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ABSTRACT

Neuronal activity-dependent transcription directs molecular processes that regulate
synaptic plasticity, brain circuit development, behavioral adaptation, and long-term
memory. Single cell RNA-sequencing technologies (scRNAseq) are rapidly developing
and allow for the interrogation of activity-dependent transcription at cellular resolution.
Here, we present NEUROeSTIMator, a deep learning model that integrates signals of
activation distributed throughout the broader transcriptome to estimate neuronal
activation in a way that is robust against differences in species, cell type, and brain
region. We demonstrate this method’s ability to accurately detect neuronal activity in
previously published single cell and time course studies of activity-induced gene
expression. Further, using spatial transcriptomic techniques, we demonstrate the
model’s ability to identify patterns of learning-induced activation. In conclusion,
NEUROeSTIMator is a powerful and broadly applicable tool for measuring neuronal
activation, whether as a critical covariate or a primary readout of interest.
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INTRODUCTION

Activity-dependent expression of transcription factors controls synaptic plasticity
and is dysregulated in many disorders of the nervous system'®. Currently, a major
focus in neuroscience research is aimed at understanding tissue and cell type specificity
of activity-dependent transcription factors and the corresponding downstream targets.
Single cell RNA-sequencing (scRNAseq) technologies are rapidly developing and allow
for the interrogation of activity-dependent transcription at the resolution of individual
neurons’8. However, properties of scRNAseq data pose significant barriers to
characterizing and quantifying gene expression signatures of neuronal activity.

Upregulated expression levels of several transcription factors, such as Fos and
Egr1, are commonly used as markers of activity-dependent transcriptional response in
RNA-sequencing experiments’#. However, single cell RNA-sequencing data exhibits
sparsity and variability in gene expression measurements that can be attributed to a
combination of biological and technical factors, such as cellular RNA content, individual
gene abundance, and sequencing depth®'2. Consequently, genes that are truly
expressed can go undetected in single cell data, thus diminishing the confidence in, and
utility of, individual marker genes for transcriptionally defining neuronal activity state.
Importantly, these challenges pose a significant barrier to analyzing data where neuron
activity states are unknown, such as in post-mortem human tissue, as well as for
controlled experimental data where manipulations are rarely expected to elicit a uniform
response across or within cell types. Further, activity marker genes display basal
expression that is detectable in the absence of stimulation or activity'. The
consequence of 1) heterogeneous within-cell type responses to stimulation (e.g.,
memory-associated engram populations'?), where 2) subsets of responsive cells cannot
be confidently identified results in a drastic reduction of power in e.g., differential
expression analyses between experimental conditions at the cell type level, as signal
from the experimental group is diluted by non-responsive cells. Therefore, it is not only
crucial to identify subsets of responsive cells for between-sample comparisons to a
control group, but it also opens further avenues for higher powered within-sample
comparisons. Because individual genes are unreliable markers in single cell data,
robustly estimating the degree of individual neuronal activity requires integrating
information from multiple activity marker genes.

Several methods exist for aggregating transcriptomic data across multiple genes,
and they are commonly used in single cell pre-processing steps to categorize cell types
and visualize data. Dimensionality reduction methods such as principal component
analysis (PCA) and non-negative matrix factorization (NMF) combine information from
multiple genes into summarized components. However, such methods are
unsupervised, and do not guarantee the resulting components will be relevant to
neuronal activity. Furthermore, these methods do not capture information from non-
linear interactions that result from complex layers of biological regulation. Non-linear
dimensionality reduction methods like t-stochastic neighbor embedding (tSNE)'4, and
uniform manifold projection (UMAP)'®, similarly aim to explain variability in single cell
data by summarizing gene expression patterns into components. In many scRNAseq
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datasets derived from the brain, these components represent neuron-glia and
glutamatergic-GABAergic axes. Despite non-linear capabilities, they are typically
applied to linear components from PCA and still do not guarantee identification of a
component that indexes neuronal activity state.

Neural networks have been developed for many applications in single cell data
such as dimensionality reduction and imputation'®. DCA' is a gene expression-oriented
autoencoder for learning a reduced dimensional space, also known as an information
bottleneck, which must then reconstruct the input data. Leveraging the inherently
destructive nature of dimensionality reduction and statistical noise error models
simultaneously strips noise from input data while retaining informative features in the
bottleneck. This approach has the attractive qualities of learning non-linear relationships
of input genes and addressing noise from sparsity of gene detection in a supervised
manner. Furthermore, neural networks like DCA allow flexibility in the choice of genes
targeted for reconstruction and the information capacity of the bottleneck.

Here, we developed a neural network that produces an estimate of neuronal
activity based on expression of thousands of genes. The network distills expression
patterns into a 1-dimensional information bottleneck before reconstructing expression
profiles of 20 well-established, robust markers of neuronal activity. The bottleneck value
is bound between 0 and 1 and represents a cell-type-invariant summary of activity-
responsive gene expression magnitude. Applying our approach to a diverse collection of
datasets, we demonstrate that this 1-dimensional bottleneck, hereafter referred to as
the ‘activity score’, can identify individual neuronal activation caused by seizure, cocaine
administration, and sensory experience. We demonstrate the use of the activity score to
classify cells by experimental manipulation, expose genes involved in these predictions,
and identify neuron type-specific expression signatures of activity. Furthermore, we
demonstrate generalizability of our approach to new spatial transcriptomic data from
brain slices following learning. To enable the neuroscience community to take
advantage of these efforts, we have developed NEUROeSTIMator, an R package with
an accompanying tutorial that demonstrates an application of our model to single cell
data.

RESULTS
Predicting Activity-Dependent Marker Gene Expression

We used publicly available single cell and nuclei datasets (Table 1) generated by
the Allen Institute of Brain Science'®, consisting of mouse and human samples, to
develop a neural network model trained to predict expression of 20 activity-dependent
genes. Activity-dependent genes were identified by intersecting differential expression
results of three studies of experimental manipulation of neuron activity. All three studies
examined different brain regions, used different methods of neuronal stimulation, and
were published from independent groups. Single cell data was sampled with weighting
to increase representation of less common neuronal cell types, species, sex, and
technical characteristics. Five hundred thousand neurons were selected and partitioned


https://doi.org/10.1101/2022.04.08.487573
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.08.487573; this version posted April 29, 2022. The copyright holder for this preprint (which

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

into cell type-balanced training and testing sets, and the training set was further split
into 5 folds for cross validation. We trained the neural network to predict expression of
the 20 activity-dependent target genes through a 1-dimensional hidden bottleneck layer
with sigmoidal activation (see methods for a detailed description of model architecture
and training). To evaluate model performance, we applied it to a diverse test set of
approximately 56,578 neurons held out from the training process. We found the model
performance on the test set was comparable to performance observed through cross
validation.

For further analyses, model output at the bottleneck activation layer was
extracted to index activity level for each neuron passed through the model. Hereafter,
we refer to this output as the predicted activity or activity score. We first examined the
distribution of predicted activity across cell subclasses in the held-out test set (Fig. 1a,
left). Most cell subclasses exhibited of a distribution concentrated near zero with a tail
skewed towards one. A few cell subclasses exhibited higher average predicted activity,
including L4/5 IT CTX, L4 RSP-ACA, L5 PPP, and SUB-ProS neurons.

Genes Informing Model Predictions

To identify genes whose expression levels influence model predictions, we
calculated integrated gradients™ for all input genes with respect to predicted activity
using data from the held out test set. Integrated gradients attribute model predictions to
input features for each cell. We first examined the average impact of target genes on
predicted activity for each cell subclass label (Fig. 1a, right). The most influential genes
were Egr1 and Nr4a1. In general, target genes with lower mean expression contributed
less to predictions. We further explored gene importance for all non-target input genes
and found varying degrees of influence throughout the transcriptome (Fig. 1b). Among
the most influential were the known activity response genes Homer1, Egr4, and Badnf.
We also found several cell type markers exhibiting influence on predictions such as
Gad2, Sst, and Pde10a. We observed that many influential genes had higher mean
expression levels, although lower abundance genes also exerted influence. For
example, the gene Cyr61, known to regulate dendritic arborization?°, was one of the
most influential non-target gene with mean log1o expression less than -1. We also noted
relatively few genes whose expression was indicative of reduced predicted activity. To
evaluate whether influential genes were enriched for specific annotated biological
mechanisms, we performed gene set enrichment analysis on several annotation sets
(Fig. 1c). Among the most highly enriched gene sets were BDNF/NTRK signaling
(Padjusted < 0.05 for 3 largely redundant annotations), circadian rhythm (pagjusted = 0.0084),
and nuclear receptor metapathways (padjusted = 0.0319). Many influential genes were
members of multiple significant gene sets, with Homer1, Bdnf, Ntrk2, Jun, and Sst
showing high degrees of centrality within the significant gene set membership network
(Fig. 1d).

To demonstrate the utility and generalizability of our model for external
applications, we applied it to five datasets (Table 1).
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172  Detecting Pharmacological Activation of Neurons

173

174 We first applied our model to three datasets containing neurons from rodents and
175  human cell lines treated with powerful stimulating, pharmacological agents. From the first
176  dataset, we computed activity score for medial amygdala (MeA) neurons of mice treated
177  with either saline or pentylenetetrazol (PTZ), a depolarizing agent used to model status
178  epilepticus and induce seizures’. As expected, we observed increases in predicted
179  activity for several neuronal subtypes, including GABAergic subtypes N2-N4 as well as
180  glutamatergic subtypes N10-N12 (Wilcoxon test, padusted < 0.001) (Fig. 2a).

181

182 Next, we compared activity score between neurons from the nucleus accumbens
183  (NAc) of rats treated with either saline or cocaine, a stimulant acting on dopaminergic
184  neurotransmission?'. We found neuron subtype-specific increases in activity score (Fig.
185 2b). D1 and D3-type medium spiny neurons (MSN) were the most profoundly affected
186  neuron subtypes (Wilcoxon test, D1: padjusted < 2.22x10716, D2: padjustes = 0.0018). Because
187  our model was not trained using any rat or dopaminergic neurons, these findings provide
188  further endorsement for robust estimation of neuronal activity induced by potent
189  pharmacological agents of stimulation.

190

191 To further evaluate whether our model could be successfully applied to human
192 data, we examined a dataset of human induced pluripotent stem cell-derived neurons??
193  (Fig. 2c). Neuron cultures were either unstimulated or treated with KCI depolarization
194  buffer for 1, 2, or 4 hours. Our model predicted low neuronal activity for the unstimulated
195  group, which was consistent among cell types and biological replicates. Cells treated with
196  KCI for 1 hour demonstrated substantial and significant increases in predicted activity.
197  Although significant increases in predicted activity were observed for all cell types (padjusted
198 < 0.05), the activity score of post-mitotic neurons displayed a stronger response to KCI
199 compared to NES+ neural progenitor clusters. Among the most responsive neuron types
200 was the Tbr1+ pallial glutamatergic cluster (cluster 6) (pagjusted < 2.22x107'8 for all time
201  points compared to baseline). Notably, all neuron clusters followed a similar temporal
202  pattern of predicted activity modestly declining at 2 hours relative to peak activity at 1
203  hour, with a further decline at 4 hours. Despite these activity predictions reducing after 1
204  hour, none of the neuron clusters completely returned to basal levels at 4 hours, the final
205 time point in the experiment.

206

207 Together, these analyses suggest our model can robustly assign higher

208 estimates of activity to cells subjected to chemical exposures that are expected to elicit
209  strong and generally ubiquitous transcriptional responses to stimulation.

210

211  Activity Score as a Generalizable Classifier of Neuronal Stimulation

212

213 Next, we asked if our model could detect neuronal activation by more subtle

214 forms of stimuli such as sensory experience. We applied our model to a dataset

215  containing visual cortex neurons from mice exposed to light stimulation for 0, 1, or 4

216  hours (Fig. 3a). To determine whether the ability of our model to detect activity

217  signatures is restricted to neurons, we additionally examined predicted activity in non-
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neuronal cell types. We observed a significant increase in predicted activity for neurons
from mice exposed to light, relative to controls. To elucidate temporal patterns of activity
we tested differences in activity score between pairs of each time point. Activity score
was significantly increased at 1 hour for many neuron types. At 4 hours of light
exposure, predicted activity began to show diverging trends which were foreshadowed
by predicted activity at 1 hour. Cell types weakly activated at 1 hour showed decline in
activity towards the baseline at 4 hours, while cell types strongly responsive to light
exposure 1 hour declined less. Although trending towards a return to baseline, activity
scores of neurons at 4 hours were not significantly different from neurons at 1 hour.

As we observed similar trends in temporal activity predictions between the
unstimulated (Oh) and 1h group, we investigated the degree to which the activity score
derived from our model could be used as a classifier of experimental group. The degree
to which activity score is predictive of experimental group in a particular cell type is
expected to represent the robustness of the response in that cell type. Using the visual
cortex dataset (VIS) mentioned above, we constructed receiver-operator curve (ROC)
plots for neuronal and non-neuronal cell types (Fig. 3b). For both excitatory neuron and
interneuron subtypes, the activity score demonstrated varying degrees of predictive
power. For example, the activity score alone was able to almost perfectly separate
stimulation groups when considering excitatory cortical layer cell types, though it could
only separate hippocampal neurons into stimulation groups with an accuracy slightly
better than random chance, though we suspect this reflects a lack of hippocampus
responsiveness to simple light exposure. Surprisingly, despite the model being trained
on purely neuronal cell type populations, the activity score was able to separate
stimulation groups for astrocytes just as accurately as it could for neurons. Astrocytes in
the visual cortex have been shown to reliably respond to light?3. Not only does this
application of the activity score provide further evidence of astrocytic responsiveness to
light, it also directly suggests that light induces transcriptional changes in astrocytes.

Utility in Data Modalities Beyond scRNA-seq

Next, we asked whether our model could identify spatial signatures of learning in
brain slices of mice following spatial object recognition (SOR) training, a widely used
behavioral paradigm to investigate memory mechanisms?4. Using spatial transcriptomic
data from brain slices of SOR-trained and homecage control (HC) mice, we applied our
model to predict activity for each spot and clustered all spots into anatomical regions.
The 23 resulting clusters were annotated with brain region names from the Allen Mouse
Brain Atlas (Fig. 4a). At baseline, we noted a weak activation signature in HC slices,
primarily covering cortical layers of the isocortex and subregions of the hippocampus
(Fig. 4b, left). To identify a spatial activation signature of SOR, we tested for
differences in predicted activity for each brain region cluster (Fig. 4c). We observed
significant increases in predicted activity for several cortical and subcortical regions.
Multiple layers of the isocortex and the retrosplenial area showed large increases in
activity following SOR (Fig. 4d), with the greatest increase observed in layers 2/3. We
also found a significant activation of the caudoputamen area of the dorsal striatum, also
known as the tail of the striatum. The amygdala, hippocampus, and the
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olfactory/piriform areas also showed significant increases in activity, of comparable
magnitude. Subregions of the hippocampus were variably activated by SOR, with the
strongest increase in the CA1 region. Regions predicted to be least activated by SOR
include the thalamus, hypothalamus, dentate gyrus of the hippocampus, the lateral
ventricle, and fiber tracts.

DISCUSSION

We present NEUROeSTIMator, a generalizable tool for in silico estimation of
neuronal activity from transcriptome-wide single-cell gene expression. The neuronal
activity score is an easily interpretable value that quantifies the transcriptional response
to stimulation. NEUROeSTIMator can be used to rapidly identify and prioritize subsets
of neurons showing transcriptional evidence of a stimulus response. In tests of
predictive performance and generalizability, we demonstrate that the neuronal activity
score can robustly detect signatures of activation from multiple types of stimulation,
neuron subtypes, species, and sequencing technologies, including spatial
transcriptomics.

To gain an understanding of the genes most influential in the model, we
systematically perturbed expression of input genes and evaluated the effect on
predicted activity. We found broadly distributed signal across the transcriptome,
enriched for genes related to BDNF/NTRK signaling, circadian rhythm, and nuclear
receptor pathways. The genes most informative to our model and relevant to these
gene sets were Homer1, Bdnf, Ntrk2, and Jun. These well-known activity response
genes were not included as model targets based on our selection criteria, but their
prominent influence on model predictions suggests our model utilizes information from
coregulated genes and pathways to robustly estimate expression of target genes.
Notably, we found few genes associated with lower activity score relative to genes
whose expression was associated with a higher score, suggesting model predictions
largely rely on positive indicators of activity. Although there is evidence of activity-
dependent downregulation of gene expression?>26, most genes differentially expressed
by neuronal activity are transcriptionally upregulated, which is supported by findings that
neuronal activity increases genome-wide chromatin accessibility"27-28,

We observed a positive relationship between mean expression levels and gene
influence. The most influential target genes, Egr1 and Nr4a1, were the most highly
expressed targets. We also observed that predicted activity is influenced by several
known cell-type markers, which tend to be highly expressed. We suspect these
observations are driven by reliability of gene detection at lower sequencing depths.
Highly expressed markers of activity or cell type have greater detection rate, at both
deep and shallow sequencing depths, than weakly expressed genes and therefore, are
more reliable markers. We did not initially expect cell-type markers to strongly influence
model predictions, and we suspect that cell type markers exert influence on predicted
activity by reliably providing the model with information about cell identity, thereby
allowing the model to establish cell-type specific intercepts for target gene expression
that represent basal expression. Notably, the within cell-type heterogeneity of predicted
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activity that we observe suggests that these cell-type markers are not sufficient by
themselves to lead to predictions of neuronal activation.

We examined gene set annotations related to the top genes influencing predicted
activity and identified circadian rhythm and BDNF signaling as key pathways in
predicting neuronal activation. Per1, a target of our model, is a circadian regulator gene
upregulated by neuronal activity?®. It has been demonstrated that disrupted activity-
dependent binding of CREB to CREB-binding protein (CBP) impairs long-term memory
in mice and blunts the transcriptional upregulation of immediate early genes and
circadian rhythm genes3°. Together with our results, this suggests a subset of the
activity response is allocated to a group of genes regulating circadian rhythm, and our
model extracts this information from the transcriptome to predict expression levels of
activity-dependent genes. Multiple significant gene sets were related to BDNF/NTRK
signaling. Bdnf is a well-established activity response gene and one of the most
extensively studied regulators of synaptic plasticity®'-34. One of the most influential
genes with membership in several significant gene sets was Homer1. Synaptic plasticity
induced by neuronal activity has been shown to remodel synaptic scaffolding proteins®,
in part through regulation of Homer13¢. Together, these findings suggest our model
predicts activity, in part, by leveraging gene coexpression networks that interact with the
immediate early gene activity markers.

We applied our model to a single cell dataset containing neurons subjected to
seizure in the medial amygdala and demonstrated the ability of our model to predict
increased neuronal activation in response to PTZ in multiple cell types. We next applied
our model to a single cell experiment treating the rat striatum with either saline or
cocaine. Our estimates of activity recapitulate a key finding from the source study, that
Drd1+ and Drd3+ medium spiny neurons display a strong activation response to
cocaine treatment. This finding is particularly noteworthy given that our model was
trained using only mouse and human cortical and hippocampal neurons, none of which
were medium spiny neurons.

Although we included human single nuclei data in the model training process,
several neuronal subclasses from human samples in our test set showed low levels of
predicted activity compared to the corresponding subclass in mouse samples. Although
we reasoned this could be due to the nature of transcriptional machinery shutting down
and RNA degradation in post-mortem neurons, it was not clear whether our model had
inappropriately learned to equate human gene expression signatures to low neuronal
activity. We applied our model to experimental data from human cell lines exposed to a
time course of depolarizing KCI treatment. Our model detected a sharp increase in
activity following 1 hour of treatment across multiple cell types, suggesting the model is
indeed capable of identifying human signatures of neuronal activity. Further, our model
predicted gradually declining levels of activity after 1 hour of KCI treatment, suggesting
it is capable of discerning activity signatures beyond a simple on-off model of
transcriptional activation. Not only do these results demonstrate our model can identify
potent pharmacologically induced forms of neuronal activity, but it can also robustly do
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355 so across species and cell types and discern gradual temporal changes over a time
356  course of treatment.

357

358 Sensory experience is known to induce activity-dependent gene expression

359  programs in cortical neurons. We demonstrated that the predicted activity is markedly
360 higher in visual cortex neurons from mice exposed to light, as compared to controls.
361  Further, we identified strong increases in predicted activity for non-neuronal cell types
362 responding to light exposures. We specifically demonstrated that the activity score can
363 classify visual cortex astrocytes as originating from light-exposed experimental groups
364  with accuracy comparable to neurons. This finding was unexpected, as the model was
365 not trained with any glial or other non-neuronal cell types. However, as the immediate
366 early gene markers of activity are, in fact, markers of activity in many cell types, even
367 beyond the brain, we anticipate that our model may be capable of detecting activation
368 signatures in entirely different cell types such as immune cells, for example. Not only
369 does this analysis provide a further line of evidence for astrocytic responsiveness to
370 light in the visual cortex, it also demonstrates the ability of our model to detect such a
371  response via transcriptomic data.

372

373 Emerging spatial transcriptomic technologies promise to identify differentially
374  active brain regions following a stimulus such as a training for a learning task.

375 Comparing mice trained in spatial object recognition to homecage controls, we found
376  widespread increases in cortical neuron activity, particularly in layers 2/3 of the

377 isocortex. We also observed increased predicted activity in the CA1 region of the

378  hippocampus, the caudoputamen region of the dorsal striatum, the retrosplenial area,
379 and piriform areas. The CA1 region of the hippocampus has been shown to play a role
380 in long term spatial memory in rodents®’-3°, and the caudate nucleus has been

381 demonstrated to play a role in spatial working memory in both monkeys and humans.
382  These regions, particularly CA1, retrosplenial area and the caudoputamen have known
383 involvement in spatial learning and working memory. The piriform area is involved in
384 olfaction, which may reflect sensory processing involved in long term memory encoding.
385  Extending the application of our model to spatial transcriptomics, an entirely different
386 data modality than the training data, we show that the activity score predictions are not
387 confined to use in single cell RNA sequencing datasets. We expect many other distinct
388  brain-wide spatial signatures of activation could be identified in relation to other

389  cognitive processes.

390

391 NEUROeSTIMator provides the first robust and generalizable means to quantify
392  neuronal activation from gene expression data, opening the door to widespread

393 inclusion in molecular neuroscience research. In neuroscience research involving gene
394  expression, and especially in novel approaches like single cell or spatial

395 transcriptomics, neuronal activity state is a variable as fundamental as age, sex, or
396 treatment group. Depending on the goal of an analysis, it may be a critical covariate, a
397 key grouping variable, or an explanatory variable of central interest that may now be
398 estimated using the tools we present here.

399

400 METHODS
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Dataset for Model Training and Evaluation

To train the model, we utilized publicly available datasets provided by the Allen Institute
for Brain Science, including a single-cell RNA-sequencing (scRNAseq) dataset of over a
million cells isolated from mouse cortical and hippocampal tissue'®, and a single-nuclei
RNA-sequencing (snRNAseq) dataset of 76,000 nuclei isolated from human cortical
tissue. Hereafter, these datasets will be referred to as the Allen Mouse and Allen
Human datasets. Both datasets used the 10X Genomics Chromium system for droplet
capture. The Allen Mouse dataset was prepared using the Chromium Next GEM Single
Cell 3’ v3 reagent kit, while the Allen Human dataset used v2.

Datasets for Model Application — Publicly Available

We downloaded multiple datasets from Gene Expression Omnibus (GEO) to
demonstrate the utility of our model. The following GEO accessions were included in
analyses: GSE1028274°, GSE1039767, GSE136656%, and GSE1377632".

Datasets for Model Application — Spatial Transcriptomics

We generated a novel spatial transcriptomic dataset examining the effects of spatial
object recognition (SOR) training in mice. The dataset contains spatial RNA-sequencing
of whole brain slices from 1 hour after SOR training or home cage controls. SOR
training was performed as previously described?*. Mouse brain section per mouse was
cut at 10 um thickness and mounted onto each Visium slide capture area. After H&E
staining, each bright-field image was taken as described in the spatial transcriptomics
protocol. Tissue permeabilization was performed for 18 minutes, as established in the
tissue optimization assay. The Visium Spatial Gene Expression Slide & Reagent kit (10x
Genomics) was used to generate sequencing libraries for Visium samples. Libraries
were constructed according to the 10x Visium library construction protocol and
sequenced by lllumina NovaSeq6000. Raw data was then processed using the 10x
Genomics Space Ranger analysis pipeline. See Supplemental Figure S2 for images of
predicted activity for each replicate.

Gene Identifier Mapping

We used the R package biomaRt to map gene identifiers from various annotations used
in public datasets, and between species, to a common set of reliably mapped
genes*'42, Ensembl gene identifiers (Ensembl IDs) were used as the primary identifier
for mapping genes, and gene symbols were used as secondary identifiers in cases of
ambiguous mapping. The Ensembl release 93 archive (July 2018 release) was used for
cross-species gene mapping*:. Genes with one-to-one orthology between mouse and
human, as well as mouse and rat, were selected to facilitate cross species utility. All
datasets lacking Ensembl ID annotation contained gene symbols, which were then
queried against multiple Ensembl archives to determine which archive maximized
identifier mapping rate. For instances when a gene symbol mapped to multiple Ensembl
IDs, identifiers present in the cross-species mapping table were preferentially selected.
We provide a helper function for mapping gene identifiers to the feature set used by our
model, and we further demonstrate usage in the associated tutorial.
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Choice of Neural Network Target Genes
To identify robust markers of neuronal activity for use as targets of the neural network,
we intersected lists of stimulus-responsive genes from three published RNA-sequencing
experiments. Each publication was from a different group of authors, focused on
different brain regions, and used different forms of neuronal stimulation (see Table 1).
One publication categorized stimulus-responsive genes into three groups — rapid
primary response genes (rPRGs), delayed primary response genes (dPRGs), and
secondary response genes (SRGs)*. As SRGs are thought to demonstrate higher
celltype-specificity relative to PRGs', only rPRGs and dPRGs were considered from this
publication. In another publication, approximately 600 genes upregulated in response to
kainic acid treatment in the hippocampus were considered®.

In a third publication, two sets of KCI-responsive genes were available, one from
a brain region enriched in glutamatergic neurons and one enriched for GABAergic
neurons*®. For this study, we sought to intersect the results of both the glutamatergic
and GABAergic analyses into one list of genes. Published p-value distributions
suggested differences in statistical power between these two analyses, and only
statistically significant results were published. To expand the list of genes overlapping
between these analyses, we reanalyzed the data using GEO2R to obtain two sets of
transcriptome-wide statistics. Using significance rankings from the GEOZ2R reanalysis,
we jointly determined p-value thresholds for each analysis based on rank-rank
hypergeometric overlap (RRHO, see Supplemental Figure S1) and identified genes
with p-values below these thresholds in both sets with concordant direction of effect*6.
Because this approach used unconventional p-value thresholding, we additionally
required intersecting genes to have an estimated fold change greater than or equal to
0.5 in both analyses.

Finally, these three lists were intersected, and a set of 41 stimulus-responsive
genes were selected as output targets on the basis of being differentially expressed in
all three lists.

Sample Filtering, Downsampling, and Partitioning

Cells with less than 3,500 total counts or greater than 30,000 total counts were
removed. Non-neuronal cells were removed and imbalances among species, sex,
neuron type, quality control metrics and naively-estimated activity were alleviated by
weighted random sampling. The R package groupdata2 was used to create five training
folds (88.7%), 886,844 samples) and one test split (11.3%, 113,156 samples) in a way
that retains training set diversity while maximizing representation of neuron subclasses
in the test split.

Model Input/Output Feature Selection

Input and target features were selected based on mean expression and detection rate in
the training data. Input features were required to have a detection rate greater than zero
and log mean expression greater than -2 in both the Allen mouse and human samples
used for training. The rationale behind removing weakly expressed genes was that the
Allen datasets were sequenced deeper than typical datasets, and genes with low
detection at high sequencing depth would likely be unreliably detectable at lower
depths. The remaining 10,017 genes were used as input features. Of the 32 remaining
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candidate output target genes, we selected a final set of 20 targets based on
consistency of coexpression patterns across datasets and broad cell classes. Gene-
gene Pearson correlations were calculated for four cell sets (mouse glutamatergic,
mouse GABAergic, human glutamatergic, human GABAergic). In each set, we ranked
each gene based on the average correlation to all other candidate genes. These
coexpression ranks were averaged across the four cell sets and the top 20 genes were
selected as final the final set of output target genes. The targets include Arc, Btg2,
Crem, Dusp1, Egr1, Egr2, Egr3, Fbxo33, Fos, Fosb, Fosl2, Grasp, Junb, Npas4, Nrda1,
Nr4a2, Nr4a3, Per1, Rgs2, and Tiparp.

Dataset Augmentation

Raw counts were downsampled using the R package scater*’. For each combination of
species and neuron subclass, an equal number of cells were randomly assigned a value
of either 103, 10325, or 103 total counts to be downsampled to. All genes were
considered for downsampling.

Feature Normalization and Preprocessing

Log-normalization, as implemented in Seurat, was used to normalize input gene
expression. Total counts for each cell were calculated by summing only the 10,017
features used by the model. Normalized expression levels for each gene were centered
and scaled based on mean and standard deviation estimated from the training data. For
cross validation, mean and standard deviation were estimated without the held-out fold.

Model Architecture

The architecture of the model was adapted from DCA'’. Briefly, input gene expression
is supplied to an encoder; a series of three fully connected dense layers with ELU
activations and batch normalization. The first layer contained 16 units and each
successive layer halved the units of the previous layer. The encoder then connects to
the information bottleneck, a single-unit dense layer with sigmoid activation. The
bottleneck then connects to the first output, the estimated mean parameter p of the
zero-inflated negative binomial model. Two additional, independent, encoder branches
output estimates of the dispersion and dropout parameters theta and pi, respectively.
The zero-inflated negative binomial (ZINB) loss function was used, as implemented in
DCA. For model applications, the model outputs are not used, but the sigmoidal
bottleneck activation value is the metric extracted to estimate neuronal activity.

Model Training

We trained the model using keras, as implemented in keras R package, version 2.3.0.0.
Training proceeded for 10 epochs using the ADAM optimizer. Gaussian dropout was
applied to input expression to simulate uncertainty in measurements. Augmented
samples, which were synthetically downsampled to simulate lower sequencing depths,
were given the same output as the original data to curtail the learning of depth-
dependent information. Sample losses were weighted to improve representation of rare
cell subclasses but were limited to be no more than five times greater than they would
be in an equally weighted scheme.
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Evaluating Model Performance

Model performance was evaluated using a test split that was entirely shielded from
model training or selection. Distributions of bottleneck activity and loss were compared
across species, sex, neuron class and subclass, and quality control metrics.

Evaluating Feature Importance

To evaluate relative importance of each gene on predicted activity, we implemented the
integrated gradients'® approach. Integrated gradients were averaged for each of the 4
species-by-class groups, and then averaged again to allow the gradients from each
species and cell class contribute equally to the final importance metric.

Testing Differences in Predicted Activity

For all datasets analyzed in figure 2, we used the Wilcox test. A linear model was used
to test for differences (i.e., using t-statistic of the regression slope) in predicted activity
of the spatial transcriptomic clusters in figure 4.

DATA AVAILABILITY

Spatial RNA-sequencing data, including gene expression measurements, tissue
images, spot coordinates, and raw FASTQ files have been deposited in the Gene
Expression Omnibus repository under the reference series ID GSE201610.

CODE AVAILABILITY
NEUROeSTIMator is available at https://research-git.uiowa.edu/michaelson-lab-
public/neuroestimator/ as a free R package with installation instructions and a tutorial.
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587  Figure 1 - Gene-wise contributions to the activity score and its distribution within cell

588  types of the training data. The training data for the model was assembled from stimulus-naive
589  single-cell and single-nucleus experiments, and the proportion of active cells among each

590  neuronal subclass varied, as indicated by the plotted distributions of bottleneck activation (i.e.,
591 the activity score, A). To understand the contribution of individual genes to the activity score, we
592  examined gradient values from the DNN model (B). Higher positive gene gradient values

593  indicate that increased gene expression is linked to increased bottleneck activation. To identify
594  the strongest contributors to the activity score, we compared overall gene influence on predicted
595  activity (X-axis) versus influence on model predictions (Y-axis) (C). Genes are colored by class
596  as reported by Tyssowski, et. al, 2018: Rapid primary response genes (rPRGs, red), delayed
597  primary response genes (dPRGs, blue), and secondary response genes (sRG, yellow).
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600  Figure 2 — Multi-species generalization of neuronal activity score applied to previously
601  published chemical induction studies. Predicted activity for various amygdala neuron

602  subtypes (mouse) stimulated with PTZ (red) or controls (gray) (A). Cell-type specific activation
603  predicted for rat neurons of the nucleus accumbens treated with either cocaine (red) or saline
604  (gray) (B). Time series of predicted activation of human GABAergic-like iPSCs treated with
605  depolarizing potassium chloride at 0 hours, 1 hour, 2 hours, and 4 hours (C).
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608  Figure 3 - Temporal patterns and classification of in vivo sensory activation. Cell type

609  activity predictions of visual cortex neurons in freely behaving mice exposed to light for 0, 1, or 4
610 hours (A). ROC plots indicate the ability of predicted activity to separate various cell types into
611  Ohvs 1h experimental groups. Diagonals from bottom left to top right indicate an accuracy

612  similar to random chance, while lines moving straight vertically, then straight horizontally

613 indicate perfect separation.
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615

616  Figure 4 — Spatial transcriptomic patterns of neuronal activation after spatial learning.
617  Spatial anatomical clustering of RNA-sequencing spots (A). Regions were labeled by comparing
618  transcriptionally-defined clusters to the Allen coronal mouse brain atlas. Activity score per spot,
619 averaged across experimental groups (B) of home cage controls (left) and 1 hour after spatial
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620  object recognition (SOR) training (right). Using the spatial anatomical clustering derived from the
621  expression data, we were able to group individual spots into clusters to test the significance of
622  activity induction, here indicated by the cluster-wise coefficient estimate. Brain regions

623  differentially activated by SOR training (C). Cluster-wise differential activity statistics are

624  summarized in (D) and provided in Supplementary Table S1. Bar length represents estimated
625  effect of SOR on activity score, based on linear models. Brackets indicate standard error and
626  circle size represents the number of spots per comparison, which indexes statistical power.

627  Non-significant regions with an adjusted p-value > 0.05 are colored grey.
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629
630
dataset use species stimulation tissue
Allen Cell Types Database: mouse model training mouse - cortex, hippocampus
Allen Cell Types Database: human model training human - cortex
GSE111899 target selection mouse Sensory experience cortex (visual)
GSE125068 target selection mouse PTZ hippocampus
GSE55591 target selection mouse KCI cortex (neuron culture)
GSE103976 model mouse PTZ amygdala
application
GSE137767 dee.l rat cocaine nucleus accumbens
application
model
GSE136656 application human KCI neuron culture
GSE102827 dee.l mouse Sensory experience cortex (visual)
application
SOR_Visium mpdell mouse Spatial Obje.Ct. recognition whole brain slice
application training

Table 1. Datasets used.
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