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ABSTRACT 17 
 18 
Neuronal activity-dependent transcription directs molecular processes that regulate 19 
synaptic plasticity, brain circuit development, behavioral adaptation, and long-term 20 
memory. Single cell RNA-sequencing technologies (scRNAseq) are rapidly developing 21 
and allow for the interrogation of activity-dependent transcription at cellular resolution. 22 
Here, we present NEUROeSTIMator, a deep learning model that integrates signals of 23 
activation distributed throughout the broader transcriptome to estimate neuronal 24 
activation in a way that is robust against differences in species, cell type, and brain 25 
region. We demonstrate this method’s ability to accurately detect neuronal activity in 26 
previously published single cell and time course studies of activity-induced gene 27 
expression. Further, using spatial transcriptomic techniques, we demonstrate the 28 
model’s ability to identify patterns of learning-induced activation. In conclusion, 29 
NEUROeSTIMator is a powerful and broadly applicable tool for measuring neuronal 30 
activation, whether as a critical covariate or a primary readout of interest.  31 
 32 
  33 
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INTRODUCTION 34 
 35 

Activity-dependent expression of transcription factors controls synaptic plasticity 36 
and is dysregulated in many disorders of the nervous system1-6. Currently, a major 37 
focus in neuroscience research is aimed at understanding tissue and cell type specificity 38 
of activity-dependent transcription factors and the corresponding downstream targets. 39 
Single cell RNA-sequencing (scRNAseq) technologies are rapidly developing and allow 40 
for the interrogation of activity-dependent transcription at the resolution of individual 41 
neurons7,8. However, properties of scRNAseq data pose significant barriers to 42 
characterizing and quantifying gene expression signatures of neuronal activity.  43 
 44 

Upregulated expression levels of several transcription factors, such as Fos and 45 
Egr1, are commonly used as markers of activity-dependent transcriptional response in 46 
RNA-sequencing experiments1,4. However, single cell RNA-sequencing data exhibits 47 
sparsity and variability in gene expression measurements that can be attributed to a 48 
combination of biological and technical factors, such as cellular RNA content, individual 49 
gene abundance, and sequencing depth9-12. Consequently, genes that are truly 50 
expressed can go undetected in single cell data, thus diminishing the confidence in, and 51 
utility of, individual marker genes for transcriptionally defining neuronal activity state. 52 
Importantly, these challenges pose a significant barrier to analyzing data where neuron 53 
activity states are unknown, such as in post-mortem human tissue, as well as for 54 
controlled experimental data where manipulations are rarely expected to elicit a uniform 55 
response across or within cell types. Further, activity marker genes display basal 56 
expression that is detectable in the absence of stimulation or activity1. The 57 
consequence of 1) heterogeneous within-cell type responses to stimulation (e.g., 58 
memory-associated engram populations13), where 2) subsets of responsive cells cannot 59 
be confidently identified results in a drastic reduction of power in e.g., differential 60 
expression analyses between experimental conditions at the cell type level, as signal 61 
from the experimental group is diluted by non-responsive cells. Therefore, it is not only 62 
crucial to identify subsets of responsive cells for between-sample comparisons to a 63 
control group, but it also opens further avenues for higher powered within-sample 64 
comparisons. Because individual genes are unreliable markers in single cell data, 65 
robustly estimating the degree of individual neuronal activity requires integrating 66 
information from multiple activity marker genes. 67 

 68 
Several methods exist for aggregating transcriptomic data across multiple genes, 69 

and they are commonly used in single cell pre-processing steps to categorize cell types 70 
and visualize data. Dimensionality reduction methods such as principal component 71 
analysis (PCA) and non-negative matrix factorization (NMF) combine information from 72 
multiple genes into summarized components. However, such methods are 73 
unsupervised, and do not guarantee the resulting components will be relevant to 74 
neuronal activity. Furthermore, these methods do not capture information from non-75 
linear interactions that result from complex layers of biological regulation. Non-linear 76 
dimensionality reduction methods like t-stochastic neighbor embedding (tSNE)14, and 77 
uniform manifold projection (UMAP)15, similarly aim to explain variability in single cell 78 
data by summarizing gene expression patterns into components. In many scRNAseq 79 
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datasets derived from the brain, these components represent neuron-glia and 80 
glutamatergic-GABAergic axes. Despite non-linear capabilities, they are typically 81 
applied to linear components from PCA and still do not guarantee identification of a 82 
component that indexes neuronal activity state. 83 
  84 

Neural networks have been developed for many applications in single cell data 85 
such as dimensionality reduction and imputation16. DCA17 is a gene expression-oriented 86 
autoencoder for learning a reduced dimensional space, also known as an information 87 
bottleneck, which must then reconstruct the input data. Leveraging the inherently 88 
destructive nature of dimensionality reduction and statistical noise error models 89 
simultaneously strips noise from input data while retaining informative features in the 90 
bottleneck. This approach has the attractive qualities of learning non-linear relationships 91 
of input genes and addressing noise from sparsity of gene detection in a supervised 92 
manner. Furthermore, neural networks like DCA allow flexibility in the choice of genes 93 
targeted for reconstruction and the information capacity of the bottleneck. 94 

 95 
Here, we developed a neural network that produces an estimate of neuronal 96 

activity based on expression of thousands of genes. The network distills expression 97 
patterns into a 1-dimensional information bottleneck before reconstructing expression 98 
profiles of 20 well-established, robust markers of neuronal activity. The bottleneck value 99 
is bound between 0 and 1 and represents a cell-type-invariant summary of activity-100 
responsive gene expression magnitude. Applying our approach to a diverse collection of 101 
datasets, we demonstrate that this 1-dimensional bottleneck, hereafter referred to as 102 
the ‘activity score’, can identify individual neuronal activation caused by seizure, cocaine 103 
administration, and sensory experience. We demonstrate the use of the activity score to 104 
classify cells by experimental manipulation, expose genes involved in these predictions, 105 
and identify neuron type-specific expression signatures of activity. Furthermore, we 106 
demonstrate generalizability of our approach to new spatial transcriptomic data from 107 
brain slices following learning. To enable the neuroscience community to take 108 
advantage of these efforts, we have developed NEUROeSTIMator, an R package with 109 
an accompanying tutorial that demonstrates an application of our model to single cell 110 
data. 111 
 112 
RESULTS 113 
 114 
Predicting Activity-Dependent Marker Gene Expression 115 
 116 

We used publicly available single cell and nuclei datasets (Table 1) generated by 117 
the Allen Institute of Brain Science18, consisting of mouse and human samples, to 118 
develop a neural network model trained to predict expression of 20 activity-dependent 119 
genes. Activity-dependent genes were identified by intersecting differential expression 120 
results of three studies of experimental manipulation of neuron activity. All three studies 121 
examined different brain regions, used different methods of neuronal stimulation, and 122 
were published from independent groups. Single cell data was sampled with weighting 123 
to increase representation of less common neuronal cell types, species, sex, and 124 
technical characteristics. Five hundred thousand neurons were selected and partitioned 125 
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into cell type-balanced training and testing sets, and the training set was further split 126 
into 5 folds for cross validation. We trained the neural network to predict expression of 127 
the 20 activity-dependent target genes through a 1-dimensional hidden bottleneck layer 128 
with sigmoidal activation (see methods for a detailed description of model architecture 129 
and training). To evaluate model performance, we applied it to a diverse test set of 130 
approximately 56,578 neurons held out from the training process. We found the model 131 
performance on the test set was comparable to performance observed through cross 132 
validation. 133 
 134 

For further analyses, model output at the bottleneck activation layer was 135 
extracted to index activity level for each neuron passed through the model. Hereafter, 136 
we refer to this output as the predicted activity or activity score. We first examined the 137 
distribution of predicted activity across cell subclasses in the held-out test set (Fig. 1a, 138 
left). Most cell subclasses exhibited of a distribution concentrated near zero with a tail 139 
skewed towards one. A few cell subclasses exhibited higher average predicted activity, 140 
including L4/5 IT CTX, L4 RSP-ACA, L5 PPP, and SUB-ProS neurons. 141 
 142 
Genes Informing Model Predictions 143 
 144 

To identify genes whose expression levels influence model predictions, we 145 
calculated integrated gradients19 for all input genes with respect to predicted activity 146 
using data from the held out test set. Integrated gradients attribute model predictions to 147 
input features for each cell. We first examined the average impact of target genes on 148 
predicted activity for each cell subclass label (Fig. 1a, right). The most influential genes 149 
were Egr1 and Nr4a1. In general, target genes with lower mean expression contributed 150 
less to predictions. We further explored gene importance for all non-target input genes 151 
and found varying degrees of influence throughout the transcriptome (Fig. 1b). Among 152 
the most influential were the known activity response genes Homer1, Egr4, and Bdnf. 153 
We also found several cell type markers exhibiting influence on predictions such as 154 
Gad2, Sst, and Pde10a. We observed that many influential genes had higher mean 155 
expression levels, although lower abundance genes also exerted influence. For 156 
example, the gene Cyr61, known to regulate dendritic arborization20, was one of the 157 
most influential non-target gene with mean log10 expression less than -1. We also noted 158 
relatively few genes whose expression was indicative of reduced predicted activity.  To 159 
evaluate whether influential genes were enriched for specific annotated biological 160 
mechanisms, we performed gene set enrichment analysis on several annotation sets 161 
(Fig. 1c). Among the most highly enriched gene sets were BDNF/NTRK signaling 162 
(padjusted < 0.05 for 3 largely redundant annotations), circadian rhythm (padjusted = 0.0084), 163 
and nuclear receptor metapathways (padjusted = 0.0319). Many influential genes were 164 
members of multiple significant gene sets, with Homer1, Bdnf, Ntrk2, Jun, and Sst 165 
showing high degrees of centrality within the significant gene set membership network 166 
(Fig. 1d).  167 
 168 

To demonstrate the utility and generalizability of our model for external 169 
applications, we applied it to five datasets (Table 1).  170 
 171 
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Detecting Pharmacological Activation of Neurons 172 
 173 

We first applied our model to three datasets containing neurons from rodents and 174 
human cell lines treated with powerful stimulating, pharmacological agents. From the first 175 
dataset, we computed activity score for medial amygdala (MeA) neurons of mice treated 176 
with either saline or pentylenetetrazol (PTZ), a depolarizing agent used to model status 177 
epilepticus and induce seizures7. As expected, we observed increases in predicted 178 
activity for several neuronal subtypes, including GABAergic subtypes N2-N4 as well as 179 
glutamatergic subtypes N10-N12 (Wilcoxon test, padjusted < 0.001) (Fig. 2a). 180 
 181 

Next, we compared activity score between neurons from the nucleus accumbens 182 
(NAc) of rats treated with either saline or cocaine, a stimulant acting on dopaminergic 183 
neurotransmission21. We found neuron subtype-specific increases in activity score (Fig. 184 
2b). D1 and D3-type medium spiny neurons (MSN) were the most profoundly affected 185 
neuron subtypes (Wilcoxon test, D1: padjusted < 2.22x10-16, D2: padjusted = 0.0018). Because 186 
our model was not trained using any rat or dopaminergic neurons, these findings provide 187 
further endorsement for robust estimation of neuronal activity induced by potent 188 
pharmacological agents of stimulation. 189 

 190 
To further evaluate whether our model could be successfully applied to human 191 

data, we examined a dataset of human induced pluripotent stem cell-derived neurons22 192 
(Fig. 2c). Neuron cultures were either unstimulated or treated with KCl depolarization 193 
buffer for 1, 2, or 4 hours. Our model predicted low neuronal activity for the unstimulated 194 
group, which was consistent among cell types and biological replicates. Cells treated with 195 
KCl for 1 hour demonstrated substantial and significant increases in predicted activity. 196 
Although significant increases in predicted activity were observed for all cell types (padjusted 197 
< 0.05), the activity score of post-mitotic neurons displayed a stronger response to KCl 198 
compared to NES+ neural progenitor clusters. Among the most responsive neuron types 199 
was the Tbr1+ pallial glutamatergic cluster (cluster 6) (padjusted < 2.22x10-16 for all time 200 
points compared to baseline). Notably, all neuron clusters followed a similar temporal 201 
pattern of predicted activity modestly declining at 2 hours relative to peak activity at 1 202 
hour, with a further decline at 4 hours. Despite these activity predictions reducing after 1 203 
hour, none of the neuron clusters completely returned to basal levels at 4 hours, the final 204 
time point in the experiment. 205 

 206 
Together, these analyses suggest our model can robustly assign higher 207 

estimates of activity to cells subjected to chemical exposures that are expected to elicit 208 
strong and generally ubiquitous transcriptional responses to stimulation.    209 
 210 
Activity Score as a Generalizable Classifier of Neuronal Stimulation  211 
 212 

Next, we asked if our model could detect neuronal activation by more subtle 213 
forms of stimuli such as sensory experience. We applied our model to a dataset 214 
containing visual cortex neurons from mice exposed to light stimulation for 0, 1, or 4 215 
hours (Fig. 3a). To determine whether the ability of our model to detect activity 216 
signatures is restricted to neurons, we additionally examined predicted activity in non-217 
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neuronal cell types. We observed a significant increase in predicted activity for neurons 218 
from mice exposed to light, relative to controls. To elucidate temporal patterns of activity 219 
we tested differences in activity score between pairs of each time point. Activity score 220 
was significantly increased at 1 hour for many neuron types. At 4 hours of light 221 
exposure, predicted activity began to show diverging trends which were foreshadowed 222 
by predicted activity at 1 hour. Cell types weakly activated at 1 hour showed decline in 223 
activity towards the baseline at 4 hours, while cell types strongly responsive to light 224 
exposure 1 hour declined less. Although trending towards a return to baseline, activity 225 
scores of neurons at 4 hours were not significantly different from neurons at 1 hour. 226 
 227 
 As we observed similar trends in temporal activity predictions between the 228 
unstimulated (0h) and 1h group, we investigated the degree to which the activity score 229 
derived from our model could be used as a classifier of experimental group. The degree 230 
to which activity score is predictive of experimental group in a particular cell type is 231 
expected to represent the robustness of the response in that cell type. Using the visual 232 
cortex dataset (VIS) mentioned above, we constructed receiver-operator curve (ROC) 233 
plots for neuronal and non-neuronal cell types (Fig. 3b). For both excitatory neuron and 234 
interneuron subtypes, the activity score demonstrated varying degrees of predictive 235 
power. For example, the activity score alone was able to almost perfectly separate 236 
stimulation groups when considering excitatory cortical layer cell types, though it could 237 
only separate hippocampal neurons into stimulation groups with an accuracy slightly 238 
better than random chance, though we suspect this reflects a lack of hippocampus 239 
responsiveness to simple light exposure. Surprisingly, despite the model being trained 240 
on purely neuronal cell type populations, the activity score was able to separate 241 
stimulation groups for astrocytes just as accurately as it could for neurons. Astrocytes in 242 
the visual cortex have been shown to reliably respond to light23. Not only does this 243 
application of the activity score provide further evidence of astrocytic responsiveness to 244 
light, it also directly suggests that light induces transcriptional changes in astrocytes.  245 
 246 
Utility in Data Modalities Beyond scRNA-seq 247 
 248 

Next, we asked whether our model could identify spatial signatures of learning in 249 
brain slices of mice following spatial object recognition (SOR) training, a widely used 250 
behavioral paradigm to investigate memory mechanisms24. Using spatial transcriptomic 251 
data from brain slices of SOR-trained and homecage control (HC) mice, we applied our 252 
model to predict activity for each spot and clustered all spots into anatomical regions. 253 
The 23 resulting clusters were annotated with brain region names from the Allen Mouse 254 
Brain Atlas (Fig. 4a). At baseline, we noted a weak activation signature in HC slices, 255 
primarily covering cortical layers of the isocortex and subregions of the hippocampus 256 
(Fig. 4b, left). To identify a spatial activation signature of SOR, we tested for 257 
differences in predicted activity for each brain region cluster (Fig. 4c). We observed 258 
significant increases in predicted activity for several cortical and subcortical regions. 259 
Multiple layers of the isocortex and the retrosplenial area showed large increases in 260 
activity following SOR (Fig. 4d), with the greatest increase observed in layers 2/3. We 261 
also found a significant activation of the caudoputamen area of the dorsal striatum, also 262 
known as the tail of the striatum. The amygdala, hippocampus, and the 263 
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olfactory/piriform areas also showed significant increases in activity, of comparable 264 
magnitude. Subregions of the hippocampus were variably activated by SOR, with the 265 
strongest increase in the CA1 region. Regions predicted to be least activated by SOR 266 
include the thalamus, hypothalamus, dentate gyrus of the hippocampus, the lateral 267 
ventricle, and fiber tracts. 268 
 269 
DISCUSSION 270 
 271 

We present NEUROeSTIMator, a generalizable tool for in silico estimation of 272 
neuronal activity from transcriptome-wide single-cell gene expression. The neuronal 273 
activity score is an easily interpretable value that quantifies the transcriptional response 274 
to stimulation. NEUROeSTIMator can be used to rapidly identify and prioritize subsets 275 
of neurons showing transcriptional evidence of a stimulus response. In tests of 276 
predictive performance and generalizability, we demonstrate that the neuronal activity 277 
score can robustly detect signatures of activation from multiple types of stimulation, 278 
neuron subtypes, species, and sequencing technologies, including spatial 279 
transcriptomics. 280 
 281 

To gain an understanding of the genes most influential in the model, we 282 
systematically perturbed expression of input genes and evaluated the effect on 283 
predicted activity. We found broadly distributed signal across the transcriptome, 284 
enriched for genes related to BDNF/NTRK signaling, circadian rhythm, and nuclear 285 
receptor pathways. The genes most informative to our model and relevant to these 286 
gene sets were Homer1, Bdnf, Ntrk2, and Jun. These well-known activity response 287 
genes were not included as model targets based on our selection criteria, but their 288 
prominent influence on model predictions suggests our model utilizes information from 289 
coregulated genes and pathways to robustly estimate expression of target genes. 290 
Notably, we found few genes associated with lower activity score relative to genes 291 
whose expression was associated with a higher score, suggesting model predictions 292 
largely rely on positive indicators of activity. Although there is evidence of activity-293 
dependent downregulation of gene expression25,26, most genes differentially expressed 294 
by neuronal activity are transcriptionally upregulated, which is supported by findings that 295 
neuronal activity increases genome-wide chromatin accessibility1,27,28.  296 
 297 

We observed a positive relationship between mean expression levels and gene 298 
influence. The most influential target genes, Egr1 and Nr4a1, were the most highly 299 
expressed targets. We also observed that predicted activity is influenced by several 300 
known cell-type markers, which tend to be highly expressed. We suspect these 301 
observations are driven by reliability of gene detection at lower sequencing depths. 302 
Highly expressed markers of activity or cell type have greater detection rate, at both 303 
deep and shallow sequencing depths, than weakly expressed genes and therefore, are 304 
more reliable markers. We did not initially expect cell-type markers to strongly influence 305 
model predictions, and we suspect that cell type markers exert influence on predicted 306 
activity by reliably providing the model with information about cell identity, thereby 307 
allowing the model to establish cell-type specific intercepts for target gene expression 308 
that represent basal expression. Notably, the within cell-type heterogeneity of predicted 309 
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activity that we observe suggests that these cell-type markers are not sufficient by 310 
themselves to lead to predictions of neuronal activation. 311 
 312 

We examined gene set annotations related to the top genes influencing predicted 313 
activity and identified circadian rhythm and BDNF signaling as key pathways in 314 
predicting neuronal activation. Per1, a target of our model, is a circadian regulator gene 315 
upregulated by neuronal activity29. It has been demonstrated that disrupted activity-316 
dependent binding of CREB to CREB-binding protein (CBP) impairs long-term memory 317 
in mice and blunts the transcriptional upregulation of immediate early genes and 318 
circadian rhythm genes30. Together with our results, this suggests a subset of the 319 
activity response is allocated to a group of genes regulating circadian rhythm, and our 320 
model extracts this information from the transcriptome to predict expression levels of 321 
activity-dependent genes. Multiple significant gene sets were related to BDNF/NTRK 322 
signaling. Bdnf is a well-established activity response gene and one of the most 323 
extensively studied regulators of synaptic plasticity31-34. One of the most influential 324 
genes with membership in several significant gene sets was Homer1. Synaptic plasticity 325 
induced by neuronal activity has been shown to remodel synaptic scaffolding proteins35, 326 
in part through regulation of Homer136. Together, these findings suggest our model 327 
predicts activity, in part, by leveraging gene coexpression networks that interact with the 328 
immediate early gene activity markers. 329 
 330 

We applied our model to a single cell dataset containing neurons subjected to 331 
seizure in the medial amygdala and demonstrated the ability of our model to predict 332 
increased neuronal activation in response to PTZ in multiple cell types. We next applied 333 
our model to a single cell experiment treating the rat striatum with either saline or 334 
cocaine. Our estimates of activity recapitulate a key finding from the source study, that 335 
Drd1+ and Drd3+ medium spiny neurons display a strong activation response to 336 
cocaine treatment. This finding is particularly noteworthy given that our model was 337 
trained using only mouse and human cortical and hippocampal neurons, none of which 338 
were medium spiny neurons.  339 
 340 

Although we included human single nuclei data in the model training process, 341 
several neuronal subclasses from human samples in our test set showed low levels of 342 
predicted activity compared to the corresponding subclass in mouse samples. Although 343 
we reasoned this could be due to the nature of transcriptional machinery shutting down 344 
and RNA degradation in post-mortem neurons, it was not clear whether our model had 345 
inappropriately learned to equate human gene expression signatures to low neuronal 346 
activity. We applied our model to experimental data from human cell lines exposed to a 347 
time course of depolarizing KCl treatment. Our model detected a sharp increase in 348 
activity following 1 hour of treatment across multiple cell types, suggesting the model is 349 
indeed capable of identifying human signatures of neuronal activity. Further, our model 350 
predicted gradually declining levels of activity after 1 hour of KCl treatment, suggesting 351 
it is capable of discerning activity signatures beyond a simple on-off model of 352 
transcriptional activation. Not only do these results demonstrate our model can identify 353 
potent pharmacologically induced forms of neuronal activity, but it can also robustly do 354 
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so across species and cell types and discern gradual temporal changes over a time 355 
course of treatment. 356 
  357 

Sensory experience is known to induce activity-dependent gene expression 358 
programs in cortical neurons. We demonstrated that the predicted activity is markedly 359 
higher in visual cortex neurons from mice exposed to light, as compared to controls. 360 
Further, we identified strong increases in predicted activity for non-neuronal cell types 361 
responding to light exposures. We specifically demonstrated that the activity score can 362 
classify visual cortex astrocytes as originating from light-exposed experimental groups 363 
with accuracy comparable to neurons. This finding was unexpected, as the model was 364 
not trained with any glial or other non-neuronal cell types. However, as the immediate 365 
early gene markers of activity are, in fact, markers of activity in many cell types, even 366 
beyond the brain, we anticipate that our model may be capable of detecting activation 367 
signatures in entirely different cell types such as immune cells, for example. Not only 368 
does this analysis provide a further line of evidence for astrocytic responsiveness to 369 
light in the visual cortex, it also demonstrates the ability of our model to detect such a 370 
response via transcriptomic data. 371 

 372 
 Emerging spatial transcriptomic technologies promise to identify differentially 373 
active brain regions following a stimulus such as a training for a learning task. 374 
Comparing mice trained in spatial object recognition to homecage controls, we found 375 
widespread increases in cortical neuron activity, particularly in layers 2/3 of the 376 
isocortex. We also observed increased predicted activity in the CA1 region of the 377 
hippocampus, the caudoputamen region of the dorsal striatum, the retrosplenial area, 378 
and piriform areas. The CA1 region of the hippocampus has been shown to play a role 379 
in long term spatial memory in rodents37-39, and the caudate nucleus has been 380 
demonstrated to play a role in spatial working memory in both monkeys and humans. 381 
These regions, particularly CA1, retrosplenial area and the caudoputamen have known 382 
involvement in spatial learning and working memory. The piriform area is involved in 383 
olfaction, which may reflect sensory processing involved in long term memory encoding. 384 
Extending the application of our model to spatial transcriptomics, an entirely different 385 
data modality than the training data, we show that the activity score predictions are not 386 
confined to use in single cell RNA sequencing datasets. We expect many other distinct 387 
brain-wide spatial signatures of activation could be identified in relation to other 388 
cognitive processes.  389 
 390 

NEUROeSTIMator provides the first robust and generalizable means to quantify 391 
neuronal activation from gene expression data, opening the door to widespread 392 
inclusion in molecular neuroscience research. In neuroscience research involving gene 393 
expression, and especially in novel approaches like single cell or spatial 394 
transcriptomics, neuronal activity state is a variable as fundamental as age, sex, or 395 
treatment group. Depending on the goal of an analysis, it may be a critical covariate, a 396 
key grouping variable, or an explanatory variable of central interest that may now be 397 
estimated using the tools we present here. 398 
 399 
METHODS 400 
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 401 
Dataset for Model Training and Evaluation 402 
To train the model, we utilized publicly available datasets provided by the Allen Institute 403 
for Brain Science, including a single-cell RNA-sequencing (scRNAseq) dataset of over a 404 
million cells isolated from mouse cortical and hippocampal tissue18, and a single-nuclei 405 
RNA-sequencing (snRNAseq) dataset of 76,000 nuclei isolated from human cortical 406 
tissue. Hereafter, these datasets will be referred to as the Allen Mouse and Allen 407 
Human datasets. Both datasets used the 10X Genomics Chromium system for droplet 408 
capture. The Allen Mouse dataset was prepared using the Chromium Next GEM Single 409 
Cell 3’ v3 reagent kit, while the Allen Human dataset used v2. 410 
 411 
Datasets for Model Application – Publicly Available 412 
We downloaded multiple datasets from Gene Expression Omnibus (GEO) to 413 
demonstrate the utility of our model. The following GEO accessions were included in 414 
analyses: GSE10282740, GSE1039767, GSE13665622, and GSE13776321. 415 
 416 
Datasets for Model Application – Spatial Transcriptomics 417 
We generated a novel spatial transcriptomic dataset examining the effects of spatial 418 
object recognition (SOR) training in mice. The dataset contains spatial RNA-sequencing 419 
of whole brain slices from 1 hour after SOR training or home cage controls. SOR 420 
training was performed as previously described24. Mouse brain section per mouse was 421 
cut at 10 µm thickness and mounted onto each Visium slide capture area. After H&E 422 
staining, each bright-field image was taken as described in the spatial transcriptomics 423 
protocol. Tissue permeabilization was performed for 18 minutes, as established in the 424 
tissue optimization assay. The Visium Spatial Gene Expression Slide & Reagent kit (10x 425 
Genomics) was used to generate sequencing libraries for Visium samples. Libraries 426 
were constructed according to the 10x Visium library construction protocol and 427 
sequenced by Illumina NovaSeq6000. Raw data was then processed using the 10x 428 
Genomics Space Ranger analysis pipeline. See Supplemental Figure S2 for images of 429 
predicted activity for each replicate. 430 
 431 
Gene Identifier Mapping 432 
We used the R package biomaRt to map gene identifiers from various annotations used 433 
in public datasets, and between species, to a common set of reliably mapped 434 
genes41,42. Ensembl gene identifiers (Ensembl IDs) were used as the primary identifier 435 
for mapping genes, and gene symbols were used as secondary identifiers in cases of 436 
ambiguous mapping. The Ensembl release 93 archive (July 2018 release) was used for 437 
cross-species gene mapping43. Genes with one-to-one orthology between mouse and 438 
human, as well as mouse and rat, were selected to facilitate cross species utility. All 439 
datasets lacking Ensembl ID annotation contained gene symbols, which were then 440 
queried against multiple Ensembl archives to determine which archive maximized 441 
identifier mapping rate. For instances when a gene symbol mapped to multiple Ensembl 442 
IDs, identifiers present in the cross-species mapping table were preferentially selected. 443 
We provide a helper function for mapping gene identifiers to the feature set used by our 444 
model, and we further demonstrate usage in the associated tutorial. 445 
 446 
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Choice of Neural Network Target Genes 447 
To identify robust markers of neuronal activity for use as targets of the neural network, 448 
we intersected lists of stimulus-responsive genes from three published RNA-sequencing 449 
experiments. Each publication was from a different group of authors, focused on 450 
different brain regions, and used different forms of neuronal stimulation (see Table 1). 451 
One publication categorized stimulus-responsive genes into three groups – rapid 452 
primary response genes (rPRGs), delayed primary response genes (dPRGs), and 453 
secondary response genes (SRGs)44. As SRGs are thought to demonstrate higher 454 
celltype-specificity relative to PRGs1, only rPRGs and dPRGs were considered from this 455 
publication. In another publication, approximately 600 genes upregulated in response to 456 
kainic acid treatment in the hippocampus were considered28. 457 

In a third publication, two sets of KCl-responsive genes were available, one from 458 
a brain region enriched in glutamatergic neurons and one enriched for GABAergic 459 
neurons45. For this study, we sought to intersect the results of both the glutamatergic 460 
and GABAergic analyses into one list of genes. Published p-value distributions 461 
suggested differences in statistical power between these two analyses, and only 462 
statistically significant results were published. To expand the list of genes overlapping 463 
between these analyses, we reanalyzed the data using GEO2R to obtain two sets of 464 
transcriptome-wide statistics. Using significance rankings from the GEO2R reanalysis, 465 
we jointly determined p-value thresholds for each analysis based on rank-rank 466 
hypergeometric overlap (RRHO, see Supplemental Figure S1) and identified genes 467 
with p-values below these thresholds in both sets with concordant direction of effect46. 468 
Because this approach used unconventional p-value thresholding, we additionally 469 
required intersecting genes to have an estimated fold change greater than or equal to 470 
0.5 in both analyses. 471 

Finally, these three lists were intersected, and a set of 41 stimulus-responsive 472 
genes were selected as output targets on the basis of being differentially expressed in 473 
all three lists. 474 
 475 
Sample Filtering, Downsampling, and Partitioning 476 
Cells with less than 3,500 total counts or greater than 30,000 total counts were 477 
removed. Non-neuronal cells were removed and imbalances among species, sex, 478 
neuron type, quality control metrics and naively-estimated activity were alleviated by 479 
weighted random sampling. The R package groupdata2 was used to create five training 480 
folds (88.7%, 886,844 samples) and one test split (11.3%, 113,156 samples) in a way 481 
that retains training set diversity while maximizing representation of neuron subclasses 482 
in the test split. 483 
 484 
Model Input/Output Feature Selection 485 
Input and target features were selected based on mean expression and detection rate in 486 
the training data. Input features were required to have a detection rate greater than zero 487 
and log mean expression greater than -2 in both the Allen mouse and human samples 488 
used for training. The rationale behind removing weakly expressed genes was that the 489 
Allen datasets were sequenced deeper than typical datasets, and genes with low 490 
detection at high sequencing depth would likely be unreliably detectable at lower 491 
depths. The remaining 10,017 genes were used as input features. Of the 32 remaining 492 
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candidate output target genes, we selected a final set of 20 targets based on 493 
consistency of coexpression patterns across datasets and broad cell classes. Gene-494 
gene Pearson correlations were calculated for four cell sets (mouse glutamatergic, 495 
mouse GABAergic, human glutamatergic, human GABAergic). In each set, we ranked 496 
each gene based on the average correlation to all other candidate genes. These 497 
coexpression ranks were averaged across the four cell sets and the top 20 genes were 498 
selected as final the final set of output target genes. The targets include Arc, Btg2, 499 
Crem, Dusp1, Egr1, Egr2, Egr3, Fbxo33, Fos, Fosb, Fosl2, Grasp, Junb, Npas4, Nr4a1, 500 
Nr4a2, Nr4a3, Per1, Rgs2, and Tiparp. 501 
 502 
Dataset Augmentation 503 
Raw counts were downsampled using the R package scater47. For each combination of 504 
species and neuron subclass, an equal number of cells were randomly assigned a value 505 
of either 103, 103.25, or 103.5 total counts to be downsampled to. All genes were 506 
considered for downsampling. 507 
 508 
Feature Normalization and Preprocessing 509 
Log-normalization, as implemented in Seurat, was used to normalize input gene 510 
expression. Total counts for each cell were calculated by summing only the 10,017 511 
features used by the model. Normalized expression levels for each gene were centered 512 
and scaled based on mean and standard deviation estimated from the training data. For 513 
cross validation, mean and standard deviation were estimated without the held-out fold. 514 
 515 
Model Architecture 516 
The architecture of the model was adapted from DCA17. Briefly, input gene expression 517 
is supplied to an encoder; a series of three fully connected dense layers with ELU 518 
activations and batch normalization. The first layer contained 16 units and each 519 
successive layer halved the units of the previous layer. The encoder then connects to 520 
the information bottleneck, a single-unit dense layer with sigmoid activation. The 521 
bottleneck then connects to the first output, the estimated mean parameter µ of the 522 
zero-inflated negative binomial model. Two additional, independent, encoder branches 523 
output estimates of the dispersion and dropout parameters theta and pi, respectively. 524 
The zero-inflated negative binomial (ZINB) loss function was used, as implemented in 525 
DCA. For model applications, the model outputs are not used, but the sigmoidal 526 
bottleneck activation value is the metric extracted to estimate neuronal activity. 527 
 528 
Model Training 529 
We trained the model using keras, as implemented in keras R package, version 2.3.0.0. 530 
Training proceeded for 10 epochs using the ADAM optimizer. Gaussian dropout was 531 
applied to input expression to simulate uncertainty in measurements. Augmented 532 
samples, which were synthetically downsampled to simulate lower sequencing depths, 533 
were given the same output as the original data to curtail the learning of depth-534 
dependent information. Sample losses were weighted to improve representation of rare 535 
cell subclasses but were limited to be no more than five times greater than they would 536 
be in an equally weighted scheme. 537 
 538 
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Evaluating Model Performance 539 
Model performance was evaluated using a test split that was entirely shielded from 540 
model training or selection. Distributions of bottleneck activity and loss were compared 541 
across species, sex, neuron class and subclass, and quality control metrics. 542 
 543 
Evaluating Feature Importance 544 
To evaluate relative importance of each gene on predicted activity, we implemented the 545 
integrated gradients19 approach. Integrated gradients were averaged for each of the 4 546 
species-by-class groups, and then averaged again to allow the gradients from each 547 
species and cell class contribute equally to the final importance metric. 548 
 549 
Testing Differences in Predicted Activity 550 
For all datasets analyzed in figure 2, we used the Wilcox test. A linear model was used 551 
to test for differences (i.e., using t-statistic of the regression slope) in predicted activity 552 
of the spatial transcriptomic clusters in figure 4. 553 
 554 
DATA AVAILABILITY 555 
Spatial RNA-sequencing data, including gene expression measurements, tissue 556 
images, spot coordinates, and raw FASTQ files have been deposited in the Gene 557 
Expression Omnibus repository under the reference series ID GSE201610.  558 
 559 
CODE AVAILABILITY 560 
NEUROeSTIMator is available at https://research-git.uiowa.edu/michaelson-lab-561 
public/neuroestimator/ as a free R package with installation instructions and a tutorial. 562 
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FIGURES 585 

 586 
Figure 1 - Gene-wise contributions to the activity score and its distribution within cell 587 
types of the training data. The training data for the model was assembled from stimulus-naïve 588 
single-cell and single-nucleus experiments, and the proportion of active cells among each 589 
neuronal subclass varied, as indicated by the plotted distributions of bottleneck activation (i.e., 590 
the activity score, A). To understand the contribution of individual genes to the activity score, we 591 
examined gradient values from the DNN model (B). Higher positive gene gradient values 592 
indicate that increased gene expression is linked to increased bottleneck activation. To identify 593 
the strongest contributors to the activity score, we compared overall gene influence on predicted 594 
activity (X-axis) versus influence on model predictions (Y-axis) (C). Genes are colored by class 595 
as reported by Tyssowski, et. al, 2018: Rapid primary response genes (rPRGs, red), delayed 596 
primary response genes (dPRGs, blue), and secondary response genes (sRG, yellow). 597 
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 599 

Figure 2 – Multi-species generalization of neuronal activity score applied to previously 600 
published chemical induction studies. Predicted activity for various amygdala neuron 601 
subtypes (mouse) stimulated with PTZ (red) or controls (gray) (A). Cell-type specific activation 602 
predicted for rat neurons of the nucleus accumbens treated with either cocaine (red) or saline 603 
(gray) (B). Time series of predicted activation of human GABAergic-like iPSCs treated with 604 
depolarizing potassium chloride at 0 hours, 1 hour, 2 hours, and 4 hours (C). 605 
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 607 

Figure 3 - Temporal patterns and classification of in vivo sensory activation. Cell type 608 
activity predictions of visual cortex neurons in freely behaving mice exposed to light for 0, 1, or 4 609 
hours (A). ROC plots indicate the ability of predicted activity to separate various cell types into 610 
0h vs 1h experimental groups. Diagonals from bottom left to top right indicate an accuracy 611 
similar to random chance, while lines moving straight vertically, then straight horizontally 612 
indicate perfect separation. 613 
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 615 

Figure 4 – Spatial transcriptomic patterns of neuronal activation after spatial learning. 616 
Spatial anatomical clustering of RNA-sequencing spots (A). Regions were labeled by comparing 617 
transcriptionally-defined clusters to the Allen coronal mouse brain atlas. Activity score per spot, 618 
averaged across experimental groups (B) of home cage controls (left) and 1 hour after spatial 619 
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object recognition (SOR) training (right). Using the spatial anatomical clustering derived from the 620 
expression data, we were able to group individual spots into clusters to test the significance of 621 
activity induction, here indicated by the cluster-wise coefficient estimate. Brain regions 622 
differentially activated by SOR training (C). Cluster-wise differential activity statistics are 623 
summarized in (D) and provided in Supplementary Table S1. Bar length represents estimated 624 
effect of SOR on activity score, based on linear models. Brackets indicate standard error and 625 
circle size represents the number of spots per comparison, which indexes statistical power. 626 
Non-significant regions with an adjusted p-value > 0.05 are colored grey.  627 

  628 
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 629 
 630 

  631 

dataset use species stimulation tissue 

Allen Cell Types Database: mouse model training mouse - cortex, hippocampus 

Allen Cell Types Database: human model training human - cortex 

GSE111899 target selection mouse Sensory experience cortex (visual) 

GSE125068 target selection mouse PTZ hippocampus 

GSE55591 target selection mouse KCl cortex (neuron culture) 

GSE103976 model 
application mouse PTZ amygdala 

GSE137767 model 
application rat cocaine nucleus accumbens 

GSE136656 model 
application human KCl neuron culture 

GSE102827 model 
application mouse Sensory experience cortex (visual) 

SOR_Visium model 
application mouse Spatial object recognition 

training whole brain slice 

Table 1. Datasets used. 
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