

1 NEUROeSTIMator: Using Deep Learning to Quantify Neuronal 2 Activation from Single-Cell and Spatial Transcriptomic Data

3
4 Ethan Bahl^{1,2}, Snehajyoti Chatterjee^{3,4}, Muhammad Elsadany^{1,2}, Yann Vanrobaeys^{2,3},
5 Li-Chun Lin^{3,4}, K Peter Giese⁵, Ted Abel^{3,4}, and Jacob J. Michaelson^{1,3,6,7*}

6
7 ¹Department of Psychiatry, University of Iowa.

8 ²Interdisciplinary Graduate Program in Genetics, University of Iowa.

9 ³Iowa Neuroscience Institute, University of Iowa.

10 ⁴Department of Neuroscience & Pharmacology, University of Iowa.

11 ⁵Department of Basic and Clinical Neuroscience, King's College London, London, UK.

12 ⁶Department of Biomedical Engineering, University of Iowa.

13 ⁷Department of Communication Sciences & Disorders, University of Iowa.

14 * correspondence to jacob-michaelson@uiowa.edu

17 ABSTRACT

18
19 Neuronal activity-dependent transcription directs molecular processes that regulate
20 synaptic plasticity, brain circuit development, behavioral adaptation, and long-term
21 memory. Single cell RNA-sequencing technologies (scRNAseq) are rapidly developing
22 and allow for the interrogation of activity-dependent transcription at cellular resolution.
23 Here, we present NEUROeSTIMator, a deep learning model that integrates signals of
24 activation distributed throughout the broader transcriptome to estimate neuronal
25 activation in a way that is robust against differences in species, cell type, and brain
26 region. We demonstrate this method's ability to accurately detect neuronal activity in
27 previously published single cell and time course studies of activity-induced gene
28 expression. Further, using spatial transcriptomic techniques, we demonstrate the
29 model's ability to identify patterns of learning-induced activation. In conclusion,
30 NEUROeSTIMator is a powerful and broadly applicable tool for measuring neuronal
31 activation, whether as a critical covariate or a primary readout of interest.

34 **INTRODUCTION**

35
36 Activity-dependent expression of transcription factors controls synaptic plasticity
37 and is dysregulated in many disorders of the nervous system¹⁻⁶. Currently, a major
38 focus in neuroscience research is aimed at understanding tissue and cell type specificity
39 of activity-dependent transcription factors and the corresponding downstream targets.
40 Single cell RNA-sequencing (scRNAseq) technologies are rapidly developing and allow
41 for the interrogation of activity-dependent transcription at the resolution of individual
42 neurons^{7,8}. However, properties of scRNAseq data pose significant barriers to
43 characterizing and quantifying gene expression signatures of neuronal activity.
44

45 Upregulated expression levels of several transcription factors, such as *Fos* and
46 *Egr1*, are commonly used as markers of activity-dependent transcriptional response in
47 RNA-sequencing experiments^{1,4}. However, single cell RNA-sequencing data exhibits
48 sparsity and variability in gene expression measurements that can be attributed to a
49 combination of biological and technical factors, such as cellular RNA content, individual
50 gene abundance, and sequencing depth⁹⁻¹². Consequently, genes that are truly
51 expressed can go undetected in single cell data, thus diminishing the confidence in, and
52 utility of, individual marker genes for transcriptionally defining neuronal activity state.
53 Importantly, these challenges pose a significant barrier to analyzing data where neuron
54 activity states are unknown, such as in post-mortem human tissue, as well as for
55 controlled experimental data where manipulations are rarely expected to elicit a uniform
56 response across or within cell types. Further, activity marker genes display basal
57 expression that is detectable in the absence of stimulation or activity¹. The
58 consequence of 1) heterogeneous within-cell type responses to stimulation (e.g.,
59 memory-associated engram populations¹³), where 2) subsets of responsive cells cannot
60 be confidently identified results in a drastic reduction of power in e.g., differential
61 expression analyses between experimental conditions at the cell type level, as signal
62 from the experimental group is diluted by non-responsive cells. Therefore, it is not only
63 crucial to identify subsets of responsive cells for between-sample comparisons to a
64 control group, but it also opens further avenues for higher powered within-sample
65 comparisons. Because individual genes are unreliable markers in single cell data,
66 robustly estimating the degree of individual neuronal activity requires integrating
67 information from multiple activity marker genes.
68

69 Several methods exist for aggregating transcriptomic data across multiple genes,
70 and they are commonly used in single cell pre-processing steps to categorize cell types
71 and visualize data. Dimensionality reduction methods such as principal component
72 analysis (PCA) and non-negative matrix factorization (NMF) combine information from
73 multiple genes into summarized components. However, such methods are
74 unsupervised, and do not guarantee the resulting components will be relevant to
75 neuronal activity. Furthermore, these methods do not capture information from non-
76 linear interactions that result from complex layers of biological regulation. Non-linear
77 dimensionality reduction methods like t-stochastic neighbor embedding (tSNE)¹⁴, and
78 uniform manifold projection (UMAP)¹⁵, similarly aim to explain variability in single cell
79 data by summarizing gene expression patterns into components. In many scRNAseq

80 datasets derived from the brain, these components represent neuron-glia and
81 glutamatergic-GABAergic axes. Despite non-linear capabilities, they are typically
82 applied to linear components from PCA and still do not guarantee identification of a
83 component that indexes neuronal activity state.

84
85 Neural networks have been developed for many applications in single cell data
86 such as dimensionality reduction and imputation¹⁶. DCA¹⁷ is a gene expression-oriented
87 autoencoder for learning a reduced dimensional space, also known as an information
88 bottleneck, which must then reconstruct the input data. Leveraging the inherently
89 destructive nature of dimensionality reduction and statistical noise error models
90 simultaneously strips noise from input data while retaining informative features in the
91 bottleneck. This approach has the attractive qualities of learning non-linear relationships
92 of input genes and addressing noise from sparsity of gene detection in a supervised
93 manner. Furthermore, neural networks like DCA allow flexibility in the choice of genes
94 targeted for reconstruction and the information capacity of the bottleneck.

95
96 Here, we developed a neural network that produces an estimate of neuronal
97 activity based on expression of thousands of genes. The network distills expression
98 patterns into a 1-dimensional information bottleneck before reconstructing expression
99 profiles of 20 well-established, robust markers of neuronal activity. The bottleneck value
100 is bound between 0 and 1 and represents a cell-type-invariant summary of activity-
101 responsive gene expression magnitude. Applying our approach to a diverse collection of
102 datasets, we demonstrate that this 1-dimensional bottleneck, hereafter referred to as
103 the ‘activity score’, can identify individual neuronal activation caused by seizure, cocaine
104 administration, and sensory experience. We demonstrate the use of the activity score to
105 classify cells by experimental manipulation, expose genes involved in these predictions,
106 and identify neuron type-specific expression signatures of activity. Furthermore, we
107 demonstrate generalizability of our approach to new spatial transcriptomic data from
108 brain slices following learning. To enable the neuroscience community to take
109 advantage of these efforts, we have developed NEUROeSTIMator, an R package with
110 an accompanying tutorial that demonstrates an application of our model to single cell
111 data.

112

113 **RESULTS**

114

115 **Predicting Activity-Dependent Marker Gene Expression**

116

117 We used publicly available single cell and nuclei datasets (**Table 1**) generated by
118 the Allen Institute of Brain Science¹⁸, consisting of mouse and human samples, to
119 develop a neural network model trained to predict expression of 20 activity-dependent
120 genes. Activity-dependent genes were identified by intersecting differential expression
121 results of three studies of experimental manipulation of neuron activity. All three studies
122 examined different brain regions, used different methods of neuronal stimulation, and
123 were published from independent groups. Single cell data was sampled with weighting
124 to increase representation of less common neuronal cell types, species, sex, and
125 technical characteristics. Five hundred thousand neurons were selected and partitioned

126 into cell type-balanced training and testing sets, and the training set was further split
127 into 5 folds for cross validation. We trained the neural network to predict expression of
128 the 20 activity-dependent target genes through a 1-dimensional hidden bottleneck layer
129 with sigmoidal activation (see methods for a detailed description of model architecture
130 and training). To evaluate model performance, we applied it to a diverse test set of
131 approximately 56,578 neurons held out from the training process. We found the model
132 performance on the test set was comparable to performance observed through cross
133 validation.

134

135 For further analyses, model output at the bottleneck activation layer was
136 extracted to index activity level for each neuron passed through the model. Hereafter,
137 we refer to this output as the predicted activity or activity score. We first examined the
138 distribution of predicted activity across cell subclasses in the held-out test set (**Fig. 1a, left**).
139 Most cell subclasses exhibited a distribution concentrated near zero with a tail
140 skewed towards one. A few cell subclasses exhibited higher average predicted activity,
141 including L4/5 IT CTX, L4 RSP-ACA, L5 PPP, and SUB-ProS neurons.

142

143 Genes Informing Model Predictions

144

145 To identify genes whose expression levels influence model predictions, we
146 calculated integrated gradients¹⁹ for all input genes with respect to predicted activity
147 using data from the held out test set. Integrated gradients attribute model predictions to
148 input features for each cell. We first examined the average impact of target genes on
149 predicted activity for each cell subclass label (**Fig. 1a, right**). The most influential genes
150 were *Egr1* and *Nr4a1*. In general, target genes with lower mean expression contributed
151 less to predictions. We further explored gene importance for all non-target input genes
152 and found varying degrees of influence throughout the transcriptome (**Fig. 1b**). Among
153 the most influential were the known activity response genes *Homer1*, *Egr4*, and *Bdnf*.
154 We also found several cell type markers exhibiting influence on predictions such as
155 *Gad2*, *Sst*, and *Pde10a*. We observed that many influential genes had higher mean
156 expression levels, although lower abundance genes also exerted influence. For
157 example, the gene *Cyr61*, known to regulate dendritic arborization²⁰, was one of the
158 most influential non-target gene with mean \log_{10} expression less than -1. We also noted
159 relatively few genes whose expression was indicative of reduced predicted activity. To
160 evaluate whether influential genes were enriched for specific annotated biological
161 mechanisms, we performed gene set enrichment analysis on several annotation sets
162 (**Fig. 1c**). Among the most highly enriched gene sets were BDNF/NTRK signaling
163 ($p_{adjusted} < 0.05$ for 3 largely redundant annotations), circadian rhythm ($p_{adjusted} = 0.0084$),
164 and nuclear receptor metapathways ($p_{adjusted} = 0.0319$). Many influential genes were
165 members of multiple significant gene sets, with *Homer1*, *Bdnf*, *Ntrk2*, *Jun*, and *Sst*
166 showing high degrees of centrality within the significant gene set membership network
167 (**Fig. 1d**).

168

169 To demonstrate the utility and generalizability of our model for external
170 applications, we applied it to five datasets (**Table 1**).

171

172 **Detecting Pharmacological Activation of Neurons**

173
174 We first applied our model to three datasets containing neurons from rodents and
175 human cell lines treated with powerful stimulating, pharmacological agents. From the first
176 dataset, we computed activity score for medial amygdala (MeA) neurons of mice treated
177 with either saline or pentylenetetrazol (PTZ), a depolarizing agent used to model status
178 epilepticus and induce seizures⁷. As expected, we observed increases in predicted
179 activity for several neuronal subtypes, including GABAergic subtypes N2-N4 as well as
180 glutamatergic subtypes N10-N12 (Wilcoxon test, $p_{\text{adjusted}} < 0.001$) (**Fig. 2a**).

181
182 Next, we compared activity score between neurons from the nucleus accumbens
183 (NAc) of rats treated with either saline or cocaine, a stimulant acting on dopaminergic
184 neurotransmission²¹. We found neuron subtype-specific increases in activity score (**Fig.**
185 **2b**). D1 and D3-type medium spiny neurons (MSN) were the most profoundly affected
186 neuron subtypes (Wilcoxon test, D1: $p_{\text{adjusted}} < 2.22 \times 10^{-16}$, D2: $p_{\text{adjusted}} = 0.0018$). Because
187 our model was not trained using any rat or dopaminergic neurons, these findings provide
188 further endorsement for robust estimation of neuronal activity induced by potent
189 pharmacological agents of stimulation.

190
191 To further evaluate whether our model could be successfully applied to human
192 data, we examined a dataset of human induced pluripotent stem cell-derived neurons²²
193 (**Fig. 2c**). Neuron cultures were either unstimulated or treated with KCl depolarization
194 buffer for 1, 2, or 4 hours. Our model predicted low neuronal activity for the unstimulated
195 group, which was consistent among cell types and biological replicates. Cells treated with
196 KCl for 1 hour demonstrated substantial and significant increases in predicted activity.
197 Although significant increases in predicted activity were observed for all cell types (p_{adjusted}
198 < 0.05), the activity score of post-mitotic neurons displayed a stronger response to KCl
199 compared to NES+ neural progenitor clusters. Among the most responsive neuron types
200 was the Tbr1+ pallial glutamatergic cluster (cluster 6) ($p_{\text{adjusted}} < 2.22 \times 10^{-16}$ for all time
201 points compared to baseline). Notably, all neuron clusters followed a similar temporal
202 pattern of predicted activity modestly declining at 2 hours relative to peak activity at 1
203 hour, with a further decline at 4 hours. Despite these activity predictions reducing after 1
204 hour, none of the neuron clusters completely returned to basal levels at 4 hours, the final
205 time point in the experiment.

206
207 Together, these analyses suggest our model can robustly assign higher
208 estimates of activity to cells subjected to chemical exposures that are expected to elicit
209 strong and generally ubiquitous transcriptional responses to stimulation.

210
211 **Activity Score as a Generalizable Classifier of Neuronal Stimulation**

212
213 Next, we asked if our model could detect neuronal activation by more subtle
214 forms of stimuli such as sensory experience. We applied our model to a dataset
215 containing visual cortex neurons from mice exposed to light stimulation for 0, 1, or 4
216 hours (**Fig. 3a**). To determine whether the ability of our model to detect activity
217 signatures is restricted to neurons, we additionally examined predicted activity in non-

218 neuronal cell types. We observed a significant increase in predicted activity for neurons
219 from mice exposed to light, relative to controls. To elucidate temporal patterns of activity
220 we tested differences in activity score between pairs of each time point. Activity score
221 was significantly increased at 1 hour for many neuron types. At 4 hours of light
222 exposure, predicted activity began to show diverging trends which were foreshadowed
223 by predicted activity at 1 hour. Cell types weakly activated at 1 hour showed decline in
224 activity towards the baseline at 4 hours, while cell types strongly responsive to light
225 exposure 1 hour declined less. Although trending towards a return to baseline, activity
226 scores of neurons at 4 hours were not significantly different from neurons at 1 hour.
227

228 As we observed similar trends in temporal activity predictions between the
229 unstimulated (0h) and 1h group, we investigated the degree to which the activity score
230 derived from our model could be used as a classifier of experimental group. The degree
231 to which activity score is predictive of experimental group in a particular cell type is
232 expected to represent the robustness of the response in that cell type. Using the visual
233 cortex dataset (VIS) mentioned above, we constructed receiver-operator curve (ROC)
234 plots for neuronal and non-neuronal cell types (**Fig. 3b**). For both excitatory neuron and
235 interneuron subtypes, the activity score demonstrated varying degrees of predictive
236 power. For example, the activity score alone was able to almost perfectly separate
237 stimulation groups when considering excitatory cortical layer cell types, though it could
238 only separate hippocampal neurons into stimulation groups with an accuracy slightly
239 better than random chance, though we suspect this reflects a lack of hippocampus
240 responsiveness to simple light exposure. Surprisingly, despite the model being trained
241 on purely neuronal cell type populations, the activity score was able to separate
242 stimulation groups for astrocytes just as accurately as it could for neurons. Astrocytes in
243 the visual cortex have been shown to reliably respond to light²³. Not only does this
244 application of the activity score provide further evidence of astrocytic responsiveness to
245 light, it also directly suggests that light induces transcriptional changes in astrocytes.
246

247 Utility in Data Modalities Beyond scRNA-seq

248

249 Next, we asked whether our model could identify spatial signatures of learning in
250 brain slices of mice following spatial object recognition (SOR) training, a widely used
251 behavioral paradigm to investigate memory mechanisms²⁴. Using spatial transcriptomic
252 data from brain slices of SOR-trained and homecage control (HC) mice, we applied our
253 model to predict activity for each spot and clustered all spots into anatomical regions.
254 The 23 resulting clusters were annotated with brain region names from the Allen Mouse
255 Brain Atlas (**Fig. 4a**). At baseline, we noted a weak activation signature in HC slices,
256 primarily covering cortical layers of the isocortex and subregions of the hippocampus
257 (**Fig. 4b, left**). To identify a spatial activation signature of SOR, we tested for
258 differences in predicted activity for each brain region cluster (**Fig. 4c**). We observed
259 significant increases in predicted activity for several cortical and subcortical regions.
260 Multiple layers of the isocortex and the retrosplenial area showed large increases in
261 activity following SOR (**Fig. 4d**), with the greatest increase observed in layers 2/3. We
262 also found a significant activation of the caudoputamen area of the dorsal striatum, also
263 known as the tail of the striatum. The amygdala, hippocampus, and the

264 olfactory/piriform areas also showed significant increases in activity, of comparable
265 magnitude. Subregions of the hippocampus were variably activated by SOR, with the
266 strongest increase in the CA1 region. Regions predicted to be least activated by SOR
267 include the thalamus, hypothalamus, dentate gyrus of the hippocampus, the lateral
268 ventricle, and fiber tracts.

269
270 **DISCUSSION**
271

272 We present NEUROeSTIMator, a generalizable tool for *in silico* estimation of
273 neuronal activity from transcriptome-wide single-cell gene expression. The neuronal
274 activity score is an easily interpretable value that quantifies the transcriptional response
275 to stimulation. NEUROeSTIMator can be used to rapidly identify and prioritize subsets
276 of neurons showing transcriptional evidence of a stimulus response. In tests of
277 predictive performance and generalizability, we demonstrate that the neuronal activity
278 score can robustly detect signatures of activation from multiple types of stimulation,
279 neuron subtypes, species, and sequencing technologies, including spatial
280 transcriptomics.

281
282 To gain an understanding of the genes most influential in the model, we
283 systematically perturbed expression of input genes and evaluated the effect on
284 predicted activity. We found broadly distributed signal across the transcriptome,
285 enriched for genes related to BDNF/NTRK signaling, circadian rhythm, and nuclear
286 receptor pathways. The genes most informative to our model and relevant to these
287 gene sets were *Homer1*, *Bdnf*, *Ntrk2*, and *Jun*. These well-known activity response
288 genes were not included as model targets based on our selection criteria, but their
289 prominent influence on model predictions suggests our model utilizes information from
290 coregulated genes and pathways to robustly estimate expression of target genes.
291 Notably, we found few genes associated with lower activity score relative to genes
292 whose expression was associated with a higher score, suggesting model predictions
293 largely rely on positive indicators of activity. Although there is evidence of activity-
294 dependent downregulation of gene expression^{25,26}, most genes differentially expressed
295 by neuronal activity are transcriptionally upregulated, which is supported by findings that
296 neuronal activity increases genome-wide chromatin accessibility^{1,27,28}.

297
298 We observed a positive relationship between mean expression levels and gene
299 influence. The most influential target genes, *Egr1* and *Nr4a1*, were the most highly
300 expressed targets. We also observed that predicted activity is influenced by several
301 known cell-type markers, which tend to be highly expressed. We suspect these
302 observations are driven by reliability of gene detection at lower sequencing depths.
303 Highly expressed markers of activity or cell type have greater detection rate, at both
304 deep and shallow sequencing depths, than weakly expressed genes and therefore, are
305 more reliable markers. We did not initially expect cell-type markers to strongly influence
306 model predictions, and we suspect that cell type markers exert influence on predicted
307 activity by reliably providing the model with information about cell identity, thereby
308 allowing the model to establish cell-type specific intercepts for target gene expression
309 that represent basal expression. Notably, the within cell-type heterogeneity of predicted

310 activity that we observe suggests that these cell-type markers are not sufficient by
311 themselves to lead to predictions of neuronal activation.

312
313 We examined gene set annotations related to the top genes influencing predicted
314 activity and identified circadian rhythm and BDNF signaling as key pathways in
315 predicting neuronal activation. *Per1*, a target of our model, is a circadian regulator gene
316 upregulated by neuronal activity²⁹. It has been demonstrated that disrupted activity-
317 dependent binding of CREB to CREB-binding protein (CBP) impairs long-term memory
318 in mice and blunts the transcriptional upregulation of immediate early genes and
319 circadian rhythm genes³⁰. Together with our results, this suggests a subset of the
320 activity response is allocated to a group of genes regulating circadian rhythm, and our
321 model extracts this information from the transcriptome to predict expression levels of
322 activity-dependent genes. Multiple significant gene sets were related to BDNF/NTRK
323 signaling. *Bdnf* is a well-established activity response gene and one of the most
324 extensively studied regulators of synaptic plasticity³¹⁻³⁴. One of the most influential
325 genes with membership in several significant gene sets was *Homer1*. Synaptic plasticity
326 induced by neuronal activity has been shown to remodel synaptic scaffolding proteins³⁵,
327 in part through regulation of *Homer1*³⁶. Together, these findings suggest our model
328 predicts activity, in part, by leveraging gene coexpression networks that interact with the
329 immediate early gene activity markers.

330
331 We applied our model to a single cell dataset containing neurons subjected to
332 seizure in the medial amygdala and demonstrated the ability of our model to predict
333 increased neuronal activation in response to PTZ in multiple cell types. We next applied
334 our model to a single cell experiment treating the rat striatum with either saline or
335 cocaine. Our estimates of activity recapitulate a key finding from the source study, that
336 Drd1+ and Drd3+ medium spiny neurons display a strong activation response to
337 cocaine treatment. This finding is particularly noteworthy given that our model was
338 trained using only mouse and human cortical and hippocampal neurons, none of which
339 were medium spiny neurons.

340
341 Although we included human single nuclei data in the model training process,
342 several neuronal subclasses from human samples in our test set showed low levels of
343 predicted activity compared to the corresponding subclass in mouse samples. Although
344 we reasoned this could be due to the nature of transcriptional machinery shutting down
345 and RNA degradation in post-mortem neurons, it was not clear whether our model had
346 inappropriately learned to equate human gene expression signatures to low neuronal
347 activity. We applied our model to experimental data from human cell lines exposed to a
348 time course of depolarizing KCl treatment. Our model detected a sharp increase in
349 activity following 1 hour of treatment across multiple cell types, suggesting the model is
350 indeed capable of identifying human signatures of neuronal activity. Further, our model
351 predicted gradually declining levels of activity after 1 hour of KCl treatment, suggesting
352 it is capable of discerning activity signatures beyond a simple on-off model of
353 transcriptional activation. Not only do these results demonstrate our model can identify
354 potent pharmacologically induced forms of neuronal activity, but it can also robustly do

355 so across species and cell types and discern gradual temporal changes over a time
356 course of treatment.

357

358 Sensory experience is known to induce activity-dependent gene expression
359 programs in cortical neurons. We demonstrated that the predicted activity is markedly
360 higher in visual cortex neurons from mice exposed to light, as compared to controls.
361 Further, we identified strong increases in predicted activity for non-neuronal cell types
362 responding to light exposures. We specifically demonstrated that the activity score can
363 classify visual cortex astrocytes as originating from light-exposed experimental groups
364 with accuracy comparable to neurons. This finding was unexpected, as the model was
365 not trained with any glial or other non-neuronal cell types. However, as the immediate
366 early gene markers of activity are, in fact, markers of activity in many cell types, even
367 beyond the brain, we anticipate that our model may be capable of detecting activation
368 signatures in entirely different cell types such as immune cells, for example. Not only
369 does this analysis provide a further line of evidence for astrocytic responsiveness to
370 light in the visual cortex, it also demonstrates the ability of our model to detect such a
371 response via transcriptomic data.

372

373 Emerging spatial transcriptomic technologies promise to identify differentially
374 active brain regions following a stimulus such as a training for a learning task.
375 Comparing mice trained in spatial object recognition to homecage controls, we found
376 widespread increases in cortical neuron activity, particularly in layers 2/3 of the
377 isocortex. We also observed increased predicted activity in the CA1 region of the
378 hippocampus, the caudoputamen region of the dorsal striatum, the retrosplenial area,
379 and piriform areas. The CA1 region of the hippocampus has been shown to play a role
380 in long term spatial memory in rodents³⁷⁻³⁹, and the caudate nucleus has been
381 demonstrated to play a role in spatial working memory in both monkeys and humans.
382 These regions, particularly CA1, retrosplenial area and the caudoputamen have known
383 involvement in spatial learning and working memory. The piriform area is involved in
384 olfaction, which may reflect sensory processing involved in long term memory encoding.
385 Extending the application of our model to spatial transcriptomics, an entirely different
386 data modality than the training data, we show that the activity score predictions are not
387 confined to use in single cell RNA sequencing datasets. We expect many other distinct
388 brain-wide spatial signatures of activation could be identified in relation to other
389 cognitive processes.

390

391 NEUROeSTIMator provides the first robust and generalizable means to quantify
392 neuronal activation from gene expression data, opening the door to widespread
393 inclusion in molecular neuroscience research. In neuroscience research involving gene
394 expression, and especially in novel approaches like single cell or spatial
395 transcriptomics, neuronal activity state is a variable as fundamental as age, sex, or
396 treatment group. Depending on the goal of an analysis, it may be a critical covariate, a
397 key grouping variable, or an explanatory variable of central interest that may now be
398 estimated using the tools we present here.

399

400 METHODS

401
402 **Dataset for Model Training and Evaluation**
403 To train the model, we utilized publicly available datasets provided by the Allen Institute
404 for Brain Science, including a single-cell RNA-sequencing (scRNASeq) dataset of over a
405 million cells isolated from mouse cortical and hippocampal tissue¹⁸, and a single-nuclei
406 RNA-sequencing (snRNASeq) dataset of 76,000 nuclei isolated from human cortical
407 tissue. Hereafter, these datasets will be referred to as the Allen Mouse and Allen
408 Human datasets. Both datasets used the 10X Genomics Chromium system for droplet
409 capture. The Allen Mouse dataset was prepared using the Chromium Next GEM Single
410 Cell 3' v3 reagent kit, while the Allen Human dataset used v2.
411

412 **Datasets for Model Application – Publicly Available**
413 We downloaded multiple datasets from Gene Expression Omnibus (GEO) to
414 demonstrate the utility of our model. The following GEO accessions were included in
415 analyses: GSE102827⁴⁰, GSE103976⁷, GSE136656²², and GSE137763²¹.
416

417 **Datasets for Model Application – Spatial Transcriptomics**
418 We generated a novel spatial transcriptomic dataset examining the effects of spatial
419 object recognition (SOR) training in mice. The dataset contains spatial RNA-sequencing
420 of whole brain slices from 1 hour after SOR training or home cage controls. SOR
421 training was performed as previously described²⁴. Mouse brain section per mouse was
422 cut at 10 µm thickness and mounted onto each Visium slide capture area. After H&E
423 staining, each bright-field image was taken as described in the spatial transcriptomics
424 protocol. Tissue permeabilization was performed for 18 minutes, as established in the
425 tissue optimization assay. The Visium Spatial Gene Expression Slide & Reagent kit (10x
426 Genomics) was used to generate sequencing libraries for Visium samples. Libraries
427 were constructed according to the 10x Visium library construction protocol and
428 sequenced by Illumina NovaSeq6000. Raw data was then processed using the 10x
429 Genomics Space Ranger analysis pipeline. See **Supplemental Figure S2** for images of
430 predicted activity for each replicate.
431

432 **Gene Identifier Mapping**
433 We used the R package biomaRt to map gene identifiers from various annotations used
434 in public datasets, and between species, to a common set of reliably mapped
435 genes^{41,42}. Ensembl gene identifiers (Ensembl IDs) were used as the primary identifier
436 for mapping genes, and gene symbols were used as secondary identifiers in cases of
437 ambiguous mapping. The Ensembl release 93 archive (July 2018 release) was used for
438 cross-species gene mapping⁴³. Genes with one-to-one orthology between mouse and
439 human, as well as mouse and rat, were selected to facilitate cross species utility. All
440 datasets lacking Ensembl ID annotation contained gene symbols, which were then
441 queried against multiple Ensembl archives to determine which archive maximized
442 identifier mapping rate. For instances when a gene symbol mapped to multiple Ensembl
443 IDs, identifiers present in the cross-species mapping table were preferentially selected.
444 We provide a helper function for mapping gene identifiers to the feature set used by our
445 model, and we further demonstrate usage in the associated tutorial.
446

447 **Choice of Neural Network Target Genes**

448 To identify robust markers of neuronal activity for use as targets of the neural network,
449 we intersected lists of stimulus-responsive genes from three published RNA-sequencing
450 experiments. Each publication was from a different group of authors, focused on
451 different brain regions, and used different forms of neuronal stimulation (see Table 1).
452 One publication categorized stimulus-responsive genes into three groups – rapid
453 primary response genes (rPRGs), delayed primary response genes (dPRGs), and
454 secondary response genes (SRGs)⁴⁴. As SRGs are thought to demonstrate higher
455 celltype-specificity relative to PRGs¹, only rPRGs and dPRGs were considered from this
456 publication. In another publication, approximately 600 genes upregulated in response to
457 kainic acid treatment in the hippocampus were considered²⁸.

458 In a third publication, two sets of KCl-responsive genes were available, one from
459 a brain region enriched in glutamatergic neurons and one enriched for GABAergic
460 neurons⁴⁵. For this study, we sought to intersect the results of both the glutamatergic
461 and GABAergic analyses into one list of genes. Published p-value distributions
462 suggested differences in statistical power between these two analyses, and only
463 statistically significant results were published. To expand the list of genes overlapping
464 between these analyses, we reanalyzed the data using GEO2R to obtain two sets of
465 transcriptome-wide statistics. Using significance rankings from the GEO2R reanalysis,
466 we jointly determined p-value thresholds for each analysis based on rank-rank
467 hypergeometric overlap (RRHO, see **Supplemental Figure S1**) and identified genes
468 with p-values below these thresholds in both sets with concordant direction of effect⁴⁶.
469 Because this approach used unconventional p-value thresholding, we additionally
470 required intersecting genes to have an estimated fold change greater than or equal to
471 0.5 in both analyses.

472 Finally, these three lists were intersected, and a set of 41 stimulus-responsive
473 genes were selected as output targets on the basis of being differentially expressed in
474 all three lists.

475

476 **Sample Filtering, Downsampling, and Partitioning**

477 Cells with less than 3,500 total counts or greater than 30,000 total counts were
478 removed. Non-neuronal cells were removed and imbalances among species, sex,
479 neuron type, quality control metrics and naively-estimated activity were alleviated by
480 weighted random sampling. The R package *groupdata2* was used to create five training
481 folds (88.7%, 886,844 samples) and one test split (11.3%, 113,156 samples) in a way
482 that retains training set diversity while maximizing representation of neuron subclasses
483 in the test split.

484

485 **Model Input/Output Feature Selection**

486 Input and target features were selected based on mean expression and detection rate in
487 the training data. Input features were required to have a detection rate greater than zero
488 and log mean expression greater than -2 in both the Allen mouse and human samples
489 used for training. The rationale behind removing weakly expressed genes was that the
490 Allen datasets were sequenced deeper than typical datasets, and genes with low
491 detection at high sequencing depth would likely be unreliable detectable at lower
492 depths. The remaining 10,017 genes were used as input features. Of the 32 remaining

493 candidate output target genes, we selected a final set of 20 targets based on
494 consistency of coexpression patterns across datasets and broad cell classes. Gene-
495 gene Pearson correlations were calculated for four cell sets (mouse glutamatergic,
496 mouse GABAergic, human glutamatergic, human GABAergic). In each set, we ranked
497 each gene based on the average correlation to all other candidate genes. These
498 coexpression ranks were averaged across the four cell sets and the top 20 genes were
499 selected as final the final set of output target genes. The targets include *Arc*, *Btg2*,
500 *Crem*, *Dusp1*, *Egr1*, *Egr2*, *Egr3*, *Fbxo33*, *Fos*, *Fosb*, *Fosl2*, *Grasp*, *Junb*, *Npas4*, *Nr4a1*,
501 *Nr4a2*, *Nr4a3*, *Per1*, *Rgs2*, and *Tiparp*.
502

503 **Dataset Augmentation**

504 Raw counts were downsampled using the R package scater⁴⁷. For each combination of
505 species and neuron subclass, an equal number of cells were randomly assigned a value
506 of either 10^3 , $10^{3.25}$, or $10^{3.5}$ total counts to be downsampled to. All genes were
507 considered for downsampling.
508

509 **Feature Normalization and Preprocessing**

510 Log-normalization, as implemented in Seurat, was used to normalize input gene
511 expression. Total counts for each cell were calculated by summing only the 10,017
512 features used by the model. Normalized expression levels for each gene were centered
513 and scaled based on mean and standard deviation estimated from the training data. For
514 cross validation, mean and standard deviation were estimated without the held-out fold.
515

516 **Model Architecture**

517 The architecture of the model was adapted from DCA¹⁷. Briefly, input gene expression
518 is supplied to an encoder; a series of three fully connected dense layers with ELU
519 activations and batch normalization. The first layer contained 16 units and each
520 successive layer halved the units of the previous layer. The encoder then connects to
521 the information bottleneck, a single-unit dense layer with sigmoid activation. The
522 bottleneck then connects to the first output, the estimated mean parameter μ of the
523 zero-inflated negative binomial model. Two additional, independent, encoder branches
524 output estimates of the dispersion and dropout parameters theta and pi, respectively.
525 The zero-inflated negative binomial (ZINB) loss function was used, as implemented in
526 DCA. For model applications, the model outputs are not used, but the sigmoidal
527 bottleneck activation value is the metric extracted to estimate neuronal activity.
528

529 **Model Training**

530 We trained the model using keras, as implemented in keras R package, version 2.3.0.0.
531 Training proceeded for 10 epochs using the ADAM optimizer. Gaussian dropout was
532 applied to input expression to simulate uncertainty in measurements. Augmented
533 samples, which were synthetically downsampled to simulate lower sequencing depths,
534 were given the same output as the original data to curtail the learning of depth-
535 dependent information. Sample losses were weighted to improve representation of rare
536 cell subclasses but were limited to be no more than five times greater than they would
537 be in an equally weighted scheme.
538

539 **Evaluating Model Performance**

540 Model performance was evaluated using a test split that was entirely shielded from
541 model training or selection. Distributions of bottleneck activity and loss were compared
542 across species, sex, neuron class and subclass, and quality control metrics.

543

544 **Evaluating Feature Importance**

545 To evaluate relative importance of each gene on predicted activity, we implemented the
546 integrated gradients¹⁹ approach. Integrated gradients were averaged for each of the 4
547 species-by-class groups, and then averaged again to allow the gradients from each
548 species and cell class contribute equally to the final importance metric.

549

550 **Testing Differences in Predicted Activity**

551 For all datasets analyzed in figure 2, we used the Wilcox test. A linear model was used
552 to test for differences (i.e., using t-statistic of the regression slope) in predicted activity
553 of the spatial transcriptomic clusters in figure 4.

554

555 **DATA AVAILABILITY**

556 Spatial RNA-sequencing data, including gene expression measurements, tissue
557 images, spot coordinates, and raw FASTQ files have been deposited in the Gene
558 Expression Omnibus repository under the reference series ID GSE201610.

559

560 **CODE AVAILABILITY**

561 NEUROeSTIMator is available at <https://research-git.uiowa.edu/michaelson-lab-public/neuroestimator/> as a free R package with installation instructions and a tutorial.

563

564 **ACKNOWLEDGEMENTS**

565

566 **Funding:** This work was supported by NIH grant R01 MH 087463 to T.A., NIH grant
567 R01 DC014489 to J.J.M., NIH grant K99 AG 068306 and the Nellie Ball Trust to S.C.,
568 and The University of Iowa Hawkeye Intellectual and Developmental Disabilities
569 Research Center (HAWK-IDDRC) P50 HD103556 to T.A. and Lane Strathearn. T.A.
570 and J.J.M. are also supported by the Roy J. Carver Charitable Trust.

571

572 **Data Sources**

573 We thank the Allen Institute for Brain Sciences for their valuable datasets we used to
574 train our model. We thank the creators and authors of DCA, whose work inspired the
575 approach we implemented in this paper. Finally, we thank the investigators who make
576 their data publicly available on repositories like GEO. Specifically, we would like to
577 thank the authors providing data for GEO series GSE111899, GSE125068, GSE55591,
578 GSE103976, GSE137763, GSE136656, and GSE102827.

579

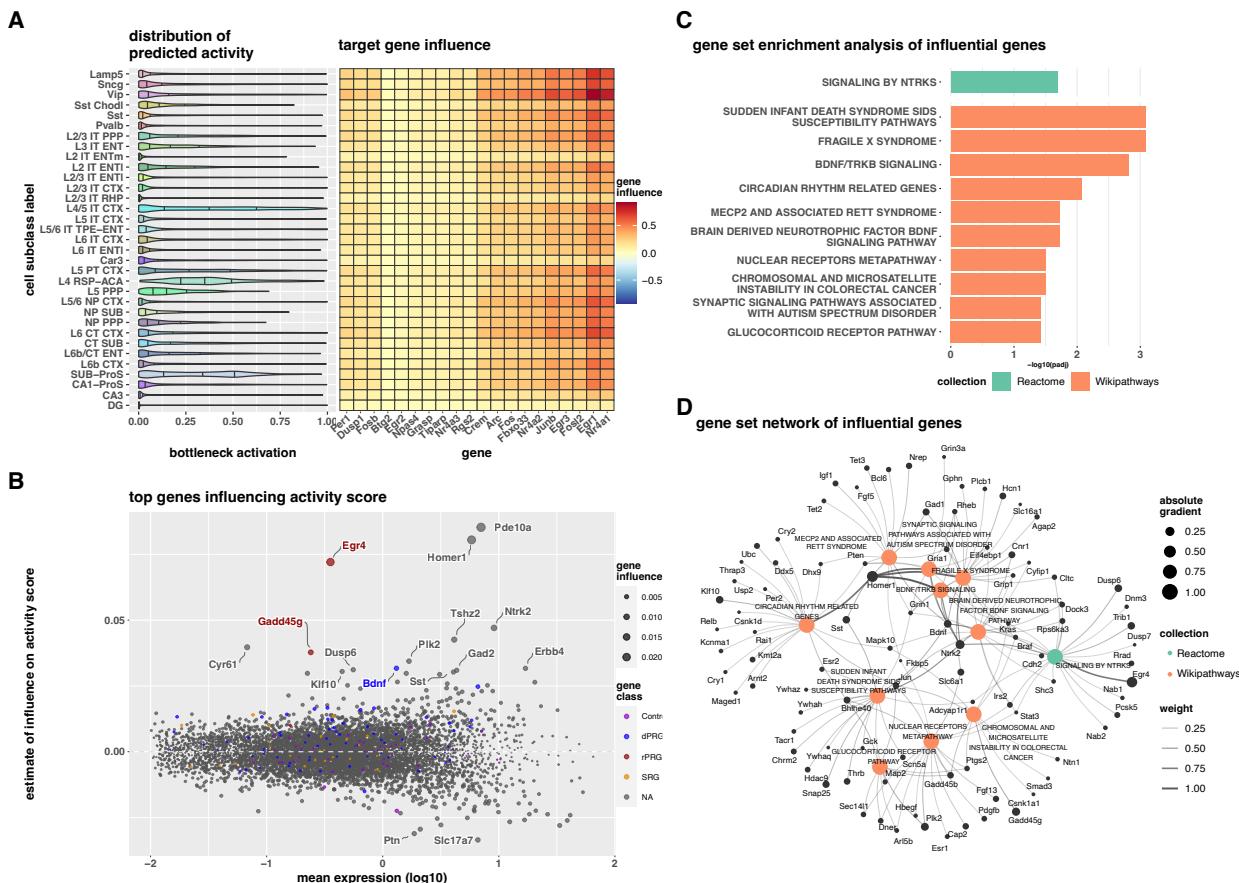
580 **Competing interests:** The authors declare that they have no competing interests.

581

582 We also thank Mahesh Shetty and Utsav Mukherjee for their valuable contributions to
583 discussions about this project.

584

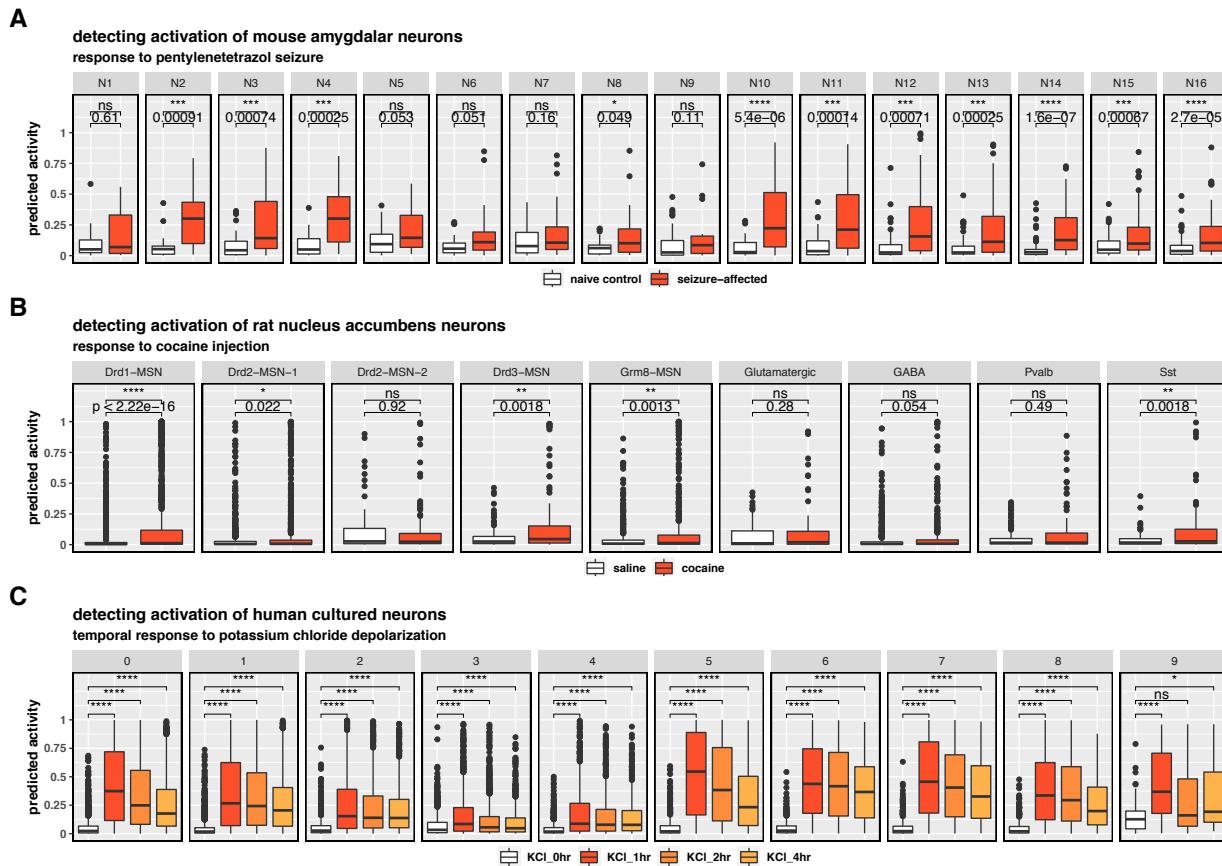
585 **FIGURES**



586
587
588
589
590
591
592
593
594
595
596
597

Figure 1 - Gene-wise contributions to the activity score and its distribution within cell types of the training data. The training data for the model was assembled from stimulus-naïve single-cell and single-nucleus experiments, and the proportion of active cells among each neuronal subclass varied, as indicated by the plotted distributions of bottleneck activation (i.e., the activity score, **A**). To understand the contribution of individual genes to the activity score, we examined gradient values from the DNN model (**B**). Higher positive gene gradient values indicate that increased gene expression is linked to increased bottleneck activation. To identify the strongest contributors to the activity score, we compared overall gene influence on predicted activity (X-axis) versus influence on model predictions (Y-axis) (**C**). Genes are colored by class as reported by Tyssowski, et. al, 2018: Rapid primary response genes (rPRGs, red), delayed primary response genes (dPRGs, blue), and secondary response genes (sRG, yellow).

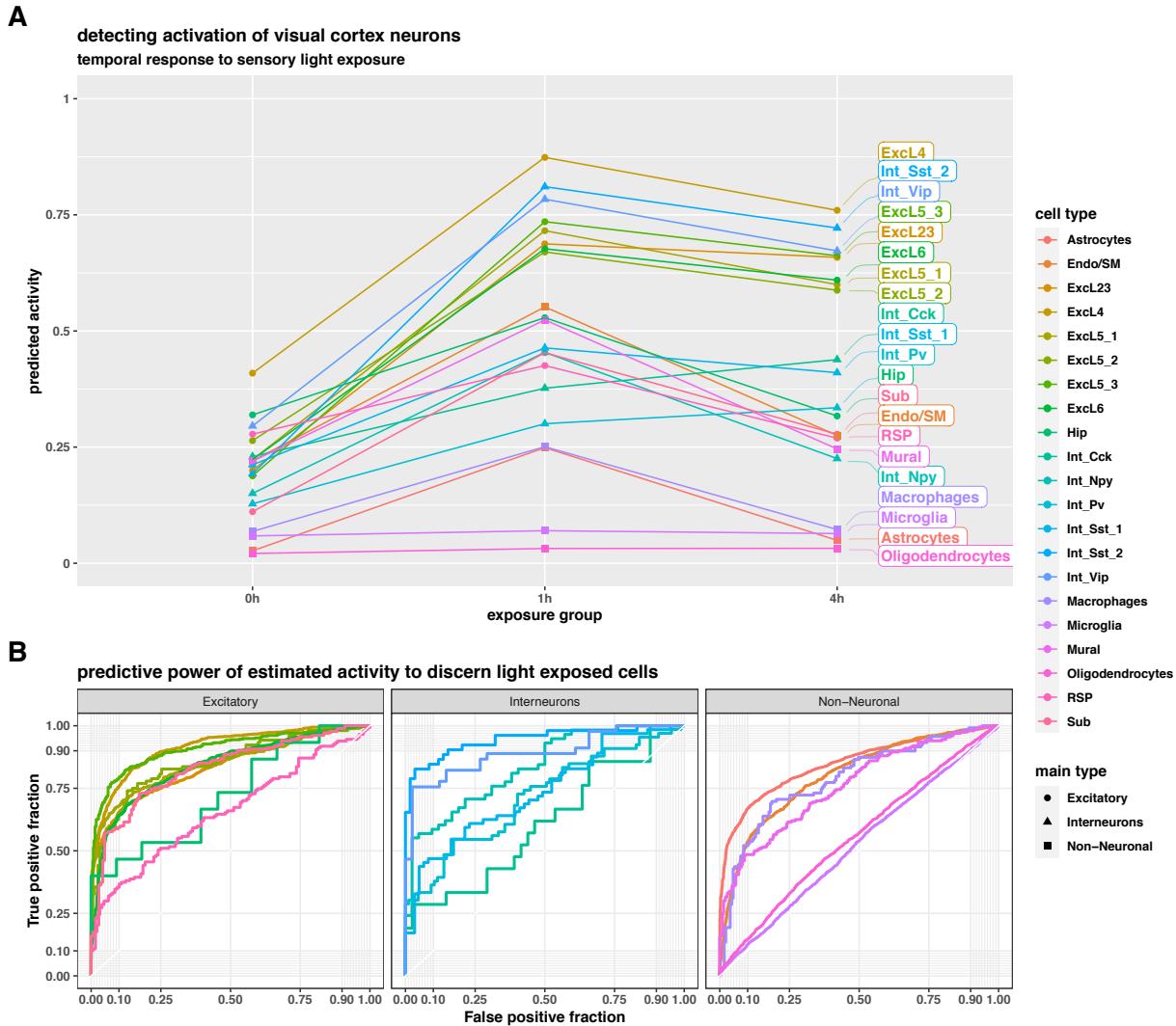
598



599

600 **Figure 2 – Multi-species generalization of neuronal activity score applied to previously**
 601 **published chemical induction studies.** Predicted activity for various amygdala neuron
 602 subtypes (mouse) stimulated with PTZ (red) or controls (gray) (A). Cell-type specific activation
 603 predicted for rat neurons of the nucleus accumbens treated with either cocaine (red) or saline
 604 (gray) (B). Time series of predicted activation of human GABAergic-like iPSCs treated with
 605 depolarizing potassium chloride at 0 hours, 1 hour, 2 hours, and 4 hours (C).

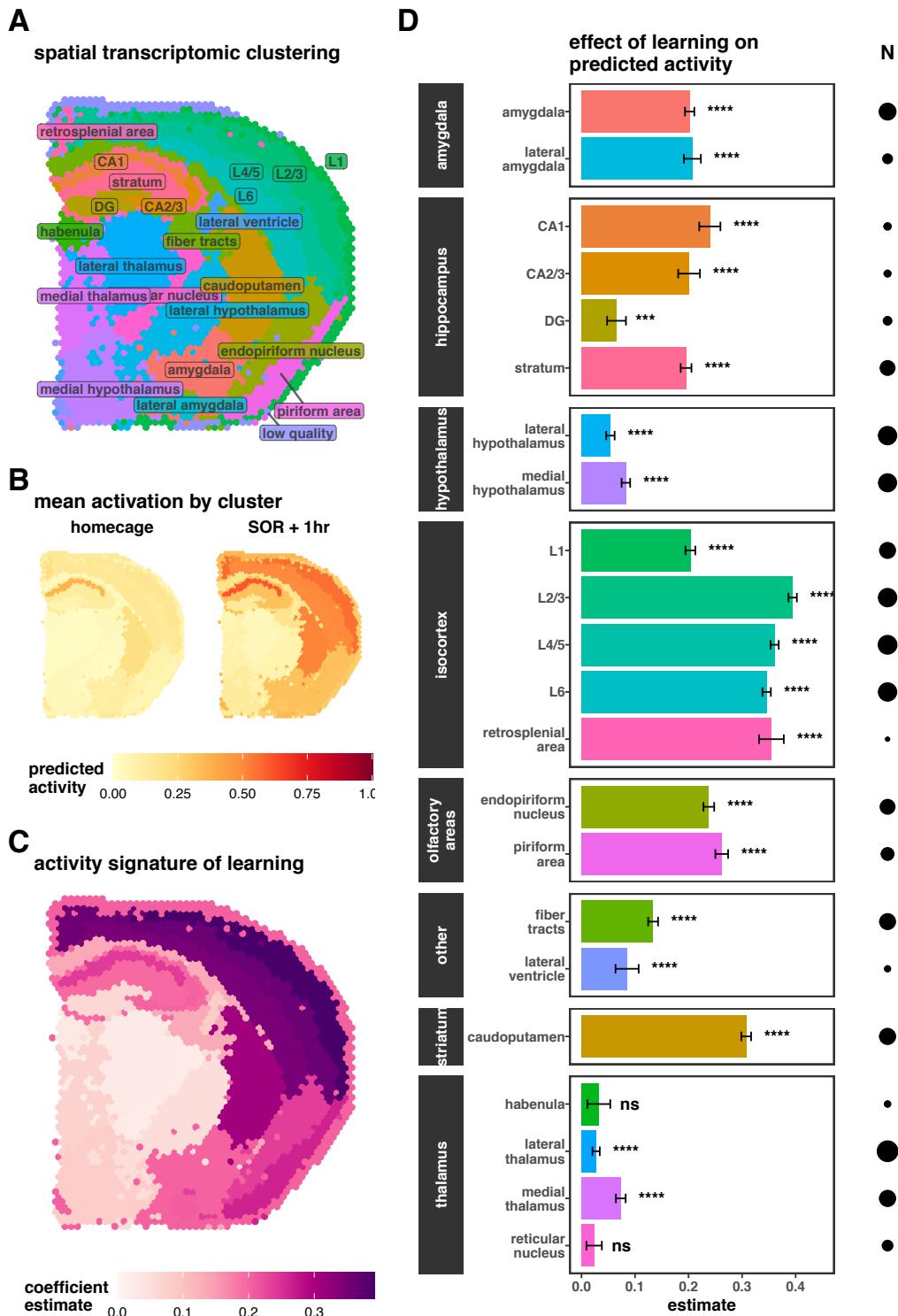
606



607

608 **Figure 3 - Temporal patterns and classification of *in vivo* sensory activation.** Cell type
 609 activity predictions of visual cortex neurons in freely behaving mice exposed to light for 0, 1, or 4
 610 hours (A). ROC plots indicate the ability of predicted activity to separate various cell types into
 611 0h vs 1h experimental groups. Diagonals from bottom left to top right indicate an accuracy
 612 similar to random chance, while lines moving straight vertically, then straight horizontally
 613 indicate perfect separation.

614



615

616

616

618

619

Figure 4 – Spatial transcriptomic patterns of neuronal activation after spatial learning.

616 **Figure 1 – Spatial transcriptomic patterns of neuronal activation after spatial learning.**
617 Spatial anatomical clustering of RNA-sequencing spots (**A**). Regions were labeled by comparing
618 transcriptionally-defined clusters to the Allen coronal mouse brain atlas. Activity score per spot,
619 averaged across experimental groups (**B**) of home cage controls (left) and 1 hour after spatial

620 object recognition (SOR) training (right). Using the spatial anatomical clustering derived from the
621 expression data, we were able to group individual spots into clusters to test the significance of
622 activity induction, here indicated by the cluster-wise coefficient estimate. Brain regions
623 differentially activated by SOR training (**C**). Cluster-wise differential activity statistics are
624 summarized in (**D**) and provided in **Supplementary Table S1**. Bar length represents estimated
625 effect of SOR on activity score, based on linear models. Brackets indicate standard error and
626 circle size represents the number of spots per comparison, which indexes statistical power.
627 Non-significant regions with an adjusted p-value > 0.05 are colored grey.

628

629
630

dataset	use	species	stimulation	tissue
Allen Cell Types Database: mouse	model training	mouse	-	cortex, hippocampus
Allen Cell Types Database: human	model training	human	-	cortex
GSE111899	target selection	mouse	Sensory experience	cortex (visual)
GSE125068	target selection	mouse	PTZ	hippocampus
GSE55591	target selection	mouse	KCl	cortex (neuron culture)
GSE103976	model application	mouse	PTZ	amygdala
GSE137767	model application	rat	cocaine	nucleus accumbens
GSE136656	model application	human	KCl	neuron culture
GSE102827	model application	mouse	Sensory experience	cortex (visual)
SOR_Visium	model application	mouse	Spatial object recognition training	whole brain slice

Table 1. Datasets used.

631

632
633
634 1
635
636
637 2
638
639
640 3
641
642
643 4
644
645
646 5
647
648
649 6
650
651
652 7
653
654
655 8
656
657
658
659 9
660
661
662 10
663
664
665 11
666
667
668 12
669
670 13
671
672 14
673
674 15
675
676

References

- Yap, E. L. & Greenberg, M. E. Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. *Neuron* **100**, 330-348, doi:10.1016/j.neuron.2018.10.013 (2018).
- Cohen, S. & Greenberg, M. E. Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. *Annu Rev Cell Dev Biol* **24**, 183-209, doi:10.1146/annurev.cellbio.24.110707.175235 (2008).
- West, A. E. & Greenberg, M. E. Neuronal activity-regulated gene transcription in synapse development and cognitive function. *Cold Spring Harb Perspect Biol* **3**, doi:10.1101/cshperspect.a005744 (2011).
- Gallo, F. T., Katche, C., Morici, J. F., Medina, J. H. & Weisstaub, N. V. Immediate Early Genes, Memory and Psychiatric Disorders: Focus on c-Fos, Egr1 and Arc. *Front Behav Neurosci* **12**, 79, doi:10.3389/fnbeh.2018.00079 (2018).
- Mews, P. et al. From Circuits to Chromatin: The Emerging Role of Epigenetics in Mental Health. *J Neurosci* **41**, 873-882, doi:10.1523/JNEUROSCI.1649-20.2020 (2021).
- Nido, G. S., Ryan, M. M., Benuskova, L. & Williams, J. M. Dynamical properties of gene regulatory networks involved in long-term potentiation. *Front Mol Neurosci* **8**, 42, doi:10.3389/fnmol.2015.00042 (2015).
- Wu, Y. E., Pan, L., Zuo, Y., Li, X. & Hong, W. Detecting Activated Cell Populations Using Single-Cell RNA-Seq. *Neuron* **96**, 313-329 e316, doi:10.1016/j.neuron.2017.09.026 (2017).
- Hu, P. et al. Dissecting Cell-Type Composition and Activity-Dependent Transcriptional State in Mammalian Brains by Massively Parallel Single-Nucleus RNA-Seq. *Mol Cell* **68**, 1006-1015 e1007, doi:10.1016/j.molcel.2017.11.017 (2017).
- Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. *Nat Methods* **14**, 565-571, doi:10.1038/nmeth.4292 (2017).
- Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Missing data and technical variability in single-cell RNA-sequencing experiments. *Biostatistics* **19**, 562-578, doi:10.1093/biostatistics/kxx053 (2018).
- Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. *Genome Biol* **20**, 296, doi:10.1186/s13059-019-1874-1 (2019).
- Lahnemann, D. et al. Eleven grand challenges in single-cell data science. *Genome Biol* **21**, 31, doi:10.1186/s13059-020-1926-6 (2020).
- Josselyn, S. A., Kohler, S. & Frankland, P. W. Finding the engram. *Nat Rev Neurosci* **16**, 521-534, doi:10.1038/nrn4000 (2015).
- van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. *Journal of Machine Learning Research* **9**, 2579-2605 (2008).
- McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv:1802.03426 (2018).
<<https://ui.adsabs.harvard.edu/abs/2018arXiv180203426M>>.

677 16 Bao, S. *et al.* Deep learning-based advances and applications for single-cell
678 RNA-sequencing data analysis. *Brief Bioinform* **23**, doi:10.1093/bib/bbab473
679 (2022).

680 17 Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single-cell
681 RNA-seq denoising using a deep count autoencoder. *Nat Commun* **10**, 390,
682 doi:10.1038/s41467-018-07931-2 (2019).

683 18 Yao, Z. *et al.* A taxonomy of transcriptomic cell types across the isocortex and
684 hippocampal formation. *Cell* **184**, 3222-3241 e3226,
685 doi:10.1016/j.cell.2021.04.021 (2021).

686 19 Sundararajan, M., Taly, A. & Yan, Q. Axiomatic Attribution for Deep Networks.
687 arXiv:1703.01365 (2017).
688 <<https://ui.adsabs.harvard.edu/abs/2017arXiv170301365S>>.

689 20 Malik, A. R. *et al.* Cyr61, a matricellular protein, is needed for dendritic
690 arborization of hippocampal neurons. *J Biol Chem* **288**, 8544-8559,
691 doi:10.1074/jbc.M112.411629 (2013).

692 21 Savell, K. E. *et al.* A dopamine-induced gene expression signature regulates
693 neuronal function and cocaine response. *Sci Adv* **6**, eaba4221,
694 doi:10.1126/sciadv.aba4221 (2020).

695 22 Boultting, G. L. *et al.* Activity-dependent regulome of human GABAergic neurons
696 reveals new patterns of gene regulation and neurological disease heritability. *Nat
697 Neurosci* **24**, 437-448, doi:10.1038/s41593-020-00786-1 (2021).

698 23 Sonoda, K., Matsui, T., Bito, H. & Ohki, K. Astrocytes in the mouse visual cortex
699 reliably respond to visual stimulation. *Biochem Biophys Res Commun* **505**, 1216-
700 1222, doi:10.1016/j.bbrc.2018.10.027 (2018).

701 24 Chatterjee, S. *et al.* Endoplasmic reticulum chaperone genes encode effectors of
702 long-term memory. *Sci Adv* **8**, eabm6063, doi:10.1126/sciadv.abm6063 (2022).

703 25 Iijima, T., Emi, K. & Yuzaki, M. Activity-dependent repression of Cbln1
704 expression: mechanism for developmental and homeostatic regulation of
705 synapses in the cerebellum. *J Neurosci* **29**, 5425-5434,
706 doi:10.1523/JNEUROSCI.4473-08.2009 (2009).

707 26 Itoh, K., Stevens, B., Schachner, M. & Fields, R. D. Regulated expression of the
708 neural cell adhesion molecule L1 by specific patterns of neural impulses. *Science*
709 **270**, 1369-1372, doi:10.1126/science.270.5240.1369 (1995).

710 27 Koberstein, J. N. *et al.* Learning-dependent chromatin remodeling highlights
711 noncoding regulatory regions linked to autism. *Sci Signal* **11**,
712 doi:10.1126/scisignal.aan6500 (2018).

713 28 Fernandez-Albert, J. *et al.* Immediate and deferred epigenomic signatures of in
714 vivo neuronal activation in mouse hippocampus. *Nat Neurosci* **22**, 1718-1730,
715 doi:10.1038/s41593-019-0476-2 (2019).

716 29 Kwapis, J. L. *et al.* Epigenetic regulation of the circadian gene Per1 contributes to
717 age-related changes in hippocampal memory. *Nat Commun* **9**, 3323,
718 doi:10.1038/s41467-018-05868-0 (2018).

719 30 Chatterjee, S. *et al.* The CBP KIX domain regulates long-term memory and
720 circadian activity. *BMC Biol* **18**, 155, doi:10.1186/s12915-020-00886-1 (2020).

721 31 Kida, S. & Serita, T. Functional roles of CREB as a positive regulator in the
722 formation and enhancement of memory. *Brain Res Bull* **105**, 17-24,
723 doi:10.1016/j.brainresbull.2014.04.011 (2014).

724 32 Horvath, P. M., Chanaday, N. L., Alten, B., Kavalali, E. T. & Monteggia, L. M. A
725 subthreshold synaptic mechanism regulating BDNF expression and resting
726 synaptic strength. *Cell Rep* **36**, 109467, doi:10.1016/j.celrep.2021.109467
727 (2021).

728 33 Castren, E. & Monteggia, L. M. Brain-Derived Neurotrophic Factor Signaling in
729 Depression and Antidepressant Action. *Biol Psychiatry* **90**, 128-136,
730 doi:10.1016/j.biopsych.2021.05.008 (2021).

731 34 Wang, C. S., Kavalali, E. T. & Monteggia, L. M. BDNF signaling in context: From
732 synaptic regulation to psychiatric disorders. *Cell* **185**, 62-76,
733 doi:10.1016/j.cell.2021.12.003 (2022).

734 35 Wiesner, T. *et al.* Activity-Dependent Remodeling of Synaptic Protein
735 Organization Revealed by High Throughput Analysis of STED Nanoscopy
736 Images. *Front Neural Circuits* **14**, 57, doi:10.3389/fncir.2020.00057 (2020).

737 36 Kim, S., Kim, H. & Um, J. W. Synapse development organized by neuronal
738 activity-regulated immediate-early genes. *Exp Mol Med* **50**, 1-7,
739 doi:10.1038/s12276-018-0025-1 (2018).

740 37 Tsien, J. Z., Huerta, P. T. & Tonegawa, S. The essential role of hippocampal
741 CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. *Cell* **87**,
742 1327-1338, doi:10.1016/s0092-8674(00)81827-9 (1996).

743 38 Tanimizu, T., Kono, K. & Kida, S. Brain networks activated to form object
744 recognition memory. *Brain Res Bull* **141**, 27-34,
745 doi:10.1016/j.brainresbull.2017.05.017 (2018).

746 39 Haettig, J., Sun, Y., Wood, M. A. & Xu, X. Cell-type specific inactivation of
747 hippocampal CA1 disrupts location-dependent object recognition in the mouse.
748 *Learn Mem* **20**, 139-146, doi:10.1101/lm.027847.112 (2013).

749 40 Hrvatin, S. *et al.* Single-cell analysis of experience-dependent transcriptomic
750 states in the mouse visual cortex. *Nat Neurosci* **21**, 120-129,
751 doi:10.1038/s41593-017-0029-5 (2018).

752 41 Durinck, S. *et al.* BioMart and Bioconductor: a powerful link between biological
753 databases and microarray data analysis. *Bioinformatics* **21**, 3439-3440,
754 doi:10.1093/bioinformatics/bti525 (2005).

755 42 Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the
756 integration of genomic datasets with the R/Bioconductor package biomaRt. *Nat
757 Protoc* **4**, 1184-1191, doi:10.1038/nprot.2009.97 (2009).

758 43 Zerbino, D. R. *et al.* Ensembl 2018. *Nucleic Acids Res* **46**, D754-D761,
759 doi:10.1093/nar/gkx1098 (2018).

760 44 Tyssowski, K. M. *et al.* Different Neuronal Activity Patterns Induce Different Gene
761 Expression Programs. *Neuron* **98**, 530-546 e511,
762 doi:10.1016/j.neuron.2018.04.001 (2018).

763 45 Spiegel, I. *et al.* Npas4 regulates excitatory-inhibitory balance within neural
764 circuits through cell-type-specific gene programs. *Cell* **157**, 1216-1229,
765 doi:10.1016/j.cell.2014.03.058 (2014).

766 46 Plaisier, S. B., Taschereau, R., Wong, J. A. & Graeber, T. G. Rank-rank
767 hypergeometric overlap: identification of statistically significant overlap between
768 gene-expression signatures. *Nucleic Acids Res* **38**, e169,
769 doi:10.1093/nar/gkq636 (2010).

770 47 McCarthy, D. J., Campbell, K. R., Lun, A. T. & Wills, Q. F. Scater: pre-
771 processing, quality control, normalization and visualization of single-cell RNA-seq
772 data in R. *Bioinformatics* **33**, 1179-1186, doi:10.1093/bioinformatics/btw777
773 (2017).

774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798