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Abstract 

Exocytosis is an active vesicle trafficking process by which eukaryotes secrete materials 

to the extracellular environment and insert membrane proteins into the plasma membrane. 

The final step of exocytosis in yeast involves the assembly of two t-SNAREs, Sso1/2 and 

Sec9, with the v-SNARE, Snc1/2, on secretory vesicles. The rate-limiting step in this 

process is the formation of a binary complex of the two t-SNAREs. Despite a previous 

report of acceleration of binary complex assembly by Sec3, it remains unknown how Sso2 

is efficiently recruited to the vesicle-docking site marked by Sec3. Here we report a crystal 

structure of the pleckstrin homology (PH) domain of Sec3 in complex with a nearly full-

length version of Sso2 lacking only its C-terminal transmembrane helix. The structure 

shows a previously uncharacterized binding site for Sec3 at the N-terminus of Sso2, 

consisting of two highly conserved triple residue motifs (NPY: Asn-Pro-Tyr). We further 

reveal that the two NPY motifs bind Sec3 synergistically, which together with the 

previously reported binding interface constitute dual-site interactions between Sso2 and 

Sec3 to drive the fusion of secretory vesicles at target sites on the plasma membrane. 
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Significance 

SNARE assembly, which involves one v-SNARE with two t-SNARE proteins, drives the 

fusion of vesicles to target compartments. The rate-limiting step in SNARE assembly is 

the assembly of the two t-SNARE proteins on the target membrane. Previous studies in 

yeast showed that Sec3, a component of the exocyst vesicle tethering complex, directly 

interacts with the t-SNARE protein Sso2 to promote fast assembly of an Sso2-Sec9 binary 

t-SNARE complex. This paper presents a new crystal structure of the Sec3 PH domain in 

complex with a nearly full-length version of Sso2, which reveals a previously unknown 

binding site for Sec3 at the N-terminus of Sso2. Our work demonstrates that the dual-site 

interactions between Sso2 and Sec3 plays an essential role in promoting the fusion of 

secretory vesicles at target sites on the plasma membrane.    
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Introduction 

The cytoplasm in eukaryotic cells is compartmentalized into distinct membrane 

bound organelles. Inter-organelle material exchange is carried out primarily through 

membrane traffic in which membrane bound transport vesicles bud from a donor 

compartment and are delivered to a specific acceptor compartment. Upon arriving at the 

destination, cargo-packed vesicles are first recognized and caught by tethering factors 

situated on the target membrane, which then hand the captured vesicles over to the 

soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) proteins 

that drive membrane fusion [1-4].  

There are several types of SNARE proteins, one of which is attached to the 

membrane of vesicles (v-SNARE), and the others are on the target membrane (t-SNARE). 

In neuronal exocytosis, fusion of synaptic vesicles to the presynaptic plasma membrane 

is driven by the assembly of a four-helix bundle containing two t-SNAREs, syntaxin-1 and 

SNAP-25, on the target membrane and the v-SNARE, synaptobrevin, on synaptic 

vesicles [5, 6]. Extensive studies have established that SNARE assembly is tightly 

regulated by multiple auxiliary proteins, including the Sec1/Munc18 (SM) family of 

proteins, tethering factors, and small GTPases [7-12]. Munc18 is a chaperone protein that 

maintains syntaxin-1 in an activated conformation and passes it to its cognate SNARE 

partners for assembly to catalyze membrane fusion [13-17].  

The exocytic vesicle-docking site in yeast is marked by the octameric exocyst 

complex, which belongs to the CATCHR family of multi-subunit tethering proteins [18-20]. 

The main function of the exocyst is to capture secretory vesicles at sites of cell surface 

growth, which include the tip of the daughter cell early in the cell cycle, and the mother-
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daughter cell junction late in the cycle [21]. The two t-SNAREs for exocytosis in yeast are 

Sso1/2 and Sec9, which are homologs of syntaxin-1 and SNAP-25, respectively. The v-

SNARE attached to secretory vesicles in yeast is Snc1/2, which is equivalent to 

synaptobrevin in neuronal exocytosis.  

Our previous work showed that one of the exocyst components, Sec3, promotes 

SNARE assembly by interacting with the t-SNARE Sso2 [22]. Sec3 consists of an N-

terminal pleckstrin homology (PH) domain, a central putative coiled coil, and a C-terminal 

helical domain. Like syntaxin-1 and other related t-SNAREs, Sso2 consists of four helices, 

with the first three (Habc) forming an inhibitory domain and the last (H3) serving as the 

SNARE motif that interacts with the other two SNAREs during membrane fusion. We have 

shown that the Sec3 PH domain binds to the auto-inhibited four-helix bundle of Sso2 and 

promotes a conformational change of the linker between Hc and H3 of Sso2 via an 

allosteric effect [22]. This change promotes the release of the SNARE motif (H3) of Sso2 

and substantially accelerates the formation of the initial binary complex between H3 of 

Sso2 and the two helices of the other t-SNARE, Sec9. However, it remains unclear how 

Sso2 is initially recruited to the vesicle target sites marked by the exocyst to drive the 

efficient fusion reaction between secretory vesicles and the plasma membrane. 

Here we report our structural studies of Sec3-PH in complex with a nearly full-

length construct of Sso2 (aa1-270), which lacks only its C-terminal transmembrane region 

(aa271-295). Our crystal structure of this Sec3/Sso2 complex reveals a previously 

unknown binding site for Sec3 on Sso2 in addition to the one on its four-helix bundle as 

reported in our previous work [22]. This extra binding site is located at the N-terminal end 

of Sso2 and consists of two highly conserved NPY (i.e. Asn-Pro-Tyr) motifs. These NPY 
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motifs are connected to the helical core of Sso2 (i.e. Habc and H3) via a long variable 

linker. In the two heterodimeric complexes present in the crystal structure, the two NPY 

motifs of the two Sso2 molecules bind individually to a similar conserved hydrophobic 

pocket on the two Sec3 molecules. Interestingly, however, our in vitro interaction studies 

using synthetic polypeptides and recombinant Sec3-PH protein demonstrated that each 

NPY motif alone bound Sec3 much more weakly than the two NPY motifs together. The 

importance of the interaction between the NPY motifs of Sso2 and Sec3 was confirmed 

by a series of in vivo assays in yeast.  

Overall, our work has uncovered a new interaction interface and thus establishes 

dual-site interactions between Sec3 and Sso2, which also suggests potentially an extra 

regulatory step in exocytic membrane fusion. Binding of the NPY motifs of Sso2 allows 

efficient recruitment of the t-SNARE protein to the vesicle-docking site on the plasma 

membrane to facilitate vesicle fusion.  

 

Results 

Crystal structure reveals two NPY motifs at the N-terminus of Sso2 bound 

individually to the Sec3 PH domain 

We previously reported the structure of Sso2-HabcH3 (aa36-227) in complex with 

the PH domain of Sec3 (aa75-320)[22]. Recently we crystallized another complex of the 

two proteins using a longer version of Sso2 (aa1-270), which contains all Sso2 sequence 

except for its C-terminal transmembrane part, together with a shorter Sec3 PH domain 

(aa75-260) (Fig. 1A and Fig. S1A). A stable binary complex was obtained via size 
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exclusion chromatography (SEC) (Fig. S1B), which was then crystallized by hanging drop 

vapor diffusion. Diffraction data to 2.19 Å resolution was collected at the ESRF 

synchrotron site and the crystal structure was determined by the molecular replacement 

method. The crystal belongs to space group P1 (a = 50.96 Å, b = 58.40 Å,  c = 83.29 Å; 

α = 104.28°, β = 98.49°, γ = 113.20°). The final structure was refined to Rwork and Rfree of 

19.9% and 23.9%, respectively, with an average B factor of 40.74 Å2  for all 

macromolecules (Table 1). 

The final model contains two copies of the Sso2/Sec3 complex per asymmetric 

unit, together with 418 ordered water molecules. One of the complexes contains residues 

4-8, 33-149 and 197-226 of Sso2 and residues 76-250 of Sec3; the other contains 

residues 6-14, 33-148 and 196-226 of Sso2 and residues 76-250 of Sec3. Corresponding 

regions in the two complex structures are essentially identical, with r.m.s.d of 0.45 Å for 

all aligned backbone atoms (Fig. 1B). 2Fo-Fc electron density maps have a high quality, 

and sidechains of most residues in both Sec3 and Sso2 can be confidently built (Fig. 1C).  

Primary sequence alignments of Sso2 homologs from various yeast species reveal 

two conserved three-residue motifs toward the N-terminus of Sso2, which we name as 

NPY motifs. These double NPY motifs are connected to the highly conserved core of 

Sso2 (i.e. Habc and H3) via a nonconserved linker with variable lengths in different 

homologs (Fig. 2A; Fig. S2). These NPY motifs bind individually to Sec3 in the two 

structural copies (Fig. 2B, E). In one complex structure residues 4-8 of Sso2 show clear 

densities in the 2Fo-Fc map (Fig. 2C); in the other structure we could unambiguously trace 

sidechains of residues 10-14, but for residues 6-9 we could build only the backbone atoms 

(Fig. 2F). Despite variations in the flanking residues of these NPY motifs, the NPY cores 
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adopt essentially the same conformation and share similar contacts with ordered solvent 

molecules and neighboring residues from Sec3 (Fig. S3). Particularly, the tyrosine 

residues in both cases (i.e. Y7 and Y13) are docked into a conserved hydrophobic pocket 

on the concave surface on Sec3 (Fig. 2D, G). Overall, the NPY motif adopts a T-shaped 

conformation, with its broad top part shaped by the asparagine (N) and the proline (P) 

residues, which is stabilized by a hydrogen bond between the carboxyal group of the 

asparagine and the amide proton of the proline (Fig. 2H). The tryosine residue sticks out 

to form a pin-like structure that fits neatly in the pocket on Sec3. 

 

The two NPY motifs of Sso2 binds synergistically to Sec3 

To determine how the two NPY motifs of Sso2 interact with Sec3, we carried out 

isothermal titration calorimetry (ITC) assays using synthetic polypeptides of Sso2 and 

recombinant Sec3-PH purified from bacteria (Fig. 3). Wild type (WT) double NPY motifs 

of Sso2 (aa1-15) bound Sec3 with a dissociation constant (Kd) of 21.1 µM (Fig. 3A). 

However, each NPY motif individually bound Sec3 much more weakly, with binding 

affinities reduced by 3-4 fold (Fig. 3B, C). Mutation of all core residues of the first NPY 

motif to alanines (M5) slightly reduced the binding affinity  (Kd = 34.9 µM) (Fig. 3D), 

whereas mutation of the second NPY motif (M6) drastically affected the interaction, with 

a Kd of 188 µM (Fig. 3E). The synthetic polypeptide with both NPY motifs mutated (M7) 

displayed no detectable interaction with Sec3 (Fig. 3F). 
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Mutation of Sso2 NPY motifs inhibits cell growth as well as secretion of Bgl2 and 

invertase  

To assess the in vivo role of the interactions between Sec3 and the two NPY motifs 

of Sso2, we constructed various sso2 alanine substitution mutations in a yeast integrating 

vector and introduced them into a yeast strain deleted for the paralogous gene, SSO1. 

The mutations were incorporated into the endogenous SSO2 locus by the loop-in/loop-

out method, leaving the surrounding sequence entirely unaltered (Fig. 4A; Fig. S4A) [23]. 

The sso1Δ sso2 mutants were tested for growth at both 25oC and 37oC (Fig. 4B; Fig. 

S4B). No effect was observed with single, double or triple mutations in the first NPY 

domain (sso1Δ sso2M1-M4), however changing all four residues to alanine (sso1Δ 

sso2M5) resulted in reduced growth at 37oC (Fig. S4B). Mutating all four residues of the 

second NPY domain to alanine (sso1Δ sso2M6) did not affect growth at any temperature, 

however changing all residues of both the first and second NPY domain to alanine (sso1Δ 

sso2M7) resulted in significantly reduced growth at both 25oC and 34oC and severely 

impaired growth at 37oC (Fig. 4B). The synergistic effects of eliminating the first and 

second NPY motif of Sso2 suggest that both motifs are functional and at least partially 

redundant. 

 We next assayed the export of two different cell surface enzymes, Bgl2 and 

invertase. Bgl2 is synthesized and secreted constitutively, while the synthesis of invertase 

is under hexose repression. Both enzymes become trapped at the cell surface by the cell 

wall glucan and this external pool can be released by treatment of cells with exogenous 

glucanase, while any internal pool remains associated with the resulting spheroplasts [24]. 

Using western blot analysis to measure the internal and external pools of Bgl2, we found 
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that the secretory efficiency at 37oC generally paralleled growth: sso1Δ sso2M1-M6 

showed only a modest accumulation of an internal pool, while sso1Δ sso2M7 

accumulated a significantly larger internal pool (Fig. 4C, D; Fig. S4C, D).  

To assay invertase secretion we started with cells grown at 25oC in 5% (w/v) 

glucose to repress synthesis and then shifted to 0.1% (w/v) glucose to derepress 

synthesis and simultaneously shifted the cells to 37oC. Using these conditions we found 

that sso1Δ sso2M1-M4 and sso1Δ sso2M6 were not significantly different from the sso1Δ 

SSO2 control, while sso1Δ sso2M5 showed a minor defect in invertase secretion and 

sso1Δ sso2M7 showed a more substantial defect (Fig. 4E; Fig. S4E).  

 

Mutations of the Sso2 NPY motifs cause polarized accumulation of secretory 

vesicles  

Defects on the secretory pathway are typically associated with the accumulation 

of membrane bound intermediates [25]. Loss of function of exocytic SNAREs, including 

Sso1 and Sso2 leads to the accumulation of secretory vesicles [26]. Secretory vesicles 

are normally delivered to sites of polarized cell surface growth, such as the tip of the bud, 

early in the cell cycle and the neck separating the mother cell and bud, late in the cell 

cycle. Thin section electron microscopy revealed an accumulation of vesicles in the 

mutants that mirrored their growth: the sso1Δ SSO2 control and the sso1Δ sso2M6 

mutant had relatively few vesicles per cell section, while sso1Δ sso2M5 and sso1Δ 

sso2M7 had many more (Fig. 5A-E). The vesicles were similar in size in the different 
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strains (Fig. 5F) and were found preferentially within the buds of small budded cells (Fig. 

5A-D). 

 

Mutations in the NPY motifs of Sso2 affect Snc1 recycling 

In addition to the export of newly synthesized cell surface proteins, secretory 

vesicles are also important for recycling certain plasma membrane proteins back to the 

cell surface after they have been internalized by endocytosis. The Snc1 v-SNARE has 

been shown to rapidly cycle from secretory vesicles to the plasma membrane, and then 

into endocytic vesicles from which it is recycled through the Golgi into a new round of 

secretory vesicles [27]. Under normal growth conditions, Snc1 is predominantly found on 

the plasma membrane, with only a minor pool in internal structures. Impeding any step in 

the cycle leads to a shift in the steady state distribution of GFP-Snc1. We examined the 

distribution of GFP-Snc1 in various sso1Δ sso2 mutants. In the sso1Δ SSO2 control and 

the sso1Δ sso2M6 mutant, GFP-Snc1 was mostly on the plasma membrane with a small 

number of internal, patch-like structures apparent (Fig. 6A, C). In contrast, the sso1Δ 

sso2M5 and sso1Δ sso2M7 mutants showed a much greater fraction of cells with internal 

patches of GFP-Snc1, presumably representing concentrations of secretory vesicles, and 

a greatly reduced localization to the plasma membrane (Fig. 6B, D, E). 

 

The sso2 mutations have no effect on the actin-independent localization of Sec3  

Secretory vesicles are delivered to sites of cell surface growth by the type V myosin, 

Myo2, moving along polarized actin cables [28]. Loss of actin or Myo2 function leads to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.03.11.483902doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483902
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

the rapid depolarization of a vesicle marker, such as the Rab GTPase Sec4 [29]. Sec3, 

in contrast remains associated with the tips of small buds and the necks of large buds 

even after actin polymerization has been blocked by addition of Latrunculin A (LatA) [30]. 

We determined if the interactions between Sec3 and the NPY motifs of Sso2 are required 

for the actin-independent localization of Sec3. GFP-Sec4 and Sec3-3×GFP were 

expressed in sso1Δ SSO2, sso1Δ sso2M5 and sso1Δ sso2M7 cells. Localization was 

evaluated after treatment with either LatA or DMSO for 15 min. The polarized localization 

of GFP-Sec4 was lost after treatment with LatA (Fig. 7A, B). While the localization of 

Sec3-3×GFP was largely resistant to LatA treatment in the control and sso1Δ sso2M5 

mutant cells, the polarization of Sec3-3×GFP in sso1Δ sso2M7 was only slightly reduced 

by LatA treatment (Fig. 7C, D). These results demonstrate that the NPY motifs of Sso2 

do not play a major role in the recruitment of Sec3 to sites of polarized growth. Notably, 

prior studies have shown that the actin-independent localization of Sec3 involves its 

interaction with the Rho1 and Cdc42 GTPases [31, 32]. 

 

The NPY motifs play an essential role in stabilizing the interaction between Sso2 

and Sec3  

In the structure with the second NPY motif bound to Sec3 we see extra electron 

densities beyond the bound NPY motif. However, the quality of the map in that part was 

poor and we could only build the main chains for residues 6-9 (Fig. 8A). We found that 

this “fuzzy” part upstream of the bound NPY motif is in close contact with the C-terminal 

tip of the SNARE motif (i.e. H3) of Sso2 (Fig. 8B). To find out whether the NPY motifs are 

essential in stabilizing the interaction between Sso2 and Sec3, we carried out ITC 
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experiments using either WT or M7 mutant of Sso2 with the Sec3 PH domain. Our results 

show that WT Sso2 bound Sec3 robustly, with Kd ~2.7 µM (Fig. 8C). However, the M7 

mutant of Sso2 (aa1-270) did not interact with Sec3 at all (Fig. 8D).  

We further examined their interactions using two other independent methods. Our 

electrophoresis mobility shift assays (EMSA) show that more and more WT Sso2 shifted 

up to the complex band with increasing amounts of Sec3 in the mixtures. However, no 

complex was formed when we mixed the M7 mutant of Sso2 with Sec3 (Fig. S5A, B). 

Consistently, our further test using size exclusion chromatography also shows that Sec3 

could form complex with only WT but not the M7 mutant of Sso2 (Fig. S5C, D).  

To investigate whether the M7 mutant of Sso2 also affects its interaction with Sec3 

in vivo, we carried out co-immunoprecipitation of Sec3-3×Flag and Sso2 using yeast cell 

lysate. Our results show that, in contrast to the clear signal of WT Sso2 pulled down by 

Sec3-3×Flag, the pull-down band for the M7 mutant was much weaker and near the level 

of the negative control in which the Sec3-3×Flag was absent (Fig. S6).   

 

Discussion 

Sec3 is a subunit of the octameric exocyst complex, a tethering factor that marks 

the docking site for secretory vesicles in exocytosis. Sec3 is recruited to these sites by 

binding to the membrane-anchored small GTPases Rho1/Cdc42 and phosphoinositides 

on the plasma membrane [31-34]. Sso2, similar to its homologous t-SNARE in neuronal 

exocytosis, bears a C-terminal transmembrane helix. We have previously reported crystal 

structures of the Sec3 N-terminal PH domain in complex with the closed form of Sso2 as 
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a four-helix bundle [22]. We found that Sec3 destabilizes the linker between Hc and H3 

of Sso2 via an allosteric effect, which promotes the assembly of the binary complex 

between Sso2 and the other t-SNARE, Sec9, and thus drastically accelerates subsequent 

full SNARE assembly with the v-SNARE Snc1/2 to drive fusion of secretory vesicles with 

the plasma membrane. However, it remains unknown whether the conserved N-terminal 

extension of Sso2 also participates in the Sso2/Sec3 interaction and how Sso2 is 

effectively recruited to Sec3.  

Here we report a new crystal structure of the Sec3 PH domain in complex with a 

nearly full-length version of Sso2 that contains all sequence except for the C-terminal 

transmembrane helix. In addition to the interaction between the helical bundle of Sso2 

and Sec3 observed in the previous study, we found an extra interaction interface between 

two conserved NPY motifs at the N-terminal end of Sso2 and a hydrophobic pocket on 

Sec3 (Fig. 1). The NPY motifs are connected to the highly conserved helical core of Sso2 

via a non-conserved linker with variable lengths (roughly 15-40 residues), which is 

invisible in our crystal structure, suggesting that it is mobile within the crystal structure.  

There are two copies of the Sso2/Sec3 complex in our crystal structure. The two 

NPY motifs were independently bound to Sec3 in these two complex structures (Fig. 2). 

Despite variations in the flanking residues, the cores of the two motifs, i.e. residues Asn, 

Tyr and Pro, adopt essentially the same conformation and have similar hydrogen bond 

networks with the neighboring Sec3 residues and water molecules (Fig. S3). Our ITC 

experiments show that either of the two NPY motifs alone could bind Sec3 tightly, 

although with binding affinities 3-4 fold lower than the polypeptide with both motifs (Fig. 

3). Similarly, mutation of either motif to alanine also substantially reduced the interaction 
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of the N-terminal part of Sso2 with Sec3, whereas simultaneous mutation of both motifs 

completely abolished the interaction. Together these data suggest that the two NPY 

motifs bind Sec3 synergistically.  

To further understand the function of the NPY motifs in exocytosis, we carried out 

a series of in vivo assays using yeast strains carrying mutations of Sso2 in its NPY motifs. 

While mutation of either NPY motif alone only slightly reduced cell growth, simultaneous 

mutation of both NPY motifs severely impaired cell growth, particularly at 37oC (Fig. 4B). 

We also explored how mutations of the NPY motifs of Sso2 influence protein secretion 

using Bgl2 and invertase as reporters. Our data show that mutation of both NPY motifs 

simultaneously substantially affects cell secretion efficiency, with a significantly larger 

internal pool of Bgl2 failing to reach the cell surface, whereas mutation of either motif 

alone yielded only a modest accumulation of an internal pool (Fig. 4C, D; Fig. S4C, D). 

Similar effects were observed in invertase secretion, where the double NPY mutant M7 

showed a more substantial defect than all other mutants (Fig. 4E; Fig. S4E). 

We further checked how the sso2 NPY mutations affect fusion of secretory vesicles 

to the target sites on the plasma membrane. Mutation of both NPY motifs resulted in the 

accumulation of many vesicles within the cell. Similar results were also observed for the 

mutation of the first NPY motif, whereas that of the second NPY motif showed no 

significant effect (Fig. 5). Consistently, we found that both the double NPY mutation and 

mutation of the first NPY motif caused accumulation of GFP-Snc1 patches within the 

cytoplasm (Fig. 6). Taken together, we conclude that the NPY motifs of Sso2 play an 

essential role in the secretory pathway. Notably, however, the interaction between Sec3 

and the NPY motifs of Sso2 is dispensable for the actin-independent localization of Sec3 
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(Fig. 7), which is consistent with previous reports that recruitment of Sec3 to the plasma 

membrane is determined by its interaction with the small GTPases Rho1 and Cdc42 as 

well as phosphoinositides on the membrane [31-34].  

Although the M7 mutant in the synthetic N-terminal part of Sso2 (aa1-15) disrupts 

its interaction with Sec3, the major interaction interface between the helical bundle of 

Sso2 and the Sec3 PH domain remains unchanged (Fig. 1B). Therefore, it was intriguing 

to us why the M7 mutant showed such a strong deleterious effect in vesicle trafficking. 

Our ITC data reveal that the M7 mutant of Sso2 (aa1-270) completely abolished its 

interaction with the Sec3 PH domain (Fig. 8C, D). The disrupted binding of the M7 mutant 

with Sec3 was further confirmed by two other in vitro experiments using purified 

recombinant proteins (Fig. S5), as well as by our co-immunoprecipitation data (Fig. S6). 

All these demonstrate that the NPY motifs play an essential role in stabilizing the 

interaction between Sso2 and Sec3. This might be explained by what was observed in 

the crystal structure of the Sso2/Sec3 complex, where the NPY motifs are in close contact 

with the C-terminal tip of the SNARE motif (i.e. H3) of Sso2 and may thus stabilize their 

interaction as explained below (Fig. 8A, B).  

The dual interaction interfaces between Sso2 and Sec3 are reminiscent of what 

has been seen in the structures of syntaxin-1 and Tlg2 in complex with their partner SM 

proteins Munc18 and Vps45, respectively (Fig. 9A-C). In the latter two complex structures, 

a short peptide at the N-terminus of Munc-18 and Vps45, which was named “N-peptide”, 

forms a short helix and binds distally to the backside of the first domain of Munc18 or 

Vps45, opposite to their interaction sites with the helical bundles of the SNARE proteins 

[35, 36]. In contrast, the binding site for the NPY motifs of Sso2 is on the same side of 
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the Sec3 PH domain as the aforementioned direct contact with the C-terminal part of H3 

of Sso2 (Fig. 9D). Furthermore, the Sec3 PH domain is a single globular domain and 

much smaller than Munc18 and Vps45, both of which contain three domains that are 

folded into a horseshoe-like conformation. The helical bundle of syntaxin-1 and Tlg2 is 

clamped between the two tips of the “horseshoe”. Additionally, in those two complex 

structures, the C-terminal extensions of the SNARE motifs (i.e. H3) form a short helix and 

insert into a hydrophobic pocket deeply inside the “horseshoe” (Fig. 9B, C). These 

together ensure a strong interaction between the two t-SNAREs and their partner SM 

proteins. In contrast, the interaction interface between Sec3 and Sso2 is very small, and 

thus their interaction is presumably much weaker than that in the Munc18/syntaxin-1 and 

Vps45/Tlg2 complexes. Our ITC data show that double mutation of both NPY motifs 

completely abolished the interaction between Sso2 and Sec3 (Fig. 8C, D). Consistently, 

our in vivo data demonstrate that simultaneous mutation of both NPY motifs substantially 

impaired protein secretion as well as recycling of cell surface proteins. We therefore think 

that the NPY motifs play an important role in stabilizing the interaction of Sso2 with Sec3 

by providing an additional binding site, which ensures effective recruitment of Sso2 to 

vesicle docking sites on the plasma membrane.  

Given that binding of Sec3 destabilizes the linker connecting H3 to Hc and 

prepares H3 for its subsequent interaction with Sec9, we think that another possible role 

for the NPY motifs, which are packed tightly against the C-terminal tip of the SNARE motif 

H3 (Fig. 8A, B), might be to serve as a stopper to hold the destabilized SNARE motif in 

place to prevent a premature release of H3 before the right time comes for it to form a 

binary complex with the other t-SNARE protein Sec9. 
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Notably, the N-peptide motif is ubiquitously present in all syntaxins that interact 

with SM proteins [37-40]. It serves as an initiator to recruit SM proteins to their SNARE 

partners to facilitate their subsequent assembly [41]. Given that the NPY motifs are 

connected to the rest of Sso2 via a long variable linker, we hypothesize that they may 

similarly function like fishing hooks to search for Sec3 around the membrane-anchored 

Sso2 (Fig. S7). Once the “hooks” find and bind to Sec3, Sso2 would be locally restrained, 

which would promote the binding of Sec3 to the helical bundle of Sso2. This would in turn 

lead to the destabilization of the linker between Hc and H3 of Sso2 and thus promote the 

assembly of the binary complex between Sso2 and Sec9 to facilitate the final formation 

of the full SNARE complex with the v-SNARE Snc1/2, which eventually drives the fusion 

of secretory vesicles with the plasma membrane. 

 

Materials and Methods 

Molecular cloning of expression constructs for in vitro assays 

The Sso2 sequence excluding only its C-terminal transmembrane domain (aa1-

270) and the Sec3 PH domain sequence (aa75-260) were both sub-cloned into the pET-

15b vector (Novagen) between the NdeI and BamHI sites. This plasmid provides an N-

terminal His6 tag followed by a thrombin cleavage site prior to the target proteins. All 

constructs were validated by DNA sequencing. 

 

Protein expression and purification 
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E. coli strain BL21(DE3) cells harboring the expression plasmids for Sso2 and 

Sec3 were cultured in Luria Broth (LB) medium containing 50 mM ampicillin at 37°C to an 

OD600 of 0.6-0.8. Over-expression of the target proteins was induced using 0.5 mM 

isopropylthio-β-d-galactoside (IPTG) and cultures were incubated at 18°C overnight. 

Cells were harvested by centrifugation (6,000×g, 12 min, 4°C). The pellets were 

resuspended in pre-chilled lysis buffer containing 20 mM HEPES (pH 7.5), 100 mM NaCl, 

20 mM imidazole, and 10 mM beta-mercaptoethanol. Cell were lysed using an 

EmulsiFlex-C3 homogenizer (Avestin). After centrifugation (25,000×g, 40 min, 4°C) to 

remove cell debris the supernatant was filtered through a 0.45-μm pore size filter and 

then loaded onto a 5-ml Ni-HiTrap column (GE Healthcare) that had been pre-equilibrated 

in the same lysis buffer. After washing with 5 column volumes (cv) of lysis buffer, bound 

protein was eluted using a linear gradient concentration of imidazole in the lysis buffer 

(20 to 600 mM, 25×cv). Elution fractions were checked on SDS-PAGE gels and those 

containing target proteins were pooled. The N-terminal His6 tag was removed by 

incubating the purified proteins with ~3% (w/w) thrombin (4°C, overnight) and then 

subjected to SEC using a Superdex S-200 16/60 column (GE Healthcare) pre-equilibrated 

with the running buffer containing 20 mM HEPES (pH 7.5), 100 mM NaCl, and 1mM DTT. 

Fractions of interest were pooled for later use. 

To generate protein complex for crystallization, purified domains of Sec3 and Sso2 

were mixed in a molar ratio of 2:1. After incubation at 4°C for one hour, the mixture was 

loaded on a Superdex S-200 16/60 column (GE Healthcare) pre-equilibrated with the 

same running buffer as above. Elution fractions were checked on a 15% (w/v) SDS-PAGE 

gel. The first elution peak containing both proteins were pooled and concentrated to 10-
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15 mg/ml using Amicon Ultra Centrifugal Filter Units (Millipore) with 10-kDa molecular 

weight cutoffs. 

 

Crystallization, data collection, and structure determination 

Concentrated protein of the Sec3-Sso2 complex (~12 mg/ml) was subjected to 

extensive crystallization screening trials using commercial crystallization kits. Initial 

crystallization screenings were carried out at 22ºC by the sitting drop vapor diffusion 

method using the Phoenix HT liquid handling robot (Rigaku) to set up dual droplets for 

each condition with drop volume of 0.2 and 0.3 µl (1:1 and 2:1, protein vs reservoir 

solution) on  96-well sitting drop crystallization plates (Molecular Dimensions). The crystal 

used for final data collection was grown from a manually set up droplet containing 2 µl of 

protein and 1 µl of reservoir solution. Needle-shaped crystals of ~10 × 10 × 100 µm were 

obtained in a condition containing 0.1 M sodium acetate (pH 5.0), 0.2 M ammonium 

acetate, and 30% (w/v) PEG 4,000. All crystals were harvested with nylon loops 

(Hampton Research) by flash-cooling in liquid nitrogen using the same reservoir solutions 

containing 20% (v/v) glycerol as cryo-protectant. X-ray diffraction data were collected at 

the beamline ID23-1 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, 

France. Data reduction was carried out using the XDS program [42].  

For structure determination, the maximum-likelihood molecular replacement by 

PHASER [43] was conducted using our previously determined structures of Sec3 and 

Sso2 (PDB code: 5M4Y) as the searching model [22]. The structural models were 

carefully checked; all different regions as well as extra parts in the models where electron 

densities were clearly visible were manually built using the program COOT [44]. 
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Refinement was carried out by Phenix.refine [45] using data of 20-2.19 Å. All subsequent 

structure analyses and figure generations were carried out using Pymol 

(http://www.pymol.org). The details of data collection and refinement statistics are 

summarized in Supplementary Table 1.  

 

Isothermal titration calorimetry (ITC) 

All ITC measurements were conducted on a MicroCal PEAQ-ITC microcalorimeter 

(Malvern Panalytical). Purified Sec3 (aa75-260) and WT or M7 mutant Sso2 (aa1-270) 

proteins were dialyzed overnight against a buffer composed of 20 mM HEPES (pH 7.5), 

100 mM NaCl, and 1 mM DTT. Synthetic Sso2 polypeptides were dissolved in the same 

buffer and their concentrations were determined using the DS-11+ Spectrophotometer 

(DeNovix). For ITC measurements of Sec3 with various Sso2 poplypeptides, the reaction 

chamber and the injection syringe contained 250 µl of 59 µM Sec3 and 45 µl of 590 µM 

poplypeptides, respectively. For ITC measurements of Sec3-PH with Sso2 (aa1-270), the 

reaction chamber held 300 µl of purified Sec3 (30 µM), while the injection syringe 

contained 75 µl of WT or MT Sso2 (75 µM). All titration experiments consisted of one initial 

0.4 µl injection followed by 18 consecutive 2 µl injections with a duration of 4 sec each 

and an interval of 120 sec between two consecutive injections. The resulting data were 

analyzed with the MicroCal PEAQ-ITC Analysis Software (Malvern Panalytical, Version 

1.22) using the one-set-of-site fitting model. Non-linear least square fitting using one 

binding site model was used to calculate the association constant (Ka). Dissociation 

constants (Kd) were calculated according to the formula Kd = 1/Ka. 
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Electrophoretic mobility shift assay (EMSA)  

EMSA experiments were carried out on a 5% (w/v) native polyacrylamide gel in 

Tris-acetate-EDTA (TAE) buffer containing 40 mM Tris, 20 mM acetic acid, and 1 mM 

EDTA. Purified Sec3 (aa75-260), WT or M7 mutant Sso2 (aa1-270), and their mixtures 

(0.5-1 mg/ml, 10 µl) in the presence of 10% (v/v) glycerol were loaded into separate lanes 

on the native gel. The gel was run at 150 V for 1.5 h at 4°C, and then stained in an ethanol 

solution containing 0.025% (w/v) Coomassie brilliant blue G-250 to visualize the protein 

bands. The same set of samples were also separately checked on a 15% (w/v) SDS 

PAGE gel to confirm the presence of target proteins in each loaded sample. 

 

Size exclusion chromatography (SEC)  

100 µl purified Sec3 PH domain (100 µM) were mixed with equal volume of either 

WT or M7 mutant Sso2 (aa1-270, 50 µM) in a sample buffer containing 20 mM HEPES 

(pH 7.5), 100 mM NaCl, and 1 mM DTT. After incubating at 4°C for 30 min, the mixtures 

were separately run on a Superdex® 200 Increase 10/300 GL  column (Sigama-Aldrich) 

with a flow rate of 0.5 ml/min. Samples from each elution peak were checked on an SDS 

PAGE gel to visualize protein content in that peak.   

 

Construction of strains and plasmids for in vivo assays 

All bacteria and yeast strains used in our in vivo studies are listed in Supplementary 

Tables 1 and 2. To generate the various sso2 mutants, a fragment of the SSO2 gene 

consisting of the promotor region (242bp) and a C-terminally truncated ORF (1-659 bp) 
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was amplified by PCR. The PCR product was digested and ligated into KpnI/HindIII 

enzyme sites in an integrative pRS306 based vector. The sso2 mutations were generated 

by QuikChange Lightning Site-Directed Mutagenesis Kit (Aligent, #210518).  

Plasmids carrying the mutant alleles were linearized by digestion with the MscI 

enzyme to promote integration into the SSO2 locus and introduced into yeast strains (an 

sso1 strain for mutants sso2M1-M6 or wt for sso2M7) by the lithium acetate method.  

Transformants were selected on SC-Ura plates. Multiple independent transformants were 

grown in SC-Ura medium overnight. To select for Ura- “loop-out” segregants, cells (100 

µl) were collected, washed in sterile water, and then plated on YPD+5-FOA plates. 

Integration and loop-out events leading to the genomic expression of the sso2 mutations 

were verified by sequencing PCR products. Due to genetic instability issues, we used a 

two-step procedure to construct an sso1 sso2M7 strain. A wt strain was transformed 

with plasmid NRB1659 and then Ura- cells were selected by growth on 5-FOA plates.  

The selected sso2M7 strain was crossed with an sso1SSO2 strain and, after dissection 

haploid sso1 sso2M7 spores were identified by PCR analysis.  

 

Growth test 

Mutants were grown in yeast extract peptone dextrose (YPD) medium overnight to 

stationary phase. 0.04 OD600 units of cells were resuspended in 200 ul sterile water and 

diluted in fivefold serial dilutions. Cells were spotted on YPD plates and incubated at 25oC, 

34oC, or 37oC for 2 days.  
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Bgl2 secretion assay 

The Bgl2 secretion assay was carried out as previously described by Yuan et al 

[24]. Briefly, 15 mL of yeast cells were grown at 25°C in YPD medium overnight to early 

log phase (∼0.5 OD600/mL), then shifted to 37°C for 90 min. 6 OD600 units of cells from 

each strain were harvested by centrifugation at 900 × g for 5 min. Cell pellets were 

resuspended in 1 mL of ice-cold 10 mM NaN3 and 10 mM NaF, and then incubated on 

ice for 10 min. The cell suspension was transferred to 1.5 ml microfuge tubes, pelleted, 

and resuspended in 1 mL of fresh prespheroplasting buffer consisted of 100 mM Tris-HCl 

(pH 9.4), 50 mM β-mercaptoethanol, 10 mM NaN3, and 10 mM NaF, then incubated on 

ice for 15 min. Cells were then pelleted and washed with 0.5 mL of spheroplast buffer (50 

mM KH2PO4-KOH (pH 7.0), 1.4 M sorbitol, and 10 mM NaN3). Cells were resuspended in 

1 mL of spheroplast buffer containing 167 µg/mL zymolyase 100T (Nacasai Tesque) and 

incubated at 37°C in a water bath for 30 min. Spheroplasts were spun down at 5,000 × g 

for 10 min, and 100 µL of the supernatant from each tube was transferred into a new 1.5-

ml tube and mixed immediately with 34 µL of 4× SDS sample buffer (the external pool). 

All of the remaining supernatant was discarded. The pellets (spheroplasts) were 

resuspended in 100 µL 1×SDS sample buffer (the internal pool). Samples were boiled for 

10min and proteins were separated on a 10% SDS/PAGE gel. Bgl2 was visualized by 

Western blotting with anti-Bgl2 rabbit polyclonal antibody at 1:5,000 dilution (provided by 

the laboratory of Randy Schekman, University of California, Berkeley). For quantitation of 

Bgl2, images of western blots were captured using the ChemiDoc system (Bio Rad) and 

multiple images were collected to ensure an unsaturated signal. Serial dilutions of a 
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control sample were run in parallel to establish a standard curve. The electrophoretic 

bands were quantitated using ImageJ software (https://imagej.nih.gov). 

 

Invertase Secretion Assay 

The invertase assays were performed as previously described by Yuan et al [24].  

Yeast strains were grown at 25oC in YP medium containing 5% (w/v) glucose overnight 

to early log phase (∼0.5 OD600/ml). Then, 1OD600 unit of cells was transferred to 2 sets of 

15 ml centrifuge tubes and pelleted at 3500 rpm for 5 min. The first set of cells were 

washed in 0.5 ml sterile water and resuspended in 1 ml ice cold 10 mM NaN3, then kept 

on ice as 0 min samples. The second set of cells were washed once in sterile water and 

resuspended in 1 ml YP + 0.1% glucose medium, then incubated at 37oC in a water bath 

with shaking for 45 min. Cells were pelleted and resuspended in 1 ml 10mM NaN3 as 45 

min samples. 0.5 ml cells from each 0 min or 45 min samples were used to measure the 

external invertase. Another 0.5 ml cells of 0 min or 45 min samples were resuspended in 

spheroblast buffer containing 50 µg/ml zymolyase and incubated at 37oC in a water bath 

for 45 min to generate spheroplasts. All internal samples were lysed with 0.5 ml 0.5% 

Triton X-100. A 20 ul aliquot from each internal and external sample was used for 

measuring invertase. The percentage of invertase accumulation was calculated by the 

formula of (Int45m-Int0m)/[(Ext45m-Ext0m) + (Int45m-Int0m)]. 
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Electron Microscopy 

Control (sso1/SSO2) or sso2 mutant cells were grown at 25°C in YPD to an OD600 

of ∼0.5 and then processed for EM study as previously described [24]. In brief, ∼10 OD600 

units of cells were collected using a 0.22-µm filter apparatus, washed with 10 mL of 0.1 

M cacodylate (pH 6.8), then resuspended in 10 mL of fixative (0.1 M cacodylate, 4% 

glutaraldehyde, pH 6.8). Cells were fixed at room temperature for 1 h and then shifted to 

4 °C for 16 h. The next day, cells were washed twice with 50 mM KPi (pH 7.5), and then 

digested in 2 mL of 50 mM KPi buffer containing 0.25 mg/mL Zymolyase 100T at 37°C 

for 40 min in a water bath with gentle shaking. Cells were then washed twice with ice-cold 

0.1 M cacodylate buffer and resuspended in 1.5 mL of cold 2% (w/v) OsO4 in 0.1 M 

cacodylate buffer. Cells were incubated for 1 h on ice, washed three times with water, 

and then incubated in 1.5 mL of 2% (w/v) uranyl acetate at room temperature for 1 h. 

Cells were dehydrated by a series of ethanol washes and incubated overnight in 

Durcupan resin. Cells were embedded in fresh Durcupan resin and baked at 60°C for at 

least 48 h. Sections were stained with lead citrate and uranyl acetate, and images were 

acquired using a transmission electron microscope (Tecnai G2 Spirit; FEI) equipped with 

a CCD camera (UltraScan 4000; Eagle).  

 

Fluorescence Microscopy and Quantitative Localization Analysis 

GFP-Snc1 localization: Yeast strains expressing GFP-Snc1 were grown at 25°C 

to early log phase OD600 0.3–0.6 in SC-Ura medium. 500 µL of cells were harvested and 

resuspended in growth medium for fluorescence imaging. Cultures were shifted to 37oC 

for 90 min, then 500 µl samples were collected for fluorescence imaging. Images were 
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acquired with a 100× oil-immersion objective on a widefield fluorescence microscopy 

system equipped with a Hamamatsu ORCA-ER camera. For each sample, z-stacks with 

a 200-nm slice distance were generated. Images were analyzed using Volocity software 

4.8 (Quorum Technology, Inc). For quantitation studies, three independent transformants 

from each condition were examined under the same condition and 100-200 cells from 

each strain were scored. Three separate experiments were used to calculate the SD. 

 LatA treatment of Sec4-GFP and Sec3-3×GFP: Yeast strains were transformed 

with an integration vector expressing GFP-Sec4 or Sec3-3×GFP. Cells were grown in 

YPD to around OD600 0.5, then 1OD600 unit cells were collected and resuspended in 50ul 

SC-Ura medium. 1 µl of 10mM LatA was added to the cell suspension and incubated at 

25oC for 15 min. Cells were fixed with 3.7% (v/v) formaldehyde for 60min and washed 

twice in 0.5 ml PBS. Cells were imaged on a widefield fluorescence microscope. 

Quantitation analysis was done as described above. Three separate experiments were 

used to calculate the SD. 

 

Co-immunoprecipitation  

Strains were grown at 25°C overnight to an OD600 around 1.0.  70 OD600 units of 

cells were collected from each strain. Cell lysates were prepared as described previously 

with modifications [22, 46]. Briefly, cell pellets were washed once in cold water and 

resuspended in ice-cold lysis buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM EDTA, 

5 mM NaF, 1mM sodium pyrophosphate, and 1 mM DTT) and a protease inhibitor cocktail 

(Roche). Cells suspensions were transferred to 2-ml screw cap tubes containing 

prewashed 2 mg zirconia/silica 0.5 mm beads.  Cell were lysed using a bead beater. 1% 
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(v/v) Triton X-100 was added to the cell lysates and incubated for 15 min at 4°C. The cell 

lysates were then spun at 20,000×g for 30 min and supernatants were incubated with 10 

µl prewashed anti-Flag agarose beads (Sigma, A2220) at 4°C for 3 h. Beads were 

washed five times with lysis buffer containing 0.1% (v/v) Triton X-100. Proteins bound on 

the beads were eluted with 1× sample buffer. Proteins were detected with anti-Flag 

antibody (Sigma, F1804, monoclonal, 1:1,000) or anti-Sso antibody (rabbit antiserum, 

1:2,000).  

 

Data availability 

Coordinates and structure factors for the Sec3-Sso2 complex have been deposited 

in the Protein Data Bank with accession code (https://www.rcsb.org/structure/7Q83). 
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Figure legends 

Figure 1. Crystal structure of the Sso2/Sec3 complex. (A) Schematics of the 

constructs of Sso2 (aa1–270) and Sec3 (aa75–260) used in our structural studies. (B) 

Superposition of the two Sso2/Sec3 complexes in the asymmetric unit of the crystal 

structure, together with the one reported previously (light grey, pdb code: 5M4Y). (C) 

Stereo view of the 2Fo−Fc electron density map contoured at 1.8σ level around the binding 

interface. Maps for Sec3 and Sso2 are colored in cyan and orange, respectively. 

 

Figure 2. Structural analyses of the interaction between the NPY motifs of Sso2 and 

Sec3. (A) Sequence alignments of Sso2 homologs. Conserved residues are shaded in 

dark (highly conserved) or light blue (partially conserved). The two NPY motifs are marked 

as magenta blocks above the aligned sequences, which are connected to helix Ha via a 

variable linker. (B) Ribbon diagram of the crystal structure of the Sso2/Sec3 complex with 

first NPY motif (shown as sticks) of Sso2 bound to Sec3. (C) An enlarged view of the NPY 

motif in (B) together with the 2Fo−Fc map contoured at 1.5σ. (D) Sticks of the NPY motif 

on top of an electrostatic surface plot of Sec3. (E-G) Crystal structure shows how the 

second NPY motif of Sso2 interacts with Sec3. (H) Separate views of the binding site 

show the cork-like NPY motif (magenta) and the complementary cradle-like pocket on 

Sec3 (light blue). The structure is shown as semitransparent surface together with ribbon 

diagrams (Sec3) or sticks (Sso2). The broad top part of the “cork” of Sso2 is stabilized by 

a hydrogen bond between the carboxyl group of the Asn (N) sidechain and the amide 

proton of Tyr (Y). 

 

Figure 3. ITC measurements of the interaction between Sec3 and variant versions 

of the NPY motifs of Sso2. (A)  Wild type double NPY motifs of Sso2 bound Sec3 with 

a dissociation constant (Kd) of approximately 21 µM. (B & C) Either of the two NPY motifs 

alone bound Sec3 much more weakly than the two together, with Kd values increased by 

3-4 fold. (D & E) Mutation of either NPY motif (i.e. M5 and M6) also substantially reduced 

the binding affinity of Sso2 to Sec3. (F) Double mutation (M7) of both NPY motifs 
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completely abolished the interaction between Sso2 and Sec3. For M6 in (E), the peptide 

concentration had to be increased by six fold to detect its very weak interaction with Sec3.  

 

Figure 4. Mutations in sso2 inhibit cell growth and secretion of Bgl2 and invertase. 

(A) Sequences of three sso2 mutants generated by site-directed mutagenesis. Residues in the 

first and/or the second NPY motif that were mutated to Ala (A) are shown in bold italics.  (B) sso2 

mutants in an sso1 background partially inhibit cells growth at 37oC. Control sso1 

SSO2 or sso1 sso2 mutant cells were grown overnight in YPD medium. An aliquot (0.2 

OD600 units) of cells from each strain was collected, serially diluted by 5 fold and spotted 

onto YPD plates. Plates were incubated at 25oC, 34oC or 37oC for 2 days. (C-D) The 

sso1 sso2 mutants were grown at 25oC in YPD medium overnight to early log phase 

and shifted to 37oC for 90 min. The internal and external fractions were prepared as 

described in Materials and Methods. (C) The internal or external pools of Bgl2 were 

detected by western blotting. Several mutations in SSO2 caused inhibition of Bgl2 

secretion. (D) Quantitation of internal Bgl2 was determined by ImageJ. Results were 

analyzed based on six independent experiments. Error bar represents SD, n=7. *p< 

0.005 , **p< 2e5. (E) Strains were grown at 25oC in YP containing 5% (v/v) glucose 

medium overnight to early log phase. 1OD600 unit of cells was collected from each strain 

and shifted to YP containing 0.1% (v/v) glucose medium, and incubated at 37oC for 45min. 

Four independent experiments were performed. Error bars represent SD, n=4. *p < 0.005. 

 

Figure 5. Thin section EM analysis shows polarized accumulation of secretory 

vesicles in the sso2M5 and sso2M7 strains. A control sso1 SSO2 strain and sso1 

sso2 mutants were grown in YPD medium at 25oC to an OD600 of ∼0.5, then 10 OD600 

units of cells were collected and processed for EM analysis: (A) sso1 SSO2,  (B) sso1 

sso2M5, (C) sso1 sso2M6, and (D) sso1 sso2M7. Scale Bar, 0.5µm. sso2M5 and 

sso2M7 cells contain more secretory vesicles in the bud compared to SSO2 and sso2M6 

cells.  (E) Quantitation of secretory vesicles. The number of vesicles/cell was scored in 

46 control cells, 49 sso2M5 cells, 51 sso2M6 cells and 45 sso2M7 cells. (F) Measurement 
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of vesicle size.  The measurement was analyzed using ImageJ. 23-91 vesicles were 

measured. 

 

Figure 6. Snc1 recycling is affected in sso2 mutants. (A-D) Representative images of 

sso1 SSO2 control, sso1 sso2M5 sso1 sso2M6, and  sso1 sso2M7 mutant cells. 

Strains harboring a CEN plasmid expressing GFP-Snc1 were grown in SC-Ura medium 

overnight at 25oC reaching an OD600 around 0.5. Cells were further diluted and shifted to 

37oC for 90 min prior to imaging. GFP-Snc1 localized predominantly to the PM in SSO2 

control cells and sso2M6 cells yet formed GFP patches (indicated by arrows) near small 

buds or bud necks in sso2M5 and sso2M7 mutant cells. Scale bar, 5um.  (E) Quantitation 

of cells with GFP-Snc1 patches. GFP-Snc1 patches near bud tips or necks were scored. 

Error bar represents SD, n=3. *P < 0.05, **P <0.005.  

 

Figure 7. The sso2 mutations have little effect on the actin-independent localization 

of Sec3. (A) A control sso1 SSO2 strain or sso1 sso2 mutants expressing Sec4-GFP 

were grown to early log phase in YPD at 25oC, then 1OD600 unit cells was collected and 

resuspended in 50µl SC medium and incubated with 200µM LatA or DMSO at 25oC for 

15min prior to imaging. Images were captured by fluorescence microscopy. Sec4 is 

normally localized near the tip of small buds (arrow) and the neck of large buds 

(arrowhead) in DMSO-treated cells. Sec4 localization was disrupted in LatA-treated cells. 

Scale bar, 5 µm (for all images). (B) Quantitation of polarized Sec4-GFP. (C) A control 

sso1 SSO2 strain and the sso1 sso2 mutant strains expressing Sec3-3×GFP were 

grown and treated with LatA or DMSO under the conditions as described in A. Sec3 

localization remains polarized after LatA treatment, either at the tips of small bus (arrow) 

or the necks of large buds (arrow head). Scale bar, 5µm.  (D) Quantitation of polarized 

Sec3-3×GFP. Error bars represent SDs based on three independent experiments in each 

case.  
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Figure 8.  The NPY motifs of Sso2 are packed against the C-terminal tip of its 

SNARE motif in the complex structure. (A) Ribbon diagram of the Sso2/Sec3 complex 

structure with the 2Fo−Fc map around the NPY motif (residue positions are marked by 

numbers) shown in dots (1.5 σ). The enlarged view shows the close contact between the 

NPY motif and the C-terminal tip of the H3 helix of Sso2 with their 2Fo−Fc maps shown in 

magenta and blue, respectively. (B) Two orthogonal views of the contact site between the 

N-terminal extension (magenta) and the C-terminal region (green) of Sso2. Sso2 structure 

is shown as ribbons and sticks together with a semitransparent surface plot. (C) ITC result 

shows that WT Sso2 (aa1-270) bound Sec3-PH robustly, with a Kd of 2.67 µM. (D) Mutant 

M7 of Sso2 (aa1-270) did not bind the Sec3 PH domain. 

 

Figure 9.  Interaction of the N-terminus of Sso2 with Sec3 in comparison with that 

in other syntaxin/SM protein complexes. (A-C) Crystal structures of the complexes of 

Sso2/Sec3 (PDB code: 7Q83), syntaxin-1/Munc18 (PDB code: 3C98), and Tlg2/Vps45 

(PDB code: 2XHE), respectively. All N-terminal extensions of these t-SANREs are 

indicated by arrows. (D) Superposition of the three complex structures shown in A, B and 

C. (E) Superposition of the Rho1/Sec3 complex (PDB code: 3A58) with the Sec3/Sso2 

complex (PDB code: 7Q83) on top of their overlapped Sec3 components. 
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Table 1.  Data collection and refinement statistics 
______________________________________________________________ 

Wavelength (Å)  0.9793 

Resolution range (Å) 19.95 - 2.19 (2.27 - 2.19) 

Space group P 1 

Unit cell (a, b, c; Å) 

(α, β, γ; °) 

50.961, 58.402, 83.286  

104.284, 98.494, 113.198 

Total reflections 164,051 (15,510) 

Unique reflections 40,853 (3,771) 

Multiplicity 4.0 (3.9) 

Completeness (%) 96.08 (89.79) 

I/σ(I) 6.73 (1.18) 

Wilson B-factor 31.15 

R-merge 0.1641 (1.094) 

R-meas 0.1894 (1.271) 

R-pim 0.09332 (0.636) 

CC1/2 0.99 (0.438) 

CC* 0.997 (0.781) 

 

Reflections used in refinement 

 

40,587 (3,771) 

Reflections used for R-free 2,008 (181) 

R-work 0.1990 (0.2864) 

R-free 0.2394 (0.3374) 

CC(work) 0.943 (0.699) 

CC(free) 0.907 (0.601) 

Number of non-hydrogen atoms 5,837 

  macromolecules 5,419 

  solvent 418 

Protein residues 658 

RMS(bonds) 0.002 

RMS(angles) 0.50 

Ramachandran favored (%) 97.82 

Ramachandran allowed (%) 2.18 

Ramachandran outliers (%) 0.00 

Rotamer outliers (%) 0.00 

Clashscore 5.76 

Average B-factor 40.87 

  macromolecules 40.74 

  solvent 42.65 

_________________________________________________________________ 

Statistics for the highest-resolution shell are shown in parentheses. 
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Figure 3
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