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Abstract 

Dysfunction of regulatory elements through genetic variants is a central mechanism in the 

pathogenesis of disease. To better understand disease etiology, there is consequently a need 

to understand how DNA encodes regulatory activity. Deep learning methods show great 

promise for modeling of biomolecular data from DNA sequence but are limited to large input 

data for training. Here, we develop ChromTransfer, a transfer learning method that uses a 

pre-trained, cell-type agnostic model of open chromatin regions as a basis for fine-tuning on 

regulatory sequences. We demonstrate superior performances with ChromTransfer for 

learning cell-type specific chromatin accessibility from sequence compared to models not 

informed by a pre-trained model. Furthermore, ChromTransfer enables fine-tuning on small 

input data with minimal decrease in accuracy. We show that ChromTransfer uses sequence 

features matching binding site sequences of key transcription factors for prediction. Together, 

these results demonstrate ChromTransfer as a promising tool for learning the regulatory 

code. 
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Introduction 

 

The human genome encodes hundreds of thousands of transcriptional regulatory elements, 

enhancers and promoters, that control how genes are expressed in any given cell in the 

human body (Andersson and Sandelin 2020; Field and Adelman 2020). Regulatory elements 

are short stretches of DNA in accessible chromatin that act as regulators of transcription via 

their ability to interact with key proteins, transcription factors (TFs), that can modulate the 

expression of genes (Spitz and Furlong 2012; Vaquerizas et al. 2009). Regulatory dysfunction 

may be caused by disruptions of the regulatory code, for instance through point mutations or 

structural variants affecting the overall accessibility of regulatory element DNA or binding of 

TFs (Bradner et al. 2017; Miguel-Escalada et al. 2015). Consequently, dysfunction of 

regulatory elements has emerged as a central mechanism in the pathogenesis of diseases 

(Claringbould and Zaugg 2021; Miguel-Escalada et al. 2015; Smith and Shilatifard 2014). As a 

foundation for understanding cellular and disease programs, we therefore need to 

understand the regulatory code of the human genome. In essence, deciphering genetic 

variants-to-phenotype associations requires an understanding of how DNA codes for 

regulatory activities (Andersson and Sandelin 2020; Lappalainen and MacArthur 2021). 

The major challenge in understanding the regulatory code is its complexity. Only considering 

sequences matching known TF binding sequences, regulatory elements involve millions of 

possible sequences that can encode regulatory function, which can be interpreted differently 

across cell types. Therefore, experimentally testing every sequence or regulatory element in 

every cell type is not feasible. Instead, we will need to learn the underlying mechanisms and 

logic of regulatory elements by building computational models that can be applied to predict 

regulatory element activity. With an increasing amount of large-scale molecular data for 

regulatory activities readily available (Andersson et al. 2014; FANTOM Consortium and the 

RIKEN PMI and CLST (DGT) et al. 2014; Kundaje et al. 2015; Arner et al. 2015; Stunnenberg et 

al. 2016; Moore et al. 2020; Meuleman et al. 2020), we are now in a position to approach this 

challenge. 

Deep learning approaches show great promise for such a task, due to their ability to detect 

complex patterns within unstructured data (Ching et al. 2018; Eraslan et al. 2019), as 
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demonstrated by the ability of convolutional neural networks to learn novel features from 

DNA sequences (Avsec et al. 2021b; de Almeida et al. 2022; Janssens et al. 2022). The major 

obstacle for their use to derive the regulatory code is the requirement of large input data sets 

for training the models. Training on small input data may lead to overfitting and, as a 

consequence, non-generalizable interpretations. Learning efficiency and prediction accuracy 

can be improved through multi-task learning, in which multiple types of molecular signatures 

or the same type of measurement across multiple cell types or species (tasks) are modeled 

jointly through exploitation of commonalities and differences in the data for the different 

tasks (Eraslan et al. 2019). Such an approach has been successful in genomics, including 

modeling of chromatin accessibility, histone post-translational modifications, TF binding, and 

expression from DNA sequence alone (Avsec et al. 2021a; Kelley 2020; Kelley et al. 2018, 2016; 

Nair et al. 2019; Zhou et al. 2018). However, multi-task learning may lead to optimization 

imbalances (Chen et al. 2018), causing certain tasks to have a larger influence or even 

dominate the network weights, which may result in worse accuracy for weaker tasks or 

inefficacy to separate similar tasks (Avsec et al. 2021a).  

Transfer learning (Yosinski et al. 2014) has the potential to avoid the possible problems of 

optimization imbalances in multi-task learning or overfitting due to small data sets in single-

task learning. During transfer learning, a model is first trained on a problem with sufficiently 

large input data. The knowledge gained during the first stage is then used on a related or 

more specific problem for which input data may be smaller, using the features learnt in the 

first model as the basis for training a new model for the specific problem. Transfer learning 

has been highly successful in biological image classification (Esteva et al. 2017; Zeng et al. 

2015) and also shows promise for training on DNA sequences (Kelley et al. 2016; Nair et al. 

2019; Schwessinger et al. 2020). 

As a step towards establishing transfer learning for modeling the regulatory code, we here 

develop ChromTransfer, a transfer learning scheme for single-task modeling of the DNA 

sequence determinants of regulatory element activities (Figure 1A). ChromTransfer uses a 

pre-trained, cell-type agnostic model, derived from a large compendium of open chromatin 

regions (putative regulatory elements; Figure 1B) across human cell types, tissues, and cellular 

stages, to fine-tune models for specific tasks (Figure 1C). We demonstrate improvements in 

predictive performances with ChromTransfer for predicting cell-type specific chromatin 
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accessibility for all cell types considered compared to baseline models derived from direct 

modeling of individual cell types. We find that transfer learning minimizes overfitting, 

allowing fine-tuning of models with high predictive performances using only a small fraction 

of input data. Through feature importance analysis, we identify how ChromTransfer uses 

sequence elements to predict chromatin accessibility differently across cell types and match 

these elements to key TF binding site sequences. Our results demonstrate ChromTransfer as 

a promising tool for deciphering how DNA codes for regulatory activities. 

 

Results 

 

Transfer learning improves regulatory element prediction accuracy compared to direct 

learning 

As a basis for learning sequence features associated with chromatin accessibility, we 

considered the ENCODE compendium of 2.2 million representative DNase I hyper-sensitive 

sites (rDHSs, cell-type agnostic open chromatin regions) (Moore et al. 2020) (Figure 1B). The 

ENCODE rDHSs were assembled using consensus calling from 93 million DHSs called across a 

wide range of human cell lines, cell types, cellular states, and tissues, and are therefore likely 

capturing the great majority of possible sequences associated with human open chromatin.  

We implemented a ResNet (He et al. 2015) inspired deep neural network architecture with 

residual layers to classify chromatin accessibility (open/closed) from 600 bp DNA sequences 

centered at rDHSs (Figure 1C, upper panel). The network was used for cell-type agnostic 

modeling of chromatin accessibility versus sampled negative genomic regions (Methods). 

Training and hyperparameter tuning were carried out using 3-fold cross-validation. rDHSs 

located on chromosomes 2 and 3 were held out as the test set. The resulting model (herein 

referred to as pre-trained) was capable of distinguishing between open and closed chromatin 

with high accuracy (area under receiving operating curve (AUROC) of 0.94 and area under 

precision-recall curve (AUPRC) of 0.90 for the out of sample test set; per-class test set F1 

scores of 0.93 and 0.80 for open and closed chromatin, respectively; Figure 1D,E). This 

demonstrates that DNA sequence is a major determinant of chromatin accessibility, in 
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agreement with previous work (Kelley et al. 2016; Nair et al. 2019), and that the pre-trained 

model is able to capture the high sequence complexity in the input data. 

To evaluate how well the pre-trained model could be adapted to predict cell-type specific 

chromatin accessibility, we developed a transfer learning procedure, ChromTransfer (Figure 

1A-C). During transfer learning with ChromTransfer, the representations of the higher-order 

features in the convolutional blocks of the pre-trained model are re-trained to make them 

more relevant for the new data alongside training of newly added dense layers. Batch 

normalization layers are kept untrainable to prevent them from updating their batch 

statistics, and both the convolutional blocks and the dense layers are trained with a reduced 

learning rate (Figure 1C, lower panel; Methods). In this way, the pre-trained model can be 

fine-tuned to capture the sequence determinants of chromatin accessibility in individual cell 

types. To this end, we focused on rDHSs with cell-type specific chromatin accessibility (Figure 

1B) across six cell lines (GM12878: 31,740, K562: 36,769, HCT116: 20,018, A549: 14,112, 

HepG2: 31,211, MCF7: 39,461) together reflecting diverse biological cell types, each with its 

own key TFs (The ENCODE Project Consortium 2012). 

ChromTransfer achieved high predictive performances for all cell lines (overall test set F1 

scores ranging between 0.73 and 0.86, AUROC ranging between 0.79 and 0.89, and AUPRC 

ranging between 0.4 and 0.74; Figure 1F; Supplementary Figure 1B; Supplementary Tables 1-

2). In comparison, the pre-trained model (without fine-tuning) demonstrated only a weak 

ability of predicting cell-type specific chromatin accessibility (overall test set F1 scores ranging 

between 0.24 and 0.49; Supplementary Table 1), indicating that fine-tuning of the pre-trained 

model adapts the network weights to capture cell-type specific sequence elements. The 

largest improvement was observed for K562, having an increase in overall F1 score from 0.24 

for the pre-trained model (per class test set F1 score of 0.22 and 0.33 for closed and open 

chromatin, respectively) to 0.86 for the fine-tuned model (per class test set F1 score of 0.91 

and 0.62 for closed and open chromatin, respectively). 
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Figure 1: Transfer learning of the sequence determinants of regulatory elements using 
ChromTransfer. A: ChromTransfer is a transfer learning scheme for single-task modeling of 
the DNA sequence determinants of regulatory element activities. ChromTransfer uses a pre-
trained, cell-type agnostic model, derived from a large compendium of open chromatin 
regions to fine-tune models for predicting cell-type specific activities. B: Illustration of a 
genomic locus with DNase-seq signal across six cell lines along with called DHSs and the cell-
type agnostic rDHS compendium. The strategy for selection of positives, 600 bp sequences 
centered on all rDHSs (for pre-training) or cell-type specific DHSs (for fine-tuning) are shown. 
C: Model architecture (upper panel) and strategy for fine-tuning (lower panel). For network 
details, see Methods. D: ROCs for training/validation and the test set of the pre-trained model 
for rDHS classification. AUROCs are provided in parentheses. E: Precision recall curves (PRCs) 
for training/validation and the test set for the pre-trained model for rDHS classification. 
AUPRCs are provided in parentheses. F-G: Test set ROCs of the six fine-tuned models (E, 
ChromTransfer) and the six baseline models (F, direct training scheme) for classification of 
cell-type specific chromatin accessibility. AUROCs for each cell line model are provided in 
parentheses. H: Overall and per-class (positive: open chromatin, negative: closed chromatin) 
test set F1 scores for the fine-tuned and baseline models of the six considered cell lines. F1 
scores are also given in Supplementary Table 1. 
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We next examined if transfer learning using ChromTransfer added any performance increase 

compared to a direct training approach. As baseline models, we trained the same ResNet-like 

network (Figure 1C, upper panel) ab initio using the same DNA sequences from cell-type 

specific open chromatin regions for each of the six cell lines. Hence, any performance 

differences observed for the baseline models versus ChromTransfer models will reflect the 

absence of cell-type agnostic pre-training of the convolutional layers on the rDHSs. Indeed, 

the fine-tuned models consistently outperformed the direct training scheme (mean increase 

in overall test set F1 score of 0.13, ranging between 0.05 for K562 to 0.27 for MCF7; Figure 

1G,H; Supplementary Figure 1B,C; Supplementary Table 1). The largest performance increase 

was observed for the positive class (open chromatin), with HCT116 and MCF7 baseline models 

having very weak positive predictive performances (test set positive class F1 score of 0 and 

0.11, respectively). 

We conclude that ChromTransfer’s pre-training of a cell-type agnostic model on the sequence 

determinants of chromatin accessibility followed by fine-tuning on individual cell-types 

consistently improves classification accuracy. 

 

Transfer learning allows for fine-tuning on small training data without overfitting  

The weak class performances for some cell line models with the direct training scheme 

(baseline models; Figure 1H; Supplementary Table 1) indicates that training of the complex 

network architecture on these data sets is not capable of generalizing to the test data. Indeed, 

examination of the learning curves (Figure 2A) showed clear signs of overfitting to the training 

data, with early stopping only after a few epochs and limited convergence between validation 

and training losses. Further examination revealed that the direct training scheme for the 

baseline models could not properly calibrate class probabilities (lack of external calibration; 

Figure 2C). In contrast, the ChromTransfer-derived fine-tuned models showed no signs of 

overfitting (Figure 2B,D).  

The stable performances of ChromTransfer’s fine-tuned models without indications of 

overfitting prompted us to investigate how small training datasets could be used without a 

major decline in predictive performance. To this end, we performed a bootstrap analysis in 

which we subsampled the training data for HepG2-specific chromatin accessibility to different 
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fractions (1% to 75%, 10 bootstraps per target) of the original training data and re-ran the 

fine-tuning of the pre-trained model on the resulting data (Table 1). Remarkably, we observed 

only a marginal decrease in predictive performance (decrease in mean overall test set F1 score 

of 0.05) on the original test data when using as low as 5% of the training data (3,733 input 

sequences, among which 1,283 were positive training examples; Figure 2E). With only 1% of 

the training data (747 sequences, 257 positives), we observed a slightly larger reduction 

(mean overall test set F1 score of 0.67) and more variation (test set overall F1 score standard 

deviation of 0.12) in performances. Still, the models fine-tuned on 1% of the training data 

outperformed both the pre-trained model (overall test set F1 score of 0.49) and the baseline 

model derived from the direct training scheme (overall test set F1 score of 0.60). 

 

 

Figure 2: Transfer learning minimizes overfitting and enables training on small data sets. A-
B: Learning curves (binary cross-entropy, loss) for training and validation data for the HepG2 
baseline model (direct training scheme; A) and fine-tuned model (ChromTransfer; B) for 3-
fold cross-validation (partitions 0, 1, 2). C-D: Calibration curves showing predicted 
probabilities (horizontal axes) versus true probabilities (vertical axes) for unseen test set data 
(external calibration) for the six baseline models (direct training scheme; C) and the six fine-
tuned models (D; ChromTransfer). E: Overall F1 scores on test set data for HepG2 models fine-
tuned after bootstrapping training data (1% to 75% of original training data). The overall F1 
score of the original HepG2 fine-tuned model is included for reference. Error bars show 
standard deviations (10 bootstraps). For exact values, see Table 1. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.05.502903doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502903
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

Taken together, we conclude that ChromTransfer allows for accurate sequenced-based 

modeling of chromatin accessibility using small input data sets while being robust towards 

overfitting. This suggests that ChromTransfer-derived models capture the regulatory code for 

chromatin accessibility.  

 

Sample (%) Sample 
(size of 
training) 

mean F1 
negative 

sd F1 
negative 

mean F1 
positive 

sd F1 
positive 

mean F1 
overall 

sd F1 
overall 

1 % 747 0.65 0.22 0.68 0.03 0.67 0.12 

5 % 3733 0.76 0.01 0.72 0.01 0.74 0.01 

10 % 7467 0.77 0.01 0.71 0.04 0.74 0.02 

15 % 11201 0.76 0.02 0.73 0.01 0.75 0.01 

20 % 14935 0.77 0.01 0.74 0.01 0.75 0.01 

25 % 18668 0.77 0.01 0.74 0.02 0.75 0.01 

50 % 37366 0.79 0.01 0.76 0.01 0.77 0.01 

75 % 56005 0.80 0.01 0.77 0.01 0.79 0.01 

100 % 74673 0.82 - 0.75 - 0.79 - 

 

Table 1: ChromTransfer allows fine-tuning on small input data. Mean overall and per-class 
(positive: open chromatin, negative: closed chromatin) F1 scores on test set data for HepG2 
models fine-tuned after bootstrapping training data (1% to 75% of original training data, 10 
bootstraps). The overall F1 score of the original HepG2 fine-tuned model (100%) is included 
for reference. Bootstrap sample sizes refers to the total number of training examples, 
including both positive and negative examples. Standard deviations (sd) across bootstrap 
estimates are included. 
 

Feature importance analysis reveals the importance of TF binding site sequences for the 

fine-tuned models 
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To investigate the underlying sequence patterns used by ChromTransfer when making 

predictions, we performed feature importance analysis using gradient × input (Eraslan et al. 

2019; Shrikumar et al. 2019). We specifically focused on how the importance of individual 

base pairs had changed during fine-tuning. To this end, we focused on 27,940 and 35,179 

positive predictions by the HepG2 and K562 fine-tuned models, respectively. HepG2 cells are 

derived from a hepatocellular carcinoma, while K562 cells are of erythroleukemia type. These 

two cell lines are therefore expected to have highly different regulatory activities and active 

TFs. 

Feature importance analysis revealed both increased and decreased importance for individual 

base pairs in the fine-tuned HepG2, compared to the pre-trained model. This is exemplified 

by increased importance of sequences at putative binding sites for HNF4A and HNF4G (Figure 

3A), hepatocyte nuclear factors, and CEBPA and CEBPD (Figure 3B), CCAAT/enhancer-binding 

proteins (CEBPs), all of critical importance for hepatocyte function and differentiation (Akai 

et al. 2014; Hayhurst et al. 2001). In contrast, we observed a decreased importance for 

sequences matching binding sites of non-hepatocyte TFs, for instance OLIG2, NEUROD2 and 

TAL1-TCF3 (Figure 3C). OLIG2 and NEUROD2 are important for the central nervous system and 

neurodevelopment (Takebayashi et al. 2000; Olson et al. 2001) while TAL1-TCF3 is required 

for early hematopoiesis (Hoang et al. 2016), and neither are likely to be important for 

hepatocytes. This indicates that transfer learning can refocus on relevant sequence elements 

important for the task at hand. 

To systematically evaluate sequence elements important for the two fine-tuned models, we 

overlaid the feature importance scores with predicted binding sites from the JASPAR 2022 

motif database (Castro-Mondragon et al. 2022) and associated each predicted TF binding site 

with the max corresponding score (Methods). Examination of the distributions of the feature 

importance scores for individual TFs versus all TFs considered confirmed the individual 

observations above, with overall high importance for HNF4A and CEBPA in the HepG2 model 

(Figure 3D,E) and low importance for OLIG2 (Figure 3F), while these rank differences were not 

observed for the pre-trained model. In-silico mutagenesis (ISM) delta scores were in large 

agreement with the feature importance scores derived from gradient × input (Supplementary 

Figure 2). 
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Figure 3: Feature importance analysis reveals TFs important for cell-type specific chromatin 
accessibility of regulatory elements. A-C: Feature importance scores (gradient × input, upper 
panels) at example loci overlapping JASPAR 2022 predicted TF binding sites (lower panels), 
highlighting increased importance of base pairs at putative binding sites for HNF4A/G (A) and 
CEBPA/D (B), and decreased importance of base pairs at those for NEUROD2, OLIG2, and 
TAL1-TCF3 heterodimer. (C). D-F: Empirical cumulative distribution functions (ECDF, vertical 
axes) of feature importance scores (gradient × input, horizontal axes) associated with 
predicted binding sites of HNF4A (D), CEBPA (E), and OLIG2 (F) in fine-tuned and pre-trained 
models. ECDFs for that of predicted binding sites for all other TFs not overlapping target TFs 
(HNF4A, CEBPA, or OLIG2) are shown for comparison. G: Kolmogorov-Smirnov (K-S) test 
statistics (D statistics) for feature importance scores associated with predicted binding sites 
of each considered TF in the HepG2 (horizontal axis) and K562 (vertical axis) fine-tuned 
models. TFs are colored according to a KS D statistic calculated from the difference between 
TF binding site feature importance scores of the two models. Only TFs with Benjamini-
Hochberg adjusted FDR < 0.001 are shown. TFs of biased importance for HepG2 and K562 
models are highlighted with red and blue ellipses, respectively. 
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Based on these observations, we calculated Kolmogorov-Smirnov (K-S) rank statistics (D 

statistics) to examine differences between the importance of TFs for the models based on 

their association with gradient × input scores. This analysis revealed major differences 

between the two fine-tuned models. CEBPs were ranked among the most important TFs for 

HepG2 cells, while GATA factors, critical for the development and maintenance of the 

hematopoietic system (Gao et al. 2015), were ranked among the most important TFs for K562 

cells (Supplementary Figure 3). Furthermore, both CEBP and GATA factors displayed increased 

importance in the respective fine-tuned models compared to the pre-trained model 

(Supplementary Figure 4).  

Direct comparison between the two fine-tuned models (Figure 3G) highlighted GATA factors 

(K562), CEBPs (HepG2), and HNF4A (HepG2), alongside Forkhead box proteins, DPB, HLF, 

NFIL3, and TEF (HepG2) as the most discerning TFs for the two cell lines. Although PAR bZIP 

(proline- and acid-rich basic region leucine zipper) TFs NFIL3, DBP, TEF, and HLF all recognize 

similar binding site sequences, similar to the ambiguity between HNF4A and HNF4G and that 

of CEBPA and CEBPD (Castro-Mondragon et al. 2022), making it hard to predict actual TF 

binding, they are all of relevance for hepatocyte function (Mueller et al. 1990; Cowell and 

Hurst 1996). FOS-JUN heterodimer binding site sequences were, on the other hand, found 

important for both cell lines (Figure 3G; Supplementary Figure 3), and had an increased 

importance compared to the pre-trained model (Supplementary Figure 4). 

These results demonstrate that transfer learning from a pre-trained model derived from a 

large compendium of DHSs based on cell-type specific regulatory elements with 

ChromTransfer does not only yield improved prediction accuracy, but also reveals the 

underlying sequence elements of relevance for the regulatory elements, indicating that 

ChromTransfer has a large potential to further our understanding of the regulatory code. 

 

Discussion 

 

The major challenge in understanding the regulatory code is its complexity. Only considering 

sequences matching known TF binding sequences, regulatory elements involve millions of 

possible sequences that can encode regulatory function, which can be interpreted differently 
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across cell types. Therefore, experimentally testing every sequence or regulatory element in 

every cell type is not feasible. Instead, we will need to learn the underlying mechanisms and 

logic of regulatory elements by building computational models that can be applied to predict 

regulatory element activity. With an increasing amount of large-scale molecular data for 

regulatory activities readily available (Andersson et al. 2014; FANTOM Consortium and the 

RIKEN PMI and CLST (DGT) et al. 2014; Kundaje et al. 2015; Arner et al. 2015; Stunnenberg et 

al. 2016; Moore et al. 2020; Meuleman et al. 2020), we are now in a position to approach this 

challenge. 

Understanding the regulatory code will be transformative for the field, ultimately allowing 

direct interpretation of disease-associated genetic variants, fine-mapping of risk alleles, and 

a direct interpretation of cell types involved in disease etiology. However, computational 

modeling of the regulatory code has been hampered by the requirement of large data sets 

for training, especially for deep learning (Ching et al. 2018; Eraslan et al. 2019), and failure to 

meet this requirement may lead to non-generalizable models. We here establish a transfer 

learning scheme, ChromTransfer, that exploits available large-scale data sets for training of a 

general sequence model of regulatory elements that can be fine-tuned on a specific problem 

for which only a small amount of data is available or can be generated. As a proof-of-concept, 

we demonstrate that this approach is insensitive to overfitting, even at minuscule data sizes, 

allowing accurate modeling of the sequence determinants of cell-type specific chromatin 

accessibility. In contrast, using the same network architecture trained ab initio on the same 

data failed to produce generalizable results, indicating that transfer learning is required for 

such a modeling task, at least with the current network architecture. For ease of validation, 

we here focused on well-studied cell lines with known master regulatory TFs. Feature 

importance analysis using gradient × input revealed binding site sequences for these key TFs 

to be most important for predicting cell-type specific chromatin accessibility, which were 

further supported by in-silico mutagenesis. 

Although our analysis shows promise, establishing the regulatory code will require broad 

analysis across multiple cell types and more in-depth modeling of different regulatory 

activities, e.g., enhancer versus promoter function (Andersson and Sandelin 2020), as well as 

context and stage-specific activities. We expect that such efforts should be feasible with 

ChromTransfer. ChromTransfer models may, for instance, enable investigations of the 
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mechanisms underlying dynamic activities during development and in response to cellular 

stimuli. Such questions are frequently limited to few data points, tasks which are suitable for 

transfer learning. We further acknowledge that further work on model interpretation is 

needed to arrive at a sequence code for regulatory activity. Recent developments to this end 

(Shrikumar et al. 2019; Avsec et al. 2021b; de Almeida et al. 2022; Taskiran et al. 2022) show 

great promise, and we expect that integration of such analyses with the transfer learning 

scheme of ChromTransfer will be important for future efforts to understand the regulatory 

code. 

 

Methods 

 

Data used for modeling of regulatory sequences 

We considered the ENCODE compendium of 2.2 million rDHSs (Moore et al. 2020) as positives 

for training a cell-type agnostic neural network (pre-trained model) the sequence 

determinants of chromatin accessibility. The rDHSs were originally derived from 93 million 

DHSs called by ENCODE (Moore et al. 2020) and the Roadmap Epigenomics (Kundaje et al. 

2015) projects from hundreds of human biosamples, including cell lines, cell types, cellular 

states, and tissues. For each rDHS, we extracted the plus strand 600 bp sequence (GRCh38) 

centered on the rDHS midpoint. 600 bp was used to make sure that sequences influencing 

regulatory activity and chromatin accessibility contained within a central open chromatin site 

(150-300bp) as well as within flanking nucleosomal DNA (150-200bp) were captured 

(FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al. 2014; Meuleman et al. 2020). 

To ensure that the pre-trained model was not biased towards any of the specific cell lines 

considered beforehand, all rDHSs with called accessibility in any of the considered six cell lines 

(described below) were removed before training of the pre-trained model. This is not 

necessary for the modeling purpose per se, but was done to test ChromTransfer’s ability to 

fine-tune the pre-trained model to new, unseen data. Negatives were derived from tiling the 

genome (GRCh38) in 600 bp non-overlapping windows using BedTools (Quinlan and Hall 

2010), followed by removal of any region that overlapped gaps in the GRCh38 genome 
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assembly or manually curated ENCODE blacklist regions (ENCFF356LFX) (Amemiya et al. 2019; 

The ENCODE Project Consortium 2012), or those within 300 bp of rDHSs. 

For modeling of cell-type specific chromatin accessibility (fine-tuning), we considered human 

cell lines A549, HCT116, HepG2, GM12878, K562, and MCF7. The chromatin accessibility of 

each rDHSs in each of these cell lines were quantified as described elsewhere (Moore et al. 

2020). In summary, ENCODE BigWig signals were aggregated in each rDHS for each replicate 

of the cell line, followed by a global Z-score transformation of the log10-transformed signal 

aggregates. Z-scores were binarized into closed/open using a threshold of 1.64. Finally, rDHSs 

were considered open if they were called open in any replicate of the cell line. We defined 

positives for each cell line as rDHSs that were only accessible in that cell line among the six 

cell lines considered (GM12878: 31,740, K562: 36,769, HCT116: 20,018, A549: 14,112, HepG2: 

31,211, MCF7: 39,461), while negatives (GM12878: 81,805, K562: 103,995, HCT116: 62,389, 

A549: 78,725, HepG2: 54,995, MCF7: 91,122) were sampled from the positives of the other 

cell lines and the rDHSs used for pre-training (positive:negative ratio ranging between 1:2.5 

and 1:3.5). 

 

Neural network architecture, training and hyperparameter tuning of the pre-trained model 

We implemented a ResNet (He et al. 2015) inspired neural network, visualized in Figure 1C 

(upper panel). The neural network model uses as input one-hot-encoded DNA sequences (A 

= [1,0,0,0], C = [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1]) of 600 bp to predict closed (negative) or 

open (positive) chromatin as output. The neural network consists of a 1-dimensional 

convolutional layer with 64 hidden units and a kernel size of 25, followed by a residual block 

with 32 hidden units and a kernel size of 20, 3 merged blocks without residual connections 

with 32 hidden units and a kernel size of 15, another residual block with 64 hidden units and 

a kernel size of 10, another 3 merged blocks without residual connections with 64 hidden 

units and a kernel size of 5, two 1-dimensional convolutional layers with 64 hidden units each 

and a kernel size of 10 and 5, global average pooling and two dense layers with 512 and 128 

nodes. Batch normalization and dropout (0.1) were applied after each layer. The activation 

function ReLU (Agarap 2019) was used in all layers except the last, in which a sigmoid 

activation function was used to predict the final class (negative or positive). 
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rDHSs located on chromosomes 2 and 3 were only used as the test set and rDHSs from the 

remaining chromosomes were used for training and hyperparameter tuning with 3-fold cross-

validation. Hyperparameters were adjusted to yield the best performance on the validation 

set. The neural network model was implemented and trained in Keras (version 2.3.1, 

https://github.com/fchollet/keras) with the TensorFlow backend (version 1.14) (Abadi et al. 

2016) using the Adam optimiser (Kingma and Ba 2017) with a learning rate of 0.001, batch 

size of 256, and early stopping with a patience of 15 epochs. Both pre-trained and fine-tuned 

models (see below) were trained on a Linux SMP Debian 4.19.208-1 x86_64 machine using 

NVIDIA Quadro RTX 6000 cards with 24 GB of VRAM. 

 

Training and hyperparameter tuning of the fine-tuned models 

For fine-tuning of the pre-trained model, the trained convolutional blocks of the pre-trained 

model were transferred to a new model and the last two dense layers of the network were 

adjusted to 1024 and 32 nodes, respectively, and added anew. Batch normalization and 

dropout (0.1) were applied after each layer. As in the pre-training phase, rDHSs from 

chromosomes 2 and 3 were only used as a test set for the fine-tuned models. The regions of 

the remaining chromosomes were used for training and tuning of the hyperparameters with 

3-fold cross-validation. The hyperparameters were tuned to give the best performance in the 

validation set. The transferred batch normalization layers of the pre-trained model were kept 

untrainable to prevent them from updating their batch statistics, but both the convolutional 

blocks and the new dense layers were trained using new input data. However, in contrast to 

pre-training, training was performed with a considerably lower learning rate (0.000005), 

batch size of 128, and early stopping with a patience of 10 epochs. 

 

Training and hyperparameter tuning of the baseline models 

For training and fine-tuning of the baseline models were used the same architecture as when 

training the pre-trained model (see above), but adjusted the last two dense layers of the 

network to 1024 and 32 nodes, respectively. As in the pre-training and fine-tuning phases, 

rDHSs from chromosomes 2 and 3 were only used as a test set for the baseline models. The 

regions of the remaining chromosomes were used for training and tuning of the 
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hyperparameters with 3-fold cross-validation. The hyperparameters were tuned to give the 

best performance in the validation set. Training was performed with a learning rate of 0.001, 

batch size of 128, and early stopping with a patience of 10 epochs. 

 

Bootstrap analysis and evaluation of overfitting 

To examine the impact of training data size on model fine-tuning, we performed a bootstrap 

analysis using HepG2 training data. The original training data of 74,673 input sequences were 

subsampled to target sizes of 1%, 5%, 10%, 15%, 20%, 25%, 50%, and 75% in 10 bootstraps 

each, followed by fine-tuning of the pre-trained model (as above). For each bootstrap, the 

overall and per-class F1 scores for the test set (chromosome 2 and 3) were calculated and the 

mean and standard deviations of F1 scores were reported for each target size. 

Overfitting of the models was evaluated by inspection of the cross-validation and training 

accuracies using learning curves of the validation and training losses (binary cross-entropy). 

We further evaluated the disagreement between observed and predictive probabilities by 

inspection of calibration curves on the test data (external calibration). 

 

Feature importance analysis 

To investigate the sequence elements underlying the predictions of the pre-trained model 

and the K562 and HepG2 fine-tuned models, we calculated feature importance scores as the 

dot product between the input DNA sequence gradients (with respect to the output neuron) 

and the one-hot encoding of the sequence (gradient × input). For comparison with the pre-

trained model, feature importance scores were derived from the 27,940 and 35,179 positive 

predictions (from training and test data) of the HepG2 and K562 models respectively. For 

comparison between the K562 and HepG2 fine-tuned models, we considered the union 

(62,689) of positive predictions. 

Since gradient × input scores may have problems to correctly estimate the importance of 

sequence elements for making predictions in case of multiple occurrences in the same input 

sequence (Eraslan et al. 2019; Shrikumar et al. 2019), we evaluated their agreement with 

delta scores derived from in-silico mutagenesis (ISM). For computational reasons, we limited 
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the ISM calculations to true positives (from training and test data) of the HepG2 and K562 

fine-tuned models. For each input sequence and base pair, we calculated the max difference 

in output probability (ISM delta score) after mutating the original nucleotide to any of the 

other three nucleotides. Nucleotides within the original input sequences important for 

positive predictions of a model will yield a negative ISM delta score (decrease in positive 

prediction score) in contrast to gradient × input scores of important sequences that will be 

positive. Validation of gradient × input scores by ISM delta scores were performed for the 

HepG2 model by correlating the feature importance scores associated with predicted TF 

binding sites (see below) of CEBPA, HNF4A, and FOS-JUNB heterodimer.  

 

Model interpretation using predicted TF binding sites 

To systematically evaluate sequence elements important for the two fine-tuned models, we 

analyzed the gradient × input and ISM delta scores with respect to predicted binding sites 

from the JASPAR 2022 motif database (derived from motif scanning; P < 1e-5) (Castro-

Mondragon et al. 2022) using R (version 4.0.3) (R Core Team 2022). Results were plotted using 

ggplot2 (version 3.3.5) (Wickham 2016) and Gviz (version 1.34.1) (Hahne and Ivanek 2016). 

Predicted TF binding sites were imported and overlaid rDHS regions using rtracklayer (version 

1.55.4) (Lawrence et al. 2009) and GenomicRanges (version 1.42.0) (Lawrence et al. 2013). 

Each predicted TF binding site was associated with the maximum gradient × input score (or 

minimum in-silico mutagenesis delta score) across the contained base pairs. Only TFs with at 

least 100 predicted binding sites across all considered rDHSs were considered.  

The importance of each TF for each model was evaluated through rank-based enrichments of 

the importance scores of its predicted rDHS-associated binding sites versus the importance 

scores of non-overlapping predicted binding sites of all other TFs. Evaluation was carried out 

using both manual inspection of the associated empirical cumulative distribution functions 

and, more systematically, using the Kolmogorov-Smirnov test. For visualization purposes, we 

changed the sign of the resulting D statistic if the average ranks of the scores for the predicted 

binding sites of a TF were smaller than the average ranks of all other non-overlapping binding 

sites. Only TFs with significant deviation from the null hypothesis of no difference in rank 

(Benjamini-Hochberg adjusted FDR < 0.001) were plotted. 
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Code availability  

Code for modeling, feature attribution analysis and model interpretation performed in this 

study, as well as trained models are available on GitHub: 

https://github.com/anderssonlab/ChromTransfer/. 
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