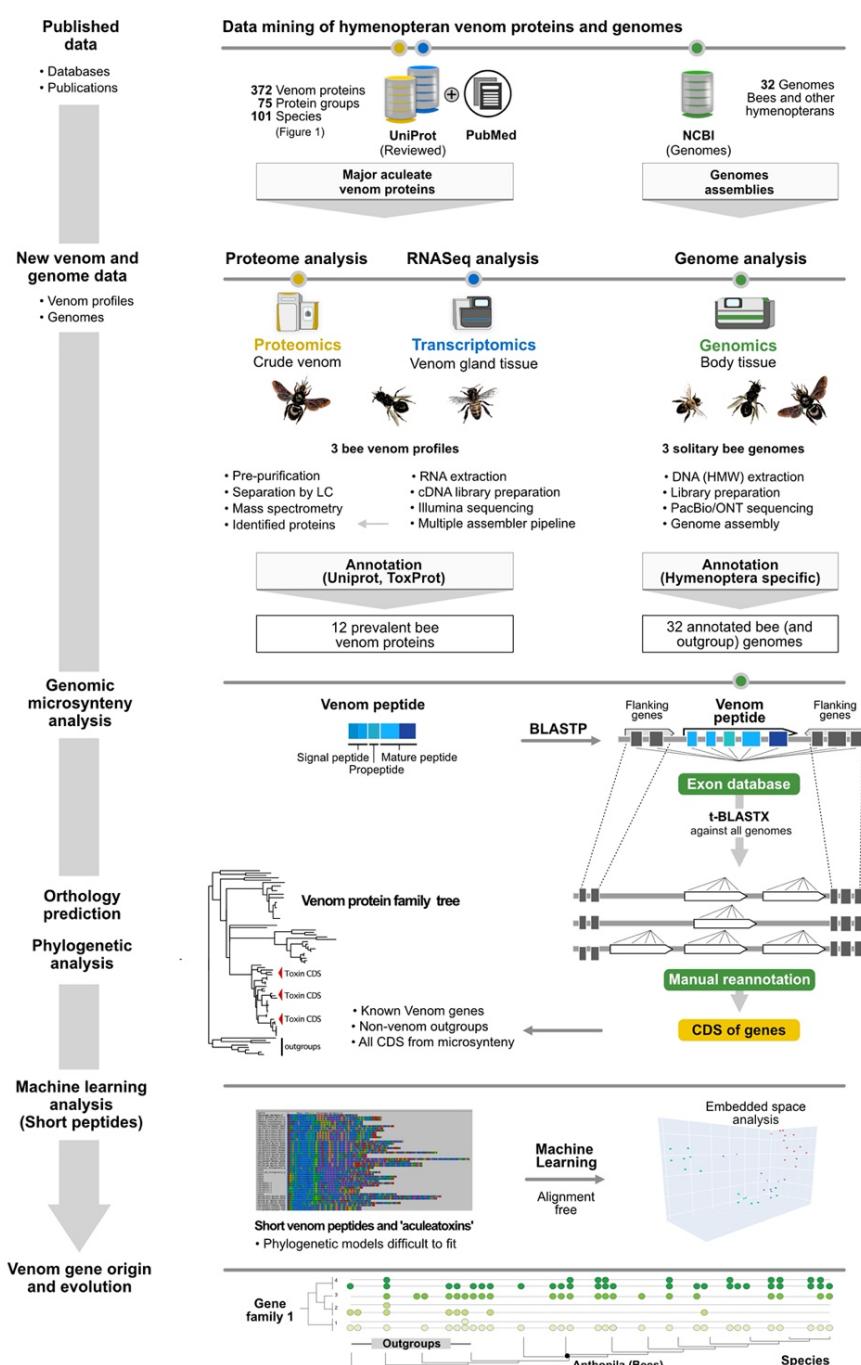
410 numbers of genomes are shown in brackets after the family names. Genes are colour-coded and feature a colour range for
411 duplicates. Duplications are summarized by numbers. Phylogeny and divergence times are shown as previously described in
412 Peters et al.³¹.

413

414 Our results suggest that the most prevalent venom genes present in bees today were already present in
415 the early Triassic in ancestors of the symphytan lineage, predating the radiation of apocritans starting
416 more than 200 million years ago (Figure 7)³¹. The restricted waist of apocritans is needed to manoeuvre
417 the ovipositor in such a way that allows its use for predation, parasitism or defense, and only in aculeate
418 hymenopterans (ants, bees and wasps) is the retractable ovipositor modified into a stinger used
419 exclusively for venom injection. Our data suggest that genes encoding the PBVP emerged before the
420 morphological adaptations of a narrow waist and the stinger in aculeates did, which gave this group its
421 common name – the stinging wasps. The core of the bee venom profile, including known allergens such
422 as phospholipase A2, icarapin and hyaluronidase, was not only already present in sawflies, but is also
423 still present in a group of bees that has secondarily reduced or lost its stinger (stingless bees,
424 Meliponini).

425 If one accepts Symphyta as ‘venomous’, based on their injection of molecules that modulate the
426 physiology (particularly the immune system) of target organisms (to facilitate feeding of the next
427 generation, similarly to parasitoid wasps), then one might consider the hymenopteran lineage as
428 ‘descending from a common venomous ancestor’. Indeed, this might be much less controversial an
429 assertion for this order than it has turned out to be for toxicferan reptiles (see, e.g. ²⁹ and subsequent
430 discussion in the journal *Toxicon*). In this case, our data is consistent with the idea of continuous
431 evolution (i.e. without sharp distinctions or saltatory events) of the hymenopteran venom system
432 through various changes in associated anatomy and ecology. The core of the venom arsenal, comprised
433 of larger proteins which function as immunomodulators or spreading factors, may have been in place
434 early on. Subsequent evolution focused then on the origin and diversification of lineage-specific arrays
435 of peptides which are tailored to the specific venom function (e.g. defence, parasitism, predation) and
436 target (plants, insects, vertebrates) in each lineage. Thus, whilst the peptidic toxins are unique to each
437 lineage within the Aculeata (contrary to the aculeatoxin hypothesis), most enzymatic components are
438 broadly shared, albeit with varying degrees of expansion of specific subfamilies. These differential
439 expansions of enzyme-encoding gene families (e.g. serine proteases) may represent the kind of
440 evolutionary tinkering observed in redundant arrays of toxin-encoding genes in other venomous taxa
441 (see e.g., Jackson et al. ⁴⁹), in which slight changes confer adaptation to the biochemical particularities
442 of a new ecological reality. Members of such enzyme classes may thus vary in their activity on specific
443 substrates, linked to modified morphology of the venom apparatus, but are never rendered inactive due
444 to broadly applicable modes of action (i.e. targeting substrates generally conserved across taxa as
445 diverse as plants and vertebrates). The subject of this study, bees, seem to support this view by having
446 little variation in their venom genes, other than within the Anthophilin1 and Melittin groups.

447 Conclusion


448 Our comparative analyses provide insight into the origins and evolution of toxin genes in bees. We
449 found that most genes encoding predominant bee venom proteins originated at the base of the
450 hymenopteran tree, i.e. were potentially present in the 'venom' of the last common ancestor of
451 phytophagous sawflies and apocritan Hymenoptera more than 280 million years ago (Figure 7). Only
452 the short peptides melittin and the (herein newly described) family Anthophilin1, which is constituted
453 by apamin, apamin-like and MCDP-like genes, are unique to bees. Gene duplications occur, but only
454 in certain (not major toxin) protein families and in only a few hymenopteran lineages, reflecting a
455 diverse pattern of gene origin. Our results thus indicate that short peptides and venom protein genes
456 probably evolve under different evolutionary processes. This study of the PBVP demonstrates the
457 requirement for future studies to provide insight into the evolution of bee and hymenopteran venoms.
458 These should include more high-quality genomes, especially for early bee lineages but also including a
459 more widespread taxon sampling of other hymenopterans. More importantly, extended proteo-
460 transcriptomics venom profile data are essential. Our data shows that venom compositions for solitary
461 bees can be heterogeneous (especially for smaller species such as *H. scabiosae*) which needs to be
462 accounted for. Corresponding to genomes this proteo-transcriptome data improves genome annotations
463 and allows to address appropriately venom protein recruitment processes to differentiate more precisely
464 between gene variants expressed in the venom system and non-venom related genes. Finally, bioassays
465 for many still unknown venom components are needed to identify functional differences linked to the
466 gene evolution and diverse ecology of hymenopteran species.

467 Materials and methods

468 **Data mining of hymenopteran venom proteins and genomes.** Reviewed venom proteins of
469 hymenopterans were searched in UniProt resulting in 372 protein matches from 101 species (Figure 1
470 and Supplementary Table 4). Additionally, we searched publications for sequences that are not
471 provided in UniProt and included finally three bee toxins Halictin I and II from *Halictus sexcintus*, and
472 Codesan from *Colletes daviesanus*. For our comparative genomic analysis of venom toxin proteins
473 across the order Hymenoptera, we made use of 29 publicly available genome sequences given in
474 Supplementary Table 5 and three novel genomes of solitary bees.

475 **Venom gland RNAseq analyses.** For venom gland transcriptomics 15 individuals of *X. violacea*, 17
476 individuals of *H. scabiosae* and 15 individuals of *A. mellifera* were collected June-July 2019/2020 in
477 the alluvial area of the River Wieseck in Giessen, Germany, and the beehive at the Institute for Insect
478 Biotechnology at Justus-Liebig-University Giessen (Collection permission HNLUG Giessen IV.2
479 R28). Whole venom systems (Glands and reservoir) were dissected and washed on ice under sterile
480 conditions and the tissue was preserved in RNAlater (Thermo Fisher Scientific) for subsequent RNA

481 sequencing. RNA extraction, library preparation and short-read genome sequencing were outsourced to
 482 Macrogen (Seoul, Korea) for *A. mellifera* and *X. violaceae* and to Novogene (Cambridge, UK) for *H.*
 483 *scabiosae*. In short, RNA was extracted with Trizol and the cDNA libraries (150bp, paired end reads)
 484 were sequenced using a low input protocol (Illumina Truseq) on an Illumina HiSeq2500 (Macrogen)
 485 and Illumina NovaSeq (Novogene). For *H. scabiosae* an in-house ultra-low input protocol was used by
 486 Novogene due to very low RNA concentration and quantity. All raw data are submitted to NCBI
 487 GenBank PRJNA733472 (SRA entries: SRR14690757, SRR14690758, SRR14690759). Venom gland
 488 transcriptomes were assembled separately using Oyster River Pipeline v2.2.6⁵³, for resulting BUSCO
 489 values see **Supplementary Table 7**.

490

491 **Figure 8. Description of the proteo-transcriptomic and genomic workflow applied in this study.** Details of each step are
492 given in material and methods.

493
494 The resulting assemblies were processed using Transdecoder (minimum length 20 amino acids) to
495 predict peptides, and Kallisto v0.46⁵⁴ to calculate individual transcript abundance, see **Additional Files**
496 **1-3**. The assembled transcripts and their corresponding longest ORFs (Transdecoder output) were used
497 as local BLAST queries against ToxProt and UniProt (the latter limited to insects only) with an e-value
498 cutoff of 1×10^{-3} , see Figure 8. Any highly abundant (TPM > 100) transcripts without significant
499 matches were manually screened using BLAST, InterPro scan and ProteinPredict online suites to
500 determine the closest characterized homolog. For subsequent venom protein identification, we only
501 included transcripts identified in our proteomic dataset representing proteins secreted in the venom
502 system. To compare subsequently all venom proteins in the three datasets we calculated the percentage
503 of scaled TPMs using the package txtimport on R, the script is available via github
504 (<https://github.com/marivelasque/VenomEvolution.git>), see **Figure 2** and **Supplementary Tables 1-3**.

505 **Proteome analysis of crude venom.** We extracted crude venom of all specimens from glands and
506 venom reservoirs by squeezing with forceps in sterile ultrapure water (Thermo Fisher Scientific,
507 Waltham, MA, USA) after prewashing twice to minimize hemolymph contamination. All transcriptome
508 assembly-based predicted ORFs were used as specific databases to identify peptides and proteins
509 detected by mass spectrometry from crude venom of the collected specimens. For the tryptic digestion
510 of the crude venom from *H. scabiosae*, we dissolved 10 µg of protein in 10 µl 10 M urea containing
511 0.1% ProteasMax (Promega, Madison, WI, USA). Cysteine residues were reduced with 5 mM DTT (30
512 min at 50 °C) and modified with 10 mM iodoacetamide (30 min at 24 °C). The reaction was quenched
513 with an excess of cysteine and trypsin was added at a protein:enzyme ratio of 40:1 in 100 µl 25 mM
514 ammonium bicarbonate (Sigma-Aldrich, Taufkirchen, Germany). After incubation for 16 h at 37 °C,
515 the reaction was stopped by adding 1% trifluoroacetic acid (TFA). The sample was purified using a
516 C18-ZipTip (Merck-Millipore, Darmstadt, Germany), dried under vacuum and redissolved in 10 µl
517 0.1% TFA. LC-ESI-MS analysis was carried out at 35 °C by loading 1 µg of the sample in 0.1% formic
518 acid (Sigma-Aldrich) onto a 50-cm µPAC C18 column (Pharma Fluidics, Gent, Belgium) mounted on
519 an UltiMate 3000RSLCnano (Thermo Fisher Scientific). Peptides were eluted with a linear gradient of
520 3–44% acetonitrile over 240 min followed by washing with 72% acetonitrile at a constant flow rate of
521 300 nl/min. They were then infused via an Advion TriVersa NanoMate (Advion BioSciences, New
522 York, NY, USA) into an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Fisher Scientific) in
523 positive-ionization mode with a NanoMate spray voltage of 1.6 kV and a source temperature of 275 °C.
524 Using data-dependent acquisition mode, the instrument performed full MS scans every 3 s over a mass
525 range of *m/z* 375–1500, with the resolution of the Orbitrap set to 120,000. The RF lens was set to 30%,
526 and auto gain control (AGC) was set to standard with a maximum injection time of 50 ms. In each
527 cycle, the most intense ions (charge states 2–7) above a threshold ion count of 50,000 were selected

528 with an isolation window of 1.6 m/z for higher-energy C-trap dissociation at a normalized collision
529 energy of 30%. Fragment ion spectra were acquired in the linear ion trap with the scan rate set to rapid,
530 the mass range to normal and a maximum injection time of 100 ms. After fragmentation, the selected
531 precursor ions were excluded for 15 s for further fragmentation.

532 Prior to shotgun proteomics, the *X. violacea* and *A. mellifera* venom samples were denatured, reduced,
533 and alkylated. Briefly, each sample (~50 μ g) was dissolved in 89 μ l 100 mM triethylammonium
534 bicarbonate (TEABC), and cysteine residues were reduced by adding 1 μ l 1 M DTT (30 min at 60 °C)
535 and modified by adding 10 μ l 0.5 M iodoacetamide (incubation for 30 min in the dark). We then added
536 2 μ g trypsin (Promega) in 100 mM TEABC and incubated overnight at 30 °C. The peptides were then
537 purified and concentrated using OMIX Tips C₁₈ reversed-phase resin (Agilent Technologies, Santa
538 Clara, CA, USA). The peptides were dehydrated in a vacuum centrifuge and analysed by NanoLC-
539 MS/MS. The samples were then resuspended in 20 μ l buffer A (0.1% formic acid) and 1 μ l was loaded
540 onto an analytical 25 cm reversed-phase column (Acclaim Pepmap 100 C₁₈) with a 75 mm inner
541 diameter (Thermo Fisher Scientific) and separated on the Ultimate 3000 RSLC system coupled via a
542 nano-electrospray source to a Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific). Peptides
543 were separated using a 6–40% gradient of buffer B (80% acetonitrile in 0.1% formic acid) over 123
544 min at a flow rate of 300 nl/min. Using data-dependent acquisition mode, full MS/MS scans (375–1500
545 m/z) were performed in the Orbitrap mass analyser (Thermo Fisher Scientific) with a 60,000 resolution
546 at 200 m/z . For the full scans, 3 × 106 ions accumulated within a maximum injection time of 60 ms.
547 The 12 most intense ions with charge states ≥ 2 were sequentially isolated to a target value of 1 × 105
548 with a maximum injection time of 45 ms and were fragmented by higher-energy collisional dissociation
549 in the collision cell (normalized collision energy 28%) and detected in the Orbitrap mass analyser at a
550 resolution of 30,000. PEAKS Studio v8.5 (Bioinformatics Solutions, Waterloo, ON, Canada) was used
551 to match MS/MS spectra from *X. violacea* and *A. mellifera* venom samples against an in-house database
552 resulting from the annotated transcriptome of each species. Carbamidomethylation was set as a fixed
553 modification, and oxidation of methionine as a variable modification, with a maximum of three missed
554 cleavages for trypsin digestion. Parent and fragment mass error tolerances were set at 5 ppm and 0.015
555 Da, respectively. A false discovery rate (FDR) of 1% and a unique peptide number ≥ 2 were used to
556 filter out inaccurate proteins. A $-10\lg P$ value > 120 was used to estimate whether detected proteins
557 were identified by a sufficient number of reliable peptides. In order to identify more relevant sequences,
558 the Spider algorithm (PEAKS Studio) was used to find additional mutations or to correct sequences.
559 This algorithm corrects the sequences stored in transcriptomic databases with de novo sequences based
560 on MS/MS spectra, allowing the detection of post-translational modifications (PTMs) and mutations.
561 The minimum ion intensity for PTMs and mutations was set to 5%, and the ALC score was set to ≥ 90
562 for de novo sequences, leading to low precursor mass errors. Transcripts supported by proteomic data
563 were manually filtered by excluding non-venom-related proteins and peptides, such as house-keeping

564 and structural genes (**Supplementary Tables 1-3**). All proteome raw data are submitted to PRIDE
565 (PXD029934, PXD029823, PXD026642).

566 **Genome sequencing.** The genomes and annotations of the stingless bees *Tetragobula carbonaria* and
567 *Melipona beecheii* will be published as part of another study, but have already been uploaded to NCBI.
568 To sequence the genome of *X. violacea* high molecular weight DNA was extracted from four legs of *X.*
569 *violacea* adapting the protocol from Miller et al.⁵⁵. Final DNA purity and concentrations were measured
570 using NanoPhotometer® (Implen GmbH, Munich, Germany) and Qubit Fluorometer (Thermo Fisher
571 Scientific, Waltham, MA). Two SMRTbell libraries were constructed following the instructions of the
572 SMRTbell Express Prep kit v2.0 with Low DNA Input Protocol (Pacific Biosciences, Menlo Park, CA).
573 The total input DNA for each library was 1.6 µg. The libraries were loaded at an on-plate concentration
574 of 80 pM using diffusion loading. Two SMRT cell sequencing runs were performed on the Sequel
575 System IIe in CCS mode using 30-hour movie time with 2 hours pre-extension and sequencing
576 chemistry v2.0. The PacBio sequencing was outsourced to the Genome technology Center Nijmegen,
577 Netherlands. All reads were assembled using HIFIASM assembler⁵⁶ after fastq read files of *Xylocopa*
578 *sp.* were generated by consensus calling of Pacbio HIFI sequencing data using CCS tool
579 (<https://github.com/PacificBiosciences/ccs>). Reads, which did not take part in the formation of circular
580 consensus sequences were separated out using in-house developed Perl script and were used for closing
581 the gaps with the help of Dentist software⁵⁷. The gap-closed assembly was further polished using
582 Bowtie2⁵⁸, Deepvariant⁵⁹, Samtools and BCFtools⁶⁰. Contamination was accounted for by using NCBI
583 Blast and Blobtools⁶¹, and only scaffolds with Arthropoda and No-Hit category were kept. The final
584 gap-closed and contamination free genome of *Xylocopa species* consisted of 353045797 bases
585 spread over 3524 scaffolds. The genome was predicted to be 99.7% complete according to the
586 Arthropoda busco gene space (For details see Supplementary Table 6). The genome is being
587 published at NCBI under the BioProject (PRJNA733472).

588 **Genome annotation.** We annotated protein-coding genes based on the genome sequence assembly of
589 *C. gigas* (GCA013123115.1, ASM1312311v1. Repeats were soft-masked using RepeatMasker
590 annotations (GCA013123115.1_ASM1312311v1_rm.out) with tabtk, bioawk and seqtk
591 (<https://github.com/lh3>). We used Funannotate v1.8.1⁶² and Uniprot (sprot) for homology-based
592 evidence based on protein sequences from 11 related bee species: *B. impatiens*: GCF000188095.2, *B.*
593 *terrestris*: GCF000214255.1, *A. mellifera*: GCF003254395.2, *M. quadrifasciata*: GCA001276565.1, *E.*
594 *mexicana*: GCF001483705.1, *F. varia* GCA011392965.1, *M. rotundata* GCF000220905.1, *H.*
595 *laboriosa* GCF001263275.1, *D. novaeangliae* GCF001272555.1, *M. genalis* GCF011865705.1, *N.*
596 *melanderi* GCF003710045.1. Briefly, funannotate used gene predictions from Genemark-ES, Snap
597 v2006-07-28, glimmerHMM v3.0.4, Augustus v.3.3.3, and CodingQuarry v2.0 together with protein
598 alignments in Evidence Modeler v.1.1.1. Too short, gap-spanning or repeat-overlapping gene models
599 were removed (n = 5446) and tRNA genes were detected (n = 168) with tRNAscan-SE v2.0.6. Genes

600 were functionally annotated using PFAM v33.1, the UniProt database v2018_11, EggNog
601 (eggnog_4.5/hmmdb databases: Arthropoda, Insecta, Hymenoptera, Drosophila), MEROPS v12.0,
602 CAZYmes in dbCAN v7.0, BUSCO Hymenoptera models v3.0.2, Hymenoptera odb9, SignalP v4.1,
603 and InterProScan5 v81.0. The final annotation contained models for 20,016 protein-coding genes and
604 168 tRNAs, and was estimated to be 87.1% complete (BUSCO4 v4.1.4). The resulting gene annotation
605 files for *C. gigas*, *E. dilemma*, *M. beecheii*, *T. carbonaria* and *Xylocopa violacea* are made available as
606 **Additional Files 4-8** in the Zenodo archive accompanying this manuscript (10.5281/zenodo.5734574).

607 **Genomic microsynteny analysis.** We traced abundant venom gland transcripts that potentially
608 encoded toxins to homologs in the annotated, highly-continuous publicly-available genomes of bees
609 (and wasps, ants, parasitoid wasps and sawflies as outgroup species) using the online BLAST suite
610 against genomic databases. To identify conserved synteny blocks, we first identified the reciprocal best-
611 match paralogs from hymenopteran all-against-all BLASTP comparisons of the venom genes. Based
612 on the matching sequences, we then extracted exons from the candidate venom genes and their flanking
613 genes. We used those to create local BLAST databases to survey the selected genomes using local
614 blastx with an e-value cutoff of 0.01. We then applied filters to select venom genes containing scaffolds
615 at least 20 kbp in length (to exclude partial genes) with at least two exons. Where gene annotations were
616 insufficient, we manually re-annotated venom genes where possible, following intron boundaries and
617 using known sequences as templates. We extracted the coding sequences of all complete genes for
618 phylogenetic analysis to establish ortholog groups in addition to their microsyntenic patterns. All
619 resulting annotations are available as part of the Additional Materials (**Additional File 9**).

620 **Orthology prediction and phylogenetic analysis.** All toxin transcripts together with toxin genes and
621 their outgroup venom-unrelated homologs (e.g. trypsin and chymotrypsin in case of serine proteases)
622 were arranged by gene family and aligned as translated amino acids using MAFFT⁶³ (L-INS-I, 1000
623 iterations). Name convention was established to differentiate between genomic sequences (first two
624 letters of both genus and species name, followed by the last three digits of a bioinformatic scaffold ID,
625 followed – if applicable – by an abbreviation of a pre-existing gene annotation, followed by letters a to
626 z to differentiate between sequences from the same scaffold); proteo-transcriptomic sequences (names
627 kept the same as generated by transcriptome assemblers); homologues from UniProt and SwissProt
628 databases used to provide outgroups and fill the gaps in sequence space (kept as UniProt or SwissProt
629 IDs, but reduced to 10 characters if needed due to strict limitations of phylip format used by Exabayes).
630 Alignments were manually inspected for overt errors (e.g., proper alignment of the cysteine backbone)
631 and used to construct phylogenetic trees in Exabayes⁶⁴ (four parallel runs of four chains each, runs
632 stopped when average standard deviation of split frequencies of trees reached below 5%). Resulting
633 trees are shown in the **Supplementary Figures 1-10**, with toxin sequences recovered from *Apis*,
634 *Halictus* or *Xylocopa* venom marked as red arrows and non-toxic physiological sequences marked with
635 grey arrow.

636 **A novel perspective on relations of short peptides: embedding space analysis.** Every year,
637 algorithms improve natural language processing (NLP) tasks such as automated translation or question
638 answering, in particular by feeding large text corpora into Deep Learning (DL) based Language Models
639 (LMs)⁶⁵. These advances have been transferred to protein sequences by learning to predict masked or
640 missing amino acids using large databases of raw protein sequences as input^{66,67}. Such methods
641 leverage the wealth of information present in exponentially growing unlabelled protein sequence
642 databases by solely relying on sequential patterns found in the input. Processing the information learned
643 by such protein LMs (pLMs), e.g., by feeding a protein sequence as input to the network and
644 constructing vectors thereof from the activation in the network's last layers, yields a representation of
645 protein sequences referred to as embeddings⁶⁶. This way, features learned by the pLM can be
646 transferred to any (prediction) task requiring numerical protein representations (transfer learning) which
647 has already been showcased for various aspects ranging from protein structure⁶⁸ over protein function
648⁶⁹. Further, it was shown that distance in embedding space correlates with protein function and can be
649 used as an orthogonal signal for clustering proteins into functional families⁶⁹.

650 Here, we used the pLM ProtT5-XL-UniRef50⁶⁶ (in the following ProtT5) to create fixed-length vector
651 representations for each protein sequence (per-protein embeddings) irrespective of its length. Towards
652 this, we first created individual vector representations for each residue in a protein. In order to derive
653 fixed-length vector representations for single proteins (per-protein embedding) irrespective of a
654 protein's length, we then averaged over all residue embeddings in a protein (Fig. 1 in Elnaggar et al.⁶⁶).
655 The protein Language Model (pLM) ProtT5 was trained solely on unlabelled protein sequences from
656 BFD (Big Fantastic Database; 2.5 billion sequences including meta-genomic sequences)⁷⁰ and
657 UniRef50. ProtT5 has been built in analogy to the NLP (Natural Language Processing) T5⁶⁵ ultimately
658 learning some of the constraints of protein sequence. As ProtT5 was only trained on unlabelled protein
659 sequences and no supervised training or fine-tuning was performed, there is no risk of information
660 leakage or overfitting to a certain class or label. As a result, every protein was represented as 1024-
661 dimensional per-protein embeddings. Those high-dimensional representations were projected to 3-d
662 using UMAP (n_neighbors=10, min_dist=0.3, random_state=42, n_components=3) and coloured
663 according to their taxonomic group to allow for visual analysis. Embeddings and 3-d plots were created
664 using the bio_embeddings package⁷¹.

665 **Author contributions**

666 BMvR and IK conceived the project and wrote the manuscript draft. Proteo-transcriptomic and genomic
667 data were analysed by IK, MV and BMvR. Mass spectrometry was conducted by S.D, T.T. and G.L.
668 Machine learning analysis was conducted by M.H. and B.R. New genome and annotation data were
669 provided by E.S., R.G., B.A.H, BMvR. DNA extraction, library prep and assembly of *X. violacea* by
670 C.G., A.B and DGP. All authors wrote the final manuscript version.

671 **Acknowledgements**

672 BMvR and IK thank the German Science Foundation (DFG) for funding this work by a grant to BMvR
673 (DFG RE3454/6-1). BMvR and IK thank Frank Förster for fruitful discussions on bioinformatics.
674 BMvR is grateful to Georg Petschenka and Hermann Falkenhahn for helpful insights and discussion on
675 solitary bees and localities in Giessen. BMvR thanks finally Ingo Ebersberger for his support. BMvR
676 and AV acknowledge generous funding obtained by AV from the Hessian Ministry of Higher
677 Education, Research, and the Arts for the group “Animal Venomics”, which was coordinated by BMvR
678 until end of 2021 at the Institute for Insectbiotechnology at the Justus Liebig University, embedded in
679 the LOEWE Centre for Translational Biodiversity Genomics. We thank the Genome Technology Center
680 (RGTC) at Radboudumc for the use of the Sequencing Core Facility (Nijmegen, The Netherlands),
681 which provided the PacBio SMRT sequencing service on the Sequel IIe platform. We finally are
682 grateful to anonymous reviewers from previous manuscript versions for helpful comments.

683 **Supplementary Material**

684 **Supplementary Table 1.** Proteo-transcriptomically identified venom components in *X. violacea*.
685 **Supplementary Table 2.** Proteo-transcriptomically identified venom components in *H. scabiosae*.
686 **Supplementary Table 3.** Proteo-transcriptomically identified venom components in *X. violacea*.
687 **Supplementary Table 4.** Listed bioactivity and description of the prevalent bee venom proteins.
688 **Supplementary Table 5.** List of mined and used high-quality hymenopteran genomes.
689 **Supplementary Table 6.** Resulting statistics of the new genome sequence of *X. violacea*.
690 **Supplementary Table 7.** BUSCO statistics for venom gland assemblies of *X. violacea*, *H. scabiosae*, *A. mellifera*.
691 **Supplementary Figure 1.** Phylogenetic tree of anthophilin1 peptides.
692 **Supplementary Figure 2.** Phylogenetic tree of melittin peptides.
693 **Supplementary Figure 3.** Phylogenetic tree of phospholipase A2 proteins.
694 **Supplementary Figure 4.** Phylogenetic tree of hyaluronidase proteins.
695 **Supplementary Figure 5.** Phylogenetic tree of icarapin proteins.
696 **Supplementary Figure 6.** Phylogenetic tree of dipeptidyl peptidase 4 proteins.
697 **Supplementary Figure 7.** Phylogenetic tree of acid phosphatase proteins.
698 **Supplementary Figure 8.** Phylogenetic tree of venom serine protease proteins.
699 **Supplementary Figure 9.** Phylogenetic tree of venom allergen proteins.
700 **Supplementary Figure 10.** Phylogenetic tree of secapin proteins.
701 **Supplementary File 1.** Alignment of anthophilin1 peptides.
702 **Supplementary File 2.** Alignment of melittin peptides.
703 **Supplementary File 3.** Alignment of “aculeatoxins” with signal peptide
704 **Supplementary File 4.** Alignment of only mature regions of “aculeatoxins”
705 **Supplementary File 5.** Machine learning results for “aculeatoxins” with signal peptide
706 **Supplementary File 6.** Machine learning results for mature region of “aculeatoxins”
707 **Supplementary File 7.** Alignment of phospholipase A2 proteins.

708 **Supplementary File 8.** Alignment of hyaluronidase proteins.
709 **Supplementary File 9.** Alignment of icarapin proteins.
710 **Supplementary File 10.** Alignment of dipeptidyl peptidase 4 proteins.
711 **Supplementary File 11.** Alignment of venom acid phosphatase proteins
712 **Supplementary File 12.** Alignment of venom serine protease proteins.
713 **Supplementary File 13.** Alignment of venom allergen proteins.
714 **Supplementary File 14.** Alignment of secapin proteins.

715 **Additional material** (DOI: 10.5281/zenodo.6998876).

716 **Additional File 1.** VG Assembly file of *Xylocopa violacea* following ORF prediction by Transdecoder.
717 **Additional File 2.** VG Assembly file of *Halictus scabiosae* following ORF prediction by Transdecoder.
718 **Additional File 3.** VG Assembly file of *Apis mellifera* following ORF prediction by Transdecoder.
719 **Additional File 4.** Genome annotation of *Colletes gigas*.
720 **Additional File 5.** Genome annotation of *Euglossa dilemma*.
721 **Additional File 6.** Genome annotation of *Melipona beecheii*.
722 **Additional File 7.** Genome annotation of *Tetragonula carbonaria*.
723 **Additional File 8.** Genome annotation of *Xylocopa violacea*.
724 **Additional File 9.** Gff files of all toxin gene annotations.

725

726 **References**

- 727 1. Dunn, C. W. & Munro, C. Comparative genomics and the diversity of life. *Zoologica Scripta* **45**, 5–13 (2016).
- 728 2. Yin, W. *et al.* Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper. *Nature Communications* **7**, 13107 (2016).
- 729 3. Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A. & Fry, B. G. Complex cocktails: the evolutionary 730 novelty of venoms. *Trends in Ecology & Evolution* **28**, 219–229 (2013).
- 731 4. Drukewitz, S. H. & von Reumont, B. M. The Significance of Comparative Genomics in Modern 732 Evolutionary Venomics. *Front. Ecol. Evol.* **7**, 163 (2019).
- 733 5. Zancolli, G. & Casewell, N. R. Venom Systems as Models for Studying the Origin and Regulation of 734 Evolutionary Novelties. *Molecular Biology and Evolution* **37**, 2777–2790 (2020).
- 735 6. Jackson, T. N. W. & Koludarov, I. How the Toxin got its Toxicity. *Frontiers in Pharmacology* **11**, 1893 736 (2020).
- 737 7. Almeida, D. D. *et al.* Tracking the recruitment and evolution of snake toxins using the evolutionary context 738 provided by the *Bothrops jararaca* genome. *Proc Natl Acad Sci USA* **118**, e2015159118 (2021).
- 739 8. Giorgianni, M. W. *et al.* The origin and diversification of a novel protein family in venomous snakes. *Proc 740 Natl Acad Sci USA* **117**, 10911–10920 (2020).
- 741 9. Moran, Y. *et al.* Concerted Evolution of Sea Anemone Neurotoxin Genes Is Revealed through Analysis of 742 the *Nematostella vectensis* Genome. *Molecular Biology and Evolution* **25**, 737–747 (2008).
- 743 10. Sachkova, M. Y. *et al.* The Birth and Death of Toxins with Distinct Functions: A Case Study in the Sea 744 Anemone *Nematostella*. *Molecular Biology and Evolution* **36**, 2001–2012 (2019).
- 745 11. Margres, M. J. *et al.* Quantity, Not Quality: Rapid Adaptation in a Polygenic Trait Proceeded Exclusively 746 through Expression Differentiation. *Molecular Biology and Evolution* **34**, 3099–3110 (2017).

749 12. von Reumont, B. M. *et al.* Modern venomics—Current insights, novel methods, and future perspectives in
750 biological and applied animal venom research. *GigaScience* **11**, giac048 (2022).

751 13. Holford, M., Daly, M., King, G. F. & Norton, R. S. Venoms to the rescue. *Science* **361**, 842–844 (2018).

752 14. Oeyen, J. P. *et al.* Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of
753 Parasitoid and Eusocial Hymenoptera. *Genome Biology and Evolution* **12**, 1099–1188 (2020).

754 15. Wang, T. *et al.* Proteomic analysis of the venom and venom sac of the woodwasp, *Sirex noctilio* - Towards
755 understanding its biological impact. *Journal of Proteomics* **146**, 195–206 (2016).

756 16. Piek, T. *Venoms of the Hymenoptera*. (Elsevier, 1986).

757 17. Danneels, E., Van Vaerenbergh, M., Debysyer, G., Devreese, B. & de Graaf, D. Honeybee Venom Proteome
758 Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach. *Toxins* **7**, 4468–
759 4483 (2015).

760 18. Moreno, M. & Giralt, E. Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and
761 Biotechnological Use: Melittin, Apamin and Mastoparan. *Toxins* **7**, 1126–1150 (2015).

762 19. Walker, A. A. *et al.* Entomo-venomics - The evolution, biology and biochemistry of insect venoms.
763 *Toxicon* **154**, 15–27 (2018).

764 20. Walker, A. A., Robinson, S. D., Hamilton, B. F., Undheim, E. A. B. & King, G. F. Deadly Proteomes: A
765 Practical Guide to Proteotranscriptomics of Animal Venoms. *PROTEOMICS* **20**, 1900324 (2020).

766 21. von Reumont, B. M., Dutertre, S. & Koludarov, I. Venom profile of the European carpenter bee *Xylocopa*
767 *violacea*: Evolutionary and applied considerations on its toxin components. *Toxicon: X* **14**, 100117 (2022).

768 22. Lee, S., Baek, J. & Yoon, K. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social
769 Hunting Wasps. *Toxins* **8**, 32 (2016).

770 23. dos Santos-Pinto, J. R. A., Perez-Riverol, A., Lasa, A. M. & Palma, M. S. Diversity of peptidic and
771 proteinaceous toxins from social Hymenoptera venoms. *Toxicon* **148**, 172–196 (2018).

772 24. Pucca, M. B. *et al.* Bee Updated: Current Knowledge on Bee Venom and Bee Envenoming Therapy. *Front.*
773 *Immunol.* **10**, 1–15 (2019).

774 25. Touchard, A. *et al.* Deciphering the Molecular Diversity of an Ant Venom Peptidome through a Venomics
775 Approach. *Journal of Proteome Research* **17**, 3503–3516 (2018).

776 26. Robinson, S. D. *et al.* A comprehensive portrait of the venom of the giant red bull ant, *Myrmecia gulosa*,
777 reveals a hyperdiverse hymenopteran toxin gene family. *Science advances* **4**, eaau4640 (2018).

778 27. Dashevsky, D. & Rodriguez, J. A Short Review of the Venoms and Toxins of Spider Wasps (Hymenoptera:
779 Pompilidae). *Toxins* **13**, 744 (2021).

780 28. Abd El-Wahed, A. *et al.* Wasp Venom Biochemical Components and Their Potential in Biological
781 Applications and Nanotechnological Interventions. *Toxins* **13**, 206 (2021).

782 29. Fry, B. G. *et al.* The structural and functional diversification of the Toxicofera reptile venom system.
783 *Toxicon* **60**, 434–448 (2012).

784 30. Burzyńska, M. & Piasecka-Kwiatkowska, D. A Review of Honeybee Venom Allergens and Allergenicity.
785 *Int J Mol Sci* **22**, 8371 (2021).

786 31. Peters, R. S. *et al.* Evolutionary History of the Hymenoptera. *Current biology : CB* **27**, 1013–1018 (2017).

787 32. Reams, A. B. & Roth, J. R. Mechanisms of gene duplication and amplification. *Cold Spring Harb Perspect*
788 *Biol* **7**, a016592 (2015).

789 33. Świątly-Błaszkiewicz, A. *et al.* The Effect of Bee Venom Peptides Melittin, Tertiapin, and Apamin on the
790 Human Erythrocytes Ghosts: A Preliminary Study. *Metabolites* **10**, 191 (2020).

791 34. Chen, J., Guan, S.-M., Sun, W. & Fu, H. Melittin, the Major Pain-Producing Substance of Bee Venom.
792 *Neurosci. Bull.* **32**, 265–272 (2016).

793 35. Choo, Y. M. *et al.* Molecular cloning and antimicrobial activity of bombolitin, a component of bumblebee
794 *Bombus ignitus* venom. *Comp Biochem Physiol B Biochem Mol Biol* **156**, 168–173 (2010).

795 36. Stöcklin, R. *et al.* Structural identification by mass spectrometry of a novel antimicrobial peptide from the
796 venom of the solitary bee *Osmia rufa* (Hymenoptera: Megachilidae). *Toxicon* **55**, 20–27 (2010).

797 37. Čujová, S., Bednárová, L., Slaninová, J., Straka, J. & Čeřovský, V. Interaction of a novel antimicrobial
798 peptide isolated from the venom of solitary bee *Colletes daviesanus* with phospholipid vesicles and
799 *Escherichia coli* cells. *Journal of Peptide Science* **20**, 885–895 (2014).

800 38. Monincová, L. *et al.* Structure–activity study of macropin, a novel antimicrobial peptide from the venom of
801 solitary bee *Macropis fulvipes* (Hymenoptera: Melittidae). *Journal of Peptide Science* **20**, 375–384 (2014).

802 39. Kawakami, H. *et al.* Isolation of biologically active peptides from the venom of Japanese carpenter bee,
803 *Xylocopa appendiculata*. *Journal of Venomous Animals and Toxins including Tropical Diseases* **23**, 29
804 (2017).

805 40. Sun, C. *et al.* Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution
806 and Variation in Ecological and Behavioral Traits. *Molecular Biology and Evolution* **38**, 486–501 (2021).

807 41. Fields, C. & Levin, M. Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing
808 Cognition in Diverse Embodiments. *Entropy* **24**, 819 (2022).

809 42. Martinson, E. O., Mrinalini, Kelkar, Y. D., Chang, C.-H. & Werren, J. H. The Evolution of Venom by Co-
810 option of Single-Copy Genes. *Current biology : CB* **27**, 2007-2013.e8 (2017).

811 43. Dowell, N. L. *et al.* Extremely Divergent Haplotypes in Two Toxin Gene Complexes Encode Alternative
812 Venom Types within Rattlesnake Species. *Current Biology* **28**, 1016-1026.e4 (2018).

813 44. Koludarov, I. *et al.* Reconstructing the evolutionary history of a functionally diverse gene family reveals
814 complexity at the genetic origins of novelty. 583344 Preprint at <https://doi.org/10.1101/583344> (2020).

815 45. Danneels, E. L., Rivers, D. B. & de Graaf, D. C. Venom proteins of the parasitoid wasp *Nasonia*
816 *vitripennis*: recent discovery of an untapped pharmacopee. *Toxins* **2**, 494–516 (2010).

817 46. Choo, Y. M. *et al.* Dual Function of a Bee Venom Serine Protease: Prophenoloxidase-Activating Factor in
818 Arthropods and Fibrin(ogen)olytic Enzyme in Mammals. *PLoS ONE* **5**, (2010).

819 47. Hoffman, D. R. Hymenoptera Venom Allergens. *Clinical Reviews in Allergy & Immunology* **30**, 109–128
820 (2006).

821 48. Fry, B. G. *et al.* The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms.
822 *Annual Review of Genomics and Human Genetics* **10**, 483–511 (2009).

823 49. Jackson, T. N. W. *et al.* Rapid Radiations and the Race to Redundancy: An Investigation of the Evolution
824 of Australian Elapid Snake Venoms. *Toxins (Basel)* **8**, 309 (2016).

825 50. Grandal, M., Hoggard, M., Neely, B., Davis, W. C. & Marí, F. Proteogenomic Assessment of Intraspecific
826 Venom Variability: Molecular Adaptations in the Venom Arsenal of *Conus purpurascens*. *Mol Cell*
827 *Proteomics* **20**, 100100 (2021).

828 51. Dowell, N. L., Giorgianni, M. W., Kassner, V. A. & Selegue, J. E. The Deep Origin and Recent Loss of
829 Venom Toxin Genes in Rattlesnakes. *Current Biology* (2016).

830 52. Elieh Ali Komi, D., Shafaghat, F. & Zwiener, R. D. Immunology of Bee Venom. *Clinic Rev Allerg*
831 *Immunol* **54**, 386–396 (2018).

832 53. MacManes, M. D. The Oyster River Protocol: a multi-assembler and kmer approach for de novo
833 transcriptome assembly. *PeerJ* **6**, e5428 (2018).

834 54. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification.
835 *Nature Biotechnology* **34**, 525–527 (2016).

836 55. Miller, S. A., Dykes, D. D. & Polesky, H. F. A simple salting out procedure for extracting DNA from
837 human nucleated cells. *Nucleic Acids Res* **16**, 1215 (1988).

838 56. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using
839 phased assembly graphs with hifiasm. *Nat Methods* **18**, 170–175 (2021).

840 57. Ludwig, A., Pippel, M., Myers, G. & Hiller, M. DENTIST—using long reads for closing assembly gaps at
841 high accuracy. *GigaScience* **11**, giab100 (2022).

842 58. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**, 357–359
843 (2012).

844 59. Poplin, R. *et al.* A universal SNP and small-indel variant caller using deep neural networks. *Nat Biotechnol*
845 **36**, 983–987 (2018).

846 60. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population
847 genetical parameter estimation from sequencing data. *Bioinformatics* **27**, 2987–2993 (2011).

848 61. Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome assemblies. *F1000Res* **6**, 1287 (2017).

849 62. Palmer, J. M. & Stajich, J. Funannotate v1.8.1: Eukaryotic genome annotation. (2020)
850 doi:10.5281/zenodo.4054262.

851 63. Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in
852 Performance and Usability. *Molecular Biology and Evolution* **30**, 772–780 (2013).

853 64. Aberer, A. J., Kobert, K. & Stamatakis, A. ExaBayes: Massively Parallel Bayesian Tree Inference for the
854 Whole-Genome Era. *Molecular Biology and Evolution* **31**, 2553–2556 (2014).

855 65. Raffel, C. *et al.* Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
856 *Journal of Machine Learning Research* **21**, 1–67 (2020).

857 66. Elnaggar, A. *et al.* ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised
858 Deep Learning and High Performance Computing. *IEEE Transactions on Pattern Analysis and Machine*
859 *Intelligence* 1–1 (2021) doi:10.1109/TPAMI.2021.3095381.

860 67. Rives, A. *et al.* Biological structure and function emerge from scaling unsupervised learning to 250 million
861 protein sequences. *Proceedings of the National Academy of Sciences* **118**, e2016239118 (2021).

862 68. Weißenow, K., Heinzinger, M. & Rost, B. Protein language model embeddings for fast, accurate,
863 alignment-free protein structure prediction. 2021.07.31.454572 Preprint at
864 <https://doi.org/10.1101/2021.07.31.454572> (2021).

865 69. Littmann, M., Heinzinger, M., Dallago, C., Olenyi, T. & Rost, B. Embeddings from deep learning transfer
866 GO annotations beyond homology. *Sci Rep* **11**, 1160 (2021).

867 70. Steinegger, M., Mirdita, M. & Söding, J. Protein-level assembly increases protein sequence recovery from
868 metagenomic samples manyfold. *Nat Methods* **16**, 603–606 (2019).

869 71. Dallago, C. *et al.* Learned Embeddings from Deep Learning to Visualize and Predict Protein Sets. *Current*
870 *Protocols* **1**, e113 (2021).

871