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ABBREVIATIONS:

COBLL1 Cordon-Bleu-like Like 1

ACP1 Acid phosphatase 1

GALNS galactosamine (N-acetyl)-6-sulfatase
PSMC3 Proteasome 26S subunit, ATPase 3
GWAS Genome-wide association study

SNP single-nucleotide polymorphism
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ABSTRACT:

Insufficient insulin secretion to meet metabolic demand results in diabetes. The intracellular flux of
Ca?* into B-cells triggers insulin release. Since genetics strongly influences variation in islet secretory
responses, we surveyed islet Ca* dynamics in eight genetically diverse mouse strains. We found high
strain variation in response to four conditions: 1) 8 mM glucose; 2) 8 mM glucose plus amino acids; 3)
8 mM glucose, amino acids, plus 10nM GIP; and 4) 2 mM glucose. These stimuli interrogate B-cell
function, a-cell to B-cell signaling, and incretin responses. We then correlated components of the Ca?*
waveforms to islet protein abundances in the same strains used for the Ca?* measurements. To focus
on proteins relevant to human islet function, we identified human orthologues of correlated mouse
proteins that are proximal to glycemic-associated SNPs in human GWAS. Several orthologues have
previously been shown to regulate insulin secretion (e.g. ABCC8, PCSK1, and GCK), supporting our
mouse-to-human integration as a discovery platform. By integrating these data, we nominated novel
regulators of islet Ca®* oscillations and insulin secretion with potential relevance for human islet
function. We also provide data for identifying appropriate mouse strains in which to study these

regulators.
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INTRODUCTION:

The majority of gene loci responsible for the genetic variation in type 2 diabetes (T2D) susceptibility
affect the function of endocrine cells of pancreatic islets, primarily B-cells (1, 2). Variation in B-cell mass
and B-cell function place boundaries on the capacity to respond to acute and chronic demands for
insulin, such as those in overnutrition and insulin resistance (1, 2). Therefore, metabolic challenges are
useful in genetic screens because the increased demand for insulin promotes the progression from
normal blood glucose to diabetes in individuals with genetic variants that affect p-cells.

The collection of inbred mouse strains currently available provides us with a wide repertoire of
genetic and phenotype diversity, comparable to that of the entire human population (3). Yet, the majority
of mouse studies have been confined to a small handful of highly inbred strains (3, 4). It is becoming
widely appreciated that gene deletions, nutritional interventions, and drug effects vary widely between
mouse strains as they do in humans (3, 5). Thus, characterization of the basis for this high level of
phenotype variation is a way to gain deeper insights into the pathophysiology and genetics of a wide
range of physiological processes.

The pancreatic B-cell is a nutrient sensor. In response to particular nutrient stimuli (e.g. glucose,
amino acids), the cells generate ATP and close ATP-dependent K* channels (Katp), resulting in plasma
membrane depolarization. This leads to an oscillatory influx of Ca?* ions, triggering insulin secretion.
The process of secreting insulin and re-compartmentalizing Ca?* ions consumes ATP, and the drop in
the ATP/ADP ratio reopens Katp channels, repolarizing the membrane, and closing membrane Ca?*
channels. Consequently, oscillations in metabolism, insulin secretion, and Ca?* are intrinsically linked
(6-9), and the capacity to maintain functional Ca?* handling has been suggested to be critical for islet
compensation (10).

In this study, we utilized the extraordinary genetic and phenotypic diversity represented in the eight

founder mouse strains (which we subsequently refer to as founders) used to generate the Collaborative
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Cross (CC) recombinant inbred mouse panel and the Diversity Outbred (DO) stock (11, 12). These
strains capture the majority of the genetic diversity of all inbred mouse strains (11, 12). While studies
of these mice have provided significant insight into genetic regulators of islet function (13), determining
the appropriate model system for evaluating genes of interest is often difficult as most deletion models
are made in only a small number of strains such as the C57BL/6J.

We explored the diversity of nutrient-evoked islet Ca?* responses across the eight founder mouse
strains, revealing a remarkable diversity of Ca?* oscillations. Our prior proteomics studies showed that
the protein abundance from islets of the founder mouse strains is also highly diverse, as is their insulin
secretory response to different stimuli (14). By correlating the strain and sex variation in protein
abundance with the variation in Ca?* oscillations, we identified a subset of islet proteins that are highly
correlated with islet Ca?* oscillations. The human orthologues of many of these proteins are encoded
by genes with nearby SNPs linked to glycemic traits (e.g., fasting blood glucose, see Table 2 for terms),
as revealed in genome-wide association studies (GWAS). By integrating these data, we nominated
novel regulators of islet Ca?* oscillations and insulin secretion with potential relevance for human islet

function. We also provide proteomic, secretory, and Ca?* data for identifying appropriate mouse strains

in which to study these regulators.
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RESULTS
Genetics exerts a strong influence on islet Ca?* responses

Glucose metabolism, B-cell Ca?* flux, and insulin secretion are pulsatile, and have been found to
oscillate in both humans and mice (6, 7, 15-17). Because they are interconnected, understanding the
factors governing oscillation patterns can inform about the mechanisms that regulate insulin secretion
(9, 18-20). To specifically explore the influence of genetic background on Ca?* oscillations, we
measured Ca?" in islets of the eight founder strains, that together harbor as much genetic diversity as
humans: A/J, C57BL/6J (B6), 129S1/SvimJ (129), NOD/ShiLtJ (NOD), NZO/HILtJ (NZO), CAST/EiJ
(CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB).

All mice were maintained on a Western-style diet (WD) high in fat and sucrose for 16 weeks, prior
to isolating their islets for Ca?* imaging using Fura Red, a Ca?*-sensitive fluorescent dye (Figure 1A).
Using a perifusion system, we measured Ca?* dynamics in response to four conditions: 1) 8 mM
glucose (8G); 2) 8 mM glucose + 2 mM glutamine, 0.5 mM leucine, and 1.5 mM alanine (8 G/QLA); 3)
8G/QLA + 10 nM glucose-dependent insulinotropic polypeptide (8 G/QLA/GIP); and 4) 2 mM glucose
(2G) (Figure 1B). There was a high degree of similarity between three of the five classical strains (A/J,
B6, 129), which were dominated by slow oscillations (period 2-10 minutes) in 8G and 8 G/QLA/GIP, and
had relatively fewer islets reach plateau (continuous peak activity without oscillation) in 8G/QLA.
Likewise, the wild-derived strains (CAST, WSB, and PWK) closely matched one another, while differing
from the classic strains. The wild-derived mouse islets were dominated by fast oscillations (period <2
minutes) in 8G, resulting in plateaus for 8G/QLA and 8G/QLA/GIP.

Two strains stood out from the others. Islets from NOD mice showed characteristics from both the
wild-derived and classic strains; slow oscillations in 8G and a sustained plateau in response to 8G/AA
and 8G/QLA/GIP with fast oscillations superimposed. The NZO mice also differed from the other classic

strains, likely because they were all diabetic (blood glucose >250 mg/dL). Their islets were minimally
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responsive to 8G, but did respond with a strong pulse in 8G/QLA and Ca?* remained elevated in
8G/QLA/GIP.

Many of the strain differences seen in the male mice were maintained in the females (Supplemental
Figure 1A). The classic strains were once again highly similar to one another, as were the wild-derived
strains. Furthermore, the NZO females, of which all but one were diabetic, mirrored the behavior of the
male islets. One interesting observation that emerged from the female islets is that the NOD females
displayed a greater variation in their Ca?* oscillations than the NOD males (Supplemental Figure 2).
Some of the islets maintained slow oscillations throughout the various conditions, while some
demonstrated fast oscillations and plateaued similar to the wild-derived strains. Yet others appeared
strikingly similar to the islets from diabetic NZO mice, despite none of the NOD mice being diabetic.
Finally, the one non-diabetic female NZO displayed oscillatory behavior similar to that of the other
classic strains, with clear, slow oscillations (Supplemental Figure 1B).

Dissecting islet CaZ* dynamics

An understanding of the mechanisms regulating insulin secretion, including the roles of specific
metabolic pathways, ion channels, and hormones, have been derived from the shape and frequency of
islet Ca®* oscillations (7, 9, 16, 18, 21-24). To elucidate strain differences in Ca?* dynamics, we primarily
analyzed six parameters of the Ca?* waveform (Figure 2A): 1) peak (the top of each oscillation); 2)
active duration (the length of time for each oscillation measured at half of the peak height); 3) pulse
duration (the length of time for each oscillation where cytosolic Ca?* is at its lowest); 4) period (the
length of time between two peaks); 5) plateau-fraction (the active duration divided by the period, or the
fraction of time spent in the “on” phase); and 6) silent duration (the period minus the active duration, or
the length of time spent in the “off’ phase). We also assessed the spectral density for every islet to

extract additional information from complex oscillations where multiple components were visible (e.g.

the trace in Supplemental Figure 3A). We analyzed each trace segment to determine the top two

8


https://doi.org/10.1101/2022.11.26.517741
http://creativecommons.org/licenses/by/4.0/

Gwhich W nox Sariicd by Poet 10view) IS e auihorunder, who s anied BIORV & Hoanse 10 ISPy he prapiin i perpetary. 1t & mane
available under aCC-BY 4.0 International license.
frequencies contributing to the trace (1%t and 2" component frequencies, Supplemental Figure 3B)
and their respective contributions (1t and 2@ component amplitudes). Because certain features, such
as ion channels or metabolic enzymes, have known frequencies (25), extracting the top two frequencies
may highlight additional information beyond that previously collected.

A representative Ca?* dynamic from a female B6 islet is illustrated in Figure 2A. The transition from
8G to 8G/QLA resulted in an increased active duration, yielding a longer period and increased plateau
fraction. For an islet that plateaued at the peak, as seen in 8G/QLA (Figure 2B), we computed a
plateau-fraction of one, an active and pulse duration of 40 minutes (the measurement time), and a
period of zero minutes. An islet that returned to baseline and ceased to oscillate, as seen in 2 mM
glucose (Figure 2B), was determined to have a plateau-fraction, active duration, and pulse duration of
zero, and a period of 40 minutes. Understanding the strain-dependence of these parameters is
important for identifying underlying mechanisms, as illustrated in Figure 2C. While both traces have a
similar active duration (blue bars), trace 1 has a longer period (red bars), resulting in an increased silent
duration and a decreased plateau-fraction.

Examples of pathways altering specific components of Ca?* oscillations have previously been
established (Figure 2D) (9, 11, 18, 28, 29). For example, when Kartp channels are pharmacologically
closed with Tolbutamide, the silent duration is shortened, resulting in increased frequency without a
change in pulse shape (upper panel). The addition of glucose leads to increased glucose metabolism
and glucokinase (GK) activity (11). The resulting rise in ATP inhibits Katp channels and is used as a
substrate for additional processes that affect Ca?*, such as SERCA pumps (30, 31). Thus, glucose

alters both the active and silent durations, resulting in a change in both frequency and shape of the

Ca?* oscillations (lower panel).
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Average stimulated calcium levels do not correlate with insulin secretion

Average Ca?* is commonly used for analyzing Ca?* dynamics and is frequently assumed to be highly
correlated to insulin secretion. To determine whether average Ca?* is predictive of insulin secretion, we
performed perifusions on islets from WSB and 129 male mice, two strains that showed similar average
Ca?* (Figure 4B), but exhibited vastly different Ca?* oscillations (Figure 1B). WSB mice had
significantly higher insulin secretion in each of the secretory conditions (Figure 3A), suggesting another
Ca?* parameter better predicts insulin secretion.

To identify parameters of the Ca?* dynamics most strongly correlated to insulin secretion, we
computed the correlation between the Ca?* oscillation parameters and insulin secretion in similar
conditions (8G, 8G/QLA, basal) for the same sexes and strains (Figure 4A and Supplemental Figure
4) (32). Consistent with our observations from the perifusion data in the WSB and 129 islets, we found
that average Ca?* was not strongly correlated to insulin secretion. Other metrics, such as active duration
in 8G, and the silent durations in 8 G/QLA, were more highly correlated to insulin secretion. Meanwhile,
the 15t component frequency in 8G from the spectral density analysis was highly correlated with
decreased insulin secretion. These metrics were also the most highly correlated with multiple clinical
measures in the founder mice, particularly plasma insulin (Figure 4B, Supplemental Figure 5), for
which silent duration in 8 G/QLA/GIP had the strongest correlations.

Several parameters of the Ca?* oscillatory waveform showed strong strain and sex effects. For
example, basal Ca?* (average Ca?* in 2G, Figure 4C) was relatively consistent among the strains,
except NZO where it was highest in islets from male mice. For the overall pulse duration (Figure 4D),
the NZO mice were once again the highest, followed by CAST and WSB. A noticeable sex-effect was
measured for the CAST mice, where male mice had a longer pulse duration than the female mice. The

18t component frequency (Figure 4E) is driven by the differences observed in the wild-derived strains,

for which CAST has the highest frequency, followed by PWK and WSB. Finally, the trend for a sex
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effect in the classic strains for silent duration (at 8G, 8G/QLA, and 8G/QLA/GIP) is absent in the NZO
and wild derived mice with the former having greater silent duration in males and the latter frequently
having islets plateau in response to these stimuli. These data demonstrate that genetics has a profound
influence on key parameters of islet Ca?* oscillations.

To explore this further, we took advantage of our previously published whole islet proteomic survey
from the eight founder strains (14). To identify proteins that may underly the strain-differences in Ca?*
oscillations, we computed the correlation between islet protein abundance and Ca?* dynamics across
both sexes of the eight founder strains (Figure 5 and Supplemental Figure 6). Our previous survey of
islet proteomics included both sexes for all strains, except NZO males, resulting in a quantitative
measure of ~4054 proteins (14). Figure 5A illustrates a heatmap of the correlation between islet
proteins and several parameters of Ca?* oscillations. Unsupervised clustering was used to show that
groups of proteins showed strong positive or negative correlation to a given Ca?* parameter and the
correlation displays a distinct architecture. The proteins highly correlated to the 8G 15t component
frequency, for example, tended to also be strongly anticorrelated to the silent duration conditions which
were very similar to one another. The active and pulse durations for 8G had nearly identical correlation
structure, and the conditions with the fewest highly correlated proteins were the average Ca?* measures
for 8G, 8G/QLA, and 8G/QLA/GIP, and the structure for these was largely inverted from the active
duration conditions. Finally, despite the differences in the overall correlations between the different
metrics, there were proteins that did overlap (e.g. the block of proteins with high correlation to both 8G
Ap and 8G/QLA Sp) suggesting that while there were clusters of distinct proteins/pathways for any given
metric some proteins may modify more than one metric.

Among the ~4045 islet proteins, 363 had high absolute correlation coefficients (r > |0.5]) to 3 or
more of the parameters our data suggest most strongly correlate to insulin secretion and plasma insulin

(Basal Ca?*, 8G Ap, 8G Pp, 8G/QLA Sp, 8G Sp, 8G/QLA/GIP Sp). Interestingly, of the proteins
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correlated to these traits, many have been previously implicated in islet biology, including PCSK1, GCK,
SUR1, GLUT2, PDX1, and GLP-1 (26-34). Notably, the highly correlated proteins enriched for tissues,
pathways, and transcription factors that support their role in insulin secretion (Figure 5B). For instance,
proteins highly anti-correlated to active duration in 8G were enriched for components of oxidative
metabolism and had their gene promoters enrich for binding to the islet transcription factor MAFA (33).
These enrichment data provide a framework for discovering new genes of interest for their role in islet
function.
Integration of mouse genetics with human GWAS to nominate novel players in islet biology

The data presented in Figure 5A illustrates the correlation between islet proteins and Ca?*
dynamics. Importantly, a protein strongly correlated to Ca?* does not necessarily reflect a causal
relationship; i.e., a change in protein abundance may or may not cause a change in the Ca?* signal. To
take our analysis beyond correlation, we integrated our data with human GWAS of glycemia-related
traits.

First, we identified all human homologues for islet proteins strongly correlated (r > |0.5]) to one or
more of the Ca?* oscillatory metrics. We identified human homologues for ~2880 proteins that were

correlated to Ca?* in either direction for at least one of our parameters of interest. We then searched

the Type 2 Diabetes Knowledge Portal (https://t2d.hugeamp.org/) for SNPs that are associated with

one or more glycemia-related traits (see Table 2) with a P-value < 108, and occur within +100Kbp of
the homologous gene (e.g. COBLL1, Figure 6A) or are on regions contacting the gene’s promoter
(determined using human islet promoter-capture HiC data (35)) as illustrated by ACP1 (Figure 6B).
This yielded a list of 316 human genes strongly associated with diabetes-related SNPs, and 168 of
these proteins have not been previously reported to play a key role in islet function (Table 3). In
summary, our approach leverages the genetic diversity of the eight founder strains and human GWAS

for diabetes-related traits to highlight genes that play a novel role in islet function.
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Importantly, the relevance of these tools depends on the mouse model in which they are used to
validate the roles of the candidate protein. To aid in the selection of mouse strain, we provide the
proteomic, secretory, and Ca?* data (Figure 7, https://doi.org/10.5061/dryad.j0zpc86jc). This will
enable the user to identify proteins correlated to genes, proteins, or traits of interest, and from there,
identify which strain(s) may be most appropriate for the study of their target. In the examples illustrated
in Figure 7C, GALNS shows a high negative correlation to multiple traits including the active duration
time in 8G/QLA. Strains at the extremes of this trait are also extremes with regard to protein expression
for GALNS. Ones with high abundance (B6, for example) would be appropriate models for inhibition or
knockout, while the CAST mice could be a comparison strain for validating the role of the protein, as
they express less of it. By contrast, the silent duration traits (e.g. those expressed in 8 mM glucose)

have strong influence of the NZO strain and consequently NZO may be the most appropriate strain to

assess the role of some proteins (e.g. PMSC3) with regard to that metric (Figure 7C, lower panels).
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DISCUSSION
Genetic variability drives islet function

While the development and progression of T2D is potentiated by environmental factors, an
estimated 50% of disease risk is driven by genetic factors (1, 3, 36). Therefore, to study the genetic
variation contributing to T2D, we utilized the eight founder mouse strains. These mice collectively
contain a level of genetic diversity mirroring that seen in humans, making them an excellent model for
studying genetic regulators of islet function (11, 12). We demonstrate that they also vary in their Ca?*
response to various insulin secretagogues, supporting the use of these mice to identify novel genes
involved in regulating islet biology.
Calcium waveform analysis reveals pathways regulating islet function

Variations in Ca?* dynamics are highly complex, and are the result of changes in metabolism, extra-
islet signaling, and Ca?* itself (6). We therefore selected stimulatory conditions to assess each of these
components in islets of the eight mouse strains. 8 mM glucose was first used to survey glycolytic
responses, because we have observed that several strains reliably oscillate at this glucose
concentration. Furthermore, this glucose concentration remains close to the stimulatory threshold, thus
reducing the possibility of oscillations plateauing if islet Ca?* responses were left-shifted in any strains
(21, 37, 38). We then added QLA as fuel to engage non-glycolytic mitochondrial metabolism and
signaling from a-cells, providing a survey of alpha-to-beta cell communication in the islet (18, 39-41).
Finally, we used GIP to interrogate the islet incretin responses and the cAMP amplification pathway
(40), before returning to a low glucose concentration, enabling us to establish baseline Ca?* levels.

The variation in Ca?* response to these conditions can be better understood by examining the
multitude of pathways regulating Ca2* dynamics. As mentioned previously, altering ionic pathways
involved in regulating Ca?*, such as Kartp channels, has a very different effect on Ca?* oscillations
compared to altering glycolysis. It is important to further dissect these pathways, as changing specific
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components of glucose metabolism can elicit different effects. For example, increasing pyruvate kinase
(PK), an enzyme involved in converting phosphoenolpyruvate (PEP) to pyruvate, and increasing GK
activity both alter the active duration and the plateau-fraction. However, they do so in opposite
directions (18). While both enzymes are involved in the glycolytic pathway, activating GK increases the
active duration and period, while activating PK decreases those same parameters. This demonstrates
the complexity of analyzing Ca?* oscillations, and the importance of considering the changes in a variety
of parameters, rather than focusing on just one.

The importance of analyzing a variety of Ca2* parameters is further supported by the insulin
secretion measurements in the male WSB and 129 mice. While average Ca?* is a common metric used
to predict insulin secretion, relying on only this metric would suggest that the two strains secrete insulin
similarly. However, the WSB mice secreted significantly more insulin in 8 G, 8G/QLA, and 8 G/QLA/GIP
(Figure 3). Based on our correlation analysis between Ca?* parameters and insulin secretion across
each sex and strain, active duration and pulse duration in 8G more accurately predicted insulin
secretion and may be highly informative when used with other data (Figure 4). This is similar to results
published by some other groups, suggesting that average Ca?* does not correlate well with insulin
secretion (42).

Strains segregate by their phylogenetic origins

Notably, several of the strains appeared to cluster together with similar responses. One such group
is composed of three classical strains (A/J, B6, and 129) that had similar waveforms dominated by slow
oscillations. These differed from a second group containing the wild-derived strains (CAST, WSB, and
PWK) which closely matched one another and were dominated by faster oscillations.

The classic strains have been highly inbred (>150+ generations) and descend from related common

ancestors, the “fancy mice.” They also have extremely low genetic diversity, with 97% of their genomes

explained by fewer than 10 haplotypes (3, 43, 44). By contrast, wild-derived strains are each
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independent in their parental origin, inbred for far fewer generations than the classic strains (although
still at least 20), and include significant contributions from other subspecies of Mus musculus than the
predominant subspecies (M. m. domesticus) in the traditional strains, particularly CAST (M. m.
castaneous) and PWK (M. m. musculus) (3, 43, 44). It is thus unsurprising that the two primary Ca?*
response clusters were composed of the classic and wild-derived strains. Multiple loci have already
been linked to islet dysfunction and differential metabolic homeostasis in the classic strains (3). Our
work here highlights the promise in using wild-derived strains to unmask previously underappreciated
islet phenomena, something we and others have previously shown (14, 45, 46).

While considered one of the classic strains, the NOD mice differed from the two primary clusters
noted above. They displayed a combination of features from both groups and had a high degree of
inter-islet variability, especially the female mice. NOD share common ancestors with the Swiss-Webster
mice, which do not share parental origin with the other classic strains (43) and also display a “mixed”
phenotype consisting of islet Ca?* oscillations in response to glucose, with both slow and fast
components (21).

Additionally, while all NOD were normoglycemic, a heterogeneous response was observed in islets
from female, but not male, NOD mice. Female NOD mice are known to develop islet immune infiltration
and subsequent autoimmune diabetes whereas males are largely protected from this (47). Male NOD
islets were largely consistent in their Ca?* waveforms. In the females, however, a high degree of
heterogeneity in responses was observed across the female’s islets (Supplemental Figure 2). For any
NOD female, some islets resembled those from NOD males in their clear oscillations, others largely
lacked oscillatory behavior other than a strong pulse in response to 8 G/QLA, and still others had an
intermediate response. These observations may reflect varying degrees of dysfunction in the NOD

female islets as the mice progress to diabetes, though we cannot say whether this results from variation

in beta-cell intrinsic defects or islet immune infiltration.
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The NZO mice also varied from the two clusters previously discussed. All of the male mice, and all
but one of the female mice, were diabetic. The islets from the diabetic mice had reduced amplitude and
oscillatory behavior, other than a single pulse in 8G/QLA. This pattern is similar to the patterns observed
in many of the NOD female islets. On the other hand, islets of the one non-diabetic female NZO mouse
demonstrated clear, slow oscillations (Supplemental Figure 1B) which was surprising given reports of
low Kate abundance due to Abcc8 mutations in the NZO (48) and the strong role of Kate channels in
regulating islet Ca2*(9, 30, 31, 49). While not of the same lineage as the NOD, the NZO do exhibit some
autoimmune infiltration in the pancreas, and the marked difference between the non-diabetic and
diabetic NZOs, along with the variation in female NOD islet responses, further suggests that intra-islet
variability for the NOD mice may be the result of disease progression.

Understanding the genetic variation driving islet responses in the founders may be informative
beyond these specific strains. Screens in the DO mice and similar outbred populations can track SNPs
associated with trait variation to their parental inbred strain of origin. Our previous genetic screen for
drivers of islet function observed that many of the quantitative trait loci (QTL) appearing for ex vivo islet
traits had effects driven by the SNPs from the wild-derived strains as opposed to the traditional inbred
groups (13). The QTL mediated by Zfp748, which drives Ca?* and insulin secretion phenotypes in beta
cells (38), also had strong strain effects from wild-derived strains (13).

Previous studies of islet Ca?* have largely been confined to a handful of strains, and many studies
by individual labs tend to use the strains with which they initiated their projects. While this does include
a few outbred stocks (e.g. NMRI (50-52), CD-1 (7, 53, 54)), direct comparisons of these to the traditional
inbred lines are rare (50), and studies of specific genes often use traditional inbred lines as wild-derived

lines do not respond as well to the conventional assistive reproductive technologies required for

genome editing and transgenesis (55, 56).
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One study, comparing the outbred (NMRI) stock to the C57BL6/J and C57BL/6N strains (50), found
that the NMRI displayed significantly lower frequencies than the C57 lines, particularly in physiological
glucose ranges and had similar active periods. While highly informative, there were important
differences between these studies and our studies here. Of note, the studies were done in acute slice
culture, in only one sex, and the frequencies detected did not resemble the (at least for the C57 lines)
the slow oscillations observed in isolated islets from these inbred strains (e.g. Figure 1, (18, 38)).
Integrating protein correlations to calcium and human GWAS nominates novel drivers of islet
function

One limitation of our current study is that the association between islet proteins and Ca?* waveforms
is correlative and therefore cannot distinguish proteins that are causal for the differences in islet Ca?*
between strains from proteins changing as a result of these differences. One way to further dissociate
the two, and to establish the relevance of likely candidates to human islet biology, is to identify whether
genes encoding human orthologues of these proteins are associated with glycemic traits in humans.
SNPs for glycemic traits (Table 2), particularly those involving insulin, suggest that alterations in these
proteins may impart disease risk, which is less likely for proteins that do not play critical regulatory
roles. Thus, the filter for glycemic trait association, while not definitive, suggests a likely causal role for
these proteins in mediating differences in islet Ca2* and therefore differences in secretion between
strains. Integrating human GWAS data with the proteins most correlated to Ca?* waveform parameters
nominated over 647 protein candidates, of which approximately a third have been previously shown to
have roles in some aspect of islet biology. These include well established drivers of insulin secretion
responses, such as SUR1, GLUT2, and GNAS. Other previously unknown candidates show promise
for validation, as they are already targets of small molecule compounds (e.g. ACP1 and others, (57-
60)), are secreted (e.g. COBLL1 and others, (61-64)), or have been knocked out in mice, resulting in

metabolic phenotypes (Figure 7B, Table 3, (65)).
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Comparing Ca?* dynamics across strains and sex offers one approach for designing future
experiments

In addition to the candidate regulators with potential relevance to human islet biology, we offer
access to our data where others can determine whether their gene of interest may have roles in islet
biology. As noted above, multiple inferences regarding the roles of specific pathways are possible via
analysis of Ca?* oscillations in islets (6, 7, 16, 18) and our protein correlations provide a resource to
identify which parameter most closely relates to a Ca?* trait of interest. Additionally, it highlights the
relevant extreme strains for a given trait and for the gene, giving guidance regarding the best mouse
strain in which to explore that gene’s role (e.g. Figure 7C). Newer technologies in reproductive
assistance, transgenesis, and gene editing, together with more accurate genome sequencing and
single mutations conferring docility, are quickly making utilization of the wild-derived mice more
practical (55, 56, 66-68). As many of the QTL identified in DO-based studies often have strong driver
SNPs from the wild-derived strains, a further understanding of which experimental questions might be
best addressed by use of these strains will be important.

Our lab and others have previously provided databases for querying the expression of genes as a
function of diet (WD vs chow, (69, 70)) and background (e.g. BTBR and B6, (69, 70)), correlation and
QTL scans in F2 intercrosses of these mice (71), and where these may align with QTL in our DO studies
(13). Many of our candidates are strongly altered by diet and have strong correlations in the F2 data
for certain clinical traits including insulin and glycemic parameters (71). Here, we provide the correlation
data for islet proteins against multiple parameters describing islet Ca2+ responses between strains
(DOI: https://doi.org/10.5061/dryad.j0zpc86jc). These will enable researchers to better identify proteins

or parameters of interest as well as appropriate background strains with which to determine the

functions of these proteins.
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MATERIALS & METHODS:
Chemicals:

All general chemicals, amino acids, BSA, DMSO, glucose, gastric inhibitory polypeptide
(GIP,G2269), cOmplete Mini EDTA-free Protease Inhibitor Cocktail Tablets (11836170001), and heat-
inactivated FBS (12306C) were purchased from Sigma Aldrich. RPMI 1640 base medium (11-875-093),
antibiotic—antimycotic solutions (15240112), NP-40 Alternative (492016), Fura Red Ca?* imaging dye
(F3020), DiR (D12731), and agarose (BP1356-500) were purchased from ThermoFisher. Glass-
bottomed culture dishes were ordered from Mattek (P35G-0-14-C). Fura Red stocks were prepared at
5 mM concentrations in DMSO, aliquoted into light-shielded tubes, and stored at —20°C until day of use
(5 uM final concentration). DIR was prepared in DMSO at 2 mg/ mL, aliquoted to light-shielded tubes,
and stored at 4°C until use. All imaging solutions were prepared in a bicarbonate/HEPES-buffered
imaging medium (formula in Table 1). Amino acids were prepared as 100x stock in the
biocarbonate/HEPES-buffered imaging medium, aliquoted into 1.5 mL tubes, and frozen at —20°C until
day of use. Aliquots of GIP stock were prepared at 100 uM in water and kept at -20°C until day of use.
Animals:

Animal care and experimental protocols were approved by the University of Wisconsin-Madison
Animal Care and Use Committee. Most strains (B6, AJ, 129, NOD, PWK, and WSB) were bred in-
house, although two strains (CAST and NZO) were purchased from Jackson Laboratory (Bar Harbor,
ME). All mice were fed a high-fat, high-sucrose Western-style diet (WD, consisting of 44.6% kcal fat,
34% carbohydrate, and 17.3% protein) from Envigo Teklad (TD.08811) beginning at 4 weeks and
continuing until sacrifice (aged ~19-20 weeks for all strains except the NZO males). The NZO males
were sacrificed at 12 weeks of age owing to complications from severe diabetes. For each strain, 3-7
males and females from at least 2 litters were analyzed. Animals were sacrificed by cervical dislocation

prior to islet isolation.
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In vivo measurements:

Fasting blood glucose and insulin levels were measured in mice at 19 weeks of age, except for the
NZO males which were measured at 12 weeks of age. Glucose was analyzed by the glucose oxidase
method using a commercially available kit (TR15221, Thermo Fisher Scientific), and insulin was
measured by radioimmunoassay (RIA; SRI-13K, Millipore).

Islet imaging:

Islets were isolated as previously described (72) and incubated in recovery medium (RPMI 1640,
11.1 mM glucose, 1% antibiotic/antimycotic, 10% FBS) overnight at 37°C and 5% CO.:. Islets were
then incubated with Fura Red (5 uM in recovery medium) at 37°C for 45 minutes. Imaging dishes were
created from glass-bottomed 10 cm? dishes that had been filled with agarose. A channel with a central
well was cut into the agarose with expanded ports on either side of the well for inflow and outflow lines.
Prior to loading the chambers were perfused with the initial imaging solution (8 mM glucose in imaging
medium). Islets were then loaded into these dishes. The imaging chamber was placed on a 37°C—
heated microscope stage (Tokai Hit T1Z) of a Nikon A1R-Si+ confocal microscope. All solution
reservoirs were kept in a 37°C water bath. Solutions were perfused through the chamber at 0.25
mL/min, with constant flow controlled by a Fluigent MCFS-EZ and M-switch valve assembly (Fluigent).
The scope was integrated with a Nikon Eclipse-Ti Inverted scope and equipped with a Nikon CFI
Apochromat Lambda D 10x/0.45 objective (Nikon Instruments), fluorescence spectral detector, and
multiple laser lines (Nikon LU-NV laser unit; 405, 440, 488, 514, 561, 640nm). Bound dye was excited
with the 405nm laser and the spectral detector’s variable filter was set to 620-690nm. The free dye was
excited with the 488nm laser and the variable filter collected from 640-690nm. Images were collected

at 1 frame/sec at 6 second intervals. Each islet was considered a region of interest for further analysis.

ROI intensity was collected by NIS Elements and exported for further analysis. All microscopy was
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performed at the University of Wisconsin-Madison Biochemistry Optical Core, which was established
with support from the University of Wisconsin-Madison Department of Biochemistry Endowment.

Islet perifusion:

Isolated islets were kept in RPMI-based medium (see above) overnight prior to perifusion, which
was performed as previously described, with minor modifications (38, 73). Islets were equilibrated in 2
mM glucose for 55 minutes, after which 100 pL fractions were collected every minute with the perifusion
solutions set at a flow rate of 100 uL/min. All solutions and islet chambers were kept at 37°C. After the
final fraction was collected, islet chambers were disconnected, inverted, and flushed with 2 mL of NP-
40 Alternative lysis buffer containing protease inhibitors for islet insulin extraction.

Secreted insulin assay:

Insulin in each perifusion fraction and islet insulin content were determined using a custom assay,

as previously described (14).
Imaging data analysis:
Trace segments for each solution condition were analyzed using Matlab and R. Traces were

detrended using custom R scripts and Graphpad PRISM. Custom Matlab scripts

(https://github.com/hrfoster/Merrins-Lab-Matlab-Scripts, also stored on Dryad

https://doi.org/10.5281/zenodo.6540721) determined oscillation peak amplitude, pulse duration, active

duration (the time when Ca?* is above 50% peak amplitude), silent duration (the difference between
period and active duration). , plateau fraction (the fraction of overall time per pulse spent in the active
duration), pulse period and other parameters. Spectral density deconvolution for the trace segments to
determine principal frequencies was done using R. Animal averages for the different parameters
defined by Matlab and R were computed and graphed using custom R scripts. Figures were created
using CorelDraw and Biorender.com. All R scripts and the citations for the relevant packages used to

generate them are available via Dryad (https://doi.org/10.5061/dryad.j0zpc86jc).
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Correlation and Z-score calculations:

Correlation analysis was performed using the imaging data measurements and our published islet
protein abundance data, ex vivo static insulin secretion measurements, and in vivo measurements
made in a separate cohort of mice on the WD from the same strains and sexes used in these studies
(14). For each imaging parameter or previously published measurement, the Z-score was calculated
using the formula z = (x-u) / o0 where z is the Z-score, x is the animal average for that trait given the
strain and sex, u is the average of all animals’ values for that trait, and o is the standard deviation for
all animals’ values for that trait. Z-scores were computed in R and excel for the imaging parameters
and the previously published (14) islet proteomic, ex vivo secretion, and in vivo measurements.

Correlation coefficients between the Z-score values of the imaging parameters and Z-scores of the

previously published protein abundance, islet secretion, and in vivo traits were computed in Excel using

the CORREL function. The equation used for this function is:

Y- -y

correld ) = S 7 3 - 2

Where X and Y are the Z-scores for the correlated traits/parameters, x is the population average for
trait X and y is the population average for trait Y. Traits were considered highly correlated if absolute
value for their Z-score correlation coefficients was = 0.5.

Gene enrichment and human GWAS analysis:

Proteins highly correlated or anticorrelated to imaging parameters were further analyzed using pathway
enrichment and presence of human GWAS SNPs. Briefly, for a given parameter, pathway analysis for
the highly correlated or anti-correlated proteins to that parameter was done using Enrichr (74, 75).

For GWAS analysis, human orthologues for genes encoding the previously measured islet proteins
were identified using BioMart (76). For highly correlated proteins, the protein was deemed of human

interest if its orthologue had SNPs for glycemia-related traits (see table 2) either along the gene body,
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within +/- 100 kbp of the gene start or end, or if any region in the gene body was connected to regions
with SNPs by chromatin looping. SNPs were queried using Lunaris tool of the Common Metabolic
Diseases Knowledge Portal (cmdkp.org). Chromatin loop anchor points for the relevant gene
orthologues were identified using previously published human islet promoter-capture HiC data (35) and
the alignment between these anchor loops and orthologues of interest was done using R scripts.

For those proteins having ortholgoues with SNPs via this analysis, we conducted further literature
searches using Pubmed, Google Scholar, ChEMBL (59, 60, 77), canSAR (58), Uniprot (61), Tabula
Muris (78), and the Human Protein Atlas (62, 63), and other resources (64, 79, 80) to determine tissue
expression and identify any prior roles in islet biology. Figures for the relevant protein examples were
created using Prism, CorelDraw, and the WashU Epigenome Browser (81).

Statistics:

For the islet perifusion insulin measurements, statistics were determined in GraphPad Prism.
Fractional secretion area-under-the-curve (AUC) was determined using Prism and differences in AUCs
analyzed using post-tests following 2-way ANOVA for the indicated trace segments. Islet total insulins
between strains were compared using a two-tailed Student’s t-test with Welch’s correction.

Data Availability:

All R scripts and raw data are available via Dryad (https://doi.org/10.5061/dryad.j0zpc86jc). Image

files are available upon request.

Study approval:

All protocols were approved by the University of Wisconsin-Madison IACUC (Protocol A005821-R01)
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Figure 1. High diversity in Ca?* oscillation across eight genetically distinct mouse strains.

(A) Male and female mice from eight strains (A/J; C57BL/6J (B6); 129S1/SvimJ (129); NOD/ShiLtJ
32
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(NOD); NZO/HILtJ (NZO); CAST/EiJ (CAST); PWK/PhJ (PWK); and WSB/EiJ (WSB)) were placed on
a Western Diet (WD) for 16 weeks, before their islets were isolated. The islets were then imaged on a
confocal microscope using Fura Red dye under conditions of 8 mM glucose; 8 mM glucose + 2 mM L-
glutamine, 0.5 mM L-leucine, and 1.25 nM L-alanine (QLA); 8 mM glucose + QLA + 10 nM GIP; and 2
mM glucose. (B) Representative Ca?* traces for male mice (n = 3-8 mice per strain, and 15-83 islets
per mouse), with the transitions between solution conditions indicated by dashed lines. Abbreviations:

‘[Glu] = ‘concentration of glucose in mM’ ; ‘Sol.” = ‘solution’; ‘SNPs’= ‘single-nucleotide polymorphisms’
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Figure 2. Ca?* wave breakdown reveals mechanisms underlying Ca?* responses. (A) In the
example B6 female Ca?* wave, the islet oscillations can change in their average peak and average
baseline in response to different nutrients. Additionally, shifts in wave shape (green box) can be broken

down into changes in time between peaks (period), the time in the active phase (active duration, Ap),
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and the length of the oscillation (pulse duration, Pp). From these, the relative time in active phase, or
plateau-fraction (Pr), and the time the islet is inactive between oscillations (silent duration, Sp) can be
calculated. Each parameter can be changed by different underlying mechanisms. (B) For islets that
plateaued, as in the example islet in 8/QLA, they were assigned a plateau-fraction of one and a period
of zero. For islets that ceased to oscillate, such as the example islet in 2 mM glucose, they were
assigned a plateau-fraction of zero and a period of the time of measurement (40 minutes). (C) For trace
1 (left), which has a longer period (red bars) than trace 2 (right), but the same active duration (blue
bars), the silent duration is greater and consequently the Pr is shorter, in contrast to the trace in (A)
where the Pr increases between 8mM and 8/QLA are largely due to increases in Ap. (D) Changes in
specific Ca?* wave parameters can reflect different mechanisms in B-cells. For example, changing Katep
activity pharmacologically (upper panels) predominantly increases Pr by altering Sp, whereas
increasing glucose concentrations by elevating glucose or activating GK cause significant alterations

in both Ap and Sp to increase Pr. Abbreviations: ‘[GIc]’ = ‘concentration of glucose in mM’ ; ‘GK’ =

‘glucokinase’
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Figure 3. WSB mice secrete significantly more insulin than 129 mice. (A) Insulin secretion was
measured for perifused islets from WSB (n=6, circles) and 129 (n=5, squares) male
mice in 2 mM glucose, 8 mM glucose, 8 mM glucose + QLA, and 8 mM glucose + QLA + GIP.
Transitions between solutions are indicated by dotted lines and the conditions for each are indicated
above the graph. “[Glc]” denotes the concentration of glucose in mM. Data are shown as a percentage
of total islet insulin (mean + SEM). (B) Average total insulin per islet for the WSB and 129 males used
in (A) with one exception: islets from one of the 129 mice were excluded from perifusion analysis due
to technical issues with perifusion system on the day those animals’ islets were perifused. Dots
represent individual values, and the mean is denoted by the black line. For (A), asterisks denote strain
effect for the area-und-the-curve of the section determined by 2-way ANOVA, mixed effects model; **

p <0.01,** p <0.001. For (B), asterisk denotes p < 0.05 from Student’s T-test with Welch’s correction.
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Figure 4. Comparing sex and strain patterns for Ca?* metrics, insulin secretion, and clinical

traits nominates Ca?* metrics of interest. (A) The z-score correlation coefficient was calculated for
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Ca?* parameters and raw insulin secreted and % total insulin secreted. Insulin measurements were
previously collected for seven different secretagogues (16.7 mM glucose + 0.5 mM palmitic acid
(16.7G/PA); 3.3 mM glucose + 50 mM KCI (3.3G/KCl); 16.7 mM glucose (16.7G); 8.3 mM glucose +
1.25 mM L-alanine, 2 mM L-glutamine, and 0.5 mM L-leucine (8.3G/QLA); 8.3 mM glucose + 100 nM
GLP-1 (8.3G/GLP-1); 8.3 mM glucose (8.3G); and 3.3 mM glucose (3.3G)) (32). (B) Correlation of the
Ca?* parameters to the clinical measurements in the founder mice which include 1) plasma insulin,
triglycerides, and glucose at 6, 10, and 14 weeks as well as at time of sacrifice; 2) number of islets; 3)
whole-pancreas insulin content (WPIC); and 5) islet content for insulin and glucagon. For (A) and (B),
the Ca?* parameters shown here include average Ca?* in 2 mM glucose (basal Ca?*); average Ca?®*
in 8 mM glucose (8G avg.); average Ca?* in 8 mM glucose + 1.25 mM L-alanine, 2 mM L-glutamine,
and 0.5 mM L-leucine (8G/QLA avg); average Ca?*in 8 mM glucose + QLA + 10 nM GIP (8G/QLA/GIP
avg.); pulse duration in 8 mM glucose (8G Pp); active duration in 8G (8G Ab); silent duration in 8G (8G
Sb), 8G/QLA (8G/QLA/Sb), and 8G/QLA/GIP (8G/QLA/GIP Sp); and 15t component frequency in 8 mM
glucose (8G 15t freq.). Other parameters analyzed are indicated in supplemental figure 4. (B-E) Sex
and strain variability for (C) average Ca?* determined by the fura-ratio (FR) in 2 mM glucose, (D) pulse

duration of oscillations in 8G, (E) 15t component frequency in 8G and (F) silent duration of oscillations

in 8G, 8G/QLA, and 8G/QLA/GIP.
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Figure 5. Islet proteins show correlation architecture to specific Ca?* parameters. (A)

Unsupervised clustering of correlation coefficients between protein abundance z-scores and z-scores

for the Ca?* parameters indicated. Islet proteins show differential correlation values to basal Ca?*,

excitatory Ca?* (detrended average values for 8mM, 8/QLA, and 8/QLA/GIP), active duration and pulse
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duration in 8mM glucose (8G Pp & Ab), and silent durations (Sp) in 8G, 8G/QLA, and 8G/QLA/GIP.
Correlation coefficients for other parameters are indicated in Supplemental Figure 5. (B) Histograms
representing the number of proteins that are correlated (red) and anti-correlated (blue) to 8G Ab.
TRRUST transcription factor motif database and ARCHS4 Tissue signature database (C) as well as
pathway enrichments for the Elsevier Pathway database and KEGG 2021 Human pathway database
(D) (-log1o(p-values)), for the highly correlated (red) and anticorrelated (blue) proteins to 8 Ap metric.

Databases were queried using Enrichr (39, 40).
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Figure 6. Identifying candidate protein targets by integrating human GWAS. (A) An example

gene, COBLL1, orthologous to a gene coding for a protein identified as highly correlated to Ca?* wave
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parameters in the founder mice. The recombination rate is indicated by the solid blue line. Significant
SNPs ( 8 < -log1o(p), red) decorate the gene body for multiple glycemia-related parameters (in bold).
Human islet chromatin data (34) for histone methylation, histone acetylation, ATAC-sequencing, and

suggest active transcription of the gene. Human islet promoter-capture HiC data (34)
show contacts between the SNP-containing regions decorating the gene and its promoter. The highest
SNP for 2hr glucose (v) and the other parameters (¢) are indicated. (B) Some orthologues did not show
SNPs decorating the gene itself but did show looping to regions with SNPs for glycemic traits. The
promoter of ACP1, for example, loops to a region within its topologically associated domain (black bar)
with strong SNPs for type 2 diabetes risk and near-threshold SNPs for fasting insulin adjusted for BMI.
Some SNPs (v, ¢) lie directly on the contact regions identified by HiC, whereas others lie immediately
proximal to these contacts. For both panels, the significance of association (-log1o of the p-value) for
the individual SNPs is on the left y axis and the recombination rate per megabasepair is on the right y

axis. Chromosomal position in Mbp is aligned to Hg19. SNP data were provided by the Common

Metabolic Diseases Knowledge Portal (cmdkp.org).
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diagram illustrating that of 3073 proteins with significant correlation to at least 1 Ca?* wave parameter
of interest, 647 had orthologues with glycemic SNPs. (B) Of the 647 candidates, 9 were previously
suggested to be secreted (61-64), 20 had existing KO mice with at least one metabolic phenotype (65),

and 36 had existing compounds targeting them (57-60). (C) Example comparisons of strain variance
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for proteins (left column, (4)) and Ca?* traits (right column). GALNS (upper) is highly anticorrelated to
several traits including active duration (Ap) in 8mM glucose + amino acids (8/QLA). Extreme strains to
test the effect of gain or loss of this protein include B6 (high protein abundance and low Ap) and CAST
(low protein abundance and high Ap), PSMC3 (lower) highly correlated to silent duration (Sp) for several
conditions including 8mM glucose and QLA. The protein is largely absent in most strains (including AJ,

which has low Sp) except the NZO, which has high Sp.
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TABLES:

Component Concentration (mM)
NaCl 137

KCI 5.6

MgCl2 1.2

NaH2P0O4.H20 0.5

NaHCOs3 4.2

HEPES 10

CaClz 2.6

Table 1: Imaging medium formula. Components are indicated by chemical abbreviation on the left
and final concentration in mM is indicated in the right column.
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Table 2 (on previous page): Categories included in SNP queries. These terms were considered as
glycemia-related and are categorized as such on the Common Metabolic Diseases Knowledge portal,
which was queried for the relevant SNPs. Also included but not listed here were variations of these

terms that were adjusted for BMI.

Table 3 (on following pages): Proteins correlated with Ca?* parameters that have glycemic-
related SNPs. This includes protein IDs, gene names, gene IDs, and human orthologues for each of
the proteins that correlate to one of the following metrics and have a glycemic-related SNP (see Table

2): basal Ca?*, 8G Sp, 8G/QLA Sp, 8G/QLA/GIP Sp, 8G Ap, 8G Pp, and 8G 15! freq.
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Protein ID Gene name Gene ID or gene number Human orthologue
QICQA1 Trappch 66682 TRAPPC5
Q8CC86 Naprt 223646 NAPRT
Q5H8C4-2;Q5H8C4;Q8CDS8;Q6PEM9 Vps13a 271564 VPS13A
P10639 Txn 22166 TXN
11E4X5;Q8BWQ6;D3YW20;D3YW 19;Q8BWQ6-3 9030624J02Rik 71517 VPS35L
EOCXW2;E9PUK2;Q80V03-2;Q80V03 Adck5 268822 ADCK5
A2A6P4;Q8BKU4;,Q9CQP1;Q3TYF6;Q3TY58 Fam104a 28081 FAM104A
Q91ZEO Tmlhe MGI:2180203 TMLHE
P70280 Vamp7 MGI:1096399 VAMP7
Q8VE95 C030006K11Rik ENSMUSG00000116138 C8orf82
P42208;E9Q3V6;F6WYMO0;D3YYB1;D3Z3C0 Septin2 ENSMUSG00000116048 SEPTIN2
Q543K9;P23492 Pnp ENSMUSG00000115338 PNP
Q9CRCO Vkorc1 ENSMUSG00000096145 VKORC1
Q6ZWR6-4,Q6ZWR6 Syne1 ENSMUSG00000096054 SYNE1
Q14A47,Q8K003 Tma7 ENSMUSG00000091537 TMA7
Q5BLJ7;P62301;Q921R2 Rps13 ENSMUSG00000090862 RPS13
QOWV96;D6RGI9;D3YVK5;D3YVK4 Timm10b ENSMUSG00000089847 TIMM10B
Q9CPW2 Fdx2 ENSMUSG00000079677 FDX2
AOA087WQEG;A0A087WNT1;P83940;A0A087WPE4 Eloc ENSMUSG00000079658 ELOC
Q8R2U0-2;Q8R2U0 Sehl ENSMUSG00000079614 SEH1L
Q9D002;Q9CZE1;Q545N1;P56873 Znrd2 ENSMUSG00000079478 ZNRD2
Q99JR8-2;Q99JR8;Q3TXHE;Q3TM59 Smarcd2 ENSMUSG00000078619 SMARCD2
S4R191;S4R1P3;S4R2T3;POC8K7 Smim1 ENSMUSG00000078350 SMIM1
Q9JJQ6;Q3TLSY;Q8CCG9;Q00558 F8a ENSMUSG00000078317  F8A1
Q80TA1;Q9D4D0 Selenoi ENSMUSG00000075703 SELENOI
Q8VCQ3;E0CZ57 Nrbf2 ENSMUSG00000075000 NRBF2
Q3ULL5;Q99L45 Eif2s2 ENSMUSG00000074656 EIF2S2
G5E8V9;E9Q3G5 Arfip1 ENSMUSG00000074513 ARFIP1
Q9D9Z5 Dda1 ENSMUSG00000074247 DDA1
Q62084 Ppp1ri4bl ENSMUSG00000073730 PPP1R14B
078207, W5XQG0;Q792Z7;P01899;Q31168;Q31167,078206,019467,Q569W0 H2-D1 ENSMUSG00000073411 HLA-E
B1AVZ0 Uprt ENSMUSG00000073016 UPRT
P68369 Tubala ENSMUSG00000072235 TUBA1A
Q505N7;Q3UW66;Q99J99 Mpst ENSMUSG00000071711  MPST
Q3U781;Q9D6W4;P84104-2;P84104;A2A4X6 Srsf3 ENSMUSG00000071172 SRSF3
A2AP32;A2AP31;Q3UIU2 Ndufb6 ENSMUSG00000071014 NDUFB6
Q80X95 Rraga ENSMUSG00000070934 RRAGA
QoJJL8 Sars2 ENSMUSG00000070699 SARS2
Q04750 Top1 ENSMUSG00000070544 TOP1
Q544H0;Q9Z1D1;Q3THA0 Eif3g ENSMUSG00000070319 EIF3G
Q8BTZ7 Gmppb ENSMUSG00000070284 GMPPB
Q8BXR1;D3YY38 Slc7a14 ENSMUSG00000069072 SLC7A14
G3X9M0;Q9ER88;Q9ER88-2 Dap3 ENSMUSG00000068921 DAP3
Q3U7U8;C5HOES;P62835;Q3V3W9;C5HOE9 Rap1a ENSMUSG00000068798 RAP1A
QocQu1 Mfap1 ENSMUSG00000068479 MFAP1
D3YX27;Q3TXN0;Q3UJR3;Q9J1Y5;S4R1B3;Q80V84;F6XURS;FETCV0;D3YX28 Htra2 ENSMUSG00000068329 HTRA2
Q8R0OJ7 Vps37b ENSMUSG00000066278 VPS37B
QOEPL8 Ipo7 ENSMUSG00000066232 IPO7
P11352 Gpx1 ENSMUSG00000063856 GPX1
Q6PAL3;Q8BNE3;Q8BSZ2 Ap3s2 ENSMUSG00000063801 AP3S2
Q9CQB65 Mtap ENSMUSG00000062937 MTAP
Q4KL81;P63260,Q3TSB7;Q3UD81 Actg1 ENSMUSG00000062825 ACTG1
Q6P1A9;Q5EBG5;Q58ET1;Q80UT7;P12970 Rpl7a ENSMUSG00000062647 RPL7A
Q9JMES Ap3b2 ENSMUSG00000062444 AP3B2
Q3UIZ0;Q99KY4-2;Q99KY4;Q3UDES Gak ENSMUSG00000062234 GAK
Q9DB29 lah1 ENSMUSG00000062054  IAH1
Q3THU8;Q8VEMS;G5E902;Q3UB63;Q3U995 Slc25a3 ENSMUSG00000061904 SLC25A3
E9PVD1 Ccdc62 ENSMUSG00000061882 CCDC62
Q5M9L7;Q8BT90;P63276;Q3TK12 Rps17 ENSMUSG00000061787 RPS17
QOCRY7 Gdpd1 ENSMUSG00000061666 GDPD1
AOMNP4;Q9ERF3;Q8BVQ0;D6RDC7 Wdré1 ENSMUSG00000061559 WDR61
Q6RJ37;Q5KTQ2;035641;P01902;Q31634,Q31191;Q31148;Q31614;Q31290 H2-K1 ENSMUSG00000061232 HLA-E
Q9ER38 Tor3a ENSMUSG00000060519 TOR3A
Q99L69;Q3U3J1;P50136 Bckdha ENSMUSG00000060376 BCKDHA
G3UYDO0;Q3UHU8;Q9ESZ8-5,Q9ESZ8-4,Q9ESZ8-3;Q9ESZ8-6;Q9ESZ8-2;Q9ESZ8 Gtf2i ENSMUSG00000060261 GFT2I
Q9DCD8;Q58EV4;070435;Q3TEL1;E0CX62 Psma3 ENSMUSG00000060073 PSMA3
P17156;B7U582 Hspa2 ENSMUSG00000059970 HSPA2
16L960;G3X9Y5;Q6A0CS;E9Q735 Ubeda ENSMUSG00000059890 UBE4A
Q4FZL1;Q5F2A7;P60843;Q3UXC2;Q3TGK7;Q3TFG3;Q3TLL6;Q3U8I0;Q78WR5 Eif4a1 ENSMUSG00000059796 EIF4A1
Q54014;Q3TJS0;008917;G3UYU4 Flot1 ENSMUSG00000059714 FLOT1
Q5NCJ9;Q8R1I1 Uqcr10 ENSMUSG00000059534 UQCR10
A2RSB1;B7ZNL2;Q8C1W9;Q78ZA7 Nap1l4 ENSMUSG00000059119 NAP1L4
Q642K 1;Q58EW0;P35980;Q0QEW9;G3UZJ6,G3UZK4 Rpl18 ENSMUSG00000059070 RPL18
Q1WWK3;P43276 H1f5 ENSMUSG00000058773 H1-5
Q4PZA2-3,Q4PZA2-4,Q4PZA2;,Q4PZA2-2 Ece1 ENSMUSG00000057530 ECE1
Q3UHJ0;Q3UHJ0-2 Aak1 ENSMUSG00000057230 AAK1
F6RPJ9;Q8CGB9;Q9JHR7 Ide ENSMUSG00000056999 IDE
P42128 Foxk1 ENSMUSG00000056493 FOXK1
Q544Y7;P18760;F8WGL3;Q9CX22 Cfl1 ENSMUSG00000056201 CFL1
E9Q5W5;Q5SSH7-2;Q55SH7 Zzef1 ENSMUSG00000055670 ZZEF1
AOAUNO;Q4G0C0;G3X928 Sec23ip ENSMUSG00000055319 SEC23IP
Q8R395 Commd5 ENSMUSG00000055041 COMMDS5
Q4W4C9;Q3TVCO0;B2L107;P62761 Vsnl1 ENSMUSG00000054459 VSNL1
BOFTY3;Q8R1N4;Q8R1N4-2;Q8R1N4-3 Nudcd3 ENSMUSG00000053838 NUDCD3
Q61292;Q3USI2 Lamb2 ENSMUSG00000052911 LAMB2
Q9R1T2;Q9R1T2-2 Sael ENSMUSG00000052833 SAE1
Q7TMK6;Q3UWV9;Q3TKK8 Hook2 ENSMUSG00000052566 HOOK2
Q505D7 Opa3 ENSMUSG00000052214 OPA3
Q8K3W0;D3Z7P0;Q8K3W0-1;Q8K3W0-5;Q8K3W0-6;E9Q0U3;Q8K3W0-4 Babam2 ENSMUSG00000052139 BABAM2
Q9QY96;Q9QY96-2;Q8CDP3 Casr ENSMUSG00000051980 CASR
A2ASS6;E9Q8N1;E9Q8K5;A2ASS6-2 Ttn ENSMUSG00000051747 TTN
P43274 H1f4 ENSMUSG00000051627 H1-4
Q9CZPO Ufsp1 ENSMUSG00000051502 UFSP1
Q91WK1 Spryd4 ENSMUSG00000051346 SPRYD4
Q9ZOW3;Q9Z0W3-2 Nup160 ENSMUSG00000051329 NUP160
Q2M4J2;Q9Z1B3-2;Q9Z1B3-3;Q9Z1B3;Q6ZQ92;Q3UPW0 Plcb1 ENSMUSG00000051177 PLCB1
A2AIL4 Ndufafé ENSMUSG00000050323 NDUFAF6
P27661 H2ax ENSMUSG00000049932 H2AX
Q8R086 Suox ENSMUSG00000049858 SUOX
P43275 H1f1 ENSMUSG00000049539 H1-1
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Q3U3H9;P61963;Q80ZU1 Dcaf7 ENSMUSG00000049354 DCAF7
A2ASW4;Q9EQZ6-3;Q9EQZ6;A2ASW 8;Q571A8,Q9EQZ6-2 Rapgef4 ENSMUSG00000049044 RAPGEF4
P59266 Fitm2 ENSMUSG00000048486 FITM2
088845;Q3TR91;088845-3 Akap10 ENSMUSG00000047804 AKAP10
Q3u487 Hectd3 ENSMUSG00000046861 HECTD3
Q566K0;P17095;Q3TE8S Hmga1 ENSMUSG00000046711 HMGA1
Q8C4B4,Q8C4B4-2 Unc119b ENSMUSG00000046562 UNC119B
Q3UK83;Q3U7F3;Q3TIK8;Q5EBP8;P49312;Q3TFB1;P49312-2 Hnrnpa1 ENSMUSG00000046434 HNRNPA1
Q3UAP1;QoWUQ2;D3Z381 Preb ENSMUSG00000045302 PREB
Q4VAI2;Q9D358 Acp1 ENSMUSG00000044573 ACP1
Q8C298;E9Q179;Q8C5Q4 Grsf1 ENSMUSG00000044221 GRSF1
B2RX64;Q571E5;B7ZWH8 Prss53 ENSMUSG00000044139 PRSS53
Q8R3Y8-2;Q8R3Y8 Irf2bp1 ENSMUSG00000044030 IRF2BP1
P70399;P70399-3 Tp53bp1 ENSMUSG00000043909 TP53BP1
Q3TIU4 Pde12 ENSMUSG00000043702 PDE12
E9Q933;Q8BK08 Tmem11 ENSMUSG00000043284 TMEM11
Q52L.87;P68373;Q3TIZ0 Tubalc ENSMUSG00000043091 TUBA1C
Q561M4,Q3UDC3;088746 Tom1 ENSMUSG00000042870 TOM1
Q9JHCO Gpx2 ENSMUSG00000042808 GPX2
D3Z7X0;D3Z2B3 Acad12 ENSMUSG00000042647 ACAD10
P70227 Itpr3 ENSMUSG00000042644 ITPR3
070305-2;E9QM77;070305;070305-3;F6U2C2;Q3UX07;F7B6X4;,Q3UX51 Atxn2 ENSMUSG00000042605 ATXN2
Q60520;Q60520-1 Sin3a ENSMUSG00000042557  SIN3A
Q3TK27;Q8CI11;Q8CI11-2 GnI3 ENSMUSG00000042354 GNL3
E9Q7L3;D3Z1W6;E9Q7L2;D3Z1N4;E9Q4Y5;F8VQD1;Q8BSQ9-2;Q8BSQ9;D3YYF2;D6RILO;D6RI94;D3Z3R4;F6THLS Pbrm1 ENSMUSG00000042323 PBRM1
Q3V3R4;Q3V391,Q05DI0 Itga1 ENSMUSG00000042284 ITGA1
Q3THL5;Q80X73 Pelo ENSMUSG00000042275 PELO
B2RQR5;Q3TDT4;Q8BPQ7;D3Z7V4;D3YUT7 Sgsm1 ENSMUSG00000042216 SGSM1
E9Q481;Q6P2K6 Ppp4r3a ENSMUSG00000041846 PPP4R3A
Q58VI5;P52792;Q55VI6;P52792-2 Gek ENSMUSG00000041798 GCK
P12968 lapp ENSMUSG00000041681  IAPP
Q6V4S85 Sdk2 ENSMUSG00000041592 SDK2
Q8QZS1;E0CX19 Hibch ENSMUSG00000041426 HIBCH
B2RVP5;Q3THW5;P0C0S6;Q8R029;Q3TFUG;Q3UA9S H2az2 ENSMUSG00000041126 H2AZ2
Q7TNG5;E9QK48;Q7TNG5-2;D3YWS2;D6RGM3 Emi2 ENSMUSG00000040811 EML2
Q8VDM6-2;Q8VDM6 Hnrnpul1 ENSMUSG00000040725 HNRNPUL1
E9QN47;Q80U28-14;A2AGQ7;A2AGR0;A2AGQ5,A2AGQ4;Q80U28-3;Q80U28-15;Q80U28;Q80U28-8;Q80U28-4,Q80U28-2;A6PWP8;,Q80U28-13 Madd ENSMUSG00000040687 MADD
E9Q9J4,Q6ZQB6-3;Q6ZQB6;Q62QB6-2;Q80V47 Ppip5k2 ENSMUSG00000040648 PPIP5K2
K3W4R5;A2AGTS-3;A2AGT5;24YL78,A2AGT5-2,Q80U79 Ckap5 ENSMUSG00000040549 CKAP5
Q8K4R4-2;X1W119;Q8BTD8;Q8K4R4-3;Q8K4R4;Q8K4R4-4 Pitpnc1 ENSMUSG00000040430 PITPNC1
A2AFS3 Elapor1 ENSMUSG00000040412 ELAPOR1
QBNZR5;Q3TW36;,Q8CDP6;070349;Q8R3X0;Q3TE28 Skiv2l ENSMUSG00000040356  SKIV2L
S4R2J9;Q3TLH4-5,Q3TLH4;S4R294 Prrc2c ENSMUSG00000040225 PRRC2C
B2RUS7;Q8BNE2;Q6PGE2;Q9Z2P1 Abcc8 ENSMUSG00000040136 ABCC8
Q91YT7,Q3UNH5 Ythdf2 ENSMUSG00000040025 YTHDF2
Q542C3;P59114 Pcif1 ENSMUSG00000039849 PCIF1
Q5U458;E9Q8B3 Dnajc11 ENSMUSG00000039768 DNAJC11
P60670;Q3UE06;Q3UDU9;P60670-2 Nploc4 ENSMUSG00000039703 NPLOC4
Q543N6;P58389;Q8COE1;A2AWE9; A2AWF0O Ptpa ENSMUSG00000039515 PTPA
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