

1 **Examining the Neural Correlates of Error Awareness in a Large fMRI Study**

2 Gezelle Dali¹, Méadhbh Brosnan^{2, 3, 4}, Jeggan Tiego⁴, Beth P. Johnson⁴, Alex Fornito⁴, Mark

3 A. Bellgrove^{4*}, Robert Hester^{1*}

4 *These authors contributed equally and should be considered joint senior authors.

5

6 **Brief running title**

7 Error Awareness Neural Correlates

8

9 **Affiliations**

10 ¹Melbourne School of Psychological Sciences, The University of Melbourne, 3010

11 ²Department of Experimental Psychology, University of Oxford, Oxford, UK

12 ³Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging,

13 University of Oxford, Oxford, UK

14 ⁴Turner Institute for Brain and Mental Health and School of Psychological Sciences, and

15 Monash Biomedical Imaging, Monash University, 3800

16

17 **Correspondence**

18 Gezelle Dali

19 Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, 3010,

20 Vic., Australia

21 Email: gezelledali@gmail.com

22

23

24

Abstract

25 Goal-directed behaviour is dependent upon the ability to detect errors and implement
26 appropriate post-error adjustments. Accordingly, several studies have explored the neural
27 activity underlying error-monitoring processes, identifying the insula cortex as crucial for
28 error awareness and reporting mixed findings with respect to the anterior cingulate cortex.
29 Variable patterns of activation have previously been attributed to insufficient statistical
30 power. We therefore sought to clarify the neural correlates of error awareness in a large
31 event-related functional magnetic resonance imaging (MRI) study. Four hundred and two
32 healthy participants undertook the error awareness task, a motor Go/No-Go response
33 inhibition paradigm in which participants were required to indicate their awareness of
34 commission errors. Compared to unaware errors, aware errors were accompanied by
35 significantly greater activity in a network of regions including the insula cortex,
36 supramarginal gyrus, and midline structures such as the anterior cingulate cortex and
37 supplementary motor area. Error awareness activity was related to indices of task
38 performance and dimensional measures of psychopathology in selected regions including the
39 insula, supramarginal gyrus and supplementary motor area. Taken together, we identified a
40 robust and reliable neural network associated with error awareness.

41 *Keywords:* anterior cingulate cortex, error awareness, error-monitoring processes,
42 functional magnetic resonance imaging, insula

43

44

Introduction

45 Error processing facilitates goal-directed behaviour through error detection and the
46 execution of appropriate post-error adjustments. Within error processing, it is possible to
47 delineate between errors made with and without conscious recognition. Although error
48 processing can proceed in the absence of awareness, conscious perception of errors may
49 subserve the implementation of remedial behaviours. Critically, deficient error awareness has
50 been associated with symptoms of inattention, lack of insight and perseverative behaviour in
51 several clinical conditions such as attention-deficit hyperactivity disorder (ADHD; O'Connell
52 et al. 2009), autism spectrum disorder (ASD; Klein et al. 2013b) and substance use disorder
53 (Hester et al, 2009), providing impetus for investigating the underlying neurobiology of error
54 awareness.

55 In performance monitoring tasks, errors are largely associated with an event-related
56 potential (ERP) signature comprising the error-related negativity (ERN) and the error
57 positivity (Pe). The ERN is a negative deflection with a fronto-central distribution that
58 appears 50-100ms following an error (Gehring et al. 1993), whereas the Pe is a positive
59 deflection with an approximate latency of 300-500ms occurring over a centro-parietal
60 location (Falkenstein et al. 1991). Neuroimaging and source localisation studies have
61 identified the anterior cingulate cortex (ACC) as the source of the ERN (Debener et al. 2005;
62 van Veen and Carter 2006). Indeed, the ACC is consistently implicated in performance
63 monitoring tasks and is suggested to navigate the selection and evaluation of goal-directed
64 behaviours (Holroyd and Yeung 2012). The source of the Pe, however, remains somewhat
65 equivocal, with reports that it arises from activity in the rostral ACC (rACC; Herrmann et al.
66 2004; Van Boxtel et al. 2005), prefrontal (Masina et al. 2019) and parietal cortices (van Veen
67 and Carter 2006; O'Connell et al. 2007).

68 With regard to error awareness, most electrophysiological studies argue that the ERN
69 is unaffected by conscious error perception. This pattern has been observed in a myriad of
70 tasks, including anti-saccade tasks (Nieuwenhuis et al. 2001; Endrass et al. 2007), Go/No-Go
71 error awareness tasks (O'Connell et al. 2007; Dhar et al. 2011) and visual discrimination tasks
72 (Steinbauer and Yeung 2010; Endrass et al. 2012). Contrastingly, the Pe has been found to
73 be selectively modulated by error awareness such that greater amplitudes are observed
74 following aware errors (Nieuwenhuis et al. 2001; O'Connell et al. 2007; Steinbauer and
75 Yeung 2010; Dhar et al. 2011; Hoffmann and Beste 2015). There are, however, studies which
76 have demonstrated that both the ERN and Pe are sensitive to error awareness (Scheffers and
77 Coles 2000; Maier et al. 2008; Hewig et al. 2011; Wessel et al. 2011; Shalgi and Deouell
78 2012). Given such findings, the ERN has been proposed to be the foremost indication that an
79 error has occurred and may serve as a feedforward input signal into systems that are more
80 responsible for error awareness (Murphy et al. 2012; Wessel 2012), whereas the Pe reflects
81 the accumulation of information that leads to error awareness (Klein et al. 2013b).

82 Neuroimaging studies on error awareness have been found to accord with
83 electrophysiological findings. Consistent with findings on the Pe, a network of frontal and
84 parietal regions has been implicated in error awareness, namely the bilateral inferior parietal
85 and bilateral mid-frontal cortices (Hester et al. 2005; Harsay et al. 2012; Orr and Hester
86 2012). The insula cortex – largely the anterior insula cortex (AIC) – is also widely recognised
87 to be selectively modulated by error awareness (Klein et al. 2013b). While the insula is
88 unlikely to generate the Pe directly, it has been suggested to indirectly elicit the Pe through its
89 functional connections with frontal and parietal cortices (Klein et al. 2007a). Corroborating
90 findings on the ERN, the relationship between awareness and the ACC remains a topic of
91 contention. Several earlier studies that have found ACC activity to be greater for errors than
92 correct responses have discerned no difference in activity between aware and unaware errors

93 (e.g., Hester et al. 2005; Klein et al. 2007a). In contrast to the majority of earlier studies,
94 recent investigations have reported dorsal ACC (dACC) sensitivity to error awareness, with
95 increased activity observed during aware errors (Harsay et al. 2012; Harsay et al. 2018).

96 Although heterogeneity in imaging modalities, sample characteristics and study
97 designs may contribute to discordant neuroimaging findings, they are unlikely to explain
98 variation observed across several error awareness studies (Wessel 2012). Instead, disparities
99 in distinguishing ACC activity patterns between aware and unaware errors may be attributed
100 to inadequate statistical power associated with small sample sizes. For example, we have
101 previously found no difference in ACC activity between aware and unaware errors in samples
102 of 13 (Hester et al. 2005) and 16 (Hester et al. 2009a) participants, however have found
103 greater dACC activity for aware errors in a sample of 27 participants (Hester et al. 2012).
104 Importantly, when the samples of these three studies were collated, a significant effect of
105 awareness on dACC activity was observed (Orr and Hester 2012). Insufficient statistical
106 power thus seems a robust explanation for these mixed neuroimaging findings (Button et al.
107 2013; Poldrack et al. 2017). Indeed, low power is a pertinent problem for task-based
108 neuroimaging studies where there are often a small number of observations and few
109 participants (Cremers et al. 2017; Turner et al. 2018). Although recent work has begun to
110 address the reproducibility of brain imaging (Bossier et al. 2020), relatively few functional
111 imaging replication studies have been conducted in this area of research. In light of this
112 shortcoming, the neural correlates of error awareness and the influence of measures of task
113 and individual differences warrants further examination.

114 Here, we set out to confirm previous investigations using the motor Go/No-Go error
115 awareness task (Hester et al. 2005), in a large, community-based sample. Behavioural
116 performance on the error awareness task and corresponding event-related neuroimaging were
117 used to assess the neural mechanisms associated with error awareness. Based on the reviewed

118 literature, we hypothesise that aware errors will be accompanied by greater activity in a
119 network of regions including the insula, parietal and mid-frontal cortices, and midline
120 structures such as the ACC. Further, we extend upon previous investigations by exploring
121 whether existing findings from clinical samples (e.g., ADHD, ASD) are also apparent in
122 larger-scale healthy samples. Specifically, we examined whether variance in awareness-
123 related neural activity is accounted for by individual differences in dimensional measures of
124 psychopathology including ADHD, ASD, and impulsivity.

125 **Materials and Methods**

126 **Participants**

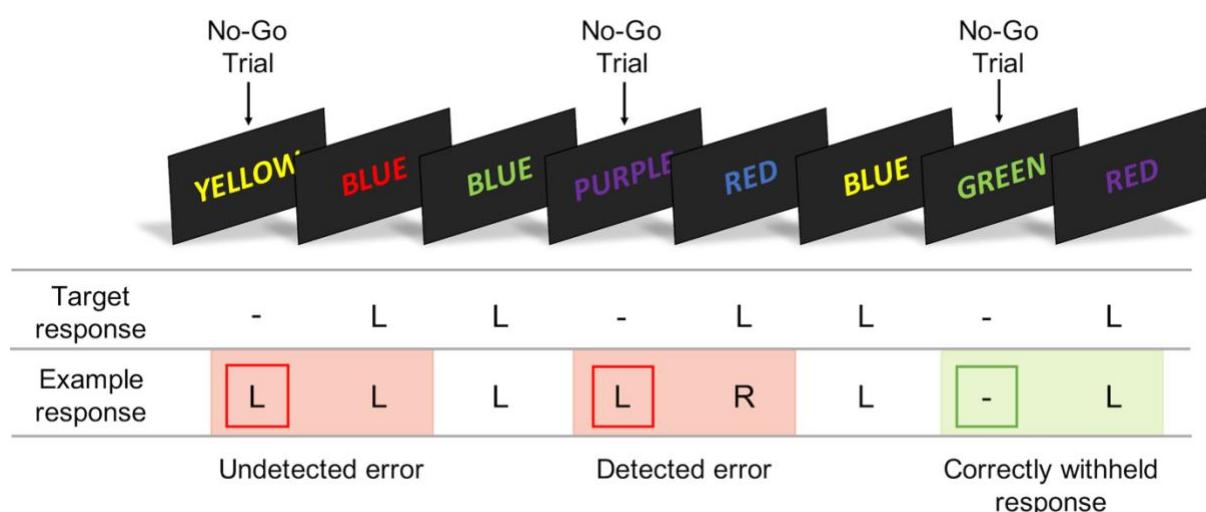
127 Participants were recruited via Monash University Clayton campus, social media and
128 newspaper advertisements along with experimenter networks. All participants were right-
129 handed and had normal or corrected-to-normal vision. Participants were excluded if they
130 were colour blind or reported any history of neurological or psychiatric illness, including
131 head injury, previous usage of psychotropic medication or substance use disorder. All
132 participants provided written informed consent and were reimbursed for participation. The
133 study received approval by the Monash University Human Research Ethics Committee for
134 meeting the research standards prescribed by the National Health and Medical Research
135 Council (CF12/3072 – 2012001562).

136 Four hundred and seventy-three participants completed the event-related fMRI
137 protocol. Participants were subsequently excluded due to missing functional runs ($n = 4$) or
138 behavioural data ($n = 22$), no signalling of aware errors ($n = 37$), corrupted functional data (n
139 = 6), or distorted anatomical data ($n = 2$). The final sample with complete behavioural and
140 neuroimaging data comprised 402 participants (female, 54.22%; $M_{age} = 23.64$ years, $SD =$
141 5.45; age range: 18-50 years). Of those, 20 participants (female, 50%; $M_{age} = 25.55$ years, SD

142 = 7.25) did not have questionnaire data available. Further information on participant age can
143 be found in Table 1A of the Supplementary Material.

144 **Experimental Design**

145 Participants were administered a battery of self-report measures designed to assess a
146 comprehensive range of psychopathological characteristics. The battery comprised the
147 Barratt Impulsiveness Scale, Version 11 (BIS-11; Barratt and Patton 1983) to assess
148 impulsivity, Conners' Adult ADHD Rating Scales – Self Report: Long Version (CAARS -
149 S:L; Conners 1998) to assess ADHD-like behaviours, the Behavioural Inhibition/Activation
150 Systems Scale (BIS/BAS; Carver and White 1994) to measure sensitivity to avoidance and
151 approach motivation, the Autism-Spectrum Quotient (AQ; Baron-Cohen et al. 2001) to assess
152 autistic traits, and the Hospital Anxiety and Depression Scale (HADS; Zigmond and Snaith
153 1983) to assess anxiety and depression traits.


154 **Error Awareness Task**

155 The error awareness task (see Figure 1) is a Go/No-Go motor inhibition task that
156 presents a serial stream of colour words in a congruent or incongruent colour. Previously, we
157 employed an awareness task with two competing inhibition rules (a repeat No-Go rule and
158 colour No-Go rule). To address concerns that introducing two No-Go rules potentially
159 contaminates the BOLD signal, we opted to remove the repeat No-Go rule. Pilot testing
160 confirmed that unaware error rates with a single No-Go rule were consistent with our
161 previous work (see Table 2A of the Supplementary Material for a summary of pilot data).
162 Thus, participants were required to respond to the incongruent trials (Go trials) with a left
163 button press, while withholding their response when the word and colour were congruent
164 (No-Go trials). To indicate error awareness, participants were trained to forego making a
165 standard 'Go' response and instead execute a right button press following any commission
166 error. Erroneous No-Go trials were those in which a participant failed to withhold a response.

167 To classify erroneous trials for data analysis, unaware errors were those in which the
168 participant responded with a left button press on the No-Go trial and again on the following
169 Go trial. Any deviation from this pattern of response on a No-Go trial or following a No-Go
170 error was classified as an aware error (Figure 1).

171 The task comprised six blocks, each with 175 trials. Across all blocks, participants
172 were administered 900 Go trials and 150 No-Go trials. All stimuli were presented for 900 ms
173 followed by a 600 ms inter-stimulus interval. An event-related design was employed,
174 distributing the No-Go trials pseudo-randomly throughout the serial presentation of Go trials.
175 Events of interest were adequately separated in order to analyse correct and failed response
176 inhibition events separately without cross-contamination. The number of Go trials separating
177 No-Go trials ranged between 1 and 12 ($M = 6.23$; $SD = 2.55$).

178 **Figure 1**

179

180 *Note.* The error awareness task presents a serial stream of colour words, in a congruent (No-
181 Go trial) or incongruent (Go trial) colour. Participants respond to Go trials using a left button
182 press ('L') while withholding their response to No-Go trials. To indicate error awareness,
183 participants forgo making a standard 'Go' response and instead execute a right button press
184 ('R') on the trial following the commission error. The task comprised six blocks, each with
185 175 trials. Across all blocks, participants were administered 900 Go trials and 150 No-Go
186 trials. All stimuli were presented for 900 ms followed by a 600 ms inter-stimulus interval.

187

188 **Image Acquisition**

189 Scanning was conducted between August, 2013 and July, 2017, at Monash
190 Biomedical Imaging (Victoria, Australia). Images were acquired using a Siemens Skyra 3-
191 Tesla MRI scanner with a 32-channel head coil. High resolution T1-weighted structural
192 MPRAGE images (TE = 2.07 ms, TR = 2300 ms, FOV = 256 mm, flip angle = 9 degrees,
193 thickness = 1 mm isotropic, sagittal slices) were acquired prior to functional imaging to
194 enable activation localisation and for spatial normalisation. Functional images were acquired
195 using a gradient-echo pulse (EPI) sequence (TE = 30 ms, TR = 2460 ms, FOV = 190 mm,
196 flip angle = 90 degrees, 44 contiguous transversal slices of 3.0 mm thickness). The error

197 awareness task was presented using E-Prime software (version 2.0; Psychology Software
198 Tools) on a Cambridge 32-inch BOLD screen which was reflected onto a mirror visor
199 positioned in the radio frequency head coil. Participants responded to each stimulus using
200 their right hand, entering their responses using two buttons on a four-button MR-compatible
201 response pad (Fiber-Optic response pads; Current Designs).

202 **Statistical Analysis**

203 ***Behavioural Analysis***

204 Behavioural data analyses were undertaken in the programming language R using the
205 *stats* package (R Core Team 2017), with the addition of the *psych* (Revelle 2020), *afex*
206 (Singmann et al. 2020) and *emmeans* (Russell et al. 2020) packages. Effect sizes were
207 calculated using the *effectsize* package (Ben-Shachar et al. 2020). Assumptions were tested,
208 and non-parametric analyses were computed under violations of normality. Greenhouse-
209 Geisser-adjusted degrees of freedom and *p*-values are reported under violations of sphericity.
210 Post-hoc tests were undertaken using Tukey's method for multiple comparisons. *P*-values
211 were otherwise adjusted using Holm procedures. Alpha was set to .05 for all analyses. The
212 number of trials available for our behavioural analyses are outlined in Table 3A of the
213 Supplementary Material. The full reproducible code for the current results has been made
214 publicly available online (<https://osf.io/hrba7/>).

215 The error awareness task is not optimised to analyse response speed adjustments
216 following errors as participants are required to make an awareness button press on the first
217 post-error trial. Switching to the awareness button typically results in abnormally fast
218 reaction times on the Go trials following the error. Response speed adjustments following
219 No-Go trials were therefore determined by calculating the difference in reaction time for the
220 Go trial following the No-Go trial by three trials and the Go trial immediately preceding the

221 No-Go trial (a subtraction of the pre-error Go reaction time from the third Go reaction time
222 after the No-Go trial).

223 ***Neuroimaging Analysis***

224 Neuroimaging analyses were undertaken using AFNI software (Cox 1996). Data
225 analysis procedures followed those implemented in studies with similar experimental
226 paradigms (e.g., Hester et al. 2012). Behavioural data were used to categorise trial events into
227 the following regressors: correct inhibitions, unaware errors and aware errors. Activation
228 outside of the brain was removed using edge detection techniques. Following image
229 reconstruction, the time series data were time shifted (using Fourier interpolation) to remove
230 differences in slice acquisition times and then motion corrected using 3D volume registration
231 (least-squares alignment of three translational and three rotational parameters).

232 Using the BLOCK basis function, separate haemodynamic impulse response
233 functions (IRFs) were computed at 2.46 s temporal resolution for aware errors, unaware
234 errors and correct inhibitions. To avoid confounding the baseline and event-related activity
235 estimates, rest and omission errors were included as regressors of no interest. A multiple
236 regression program (3dDeconvolve) determined the best fitting gamma variate function for
237 these IRFs. The area under the curve of the gamma variate function was expressed as a
238 percentage of the area under the baseline. The baseline in this design refers to task-related
239 Go-trial processing that remains once the variance of the other events has been removed. The
240 percentage area (event-related activation) map voxels were re-sampled at 1 mm resolution,
241 then spatially normalised to standard MNI space and spatially blurred with a 3 mm isotropic
242 root mean squared Gaussian kernel.

243 Group activation maps were obtained using a paired samples *t*-test (3dttest++) against
244 the null hypothesis of no event-related activation differences between aware and unaware
245 errors. Significant voxels passed a voxel-wise statistical threshold ($t = 6.60, p = 1.0 \times 10^{-10}$)

246 and were required to be part of a 250 μ l cluster of significant contiguous voxels. This method
247 of combining probability and cluster thresholding sought to maximise power while
248 minimising the likelihood of false-positives. ANFI's 3dClustSim was provided with the
249 number of voxels in the group map, the spatial correlation of the voxels, and the voxel-wise
250 threshold. A series of Monte Carlo simulations (10,000 iterations) were then undertaken to
251 determine the frequency of varying sized clusters produced by chance. From this frequency
252 distribution, we selected the cluster size that occurred less than 1% of the time by chance, to
253 provide a threshold of $p = .010$, corrected. Using this method for the current sample resulted
254 in a highly liberal cluster-wise threshold ($< 1 \mu$ l). We thus opted for a cluster-wise threshold
255 of 250 μ l as it is far more conservative and is moreover comparable with previous studies
256 (e.g., Hester et al. 2005). Mean activity estimates for each event were derived for clusters in
257 the whole brain map using the program 3DRoiStats. The estimates were used in assessing the
258 relationship between neural activity and measures of task performance and individual
259 differences.

260 ***Linking Neural Activity to Psychopathological Traits***

261 Lasso (least absolute shrinkage and selection operator) regression was employed to
262 determine a subset of the dimensional psychopathological measures that best predict error
263 awareness and mean activity estimates for the insula cortex, anterior cingulate cortex (ACC),
264 supramarginal gyrus (SMG) and middle frontal gyrus. Lasso is a modified form of least
265 squares regression that applies a regularisation parameter (λ) to determine the variables that
266 best predict the outcome measure (Tibshirani 1996). The regularisation parameter shrinks
267 coefficients to zero for irrelevant covariates in order to minimise prediction error and reduce
268 overfitting. The optimal penalty term was determined using a 10-fold cross-validation. By
269 enforcing sparsity, lasso regression provides a principled way of identifying a subset of
270 predictors that have the strongest influence on the dependent variable (Tibshirani 1996).

271 Lasso generalised linear models were computed in the programming language R (R Core
272 Team 2017) using the *glmnet* package (Friedman et al. 2010). The main independent
273 variables were subscale scores from each of the aforementioned psychopathological
274 questionnaires. Although a whole-brain approach was used to explore the regions associated
275 with awareness, a more focused subset of areas was selected as dependent variables to
276 investigate how awareness activity is related to psychopathological traits. Dependent
277 variables were therefore error awareness, and mean aware activity estimates for four clusters
278 identified in our imaging analysis (insula cortex, ACC, SMG and middle frontal gyrus).
279 These clusters were selected due to theoretical relevance and previous findings of sensitivity
280 to error awareness (Harsay et al. 2012; Orr and Hester 2012; Klein et al. 2013b). Five
281 separate models were computed, one for each dependent variable. The analysis does not
282 allow missing data, therefore cases with missing values were omitted. Little's test indicated
283 that data were missing completely at random, $\chi^2(155) = 173.53, p = .155$. All variables were
284 standardised prior to analysis to generate Z-scores. A test statistic or *p*-value for lasso
285 regression is still under development (Lockhart et al. 2014). Further, given the interest here is
286 predictive performance and not statistical inference, results are presented as standardised
287 regression weights alone. To determine the robustness of the variable selection, each lasso
288 model was computed on 500 bootstrap samples. The percentage of non-zero bootstrap
289 samples is reported for each variable alongside the coefficients.

Results

291 Behavioural Results

292 Performance indices are summarised in Table 1. Participants correctly withheld
293 53.59% of their responses on No-Go trials, and were aware of 86.47% of commission errors
294 (error awareness range 21.74-99.11%). There was a non-significant weak association
295 between awareness of errors and overall inhibition performance, $r_s = -.10$, $p = .055$. A

296 repeated measures ANOVA revealed that the speed of response was significantly related to
297 trial type, $F(2, 798) = 21.37, p < .001, \eta_p^2 = .05$. Post-hoc tests using the Tukey method for
298 multiple comparisons indicated that reaction times were significantly faster for aware errors
299 than for either unaware errors, $t(798) = -4.22, p < .001, d = -.23, 95\% \text{ CI } [-.30, -.16]$, or
300 correct Go responses, $t(798) = -6.44, p < .001, d = -.15, 95\% \text{ CI } [-.22, -.08]$. There was no
301 significant difference in reaction time between correct responses and unaware errors, $t(798) =$
302 $2.22, p = .069, d = -.08, 95\% \text{ CI } [-.15, -.01]$.

303 A repeated measures ANOVA was computed to compare reaction time adjustments
304 across No-Go responses (correct inhibitions, aware error, unaware error). The results
305 revealed an effect of No-Go response type on post-No-Go reaction time, $F(1.52, 598.43) =$
306 $4.85, p = .015, \eta_p^2 = .01$. Post-hoc tests indicated greater slowing of responses following
307 unaware errors (+19ms) compared to aware errors (+5ms), $t(786) = 2.91, p = .010, d = -.48,$
308 $95\% \text{ CI } [-.56, -.41]$, and correct No-Go responses (+7ms), $t(786) = 2.41, p = .043, d = -.40,$
309 $95\% \text{ CI } [-.47, -.33]$. There was no significant difference in post-No-Go reaction adjustments
310 between correct responses and aware errors, $t(786) = 0.50, p = .869, d = .08, 95\% \text{ CI } [.01,$
311 $.15]$.

312
313

314 **Table 1**

315 *Behavioural Performance: Inhibition Accuracy, Error Awareness and Reaction Time on the*
316 *Error Awareness Task*

Category	Mean (SD)
Inhibition accuracy %	53.59 (19.31)
Total errors	66.45 (29.05)
Error awareness %	86.47 (11.74)
Reaction time (ms)	
Go trial	517.66 (80.60)
Aware trial	489.14 (107.28)
Unaware trial	507.37 (117.33)
Post-No-Go reaction time adjustment (ms) ^a	
Aware error	+5.94 (49.66)
Unaware error	+19.22 (93.21)
Correct inhibition	+7.89 (44.24)

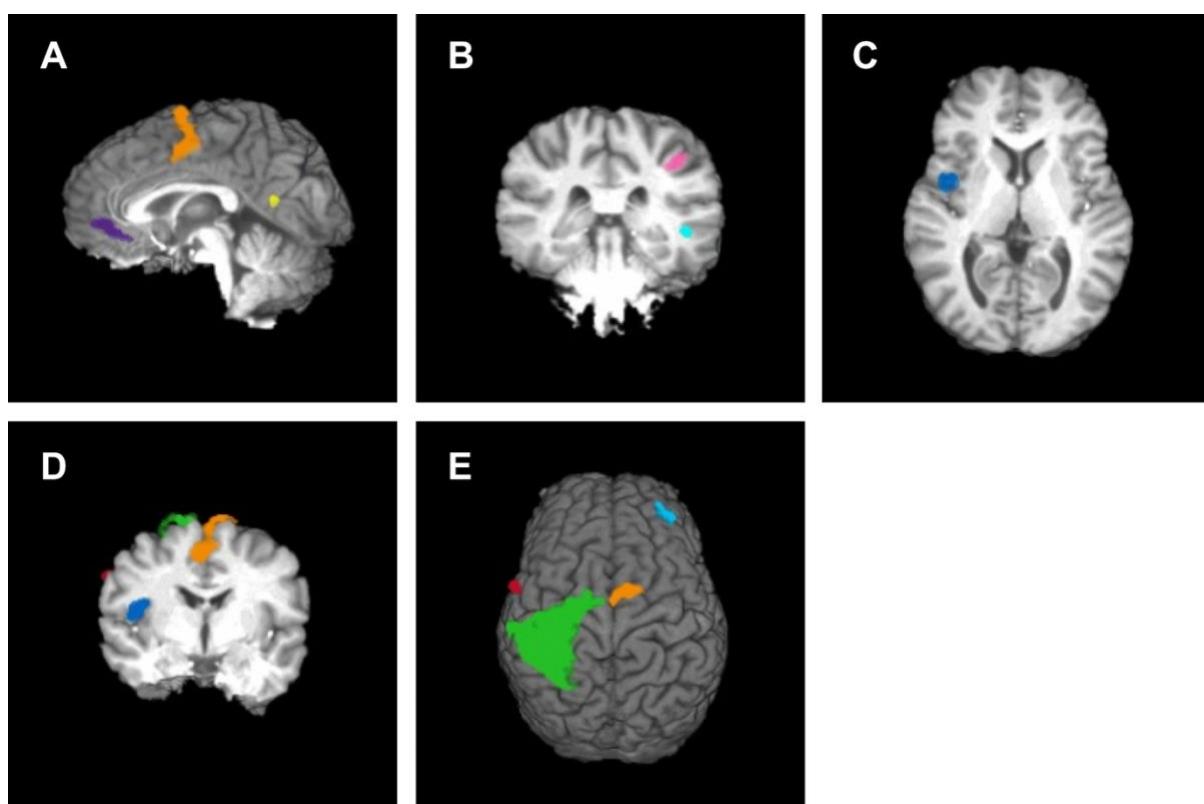
317 ^aPost-No-Go reaction time – pre-No-Go reaction time. Post-No-Go reaction time is taken
318 from the Go trial that succeeds the No-Go error by three trials.

319

320 **Neuroimaging Results**

321 The event-related functional analysis revealed 17 clusters that differentiated aware
322 errors from unaware errors (Table 2). Aware errors were accompanied by greater activity in
323 the left insula cortex (Figures 2C and 2D), the supramarginal gyrus (SMG; Figure 2B), and
324 midline structures such as the left supplementary motor area (SMA), left anterior cingulate
325 cortex (ACC) and bilateral precuneus (Figure 2A). It should be noted that while the centre of
326 mass of activity in the SMA and ACC falls within the left hemisphere, the lateral extent of
327 these clusters was bilateral.

328 ACC activity was not robustly correlated with behavioural measures that are typically
329 related to error awareness. That is, the speed of error commission was not significantly


330 associated with the degree of ACC activity for either aware, $r_s = -.09, p = .061$, or unaware
331 errors, $r_s = -.06, p = .194$. Further, we did not find evidence in support of an association
332 between inhibition performance and ACC activity related to aware errors, $r_s = .01, p = .890$,
333 nor error awareness rate, $r_s = .09, p = .063$. Likewise, we found no evidence for an
334 association between post-error reaction time adjustments and ACC activity for aware errors,
335 $r_s = -.06, p = .233$, or unaware errors, $r_s = -.08, p = .096$. The difference between BOLD
336 activity in the ACC associated with aware errors and that associated with unaware errors was
337 also not found to be significantly related to the speed of aware errors, $r_s = -.02, p = 1.00$, and
338 unaware errors, $r_s = .01, p = 1.00$, or post-error adjustments in reaction time following aware
339 errors, $r_s = -.03, p = 1.00$, and unaware errors, $r_s = .09, p = .284$.

340 The association between neural activity and performance indices was further assessed.
341 Inhibition performance was found to correlate positively with BOLD activity associated with
342 aware errors in the insula, $r_s = .12, p = .030$, and right SMG, $r_s = .25, p < .001$. Only the left
343 middle frontal gyrus, $r_s = .17, p = .010$, and the SMA, $r_s = .15, p = .030$, were found to
344 correlate significantly with aware error reaction time. Post-aware reaction time adjustments
345 were associated with activity in the SMA, $r_s = .15, p = .030$, right SMG, $r_s = .19, p < .001$,
346 right superior temporal gyrus, $r_s = .14, p = .040$, and left and right middle frontal gyri, $r_s =$
347 $.17, p = .010$, and $r_s = .21, p < .001$, respectively, such that greater activity in these regions
348 correlated with slower reaction time on the post-error trial. For unaware errors, neither the
349 speed of the erroneous response nor post-error reaction time adjustments were found to
350 significantly correlate with BOLD activity in any of the 17 clusters.

351

352

353 **Figure 2**

354

355 *Note.* Clusters associated with greater BOLD signal for aware errors than unaware errors. (A)
356 Sagittal slice at $x = 0$. Purple cluster centred on left anterior cingulate cortex, orange cluster
357 centred on left supplementary motor area (SMA), yellow cluster centred on left precuneus;
358 (B) Coronal slice at $y = 30$. Blue cluster centred on right superior temporal gyrus, pink cluster
359 centred on right supramarginal gyrus; (C) Axial slice at $z = 10$. Blue cluster centred on left
360 insula; (D) Coronal slice at $y = 5$. Blue cluster centred on left insula, red cluster centred on
361 left precentral gyrus, orange cluster centred on left SMA, green cluster centred on left
362 postcentral gyrus; (E) Green cluster centred on right postcentral gyrus, orange cluster centred
363 on left SMA, red cluster centred on left precentral gyrus, blue cluster centred on right middle
364 frontal gyrus.

365

366 **Table 2**

367 *Regions that Showed Significantly Greater BOLD Signal for Aware Errors than Unaware*

368 *Errors*

Structure	Vol. μ l	HS	Centre of mass (MNI Coordinates)		
			x	y	z
Postcentral gyrus	30420	L	-38	-32	54
Cerebellum	7778	R	23	-50	-27
Cerebellum	4055	L	-30	-52	-31
SMA ^a	2849	L	1	-6	58
Cerebellum	2401	R	21	-49	-57
ACC ^a	1784	L	-2	41	-3
Insula	1521	L	-40	-2	13
SMG	1368	R	39	-37	43
Cerebellum	1085	L	-34	-44	-59
Middle frontal gyrus	703	L	-32	37	35
Middle frontal gyrus	687	R	32	44	38
SMG	585	R	56	-43	26
Precuneus	554	R	7	-73	42
Precuneus	541	L	-5	-57	13
Superior temporal gyrus	394	R	46	-29	-3
Precentral gyrus	375	L	-57	2	33
Precuneus	252	L	-11	-70	47

369 *Note.* Positive values for x, y and z coordinates denote locations that are right, posterior and

370 superior relative to the anterior commissure, respectively. SMA, supplementary motor area;

371 ACC, anterior cingulate cortex; SMG, supramarginal gyrus.

372 ^aWhile the centre of mass of activity in the SMA and ACC falls within the left hemisphere,

373 the lateral extent of these clusters was bilateral.

374 **Lasso Regression**

375 Lasso regression results for each model are summarised in Table 3. Error awareness
376 was found to be predicted by impulsivity, namely motor and planning scores from the BIS-11
377 (Barratt and Patton 1983), and behavioural inhibition score from the BIS/BAS (Carver and
378 White 1994). The most important predictors of insula activity were attention to detail and
379 imagination scores from the AQ (Baron-Cohen et al. 2001), and HADS depression score
380 (Zigmond and Snaith 1983). No variable was found to predict ACC activity, while all
381 variables except attention switching from the AQ, and attention, self-concept and DSM
382 attention from the CAARS (Conners 1998) were found to predict SMG activity.

383 Regarding the questionnaire measures, it is worth noting that only a very small
384 fraction of participants reported clinically relevant scores (see Table 4A of the
385 Supplementary Material for descriptive statistics). The largest psychopathological subsample
386 were individuals scoring in the clinical range for HADS anxiety ($n = 196$). Therefore, we
387 compared the subsample of individuals meeting the cut-off for clinical levels of anxiety with
388 those who did not. Corroborating the results of the lasso regressions, no difference was found
389 between the groups in mean ACC, $t(379) = 0.14, p > .990$, insula, $t(379) = 0.78, p > .990$,
390 SMG, $t(379) = 2.10, p = .147$, and middle frontal gyrus activity, $t(379) = 0.77, p < .990$.

391

392 **Table 3**

393 *Lasso Regression Coefficients*

	Outcome									
	Error awareness		L-insula		ACC		R-SMG		R-Middle frontal gyrus	
Predictor	Lasso coeff.	non-zero (%)	Lasso coeff.	non-zero (%)	Lasso coeff.	non-zero (%)	Lasso coeff.	non-zero (%)	Lasso coeff.	non-zero (%)
BIS-11 – attentional	.	56	.	56	.	26	-0.05	58	.	33
BIS-11 – motor	-0.07	86	.	46	.	30	0.11	78	0.05	74
BIS-11 – non-planning	-0.03	90	.	38	.	48	-0.01	52	.	34
AQ – social skill	.	48	.	40	.	56	-0.15	82	.	46
AQ – attention switching	.	68	.	50	.	22	.	54	.	37
AQ – attention to detail	.	64	.0003	60	.	44	0.04	64	.	47
AQ – communication	.	58	.	56	.	20	0.16	92	0.05	71
AQ – imagination	.	54	0.02	76	.	34	0.03	64	0.13	92
BIS/BAS – BAS drive	.	68	.	56	.	30	0.04	66	0.05	72
BIS/BAS – BAS fun	.	50	.	42	.	24	-0.12	74	.	25
BIS/BAS – BAS reward	.	62	.	42	.	34	0.01	54	.	41
BIS/BIS – BIS score	0.04	90	.	68	.	30	0.03	60	0.01	53

HADS – anxiety	.	52	.	50	.	30	0.02	64	.	49
HADS – depression	.	52	0.10	90	.	34	0.19	98	.	79
CAARS – attention	.	42	.	38	.	22	.	38	.	43
CAARS – hyperactivity	.	46	.	52	.	24	0.11	54	.	25
CAARS – impulsivity	.	48	.	48	.	22	-0.04	60	.	37
CAARS – self-concept	.	46	.	42	.	54	.	36	.	32
CAARS – DSM attention	.	34	.	50	.	20	.	42	-0.05	49
CAARS – DSM hyperactivity	.	38	.	40	.	22	-0.14	60	.	23
CAARS – DSM ADHD	.	6	.	4	.	6	-0.01	20	.	24
CAARS – index	.	64	.	18	.	12	-0.02	40	.	24

394 *Note.* Results are presented as standardised regression coefficients. To determine the
395 robustness of the variable selection, each lasso model was computed on 500 bootstrap
396 samples. The percentage of non-zero bootstrap samples is reported for each variable
397 alongside the coefficients. BIS, Barratt Impulsiveness Scale, Version 11; AQ, Autism
398 Spectrum Quotient; BIS/BAS, Behavioural Inhibition/Avoidance Scale; HADS, Hospital
399 Anxiety and Depression Scale; CAARS, Conners' Adult ADHD Rating Scales; ACC,
400 anterior cingulate cortex; SMG, supramarginal gyrus.

401

402

Discussion

403 The current study aimed to establish the robustness of previous findings on the neural
404 correlates of error awareness. Here, we have discerned greater aware-related activity in a
405 network of regions including the insula cortex, anterior cingulate cortex (ACC),
406 supplementary motor area (SMA), and supramarginal gyrus (SMG). Further, individual
407 differences in error-related neural activity were found to be related to indices of task
408 performance in a select few regions including the insula, SMA and SMG. Moreover, we
409 found that certain measures of psychopathology – namely impulsiveness and depression –
410 explained variance in aware-related activity in a subset of these regions.

411 Although the ACC has been implicated in several studies on performance monitoring,
412 differentiation of activity in this region with error awareness has been largely unreported (but
413 see Hester et al., 2012). Our study has shown greater ACC activation – across the dACC and
414 rACC – for aware errors than unaware errors, suggesting a sensitivity of the ACC to
415 awareness. This supports claims that insufficient statistical power may underlie the
416 discrepancy in previous findings (Wessel, 2012). Although the precise role of the ACC in
417 error processing is unknown, there is a general consensus that the ACC – particularly the
418 dACC – monitors ongoing behaviour and navigates the selection and evaluation of goal-
419 directed behaviours (Holroyd and Yeung 2012). In particular, it is purported to respond to
420 outcomes that are worse than expected and may signal the need for an adjustment in strategy
421 to reach the desired goal (Holroyd and Coles 2002; Bryden et al. 2011). Our finding of
422 greater rACC activation is not typically reported in error awareness studies, however the
423 rACC has been proposed to be a neuronal generator of the Pe – an event-related potential
424 associated with error awareness (Herrmann et al. 2004; Van Boxtel et al. 2005). While the
425 rACC may be differentially involved in post-error processing, as evidenced by the Pe, further
426 work is ultimately needed to discern precisely how the rACC contributes to awareness. Taken

427 together, it is plausible that the ACC presents a threshold-like relationship to awareness and
428 post-error processes, whereby a certain level of activity is sufficient to elicit error detection
429 and post-error adaptation, but the overall level of activity is not tightly coupled to these
430 processes (Orr and Hester 2012). This is moreover consistent with the absence of a
431 relationship between individual differences in aware-related ACC activity and behavioural
432 adjustments in our study. Thus, ACC activity may covary with error commission and
433 contribute to error awareness such that it is facilitating goal attainment, however may not be
434 solely responsible for eliciting awareness and post-error alterations.

435 Contrastingly, the insula cortex appears to be consistently modulated by error
436 awareness. The insula has been proposed to be engaged in a number of processes, however its
437 role in interoceptive awareness has taken prominence in recent decades. In particular, the
438 insula integrates autonomic information with salient events such as errors (Klein et al.
439 2013b). Insula activity during aware errors may therefore be explained by interoceptive
440 awareness of greater autonomic responses to aware errors (Craig 2009). Interestingly,
441 concurrent insula and ACC activity during performance monitoring is a robust finding (Craig
442 2009; Ham et al. 2013). Although these structures are distinct, they have been purported to
443 form a salience network which has been associated with interoceptive autonomic domains
444 and the control of goal-directed behaviours (Dosenbach et al. 2007). Indeed, previous studies
445 have found the ACC to be associated with autonomic engagement during aware error
446 processing (Harsay et al. 2018). The relationship between the ACC and insula may explain
447 how the ACC potentially mediates error awareness. Specifically, insula activity may
448 represent awareness while ACC activity represents the control of directed effort. That is,
449 error-related activity in the ACC may feedforward into the insula which may be more directly
450 responsible for error awareness.

451 Consistent with previous findings, aware errors were associated with greater activity
452 in the right SMG. The SMG is purported to be connected to the ACC and middle frontal
453 cortex via the dorsal branch of the superior longitudinal fasciculus (SLF1; Ramos-Fresnedo
454 et al. 2019). Recent research has demonstrated that individual differences in the SLF1
455 underpin an individual's evidence accumulation capacity (Brosnan et al. 2020). This is
456 pertinent given that current views on error awareness operate in line with an evidence
457 accumulation account (Ullsperger et al. 2010). The emergence of error awareness is said to
458 coincide with the accumulation of evidence above a response criterion threshold (Murphy et
459 al. 2012). Given the SMG, ACC and middle frontal cortex were found to contribute to error
460 awareness in the current study, it is plausible that connectivity between these regions might
461 be a critical determinant of an individual's error awareness.

462 It is also worth considering that the inferior parietal lobe – which in part comprises
463 the SMG – has been proposed to form a network with the ACC and insula and together are
464 associated with the salience of an event (Harsay et al., 2012). The parietal lobe, in particular,
465 is suggested to act on salient events and likely works to direct and maintain the location of
466 attention (Corbetta and Shulman 2002). Errors are arguably salient as they are infrequent and
467 useful in that they re-direct a participant's attention to current task goals. Indeed, consistent
468 with this orienting account, we found elevated SMG activity to be correlated with slower
469 reaction times following aware errors. This finding aligns with previous work which has
470 found that correct trials following an error show heightened activation of the inferior parietal
471 lobe, coinciding with increased post-error slowing (Marco-Pallarés et al. 2008).

472 Although error awareness rate did not appear to be associated with inhibition
473 performance, we found a relationship between inhibition and aware-related activity in the
474 insula and SMG. This is interesting given that error-related activity in the insula and inferior
475 parietal lobe have previously been found to predict successful inhibition on the following No-

476 Go trial (Hester et al. 2009b), suggesting a shared neural system between error awareness and
477 successful response inhibition. Previously, we speculated that inclusion of two inhibition
478 contingencies might disrupt the relationship between error awareness and future performance,
479 reflecting the role of the ACC as a reinforcement learning signal (Orr and Hester 2012). We
480 therefore opted to include only one inhibition rule in the current design. Despite this task
481 change, we found no relationship between error awareness and inhibition performance. It is
482 thus plausible that error awareness facilitates performance only under context-specific
483 conditions – where there is a more direct contingency between an error and future
484 performance. Since there was no direct contingency here, with performance not influencing
485 the sequence of trials that followed, it is likely any increases in conservatism of responding
486 are loosely, if at all, reflective of sustained changes in performance strategy.

487 While we examined post-error reaction time adjustments, it is worth considering that
488 the error awareness task is not optimised for this analysis. Specifically, participants are
489 required to make an awareness button press on the first post-error trial. To minimise this
490 confound, we excluded the first two post-error trials from our post-error slowing analysis,
491 however we still found greater slowing following unaware errors. While studies on post-error
492 slowing and error awareness have generated mixed evidence (van Gaal et al. 2009; Hewig et
493 al. 2011; Endrass et al. 2012; Hoonakker et al. 2016), the finding of greater slowing
494 following unaware errors appears to be exclusive to studies employing the error awareness
495 task. Given that post-error reaction time did not return to baseline by the third post-error trial,
496 it seems plausible that unaware errors are accompanied by the continued anticipation of an
497 impending No-Go trial, resulting in slowed responses. Our finding of greater slowing
498 following unaware errors is therefore likely to be a task-specific phenomenon rather than a
499 reflection of deliberate post-error behavioural adjustments. To reconcile these findings, we

500 require a task that obviates the need for an error awareness button press on the post-error trial
501 and offers more events (i.e., aware and unaware errors) per individual.

502 To examine the influence of dimensional measures of psychopathology on error
503 awareness and related neural activity in four selected clusters (ACC, insula, SMG and middle
504 frontal gyrus), we ran a series of lasso regressions. The most robust positive predictors of
505 error awareness were impulsivity-related measures, specifically motor and non-planning
506 impulsiveness. This is consistent with the finding that disorders marked by deficits in
507 impulsiveness, such as ADHD and substance use disorder, have been shown to have impaired
508 error awareness (O'Connell et al. 2009; Charles et al. 2017). Error awareness was also found
509 to be positively predicted by behavioural inhibition system score which reflects the
510 motivation to avoid adverse outcomes and is purported to be predictive of affective and
511 behavioural responses after incentives and threats (Johnson et al. 2003). Moreover, the
512 relationship between aware-related insula and SMG activity was found to be most notably
513 positively predicted by depressive symptoms. Although some studies have found a
514 heightened Pe – an event-related potential which is suggested to index error awareness – to
515 be related to depressive symptoms (Mies et al. 2011; Mueller et al. 2015), others have found
516 no such relationship (Compton et al. 2008). It has been reported, however, that depressed
517 individuals display greater activity in the insula in response to negative stimuli than healthy
518 controls (Hamilton et al. 2012). The heightened sensitivity to failure and negative
519 information which is proposed to underlie clinical levels of depression may in part explain
520 why aware-related activity in these regions is related to depressive traits in a non-clinical
521 sample.

522 Our event-related analysis of a large sample revealed a network of regions including
523 the insula cortex, SMG, and midline structures such as the ACC and SMA that show greater
524 BOLD signal change for aware errors compared to unaware errors. The most parsimonious

525 account of error awareness is that it is likely the result of the accumulative efforts of these
526 systems which may not all individually drive awareness.

527

528 **Open practices statement.** Data are available upon reasonable request and all scripts
529 required for the current results have been made publicly available online at the Open Science
530 Framework (<https://osf.io/hrba7/>).

531 **Conflict of interest.** The authors declare no conflicts of interest.

532 **Acknowledgements.** This work was supported by a Project Grant from the National Health
533 and Medical Research Council (NHMRC) of Australia to M.A.B and R.H (#1045354).

534 M.A.B is supported by a Senior Research Fellowship (Level B) from the NHMRC (#
535 1154378). This work was also supported by a Marie Skłodowska-Curie Fellowship from the
536 European Commission (AGEING PLASTICITY; grant number 844246) to M.B, and
537 supported by the NIHR Oxford Health Biomedical Research Centre. The Wellcome Centre
538 for Integrative Neuroimaging is supported by core funding from the Wellcome Trust
539 (203139/Z/16/Z). For the purpose of open access, the author has applied a CC BY public
540 copyright licence to any Author Accepted Manuscript version arising from this submission.

541 We would like to thank Mr Cameron Patrick for his assistance with the Lasso regression.

542

543

References

544 Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. 2001. The Autism-Spectrum
545 Quotient (AQ): Evidence from Asperger Syndrome/High-Functioning Autism, Males and
546 Females, Scientists and Mathematicians. *J Autism Dev Disord.* 31:5-17.

547 Barratt ES, Patton JH. 1983. Impulsivity: Cognitive, behavioral, and psychophysiological
548 correlates. In: Zuckerman M, editor. *Biological bases of sensation seeking, impulsivity and*
549 *anxiety.* Hillsdale, NJ: Erlbaum p 77-116.

550 Ben-Shachar M, Lüdecke D, Makowski D. 2020. *effectsize: Estimation of effect size indices*
551 *and standardized parameters.* *J Open Source Softw.* 5:2815.

552 Bossier H, Roels SP, Seurinck R, Banaschewski T, Barker GJ, Bokde ALW, Quinlan EB,
553 Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Ittermann B, Martinot J-L,
554 Artiges E, Nees F, Orfanos DP, Poustka L, Fröhner Dipl-Psych JH, Smolka MN, Walter H,
555 Whelan R, Schumann G, Moerkerke B. 2020. The empirical replicability of task-based fMRI
556 as a function of sample size. *NeuroImage.* 212:116601.

557 Brosnan MB, Sabaroeedin K, Silk T, Genc S, Newman DP, Loughnane GM, Fornito A,
558 O'Connell RG, Bellgrove MA. 2020. Evidence accumulation during perceptual decisions in
559 humans varies as a function of dorsal frontoparietal organization. *Nat Hum Behav.* 4:844-
560 855.

561 Bryden DW, Johnson EE, Tobia SC, Kashtelyan V, Roesch MR. 2011. Attention for learning
562 signals in anterior cingulate cortex. *J Neurosci.* 31:18266.

563 Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò MR. 2013.
564 Power failure: why small sample size undermines the reliability of neuroscience. *Nat Rev*
565 *Neurosci.* 14:365-376.

566 Carver CS, White TL. 1994. Behavioral inhibition, behavioral activation, and affective
567 responses to impending reward and punishment: the BIS/BAS scales. *J Pers Soc Psychol.*
568 67:319-333.

569 Charles L, Gaillard R, Amado I, Krebs M-O, Bendjemaa N, Dehaene S. 2017. Conscious and
570 unconscious performance monitoring: Evidence from patients with schizophrenia.
571 *NeuroImage.* 144:153-163.

572 Compton RJ, Lin M, Vargas G, Carp J, Fineman SL, Quandt LC. 2008. Error detection and
573 posterror behavior in depressed undergraduates. *Emotion.* 8:58-67.

574 Conners CK. 1998. Rating scales in attention-deficit/hyperactivity disorder: Use in
575 assessment and treatment monitoring. *J Clin Psychiatry.* 59:24-30.

576 Corbetta M, Shulman GL. 2002. Control of goal-directed and stimulus-driven attention in the
577 brain. *Nat Rev Neurosci.* 3:201-215.

578 Cox RW. 1996. AFNI: Software for analysis and visualization of functional magnetic
579 resonance neuroimages. *Comput Biomed Res.* 29:162-173.

580 Craig AD. 2009. How do you feel — now? The anterior insula and human awareness. *Nat*
581 *Rev Neurosci.* 10:59-70.

582 Cremers HR, Wager TD, Yarkoni T. 2017. The relation between statistical power and
583 inference in fMRI. *PloS One.* 12:e0184923.

584 Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK. 2005. Trial-by-
585 trial coupling of concurrent electroencephalogram and functional magnetic resonance
586 imaging identifies the dynamics of performance monitoring. *J Neurosci.* 25:11730-11737.

587 Dhar M, Wiersema JR, Pourtois G. 2011. Cascade of neural events leading from error
588 commission to subsequent awareness revealed using EEG source imaging. PLoS One. 6:1-12.

589 Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, Fox MD,
590 Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE. 2007. Distinct brain
591 networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA.
592 104:11073-11078.

593 Endrass T, Klawohn J, Preuss J, Kathmann N. 2012. Temporospatial dissociation of Pe
594 subcomponents for perceived and unperceived errors. Front Hum Neurosci. 6:1-10.

595 Endrass T, Reuter B, Kathmann N. 2007. ERP correlates of conscious error recognition:
596 aware and unaware errors in an antisaccade task. Eur J Neurosci. 26:1714-1720.

597 Falkenstein M, Hohnsbein J, Hoormann J, Blanke L. 1991. Effects of crossmodal divided
598 attention on late ERP components. II. Error processing in choice reaction tasks.
599 Electroenceph Clin Neurophysiol. 78:447-455.

600 Friedman J, Hastie T, Tibshirani R. 2010. Regularization paths for generalized linear models
601 via coordinate descent. J Stat Softw. 33:1-22.

602 Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E. 1993. A neural system for error
603 detection and compensation. Psychol Sci. 4:385-390.

604 Ham T, Leff A, de Bosissezon X, Joffe A, Sharp DJ. 2013. Cognitive control and the salience
605 network: An investigation of error processing and effective connectivity. Journal of
606 Neuroscience. 33:7091-7098.

607 Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. 2012. Functional
608 neuroimaging of major depressive disorder: A meta-analysis and new integration of baseline
609 activation and neural response data. *Am J Psychiatry*. 169:693-703.

610 Harsay HA, Cohen MX, Spaan M, Weeda WD, Nieuwenhuis S, Ridderinkhof KR. 2018.
611 Error blindness and motivational significance: Shifts in networks centering on anterior insula
612 co-vary with error awareness and pupil dilation. *Behav Brain Res*. 355:24-35.

613 Harsay HA, Spaan M, Wijnen JG, Ridderinkhof KR. 2012. Error awareness and salience
614 processing in the oddball task: Shared neural mechanisms. *Front Hum Neurosci*. 6:1-20.

615 Herrmann MJ, Römmler J, Ehrlis A-C, Heidrich A, Fallgatter AJ. 2004. Source localization
616 (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe). *Brain Res Cogn*.
617 20:294-299.

618 Hester R, Foxe JJ, Molholm S, Shpaner M, Garavan H. 2005. Neural mechanisms involved in
619 error processing: A comparison of errors made with and without awareness. *NeuroImage*.
620 27:602-608.

621 Hester R, Madeley J, Murphy K, Mattingley JB. 2009b. Learning from errors: Error-related
622 neural activity predicts improvements in future inhibitory control performance. *J Neurosci*.
623 29:7158-7165.

624 Hester R, Nandam LS, O'Connell RG, Wagner J, Strudwick M, Nathan PJ, Mattingley JB,
625 Bellgrove MA. 2012. Neurochemical enhancement of conscious error awareness. *J Neurosci*.
626 32:2619-2627.

627 Hester R, Nestor L, Garavan H. 2009a. Impaired error awareness and anterior cingulate
628 cortex hypoactivity in chronic cannabis users. *Neuropsychopharmacology*. 34:2450-2458.

629 Hewig J, Coles MGH, Trippe RH, Hecht H, Miltner WHR. 2011. Dissociation of Pe and
630 ERN/Ne in the conscious recognition of an error. *Psychophysiology*. 48:1390-1396.

631 Hoffmann S, Beste C. 2015. A perspective on neural and cognitive mechanisms of error
632 commission. *Front Behav Neurosci*. 9:1-16.

633 Holroyd CB, Coles MG. 2002. The neural basis of human error processing: reinforcement
634 learning, dopamine, and the error-related negativity. *Psychol Rev*. 109:679-709.

635 Holroyd CB, Yeung N. 2012. Motivation of extended behaviors by anterior cingulate cortex.
636 *Trends Cogn Sci*. 16:122-128.

637 Hoonakker M, Doignon-Camus N, Bonnefond A. 2016. Performance monitoring mechanisms
638 activated before and after a response: A comparison of aware and unaware errors. *Biological
639 Psychology*. 120:53-60.

640 Johnson SL, Turner RJ, Iwata N. 2003. BIS/BAS levels and psychiatric disorder: An
641 epidemiological study. *J Psychopathol Behav Assess*. 25:25-36.

642 Klein TA, Endrass T, Kathmann N, Neumann J, von Cramon DY, Ullsperger M. 2007a.
643 Neural correlates of error awareness. *NeuroImage*. 34:1774-1781.

644 Klein TA, Ullsperger M, Danielmeier C. 2013b. Error awareness and the insula: Links to
645 neurological and psychiatric diseases. *Front Hum Neurosci*. 7:14.

646 Lockhart R, Taylor J, Tibshirani RJ, Tibshirani R. 2014. A significance test for the LASSO.
647 *Ann Stat*. 42:413-468.

648 Maier M, Steinhauser M, Hübner R. 2008. Is the error-related negativity amplitude related to
649 error detectability? Evidence from effects of different error types. *J Cogn Neurosci.* 20:2263-
650 2273.

651 Marco-Pallarés J, Camara E, Münte TF, Rodríguez-Fornells A. 2008. Neural mechanisms
652 underlying adaptive actions after slips. *J Cogn Neurosci.* 20:1595-1610.

653 Masina F, Tarantino V, Vallesi A, Mapelli D. 2019. Repetitive TMS over the left dorsolateral
654 prefrontal cortex modulates the error positivity: An ERP study. *Neuropsychologia.*
655 133:107153.

656 Mies GW, van der Veen FM, Tulen JHM, Birkenhäger TK, Hengeveld MW, van der Molen
657 MW. 2011. Drug-free patients with major depression show an increased electrophysiological
658 response to valid and invalid feedback. *Psychol Med.* 41:2515-2525.

659 Mueller EM, Pechtel P, Cohen AL, Douglas SR, Pizzagalli DA. 2015. Potentiated processing
660 of negative feedback in depression is attenuated by adhedonia. *Depress Anxiety.* 32:296-305.

661 Murphy P, Robertson I, Allen D, Hester R, O'Connell R. 2012. An electrophysiological
662 signal that precisely tracks the emergence of error awareness. *Front Hum Neurosci.* 6:65.

663 Nieuwenhuis S, Ridderinkhof KR, Blom J, Band GPH, Kok A. 2001. Error-related brain
664 potentials are differentially related to awareness of response errors: Evidence from an
665 antisaccade task. *Psychophysiology.* 38:752-760.

666 O'Connell RG, Dockree PM, Bellgrove MA, Kelly SP, Hester R, Garavan H, Robertson IH,
667 Foxe JJ. 2007. The role of cingulate cortex in the detection of errors with and without
668 awareness: a high-density electrical mapping study. *Eur J Neurosci.* 25:2571-2579.

669 O'Connell RG, Bellgrove MA, Dockree PM, Lau A, Hester R, Garavan H, Fitzgerald M,

670 Foxe JJ, Robertson IH. 2009. The neural correlates of deficient error awareness in attention-

671 deficit hyperactivity disorder (ADHD). *Neuropsychologia*. 47:1149-1159.

672 Orr C, Hester R. 2012. Error-related anterior cingulate cortex activity and the prediction of

673 conscious error awareness. *Front Hum Neurosci*. 6.

674 Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafò MR, Nichols TE,

675 Poline J-B, Vul E, Yarkoni T. 2017. Scanning the horizon: Towards transparent and

676 reproducible neuroimaging research. *Nat Rev Neurosci*. 18:115-126.

677 R Core Team. 2017. R: A language and environment for statistical computing. R Foundation

678 for Statistical Computing.

679 Ramos-Fresnedo A, Segura-Duran I, Chaichana KL, Pillai JJ. 2019. Chapter 2 -

680 Supratentorial White Matter Tracts. In: Chaichana K, Quiñones-Hinojosa A, editors.

681 Comprehensive Overview of Modern Surgical Approaches to Intrinsic Brain Tumors

682 Academic Press p 23-35.

683 Revelle W. 2020. psych: Procedures for Personality and Psychological Research. R package

684 version 2.0.12.

685 Russell L, Henrik S, Love J, Buerkner P, Herve M. 2020. Package 'emmeans': Estimated

686 marginal means, aka least-squares means. R package version 1.4.8.

687 Scheffers MK, Coles MG. 2000. Performance monitoring in a confusing world: Error-related

688 brain activity, judgments of response accuracy, and types of errors. *J Exp Psychol Hum*

689 *Percept Perform*. 26:141-151.

690 Shalgi S, Deouell LY. 2012. Is any awareness necessary for an Ne? *Front Hum Neurosci.*
691 6:1-15.

692 Singmann H, Bolker B, Westfall J, Aust F, Ben-Shachar MS. 2020. Package afex: Analysis
693 of factorial experiments. R package version 0.27-2.

694 Steinhauser M, Yeung N. 2010. Decision processes in human performance monitoring. *J*
695 *Neurosci.* 30:15643-15653.

696 Tibshirani R. 1996. Regression shrinkage and selection via the Lasso. *J R Stat Soc Series B*
697 *Stat Methodol.* 58:267-288.

698 Turner BO, Paul EJ, Miller MB, Barbey AK. 2018. Small sample sizes reduce the
699 replicability of task-based fMRI studies. *Commun Biol.* 1:62.

700 Ullsperger M, Harsay HA, Wessel JR, Ridderinkhof KR. 2010. Conscious perception of
701 errors and its relation to the anterior insula. *Brain Struct Funct.* 214:629-643.

702 Van Boxtel GJ, Van Der Molen MW, Jennings JR. 2005. Differential involvement of the
703 anterior cingulate cortex in performance monitoring during a stop-signal task. *J*
704 *Psychophysiol.* 19:1-10.

705 van Gaal S, Ridderinkhof KR, van den Wildenberg WPM, Lamme VAF. 2009. Dissociating
706 consciousness from inhibitory control: Evidence for unconsciously triggered response
707 inhibition in the stop-signal task *J Exp Psychol Hum Percept Perform.* 35:1129-1139.

708 van Veen V, Carter CS. 2006. Error detection, correction, and prevention in the brain: A brief
709 review of data and theories. *Clin EEG Neurosci.* 37:330-335.

710 Wessel JR. 2012. Error awareness and the error-related negativity: Evaluating the first decade
711 of evidence. *Front Hum Neurosci.* 6.

712 Wessel JR, Danielmeier C, Ullsperger M. 2011. Error awareness revisited: Accumulation of
713 multimodal evidence from central and autonomic nervous systems. *J Cogn Neurosci.*
714 23:3021-3036.

715 Zigmond AS, Snaith RP. 1983. The hospital anxiety and depression scale. *Acta Psychiatr
716 Scand.* 67:361-370.

717