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Abstract 11 

Complex gene regulatory mechanisms underlie differentiation and reprogramming. 12 
Contemporary single-cell lineage tracing (scLT) methods use expressed, heritable DNA barcodes 13 
to combine cell lineage readout with single-cell transcriptomics enabling high-resolution analysis 14 
of cell states while preserving lineage relationships. However, reliance on transcriptional profiling 15 
limits their adaptation to an ever-expanding tool kit of multiomic single-cell assays. With CellTag-16 
multi, we present a novel approach for independently profiling lineage barcodes with single-cell 17 
chromatin accessibility without relying on co-assay of transcriptional state, paving the way for truly 18 
multiomic lineage tracing. We validate CellTag-multi in mouse hematopoiesis, characterizing 19 
transcriptional and epigenomic lineage priming across progenitor cell populations. In direct 20 
reprogramming of fibroblasts to endoderm progenitors, we use CellTag-multi to comprehensively 21 
link early cell state with reprogramming outcomes, identifying core regulatory programs underlying 22 
on-target and off-target reprogramming. Further, we reveal the Transcription Factor (TF) Zfp281 23 
as a novel regulator of reprogramming outcome, biasing cells towards an off-target mesenchymal 24 
fate via its regulation of TGF-β signaling. Together, these results establish CellTag-multi as a 25 
novel lineage tracing method compatible with multiple single-cell modalities and demonstrate its 26 
utility in revealing fate-specifying gene regulatory changes across diverse paradigms of 27 
differentiation and reprogramming. 28 

 29 
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 2 

The quantification of cell identity is crucial to understanding development, disease, and 34 
homeostasis, yet the notion of cell identity remains poorly defined1. Single-cell technologies, now 35 
tailored to diverse modalities2, are expanding our understanding of how cell identity is established 36 
and maintained3. In particular, single-cell lineage tracing (scLT) methods allow cell relationships 37 
to be tracked throughout biological processes, revealing cell fate decisions during differentiation 38 
and reprogramming4,5. Prospective scLT methods label cells with unique genetic ‘barcodes’ that 39 
are expressed as RNA; capturing these barcodes via single-cell RNA-seq (scRNA-seq) allows 40 
the parallel capture of lineage information and single-cell transcriptomes6–13.  41 

These methods to barcode and track cells have been deployed across several in vitro 42 
differentiation and reprogramming paradigms5,14. The accessibility of cells within these systems 43 
permits longitudinal sampling and cellular barcoding at precise time points, allowing early 44 
progenitor state to be linked to terminal fate (termed ‘state-fate analysis’; Fig. 1a). Such a strategy 45 
has been used to determine how well gene expression state in progenitors reflects eventual cell 46 
fate in hematopoiesis13. This work demonstrated that subsequent fate could be predicted, albeit 47 
with limited accuracy, from progenitor gene expression, indicating the existence of heritable fate 48 
determinants that are not captured by scRNA-seq alone. Similarly, viral barcoding, ‘CellTagging,’ 49 
of transcription factor-mediated direct reprogramming of mouse embryonic fibroblasts (MEFs) to 50 
induced endoderm progenitors (iEPs), suggested that reprogramming outcome is determined 51 
during the early stages of fate conversion7. However, the early gene regulatory changes that set 52 
cells on their destined path have not been fully characterized. Additional information from 53 
epigenomic assays such as single-cell Assay of Transposase Accessible Chromatin by 54 
sequencing (scATAC-seq) may be crucial to uncover the heritable properties that play a key role 55 
in the establishment and maintenance of cell identity. Previously, natural DNA variation has been 56 
used to infer coarse cellular phylogenies with scATAC-seq15,16. However, the resolution of such 57 
retrospective methods is limited due to their reliance on the accrual of somatic mutations. In 58 
contrast, the density of lineage information recorded can be precisely controlled at biologically 59 
relevant time points using successive rounds of cellular barcoding7,17 with prospective methods. 60 
This is essential for profiling early, lineage-specific responses in dynamic systems like 61 
differentiation and reprogramming. 62 

To enable prospective lineage tracing with chromatin accessibility capture, we have 63 
developed ‘CellTag-multi.’ CellTag-multi is based on our previous CellTagging technology, which 64 
uses sequential lentiviral delivery of CellTags (heritable random barcodes) to enable the 65 
construction of multi-level lineage trees7,17. Here, we introduce a new strategy in which CellTags, 66 
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expressed as polyadenylated transcripts, can be captured in both scRNA-seq and scATAC-seq 67 
assays allowing for independent tracking of clonal transcriptional and epigenomic state.  68 

We validate this method using in vitro hematopoiesis, a well-characterized model of multi-69 
lineage differentiation, and demonstrate highly accurate reconstruction of lineage relationships 70 
and capture of lineage-specific progenitor cell states across scRNA-seq and scATAC-seq. 71 
Moreover, the addition of chromatin accessibility information to gene expression allows for a 72 
significant improvement in the prediction of differentiation outcome from early progenitor state. 73 
We also deploy CellTag-multi in the direct lineage reprogramming of fibroblasts to induced 74 
endoderm progenitors (iEPs), to characterize early genomic events in rare subpopulations of cells 75 
that successfully reprogram. This application reveals how chromatin is remodeled following 76 
expression of reprogramming TFs, enabling deeper insight into gene regulatory network 77 
reconfiguration. We uncover the TF Foxd2 as a facilitator of on-target reprogramming, increasing 78 
the efficiency of MEF to iEP conversion. Conversely, we identify Zfp281 as a TF biasing cells 79 
towards an off-target mesenchymal fate via its regulation of TGF-β signaling, which we validate 80 
experimentally. We demonstrate that the identification of these TFs as novel reprogramming 81 
regulators is only possible via multiomic profiling. Together, these findings highlight the utility of 82 
CellTag-multi in defining the molecular regulation of early cell state and its relation to fate across 83 
diverse biological applications. 84 
 85 
Development and validation of CellTag-multi 86 
CellTagging relies on single-cell capture of CellTags — heritable DNA barcodes expressed as 87 
polyadenylated transcripts7,17,18. In the standard workflow, CellTags are captured as transcripts 88 
and reverse transcribed (RT), along with cellular mRNA, during 3’ end scRNA-seq library 89 
preparation. In contrast, scATAC-seq directly captures fragments of the accessible genome, 90 
omitting capture of CellTag transcripts, rendering CellTagging incompatible with scATAC-seq 91 
assays. To enable CellTag profiling with scATAC-seq, we introduced two essential modifications. 92 
First, we developed an in situ Reverse Transcription (isRT) step to selectively reverse transcribe 93 
CellTag barcodes inside intact nuclei. By introducing this additional step after transposition, we 94 
omitted the need to RT CellTags during scATAC-seq library construction. Second, we modified 95 
the CellTag construct to flank the random barcode with Nextera Read 1 and Read 2 adapters 96 
(Fig. 1b, Ext Fig. 1a, b).  97 

During scATAC-seq library preparation, nuclei are partitioned into nanoliter droplets along 98 
with single-cell barcoding beads and PCR reagents. Each bead contains a barcoded forward 99 
primer complementary to the Nextera Read 1 adapter to barcode and linearly amplify all ATAC 100 
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fragments during the GEM incubation step. By inserting Nextera Read 1 and Read 2 adapters in 101 
the CellTag construct, we enabled single-cell capture of reverse transcribed CellTags along with 102 
accessible chromatin during the GEM incubation stage (Fig. 1c, Ext Fig. 1b). This strategy 103 
improved the CellTag capture rate by >200-fold compared to the unmodified scATAC-seq protocol 104 
(Ext Fig. 1c). Additionally, we introduced a reverse primer specific to the CellTag cDNA during 105 
GEM incubation to exponentially amplify CellTag fragments, while ATAC fragments undergo 106 
linear amplification (Supplementary Table 1, Ext Fig. 1b). Together, these modifications led to 107 
a >50,000-fold increase in CellTag capture (Ext Fig. 1c), with CellTags being detected in >96% 108 
of cells in scATAC-seq relative to 98% in scRNA-seq (Ext Fig. 1d), without negatively impacting 109 
scATAC-seq data quality or genome-wide chromatin accessibility signal (Fig. 1d, e, Ext Fig. 1e, 110 
f). 111 

To support the accurate identification of clonally related cells, it is essential that CellTag 112 
signatures from individual cells are captured with high fidelity, minimizing background noise. To 113 
assess the fidelity of CellTag signatures captured in scATAC-seq, we performed a species-mixing 114 
experiment (Ext Fig. 2a). We labeled human (HEK 293T) cells and mouse (expanded iEPs) cells 115 
with two different versions of the CellTag-multi library, combined nuclei isolated from both 116 
populations in a 1:1 ratio and profiled them using our modified scATAC-seq method. Plotting 117 
CellTag reads/cell, we observed that nuclei from each species predominantly consisted of reads 118 
from the expected CellTag library, indicating minimal inter-species crosstalk (Fig. 1f; Ext Fig. 2b, 119 
c). 120 

Finally, to perform large-scale lineage tracing experiments, we synthesized a complex 121 
CellTag-multi library containing ~80,000 unique barcodes, as confirmed by sequencing 122 
(Methods). We applied CellTag-multi to a population of expanded mouse fibroblasts undergoing 123 
reprogramming to iEPs and profiled clones with scRNA-seq and scATAC-seq, detecting CellTags 124 
in 70% (RNA) and 51% (ATAC) of the cells at an average MOI of 2 (RNA) and 2.5 (ATAC). 125 
Filtering, error-correction, and allowlisting of CellTag reads (Methods) enabled high-fidelity 126 
identification of distinct clones across the two single-cell modalities (Fig. 1g, h, Ext Fig. 2d-f). As 127 
expected, the correlation between gene expression and accessibility was higher within clones 128 
than across clones (Fig. 1i, j). These analyses established the efficacy of CellTag-multi for the 129 
labeling and capture of clonally related cells across scRNA and scATAC modalities. Next, we 130 
leveraged CellTag-multi to link early state with cell fate in diverse cell fate specification and 131 
reprogramming paradigms.  132 
 133 
Benchmarking CellTag-multi using an in vitro model of mouse hematopoiesis 134 
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To validate lineage analysis across single-cell modalities with CellTag-multi, we applied it to 135 
hematopoiesis, a well-characterized paradigm for multi-lineage differentiation. Recently, scLT 136 
was used to define the early transcriptional cell states that lead to defined differentiation outcomes 137 
in mouse hematopoiesis. However, these analyses suggested that early transcriptional changes 138 
alone cannot fully define future cell fate and posited a role for cell states that evade transcriptional 139 
profiling, collectively termed hidden state variables13. In this context, we aimed to apply CellTag-140 
multi to further refine state-fate linkages in early hematopoiesis by identifying fate-specific 141 
changes in both early gene expression and chromatin accessibility. 142 

We isolated Lin-, Sca1+, c-Kit+ (LSK) cells from adult mouse bone marrow and cultured 143 
them in broad myeloid differentiation media13. Upon isolation, we tagged these cells with the 144 
CellTag-multi library to track clones across modalities. To capture both early state and fate across 145 
clones, we profiled half of the cells 60 hours after initiation of differentiation (Day 2.5; state 146 
sample), re-plated the remaining cells across two technical replicates, and collected them for 147 
sequencing on Day 5 (fate sample). In the case of both samples, cells were split between scRNA-148 
seq and scATAC-seq (Fig. 2a), resulting in the profiling of 9,789 state cells (scRNA-seq: n=5,161; 149 
scATAC-seq: n=4,628) and 67,029 fate cells (scRNA-seq: n=56,534; scATAC-seq: n=10,495 150 
cells), after quality filtering (Ext Fig. 3a, b). We identified cells from all major hematopoietic 151 
lineages across single-cell modalities (Fig. 2b, Ext Fig. 3c). CellTagging was consistent across 152 
single-cell modalities, yielding 83-99% labeled cells. 153 

To compare clonal analysis across modalities, we first analyzed the scRNA-seq and 154 
scATAC-seq datasets separately and identified clones in each modality independently (Ext Fig. 155 
3d). Lineage hierarchies inferred using clonally related cells (Methods) were consistent across 156 
scRNA and scATAC despite the chromatin dataset comprising fewer cells, demonstrating the 157 
ability of CellTag-multi in defining fate relationships using clonal scATAC-seq data alone (Fig. 2c, 158 
d). Assigning a fate label to each clone, based on the most abundant cell type amongst its Day 5 159 
sisters, allowed mapping of coarse fate trajectories on the 2D embeddings (Fig. 2e, Ext Fig. 3e).  160 

Joint clone calling across both datasets led to an increase in number of cells tracked (Ext 161 
Fig. 3f), likely due to clones that are split across modalities (multiomic clones). We identified a 162 
total of 37,441 scRNA-seq cells in 5,973 clones and 6,098 scATAC-seq cells in 3,012 clones, 163 
labeled with 4.2 CellTags/cell (in scRNA-seq) and 3.4 CellTags/cell (in scATAC-seq) on average 164 
(Ext Fig. 3g, h). 2,227 clones spanned both state and fate samples, including 877 multiomic 165 
clones. These clones were used for the remainder of the analyses. 166 

For visualization, we co-embedded cells from both modalities using Canonical Correlation 167 
Analysis (CCA)19. Further, we devised a unique clone-cell co-embedding approach to include 168 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.10.23.512790doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.23.512790
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

clones as individual data points in a single-cell embedding, enabling straightforward visualization 169 
and assessment of clone-level metadata and global trends across clones (Ext Fig. 3i). We first 170 
extracted the cell-cell similarity graph, produced as part of standard single-cell analysis workflows. 171 
In this graph, each cell is represented by a node and the connection between a pair of cells is 172 
weighted based on their phenotypic similarity. Next, we imputed abstract clone nodes and clone-173 
cell edges to this graph based on clonal data. Finally, we used this expanded clone-cell graph as 174 
input for dimensionality reduction algorithms such as UMAP20 or ForceAtlas21 to produce a single 175 
2D-embedding of the data, where both cells and clones are represented by individual points. We 176 
applied this visualization to the hematopoiesis data to co-embed RNA and ATAC cells with all 177 
clones, with minimal impact on the underlying structure of the data (Fig. 2f, Ext. Fig. 3j, k). 178 
Clones, now represented as individual data points, faithfully represented their constituent cells 179 
(Ext Fig. 3l) and can be used to visualize clonal metadata across all cells (Fig. 2f, right panel). 180 
Consistent with previous reports, we observe continuous transitions from progenitor populations 181 
to distinct hematopoietic lineages across modalities, as previously reported13,22,23 (Ext Fig. 4a-c). 182 
While CellTag capture was uniform across cell states (Ext Fig. 4d), we observed higher clonal 183 
expansion along the monocyte lineage, consistent with our myeloid differentiation culture 184 
conditions (Fig. 2f right panel, g). 185 

We linked Day 2.5 cell state with Day 5 fate, by re-assigning each clone, from the joint 186 
clone calling results, a fate label based on the most abundant cell type amongst its Day 5 sisters 187 
(Fig. 2h, Ext Fig. 4e). To map early clonal state along the differentiation continuum, we extended 188 
our clone-cell embedding approach further and split each clone into sub-clones (up to four) based 189 
on the assay and time point capture of each sister (Ext Fig. 4f). While Day 5 fate sub-clones 190 
localized largely within their respective cell fate clusters (Ext Fig. 4g), Day 2.5 state sub-clones 191 
associated with each major fate formed distinct groups closer to the undifferentiated progenitors 192 
(Fig. 2i, j), suggesting early functional priming of immature cells. Moreover, state sub-clones 193 
within the same ‘fate potential’ group overlapped significantly across single-cell modalities (Mann 194 
Whitney Wilcoxon test; p-value = 3.76e-5, Fig. 2j, k), demonstrating high-fidelity capture of state-195 
fate linkages across transcriptional and epigenomic states with CellTag-multi. Projecting fate bias 196 
scores, defined as the fraction of fate sisters belonging to the assigned clonal fate, on to state 197 
sub-clones, we observed that low fate bias clones occupied areas closer to the overlapping 198 
boundaries of each fate potential region, likely indicating areas of multi-potency (Fig. 2j, Ext Fig. 199 
4h).  200 

To characterize these fate-specific changes in early cell state on a molecular level, we 201 
assessed the enrichment of transcriptional and epigenetic signatures in Day 2.5 sisters for each 202 
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fate group (Fig. 2l; Methods). Using gene expression, we identified several known fate-specific 203 
markers in each group, such as Spp113 and Ms4a324 in the Monocyte primed group; Elane and 204 
Ctsg13 in the Neutrophil primed group; Pf425 and Gata213 in the Erythroid/Megakaryocyte groups. 205 
In the Lymphoid group, we identified Flt3, a predominantly Lympho-myeloid gene26, and several 206 
lymphoid fate-specific genes such as Mef2c27 and Bcl11a28. For epigenetic data, we focused on 207 
TF activity scores29, which estimate the enrichment of TF motifs in single-cell epigenomes29. 208 
Unlike peak accessibility, TF activity feature space is dense and continuous, allowing comparison 209 
between small groups of cells, and is easier to interpret relative to individual peak features29. TF 210 
activity enrichment analysis revealed several expected lineage specifying TFs for each fate22,30, 211 
such as several CEBP TFs enriched in Monocyte and Neutrophil primed groups; GATA1 and 212 
GATA2 in the Erythroid/Megakaryocyte and Basophils/Eosinophils/Mast cells groups; Lympho-213 
myeloid TF SFPI1 (also known as PU.1) in the Lymphoid and Dendritic Cells (DC) group, along 214 
with BCL factors and MEF2 factors, indicating extensive epigenomic priming in early cells towards 215 
their respective cell fate. A complete list of differential gene expression and TF activity enrichment 216 
can be found in Supplementary Table 2. 217 
 218 
Chromatin accessibility and gene expression jointly define fate predictive cell state 219 
Our above state-fate analysis suggests that lineage-specific changes in gene expression are 220 
accompanied by extensive epigenetic remodeling, rendering the genome more accessible to fate-221 
specifying TFs. Previous analysis has suggested that cell states hidden from transcriptional 222 
profiling play a role in fully defining fate-associated changes in cell state13. Changes in chromatin 223 
accessibility could account for some of this hidden variance and we tested this hypothesis by 224 
assessing whether cell fate can be accurately predicted from early state using our multiomic clonal 225 
data.  226 

We trained machine learning models to predict clonal cell fate from gene expression or 227 
chromatin accessibility profiles of Day 2.5 sisters (Ext Fig. 5a). We tested three different 228 
architectures: Logistic Regression, Random Forest, and LightGBM, and assessed model 229 
performance using prediction accuracy (Ext Fig 5b). Overall, Random Forest models performed 230 
the best and were used for all downstream analysis. For gene expression, we trained a 231 
classification model to predict clonal fate using expression of the three thousand most highly 232 
variable genes (HVG) and obtained an accuracy of 75.6% (Fig. 2m, Ext Fig. 5c). For chromatin 233 
accessibility, we used Day 2.5 imputed TF activity scores (Methods) for 884 TF motifs to predict 234 
clonal fate and obtained an accuracy of 72.7% (Fig. 2m). Notably, an RNA model trained on 235 
expression levels of TFs, obtained from the Catalog of Inferred Sequence Binding Preferences 236 
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(CIS-BP) database, only scored only 63.8% on prediction accuracy (Fig. 2m). The significantly 237 
lower predictive performance of TF expression compared to TF activity could be attributed to 238 
either technical dropout in scRNA-seq or significantly higher lineage specific priming of TF binding 239 
sites compared to TF expression, or a combination of both. 240 

To assess fate-specific priming in different functional regions of the epigenome, we 241 
computed TF activity scores using subsets of accessible peaks and compared fate prediction 242 
performance across these feature spaces. Specifically, we computed TF activity scores using 243 
only promoter, distal, exonic, or intronic peaks and trained fate prediction models with each. We 244 
observed significant variation in performance between different ATAC models, indicating different 245 
levels of fate-specific epigenetic priming across functional regions of the genome (Ext Fig. 5d). 246 
This variation was independent of the number of peaks used to compute each set of TF activity 247 
scores (Ext Fig. 5d). Distal and Intronic were the best performing models, comparable in 248 
performance to the full peak set model (‘All’). Promoter and Exonic models performed significantly 249 
worse, suggesting that fate-specifying epigenetic changes during these early stages were 250 
dominated by changes in distal regulatory regions of the epigenome rather than accessibility of 251 
genes themselves. This observation is reinforced by the persistence of TF enrichment trends 252 
across state groups in distal and intronic subsets but not in the exonic and promoter subsets (Ext 253 
Fig. 5e). We confirmed these results using SHAP, a game theoretic approach to quantify the 254 
contributions of individual input features in explaining the output of a machine learning model31. 255 
Indeed, SHAP analysis showed that in the better-performing models, an increase in CEBP/A motif 256 
accessibility and an increase in MECOM motif accessibility were better predictors of Monocyte 257 
and Ery/Meg fates, respectively, suggesting a lack of functional priming in the promoter-proximal 258 
accessible genome (Ext Fig. 5f, g). 259 

Finally, we tested whether combining RNA and ATAC features is more predictive of fate 260 
than either individual modality. For this, we trained a combined RNA and ATAC model where RNA 261 
and ATAC Day 2.5 sister cells within the same clone were paired randomly, and their combined 262 
gene expression and TF activity signatures were used to predict clonal fate label. This analysis 263 
was limited to multiomic state-fate clones. The combination of both state modalities was 264 
significantly better at predicting fate (mean accuracy score = 86.5%) compared to either individual 265 
modality or pairs of unrelated RNA and ATAC state cells (Fig. 2m). These results show that both 266 
gene expression and chromatin accessibility jointly comprise cell states that define future cell fate. 267 
Moreover, these modalities consist of non-redundant and highly complementary state information, 268 
as a combination of both predicts cell fate much more accurately than each modality in isolation. 269 

 270 
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Dissecting clonal dynamics of direct reprogramming 271 
Our application of CellTag-multi to hematopoiesis demonstrated the method’s utility to capture 272 
informative gene regulatory dynamics in a well-characterized differentiation paradigm. We next 273 
applied CellTag-multi to a less defined system — the direct reprogramming of MEFs to iEPs driven 274 
by retroviral overexpression of Hnf4a and Foxa17,32,33. Direct lineage reprogramming presents a 275 
unique paradigm of cell identity conversion, with cells often transitioning through progenitor-like 276 
states or acquiring off-target identities34,35. Such non-linear fate dynamics can be challenging to 277 
assess, especially when relying solely on the computational inference of cell fate trajectories12. 278 
Ground truth lineage tracing serves as a crucial resource for dissecting lineage-specific cell state 279 
changes during direct reprogramming7. Originally reported to yield hepatocyte-like cells32, we 280 
have previously shown that Hnf4a and Foxa1 overexpression in MEFs generates cells with the 281 
broader potential to functionally engraft liver and intestine18,33,36. This prompted their re-282 
designation as ‘induced Endoderm Progenitors’ (iEPs). More recently, we have further 283 
characterized the similarity of long-term cultured iEPs to regenerating Biliary Epithelial Cells 284 
(BECs)37. 285 

Using our original CellTag-based lineage tracing, we identified two distinct iEP 286 
reprogramming trajectories: a successful ‘reprogrammed’ trajectory, characterized by 287 
endodermal and hepatic gene expression, and a ‘dead-end’ trajectory, defined by a failure to 288 
extinguish the starting fibroblast identity7. Further work demonstrated key functional differences 289 
between these fates, with successfully reprogrammed cells harboring the potential to engraft 290 
acutely damaged mouse intestine18. Our previous lineage tracing suggests that the 291 
reprogrammed and dead-end fates are determined in the early stages of fate conversion7. 292 
However, our original CellTagging methodology did not capture any epigenetic information and 293 
only sparsely sampled early state clones, limiting mechanistic insight into these initial 294 
reprogramming stages. 295 
 Here, we deployed CellTag-multi in iEP reprogramming, modifying our clonal resampling 296 
strategy to optimize state-fate analysis (Fig. 3a). First, we transduced MEFs with Hnf4a and 297 
Foxa1 for 48 hours to initiate reprogramming, in two independent biological replicates. During the 298 
last 12 hours of this 48-hour period, we transduced cells with the complex CellTag-multi library, 299 
enabling clonal relationships to be tracked. 72 hours following the final viral transduction 300 
(Reprogramming Day 3), we collected two-thirds of the cells for single-cell RNA and ATAC 301 
profiling (state sample) and re-plated the remaining cells. Subsequent samples were collected on 302 
Days 12 and 21 (fate samples) to assess reprogramming outcome. We also profiled the starting 303 
MEF population (scATAC-seq, this study; scRNA-seq from a previous study7)), resulting in a total 304 
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of 466,459 single-cells (scATAC-seq: 223,686; scRNA-seq: 242,863) in the final dataset after 305 
quality filtering (Ext Fig. 6a, b). We identified a total of 8,502 clones, containing 46,438 cells 306 
(Replicate 1: 3,068 clones; Replicate 2: 5,416 clones, average clone sizes of 4.8 and 5.9 307 
cells/clone, respectively (Ext Fig. 6c, d)). We identified 1,428 ‘state-fate’ clones across both 308 
replicates, defined as clones that spanned state (Day 3) and at least one fate time point, Day 12 309 
or Day 21 (Ext Fig. 6d). 310 

Following dimensionality reduction and clustering of the co-embedded RNA and ATAC 311 
datasets, clone-cell embedding was performed (Fig. 3b, Ext Fig. 6e, f, g). We annotated Day 12 312 
and 21 fate clusters (‘reprogrammed,’ ‘dead-end,’ and ‘transition’) based on expression and 313 
accessibility of known reprogramming associated genes, and unsupervised cell-type classification 314 
based on transcriptional state using Capybara37 (Fig. 3c; Ext Fig. 7a, b). In line with our previous 315 
reports7,18,37,38, reprogrammed cells express epithelial and iEP markers, Cdh1 and Apoa1, 316 
respectively. Dead-end cells are characterized by the retention of fibroblast gene expression but 317 
are still transcriptionally distinct from MEFs, expressing low levels of iEP markers and several 318 
dead-end-specific genes such as Sfrp1, a Wnt signaling modulator7 (Ext Fig. 7b, c). Transition 319 
cells represent states in between MEFs and reprogrammed/dead-end identities. Following cluster 320 
annotation, we assigned fate labels to each state-fate clone. As the majority of state-fate clones 321 
showed high fate-bias, we assigned clonal fate based on the most abundant cell annotation 322 
amongst the fate sisters (Fig. 3d), identifying 1,009 reprogrammed, 2,493 dead-end and 1,371 323 
transition clones. Dead-end and reprogrammed clones displayed a lineage-specific increase in 324 
accessibility of known marker genes (Fig. 3e).  325 

Using clonal information, we linked each reprogrammed and dead-end clone to its Day 3 326 
state sisters, allowing us to track changes in cell identity longitudinally (Fig. 3f). These results 327 
were consistent when clonal analysis was performed for each modality independently (Ext Fig. 328 
7d-f). Comparing Capybara transcriptional cell identity scores across lineages, we found that iEP 329 
identity scores were consistently higher along the reprogrammed lineage compared to the dead-330 
end lineage. MEF identity scores, while significantly higher along the dead-end lineage, exhibited 331 
a steep decline after Day 12 coinciding with an increase in dead-end transcriptional identity score 332 
(Fig. 3g). This suggested a delayed departure from MEF identity to an alternate cell state. We 333 
observed high levels of clonal expansion along both lineages (Fig. 3h, i). These observations 334 
suggest that despite retaining expression of canonical fibroblast marker genes, dead-end cells 335 
are a fundamentally distinct, off-target cell state and reprogramming outcome. Thus, the 336 
‘reprogrammed’ and ‘dead-end’ fates are better described as ‘on-target’ and ‘off-target’ 337 
reprogramming, respectively. 338 
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 339 
Linking early state to fate reveals molecular features of off-target reprogramming 340 
Next, to identify early state changes that regulate entry onto distinct fate trajectories, we focused 341 
on Day 3 state clones destined to on-target (reprogrammed) or off-target (dead-end) 342 
reprogramming fates. From assessing the distribution of Day 3 sisters destined to either of the 343 
two fates, it is evident that they are not localized to defined clusters (Ext Fig. 8a, b). Further, 344 
trajectory inference using CellRank39 fails to reveal these initial states (Ext Fig. 8c), 345 
demonstrating the importance of ground truth lineage tracing. We found that both Day 3 gene 346 
expression and TF activities were highly predictive of clonal fate. Similar to our analysis of 347 
hematopoiesis, fate prediction accuracy was significantly higher when both modalities were 348 
considered, as compared to either modality individually. Further, distal and intronic peaks were 349 
more predictive of fate than proximal and exonic (Ext Fig. 8d, e).  350 

To identify early molecular signatures of lineage specification, we compared gene 351 
expression, chromatin accessibility, and TF activity scores across MEFs and Day 3 state sisters 352 
grouped by fate outcome. Comparing gene expression enrichment across the three groups, 2,116 353 
genes were differentially enriched with 1,582 enriched genes uniquely defining each group (Fig. 354 
4a, Ext Fig. 8f). While some genes displayed transient fate-specific expression, others 355 
consistently increased over time in a lineage-specific manner (Supplementary Table 3). Early 356 
iEP marker genes such as Apoa1 were enriched in both on- and off-target trajectories on Day 3, 357 
consistent with our previous observation that most cells initiate reprogramming7 (Ext Fig. 8f, g). 358 
On-target (reprogrammed) enriched genes included Krt19, a marker of BECs, Wnt signaling 359 
associated genes Wnt4, Anxa8, and epithelial marker Ezr (Fig. 4b, Supplementary Table 4). 360 
Top off-target (dead-end) related genes included canonical smooth muscle markers Acta2 and 361 
Tagln and other mesenchymal genes such as Ptn, and Ncam1, suggesting broad engagement of 362 
mesenchymal programs, in addition to Sfrp1, a Wnt signaling pathway inhibitor (Fig. 4b, 363 
Supplementary Table 4). 364 

Comparing genome-wide chromatin accessibility revealed 21,720 Differentially Enriched 365 
Regions (DERs) across Day 3 on-target and off-target destined cells and uninduced MEFs, 366 
indicating extensive fate-specific epigenetic reconfiguration during early reprogramming (Fig. 4c, 367 
Supplementary Table 5). DERs were enriched for distal and intergenic peaks, suggesting 368 
epigenetic re-patterning of distal regions as a driver of cell fate conversion, consistent with our 369 
above observations in hematopoiesis (Ext Fig. 8h). Motif analysis revealed enrichment of 370 
reprogramming and hepatic TFs in on-target DERs, and several TFs with documented roles in 371 
mesenchymal fates40,41 in off-target DERs (Ext Fig. 8i, j). Using our paired RNA and ATAC data, 372 
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we linked accessible peaks to genes and identified 37,058 putative cis-regulatory elements 373 
(CREs)42 (Fig 4c, Methods). Gene-linked peaks were enriched for enhancer-like signatures 374 
(ELS) from the ENCODE candidate CRE database43 (Methods, Ext Fig. 8k). Genes linked to on-375 
target and off-target DERs displayed fate-specific expression patterns (Fig. 4d, Ext Fig. 8l). On-376 
target DERs consisted of several CREs linked to endodermal genes, such as Alb, Foxq1, and 377 
Creb3l2. In contrast, off-target DERs contained CREs linked to mesenchymal genes such as 378 
Ncam1, a modulator of Mesenchymal Stromal Cell migration44, Fbln2, a mesenchymal gene 379 
associated with embryonic heart development45, and Vegfd, a regulator of angiogenesis46 and 380 
endothelial differentiation of bone marrow-derived mesenchymal stem cells47 (Fig. 4c; 381 
Supplementary Table 5). In several instances, this analysis captured lineage-specific changes 382 
in accessibility of CREs before significant changes in gene expression were detected. For 383 
instance, a Vegfd-linked CRE overlapping with an ENCODE enhancer displayed enrichment in 384 
dead-end destined cells (Day 3), while expression changes were not detectable until Day 12. 385 
Similar regulatory changes were observed for Aox348, a liver-associated aldehyde oxidase, and 386 
Col28a1, an oligodendrocyte enriched collagen49, prior to changes in gene expression (Fig. 4e, 387 
Supplementary Table 5). 388 

To identify functional changes in chromatin accessibility on a genomic scale, we compared 389 
inferred TF activities across on-target and off-target destined cells and uninduced MEFs. To 390 
preclude potential false positives, we discarded all TFs with low correlation (< 0.3) with their 391 
respective gene activity scores, identifying 47 uniquely enriched TFs (Fig. 4f, Ext Fig. 8m, 392 
Supplementary Table 6). On-target destined cells were highly enriched for the two 393 
reprogramming TFs, FOXA1, and HNF4A. Other on-target associated TFs included FOXD2, 394 
FOXO1, and NR1H3, a hepatic fate-specifying TF50 (Fig. 4f). We identified a set of nine TFs 395 
uniquely enriched in off-target destined cells (Fig. 4f (black bar), g). Several of these TFs 396 
(Zfp281, Cebpb, Gata6, Hivep3) have been previously documented to play a role in regulating 397 
mesenchymal cell identities51–54. Surveying the expression data, none of the off-target TFs display 398 
a similar fate-biased enrichment (Fig. 4g, Ext Fig. 8n), highlighting the importance of lineage-399 
specific chromatin profiling in identifying these targets. This lack of enrichment could be due to 400 
technical dropout during scRNA-seq or due to secondary mechanisms regulating the genomic 401 
engagement of these TFs.  402 
 Altogether, our lineage-specific multiomic assessment of iEP generation demonstrates 403 
clear early molecular differences associated with reprogramming outcomes. Indeed, from as early 404 
as reprogramming day 3, cells on the dead-end lineage exhibit unique characteristics. Rather 405 
than retaining MEF identity, we observe that the dead-end lineage constitutes a highly 406 
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proliferative, mesenchymal cell state with unique markers and regulatory changes, thus 407 
representing an ‘off-target’ reprogrammed state. The early specification of this state is supported 408 
by our GRN inference using CellOracle38, suggesting that network reconfiguration is unique to 409 
each trajectory and is established early in the reprogramming process. CellTag-multi has the 410 
potential to define the molecular features of these early states, offering deeper mechanistic insight 411 
into the reprogramming process.  412 
 413 
Foxd2 and Zfp281 as drivers of on- and off-target reprogramming  414 
Higher accessibility of both motifs and genomic targets55 of FOXA1 and HNF4A in on-target cells 415 
on Day 3 suggests significant differences in genomic engagement of the reprogramming TFs 416 
between the two fate outcomes (Fig. 5a, Ext Fig. 9a). This could, at least in part, be explained 417 
by differential expression levels of the Hnf4a-Foxa1 transgene across the two lineages, with off-418 
target destined cells displaying significantly lower transgene expression (Fig. 5a; Mann Whitney 419 
Wilcoxon test; p-value = 6.5e-42). However, we have also previously described an off-target 420 
trajectory expressing high transgene levels, suggesting additional mechanisms influencing 421 
genomic engagement by the reprogramming TFs38. 422 

Outside of FOXA1, and HNF4A, we identified FOXD2 as the top on-target fate-specifying 423 

TF candidate (Fig. 5b, Ext Fig. 9b). Adding Foxd2 to the Foxa1 and Hnf4a reprogramming 424 
cocktail led to significantly increased expression of the iEP marker Cdh1 and decreased 425 
expression of mesenchymal marker Tagln on reprogramming day 12 (t-test; p-values: Cdh1 = 426 
0.03; Tagln = 0.006; 2 biological replicates; 2 technical replicates Ext Fig. 9c). In addition, colony 427 
formation assays showed a significant increase in the number of CDH1-positive colonies formed 428 
with the addition of Foxd2 to the standard iEP reprogramming cocktail (t-test; p-value=0.045; 2 429 
biological replicates; Fig. 5c), validating its role in improving on-target fate conversion. 430 

The top off-target-enriched candidate was ZFP281, a Zinc Finger protein (Fig. 5d, Ext 431 
Fig. 9d). Zfp281 is a known regulator of cell fate in mouse embryonic stem cells56 and promotes 432 
epithelial-to-mesenchymal transitions57. To further confirm the inferred enrichment of ZFP281 TF 433 
activity in off-target fated cells, we performed Tomtom motif similarity analysis58 to identify TFs 434 
that share a motif similar to ZFP281. We found four other TF motifs that were both significantly 435 
similar to the ZFP281 motif (adjusted p-value < 0.05) and were enriched in off-target destined 436 
cells. Amongst these TFs, ZFP281 displayed the highest enrichment in the off-target lineage both 437 
in terms of gene expression and TF activity (Ext Fig. 9e). Additionally, single-cell accessibility of 438 
ZFP281 genomic targets56 was positively correlated with inferred ZFP281 TF activity (Pearson’s 439 
correlation coefficient = 0.53; Ext Fig. 9f) and ZFP281 regulated genes59 were significantly more 440 
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predictive of cell fate as compared to a size-matched set of random genes (Mann Whitney 441 
Wilcoxon test; p-value = 2.248e-09; Ext Fig. 9g), further confirming its role in off-target fate 442 
specification during iEP reprogramming. Notably, both Zfp281 and Foxd2 failed to show a strong 443 
lineage-specific bias in gene expression levels, highlighting the unique insights offered by 444 
multiomic lineage tracing in the identification of fate-specifying TFs (Ext Fig. 9h). 445 

Indeed, inclusion of Zfp281 along with Foxa1 and Hnf4a in the reprogramming cocktail 446 
resulted in a moderate but statistically significant reduction in the number of CDH1-positive 447 
colonies (t-test; p-value = 0.017; Fig. 5e). To further characterize the role of Zfp281 in 448 
reprogramming, we performed both overexpression (OE) and shRNA mediated knockdown (KD) 449 
of Zfp281, along with respective control samples, and profiled cells with single-cell sequencing on 450 
reprogramming day 14 (Fig. 5f, g, Ext Fig. 10a). We found that the rate of reprogramming (both 451 
on- and off-target) increased with increasing Zfp281 expression (Ext Fig 10b), suggesting a role 452 
for Zfp281 in accelerating fate conversion in iEP reprogramming. Moreover, we identified a distinct 453 
subpopulation of cells, predominantly consisting of Zfp281 KD cells that were depleted for 454 
expression of key markers of both on-target and off-target reprogramming such as Apoa1 and 455 
Ctla2a (Ext Fig 10c-e). These cells were enriched for MEF and early off-target marker gene 456 
expression, depleted for both off-target and on-target markers genes from Day 21 (obtained from 457 
our lineage analysis; Ext Fig. 10f-h) and thus likely represent a “stalled” cell state due to reduced 458 
Zfp281 expression levels. Despite its acceleration of cell fate conversion broadly, we found that 459 
Zfp281 shifted the identity of reprogrammed cells away from an iEP-like state and towards a dead-460 
end/off-target-like state consistently across the OE and KD experiments (Fig. 5h, i), confirming a 461 
role for Zfp281 in biasing cells towards an off-target fate, as suggested by our lineage tracing 462 
analysis. This finding also explains the reduced number of CDH1-positive colonies observed in 463 
our colony formation assay, despite the increase in total number of on-target reprogrammed cells 464 
upon Zfp281 overexpression.  465 

Finally, a key downstream effector of Zfp281 is TGF-β signaling51,60, an Epithelial-to-466 
Mesenchymal Transition (EMT) associated pathway61. Indeed, TGF-β pathway activity, as 467 
inferred using PROGENy62 (Methods), increased with Zfp281 OE and decreased with Zfp281 468 
KD, suggesting active regulation of TGF-β signaling by Zfp281. Given that on-target 469 
reprogramming is characterized by cellular epithelialization and off-target reprogramming is 470 
characterized by activation of broad mesenchymal programs, we hypothesized that increased 471 
TGF-β signaling mediated via Zfp281 acts as a barrier to on-target reprogramming. Indeed, 472 
inhibition of TGF-β signaling during iEP reprogramming using the small molecule SB43154263 led 473 
to a significant increase in expression of reprogramming marker genes Apoa1 and Gsta4 and a 474 
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significant decrease in mesenchymal/off-target genes such as Serpine1, Snail1, Col1a2 (Fig. 5k). 475 
This was accompanied by an increase in epithelial/iEP-like morphology as early as day 3 of 476 
reprogramming (Ext Fig 10i) suggesting a crucial role for TGF-β signaling, downstream of Zfp281, 477 
in determining fate outcome during iEP reprogramming. 478 
 479 
Discussion 480 
Here we have presented CellTag-multi, a method for independent single-cell lineage tracing 481 
across scRNA-seq and scATAC-seq assays. In the context of hematopoiesis, we have used 482 
CellTag-multi to map transcriptional and epigenomic states of progenitor cells and link them to 483 
clonal fate, recapitulating enrichment of known lineage-specific cell state signatures across 484 
progenitor populations. With chromatin state, we showed that lineage-specific epigenetic priming 485 
is associated with changes in accessibility of known fate-specifying TF motifs and that such 486 
changes occur primarily in the regions of the genome distal to promoters. Previous analysis has 487 
demonstrated the inability of early transcriptional state alone in predicting cell fate and posited a 488 
role for alternate cell state modalities13. By exploiting multiomic clonal relationships, we 489 
demonstrated that the predictability of cell fate from state is significantly improved when both early 490 
transcriptional and epigenomic state are considered, as opposed to either modality individually, 491 
suggesting that the RNA and ATAC modalities consist of non-redundant and highly 492 
complementary state information. 493 

Our application of CellTag-multi to the less characterized paradigm of iEP reprogramming 494 
generated similar observations, where multiomic clonal data captured in the early stages of fate 495 
conversion is highly predictive of reprogramming outcome. Again, fate-specifying epigenetic 496 
changes during early stages of differentiation are dominated by changes in distal regulatory 497 
regions of the epigenome. Further, we have been able to molecularly characterize the ‘dead-end’ 498 
state as a highly proliferative, mesenchymal-like cell state, representing an ‘off-target’ 499 
reprogrammed state. Indeed, a similar state has been reported in direct reprogramming of 500 
mesenchymal stromal cells to induced hepatocytes, revealing the appearance of Acta2-501 
expressing mesenchymal cells during the reprogramming process64. Outside of the hepatic 502 
lineage, off-target identities have been reported in other reprogramming paradigms35,65, 503 
suggesting that this may be a more general feature of lineage reprogramming. 504 

Our multiomic lineage tracing demonstrates the establishment of on- and off-target 505 
trajectories from early stages, supported by our earlier transcriptome-based lineage tracing of iEP 506 
reprogramming7 and GRN inference38. However, given the single modality capture of relatively 507 
few clones in that earlier study, we were not able to comprehensively characterize early molecular 508 
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states. Here, the collection of ground truth data on lineage, transcriptome, and epigenome has 509 
allowed us to better characterize these distinctive early states, enabling novel mechanistic 510 
insights into reprogramming. We have shown crucial early differences in gene regulation that lead 511 
to distinct reprogramming outcomes. Specifically, we have identified and experimentally validated 512 
that Foxd2 promotes successful reprogramming, while Zfp281 activity leads to engagement with 513 
an off-target trajectory. Differences in reprogramming TF levels may account for these early 514 
differences. However, lower levels of exogenous TF expression do not simply lead to 515 
reprogramming failure, as the off-target fate is molecularly unique from fibroblasts and could be 516 
considered a reprogramming byproduct in itself. These results suggest that the stoichiometry of 517 
TF overexpression in these reprogramming models may offer further insight into how TFs control 518 
cell identity. Single-cell analysis of TF binding could provide further insights into the role of 519 
differential binding of the two reprogramming TFs in specifying off-target fate. 520 
 Our recovery of Foxd2 and Zfp281 as novel regulators of early-stage reprogramming was 521 
not possible from differential gene expression analysis alone, demonstrating the utility of CellTag-522 
multi. Our data suggests off-target enriched Zfp281 activity from early stages of reprogramming. 523 
From our experimental validation, we found that knockdown of Zfp281 expands a population of 524 
cells in a ‘stalled’ state, where they fail to extinguish fibroblast gene expression while upregulating 525 
off-target cells. Conversely, overexpression of Zfp281 helps accelerate fate conversion, resulting 526 
in a considerable increase in reprogramming efficiency. However, Zfp281 still draws the 527 
reprogrammed cells toward an off-target, mesenchymal-like state. A role for this TF in driving 528 
broad mesenchymal expression programs, including components of the TGF-β signaling 529 
pathway, has recently been described51. Here, we demonstrate that the inhibition of TGF-β 530 
signaling enhances on-target marker expression while decreasing off-target gene expression. 531 
These results suggest a potential strategy to enhance on-target reprogramming, where Zfp281 532 
expression can help erase the starting cell identity while blocking downstream TGF-β signaling 533 
might prohibit entry onto the off-target trajectory. 534 

Altogether, the data we present here across two distinct biological systems demonstrates 535 
that lineage-specific capture of gene expression and chromatin accessibility provides rich 536 
information on gene regulation, offering unique mechanistic insights into the specification and 537 
maintenance of cell identity. More widely, single-cell lineage tracing has revealed distinct, clonally 538 
heritable transcriptional states across various biological systems66–68. These phenotypic 539 
differences, arising from seemingly non-genetic sources, have strong biological implications. For 540 
example, clonal variability in cell state has been shown to impact malignant clonal expansion and 541 
efficacy of drug treatment in cancer cells66,68. Elsewhere, CRISPR-based systems have been 542 
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used to create mutable barcodes to allow multi-level lineage recording without the need for 543 
successive rounds of cell labelling69,70. Given its versatility and ease of use, we envision that 544 
CellTag-multi can be readily applied to such biological questions and use cases. 545 

Finally, we have developed CellTag-multi to work independently with scRNA-seq and 546 
scATAC-seq, as existing single-cell methods that co-assay multiple modalities from the same 547 
cell71–74 can suffer from lower data quality compared to methods that profile each modality 548 
individually. Further, enabling the capture of lineage in parallel with chromatin accessibility 549 
provides users with additional flexibility for experimental design. Advances in single-cell 550 
technologies are allowing measurement of an ever-increasing number of cellular modalities. A 551 
similar expansion in lineage tracing assays will complement these new methods with multiomic, 552 
clonal tracking of cell state and enable deeper mechanistic insight into the regulation of cell 553 
identity and clonal heritability of cell state. CellTag-multi, with its cell lineage read out alongside 554 
gene expression and chromatin accessibility, paves the way for such multiomic, single-cell lineage 555 
tracing methods.  556 
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 576 
Figure 1. CellTag-multi allows simultaneous capture of lineage information with gene 577 
expression and chromatin accessibility. (a) A framework for relating early cell state with fate 578 
using single-cell lineage tracing. (b) Schematic depicting the CellTag-multi lineage tracing 579 
construct. (c) Schematic detailing parallel capture of CellTags during scRNA-seq and modified 580 
scATAC-seq library preparation, using targeted isRT of CellTags in intact nuclei. CellTag-multi 581 
enables simultaneous clonal tracking of transcriptional and epigenomic state. (d) Browser tracks 582 
comparing chromatin accessibility signal across aggregated scATAC-seq profiles generated 583 
using the original and modified library preparation methods. (e) Scatterplot comparing log 584 
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normalized reads in ATAC peaks across aggregated scATAC-seq profiles generated with the 585 
original and modified library preparation methods. (r = Pearson Correlation Coefficient). (f) Plot 586 
for the human-mouse species mixing experiment depicting the number of CellTag reads/cell from 587 
each CellTag library. (g) Heatmap showing scaled CellTag expression in scRNA-seq and 588 
scATAC-seq sisters for four multiomic clones identified in a population of expanded 589 
reprogramming fibroblasts. (h) Joint UMAP of RNA and ATAC cells with two clones (clone 1 and 590 
clones 2) cells projected, along with assay information. (i) Browser track showing single-cell 591 
accessibility at the Ctla2b locus and Ctla2b gene expression across clones 1 and 2. Top Panel: 592 
Pseudo-bulk accessibility signal at the Ctla2b locus. (j) Box plots comparing intra- and inter-clonal 593 
correlation between clonally aggregated gene expression and gene activity scores in the 594 
reprogramming dataset (n = 62 clones used; Mann Whitney Wilcoxon test; p-value = 5.39e-4). 595 
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Figure 2. Application of CellTag-multi to link early hematopoietic cell state with fate. (a) 598 
Schematic detailing the experimental design for the in vitro hematopoiesis state-fate experiment. 599 
(b) scATAC-seq UMAPs with time point (left panel) and cell fate information (right panel) projected 600 
(Mono: Monocytes; Neu: Neutrophils; Lym: Lymphoids; Ery: Erythroids; Meg: Megakaryocytes; 601 
Baso: Basophils; Eos: Eosinophils; Mast: Mast Cells; pDC: plastoid Dendritic Cells). Only major 602 
cell fates are highlighted. Hematopoietic lineage hierarchy as inferred from (c) scATAC or (d) 603 
scRNA clone coupling. (e) scATAC-seq UMAPs with state and fate sisters for major hematopoietic 604 
fates highlighted. (f) Clone-cell embedding UMAPs with time point and cell fate information 605 
projected onto cells (left and center panels) and clonal expansion information projected onto 606 
clones (right panel), detailed cell type annotations are shown in Ext Fig. 4c. (g) UMAPs with RNA 607 
and ATAC clonal expansion information projected onto a thousand random multiomic clones. Both 608 
modalities display biased expansion of early myeloid cells, consistent with our differentiation 609 
culture conditions. (h) Bar plot depicting distribution of cell fates across RNA and ATAC clones 610 
(Fates are colored as in Fig. 2b). (i) UMAP with scaled Cd34 expression level, a marker of 611 
Hematopoietic Stem and Progenitor Cells (HSPCs), projected onto the scRNA cells. (j) UMAPs 612 
with state (Day 2.5) sub-clones for each major lineage highlighted along the differentiation 613 
continuum for both single-cell modalities, with fate bias information projected. (k) Box plot 614 
comparing overlap between RNA and ATAC state sub-clones within and across cell fates (Mann 615 
Whitney Wilcoxon test; p-value = 3.76e-5). (l) Volcano plots summarizing the results of differential 616 
feature enrichment analysis for each group of state sub-clones across for scRNA (top panel) and 617 
scATAC modalities (bottom panel). (m) Box plot summarizing accuracy scores of trained state-618 
fate prediction models. Machine learning partially predicts cell fate from Day 2.5 state across both 619 
modalities. However, predictive performance increases significantly when both are considered 620 
together, highlighting the existence of unique functional priming in both gene expression and 621 
chromatin accessibility state (Mann Whitney Wilcoxon test; p-values: **** = p < 0.0001, HVG: 622 
Highly Variable Genes, n = 25 accuracy values for each model (Methods)). 623 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.10.23.512790doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.23.512790
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

 624 
Figure 3. Application of CellTag-multi to dissect clonal fate dynamics in direct 625 
reprogramming. (a) Experimental design for the direct reprogramming state-fate experiment. (b) 626 
Cells from both scRNA-seq and scATAC-seq, across all time points, were co-embedded with 627 
clones and visualized using a UMAP. (Left Panel) Time point information projected on cells. (Right 628 
Panel) Clonal expansion visualized using clone nodes. (c) Capybara transcriptional identity 629 
scores projected on scRNA-seq cells for reprogrammed, dead-end and fibroblast cell identities, 630 
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based on a previous lineage tracing dataset7. Cell fates were annotated for Days 12 and 21. 631 
Reprogrammed and dead-end cell fates are highlighted (Lower Right Panel). (d) Histogram of  632 
fate bias across all state-fate clones. (e) Clonal chromatin accessibility browser tracks for two 633 
dead-end and reprogramming clones.  (f) Contour plots showing longitudinal tracking of cell fates 634 
enabled by CellTagging. (g) Transcriptional identity dynamics tracked along both lineages. Dead-635 
end cells depart from a MEF like identity and acquire an off-target reprogrammed state. Significant 636 
clonal expansion is observed along both lineages, as depicted via alluvial plots, clone nodes and 637 
clonal expression levels of Mki67 (a proliferation marker gene) in the 20 largest (h) 638 
reprogramming/on-target and (i) dead-end/off-target clones. 639 
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 640 
 641 
Figure 4. Assessing fate-specific changes in early cell state. (a) Heatmap of genes uniquely 642 
enriched across uninduced MEFs or one of the two reprogramming fates on Day 3 (FDR 643 
threshold: 0.05, log fold change threshold: 0). (b) Violin plots of several genes enriched in either 644 
off-target (dead-end) destined or on-target (reprogramming) destined cells. (c) Heatmap of peaks 645 
uniquely enriched across uninduced MEFs or one of the two reprogramming fates on Day 3  (FDR 646 
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threshold: 0.05, log fold change threshold: 1). Right panel shows annotation of peaks linked to 647 
genes (Methods). (d) Module scores for genes linked to either on-target or off-target DERs 648 
projected onto the clone-cell embedding. (e) Top panel: Accessibility browser tracks for each 649 
lineage split by day, highlighting peaks linked to late lineage markers (On-target: Aox3; Off-target: 650 
Col28a1 and Vegfd) showing lineage specific changes in accessibility on Day 3. The Aox3 and 651 
Vegfd linked DERs overlap perfectly with an ENCODE enhancer like element (ELS) while the 652 
Col28a1 linked DER is within 100 bp of an ELS. Bottom panel: Expression levels of the three 653 
genes across MEFs and the two reprogramming lineages split by days. The asterisks (*) mark 654 
time points and lineage of significant differential enrichment. (f) Heatmap of TF activities uniquely 655 
enriched across uninduced MEFs or one of the two reprogramming fates on Day 3 (FDR 656 
threshold: 0.05, mean difference threshold: 0.5). (g) Left Panel: Heatmap showing TF activity (left 657 
panel) and gene expression (right panel) levels for off-target associated TFs in MEFs and each 658 
reprogramming lineage split by time points. TF activity signatures show a much stronger lineage 659 
bias as compared to gene expression values. 660 
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 661 
 662 
Figure 5. Identification of TF regulators of on-target and off-target reprogramming fate. (a) 663 
Left and Middle panels: Violin plots comparing enrichment of FOXA1 and HNF4A TF activities 664 
across the two reprogramming fates on Day 3 (Mann Whitney Wilcoxon test; p-values: FOXA1 = 665 
9.2e-22, HNF4A = 1.7e-20). Right panel: Violin plot comparing enrichment of the Hnf4a-Foxa1 666 
transgene expression across the two reprogramming fates on Day 3 (Mann Whitney Wilcoxon 667 
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test; p-value = 6.5e-42). (b) Top ten TFs enriched in on-target destined cells based on TF activity 668 
scores. (c) Left Panel: Representative images from the Foxd2 overexpression colony formation 669 
assay; Right Panel: Bar plot showing increase in CDH1-positive colony counts in Foxd2 670 
overexpressing cells compared to a standard reprogramming experiment (t-test; p-value = 0.045; 671 
n = 2 biological replicates). (d) Top ten TFs enriched in off-target destined cells based on TF 672 
activity scores. (e) Left Panel: Representative images from the Zfp281 overexpression colony 673 
formation assay; Right Panel: Bar plot showing decrease in CDH1-positive colony counts in the 674 
Zfp281 overexpressing sample compared to a standard reprogramming experiment. (t-test; p-675 
value = 0.017; n = 6 biological replicates). (f) Schematic of the scRNA-seq experiment for Zfp281 676 
over-expression (OE) and knockdown (KD) during reprogramming. A GFP expression vector and 677 
non-target shRNA were used as controls for OE and KD respectively. (g) UMAP embedding for 678 
all cells profiled in the Zfp281 OE and KD experiments with sample information (Left), cell fate 679 
annotation (Middle) and Seurat cluster information (Right) projected. (h) Plot of iEP Capybara 680 
identity scores across the KD and OE samples compared to respective controls (Mann Whitney 681 
Wilcoxon test; p-values: Zfp281 OE vs control = 1.07e-53; Zfp281 KD vs control = 2.19e-53). (i) 682 
Plot of dead-end Capybara identity scores across the KD and OE samples compared to 683 
respective controls (Mann Whitney Wilcoxon test; p-values: Zfp281 OE vs control = 1.11e-11; 684 
Zfp281 KD vs control = 3.26e-120).  (j) Violin plots showing variation of TGF-β pathway activity 685 
across control vs OE vs OE high cells (upper panel) and control vs KD vs KD high cells (lower 686 
panel). OE high cells are defined as the subset OE sample cells with above average Zfp281 687 
expression. KD high cells are defined as the subset of KD sample cells with below average Zfp281 688 
expression. (k) Bar plots showing fold-change in reprogramming and dead-end marker genes 689 
upon small molecule mediated inhibition of TGF-β signaling, compared to a vehicle control, on 690 
Day 5 of iEP reprogramming (t-test; p-values: Apoa1 = 0.02, Col1a2 = 0.02, Gsta4 = 0.04, 691 
Serpine1 = 0.009, Snail1 = 0.01; n=2 technical replicates). 692 
 693 
 694 
 695 
 696 
 697 
 698 
 699 
 700 
 701 
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Methods 702 
Tissue culture 703 
Isolation of mouse LSK cells. Lin- Sca1+ c-Kit+ (LSK) cells were obtained using a previously 704 
described protocol13. Adult mice were euthanized, bone marrow was extracted from long bone, 705 
hips and spine and passed through a 70µm filter. Cells were centrifuged at 300g for 10mins at 4C 706 
and the pellet was resuspended in EasySep buffer (STEMCELL, Cat. 20144) at 100 million 707 
cells/ml. EasySep lineage depletion kit (STEMCELL, Cat. 19856) was used to remove 708 
differentiated cells. Finally, cells were stained for Sca1 (Sca1-AF488; BioLegend clone D7) and 709 
cKit (CD117-PE; BioLegend clone 2B8) and sorted using the MoFlo Cell Sorter (Beckman 710 
Coulter) with a 130µm nozzle. Isolated LSK cells were counted and used directly for lineage 711 
tracing experiments. 712 
 713 
Mice and derivation of mouse embryonic fibroblasts. MEFs were derived from embryonic day 714 
(E)13.5 C57BL/6J embryos. (The Jackson laboratory: 000664). Heads and visceral organs were 715 
removed and the remaining tissue was minced with a razor blade and then dissociated in a 716 
mixture of 0.05% trypsin and 0.25% collagenase IV (Life Technologies) at 37 °C for 15 min. After 717 
passing the cell slurry through a 70-μM filter to remove debris, cells were washed and then plated 718 
on 0.1% gelatin-coated plates, in DMEM supplemented with 10% FBS (Gibco), 2mM l-glutamine 719 
and 50mM β-mercaptoethanol (Life Technologies). All animal procedures were based on animal 720 
care guidelines approved by the Institutional Animal Care and Use Committee. 721 
 722 
General Experimental methods  723 
Lenti- and retro-virus production. Lentiviral particles were produced by transfecting 293T-17 724 
cells (ATCC: CRL-11268) with the pSMAL-CellTag construct (see below), along with packaging 725 
constructs pCMV-dR8.2 dvpr (Addgene plasmid 8455), and pCMV-VSVG (Addgene plasmid 726 
8454). Constructs were titered by serial dilution on 293T cells. Hnf4α -T2A-Foxa1 was cloned into 727 
the pGCDN-Sam retroviral construct and packaged with pCL-Eco (Novus Biologicals, NBP2-728 
29540), titered on fibroblasts. We opted to generate a bicistronic Hnf4α-Foxa1 construct, based 729 
on the T2A sequence to increase the consistency of reprogramming via maintenance of 730 
exogenous transcription factor stoichiometry. Virus was collected 48 h and 72 h after transfection 731 
and applied to cells immediately following filtering through a low-protein binding 0.45-μm filter. 732 
Wherever applicable, the virus was concentrated using high-speed centrifugation. 20ml of filtered 733 
viral supernatant was centrifuged at 50,000g for 2.5 hours at 4ºC, supernatant was removed and 734 
the virus was resuspended in 100ul of DMEM. The concentrated virus was stored at -80C. 735 
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 736 
scRNA-seq library preparation. 3’ single-cell RNA library preparation was performed using the 737 
Chromium Single Cell Gene Expression Kit from 10x Genomics. Cells were obtained as single-738 
cell suspensions and processed according to the manufacturer’s instructions (CG000315).  739 
 740 
CellTag amplification for scRNA-seq (CellTag-RNA PCR). An additional PCR step was used 741 
to amplify CellTag barcodes from the single-cell cDNA library, obtained after step 2.4 of the 10x 742 
Genomics Single Cell Gene Expression Kit user guide (CG000315). 5ul (or at least 60ng) of cDNA 743 
was mixed with 2x Q5 HF PCR Master Mix (New England Biolabs) and 500nM of P5/R1-par and 744 
P7/SI-R2 primers in a 50ul reaction volume and subjected to the following PCR program: 98 C for 745 
30 seconds; N cycles (98ºC for 10 seconds; 54ºC for 30 seconds; 72ºC for 30 seconds); 72ºC for 746 
2 minutes. The number of PCR cycles (N) was kept the same as the number of cycles used during 747 
sample index PCR of the main scRNA-seq library. CellTag amplicon library was purified using 748 
double-sided bead purification (0.4x-0.64x) and quantified on an Agilent TapeStation using the 749 
D1000-HS tape. Libraries were either sequenced by themselves (with a 50% Phi-X spike-in) or 750 
along with scRNA-seq libraries (preferred). CellTag amplicon libraries were sequenced on an 751 
Illumina NextSeq-500 to avoid index hopping-related artifacts. Primer sequences are available in 752 
Supplementary Table 1. 753 
 754 
scATAC-seq library preparation. Standard scATAC-seq library preparation was performed 755 
using the Chromium Single Cell ATAC Kit from 10x Genomics. Cells were obtained as single-cell 756 
suspensions, nuclei were isolated using 10x Genomics nuclei isolation protocol (CG000169), and 757 
libraries were prepared according to the manufacturer’s instructions (CG000209). 758 
 759 
scATAC-seq library preparation with modifications for CellTag capture. To prepare single-760 
cell ATAC libraries with CellTag capture, nuclei were isolated using manufacturer’s instructions 761 
(CG000169), centrifuged to remove supernatant, and lightly fixed in 100ul 0.1% formaldehyde 762 
solution for 5 minutes. The reaction was stopped for 5 minutes by adding 30ul of stop buffer 763 
(0.625M Glycine, 0.5% BSA, 0.25M ph8 Tris-Cl in PBS). The nuclei suspension was diluted using 764 
100ul diluted nuclei buffer (10x Genomics; CG000169) and pelleted using centrifugation. The 765 
pellet was subjected to tagmentation for 60 minutes after re-suspension in a 15ul tagmentation 766 
reaction (for up to 15k nuclei) according to the manufacturer’s instructions (CG000209). After 767 
tagmentation, the reaction mixture was diluted with 100ul dilute nuclei buffer, nuclei were pelleted 768 
using centrifugation and subjected to targeted in situ reverse transcription in a 100ul reaction 769 
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volume (20ul of 5x SuperScript IV reaction buffer, 5ul each of dNTPs, DTT, RnaseOUT RNase 770 
inhibitor, SuperScript IV Reverse Transcriptase, 1uM of primer ctac2-rt1) using the following 771 
temperature program: 4ºC for 2 minutes; 10ºC for 2 minutes; 20ºC for 2 minutes; 30ºC for 2 772 
minutes; 40ºC for 2 minutes; 45ºC for 10 minutes. After isRT, the reaction mixture was diluted 773 
with 100ul dilute nuclei buffer and pelleted using centrifugation. 15ul GEM-nuclei mix was 774 
prepared to load nuclei on 10x Genomics Chip E/H by mixing up to 15k nuclei with 6ul of ATAC 775 
buffer (from the 10x Genomics scATAC-seq kit) and 3ul of 4uM primer ctac2-rt1. Any remaining 776 
volume was made up with dilute nuclei buffer. GEM-nuclei mix was loaded onto Chip E/H along 777 
with ATAC GEM beads and barcoding enzyme mix, the remaining steps of the scATAC-seq library 778 
preparation protocol were performed according to the manufacturer’s instructions. Primer 779 
sequences are available in Supplementary Table 1. All centrifugation steps were performed at 780 
500g for 10 minutes at 4ºC unless stated otherwise. 781 
 782 
CellTag amplification for scATAC-seq (CellTag-ATAC PCR). While CellTags can be recovered 783 
directly from the sequenced scATAC-seq library with our library preparation, a higher yield can 784 
be obtained using an additional targeted PCR step, similar to the scRNA-seq version. For this, 785 
5ul of the library is collected after step 3.2 of the user guide (CG000209) and mixed with 2x Q5 786 
HF master mix, 500nM of primer biot-atac2_lin and water in a 50ul reaction volume, and CellTag 787 
containing fragments are linearly amplified using the following PCR program: 98ºC for 30 788 
seconds; 20 cycles (98ºC for 10 seconds; 67ºC for 30 seconds; 72ºC for 30 seconds); 72ºC for 2 789 
minutes. The CellTag amplicons are purified using streptavidin-coated magnetic bead pulldown 790 
(ThermoFisher Scientific; Dynabeads™ MyOne™ Streptavidin C1) and purified fragments are 791 
resuspended in 20ul of water. A final sample index PCR is performed to create a sequencible 792 
library in presence of 2x Q5 master mix, 500nM each of partial_p5 and biot-atac2_e-rev primers 793 
in a 100ul reaction volume using the following PCR program: 98ºC for 30 seconds; 13 cycles 794 
(98ºC for 10 seconds; 67ºC for 30 seconds; 72ºC for 30 seconds); 72ºC for 2 minutes and libraries 795 
are purified using a double-sided bead cleanup, as described in Step 4.2 of 10x Genomic 796 
scATAC-seq user guide (CG000209). Primer sequences are available in Supplementary Table 1. 797 
 798 
General Computational methods 799 
Identifying clones. Clone identification was performed based on our previously described 800 
method7,17. Reads matching the CellTag-multi barcode sequence pattern 801 
(N)3GT(N)3CT(N)3AG(N)3TG(N)3CA(N)3 were extracted from single-cell bam files as obtained 802 
from CellRanger, filtered to remove false positive transcriptomic/genomic reads and reads 803 
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originating from non-cell droplets. For scRNA-seq, cell barcode-CellTag-UMI triplets represented 804 
by only a single read were discarded. We also provide an estimate of CellTag sequencing 805 
saturation to guide users if they require deeper sequencing of their CellTag libraries. CellTags 806 
were error-corrected using Starcode75 to mitigate PCR/sequencing errors and filtered to remove 807 
sequences outside of the allowlist. Cell x CellTag read count (ATAC)/ UMI count (RNA) matrices 808 
were obtained, binarized and cells with too few or too many tags were removed to obtain the final 809 
Cell x CellTag matrices for scRNA-seq and scATAC-seq assays. Cell-cell similarity was computed 810 
using the Jaccard similarity metric and clones were identified using graph clustering. Whenever 811 
applicable, scRNA-seq and scATAC-seq CellTag matrices were merged before the Jaccard 812 
similarity calculation step, to identify clones across single-cell modalities. A detailed pipeline for 813 
clone calling can be found at: https://github.com/morris-lab/newCloneCalling 814 
 815 
Clone cell embedding. To jointly visualize cells and clones on a single embedding, we developed 816 
a unique clone-cell graph embedding approach wherein we impute a cell-cell similarity graph with 817 
abstract clone nodes and use it as an input for graph embedding algorithms such as UMAP. For 818 
clone-cell embedding, we first obtained our single-cell data as an AnnData object and computed 819 
a cell-cell connectivity matrix based on PCA (in case of scRNA-seq) or CCA (in case of joint 820 
scRNA-seq scATAC-seq embedding). Next, we created a new AnnData object containing both 821 
cells and clones as observations. The connectivity matrix in the .obsm[‘connectivities’] slot was 822 
expanded to introduce clones. Then, clones were connected to their constituent cells by setting 823 
the respective entries in the expanded ‘connectivities’ matrix to 1. Finally, we used this clone-cell 824 
AnnData object with the expanded connectivity matrix as an input to graph embedding algorithms 825 
such as UMAP or Force Atlas. 826 
 827 
Section 1 828 
CellTag-multi library synthesis. CellTag-multi library was synthesized using Restriction Free 829 
(RF) cloning76. CellTag-multi barcodes were obtained as a gBlock from IDT DNA (see 830 
Supplementary Table 1 for sequence) and cloned into the pSMAL-ctac2 vector. 20ng of the 831 
CellTag-multi-v1 gBlock and 100ng of pSMAL-ctac2 vector were mixed with 2x Phusion PCR 832 
master mix in a 20ul reaction volume. The reaction mixture was subjected to the following thermal 833 
cycling program: 98ºC for 30 seconds; 15 cycles (98ºC for 8 seconds, 60ºC for 20 seconds, and 834 
72ºC for 4.5 minutes); 72ºC for 5 minutes. The parental plasmid was digested by adding 2ul of 835 
methylation-sensitive restriction enzyme, DpnI (New England Biolabs), and incubating the 836 
reaction at 37ºC for 2 hours followed by inactivation at 80ºC for 20 minutes. 10ul of the reaction 837 
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mix was transformed directly into 100ul of Stellar chemically competent cells (Takara Bio), cells 838 
were allowed to recover at 37ºC, 250rpm in 1ml of SOC media and plated on a Nunc Square 839 
BioAssay plate (Cat. 166508). Plates were incubated overnight at 37ºC. Bacterial colonies were 840 
collected using a scraper and allowed to recover in 150ml of LB media supplemented with 841 
100ug/ml Ampicillin. CellTag-multi libraries were purified using a Qiagen High speed maxi prep 842 
kit (Cat. 12662) and library complexity was assessed as described below. This cloning was 843 
performed four times and libraries from each round were pooled to obtain the final high complexity 844 
library. 845 
 846 
Assessing the complexity of CellTag-multi libraries and allowlisting. A list of allowed CellTag 847 
sequences for each CellTag library was created using amplicon sequencing. 50ng of CellTag 848 
plasmid library was mixed with 2x Q5 HF Master Mix, 2.5ul each of 0.5uM primers bATAC_fwd 849 
and bATAC_rev in a 25ul reaction volume and subjected to the following PCR program: 98ºC for 850 
30 seconds; 10 cycles (98ºC for 10 seconds; 63ºC for 30 seconds; 72ºC for 1 minute). Two 851 
amplicon libraries were generated from each CellTag library plasmid preparation in parallel and 852 
sequenced on an Illumina Miseq. For each replicate, reads matching the CellTag sequence 853 
pattern (N)3GT(N)3CT(N)3AG(N)3TG(N)3CA(N)3 were extracted, sequencing/PCR errors were 854 
corrected by collapsing tags within 4 edits of each other using starcode75 and thresholded to retain 855 
CellTags containing at least N reads where N = max(10, 90th percentile/10). An allowlist was 856 
created by collecting all CellTag sequences retained in thresholded lists from both replicates. 857 
Allowlists from the four CellTag libraries were combined to create the master allowlist for the 858 
CellTag-multi library (Supplementary Table 7). The detailed analysis code can be found at: 859 
https://github.com/morris-lab/newCloneCalling 860 
 861 
Species mixing experiment. For the species mixing experiment, mouse iEP-LT cells were 862 
tagged with CellTag-multi-v1 library, containing the barcode pattern 863 
(N)3GT(N)3CT(N)3AG(N)3TG(N)3CA(N)3 and human HEK 293T cells with CellTag-multi-v0 library, 864 
containing the barcode pattern (N)5GTA(N)5CCT(N)5ATC(N)5GAT(N)5. Nuclei were isolated from 865 
both species using the Nuclei Isolation for scATAC-seq protocol from 10x Genomics (CG000169) 866 
and mixed in a 1:1 ratio. The mixed nuclei sample was processed using the standard scATAC-867 
seq library preparation protocol (v1 kit) from 10x Genomics with modifications to capture CellTags. 868 
Single-cell libraries were sequenced on an Illumina Nextseq-500. The resulting sequencing data 869 
was aligned to a mixed species reference using CellTag-ATAC v1. The aligned bam file was used 870 
for downstream analysis. 871 
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Reads matching v0 or v1 CellTags were parsed from the mixed species single-cell aligned 872 
bam file. Each cell barcode was assigned to one of four categories, based on CellRanger-ATAC 873 
species assignments - human, mouse, doublet, non-cell; the distribution of v0 and v1 reads was 874 
assessed across the four categories. Cells with fewer than two CellTag reads across both libraries 875 
were discarded and the remaining cells were plotted on a barnyard plot. We quantified inter-876 
species cross-talk of CellTags, by calculating the percent of cells, with at least 2 CellTag 877 
reads/cell, having less than 95% of CellTag reads originating from the correct, species-specific 878 
CellTag library. 879 
 880 
Assessing the effect of isRT on chromatin accessibility signal. We compared the effect of 881 
introducing an isRT step on scATAC-seq data quality. For this, two single-cell ATAC libraries were 882 
prepared with CellTagged HEK 293T cells using either the original 10x Genomics scATAC library 883 
preparation protocol (Original) or our modified method (Modified). Sequencing data from both was 884 
processed with ArchR77, dimensionally reduced using LSI, clustered using Louvain clustering, and 885 
peaks were identified across samples. Both datasets were compared across several standard 886 
scATAC-seq data quality metrics such as fragment size distribution, TSS scores, the number of 887 
unique fragments per cell and Fraction reads in Peaks (FRiP) per cell. To compare genome-wide 888 
accessibility data across samples, normalized peak counts (Counts Per Million; CPM) were 889 
calculated for each sample and plotted on a scatter plot and the Pearson Correlation coefficient 890 
was calculated to quantify the similarity between the accessibility signal of the two samples. 891 
 892 
Analysis of clones in expanded reprogramming fibroblasts. A subset of the data obtained 893 
from our reprogramming dataset (described in section 3) from Days 12 and 21 was used for this 894 
analysis. Clones were identified following the standard computational workflow as described 895 
above. CellTag abundance was calculated for each CellTag as the percent of metric filtered cells 896 
containing that CellTag. Browser tracks depicting single-cell accessibility fragments were plotted 897 
using ArchR. Gene expression and gene scores values were averaged on a clonal level. 898 
Spearman correlation coefficients were calculated between clonal gene expression and gene 899 
score both within (Intra clonal) and across clones (Inter clonal).  900 
 901 
Section 2 902 
Lineage tracing during in vitro mouse hematopoiesis. LSK cells were purified as described 903 
above, counted and 5,500 cells were added to a 96-well U-bottom suspension culture plate 904 
(GenClone Cat. 25-224) and allowed to recover in broad myeloid differentiation media13 consisting 905 
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of SFEM media (STEMCELL), Pen/Strep, IL-3 (20ng/mL; PeproTech Cat. 213-13), FLT3-L 906 
(50ng/mL; PeproTech Cat. 250-31L), IL-11 (50ng/mL; PeproTech Cat. 220-11), IL-5 (10ng/mL; 907 
PeproTech Cat. 215-15), EPO (3U/mL; PeproTech Cat. 100-64), TPO (50ng/mL; PeproTech Cat. 908 
315-14), and mSCF (50ng/mL; R&D Systems Cat. Q78ED8) and IL-6 (10ng/mL; R&D Systems 909 
Cat. 406-ML-005) at 37ºC for 2 hours. 910 

To allow clone tracking, cells were transduced for 2 days with 10ul of concentrated 911 
CellTag-multi virus (~25k unique CellTag sequences) in 100ul differentiation media, in the 912 
presence of 6ug/ml DEAE-Dextran after spin-fection at 800g for 90 minutes at 37ºC. 60 hours 913 
(2.5 days) after the start of the experiment, 50% of the cells were collected for single-cell profiling 914 
and split equally between scRNA-seq and scATAC-seq assays. The remaining cells were split 915 
into 2 technical replicates and re-plated in fresh differentiation media. Finally, all the cells were 916 
collected on Day 5 and split between scRNA-seq and scATAC-seq profiling. 917 

 918 
Single-cell library preparation and sequencing. The v3 single index Gene Expression kit and 919 
the v1 scATAC kit from 10x Genomics were used for single-cell library preparation. CellTag-RNA 920 
PCR was used to obtain CellTag amplicon libraries as described above. scRNA-seq libraries were 921 
sequenced on an Illumina NovaSeq-6000 and the resulting data was computationally dehopped. 922 
CellTag amplicon libraries obtained from scRNA-seq libraries were sequenced on an Illumina 923 
NextSeq-500. For read alignment, CellTag and transcriptome read files for each sample were 924 
processed together using CellRanger, using a custom mm10 reference containing the GFP CDS 925 
and UTR, to produce one aligned bam file per sample. scATAC-seq libraries containing both 926 
accessible chromatin and CellTag fragments were sequenced on an Illumina NextSeq-500 and 927 
processed using CellRanger-ATAC, using the default mm10 reference genome. Aligned bam files 928 
from both modalities were used for CellTag processing, other CellRanger and CellRanger-ATAC 929 
outputs were used for downstream single-cell analyses. 930 

 931 
Basic single-cell and clonal analysis of the Hematopoiesis dataset. CellRanger generated 932 
scRNA-seq count matrices were processed using Seurat. Low-quality cells with high 933 
mitochondrial reads, low UMIs, and features per cell were removed. Day 2.5 and Day 5 samples 934 
were integrated using SCTransform, dimensionally reduced using PCA, and clustered using 935 
Louvain clustering. scRNA-seq clusters were annotated using marker gene expression. 936 
Fragments files from scATAC-seq samples were processed using ArchR v1.0.1. Valid cell 937 
barcodes, as identified by CellRanger-ATAC and passing default ArchR quality filters were 938 
retained. Cells were dimensionally reduced using iterative LSI and clustered using Louvain 939 
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clustering. Cell type labels were transferred to scATAC-seq clusters using Seurat label transfer 940 
and annotations were manually inspected using marker gene scores. For RNA-ATAC co-941 
embedding, scRNA-seq gene expression matrix and scATAC-seq MAGIC imputed78 Gene Score 942 
matrix, as obtained from ArchR, were used as input to the RunCCA function in Seurat. A union 943 
set of the top 5000 highly variable genes from each dataset were used for this co-embedding. 944 

For clone calling, reads mapping to the CellTag barcode were extracted from single-cell 945 
aligned bam files as obtained from CellRanger and CellRanger-ATAC and cell x CellTag UMI 946 
matrices were obtained. CellTag data within each modality was merged, retaining sample-of-947 
origin information in the cell barcode, and cell x CellTag UMI (for RNA) and read (for ATAC) count 948 
matrices were obtained for each modality. The RNA matrix was binarized at a threshold of more 949 
than one UMI count and cells with 2 to 25 CellTags were retained. The ATAC matrix was binarized 950 
at a threshold of more than one read count and cells with 1 to 25 CellTags were retained. The 951 
two filtered matrices were merged, cell-cell Jaccard similarity matrix was computed and 952 
thresholded at 0.6 (for cell pairs within the same modality) and 0.5 (for cell pairs across 953 
modalities). The final thresholded matrix was used to identify clones across the entire dataset. 954 
Clone-cell embedding was computed as described above, and ForceAtlas2 was used to jointly 955 
visualize clones and cells. This embedding was also generated separately for sub-clones where 956 
clones were split either by modality or by both, time point and modality. For single-modality clonal 957 
analysis, Cell x CellTag matrices for each modality were processed separately with the same 958 
thresholds as above. A Jaccard threshold of 0.5 was used for ATAC clone calling and 0.6 was 959 
used for RNA clone calling. Lineage hierarchies were obtained using clone coupling as previously 960 
described13 961 
 962 
State-fate linkage in hematopoiesis. To link cell state with fate, we first obtained all clones 963 
spanning the two time points (state-fate clones). Each state-fate clone was assigned a fate label, 964 
which was the most common fate amongst its Day 5 sisters. Less common lineages were grouped 965 
based on similarity, e.g. Erythroid and Megakaryocytes (Ery/Meg); Eosinophils, Basophils, and 966 
Mast Cells (Baso/Eos/Mast). Ccr7 DCs and plastoid DCs (DCs). Clones annotated to transition/ 967 
progenitor fates were excluded from state-fate analysis unless otherwise specified. Fate bias 968 
scores were calculated as percent of Day 5 fate sisters belonging to the annotated fate label. 969 
 To map Day 2.5 (state) sub-clones on the clone-cell embedding, we split each clone into 970 
sub-clones based on the time point of collection and assay of each sister, to obtain up to four sub-971 
clones RNA/ATAC – state/fate sub-clones. The clone-cell embedding was recomputed using 972 
these sub-clones. Overlap between RNA and ATAC sub-clones across the two single-cell 973 
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modalities was calculated within each ‘fate potential’ group using the Wasserstein distance metric 974 
computed with a 30-dimensional embedding of the sub-clone nodes obtained using the UMAP 975 
algorithm. To quantify if state sub-clones closer to the periphery of a 'fate potential’ group were 976 
less fate biased, we devised a closeness metric, which is the minimum distance of a state sub-977 
clone from the centroid of an alternative fate potential group. A higher closeness metric would 978 
mean that a state sub-clone is farther away from centroids of other fate potential groups. The 979 
relationship between the closeness metric and fate bias was plotted using a percentile plot, with 980 
percentile rank for the closeness metric on the X-axis and mean fate bias scores for state sub-981 
clones passing the percentile rank on the Y-axis. 982 

To characterize functional priming of cell state, Day 2.5 state sisters in each fate potential 983 
group were compared to the rest in gene expression and TF activity space. For scRNA-seq 984 
features, we used residuals obtained for the top 3000 highly variable genes after SCTransform 985 
normalization in Seurat. For scATAC-seq features, we used TF activity z-scores obtained from 986 
chromVAR using the default mouse motif set in ArchR (884 TF motifs). Correction for multiple 987 
hypothesis testing was performed using the Benjamini-Hochberg method, setting the FDR 988 
threshold for significance at 0.05, unless otherwise specified.  989 

 990 
Fate prediction from cell state using machine learning. State-fate machine learning was 991 
performed to quantify the predictability of cell fate from early state. A machine learning classifier 992 
was tasked to predict the discrete clonal fate label Y as obtained above (possible fate labels: 993 
‘progenitor’, ‘monocyte’, ‘neutrophil’, ‘Lym/pDC/Ccr7-DC’, ‘Ery/Meg’ or ‘Baso/Eos/Mast’), from an 994 
input vector of single-cell features X of Day 2.5 cells. For RNA only model, we used residuals of 995 
the top 3000 genes for input, for ATAC only model, we used TF activity z-scores (with k-nn 996 
imputation where k=20) as input and for the RNA+ATAC model, we randomly paired RNA and 997 
ATAC cells within the same sub-clone and concatenated their respective RNA and ATAC feature 998 
vectors and used those as input. For training, we used the Repeated Stratified k-fold cross-999 
validation procedure setting both n_splits and n_repeats to 5. Model performance was evaluated 1000 
using accuracy and Weighted F1 score. 1001 
 For each machine learning task, we tested a panel of classifier architectures, logistic 1002 
regression, LightGBM, and Random Forest. Each was trained and evaluated using the procedure 1003 
described above. Hyperparameter tuning was performed for each and the following values were 1004 
tested: 1005 

• Random Forest: n_estimators: [100, 300, 1000], max_depth: [10, 50, None], 1006 
min_samples_leaf: [1, 2, 4], bootstrap: [True, False] 1007 
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• LightGBM: num_leaves: [7,15,31,80], max_depth: [5,9,30], min_data_in_leaf: [20, 40, 80], 1008 
bagging_fraction: [0.8,1], bagging_freq: [3], feature_fraction: [0.1, 0.9] 1009 

• Logistic Regression: penalty: ['l2', 'none'], C: np.logspace(-4, 4, 20), solver: 1010 
['lbfgs','newton-cg','saga'], max_iter: [1000] 1011 

The python library ‘scikit-learn’ was used for all machine learning analysis. 1012 
 1013 
Fate prediction using TF activities derived from distal, intronic, exonic, and promoter peak 1014 
sets. ATAC peaks were categorized as intronic, exonic, promoter, or distal using default ArchR 1015 
definitions. TF activity scores were calculated for each peak set independently and used for state-1016 
fate prediction analysis as described above. To test if variation in model performance was due to 1017 
different numbers of peaks in each set, all peak sets were randomly sub-sampled to 8823 peaks 1018 
(number of peaks in the exonic set), TF activity scores were calculated again and state-fate 1019 
prediction was performed using these new scores. 1020 
 1021 
SHapley Additive exPlanations (SHAP) analysis. The shap python package was used to 1022 
perform SHAP analysis and interpret trained machine learning models. The TreeExplainer 1023 
function from the ‘shap’ python package was used to calculate SHAP values for trained random 1024 
forest models. For each input feature and fate label, SHAP values were calculated using each 1025 
data point in the 25 test sets (n_splits x n_repeats), resulting in 5 SHAP values per data point per 1026 
feature. This helped average out any rare outlier values generated due to a model training artifact. 1027 
Feature importance scores were calculated for each input feature for the prediction of each fate 1028 
label, by taking the mean of absolute SHAP values for each feature-fate combination. To identify 1029 
features positively or negatively correlated with the prediction of a fate label, SHAP correlation 1030 
was performed. For each input feature, the Pearson correlation coefficient between its values 1031 
(expression/TF activity) and its SHAP values for a given fate was calculated, resulting in one 1032 
correlation value per feature per fate. 1033 
 1034 
Section 3 1035 
Lineage tracing during iEP reprogramming. Cryo-preserved P0 MEFs were thawed and 1036 
seeded in 0.1% gelatin-coated six-well plates, in DMEM supplemented with 10% FBS, 2 mM l-1037 
glutamine, and 50 mM β-mercaptoethanol (Life Technologies) and penicillin-streptomycin at a 1038 
density of 30,000 cells/well. After overnight recovery at 37ºC, cells were transduced every 12 1039 
hours for 2 days, with fresh Hnf4α-T2A-Foxa1 retrovirus in the presence of 4 μg/ml protamine 1040 
sulfate (Sigma-Aldrich). During the last round of transduction, the retroviral mix was supplemented 1041 
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with CellTag-multi lentiviral library to initiate clone tracking. On Day 0 of reprogramming, cell 1042 
culture media was changed to hepato-medium (DMEM:F-12, supplemented with 10% FBS, 1 1043 
μg/ml insulin (Sigma-Aldrich), 100 nM dexamethasone (Sigma-Aldrich), 10 mM nicotinamide 1044 
(Sigma-Aldrich), 2 mM l-glutamine, 50 mM β-mercaptoethanol (Life Technologies), and penicillin-1045 
streptomycin, containing 20 ng/ml epidermal growth factor (Sigma-Aldrich)). After 72 hours (Day 1046 
3 of reprogramming), cells were dissociated, two-thirds of the cells were collected for single-cell 1047 
sequencing and the remaining cells were re-plated on 6-well plates coated with 5 μg/cm2 Type I 1048 
rat collagen (Gibco, A1048301). Two additional samples were collected on Days 11 and 21 for 1049 
single-cell sequencing. We used the 10x Genomics v3.1 dual index Gene Expression kit (PN-1050 
1000268) and the v1.1 ATAC kit (PN-1000175) for single-cell profiling. This experiment was 1051 
performed in two biological replicates. 1052 

CellTag PCR was performed for all scRNA-seq and scATAC-seq libraries, as described 1053 
above. scRNA-seq and scATAC-seq libraries were sequenced on an Illumina NovaSeq-6000. 1054 
CellTag amplicon libraries were sequenced on an Illumina NextSeq-500 to avoid any index 1055 
hopping related artifacts. For read alignment, CellTag and transcriptome/chromatin read files for 1056 
each sample were processed together using CellRanger/CellRanger-ATAC, to produce one 1057 
aligned bam file per sample. Aligned bam files from both modalities were used for CellTag 1058 
processing, other CellRanger and CellRanger-ATAC outputs were used for downstream single-1059 
cell analyses. 1060 
 1061 
Basic single-cell and clonal analysis of the direct reprogramming dataset. scRNA-seq count 1062 
matrices were processed using Seurat. Quality filtering was performed to remove cells with high 1063 
mitochondrial reads and low UMIs and genes per cell. scRNA-seq samples across all time points 1064 
and biological replicates were integrated, dimensionally reduced using PCA, and clustered using 1065 
Louvain clustering. Cells from Days 12 and 21 were subsetted and re-clustered. Single-cell 1066 
identity scores were obtained using Capybara, using Fibroblasts (MEFs), , and reprogrammed, 1067 
and dead-end trajectories from a previous dataset7 as references. Cell clusters were annotated 1068 
as ‘reprogrammed’, ‘dead-end’, or ‘transition’ based on these cell identity scores and marker gene 1069 
expression. Fragments files from scATAC-seq samples were processed using ArchR. Valid cell 1070 
barcodes, as identified by CellRanger-ATAC and passing default ArchR quality filters were 1071 
retained. Cells were dimensionally reduced using iterative LSI and clustered using Louvain 1072 
clustering. Cells were annotated as ‘reprogrammed’, ‘dead-end’, or ‘transition’ based on marker 1073 
gene accessibility. For RNA-ATAC co-embedding, scRNA-seq gene expression matrix and 1074 
scATAC-seq MAGIC imputed78 Gene Score matrix, as obtained from ArchR, were used as input 1075 
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to the RunCCA function in Seurat. A union set of the top 2000 highly variable genes from each 1076 
dataset were used for this co-embedding. 1077 

For clone calling, reads mapping to the CellTag barcode were extracted from single-cell 1078 
aligned bam files as obtained from CellRanger and CellRanger-ATAC. CellTag data within each 1079 
modality was merged, retaining sample-of-origin information in the cell barcode, and cell x CellTag 1080 
UMI (for RNA) and read (for ATAC) count matrices were obtained for each modality. The RNA 1081 
matrix was binarized at a threshold of more than one UMI count and cells with 2 to 25 CellTags 1082 
were retained. The ATAC matrix was binarized at a threshold of more than one read count and 1083 
cells with 2 to 25 CellTags were retained. The two filtered matrices were merged, cell-cell Jaccard 1084 
similarity matrix was computed and thresholded at 0.6. The final thresholded matrix was used to 1085 
identify clones across the entire dataset. Clone-cell embedding was computed as described 1086 
above and the UMAP algorithm was used to jointly visualize clones and cells. 1087 
 1088 
State-fate analysis for the direct reprogramming dataset. Clones were annotated with one of 1089 
three fates – ‘reprogrammed’, ‘transition’, or ‘dead-end’, based on the most abundant cell type 1090 
amongst fate sisters. Clonal fate bias scores were calculated as percent of fate sisters (Days 12 1091 
and 21) belonging to the annotated fate label. Alluvial plots were constructed using the ggAlluvial 1092 
R package. State-fate machine learning analysis was performed exactly as described in the 1093 
hematopoiesis section. Classification models were trained to predict either ‘reprogrammed’ or 1094 
‘dead-end’ fates. Since the frequency distribution of fate labels was less skewed for the 1095 
reprogramming dataset, only prediction accuracy scores were used as performance metrics. 1096 
CellRank analysis was performed for a 40,000-cell subset of the scRNA-seq dataset, due to 1097 
scalability limitations. For feature enrichment analysis, Day 3 sisters in state-fate clones were 1098 
grouped by fate. Seurat FindMarkers function was used to identify gene expression markers and 1099 
ArchR getMarkerFeatures function was used to identify peak and TF activity markers for each of 1100 
the following cell groups - uninduced MEFs, on-target destined cells and, off-target destined cells, 1101 
in a series of one versus all comparisons. For peak and TF activity comparisons, both on-target 1102 
and off-target cell groups were expanded using k-nearest neighbors (k=5). Uniquely enriched 1103 
features (genes/peaks/TFs) were obtained by removing features that were identified as markers 1104 
of more than one cell group. TF activity results were further refined by discarding TFs with low 1105 
gene score-TF activity correlation (< 0.3). Motif enrichment analysis was performed using the 1106 
HOMER package79 for both on-target and off-target DERs using MEF DERs as background, to 1107 
better resolve fate-specific motif enrichment. Mouse ENCODE ELS elements were obtained from 1108 
the ENCODE SCREEN database43. Only genomic regions annotated as dELS, pELS, dELS, 1109 
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CTCF-bound, or pELS, CTCF-bound in the SCREEN database were used for enrichment 1110 
analysis. The FigR42 package was used for peak-to-gene linkage analysis. Optimal matching was 1111 
used to pair RNA and ATAC cells from the same time points followed by the runGenePeakcorr 1112 
function to identify peak-gene pairs. Peak-gene pairs with an adjusted p-value greater than or 1113 
equal to 0.05 were discarded. Foxa1 and Hnf4α ChIP-seq peaks from Day 2 of reprogramming 1114 
were obtained55. These peak sets were added as custom annotations in ArchR and single-cell 1115 
accessibility z-scores for each peak set were computed using the addDeviationsMatrix function 1116 
in ArchR.  1117 
 1118 
Computational analysis related to ZFP281 motifs. Tomtom analysis58 from the MEME-ChIP 1119 
package was used to find highly similar motifs to Zfp281. The Zfp281 position frequency matrix 1120 
(PFM) was obtained from ArchR and used as input to the Tomtom web interface. Highly correlated 1121 
TF motifs with q-value less than 0.05 were obtained, these were further subsetted for TF activities 1122 
enriched in off-target destined cells resulting in a total of four TF motifs for comparison with 1123 
Zfp281. Zfp281 ChIP-seq peaks were obtained56 and single-cell accessibility z-scores were 1124 
computed using the addDeviationsMatrix function in ArchR. Zfp281 gene targets59 were used as 1125 
inputs for a state-fate prediction model, which was trained and evaluated as described above and 1126 
compared to a sized-matched set of random genes.  1127 
 1128 
Plasmid cloning related to Foxd2 and Zfp281 experiments. Non-targeting shRNA construct 1129 
was obtained from Sigma (SHC202; pLKO.5-puro Control Plasmid). Zfp281 targeting shRNA 1130 
gene was obtained from Sigma (Clone ID: TRCN0000255746) and cloned into the pLKO.5-puro 1131 
lentiviral construct (Sigma SHC201). For over-expression, cDNA fragments were cloned in the 1132 
pGCDNsam retroviral construct. Zfp281 cDNA was obtained from OriGene (Cat. MC205914) and 1133 
Foxd2 cDNA was reverse transcribed from RNA obtained from long-term iEP cells.  1134 
 1135 
Reprogramming with Foxd2 and Zfp281 perturbations. Reprogramming was performed as 1136 
described above, with the following modifications. For over-expression, cells were transduced 1137 
with a 1:1 mixture of Foxd2/Zfp281 retrovirus and Hnf4α-Foxa1 reprogramming retrovirus every 1138 
12 hours for 2 days. Control cells were transduced with a 1:1 mixture of a GFP control retrovirus 1139 
and Hnf4α-Foxa1 reprogramming retrovirus for the same amount of time. For knockdown, cells 1140 
were transduced with the non-targeting control/Zfp281-shRNA lentivirus every 12 hours for 1 day 1141 
after the 2-day Hnf4α-Foxa1 retroviral transduction was completed.  1142 
 1143 
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Single-cell analysis for Foxd2 and Zfp281 experiments. Dual indexed v3.1 scRNA-seq 1144 
libraries were prepared for all four samples (Zfp281 OE, OE Control, Zfp281 KD, KD Control) 1145 
according to the manufacturer’s instructions (CG000315) and sequenced on a Nextseq-500. 1146 
Count matrices were generated and integrated using CellRanger count and aggr commands and 1147 
processed using Seurat. Quality filtering was performed to remove cells with high mitochondrial 1148 
reads and low UMIs and genes per cell. Cells were dimensionally reduced using PCA, cell cycle 1149 
regressed, clustered using Louvain clustering, and visualized using UMAP. Capybara identity 1150 
scores were calculated as described in the iEP lineage tracing section above. Markers for each 1151 
lineage across time points and uninduced MEFs were obtained (log2 fold change > 0.7, adjusted 1152 
p-value < 0.05) and used for gene module scoring for all four samples.  Cell clusters displaying 1153 
strong enrichment of on-target or off-target markers were annotated with the respective fates. 1154 
pROGENY pathway analysis62 was used to calculate single-cell activity scores for the TGF-β 1155 
signaling pathway. 1156 
 1157 
Colony formation assays. Colony formation assays were performed as previously described7. 1158 
Reprogramming cells were seeded at low plating density in collagen-coated 6-well plates within 1159 
the first 4 days and allowed to form colonies over 2 weeks of reprogramming. Following this, cells 1160 
were fixed using 4% paraformaldehyde, permeabilized using 0.1% Triton-X and processed for 1161 
CDH1 (E-Cadherin) staining using the VIP peroxidase substrate kit (Vector labs SK4600) and 1162 
anti-mouse E-Cadherin primary antibody (1:100, BD Biosciences). Stained colonies were imaged 1163 
using a flatbed scanner and quantified using the following script: https://github.com/morris-1164 
lab/Colony-counter  1165 
 1166 
Quantitative PCR and analysis. Cells were collected for RNA extraction (RNeasy kit; QIAgen) 1167 
on Day 12 of reprogramming and reverse transcribed using the Maxima RT kit (ThermoFisher 1168 
K1672). 20ng of reverse transcribed RNA was mixed with TaqMan™ Gene Expression Master 1169 
Mix (ThermoFisher Scientific) and gene-specific TaqMan™ probes (Supplementary Table 8) in a 1170 
20ul reaction volume and processed according to manufacturer’s instructions (4371135) on the 1171 
StepOne Plus qPCR system. Per gene fold change for Foxd2 overexpressing cells was calculated 1172 
relative to control reprogramming cells (Hnf4α-Foxa1 and GFP control overexpression) that were 1173 
processed in parallel, after normalization to the housekeeping gene, Actb. 1174 
 1175 
Reprogramming with TGF-β inhibition. Cells were reprogrammed as described above. Cells 1176 
were cultured in hepatic media supplemented with 2.6µM of SB431542 (STEM CELL 72232), a 1177 
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small molecule inhibitor of TGF-b signaling starting on Day 0 of reprogramming. SB431542 1178 
containing media was changed every 2 days. Cells were collected for qPCR analysis on Day 5 of 1179 
reprogramming and processed as described above. 1180 
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