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Abstract

Complex gene regulatory mechanisms underlie differentiation and reprogramming.
Contemporary single-cell lineage tracing (scLT) methods use expressed, heritable DNA barcodes
to combine cell lineage readout with single-cell transcriptomics enabling high-resolution analysis
of cell states while preserving lineage relationships. However, reliance on transcriptional profiling
limits their adaptation to an ever-expanding tool kit of multiomic single-cell assays. With CellTag-
multi, we present a novel approach for independently profiling lineage barcodes with single-cell
chromatin accessibility without relying on co-assay of transcriptional state, paving the way for truly
multiomic lineage tracing. We validate CellTag-multi in mouse hematopoiesis, characterizing
transcriptional and epigenomic lineage priming across progenitor cell populations. In direct
reprogramming of fibroblasts to endoderm progenitors, we use CellTag-multi to comprehensively
link early cell state with reprogramming outcomes, identifying core regulatory programs underlying
on-target and off-target reprogramming. Further, we reveal the Transcription Factor (TF) Zfp281
as a novel regulator of reprogramming outcome, biasing cells towards an off-target mesenchymal
fate via its regulation of TGF-B signaling. Together, these results establish CellTag-multi as a
novel lineage tracing method compatible with multiple single-cell modalities and demonstrate its
utility in revealing fate-specifying gene regulatory changes across diverse paradigms of

differentiation and reprogramming.

Keywords: Single-cell lineage tracing; Transcriptomics; Chromatin accessibility; Epigenomics;
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The quantification of cell identity is crucial to understanding development, disease, and
homeostasis, yet the notion of cell identity remains poorly defined’. Single-cell technologies, now
tailored to diverse modalities?, are expanding our understanding of how cell identity is established
and maintained®. In particular, single-cell lineage tracing (scLT) methods allow cell relationships
to be tracked throughout biological processes, revealing cell fate decisions during differentiation
and reprogramming*®. Prospective scLT methods label cells with unique genetic ‘barcodes’ that
are expressed as RNA; capturing these barcodes via single-cell RNA-seq (scRNA-seq) allows
the parallel capture of lineage information and single-cell transcriptomes®">.

These methods to barcode and track cells have been deployed across several in vitro
differentiation and reprogramming paradigms®'*. The accessibility of cells within these systems
permits longitudinal sampling and cellular barcoding at precise time points, allowing early
progenitor state to be linked to terminal fate (termed ‘state-fate analysis’; Fig. 1a). Such a strategy
has been used to determine how well gene expression state in progenitors reflects eventual cell
fate in hematopoiesis'. This work demonstrated that subsequent fate could be predicted, albeit
with limited accuracy, from progenitor gene expression, indicating the existence of heritable fate
determinants that are not captured by scRNA-seq alone. Similarly, viral barcoding, ‘CellTagging,’
of transcription factor-mediated direct reprogramming of mouse embryonic fibroblasts (MEFs) to
induced endoderm progenitors (iEPs), suggested that reprogramming outcome is determined
during the early stages of fate conversion’. However, the early gene regulatory changes that set
cells on their destined path have not been fully characterized. Additional information from
epigenomic assays such as single-cell Assay of Transposase Accessible Chromatin by
sequencing (scATAC-seq) may be crucial to uncover the heritable properties that play a key role
in the establishment and maintenance of cell identity. Previously, natural DNA variation has been
used to infer coarse cellular phylogenies with scATAC-seq'>'®. However, the resolution of such
retrospective methods is limited due to their reliance on the accrual of somatic mutations. In
contrast, the density of lineage information recorded can be precisely controlled at biologically

relevant time points using successive rounds of cellular barcoding”’

with prospective methods.
This is essential for profiling early, lineage-specific responses in dynamic systems like
differentiation and reprogramming.

To enable prospective lineage tracing with chromatin accessibility capture, we have
developed ‘CellTag-multi.” CellTag-multi is based on our previous CellTagging technology, which
uses sequential lentiviral delivery of CellTags (heritable random barcodes) to enable the

construction of multi-level lineage trees’”'”. Here, we introduce a new strategy in which CellTags,
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67  expressed as polyadenylated transcripts, can be captured in both scRNA-seq and scATAC-seq
68  assays allowing for independent tracking of clonal transcriptional and epigenomic state.

69 We validate this method using in vitro hematopoiesis, a well-characterized model of multi-
70 lineage differentiation, and demonstrate highly accurate reconstruction of lineage relationships
71 and capture of lineage-specific progenitor cell states across scRNA-seq and scATAC-seq.
72 Moreover, the addition of chromatin accessibility information to gene expression allows for a
73 significant improvement in the prediction of differentiation outcome from early progenitor state.
74  We also deploy CellTag-multi in the direct lineage reprogramming of fibroblasts to induced
75  endoderm progenitors (iEPs), to characterize early genomic events in rare subpopulations of cells
76  that successfully reprogram. This application reveals how chromatin is remodeled following
77  expression of reprogramming TFs, enabling deeper insight into gene regulatory network
78  reconfiguration. We uncover the TF Foxd2 as a facilitator of on-target reprogramming, increasing
79  the efficiency of MEF to iEP conversion. Conversely, we identify Zfp281 as a TF biasing cells
80 towards an off-target mesenchymal fate via its regulation of TGF- signaling, which we validate
81  experimentally. We demonstrate that the identification of these TFs as novel reprogramming
82  regulators is only possible via multiomic profiling. Together, these findings highlight the utility of
83  CellTag-multi in defining the molecular regulation of early cell state and its relation to fate across
84  diverse biological applications.

85

86 Development and validation of CellTag-multi

87  CellTagging relies on single-cell capture of CellTags — heritable DNA barcodes expressed as
88  polyadenylated transcripts”'"'®, In the standard workflow, CellTags are captured as transcripts
89 and reverse transcribed (RT), along with cellular mRNA, during 3’ end scRNA-seq library
90 preparation. In contrast, scATAC-seq directly captures fragments of the accessible genome,
91 omitting capture of CellTag transcripts, rendering CellTagging incompatible with scATAC-seq
92  assays. To enable CellTag profiling with scATAC-seq, we introduced two essential modifications.
93  First, we developed an in situ Reverse Transcription (isRT) step to selectively reverse transcribe
94  CellTag barcodes inside intact nuclei. By introducing this additional step after transposition, we
95  omitted the need to RT CellTags during scATAC-seq library construction. Second, we modified
96 the CellTag construct to flank the random barcode with Nextera Read 1 and Read 2 adapters
97 (Fig. 1b, Ext Fig. 1a, b).

98 During scATAC-seq library preparation, nuclei are partitioned into nanoliter droplets along
99  with single-cell barcoding beads and PCR reagents. Each bead contains a barcoded forward

100  primer complementary to the Nextera Read 1 adapter to barcode and linearly amplify all ATAC


https://doi.org/10.1101/2022.10.23.512790
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.23.512790; this version posted December 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

101  fragments during the GEM incubation step. By inserting Nextera Read 1 and Read 2 adapters in
102  the CellTag construct, we enabled single-cell capture of reverse transcribed CellTags along with
103  accessible chromatin during the GEM incubation stage (Fig. 1c, Ext Fig. 1b). This strategy
104  improved the CellTag capture rate by >200-fold compared to the unmodified scATAC-seq protocol
105 (Ext Fig. 1¢). Additionally, we introduced a reverse primer specific to the CellTag cDNA during
106 GEM incubation to exponentially amplify CellTag fragments, while ATAC fragments undergo
107  linear amplification (Supplementary Table 1, Ext Fig. 1b). Together, these modifications led to
108  a >50,000-fold increase in CellTag capture (Ext Fig. 1¢), with CellTags being detected in >96%
109  of cells in scATAC-seq relative to 98% in scRNA-seq (Ext Fig. 1d), without negatively impacting
110  scATAC-seq data quality or genome-wide chromatin accessibility signal (Fig. 1d, e, Ext Fig. 1e,
111 f).

112 To support the accurate identification of clonally related cells, it is essential that CellTag
113 signatures from individual cells are captured with high fidelity, minimizing background noise. To
114  assess the fidelity of CellTag signatures captured in scATAC-seq, we performed a species-mixing
115  experiment (Ext Fig. 2a). We labeled human (HEK 293T) cells and mouse (expanded iEPs) cells
116  with two different versions of the CellTag-multi library, combined nuclei isolated from both
117  populations in a 1:1 ratio and profiled them using our modified scATAC-seq method. Plotting
118  CellTag reads/cell, we observed that nuclei from each species predominantly consisted of reads
119  from the expected CellTag library, indicating minimal inter-species crosstalk (Fig. 1f; Ext Fig. 2b,
120  c).

121 Finally, to perform large-scale lineage tracing experiments, we synthesized a complex
122 CellTag-multi library containing ~80,000 unique barcodes, as confirmed by sequencing
123 (Methods). We applied CellTag-multi to a population of expanded mouse fibroblasts undergoing
124  reprogramming to iEPs and profiled clones with scRNA-seq and scATAC-seq, detecting CellTags
125 in 70% (RNA) and 51% (ATAC) of the cells at an average MOI of 2 (RNA) and 2.5 (ATAC).
126  Filtering, error-correction, and allowlisting of CellTag reads (Methods) enabled high-fidelity
127  identification of distinct clones across the two single-cell modalities (Fig. 1g, h, Ext Fig. 2d-f). As
128  expected, the correlation between gene expression and accessibility was higher within clones
129  than across clones (Fig. 1i, j). These analyses established the efficacy of CellTag-multi for the
130  labeling and capture of clonally related cells across scRNA and scATAC modalities. Next, we
131 leveraged CellTag-multi to link early state with cell fate in diverse cell fate specification and
132 reprogramming paradigms.

133

134  Benchmarking CellTag-multi using an in vitro model of mouse hematopoiesis
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135 To validate lineage analysis across single-cell modalities with CellTag-multi, we applied it to
136  hematopoiesis, a well-characterized paradigm for multi-lineage differentiation. Recently, scLT
137  was used to define the early transcriptional cell states that lead to defined differentiation outcomes
138  in mouse hematopoiesis. However, these analyses suggested that early transcriptional changes
139  alone cannot fully define future cell fate and posited a role for cell states that evade transcriptional
140  profiling, collectively termed hidden state variables'. In this context, we aimed to apply CellTag-
141  multi to further refine state-fate linkages in early hematopoiesis by identifying fate-specific
142 changes in both early gene expression and chromatin accessibility.

143 We isolated Lin", Sca1®, c-Kit" (LSK) cells from adult mouse bone marrow and cultured
144  them in broad myeloid differentiation media’. Upon isolation, we tagged these cells with the
145  CellTag-multi library to track clones across modalities. To capture both early state and fate across
146  clones, we profiled half of the cells 60 hours after initiation of differentiation (Day 2.5; state
147  sample), re-plated the remaining cells across two technical replicates, and collected them for
148  sequencing on Day 5 (fate sample). In the case of both samples, cells were split between scRNA-
149  seq and scATAC-seq (Fig. 2a), resulting in the profiling of 9,789 state cells (scRNA-seq: n=5,161;
150 scATAC-seq: n=4,628) and 67,029 fate cells (scRNA-seq: n=56,534; scATAC-seq: n=10,495
151  cells), after quality filtering (Ext Fig. 3a, b). We identified cells from all major hematopoietic
152 lineages across single-cell modalities (Fig. 2b, Ext Fig. 3c). CellTagging was consistent across
153  single-cell modalities, yielding 83-99% labeled cells.

154 To compare clonal analysis across modalities, we first analyzed the scRNA-seq and
155 scATAC-seq datasets separately and identified clones in each modality independently (Ext Fig.
156  3d). Lineage hierarchies inferred using clonally related cells (Methods) were consistent across
157 scRNA and scATAC despite the chromatin dataset comprising fewer cells, demonstrating the
158  ability of CellTag-multi in defining fate relationships using clonal scATAC-seq data alone (Fig. 2c,
159 d). Assigning a fate label to each clone, based on the most abundant cell type amongst its Day 5
160 sisters, allowed mapping of coarse fate trajectories on the 2D embeddings (Fig. 2e, Ext Fig. 3e).
161 Joint clone calling across both datasets led to an increase in number of cells tracked (Ext
162  Fig. 3f), likely due to clones that are split across modalities (multiomic clones). We identified a
163  total of 37,441 scRNA-seq cells in 5,973 clones and 6,098 scATAC-seq cells in 3,012 clones,
164 labeled with 4.2 CellTags/cell (in scRNA-seq) and 3.4 CellTags/cell (in scATAC-seq) on average
165 (Ext Fig. 3g, h). 2,227 clones spanned both state and fate samples, including 877 multiomic
166  clones. These clones were used for the remainder of the analyses.

167 For visualization, we co-embedded cells from both modalities using Canonical Correlation

168  Analysis (CCA)'™. Further, we devised a unique clone-cell co-embedding approach to include
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169  clones as individual data points in a single-cell embedding, enabling straightforward visualization
170  and assessment of clone-level metadata and global trends across clones (Ext Fig. 3i). We first
171  extracted the cell-cell similarity graph, produced as part of standard single-cell analysis workflows.
172 In this graph, each cell is represented by a node and the connection between a pair of cells is
173  weighted based on their phenotypic similarity. Next, we imputed abstract clone nodes and clone-
174  cell edges to this graph based on clonal data. Finally, we used this expanded clone-cell graph as
175  input for dimensionality reduction algorithms such as UMAP? or ForceAtlas®' to produce a single
176  2D-embedding of the data, where both cells and clones are represented by individual points. We
177  applied this visualization to the hematopoiesis data to co-embed RNA and ATAC cells with all
178  clones, with minimal impact on the underlying structure of the data (Fig. 2f, Ext. Fig. 3j, k).
179  Clones, now represented as individual data points, faithfully represented their constituent cells
180  (Ext Fig. 3l) and can be used to visualize clonal metadata across all cells (Fig. 2f, right panel).
181  Consistent with previous reports, we observe continuous transitions from progenitor populations
182  to distinct hematopoietic lineages across modalities, as previously reported'*?*?3 (Ext Fig. 4a-c).
183  While CellTag capture was uniform across cell states (Ext Fig. 4d), we observed higher clonal
184  expansion along the monocyte lineage, consistent with our myeloid differentiation culture
185  conditions (Fig. 2f right panel, g).

186 We linked Day 2.5 cell state with Day 5 fate, by re-assigning each clone, from the joint
187  clone calling results, a fate label based on the most abundant cell type amongst its Day 5 sisters
188  (Fig. 2h, Ext Fig. 4e). To map early clonal state along the differentiation continuum, we extended
189  our clone-cell embedding approach further and split each clone into sub-clones (up to four) based
190  on the assay and time point capture of each sister (Ext Fig. 4f). While Day 5 fate sub-clones
191 localized largely within their respective cell fate clusters (Ext Fig. 4g), Day 2.5 state sub-clones
192  associated with each major fate formed distinct groups closer to the undifferentiated progenitors
193  (Fig. 2i, j), suggesting early functional priming of immature cells. Moreover, state sub-clones
194  within the same ‘fate potential’ group overlapped significantly across single-cell modalities (Mann
195  Whitney Wilcoxon test; p-value = 3.76e-5, Fig. 2j, k), demonstrating high-fidelity capture of state-
196 fate linkages across transcriptional and epigenomic states with CellTag-multi. Projecting fate bias
197  scores, defined as the fraction of fate sisters belonging to the assigned clonal fate, on to state
198  sub-clones, we observed that low fate bias clones occupied areas closer to the overlapping
199  boundaries of each fate potential region, likely indicating areas of multi-potency (Fig. 2j, Ext Fig.
200  4h).

201 To characterize these fate-specific changes in early cell state on a molecular level, we

202  assessed the enrichment of transcriptional and epigenetic signatures in Day 2.5 sisters for each
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203  fate group (Fig. 2I; Methods). Using gene expression, we identified several known fate-specific
204  markers in each group, such as Spp1' and Ms4a3* in the Monocyte primed group; Elane and
205  Ctsg"™ in the Neutrophil primed group; Pf4?°> and Gata2' in the Erythroid/Megakaryocyte groups.
206 In the Lymphoid group, we identified FIt3, a predominantly Lympho-myeloid gene®, and several
207  lymphoid fate-specific genes such as Mef2¢®” and Bcl11a®. For epigenetic data, we focused on
208  TF activity scores®, which estimate the enrichment of TF motifs in single-cell epigenomes?.
209  Unlike peak accessibility, TF activity feature space is dense and continuous, allowing comparison
210  between small groups of cells, and is easier to interpret relative to individual peak features®. TF
211  activity enrichment analysis revealed several expected lineage specifying TFs for each fate?*°,
212 such as several CEBP TFs enriched in Monocyte and Neutrophil primed groups; GATA1 and
213  GATAZ2 in the Erythroid/Megakaryocyte and Basophils/Eosinophils/Mast cells groups; Lympho-
214  myeloid TF SFPI1 (also known as PU.1) in the Lymphoid and Dendritic Cells (DC) group, along
215  with BCL factors and MEF2 factors, indicating extensive epigenomic priming in early cells towards
216  theirrespective cell fate. A complete list of differential gene expression and TF activity enrichment
217  can be found in Supplementary Table 2.

218

219  Chromatin accessibility and gene expression jointly define fate predictive cell state

220  Our above state-fate analysis suggests that lineage-specific changes in gene expression are
221  accompanied by extensive epigenetic remodeling, rendering the genome more accessible to fate-
222 specifying TFs. Previous analysis has suggested that cell states hidden from transcriptional
223 profiling play a role in fully defining fate-associated changes in cell state’®. Changes in chromatin
224 accessibility could account for some of this hidden variance and we tested this hypothesis by
225  assessing whether cell fate can be accurately predicted from early state using our multiomic clonal
226  data.

227 We trained machine learning models to predict clonal cell fate from gene expression or
228  chromatin accessibility profiles of Day 2.5 sisters (Ext Fig. 5a). We tested three different
229  architectures: Logistic Regression, Random Forest, and LightGBM, and assessed model
230  performance using prediction accuracy (Ext Fig 5b). Overall, Random Forest models performed
231 the best and were used for all downstream analysis. For gene expression, we trained a
232 classification model to predict clonal fate using expression of the three thousand most highly
233 variable genes (HVG) and obtained an accuracy of 75.6% (Fig. 2m, Ext Fig. 5¢). For chromatin
234 accessibility, we used Day 2.5 imputed TF activity scores (Methods) for 884 TF motifs to predict
235  clonal fate and obtained an accuracy of 72.7% (Fig. 2m). Notably, an RNA model trained on

236  expression levels of TFs, obtained from the Catalog of Inferred Sequence Binding Preferences
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237  (CIS-BP) database, only scored only 63.8% on prediction accuracy (Fig. 2m). The significantly
238 lower predictive performance of TF expression compared to TF activity could be attributed to
239  either technical dropout in scRNA-seq or significantly higher lineage specific priming of TF binding
240  sites compared to TF expression, or a combination of both.

241 To assess fate-specific priming in different functional regions of the epigenome, we
242  computed TF activity scores using subsets of accessible peaks and compared fate prediction
243  performance across these feature spaces. Specifically, we computed TF activity scores using
244 only promoter, distal, exonic, or intronic peaks and trained fate prediction models with each. We
245  observed significant variation in performance between different ATAC models, indicating different
246  levels of fate-specific epigenetic priming across functional regions of the genome (Ext Fig. 5d).
247  This variation was independent of the number of peaks used to compute each set of TF activity
248  scores (Ext Fig. 5d). Distal and Intronic were the best performing models, comparable in
249  performance to the full peak set model (‘All'). Promoter and Exonic models performed significantly
250 worse, suggesting that fate-specifying epigenetic changes during these early stages were
251  dominated by changes in distal regulatory regions of the epigenome rather than accessibility of
252  genes themselves. This observation is reinforced by the persistence of TF enrichment trends
253  across state groups in distal and intronic subsets but not in the exonic and promoter subsets (Ext
254  Fig. 5e). We confirmed these results using SHAP, a game theoretic approach to quantify the
255  contributions of individual input features in explaining the output of a machine learning model®’.
256  Indeed, SHAP analysis showed that in the better-performing models, an increase in CEBP/A motif
257  accessibility and an increase in MECOM motif accessibility were better predictors of Monocyte
258 and Ery/Meg fates, respectively, suggesting a lack of functional priming in the promoter-proximal
259  accessible genome (Ext Fig. 5f, g).

260 Finally, we tested whether combining RNA and ATAC features is more predictive of fate
261 than either individual modality. For this, we trained a combined RNA and ATAC model where RNA
262  and ATAC Day 2.5 sister cells within the same clone were paired randomly, and their combined
263  gene expression and TF activity signatures were used to predict clonal fate label. This analysis
264 was limited to multiomic state-fate clones. The combination of both state modalities was
265  significantly better at predicting fate (mean accuracy score = 86.5%) compared to either individual
266  modality or pairs of unrelated RNA and ATAC state cells (Fig. 2m). These results show that both
267  gene expression and chromatin accessibility jointly comprise cell states that define future cell fate.
268  Moreover, these modalities consist of non-redundant and highly complementary state information,
269  as a combination of both predicts cell fate much more accurately than each modality in isolation.
270
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271  Dissecting clonal dynamics of direct reprogramming

272 Our application of CellTag-multi to hematopoiesis demonstrated the method’s utility to capture
273  informative gene regulatory dynamics in a well-characterized differentiation paradigm. We next
274  applied CellTag-multi to a less defined system — the direct reprogramming of MEFs to iEPs driven
275 by retroviral overexpression of Hnf4o and Foxa17%233, Direct lineage reprogramming presents a
276  unique paradigm of cell identity conversion, with cells often transitioning through progenitor-like
277  states or acquiring off-target identities®***°. Such non-linear fate dynamics can be challenging to
278  assess, especially when relying solely on the computational inference of cell fate trajectories'?.
279  Ground truth lineage tracing serves as a crucial resource for dissecting lineage-specific cell state
280 changes during direct reprogramming’. Originally reported to yield hepatocyte-like cells*, we
281  have previously shown that Hnf4a and Foxa1 overexpression in MEFs generates cells with the

282  broader potential to functionally engraft liver and intestine'®33%

. This prompted their re-
283  designation as ‘induced Endoderm Progenitors’ (iEPs). More recently, we have further
284  characterized the similarity of long-term cultured iEPs to regenerating Biliary Epithelial Cells
285  (BECs)®.

286 Using our original CellTag-based lineage tracing, we identified two distinct iEP
287  reprogramming trajectories: a successful ‘reprogrammed’ trajectory, characterized by
288 endodermal and hepatic gene expression, and a ‘dead-end’ trajectory, defined by a failure to
289  extinguish the starting fibroblast identity”. Further work demonstrated key functional differences
290 between these fates, with successfully reprogrammed cells harboring the potential to engraft
291 acutely damaged mouse intestine’. Our previous lineage tracing suggests that the
292  reprogrammed and dead-end fates are determined in the early stages of fate conversion’.
293  However, our original CellTagging methodology did not capture any epigenetic information and
294  only sparsely sampled early state clones, limiting mechanistic insight into these initial
295  reprogramming stages.

296 Here, we deployed CellTag-multi in iEP reprogramming, modifying our clonal resampling
297  strategy to optimize state-fate analysis (Fig. 3a). First, we transduced MEFs with Hnf4a and
298  Foxa1 for 48 hours to initiate reprogramming, in two independent biological replicates. During the
299  last 12 hours of this 48-hour period, we transduced cells with the complex CellTag-multi library,
300 enabling clonal relationships to be tracked. 72 hours following the final viral transduction
301 (Reprogramming Day 3), we collected two-thirds of the cells for single-cell RNA and ATAC
302  profiling (state sample) and re-plated the remaining cells. Subsequent samples were collected on
303 Days 12 and 21 (fate samples) to assess reprogramming outcome. We also profiled the starting

304 MEF population (scATAC-seq, this study; scRNA-seq from a previous study’)), resulting in a total
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305 of 466,459 single-cells (scATAC-seq: 223,686; scRNA-seq: 242,863) in the final dataset after
306 quality filtering (Ext Fig. 6a, b). We identified a total of 8,502 clones, containing 46,438 cells
307 (Replicate 1: 3,068 clones; Replicate 2: 5,416 clones, average clone sizes of 4.8 and 5.9
308 cells/clone, respectively (Ext Fig. 6¢, d)). We identified 1,428 ‘state-fate’ clones across both
309 replicates, defined as clones that spanned state (Day 3) and at least one fate time point, Day 12
310 or Day 21 (Ext Fig. 6d).

311 Following dimensionality reduction and clustering of the co-embedded RNA and ATAC
312 datasets, clone-cell embedding was performed (Fig. 3b, Ext Fig. 6e, f, g). We annotated Day 12
313 and 21 fate clusters (‘reprogrammed, ‘dead-end,” and ‘transition’) based on expression and
314  accessibility of known reprogramming associated genes, and unsupervised cell-type classification
315 based on transcriptional state using Capybara®’ (Fig. 3¢; Ext Fig. 7a, b). In line with our previous

7,18,37,38

316 reports , reprogrammed cells express epithelial and iEP markers, Cdh1 and Apoaf,
317 respectively. Dead-end cells are characterized by the retention of fibroblast gene expression but
318 are still transcriptionally distinct from MEFs, expressing low levels of iEP markers and several
319 dead-end-specific genes such as Sfrp1, a Wnt signaling modulator’ (Ext Fig. 7b, ¢). Transition
320 cells represent states in between MEFs and reprogrammed/dead-end identities. Following cluster
321 annotation, we assigned fate labels to each state-fate clone. As the maijority of state-fate clones
322  showed high fate-bias, we assigned clonal fate based on the most abundant cell annotation
323  amongst the fate sisters (Fig. 3d), identifying 1,009 reprogrammed, 2,493 dead-end and 1,371
324  transition clones. Dead-end and reprogrammed clones displayed a lineage-specific increase in
325 accessibility of known marker genes (Fig. 3e).

326 Using clonal information, we linked each reprogrammed and dead-end clone to its Day 3
327  state sisters, allowing us to track changes in cell identity longitudinally (Fig. 3f). These results
328  were consistent when clonal analysis was performed for each modality independently (Ext Fig.
329  7d-f). Comparing Capybara transcriptional cell identity scores across lineages, we found that iEP
330 identity scores were consistently higher along the reprogrammed lineage compared to the dead-
331 end lineage. MEF identity scores, while significantly higher along the dead-end lineage, exhibited
332  asteep decline after Day 12 coinciding with an increase in dead-end transcriptional identity score
333  (Fig. 3g). This suggested a delayed departure from MEF identity to an alternate cell state. We
334  observed high levels of clonal expansion along both lineages (Fig. 3h, i). These observations
335  suggest that despite retaining expression of canonical fibroblast marker genes, dead-end cells
336 are a fundamentally distinct, off-target cell state and reprogramming outcome. Thus, the
337 ‘reprogrammed’ and ‘dead-end’ fates are better described as ‘on-target’ and ‘off-target’

338 reprogramming, respectively.
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339

340 Linking early state to fate reveals molecular features of off-target reprogramming

341  Next, to identify early state changes that regulate entry onto distinct fate trajectories, we focused
342 on Day 3 state clones destined to on-target (reprogrammed) or off-target (dead-end)
343  reprogramming fates. From assessing the distribution of Day 3 sisters destined to either of the
344  two fates, it is evident that they are not localized to defined clusters (Ext Fig. 8a, b). Further,
345 trajectory inference using CellRank® fails to reveal these initial states (Ext Fig. 8c),
346  demonstrating the importance of ground truth lineage tracing. We found that both Day 3 gene
347  expression and TF activities were highly predictive of clonal fate. Similar to our analysis of
348 hematopoiesis, fate prediction accuracy was significantly higher when both modalities were
349  considered, as compared to either modality individually. Further, distal and intronic peaks were
350  more predictive of fate than proximal and exonic (Ext Fig. 8d, e).

351 To identify early molecular signatures of lineage specification, we compared gene
352  expression, chromatin accessibility, and TF activity scores across MEFs and Day 3 state sisters
353  grouped by fate outcome. Comparing gene expression enrichment across the three groups, 2,116
354  genes were differentially enriched with 1,582 enriched genes uniquely defining each group (Fig.
355 4a, Ext Fig. 8f). While some genes displayed transient fate-specific expression, others
356 consistently increased over time in a lineage-specific manner (Supplementary Table 3). Early
357 iEP marker genes such as Apoa1 were enriched in both on- and off-target trajectories on Day 3,
358  consistent with our previous observation that most cells initiate reprogramming’ (Ext Fig. 8f, g).
359  On-target (reprogrammed) enriched genes included Krt19, a marker of BECs, Wnt signaling
360 associated genes Wht4, Anxa8, and epithelial marker Ezr (Fig. 4b, Supplementary Table 4).
361 Top off-target (dead-end) related genes included canonical smooth muscle markers Acta2 and
362  Taglin and other mesenchymal genes such as Ptn, and Ncam1, suggesting broad engagement of
363 mesenchymal programs, in addition to Sfro1, a Wnt signaling pathway inhibitor (Fig. 4b,
364 Supplementary Table 4).

365 Comparing genome-wide chromatin accessibility revealed 21,720 Differentially Enriched
366 Regions (DERs) across Day 3 on-target and off-target destined cells and uninduced MEFs,
367 indicating extensive fate-specific epigenetic reconfiguration during early reprogramming (Fig. 4c,
368 Supplementary Table 5). DERs were enriched for distal and intergenic peaks, suggesting
369 epigenetic re-patterning of distal regions as a driver of cell fate conversion, consistent with our
370 above observations in hematopoiesis (Ext Fig. 8h). Motif analysis revealed enrichment of
371 reprogramming and hepatic TFs in on-target DERs, and several TFs with documented roles in
372  mesenchymal fates***! in off-target DERs (Ext Fig. 8i, j). Using our paired RNA and ATAC data,
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373  we linked accessible peaks to genes and identified 37,058 putative cis-regulatory elements
374 (CREs)* (Fig 4c, Methods). Gene-linked peaks were enriched for enhancer-like signatures
375 (ELS) from the ENCODE candidate CRE database** (Methods, Ext Fig. 8k). Genes linked to on-
376 target and off-target DERs displayed fate-specific expression patterns (Fig. 4d, Ext Fig. 8I). On-
377 target DERs consisted of several CREs linked to endodermal genes, such as Alb, Foxq1, and
378  Creb3/2. In contrast, off-target DERs contained CREs linked to mesenchymal genes such as
379  Ncam1, a modulator of Mesenchymal Stromal Cell migration**, Fbin2, a mesenchymal gene

t*, and Vegfd, a regulator of angiogenesis*® and

380 associated with embryonic heart developmen
381 endothelial differentiation of bone marrow-derived mesenchymal stem cells*” (Fig. 4c;
382 Supplementary Table 5). In several instances, this analysis captured lineage-specific changes
383 in accessibility of CREs before significant changes in gene expression were detected. For
384 instance, a Vegfd-linked CRE overlapping with an ENCODE enhancer displayed enrichment in
385 dead-end destined cells (Day 3), while expression changes were not detectable until Day 12.
386  Similar regulatory changes were observed for Aox3*, a liver-associated aldehyde oxidase, and
387 Col28at, an oligodendrocyte enriched collagen*, prior to changes in gene expression (Fig. 4e,
388  Supplementary Table 5).

389 To identify functional changes in chromatin accessibility on a genomic scale, we compared
390 inferred TF activities across on-target and off-target destined cells and uninduced MEFs. To
391 preclude potential false positives, we discarded all TFs with low correlation (< 0.3) with their
392  respective gene activity scores, identifying 47 uniquely enriched TFs (Fig. 4f, Ext Fig. 8m,
393 Supplementary Table 6). On-target destined cells were highly enriched for the two
394  reprogramming TFs, FOXA1, and HNF4A. Other on-target associated TFs included FOXD2,
395 FOXOf1, and NR1H3, a hepatic fate-specifying TF*®° (Fig. 4f). We identified a set of nine TFs
396 uniquely enriched in off-target destined cells (Fig. 4f (black bar), g). Several of these TFs
397  (Zfp281, Cebpb, Gata6, Hivep3) have been previously documented to play a role in regulating
398  mesenchymal cell identities®'~>*. Surveying the expression data, none of the off-target TFs display
399 a similar fate-biased enrichment (Fig. 4g, Ext Fig. 8n), highlighting the importance of lineage-
400  specific chromatin profiling in identifying these targets. This lack of enrichment could be due to
401  technical dropout during scRNA-seq or due to secondary mechanisms regulating the genomic
402  engagement of these TFs.

403 Altogether, our lineage-specific multiomic assessment of iIEP generation demonstrates
404  clear early molecular differences associated with reprogramming outcomes. Indeed, from as early
405 as reprogramming day 3, cells on the dead-end lineage exhibit unique characteristics. Rather

406 than retaining MEF identity, we observe that the dead-end lineage constitutes a highly
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407  proliferative, mesenchymal cell state with unique markers and regulatory changes, thus
408 representing an ‘off-target’ reprogrammed state. The early specification of this state is supported
409 by our GRN inference using CellOracle®, suggesting that network reconfiguration is unique to
410 each trajectory and is established early in the reprogramming process. CellTag-multi has the
411  potential to define the molecular features of these early states, offering deeper mechanistic insight
412  into the reprogramming process.

413

414  Foxd2 and Zfp281 as drivers of on- and off-target reprogramming

415  Higher accessibility of both motifs and genomic targets® of FOXA1 and HNF4A in on-target cells
416  on Day 3 suggests significant differences in genomic engagement of the reprogramming TFs
417  between the two fate outcomes (Fig. 5a, Ext Fig. 9a). This could, at least in part, be explained
418 by differential expression levels of the Hnf4a-Foxa1 transgene across the two lineages, with off-
419  target destined cells displaying significantly lower transgene expression (Fig. 5a; Mann Whitney
420  Wilcoxon test; p-value = 6.5e-42). However, we have also previously described an off-target
421  trajectory expressing high transgene levels, suggesting additional mechanisms influencing
422 genomic engagement by the reprogramming TFs®.

423 Outside of FOXA1, and HNF4A, we identified FOXD2 as the top on-target fate-specifying
424  TF candidate (Fig. 5b, Ext Fig. 9b). Adding Foxd2 to the Foxal and Hnf4a reprogramming
425  cocktail led to significantly increased expression of the iEP marker Cdh1 and decreased
426  expression of mesenchymal marker Tagln on reprogramming day 12 (t-test; p-values: Cdh1 =
427  0.03; Tagin = 0.006; 2 biological replicates; 2 technical replicates Ext Fig. 9¢). In addition, colony
428  formation assays showed a significant increase in the number of CDH1-positive colonies formed
429  with the addition of Foxd2 to the standard iEP reprogramming cocktail (t-test; p-value=0.045; 2
430 biological replicates; Fig. 5¢), validating its role in improving on-target fate conversion.

431 The top off-target-enriched candidate was ZFP281, a Zinc Finger protein (Fig. 5d, Ext
432 Fig. 9d). Zfp281 is a known regulator of cell fate in mouse embryonic stem cells®® and promotes
433  epithelial-to-mesenchymal transitions®’. To further confirm the inferred enrichment of ZFP281 TF
434 activity in off-target fated cells, we performed Tomtom motif similarity analysis®® to identify TFs
435  that share a motif similar to ZFP281. We found four other TF motifs that were both significantly
436  similar to the ZFP281 motif (adjusted p-value < 0.05) and were enriched in off-target destined
437  cells. Amongst these TFs, ZFP281 displayed the highest enrichment in the off-target lineage both
438 in terms of gene expression and TF activity (Ext Fig. 9e). Additionally, single-cell accessibility of
439  ZFP281 genomic targets® was positively correlated with inferred ZFP281 TF activity (Pearson’s

440  correlation coefficient = 0.53; Ext Fig. 9f) and ZFP281 regulated genes®® were significantly more
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441  predictive of cell fate as compared to a size-matched set of random genes (Mann Whitney
442  Wilcoxon test; p-value = 2.248e-09; Ext Fig. 9g), further confirming its role in off-target fate
443  specification during iEP reprogramming. Notably, both Zfp2871 and Foxd?2 failed to show a strong
444  lineage-specific bias in gene expression levels, highlighting the unique insights offered by
445  multiomic lineage tracing in the identification of fate-specifying TFs (Ext Fig. 9h).

446 Indeed, inclusion of Zfp281 along with Foxa1 and Hnf4a in the reprogramming cocktail
447  resulted in a moderate but statistically significant reduction in the number of CDH1-positive
448  colonies (t-test; p-value = 0.017; Fig. 5e). To further characterize the role of Zfp281 in
449  reprogramming, we performed both overexpression (OE) and shRNA mediated knockdown (KD)
450  of Zfp281, along with respective control samples, and profiled cells with single-cell sequencing on
451  reprogramming day 14 (Fig. 5f, g, Ext Fig. 10a). We found that the rate of reprogramming (both
452  on- and off-target) increased with increasing Zfp281 expression (Ext Fig 10b), suggesting a role
453  for Zfp281 in accelerating fate conversion in iEP reprogramming. Moreover, we identified a distinct
454  subpopulation of cells, predominantly consisting of Zfp281 KD cells that were depleted for
455  expression of key markers of both on-target and off-target reprogramming such as Apoa7 and
456  Ctla2a (Ext Fig 10c-e). These cells were enriched for MEF and early off-target marker gene
457  expression, depleted for both off-target and on-target markers genes from Day 21 (obtained from
458  our lineage analysis; Ext Fig. 10f-h) and thus likely represent a “stalled” cell state due to reduced
459  Zfp281 expression levels. Despite its acceleration of cell fate conversion broadly, we found that
460  Zfp281 shifted the identity of reprogrammed cells away from an iEP-like state and towards a dead-
461  end/off-target-like state consistently across the OE and KD experiments (Fig. 5h, i), confirming a
462  role for Zfp281 in biasing cells towards an off-target fate, as suggested by our lineage tracing
463  analysis. This finding also explains the reduced number of CDH1-positive colonies observed in
464  our colony formation assay, despite the increase in total number of on-target reprogrammed cells
465  upon Zfp281 overexpression.

51,60

466 Finally, a key downstream effector of Zfp281 is TGF-$ signaling®*”, an Epithelial-to-
467  Mesenchymal Transition (EMT) associated pathway®'. Indeed, TGF-B pathway activity, as
468 inferred using PROGENy®? (Methods), increased with Zfp281 OE and decreased with Zfp281
469 KD, suggesting active regulation of TGF-B signaling by Zfp281. Given that on-target
470  reprogramming is characterized by cellular epithelialization and off-target reprogramming is
471  characterized by activation of broad mesenchymal programs, we hypothesized that increased
472  TGF-B signaling mediated via Zfp281 acts as a barrier to on-target reprogramming. Indeed,
473  inhibition of TGF-B signaling during iEP reprogramming using the small molecule SB431542% led

474  to a significant increase in expression of reprogramming marker genes Apoa1 and Gsta4 and a
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475  significant decrease in mesenchymal/off-target genes such as Sermpine1, Snail1, Col1a2 (Fig. 5k).
476  This was accompanied by an increase in epithelial/iEP-like morphology as early as day 3 of
477  reprogramming (Ext Fig 10i) suggesting a crucial role for TGF-[3 signaling, downstream of Zfp281,
478  in determining fate outcome during iEP reprogramming.

479

480 Discussion

481 Here we have presented CellTag-multi, a method for independent single-cell lineage tracing
482  across scRNA-seq and scATAC-seq assays. In the context of hematopoiesis, we have used
483  CellTag-multi to map transcriptional and epigenomic states of progenitor cells and link them to
484  clonal fate, recapitulating enrichment of known lineage-specific cell state signatures across
485  progenitor populations. With chromatin state, we showed that lineage-specific epigenetic priming
486 is associated with changes in accessibility of known fate-specifying TF motifs and that such
487  changes occur primarily in the regions of the genome distal to promoters. Previous analysis has
488  demonstrated the inability of early transcriptional state alone in predicting cell fate and posited a
489 role for alternate cell state modalities’. By exploiting multiomic clonal relationships, we
490 demonstrated that the predictability of cell fate from state is significantly improved when both early
491  transcriptional and epigenomic state are considered, as opposed to either modality individually,
492  suggesting that the RNA and ATAC modalities consist of non-redundant and highly
493  complementary state information.

494 Our application of CellTag-multi to the less characterized paradigm of iEP reprogramming
495  generated similar observations, where multiomic clonal data captured in the early stages of fate
496  conversion is highly predictive of reprogramming outcome. Again, fate-specifying epigenetic
497  changes during early stages of differentiation are dominated by changes in distal regulatory
498  regions of the epigenome. Further, we have been able to molecularly characterize the ‘dead-end’
499 state as a highly proliferative, mesenchymal-like cell state, representing an ‘off-target’
500 reprogrammed state. Indeed, a similar state has been reported in direct reprogramming of
501 mesenchymal stromal cells to induced hepatocytes, revealing the appearance of Acta2-
502 expressing mesenchymal cells during the reprogramming process®. Outside of the hepatic
503 lineage, off-target identities have been reported in other reprogramming paradigms®%°,
504  suggesting that this may be a more general feature of lineage reprogramming.

505 Our multiomic lineage tracing demonstrates the establishment of on- and off-target
506 trajectories from early stages, supported by our earlier transcriptome-based lineage tracing of iEP
507 reprogramming’ and GRN inference®. However, given the single modality capture of relatively

508 few clones in that earlier study, we were not able to comprehensively characterize early molecular
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509 states. Here, the collection of ground truth data on lineage, transcriptome, and epigenome has
510 allowed us to better characterize these distinctive early states, enabling novel mechanistic
511 insights into reprogramming. We have shown crucial early differences in gene regulation that lead
512  todistinct reprogramming outcomes. Specifically, we have identified and experimentally validated
513  that Foxd2 promotes successful reprogramming, while Zfp281 activity leads to engagement with
514  an off-target trajectory. Differences in reprogramming TF levels may account for these early
515 differences. However, lower levels of exogenous TF expression do not simply lead to
516  reprogramming failure, as the off-target fate is molecularly unique from fibroblasts and could be
517  considered a reprogramming byproduct in itself. These results suggest that the stoichiometry of
518  TF overexpression in these reprogramming models may offer further insight into how TFs control
519  cell identity. Single-cell analysis of TF binding could provide further insights into the role of
520 differential binding of the two reprogramming TFs in specifying off-target fate.

521 Our recovery of Foxd2 and Zfp281 as novel regulators of early-stage reprogramming was
522  not possible from differential gene expression analysis alone, demonstrating the utility of CellTag-
523  multi. Our data suggests off-target enriched Zfp281 activity from early stages of reprogramming.
524  From our experimental validation, we found that knockdown of Zfp281 expands a population of
525 cellsin a ‘stalled’ state, where they fail to extinguish fibroblast gene expression while upregulating
526  off-target cells. Conversely, overexpression of Zfp281 helps accelerate fate conversion, resulting
527 in a considerable increase in reprogramming efficiency. However, Zfp281 still draws the
528  reprogrammed cells toward an off-target, mesenchymal-like state. A role for this TF in driving
529 broad mesenchymal expression programs, including components of the TGF-B signaling
530 pathway, has recently been described®’. Here, we demonstrate that the inhibition of TGF-B
531 signaling enhances on-target marker expression while decreasing off-target gene expression.
532  These results suggest a potential strategy to enhance on-target reprogramming, where Zfp281
533  expression can help erase the starting cell identity while blocking downstream TGF- signaling
534  might prohibit entry onto the off-target trajectory.

535 Altogether, the data we present here across two distinct biological systems demonstrates
536 that lineage-specific capture of gene expression and chromatin accessibility provides rich
537 information on gene regulation, offering unique mechanistic insights into the specification and
538  maintenance of cell identity. More widely, single-cell lineage tracing has revealed distinct, clonally

539 heritable transcriptional states across various biological systems®°®

. These phenotypic
540  differences, arising from seemingly non-genetic sources, have strong biological implications. For
541  example, clonal variability in cell state has been shown to impact malignant clonal expansion and

542  efficacy of drug treatment in cancer cells®®®®, Elsewhere, CRISPR-based systems have been
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543  used to create mutable barcodes to allow multi-level lineage recording without the need for
544  successive rounds of cell labelling®® . Given its versatility and ease of use, we envision that
545  CellTag-multi can be readily applied to such biological questions and use cases.

546 Finally, we have developed CellTag-multi to work independently with scRNA-seq and
547  scATAC-seq, as existing single-cell methods that co-assay multiple modalities from the same
548  cell”™™ can suffer from lower data quality compared to methods that profile each modality
549  individually. Further, enabling the capture of lineage in parallel with chromatin accessibility
550 provides users with additional flexibility for experimental design. Advances in single-cell
551 technologies are allowing measurement of an ever-increasing number of cellular modalities. A
552  similar expansion in lineage tracing assays will complement these new methods with multiomic,
553  clonal tracking of cell state and enable deeper mechanistic insight into the regulation of cell
554  identity and clonal heritability of cell state. CellTag-multi, with its cell lineage read out alongside
555  gene expression and chromatin accessibility, paves the way for such multiomic, single-cell lineage
556  tracing methods.
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577  Figure 1. CellTag-multi allows simultaneous capture of lineage information with gene
578  expression and chromatin accessibility. (a) A framework for relating early cell state with fate
579  using single-cell lineage tracing. (b) Schematic depicting the CellTag-multi lineage tracing
580  construct. (¢) Schematic detailing parallel capture of CellTags during scRNA-seq and modified
581  scATAC-seq library preparation, using targeted isRT of CellTags in intact nuclei. CellTag-multi
582  enables simultaneous clonal tracking of transcriptional and epigenomic state. (d) Browser tracks
583 comparing chromatin accessibility signal across aggregated scATAC-seq profiles generated
584  using the original and modified library preparation methods. (e) Scatterplot comparing log
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585 normalized reads in ATAC peaks across aggregated scATAC-seq profiles generated with the
586  original and modified library preparation methods. (r = Pearson Correlation Coefficient). (f) Plot
587  for the human-mouse species mixing experiment depicting the number of CellTag reads/cell from
588 each CellTag library. (g) Heatmap showing scaled CellTag expression in scRNA-seq and
589 scATAC-seq sisters for four multiomic clones identified in a population of expanded
590  reprogramming fibroblasts. (h) Joint UMAP of RNA and ATAC cells with two clones (clone 1 and
591 clones 2) cells projected, along with assay information. (i) Browser track showing single-cell
592  accessibility at the Ctla2b locus and Ctla2b gene expression across clones 1 and 2. Top Panel:
593  Pseudo-bulk accessibility signal at the Ctla2b locus. (j) Box plots comparing intra- and inter-clonal
594  correlation between clonally aggregated gene expression and gene activity scores in the
595  reprogramming dataset (n = 62 clones used; Mann Whitney Wilcoxon test; p-value = 5.39e-4).
596
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598  Figure 2. Application of CellTag-multi to link early hematopoietic cell state with fate. (a)
599  Schematic detailing the experimental design for the in vitro hematopoiesis state-fate experiment.
600 (b) scATAC-seq UMAPs with time point (left panel) and cell fate information (right panel) projected
601  (Mono: Monocytes; Neu: Neutrophils; Lym: Lymphoids; Ery: Erythroids; Meg: Megakaryocytes;
602  Baso: Basophils; Eos: Eosinophils; Mast: Mast Cells; pDC: plastoid Dendritic Cells). Only major
603 cell fates are highlighted. Hematopoietic lineage hierarchy as inferred from (¢) scATAC or (d)
604  scRNA clone coupling. (e) scATAC-seq UMAPs with state and fate sisters for major hematopoietic
605 fates highlighted. (f) Clone-cell embedding UMAPs with time point and cell fate information
606 projected onto cells (left and center panels) and clonal expansion information projected onto
607  clones (right panel), detailed cell type annotations are shown in Ext Fig. 4c. (g) UMAPs with RNA
608 and ATAC clonal expansion information projected onto a thousand random multiomic clones. Both
609 modalities display biased expansion of early myeloid cells, consistent with our differentiation
610  culture conditions. (h) Bar plot depicting distribution of cell fates across RNA and ATAC clones
611 (Fates are colored as in Fig. 2b). (i) UMAP with scaled Cd34 expression level, a marker of
612  Hematopoietic Stem and Progenitor Cells (HSPCs), projected onto the scRNA cells. (j) UMAPs
613 with state (Day 2.5) sub-clones for each major lineage highlighted along the differentiation
614  continuum for both single-cell modalities, with fate bias information projected. (k) Box plot
615 comparing overlap between RNA and ATAC state sub-clones within and across cell fates (Mann
616  Whitney Wilcoxon test; p-value = 3.76e-5). (1) Volcano plots summarizing the results of differential
617  feature enrichment analysis for each group of state sub-clones across for scRNA (top panel) and
618 scATAC modalities (bottom panel). (m) Box plot summarizing accuracy scores of trained state-
619 fate prediction models. Machine learning partially predicts cell fate from Day 2.5 state across both
620  modalities. However, predictive performance increases significantly when both are considered
621 together, highlighting the existence of unique functional priming in both gene expression and
622  chromatin accessibility state (Mann Whitney Wilcoxon test; p-values: **** = p < 0.0001, HVG:
623  Highly Variable Genes, n = 25 accuracy values for each model (Methods)).
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624
625 Figure 3. Application of CellTag-multi to dissect clonal fate dynamics in direct

626  reprogramming. (a) Experimental design for the direct reprogramming state-fate experiment. (b)
627  Cells from both scRNA-seq and scATAC-seq, across all time points, were co-embedded with
628  clones and visualized using a UMAP. (Left Panel) Time point information projected on cells. (Right
629  Panel) Clonal expansion visualized using clone nodes. (¢) Capybara transcriptional identity

630  scores projected on scRNA-seq cells for reprogrammed, dead-end and fibroblast cell identities,
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based on a previous lineage tracing dataset’. Cell fates were annotated for Days 12 and 21.
Reprogrammed and dead-end cell fates are highlighted (Lower Right Panel). (d) Histogram of
fate bias across all state-fate clones. (e) Clonal chromatin accessibility browser tracks for two
dead-end and reprogramming clones. (f) Contour plots showing longitudinal tracking of cell fates
enabled by CellTagging. (g) Transcriptional identity dynamics tracked along both lineages. Dead-
end cells depart from a MEF like identity and acquire an off-target reprogrammed state. Significant
clonal expansion is observed along both lineages, as depicted via alluvial plots, clone nodes and
clonal expression levels of Mki67 (a proliferation marker gene) in the 20 largest (h)

reprogramming/on-target and (i) dead-end/off-target clones.
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Figure 4. Assessing fate-specific changes in early cell state. (a) Heatmap of genes uniquely
enriched across uninduced MEFs or one of the two reprogramming fates on Day 3 (FDR
threshold: 0.05, log fold change threshold: 0). (b) Violin plots of several genes enriched in either
off-target (dead-end) destined or on-target (reprogramming) destined cells. (¢) Heatmap of peaks

uniquely enriched across uninduced MEFs or one of the two reprogramming fates on Day 3 (FDR
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647  threshold: 0.05, log fold change threshold: 1). Right panel shows annotation of peaks linked to
648 genes (Methods). (d) Module scores for genes linked to either on-target or off-target DERs
649  projected onto the clone-cell embedding. (e) Top panel: Accessibility browser tracks for each
650 lineage split by day, highlighting peaks linked to late lineage markers (On-target: Aox3; Off-target:
651 Col28a1 and Vegfd) showing lineage specific changes in accessibility on Day 3. The Aox3 and
652  Vegfd linked DERs overlap perfectly with an ENCODE enhancer like element (ELS) while the
653  Col28a1 linked DER is within 100 bp of an ELS. Bottom panel: Expression levels of the three
654  genes across MEFs and the two reprogramming lineages split by days. The asterisks (*) mark
655 time points and lineage of significant differential enrichment. (f) Heatmap of TF activities uniquely
656  enriched across uninduced MEFs or one of the two reprogramming fates on Day 3 (FDR
657 threshold: 0.05, mean difference threshold: 0.5). (g) Left Panel: Heatmap showing TF activity (left
658 panel) and gene expression (right panel) levels for off-target associated TFs in MEFs and each
659  reprogramming lineage split by time points. TF activity signatures show a much stronger lineage

660 bias as compared to gene expression values.
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663  Figure 5. Identification of TF regulators of on-target and off-target reprogramming fate. (a)
664 Left and Middle panels: Violin plots comparing enrichment of FOXA1 and HNF4A TF activities
665  across the two reprogramming fates on Day 3 (Mann Whitney Wilcoxon test; p-values: FOXA1 =
666 9.2e-22, HNF4A = 1.7e-20). Right panel: Violin plot comparing enrichment of the Hnf4a-Foxa1

667  transgene expression across the two reprogramming fates on Day 3 (Mann Whitney Wilcoxon
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668  test; p-value = 6.5e-42). (b) Top ten TFs enriched in on-target destined cells based on TF activity
669  scores. (c) Left Panel: Representative images from the Foxd2 overexpression colony formation
670 assay; Right Panel: Bar plot showing increase in CDH1-positive colony counts in Foxd2
671  overexpressing cells compared to a standard reprogramming experiment (t-test; p-value = 0.045;
672 n = 2 biological replicates). (d) Top ten TFs enriched in off-target destined cells based on TF
673  activity scores. (e) Left Panel: Representative images from the Zfp281 overexpression colony
674  formation assay; Right Panel: Bar plot showing decrease in CDH1-positive colony counts in the
675  Zfp281 overexpressing sample compared to a standard reprogramming experiment. (t-test; p-
676  value =0.017; n = 6 biological replicates). (f) Schematic of the scRNA-seq experiment for Zfp281
677  over-expression (OE) and knockdown (KD) during reprogramming. A GFP expression vector and
678 non-target shRNA were used as controls for OE and KD respectively. (g) UMAP embedding for
679 all cells profiled in the Zfp281 OE and KD experiments with sample information (Left), cell fate
680 annotation (Middle) and Seurat cluster information (Right) projected. (h) Plot of iEP Capybara
681 identity scores across the KD and OE samples compared to respective controls (Mann Whitney
682  Wilcoxon test; p-values: Zfp281 OE vs control = 1.07e-53; Zfp281 KD vs control = 2.19e-53). (i)
683  Plot of dead-end Capybara identity scores across the KD and OE samples compared to
684  respective controls (Mann Whitney Wilcoxon test; p-values: Zfp281 OE vs control = 1.11e-11;
685  Zfp281 KD vs control = 3.26e-120). (j) Violin plots showing variation of TGF-$ pathway activity
686  across control vs OE vs OE high cells (upper panel) and control vs KD vs KD high cells (lower
687 panel). OE high cells are defined as the subset OE sample cells with above average Zfp281
688  expression. KD high cells are defined as the subset of KD sample cells with below average Zfp281
689  expression. (k) Bar plots showing fold-change in reprogramming and dead-end marker genes
690  upon small molecule mediated inhibition of TGF-B signaling, compared to a vehicle control, on
691 Day 5 of iEP reprogramming (t-test; p-values: Apoa1 = 0.02, Col1a2 = 0.02, Gsta4 = 0.04,
692  Serpine1 =0.009, Snail1 = 0.01; n=2 technical replicates).
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702  Methods

703  Tissue culture

704  Isolation of mouse LSK cells. Lin" Sca1® c-Kit" (LSK) cells were obtained using a previously
705 described protocol™. Adult mice were euthanized, bone marrow was extracted from long bone,
706  hips and spine and passed through a 70um filter. Cells were centrifuged at 300g for 10mins at 4C
707  and the pellet was resuspended in EasySep buffer (STEMCELL, Cat. 20144) at 100 million
708 cells/ml. EasySep lineage depletion kit (STEMCELL, Cat. 19856) was used to remove
709  differentiated cells. Finally, cells were stained for Sca1 (Sca1-AF488; BioLegend clone D7) and
710  cKit (CD117-PE; BioLegend clone 2B8) and sorted using the MoFlo Cell Sorter (Beckman
711  Coulter) with a 130um nozzle. Isolated LSK cells were counted and used directly for lineage
712 tracing experiments.

713

714  Mice and derivation of mouse embryonic fibroblasts. MEFs were derived from embryonic day
715  (E)13.5 C57BL/6J embryos. (The Jackson laboratory: 000664). Heads and visceral organs were
716  removed and the remaining tissue was minced with a razor blade and then dissociated in a
717  mixture of 0.05% trypsin and 0.25% collagenase IV (Life Technologies) at 37 °C for 15 min. After
718  passing the cell slurry through a 70-uM filter to remove debris, cells were washed and then plated
719  on 0.1% gelatin-coated plates, in DMEM supplemented with 10% FBS (Gibco), 2mM I-glutamine
720  and 50mM B-mercaptoethanol (Life Technologies). All animal procedures were based on animal
721  care guidelines approved by the Institutional Animal Care and Use Committee.

722

723  General Experimental methods

724  Lenti- and retro-virus production. Lentiviral particles were produced by transfecting 293T-17
725  cells (ATCC: CRL-11268) with the pSMAL-CellTag construct (see below), along with packaging
726  constructs pCMV-dR8.2 dvpr (Addgene plasmid 8455), and pCMV-VSVG (Addgene plasmid
727  8454). Constructs were titered by serial dilution on 293T cells. Hnf4a -T2A-Foxa1 was cloned into
728 the pGCDN-Sam retroviral construct and packaged with pCL-Eco (Novus Biologicals, NBP2-
729  29540), titered on fibroblasts. We opted to generate a bicistronic Hnf4a-Foxa1 construct, based
730 on the T2A sequence to increase the consistency of reprogramming via maintenance of
731  exogenous transcription factor stoichiometry. Virus was collected 48 h and 72 h after transfection
732  and applied to cells immediately following filtering through a low-protein binding 0.45-um filter.
733 Wherever applicable, the virus was concentrated using high-speed centrifugation. 20ml of filtered
734  viral supernatant was centrifuged at 50,0009 for 2.5 hours at 4°C, supernatant was removed and

735  the virus was resuspended in 100ul of DMEM. The concentrated virus was stored at -80C.
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736

737  scRNA-seq library preparation. 3’ single-cell RNA library preparation was performed using the
738  Chromium Single Cell Gene Expression Kit from 10x Genomics. Cells were obtained as single-
739  cell suspensions and processed according to the manufacturer’s instructions (CG000315).

740

741  CellTag amplification for scRNA-seq (CellTag-RNA PCR). An additional PCR step was used
742  to amplify CellTag barcodes from the single-cell cDNA library, obtained after step 2.4 of the 10x
743  Genomics Single Cell Gene Expression Kit user guide (CG000315). 5ul (or at least 60ng) of cDNA
744 was mixed with 2x Q5 HF PCR Master Mix (New England Biolabs) and 500nM of P5/R1-par and
745  P7/SI-R2 primers in a 50ul reaction volume and subjected to the following PCR program: 98 C for
746 30 seconds; N cycles (98°C for 10 seconds; 54°C for 30 seconds; 72°C for 30 seconds); 72°C for
747 2 minutes. The number of PCR cycles (N) was kept the same as the number of cycles used during
748  sample index PCR of the main scRNA-seq library. CellTag amplicon library was purified using
749  double-sided bead purification (0.4x-0.64x) and quantified on an Agilent TapeStation using the
750  D1000-HS tape. Libraries were either sequenced by themselves (with a 50% Phi-X spike-in) or
751 along with scRNA-seq libraries (preferred). CellTag amplicon libraries were sequenced on an
752 lllumina NextSeqg-500 to avoid index hopping-related artifacts. Primer sequences are available in
753  Supplementary Table 1.

754

755 scATAC-seq library preparation. Standard scATAC-seq library preparation was performed
756  using the Chromium Single Cell ATAC Kit from 10x Genomics. Cells were obtained as single-cell
757  suspensions, nuclei were isolated using 10x Genomics nuclei isolation protocol (CG000169), and
758 libraries were prepared according to the manufacturer’s instructions (CG000209).

759

760 scATAC-seq library preparation with modifications for CellTag capture. To prepare single-
761  cell ATAC libraries with CellTag capture, nuclei were isolated using manufacturer’s instructions
762  (CG000169), centrifuged to remove supernatant, and lightly fixed in 100ul 0.1% formaldehyde
763  solution for 5 minutes. The reaction was stopped for 5 minutes by adding 30ul of stop buffer
764  (0.625M Glycine, 0.5% BSA, 0.25M ph8 Tris-Cl in PBS). The nuclei suspension was diluted using
765  100ul diluted nuclei buffer (10x Genomics; CG000169) and pelleted using centrifugation. The
766  pellet was subjected to tagmentation for 60 minutes after re-suspension in a 15ul tagmentation
767  reaction (for up to 15k nuclei) according to the manufacturer’s instructions (CG000209). After
768  tagmentation, the reaction mixture was diluted with 100ul dilute nuclei buffer, nuclei were pelleted

769  using centrifugation and subjected to targeted in situ reverse transcription in a 100ul reaction
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770  volume (20ul of 5x SuperScript IV reaction buffer, 5ul each of dNTPs, DTT, RnaseOUT RNase
771  inhibitor, SuperScript IV Reverse Transcriptase, 1uM of primer ctac2-rt1) using the following
772  temperature program: 4°C for 2 minutes; 10°C for 2 minutes; 20°C for 2 minutes; 30°C for 2
773 minutes; 40°C for 2 minutes; 45°C for 10 minutes. After isRT, the reaction mixture was diluted
774  with 100ul dilute nuclei buffer and pelleted using centrifugation. 15ul GEM-nuclei mix was
775  prepared to load nuclei on 10x Genomics Chip E/H by mixing up to 15k nuclei with 6ul of ATAC
776  buffer (from the 10x Genomics scATAC-seq kit) and 3ul of 4uM primer ctac2-rt1. Any remaining
777  volume was made up with dilute nuclei buffer. GEM-nuclei mix was loaded onto Chip E/H along
778  with ATAC GEM beads and barcoding enzyme mix, the remaining steps of the scATAC-seq library
779  preparation protocol were performed according to the manufacturer's instructions. Primer
780  sequences are available in Supplementary Table 1. All centrifugation steps were performed at
781 5009 for 10 minutes at 4°C unless stated otherwise.

782

783  CellTag amplification for scATAC-seq (CellTag-ATAC PCR). While CellTags can be recovered
784  directly from the sequenced scATAC-seq library with our library preparation, a higher yield can
785  be obtained using an additional targeted PCR step, similar to the scRNA-seq version. For this,
786  5ul of the library is collected after step 3.2 of the user guide (CG000209) and mixed with 2x Q5
787  HF master mix, 500nM of primer biot-atac2_lin and water in a 50ul reaction volume, and CellTag
788  containing fragments are linearly amplified using the following PCR program: 98°C for 30
789  seconds; 20 cycles (98°C for 10 seconds; 67°C for 30 seconds; 72°C for 30 seconds); 72°C for 2
790  minutes. The CellTag amplicons are purified using streptavidin-coated magnetic bead pulldown
791  (ThermoFisher Scientific; Dynabeads™ MyOne™ Streptavidin C1) and purified fragments are
792  resuspended in 20ul of water. A final sample index PCR is performed to create a sequencible
793  library in presence of 2x Q5 master mix, 500nM each of partial_p5 and biot-atac2_e-rev primers
794  in a 100ul reaction volume using the following PCR program: 98°C for 30 seconds; 13 cycles
795 (98°C for 10 seconds; 67°C for 30 seconds; 72°C for 30 seconds); 72°C for 2 minutes and libraries
796  are purified using a double-sided bead cleanup, as described in Step 4.2 of 10x Genomic
797  scATAC-seq user guide (CG000209). Primer sequences are available in Supplementary Table 1.
798

799  General Computational methods

800 Identifying clones. Clone identification was performed based on our previously described
801 method”". Reads matching the CellTag-multi barcode sequence pattern
802  (N)sGT(N)sCT(N)sAG(N)sTG(N)sCA(N)s were extracted from single-cell bam files as obtained

803 from CellRanger, filtered to remove false positive transcriptomic/genomic reads and reads
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804  originating from non-cell droplets. For scRNA-seq, cell barcode-CellTag-UMI triplets represented
805 by only a single read were discarded. We also provide an estimate of CellTag sequencing
806  saturation to guide users if they require deeper sequencing of their CellTag libraries. CellTags
807  were error-corrected using Starcode’® to mitigate PCR/sequencing errors and filtered to remove
808  sequences outside of the allowlist. Cell x CellTag read count (ATAC)/ UMI count (RNA) matrices
809  were obtained, binarized and cells with too few or too many tags were removed to obtain the final
810  Cell x CellTag matrices for scRNA-seq and scATAC-seq assays. Cell-cell similarity was computed
811  using the Jaccard similarity metric and clones were identified using graph clustering. Whenever
812  applicable, scRNA-seq and scATAC-seq CellTag matrices were merged before the Jaccard
813  similarity calculation step, to identify clones across single-cell modalities. A detailed pipeline for
814  clone calling can be found at: https://github.com/morris-lab/newCloneCalling

815

816  Clone cell embedding. To jointly visualize cells and clones on a single embedding, we developed
817  aunique clone-cell graph embedding approach wherein we impute a cell-cell similarity graph with
818  abstract clone nodes and use it as an input for graph embedding algorithms such as UMAP. For
819  clone-cell embedding, we first obtained our single-cell data as an AnnData object and computed
820  a cell-cell connectivity matrix based on PCA (in case of scRNA-seq) or CCA (in case of joint
821 scRNA-seq scATAC-seq embedding). Next, we created a new AnnData object containing both
822  cells and clones as observations. The connectivity matrix in the .obsm[‘connectivities’] slot was
823  expanded to introduce clones. Then, clones were connected to their constituent cells by setting
824  the respective entries in the expanded ‘connectivities’ matrix to 1. Finally, we used this clone-cell
825  AnnData object with the expanded connectivity matrix as an input to graph embedding algorithms
826  such as UMAP or Force Atlas.

827

828  Section 1

829  CellTag-multi library synthesis. CellTag-multi library was synthesized using Restriction Free
830 (RF) cloning’™®. CellTag-multi barcodes were obtained as a gBlock from IDT DNA (see
831  Supplementary Table 1 for sequence) and cloned into the pSMAL-ctac2 vector. 20ng of the
832  CellTag-multi-v1 gBlock and 100ng of pSMAL-ctac2 vector were mixed with 2x Phusion PCR
833  master mix in a 20ul reaction volume. The reaction mixture was subjected to the following thermal
834  cycling program: 98°C for 30 seconds; 15 cycles (98°C for 8 seconds, 60°C for 20 seconds, and
835  72°C for 4.5 minutes); 72°C for 5 minutes. The parental plasmid was digested by adding 2ul of
836  methylation-sensitive restriction enzyme, Dpn/ (New England Biolabs), and incubating the

837  reaction at 37°C for 2 hours followed by inactivation at 80°C for 20 minutes. 10ul of the reaction
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838  mix was transformed directly into 100ul of Stellar chemically competent cells (Takara Bio), cells
839  were allowed to recover at 37°C, 250rpm in 1ml of SOC media and plated on a Nunc Square
840 BioAssay plate (Cat. 166508). Plates were incubated overnight at 37°C. Bacterial colonies were
841  collected using a scraper and allowed to recover in 150ml of LB media supplemented with
842  100ug/ml Ampicillin. CellTag-multi libraries were purified using a Qiagen High speed maxi prep
843 kit (Cat. 12662) and library complexity was assessed as described below. This cloning was
844  performed four times and libraries from each round were pooled to obtain the final high complexity
845  library.

846

847  Assessing the complexity of CellTag-multi libraries and allowlisting. A list of allowed CellTag
848  sequences for each CellTag library was created using amplicon sequencing. 50ng of CellTag
849  plasmid library was mixed with 2x Q5 HF Master Mix, 2.5ul each of 0.5uM primers bATAC_fwd
850 and bATAC rev in a 25ul reaction volume and subjected to the following PCR program: 98°C for
851 30 seconds; 10 cycles (98°C for 10 seconds; 63°C for 30 seconds; 72°C for 1 minute). Two
852  amplicon libraries were generated from each CellTag library plasmid preparation in parallel and
853 sequenced on an lllumina Miseq. For each replicate, reads matching the CellTag sequence
854  pattern (N)sGT(N)sCT(N)sAG(N)sTG(N)sCA(N)s were extracted, sequencing/PCR errors were
855  corrected by collapsing tags within 4 edits of each other using starcode’® and thresholded to retain
856  CellTags containing at least N reads where N = max(10, 90™ percentile/10). An allowlist was
857 created by collecting all CellTag sequences retained in thresholded lists from both replicates.
858  Allowlists from the four CellTag libraries were combined to create the master allowlist for the
859  CellTag-multi library (Supplementary Table 7). The detailed analysis code can be found at:
860  https://github.com/morris-lab/newCloneCalling

861

862  Species mixing experiment. For the species mixing experiment, mouse iEP-LT cells were

863  tagged with CellTag-multi-v1 library, containing the barcode pattern
864  (N)sGT(N)sCT(N)sAG(N)sTG(N)sCA(N)s and human HEK 293T cells with CellTag-multi-vO library,
865  containing the barcode pattern (N)sGTA(N)sCCT(N)sATC(N)sGAT(N)s. Nuclei were isolated from
866  both species using the Nuclei Isolation for scATAC-seq protocol from 10x Genomics (CG000169)
867 and mixed in a 1:1 ratio. The mixed nuclei sample was processed using the standard scATAC-
868  seq library preparation protocol (v1 kit) from 10x Genomics with modifications to capture CellTags.
869  Single-cell libraries were sequenced on an lllumina Nextseq-500. The resulting sequencing data
870  was aligned to a mixed species reference using CellTag-ATAC v1. The aligned bam file was used

871  for downstream analysis.
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872 Reads matching vO or v1 CellTags were parsed from the mixed species single-cell aligned
873  bam file. Each cell barcode was assigned to one of four categories, based on CellRanger-ATAC
874  species assignments - human, mouse, doublet, non-cell; the distribution of vO and v1 reads was
875  assessed across the four categories. Cells with fewer than two CellTag reads across both libraries
876  were discarded and the remaining cells were plotted on a barnyard plot. We quantified inter-
877  species cross-talk of CellTags, by calculating the percent of cells, with at least 2 CellTag
878  reads/cell, having less than 95% of CellTag reads originating from the correct, species-specific
879  CellTag library.

880

881 Assessing the effect of isRT on chromatin accessibility signal. We compared the effect of
882  introducing an isRT step on scATAC-seq data quality. For this, two single-cell ATAC libraries were
883  prepared with CellTagged HEK 293T cells using either the original 10x Genomics scATAC library
884  preparation protocol (Original) or our modified method (Modified). Sequencing data from both was
885  processed with ArchR”’, dimensionally reduced using LS, clustered using Louvain clustering, and
886  peaks were identified across samples. Both datasets were compared across several standard
887  scATAC-seq data quality metrics such as fragment size distribution, TSS scores, the number of
888  unique fragments per cell and Fraction reads in Peaks (FRIP) per cell. To compare genome-wide
889  accessibility data across samples, normalized peak counts (Counts Per Million; CPM) were
890 calculated for each sample and plotted on a scatter plot and the Pearson Correlation coefficient
891  was calculated to quantify the similarity between the accessibility signal of the two samples.

892

893  Analysis of clones in expanded reprogramming fibroblasts. A subset of the data obtained
894  from our reprogramming dataset (described in section 3) from Days 12 and 21 was used for this
895 analysis. Clones were identified following the standard computational workflow as described
896  above. CellTag abundance was calculated for each CellTag as the percent of metric filtered cells
897  containing that CellTag. Browser tracks depicting single-cell accessibility fragments were plotted
898 using ArchR. Gene expression and gene scores values were averaged on a clonal level.
899  Spearman correlation coefficients were calculated between clonal gene expression and gene
900  score both within (Intra clonal) and across clones (Inter clonal).

901

902  Section 2

903 Lineage tracing during in vitro mouse hematopoiesis. LSK cells were purified as described
904 above, counted and 5,500 cells were added to a 96-well U-bottom suspension culture plate

905  (GenClone Cat. 25-224) and allowed to recover in broad myeloid differentiation media'® consisting
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906 of SFEM media (STEMCELL), Pen/Strep, IL-3 (20ng/mL; PeproTech Cat. 213-13), FLT3-L
907  (50ng/mL; PeproTech Cat. 250-31L), IL-11 (50ng/mL; PeproTech Cat. 220-11), IL-5 (10ng/mL;
908 PeproTech Cat. 215-15), EPO (3U/mL; PeproTech Cat. 100-64), TPO (50ng/mL; PeproTech Cat.
909  315-14), and mSCF (50ng/mL; R&D Systems Cat. Q78ED8) and IL-6 (10ng/mL; R&D Systems
910 Cat. 406-ML-005) at 37°C for 2 hours.

911 To allow clone tracking, cells were transduced for 2 days with 10ul of concentrated
912  CellTag-multi virus (~25k unique CellTag sequences) in 100ul differentiation media, in the
913  presence of 6ug/ml DEAE-Dextran after spin-fection at 800g for 90 minutes at 37°C. 60 hours
914 (2.5 days) after the start of the experiment, 50% of the cells were collected for single-cell profiling
915 and split equally between scRNA-seq and scATAC-seq assays. The remaining cells were split
916 into 2 technical replicates and re-plated in fresh differentiation media. Finally, all the cells were
917  collected on Day 5 and split between scRNA-seq and scATAC-seq profiling.

918

919 Single-cell library preparation and sequencing. The v3 single index Gene Expression kit and
920  the v1 scATAC kit from 10x Genomics were used for single-cell library preparation. CellTag-RNA
921 PCR was used to obtain CellTag amplicon libraries as described above. scRNA-seq libraries were
922  sequenced on an lllumina NovaSeq-6000 and the resulting data was computationally dehopped.
923  CellTag amplicon libraries obtained from scRNA-seq libraries were sequenced on an lllumina
924  NextSeq-500. For read alignment, CellTag and transcriptome read files for each sample were
925  processed together using CellRanger, using a custom mm10 reference containing the GFP CDS
926 and UTR, to produce one aligned bam file per sample. scATAC-seq libraries containing both
927  accessible chromatin and CellTag fragments were sequenced on an lllumina NextSeq-500 and
928  processed using CellRanger-ATAC, using the default mm10 reference genome. Aligned bam files
929  from both modalities were used for CellTag processing, other CellRanger and CellRanger-ATAC
930  outputs were used for downstream single-cell analyses.

931

932 Basic single-cell and clonal analysis of the Hematopoiesis dataset. CellRanger generated
933 scRNA-seq count matrices were processed using Seurat. Low-quality cells with high
934  mitochondrial reads, low UMIs, and features per cell were removed. Day 2.5 and Day 5 samples
935 were integrated using SCTransform, dimensionally reduced using PCA, and clustered using
936 Louvain clustering. scRNA-seq clusters were annotated using marker gene expression.
937 Fragments files from scATAC-seq samples were processed using ArchR v1.0.1. Valid cell
938 barcodes, as identified by CellRanger-ATAC and passing default ArchR quality filters were

939 retained. Cells were dimensionally reduced using iterative LS| and clustered using Louvain
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940  clustering. Cell type labels were transferred to sCATAC-seq clusters using Seurat label transfer
941 and annotations were manually inspected using marker gene scores. For RNA-ATAC co-
942  embedding, scRNA-seq gene expression matrix and scATAC-seq MAGIC imputed’® Gene Score
943 matrix, as obtained from ArchR, were used as input to the RunCCA function in Seurat. A union
944  set of the top 5000 highly variable genes from each dataset were used for this co-embedding.
945 For clone calling, reads mapping to the CellTag barcode were extracted from single-cell
946  aligned bam files as obtained from CellRanger and CellRanger-ATAC and cell x CellTag UMI
947  matrices were obtained. CellTag data within each modality was merged, retaining sample-of-
948  origin information in the cell barcode, and cell x CellTag UMI (for RNA) and read (for ATAC) count
949  matrices were obtained for each modality. The RNA matrix was binarized at a threshold of more
950 than one UMI count and cells with 2 to 25 CellTags were retained. The ATAC matrix was binarized
951 at a threshold of more than one read count and cells with 1 to 25 CellTags were retained. The
952 two filtered matrices were merged, cell-cell Jaccard similarity matrix was computed and
953  thresholded at 0.6 (for cell pairs within the same modality) and 0.5 (for cell pairs across
954  modalities). The final thresholded matrix was used to identify clones across the entire dataset.
955  Clone-cell embedding was computed as described above, and ForceAtlas2 was used to jointly
956  visualize clones and cells. This embedding was also generated separately for sub-clones where
957  clones were split either by modality or by both, time point and modality. For single-modality clonal
958 analysis, Cell x CellTag matrices for each modality were processed separately with the same
959 thresholds as above. A Jaccard threshold of 0.5 was used for ATAC clone calling and 0.6 was
960 used for RNA clone calling. Lineage hierarchies were obtained using clone coupling as previously
961  described™

962

963  State-fate linkage in hematopoiesis. To link cell state with fate, we first obtained all clones
964  spanning the two time points (state-fate clones). Each state-fate clone was assigned a fate label,
965  which was the most common fate amongst its Day 5 sisters. Less common lineages were grouped
966 based on similarity, e.g. Erythroid and Megakaryocytes (Ery/Meg); Eosinophils, Basophils, and
967 Mast Cells (Baso/Eos/Mast). Ccr7 DCs and plastoid DCs (DCs). Clones annotated to transition/
968  progenitor fates were excluded from state-fate analysis unless otherwise specified. Fate bias
969  scores were calculated as percent of Day 5 fate sisters belonging to the annotated fate label.
970 To map Day 2.5 (state) sub-clones on the clone-cell embedding, we split each clone into
971  sub-clones based on the time point of collection and assay of each sister, to obtain up to four sub-
972  clones RNA/ATAC - state/fate sub-clones. The clone-cell embedding was recomputed using

973  these sub-clones. Overlap between RNA and ATAC sub-clones across the two single-cell
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974  modalities was calculated within each ‘fate potential’ group using the Wasserstein distance metric
975  computed with a 30-dimensional embedding of the sub-clone nodes obtained using the UMAP
976  algorithm. To quantify if state sub-clones closer to the periphery of a 'fate potential’ group were
977 less fate biased, we devised a closeness metric, which is the minimum distance of a state sub-
978  clone from the centroid of an alternative fate potential group. A higher closeness metric would
979 mean that a state sub-clone is farther away from centroids of other fate potential groups. The
980 relationship between the closeness metric and fate bias was plotted using a percentile plot, with
981 percentile rank for the closeness metric on the X-axis and mean fate bias scores for state sub-
982  clones passing the percentile rank on the Y-axis.

983 To characterize functional priming of cell state, Day 2.5 state sisters in each fate potential
984  group were compared to the rest in gene expression and TF activity space. For scRNA-seq
985 features, we used residuals obtained for the top 3000 highly variable genes after SCTransform
986  normalization in Seurat. For scATAC-seq features, we used TF activity z-scores obtained from
987 chromVAR using the default mouse motif set in ArchR (884 TF motifs). Correction for multiple
988  hypothesis testing was performed using the Benjamini-Hochberg method, setting the FDR
989  threshold for significance at 0.05, unless otherwise specified.

990

991 Fate prediction from cell state using machine learning. State-fate machine learning was
992  performed to quantify the predictability of cell fate from early state. A machine learning classifier
993  was tasked to predict the discrete clonal fate label Y as obtained above (possible fate labels:
994  ‘progenitor’, ‘monocyte’, ‘neutrophil’, ‘Lym/pDC/Ccr7-DC’, ‘Ery/Meg’ or ‘Baso/Eos/Mast’), from an
995  input vector of single-cell features X of Day 2.5 cells. For RNA only model, we used residuals of
996 the top 3000 genes for input, for ATAC only model, we used TF activity z-scores (with k-nn
997  imputation where k=20) as input and for the RNA+ATAC model, we randomly paired RNA and
998  ATAC cells within the same sub-clone and concatenated their respective RNA and ATAC feature
999  vectors and used those as input. For training, we used the Repeated Stratified k-fold cross-
1000  validation procedure setting both n_splits and n_repeats to 5. Model performance was evaluated
1001  using accuracy and Weighted F1 score.
1002 For each machine learning task, we tested a panel of classifier architectures, logistic
1003  regression, LightGBM, and Random Forest. Each was trained and evaluated using the procedure
1004  described above. Hyperparameter tuning was performed for each and the following values were
1005  tested:
1006 e Random Forest: n_estimators: [100, 300, 1000], max_depth: [10, 50, None],
1007 min_samples_leaf: [1, 2, 4], bootstrap: [True, False]
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1008 e LightGBM: num_leaves: [7,15,31,80], max_depth: [5,9,30], min_data_in_leaf: [20, 40, 80],
1009 bagging_fraction: [0.8,1], bagging_freq: [3], feature_fraction: [0.1, 0.9]

1010 e Logistic Regression: penalty: ['12', 'none'], C: np.logspace(-4, 4, 20), solver:
1011 ['Ibfgs’,'newton-cg’,'saga’], max_iter: [1000]

1012  The python library ‘scikit-learn’ was used for all machine learning analysis.

1013

1014  Fate prediction using TF activities derived from distal, intronic, exonic, and promoter peak
1015 sets. ATAC peaks were categorized as intronic, exonic, promoter, or distal using default ArchR
1016  definitions. TF activity scores were calculated for each peak set independently and used for state-
1017  fate prediction analysis as described above. To test if variation in model performance was due to
1018  different numbers of peaks in each set, all peak sets were randomly sub-sampled to 8823 peaks
1019  (number of peaks in the exonic set), TF activity scores were calculated again and state-fate
1020  prediction was performed using these new scores.

1021

1022  SHapley Additive exPlanations (SHAP) analysis. The shap python package was used to
1023  perform SHAP analysis and interpret trained machine learning models. The TreeExplainer
1024  function from the ‘shap’ python package was used to calculate SHAP values for trained random
1025  forest models. For each input feature and fate label, SHAP values were calculated using each
1026  data pointin the 25 test sets (n_splits x n_repeats), resulting in 5 SHAP values per data point per
1027  feature. This helped average out any rare outlier values generated due to a model training artifact.
1028  Feature importance scores were calculated for each input feature for the prediction of each fate
1029 label, by taking the mean of absolute SHAP values for each feature-fate combination. To identify
1030 features positively or negatively correlated with the prediction of a fate label, SHAP correlation
1031 was performed. For each input feature, the Pearson correlation coefficient between its values
1032  (expression/TF activity) and its SHAP values for a given fate was calculated, resulting in one
1033 correlation value per feature per fate.

1034

1035  Section 3

1036 Lineage tracing during iEP reprogramming. Cryo-preserved PO MEFs were thawed and
1037  seeded in 0.1% gelatin-coated six-well plates, in DMEM supplemented with 10% FBS, 2 mM |-
1038  glutamine, and 50 mM B-mercaptoethanol (Life Technologies) and penicillin-streptomycin at a
1039  density of 30,000 cells/well. After overnight recovery at 37°C, cells were transduced every 12
1040  hours for 2 days, with fresh Hnf4a-T2A-Foxa1 retrovirus in the presence of 4 ug/ml protamine

1041  sulfate (Sigma-Aldrich). During the last round of transduction, the retroviral mix was supplemented
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1042  with CellTag-multi lentiviral library to initiate clone tracking. On Day 0 of reprogramming, cell
1043 culture media was changed to hepato-medium (DMEM:F-12, supplemented with 10% FBS, 1
1044  pg/ml insulin (Sigma-Aldrich), 100 nM dexamethasone (Sigma-Aldrich), 10 mM nicotinamide
1045  (Sigma-Aldrich), 2 mM I-glutamine, 50 mM -mercaptoethanol (Life Technologies), and penicillin-
1046  streptomycin, containing 20 ng/ml epidermal growth factor (Sigma-Aldrich)). After 72 hours (Day
1047 3 of reprogramming), cells were dissociated, two-thirds of the cells were collected for single-cell
1048  sequencing and the remaining cells were re-plated on 6-well plates coated with 5 pg/cm? Type |
1049 rat collagen (Gibco, A1048301). Two additional samples were collected on Days 11 and 21 for
1050  single-cell sequencing. We used the 10x Genomics v3.1 dual index Gene Expression kit (PN-
1051 1000268) and the v1.1 ATAC kit (PN-1000175) for single-cell profiling. This experiment was
1052  performed in two biological replicates.

1053 CellTag PCR was performed for all scRNA-seq and scATAC-seq libraries, as described
1054 above. scRNA-seq and scATAC-seq libraries were sequenced on an lllumina NovaSeq-6000.
1055 CellTag amplicon libraries were sequenced on an lllumina NextSeq-500 to avoid any index
1056  hopping related artifacts. For read alignment, CellTag and transcriptome/chromatin read files for
1057 each sample were processed together using CellRanger/CellRanger-ATAC, to produce one
1058 aligned bam file per sample. Aligned bam files from both modalities were used for CellTag
1059  processing, other CellRanger and CellRanger-ATAC outputs were used for downstream single-
1060  cell analyses.

1061

1062  Basic single-cell and clonal analysis of the direct reprogramming dataset. sScRNA-seq count
1063  matrices were processed using Seurat. Quality filtering was performed to remove cells with high
1064  mitochondrial reads and low UMIs and genes per cell. scRNA-seq samples across all time points
1065 and biological replicates were integrated, dimensionally reduced using PCA, and clustered using
1066  Louvain clustering. Cells from Days 12 and 21 were subsetted and re-clustered. Single-cell
1067 identity scores were obtained using Capybara, using Fibroblasts (MEFs), , and reprogrammed,
1068  and dead-end trajectories from a previous dataset’ as references. Cell clusters were annotated
1069  as ‘reprogrammed’, ‘dead-end’, or ‘transition’ based on these cell identity scores and marker gene
1070  expression. Fragments files from scATAC-seq samples were processed using ArchR. Valid cell
1071  barcodes, as identified by CellRanger-ATAC and passing default ArchR quality filters were
1072  retained. Cells were dimensionally reduced using iterative LS| and clustered using Louvain
1073  clustering. Cells were annotated as ‘reprogrammed’, ‘dead-end’, or ‘transition’ based on marker
1074  gene accessibility. For RNA-ATAC co-embedding, scRNA-seq gene expression matrix and

1075  scATAC-seq MAGIC imputed’® Gene Score matrix, as obtained from ArchR, were used as input
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1076  to the RunCCA function in Seurat. A union set of the top 2000 highly variable genes from each
1077  dataset were used for this co-embedding.

1078 For clone calling, reads mapping to the CellTag barcode were extracted from single-cell
1079  aligned bam files as obtained from CellRanger and CellRanger-ATAC. CellTag data within each
1080  modality was merged, retaining sample-of-origin information in the cell barcode, and cell x CellTag
1081  UMI (for RNA) and read (for ATAC) count matrices were obtained for each modality. The RNA
1082  matrix was binarized at a threshold of more than one UMI count and cells with 2 to 25 CellTags
1083  were retained. The ATAC matrix was binarized at a threshold of more than one read count and
1084  cells with 2 to 25 CellTags were retained. The two filtered matrices were merged, cell-cell Jaccard
1085  similarity matrix was computed and thresholded at 0.6. The final thresholded matrix was used to
1086 identify clones across the entire dataset. Clone-cell embedding was computed as described
1087  above and the UMAP algorithm was used to jointly visualize clones and cells.

1088

1089  State-fate analysis for the direct reprogramming dataset. Clones were annotated with one of
1090 three fates — ‘reprogrammed’, ‘transition’, or ‘dead-end’, based on the most abundant cell type
1091 amongst fate sisters. Clonal fate bias scores were calculated as percent of fate sisters (Days 12
1092  and 21) belonging to the annotated fate label. Alluvial plots were constructed using the ggAlluvial
1093 R package. State-fate machine learning analysis was performed exactly as described in the
1094  hematopoiesis section. Classification models were trained to predict either ‘reprogrammed’ or
1095 ‘dead-end’ fates. Since the frequency distribution of fate labels was less skewed for the
1096 reprogramming dataset, only prediction accuracy scores were used as performance metrics.
1097  CellRank analysis was performed for a 40,000-cell subset of the scRNA-seq dataset, due to
1098  scalability limitations. For feature enrichment analysis, Day 3 sisters in state-fate clones were
1099  grouped by fate. Seurat FindMarkers function was used to identify gene expression markers and
1100  ArchR getMarkerFeatures function was used to identify peak and TF activity markers for each of
1101  the following cell groups - uninduced MEFs, on-target destined cells and, off-target destined cells,
1102  in a series of one versus all comparisons. For peak and TF activity comparisons, both on-target
1103  and off-target cell groups were expanded using k-nearest neighbors (k=5). Uniquely enriched
1104 features (genes/peaks/TFs) were obtained by removing features that were identified as markers
1105  of more than one cell group. TF activity results were further refined by discarding TFs with low
1106  gene score-TF activity correlation (< 0.3). Motif enrichment analysis was performed using the
1107 HOMER package’® for both on-target and off-target DERs using MEF DERs as background, to
1108  better resolve fate-specific motif enrichment. Mouse ENCODE ELS elements were obtained from
1109 the ENCODE SCREEN database*®. Only genomic regions annotated as dELS, pELS, dELS,
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1110  CTCF-bound, or pELS, CTCF-bound in the SCREEN database were used for enrichment
1111  analysis. The FigR* package was used for peak-to-gene linkage analysis. Optimal matching was
1112  used to pair RNA and ATAC cells from the same time points followed by the runGenePeakcorr
1113  function to identify peak-gene pairs. Peak-gene pairs with an adjusted p-value greater than or
1114  equal to 0.05 were discarded. Foxa1 and Hnf4a ChlP-seq peaks from Day 2 of reprogramming
1115  were obtained®. These peak sets were added as custom annotations in ArchR and single-cell
1116  accessibility z-scores for each peak set were computed using the addDeviationsMatrix function
1117  in ArchR.

1118

1119 Computational analysis related to ZFP281 motifs. Tomtom analysis® from the MEME-ChIP
1120  package was used to find highly similar motifs to Zfp281. The Zfp281 position frequency matrix
1121  (PFM) was obtained from ArchR and used as input to the Tomtom web interface. Highly correlated
1122  TF motifs with g-value less than 0.05 were obtained, these were further subsetted for TF activities
1123 enriched in off-target destined cells resulting in a total of four TF motifs for comparison with
1124  Zfp281. Zfp281 ChlP-seq peaks were obtained® and single-cell accessibility z-scores were
1125  computed using the addDeviationsMatrix function in ArchR. Zfp281 gene targets®® were used as
1126  inputs for a state-fate prediction model, which was trained and evaluated as described above and
1127  compared to a sized-matched set of random genes.

1128

1129  Plasmid cloning related to Foxd2 and Zfp281 experiments. Non-targeting shRNA construct
1130  was obtained from Sigma (SHC202; pLKO.5-puro Control Plasmid). Zfp281 targeting shRNA
1131  gene was obtained from Sigma (Clone ID: TRCN0000255746) and cloned into the pLKO.5-puro
1132 lentiviral construct (Sigma SHC201). For over-expression, cDNA fragments were cloned in the
1133  pGCDNsam retroviral construct. Zfp281 cDNA was obtained from OriGene (Cat. MC205914) and
1134  Foxd2 cDNA was reverse transcribed from RNA obtained from long-term iEP cells.

1135

1136 Reprogramming with Foxd2 and Zfp281 perturbations. Reprogramming was performed as
1137  described above, with the following modifications. For over-expression, cells were transduced
1138  with a 1:1 mixture of Foxd2/Zfp281 retrovirus and Hnf4da-Foxa1 reprogramming retrovirus every
1139 12 hours for 2 days. Control cells were transduced with a 1:1 mixture of a GFP control retrovirus
1140  and Hnf4a-Foxa1 reprogramming retrovirus for the same amount of time. For knockdown, cells
1141  were transduced with the non-targeting control/Zfp281-shRNA lentivirus every 12 hours for 1 day
1142  after the 2-day Hnf4a-Foxa1 retroviral transduction was completed.

1143
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1144  Single-cell analysis for Foxd2 and Zfp281 experiments. Dual indexed v3.1 scRNA-seq
1145  libraries were prepared for all four samples (Zfp281 OE, OE Control, Zf(p281 KD, KD Control)
1146  according to the manufacturer’s instructions (CG000315) and sequenced on a Nextseq-500.
1147  Count matrices were generated and integrated using CellRanger count and aggr commands and
1148  processed using Seurat. Quality filtering was performed to remove cells with high mitochondrial
1149  reads and low UMIs and genes per cell. Cells were dimensionally reduced using PCA, cell cycle
1150 regressed, clustered using Louvain clustering, and visualized using UMAP. Capybara identity
1151  scores were calculated as described in the iEP lineage tracing section above. Markers for each
1152  lineage across time points and uninduced MEFs were obtained (log2 fold change > 0.7, adjusted
1153  p-value < 0.05) and used for gene module scoring for all four samples. Cell clusters displaying
1154  strong enrichment of on-target or off-target markers were annotated with the respective fates.
1155 pROGENY pathway analysis®® was used to calculate single-cell activity scores for the TGF-B
1156  signaling pathway.

1157

1158  Colony formation assays. Colony formation assays were performed as previously described’.
1159 Reprogramming cells were seeded at low plating density in collagen-coated 6-well plates within
1160 the first 4 days and allowed to form colonies over 2 weeks of reprogramming. Following this, cells
1161  were fixed using 4% paraformaldehyde, permeabilized using 0.1% Triton-X and processed for
1162 CDH1 (E-Cadherin) staining using the VIP peroxidase substrate kit (Vector labs SK4600) and
1163  anti-mouse E-Cadherin primary antibody (1:100, BD Biosciences). Stained colonies were imaged
1164 using a flatbed scanner and quantified using the following script: https://github.com/morris-
1165 lab/Colony-counter

1166

1167 Quantitative PCR and analysis. Cells were collected for RNA extraction (RNeasy kit; QlAgen)
1168 on Day 12 of reprogramming and reverse transcribed using the Maxima RT kit (ThermoFisher
1169 K1672). 20ng of reverse transcribed RNA was mixed with TagMan™ Gene Expression Master
1170  Mix (ThermoFisher Scientific) and gene-specific TagMan™ probes (Supplementary Table 8) in a
1171  20ul reaction volume and processed according to manufacturer’s instructions (4371135) on the
1172  StepOne Plus gPCR system. Per gene fold change for Foxd2 overexpressing cells was calculated
1173  relative to control reprogramming cells (Hnf4a-Foxa1 and GFP control overexpression) that were
1174  processed in parallel, after normalization to the housekeeping gene, Actb.

1175

1176  Reprogramming with TGF-B inhibition. Cells were reprogrammed as described above. Cells
1177  were cultured in hepatic media supplemented with 2.6uM of SB431542 (STEM CELL 72232), a
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1178  small molecule inhibitor of TGF-b signaling starting on Day 0 of reprogramming. SB431542
1179  containing media was changed every 2 days. Cells were collected for gPCR analysis on Day 5 of
1180  reprogramming and processed as described above.

1181
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