

1 **Title**

2 N-terminal region of *Drosophila melanogaster* Argonaute2 forms amyloid-like
3 aggregates

4

5 **Authors**

6 Haruka Narita, Tomohiro Shima#, Ryo Iizuka, and Sotaro Uemura#

7

8 **Affiliation**

9 Department of Biological Sciences, Graduate School of Science, The University of
10 Tokyo, Tokyo, Japan

11

12 # Corresponding authors

13 T.S.,

14 Tel: (+81)-35841-4399

15 Email: tomohiro.shima@bs.s.u-tokyo.ac.jp

16 S.U.,

17 Tel: (+81)-35841-4396

18 Email: uemura@bs.s.u-tokyo.ac.jp

19

20 **Running title**

21 Amyloid-like aggregation by the N-terminus of DmAgo2

22

23 **Keywords**

24 Argonaute, aggregation, amyloid, prion, RNA interference

25 **Abstract**

26 Argonaute proteins play a central role in RNA silencing by forming protein-small RNA
27 complexes responsible for the silencing process. While most Argonaute proteins have a
28 short N-terminal region, Argonaute2 in *Drosophila melanogaster* (DmAgo2) harbors a
29 long and unique N-terminal region. Previous *in vitro* biochemical studies have shown
30 that the loss of this region does not impair the RNA silencing activity of the complex.
31 However, an N-terminal mutant of *Drosophila melanogaster* has demonstrated
32 abnormal RNA silencing activity. To explore the causes of this discrepancy between *in*
33 *vitro* and *in vivo* studies, we investigated the biophysical properties of the region.
34 Because the N-terminal region is highly rich in glutamine and glycine residues, which is
35 a well-known property for prion-like domains (PrLD), the possibility of the N-terminal
36 region functioning as a PrLD was tested. Our biochemical assays demonstrated that the
37 N-terminal region can form aggregates that are not dissociated even in the presence of
38 SDS. Also, the aggregates enhanced the fluorescence intensity of thioflavin-T, an
39 amyloid detection reagent. The kinetics of the aggregation followed that of typical
40 amyloid formation exhibiting the self-propagating activity. Further, we directly
41 visualized the aggregation process of the N-terminal region under fluorescence
42 microscopy and found that the aggregations took fractal or fibril shapes. Together, the
43 results indicate that the N-terminal region is a PrLD. Many other PrLDs have been
44 reported to modulate the function of proteins through their aggregation. Therefore, our
45 results raise the possibility that aggregation of the N-terminal region regulates the RNA
46 silencing activity of DmAgo2.

47

48 **Introduction**

49 RNA silencing is involved in various biological processes including antiviral defense,
50 development, and the maintenance of genomic integrity (1). Among the RNA silencing
51 machinery, Argonaute proteins play key roles by directly binding to small RNAs to
52 form the RNA Induced Silencing Complex (RISC) (2). After the small RNA in RISC
53 recognizes its RNA targets, Argonaute proteins display endonucleolytic activity or
54 translational repression (3). Despite the functional variety of Argonaute proteins, their
55 structural organization is highly conserved, sharing four distinct domains: N, PAZ, MID,
56 and PIWI (4). Previous studies have revealed the functions of each domain. The N
57 domain initiates duplex unwinding immediately after small RNA binds to Argonaute (5).

58 The PAZ and MID domains recognize the 5' and 3' ends of the small RNA, respectively
59 (6–8). The PIWI domain, which shares structural similarities with ribonucleases,
60 cleaves the target RNA(9, 10).

61 In contrast to these highly conserved domains, the N-terminal region, which is located
62 upstream of the N domain, shows extensive diversity among species (11). While most
63 Argonaute proteins have a short N-terminal region (e.g., 24 residues in human Ago2),
64 Argonaute2 in *Drosophila melanogaster* (DmAgo2) harbors a long and unique
65 N-terminal region. The N-terminal region (residues 1–398; henceforth, Nter) comprises
66 almost one-third of the residues in DmAgo2 (1208 residues). Partial truncation of Nter
67 (residues 326–371 deletion) has been reported to impair RNA silencing in mutant flies
68 (12). However, an *in vitro* study demonstrated that another DmAgo2 mutant with Nter
69 deletion (residues 1–278 deletion) still forms RISC and retains RNA cleavage
70 activity(13).

71 Many eukaryotic RNA-binding proteins contain a prion-like domain (PrLD), which
72 organizes intracellular condensates and regulates biochemical reactions (14–17). PrLDs
73 consist of intrinsically disordered, low-complexity sequences often enriched in
74 glutamine and glycine residues (18, 19). The Nter sequence shares this property. The
75 content of glutamine and glycine residues in DmAgo2 Nter reach approximately 40%
76 and 20%, respectively (11, 12). Inspired by these findings, here we tested whether
77 DmAgo2 Nter is a PrLD. Our *in silico* prediction and biochemical assays demonstrated
78 that Nter is a PrLD that can form amyloid-like aggregates. We also directly visualized
79 by fluorescence microscopy how Nter aggregates and found that the aggregates are
80 polymorphic. Since many PrLDs have been shown to regulate biochemical reactions
81 through their aggregate formation (14–17), our results raise the possibility that Nter
82 regulates RNA silencing activities in cells by forming aggregates.

83

84 **Results**

85 **PrLD prediction based on the amino acid sequence of DmAgo2**

86 To confirm the characteristics of DmAgo2 based on its amino acid sequence (Figure
87 1A), we performed intrinsically disordered regions (IDRs) prediction and three kinds of
88 PrLDs prediction. First, to confirm that DmAgo2 harbors IDRs, we analyzed the
89 DmAgo2 amino acid sequence using PONDR (20), a neural network-based prediction
90 algorithm of IDRs. Two parts of Nter (residues 1–87 and 105–412) were identified as

91 regions with high disorder scores (Figure 1B). Then, the possibility that Nter is not only
92 an IDR but also a PrLD that can form amyloid-like aggregates was predicted by three
93 PrLD prediction algorithms: the prion-like amino acid composition (PLAAC) (21),
94 Prion Aggregation Prediction Algorithm (PAPA) (22), and PrionW (23). PLAAC, a
95 Hidden Markov Model (HMM)-based prion prediction algorithm, identified residues
96 14–386 in Nter as the region with a high prion-like score (Figure 1B). Because the
97 predictions of Nter being PrLD varied across the algorithms (Supplementary Figure 1),
98 we next tested experimentally whether Nter has the capacity to form amyloid-like
99 aggregates.

100 **Nter can form SDS-resistant amyloid-like aggregates in a typical amyloid
101 formation manner.**

102 We prepared a recombinant protein of Nter fused with mCherry at its N-terminal
103 (mCherry-Nter) to test whether Nter behaves as a PrLD. PrLDs are known to form
104 aggregates even in the presence of SDS (24). To test if Nter forms SDS-resistant
105 aggregates, we first incubated 5 μ M of monomeric mCherry-Nter in aggregation buffer
106 (20 mM sodium phosphate, 50 mM sodium chloride, pH 7.4) for 3 days at room
107 temperature. Then, the aggregates in the solution were collected by ultracentrifugation
108 and subjected to semi-denaturing detergent agarose gel electrophoresis (SDD-AGE)
109 (24). As references for the assay, mCherry and Sup35NM-mCherry were also subjected
110 to SDD-AGE. mCherry is a monomeric protein (25), whereas Sup35NM is a
111 well-known PrLD and can form amyloid-like aggregates (26). mCherry did not appear
112 as a distinct band, indicating that mCherry did not form any aggregates (Figure 2).
113 Contrarily, Sup35NM-mCherry and mCherry-Nter predominantly migrated as smears
114 with high molecular weights, suggesting that mCherry-Nter formed SDS-resistant
115 aggregates the same as Sup35NM-mCherry (Figure 2). The aggregates of
116 Sup35NM-mCherry and mCherry-Nter were dissolved into soluble fractions when
117 boiled. Thus, the results showed that Nter forms SDS-resistant aggregates.

118 To further test whether Nter aggregates take amyloid-like structures, we performed
119 Thioflavin-T (ThT) assays. ThT is a fluorescent probe with specific fluorescence
120 enhancement upon binding with amyloid fibrils (27, 28). First, we measured the
121 fluorescence spectrum of 20 μ M ThT with and without 5 μ M Nter solution incubated
122 for 12 h beforehand. In the presence of Nter, the fluorescence intensity of ThT was
123 enhanced approximately four times compared to that without Nter, and a peak at 490
124 nm was clearly visible in the fluorescence spectrum (Figure 3A), indicating the presence
125 of amyloid-like structures in the Nter solution.

126 To confirm that these aggregates were formed in a typical amyloid formation manner,
127 we tracked the aggregation process over time by monitoring the ThT fluorescence
128 intensity under microscopy. Consistent with the canonical amyloid formation from
129 monomers generally requiring a lag phase for nucleation (29), the ThT fluorescence
130 intensity with Nter showed an initial lag phase of ~300 min and then reached a plateau
131 at ~800 min after mixing monomeric Nter with ThT in aggregation buffer (Figure 3B,
132 Supplementary Figure 2A). Prion-like proteins generally exhibit seeded
133 self-propagation *in vivo* and *in vitro* (26, 30). Therefore, we prepared the seeds of Nter
134 aggregates and examined whether the seeds can accelerate the aggregation process. The
135 addition of the seeds reduced the initial lag phase to less than 100 min (Figure 3C,
136 Supplementary Figure 2B), showing that the Nter aggregation process follows canonical
137 amyloid formation kinetics with a self-propagation property.

138 **Direct fluorescence visualization of Nter aggregates.**

139 Next, we directly visualized the shape of Nter aggregates using fluorescence
140 microscopy to investigate their morphology. The fluorescence of mCherry-Nter that had
141 been flushed into a glass chamber and incubated for 12 h to form aggregates revealed
142 fractal or fibril-shaped aggregates. When ThT was added to the chamber, the fluorescent
143 images of ThT and mCherry matched completely, suggesting that the entire region of
144 the Nter aggregates took an amyloid-like structure (Figure 4A–D).

145 Since the aggregates showed various shapes (Figure 4A–C and Supplementary Figure 3),
146 we analyzed and classified the shapes using principal component analysis (PCA) with
147 k-means clustering into three groups: linear fractal-shaped, branched fractal-shaped and
148 fibril-shaped aggregates (Figure 4E). The most frequently observed group (56%) was
149 linear fractal-shaped aggregates (Figure 4A and Supplementary Figure 3A). In these
150 aggregates, ~0.5 μm fluorescent puncta were linearly connected to each other. The
151 median length of these aggregates was 1.4 [1.2–2.1] μm (median with quartile range, n
152 = 83, Supplementary Figure 4A), corresponding to ~2 puncta. For the second-largest
153 group, 32% of the whole aggregates were classified as branched fractal-shaped
154 aggregates (Figure 4B and Supplementary Figure 3B). In the aggregates of this group,
155 several puncta were bound to branch off from the main chain of the aggregates. The
156 median length of the longest chain of the aggregates was 3.3 [2.2–4.9] μm (median with
157 quartile range, n = 47, Supplementary Figure 4B), and the median number of branched
158 points was 4 [3–6] (median with quartile range, n = 47, Supplementary Figure 4C). The
159 remaining 12% of the whole aggregates were classified as fibril-shaped aggregates
160 (Figure 4C and Supplementary Figure 3C). This fibril shape is the most common

161 structure for amyloids (31). The median length of the Nter fibril was 27 [19–50] μm
162 (median with quartile range, $n = 17$, Supplementary Figure 4D), taking a shape much
163 longer than the fractal-shaped aggregates. Most Nter fibrils contained a few number of
164 puncta, but these puncta did not directly bind to each other. Thus, we could classify the
165 shapes of the Nter aggregates according to the presence of branching, the length of the
166 aggregates and the alignment of puncta.

167 Time-lapse imaging of the Nter aggregation process demonstrated how the
168 fractal-shaped aggregates formed. First, fluorescent puncta docked to each other,
169 forming linear fractal-shaped aggregates (Figure 5A). Next, linear fractal-shaped
170 aggregates docked to each other, forming branched fractal-shaped aggregates (Figure
171 5B). Finally, branched fractal-shaped aggregates docked to each other, forming larger
172 branched fractal-shaped aggregates (Figure 5C). Therefore, it is most likely that the
173 linear and branched fractal-shaped aggregates share the same formation process, and the
174 difference in the stage of the formation process is seen as the difference in shape.

175 **Discussion**

176 Here, we demonstrated that Nter is a PrLD by *in silico* prediction and biochemical
177 assays. The PLAAC algorithm predicted Nter is a PrLD based on its characteristic
178 sequence. mCherry-Nter fusion protein formed aggregates that exhibit amyloid-specific
179 properties of resistance to SDS and binding to ThT. Furthermore, Nter aggregated in a
180 manner consistent with typical amyloids, including a lag phase for nucleation and
181 self-propagation activity. These results strongly suggest that Nter can form amyloid-like
182 aggregates.

183 From a structural viewpoint, we found that Nter aggregates can take two distinct
184 conformational states. Most aggregates took fractal shapes, while the remaining had
185 fibril shapes. This observation is consistent with previous studies showing that
186 fractal-shaped aggregates tend to form under diffusion limited-conditions (32–35),
187 because protein diffusion is limited in the 145- μm thick chamber in our assays. Within
188 cells, protein diffusion should be even more restricted due to molecular crowding and
189 the size of the cytoplasm. Therefore, Nter aggregates are expected to be more prone to
190 taking on a fractal shape, although it is yet to be demonstrated that these observed
191 fractal-shaped aggregates are really formed in cells. In addition, fractal-shaped
192 aggregates docked to form larger fractal-shaped aggregates. On the other hand, although
193 the forming process of fibril-shaped aggregates was not observed, fibril-shaped
194 aggregates frequently contained a few numbers of puncta in their fibrils (Figure 4C and

195 Supplementary Figure 3C). This finding implies that fibril-shaped aggregates can
196 elongate from the edges of the puncta. Thus, we propose a growth model of Nter
197 aggregates in which the docking of several puncta form fractal-shaped aggregates and
198 polymerization of monomeric Nter from a single punctum forms fibril-shaped
199 aggregates (Figure 5D).

200 Nter aggregation may indirectly modulate the RNA silencing activity of DmAgo2. It
201 has been shown that Nter is not essential for DmAgo2 to exhibit RNA silencing activity
202 under *in vitro* conditions, but the partial truncation of Nter causes RNA silencing
203 defects in the compound eyes of flies (12). Combining these previous studies with our
204 current results raises the possibility that *in vivo* Nter aggregation modulates RISC
205 formation and/or RNA cleavage activity by other domains of DmAgo2. Protein
206 aggregation can both be inhibitory on protein activity by steric hindrance effects on the
207 substrate binding or facilitative by increasing local protein concentrations (36).
208 Furthermore, it has been reported that protein aggregation is a major driving force for
209 liquid-liquid phase separation in the cytoplasm, allowing for the proper subcellular
210 localization of biomolecules (14). Indeed, DmAgo2 is localized in cytoplasmic D2
211 bodies, where endogenous siRNAs are loaded onto DmAgo2, and this localization is
212 essential for the formation of RISC with the proper small RNA (37). The ability of Nter
213 to form amyloid-like aggregates may contribute to such modulation of DmAgo2 activity
214 and localization. Although it still needs to be verified whether the aggregation of
215 endogenous DmAgo2 actually occurs in cells, this hypothesis can explain the apparent
216 inconsistency among previous *in vitro* and *in vivo* studies regarding the effects of Nter
217 in RNA silencing.

218 We focused on DmAgo2 because *Drosophila melanogaster* is one of the most
219 well-studied model organisms in RNA silencing studies. However, the aggregation of
220 the N-terminal region may be a general phenomenon not limited to DmAgo2. Although
221 Argonaute proteins of many organisms have only a short N-terminal region, Ago2
222 among arthropods share glutamine- and glycine-enriched properties in the N-terminal
223 region (38). Their amino acid composition, which is a major factor in
224 amyloid-formation potential (39), is close to DmAgo2 Nter. Therefore, the N-terminal
225 regions of Ago2 in other arthropods may also form amyloid-like aggregates as PrLDs.
226 Also, some plant Argonaute proteins possess glutamine- and glycine-rich N-terminal
227 regions (Supplementary Figure 5), implying they share the same property. Since many
228 Argonaute proteins are likely to have the similar characteristic sequence at the
229 N-terminus, we propose to call such region N-terminal Argonaute Prion-like (NAP)

230 domain. The physiological features and function of this aggregation property of NAP
231 domains await further study, but the property has the potential to function as a
232 regulatory mechanism for RNA silencing across species.

233 **Experimental procedures**

234 **In silico analysis**

235 The amino acid sequence of DmAgo2 (equivalent to Uniprot entry Q9VUQ5 with the
236 deletion of residues 43–48) was derived from native *Drosophila* DNA. The sequence
237 was analyzed using the programs PLAAC (<http://plaac.wi.mit.edu/>) (21), PAPA
238 (<https://combi.cs.colostate.edu/supplements/papa/>) (40), and PrionW
239 (<http://bioinf.uab.cat/prionw/>) (23) with default settings. Disorder scores were
240 calculated using the Predictor of Natural Disordered Regions (PONDR) algorithm with
241 the VLXT predictor (<http://www.pondr.com/>) (41).

242

243 **Plasmid construction**

244 The expression plasmid for N-terminal 6×His-tagged mCherry-Nter was constructed by
245 inserting the sequence encoding DmAgo2 Nter (residues 1–398) amplified from the
246 native DmAgo2 sequence into pCold I (TAKARA Bio) using the InFusion HD cloning
247 kit (Clontech). The expression plasmid for C-terminal 6×His-tagged
248 Sup35NM-mCherry was constructed by inserting the sequence encoding mCherry into
249 the expression plasmid for Sup35NM based on pET29b (residues 1–253) (a kind gift
250 from Prof. M. Tanaka (RIKEN CBS, Japan)).

251

252 **Protein expression and purification**

253 For the protein expression, *E. coli* BL21(DE3) cells were transformed with the
254 constructed plasmids and selected using 50 mg/L carbenicillin (for pCold I and pET11a
255 plasmids) or 50 mg/L kanamycin (for pET29b plasmid). These antibiotics were added in
256 all culture media described below. The transformed *E. coli* cells were pre-cultured in 5
257 mL of LB medium overnight at 37°C and then inoculated into 2 L of TB medium. The
258 cells were grown at 37°C until OD₆₀₀ reached 1.2 (6×His-tagged mCherry-Nter and
259 6×His-tagged Sup35NM-mCherry) or 0.6 (mCherry-His). 6×His-tagged mCherry-Nter
260 was expressed with 1 mM IPTG at 12°C. mCherry-His and 6×His-tagged
261 Sup35NM-mCherry were expressed with 1 mM IPTG at 28°C. After 20 h of culture, the
262 cells were harvested and then lysed in 80 mL of lysis buffer (20 mM Hepes-KOH pH8.0,
263 100 mM NaCl, and 6 M GdnHCl) with 10-s sonication at an intensity of 2 on ice using
264 the ultrasonic disruptor (UD211, TOMY) a total of 9 times with 20 s intervals in
265 between. Following centrifugation of the lysate at 18,000 × g for 30 min, 6 mL of 2 ×
266 Ni-NTA resin (Ni-NTA Agarose HP, FUJIFILM Wako Pure Chemical) was added to

267 the supernatant. After a 60-min rotation at room temperature, the solution was
268 transferred to a disposal column (Muromac Mini-column M, Muromachi Chemical Inc.).
269 The resin was washed twice with 3 column volumes (CVs) of wash buffer (40 mM
270 imidazole-HCl, 20 mM Hepes-KOH, pH8.0, 100 mM NaCl, and 6 M GdnHCl) and
271 eluted with 1 CV of elution buffer (400 mM imidazole-HCl, 20 mM Hepes-KOH,
272 pH8.0, 100 mM NaCl, and 6 M GdnHCl) three times. The elution fractions were
273 resolved on 12% denaturing polyacrylamide gels and visualized by Coomassie Brilliant
274 blue (Nacalai Tesque) staining. Elution fractions containing proteins of interest were
275 pooled and ultra-filtered to remove large aggregates using Vivaspin 6, 100,000 MWCO
276 (Sartorius Stedim Biotech GmbH). Finally, the flow-through was concentrated using
277 Vivaspin 6, 30,000 MWCO (Sartorius Stedim Biotech GmbH). The purified proteins
278 were snap-frozen in liquid nitrogen and stored at -80°C until use.
279 Monomers of mCherry-Nter, mCherry, and Sup35NM-mCherry were prepared as
280 follows. First, purified proteins were diluted 50 times by aggregation buffer (20 mM
281 sodium phosphate, pH 7.4, 50 mM NaCl). Next, the protein solution was
282 ultracentrifuged at 418,000 × g for 20 min at 25°C to remove large aggregates.
283 Following the ultracentrifugation, the supernatant, equivalent to a half volume of the
284 solution, was immediately transferred to a new 1.5 mL tube. The protein concentrations
285 were determined using the following molar extinction coefficients at 280 nm:
286 mCherry-Nter, 66,240 M⁻¹cm⁻¹; Sup35NM-mCherry, 65,670 M⁻¹cm⁻¹; and mCherry,
287 35,870 M⁻¹cm⁻¹. The molar extinction coefficients were calculated using the ProtParam
288 tool of ExPASy (<https://web.expasy.org/protparam/>) (42). Then, the protein solution
289 was diluted to 5 μM by aggregation buffer. Nter aggregates were prepared by incubating
290 the above solution at room temperature for the given time.
291 Seeds were prepared as follows. First, purified mCherry-Nter was diluted 10 times by
292 elution buffer. Next, the solution was applied to a gel filtration spin column (Micro
293 Bio-Spin 30 column, Bio-Rad) equilibrated with aggregation buffer to remove GdnHCl
294 and ultracentrifuged at 418,000 × g for 20 min at 25°C to remove large aggregates.
295 Finally, the supernatant, equivalent to 90% solution volume, was immediately
296 transferred to a new 1.5 mL tube as a seed.

297

298 **SDD-AGE**

299 After monomers were incubated for 3 days at room temperature without agitation,
300 aggregates were pelleted by ultracentrifugation at 418,000 × g for 20 min at 25°C. After
301 completely removing the supernatant, the pellet was resuspended with aggregation

302 buffer. Prepared samples were subjected to SDD-AGE analysis. First, aggregate
303 solutions were mixed with 4 × sample buffer (2 × TAE, 20% (v/v) glycerol, 4% (w/v)
304 SDS, 0.25% (w/v) bromophenol blue). Next, after incubation for 15 min at room
305 temperature with or without heat treatment at 95°C for 2 min, the samples were loaded
306 onto a 1.5% agarose gel containing 1 × TAE and 0.1% SDS. Finally, the aggregates and
307 monomer protein were resolved on the gel in running buffer (1 × TAE, and 0.1% SDS)
308 at 75 V for 90 min at 4°C, followed by capillary blotting onto a PVDF membrane
309 (FUJIFILM Wako Pure Chemical) for the western blotting analysis, as described
310 previously (24). Anti-RFP polyclonal antibody (1/5,000 dilution from the product,
311 PM005, MBL) and HRP-labeled IgG detector (1/5,000 dilution from the product,
312 Western BLoT Rapid Detect v2.0, Takara Bio) were used as primary and secondary
313 antibodies, respectively. Proteins were detected with SuperSignal West Femto (Thermo
314 Scientific) on a gel imager (Amersham Imager 600, Cytiva).

315

316 **Measurement of ThT spectrum**

317 5 μM mCherry-Nter monomers were incubated for 12 h at 25°C to prepare
318 mCherry-Nter aggregates. Fluorescence spectra of mCherry-Nter aggregates in solution
319 with or without 20 μM ThT (FUJIFILM Wako Pure Chemical) were obtained using a
320 fluorescence spectrometer (RF-6000, Shimadzu) at room temperature. The excitation
321 wavelength was set at 455 nm (bandwidth: 5 nm), and the emission was recorded from
322 465 to 560 nm (bandwidth: 5 nm).

323

324 **Chamber preparation for fluorescence microscopy**

325 Flow chambers were prepared as described previously (Narita et al. 2020 *bioRxiv*) with
326 some modifications. Briefly, the coverslips (No. 1S 22 × 22 mm and No.1S 24 × 32 mm,
327 Matsunami) were cleaned in 1 N KOH for 15 min with sonication (Bransonic tabletop
328 cleaner, Emerson). All subsequent preparation procedures were performed in a clean
329 hood (Matsusada Precision). After 20 times rinsing with Milli-Q water and drying in a
330 dryer, the coverslips were cleaned using a plasma cleaner (YHS-R,
331 SAKIGAKE-Semiconductor Co., Ltd.). A 25 μL volume micro-chamber was made by
332 placing a small coverslip of 22 × 22 mm over a 24 × 32 mm glass coverslip using
333 double-sided adhesive tape (145 μm thickness, TERAOKA SEISAKUSHO CO., LTD)
334 in a clean hood. First, Lipidure-BL103 (NOF Corporation) was flowed into the chamber
335 to coat the glass surface. After a 2-min incubation and excess Lipidure-BL103 removal

336 by three washes with 25 μ L aggregation buffer, each sample was flushed into the glass
337 chamber.

338 To evaluate the colocalization of ThT and mCherry and the size distribution of the
339 aggregates, mCherry-Nter aggregates were prepared by a 12 h-incubation of monomer
340 mCherry-Nter at room temperature. mCherry-Nter aggregates were observed as follows.
341 mCherry-Nter aggregates solution was flushed into a Lipidure-coated glass chamber and
342 incubated for 2 min at room temperature. Finally, excess mCherry-Nter unbound on the
343 glass surface was removed by three washes with 25 μ L aggregation buffer with 20 μ M
344 ThT.

345 To measure the aggregation kinetics with or without the aggregate seeds, 5 μ M
346 mCherry-Nter monomers were flushed into a Lipidure-coated glass chamber and sealed
347 with VALAP (1:1:1 mixture of vaseline, lanolin, and paraffin). In the presence of seeds,
348 the final 5 μ M of seeds was added to the monomer solution.

349

350 **Fluorescence Microscopy**

351 Nter aggregates were observed using an inverted microscope (Nikon Ti-E) equipped
352 with a filter cube for mCherry imaging consisting of an excitation filter (#67-033,
353 Edmund Optics), a dichroic mirror (#67-083, Edmund Optics) and an emission filter
354 (#67-036, Edmund Optics) and a filter cube for ThT imaging consisting of an excitation
355 filter (#67-026, Edmund Optics), a dichroic mirror (#67-078, Edmund Optics) and an
356 emission filter (#67-028, Edmund Optics). mCherry and ThT were illuminated with a
357 532 nm-laser (OBIS LX/LS, Coherent) and 445 nm-LED light (SOLIS-445C,
358 THORLABS), respectively. The images were obtained through a Plan Fluor 10 \times /0.30 or
359 Plan Apo λ 40 \times /0.95 objective (Nikon) and recorded at 10 frames/s using an Orca
360 Flash4.0 V3 digital CMOS camera (Hamamatsu Photonics). All equipment in the
361 microscopy system was controlled by Micro-Manager software (43). To measure
362 aggregates formation kinetics, ThT fluorescence images were recorded at 10-min
363 intervals.

364

365 **Image Analysis**

366 Image analysis was performed using either ImageJ or Python. To accurately evaluate
367 the colocalization of ThT and mCherry, we corrected the chromatic aberration of the
368 images obtained from both fluorescence channels using ImageJ and the TurboReg
369 plugin (<http://bigwww.epfl.ch/thevenaz/turboreg/>). The translational distortion

370 parameters were obtained by comparing the averaged image from 10 images of an
371 objective micrometer (OB-M, 1/100, Olympus) in each channel. Four regions of interest
372 (3 × 3 pixels) were used for the calculation to minimize artifacts. The images of
373 mCherry-Nter aggregates corrected using the obtained parameters were used for further
374 colocalization analysis.

375 To classify the shapes of the aggregates observed by the ThT fluorescence, we first
376 extracted features listed below: the longest chain length, the mean width, the mean
377 width per longest chain length, the total fluorescence intensity, the number of branched
378 points per longest chain length, the number of fluorescence intensity peaks per longest
379 chain length, and the percentage of the longest chain length to total length. To calculate
380 these features, the images were preprocessed as described below. First, the background
381 of each image was subtracted using the “Subtract Background” algorithm in ImageJ
382 with a rolling ball radius of 200 pixels. Next, bright particles with more than 9 pixels
383 with fluorescence intensity beyond the given threshold (60 a.u. out of 65,535 a.u.) were
384 detected as aggregates. Following the above preprocessing, to calculate the total length
385 of each aggregate, the “Skeletonize” algorithm was applied to each detected aggregate.
386 Next, the longest chain length and the number of branched points of each aggregate
387 were calculated from the skeletonized images. The mean width of each aggregate along
388 the longest chain was calculated by averaging the widths along the longest chain using
389 ImageJ. The number of fluorescence intensity peaks per longest chain length was
390 detected using the Laplacian of Gaussian (LoG) method available in the scikit-image
391 module in Python (44). This number was evaluated because the smallest unit of a
392 fractal-shaped aggregate is a round-shaped aggregate detected as a fluorescence
393 punctum. Finally, we performed a PCA analysis based on the extracted eight features to
394 obtain the two axes corresponding to the maximum variation (PC1) and second-most
395 variation (PC2). Using the plot, the k-means clustering algorithm classified these
396 aggregates into four groups. One of these groups consisted of only one sample, where
397 both PC1 and PC2 values were outliers because two ends of the aggregate were
398 connected to form a ring. We re-classified this one sample into “fibril-shaped
399 aggregate”. The PCA result was plotted using a Python plotting library (Matplotlib:
400 <http://matplotlib.org>) (45).

401 To calculate the amount of ThT bound to the aggregates at each time point, bright
402 particles with more than 9 pixels of high fluorescence intensity (more than 250 a.u. out
403 of 65,535 a.u.) were detected as the aggregates. ThT fluorescence intensity of the pixels
404 with the detected aggregates were plotted against time.

405

406 **Data availability**

407 All image data sets and source codes for image analysis were deposited at Figshare
408 (10.6084/m9.figshare.20438139)

409

410 **Acknowledgement**

411 We thank Dr. Motomasa Tanaka (RIKEN Center for Brain Science) for providing the
412 expression plasmid of Sup35NM. We also thank the members of the Uemura and Siomi
413 laboratories for valuable discussions.

414

415 **Author contributions**

416 Conceptualization, H.N. and T.S.; Data curation, H.N.; Methodology, H.N. and T.S.;
417 Investigation, H.N.; Analysis, H.N.; Supervision, T.S.; Visualization, H.N. and T.S.;
418 Writing – original draft, H.N. and T.S.; Writing – review & editing, H.N., T.S., R.I. and
419 S.U.

420

421 **Funding and additional information**

422 HN is supported by a JSPS Research Fellowship for Young Scientists and WINGS-LST,
423 the University of Tokyo. This work is supported by Grant-in-Aid for JSPS Fellows,
424 21J11218 (to HN) and by JSPS KAKENHI (18K06147,19H05379 and 21H00387 to
425 T.S.).

426

427 **Conflict of interests**

428 The authors declare no conflicts of interest associated with this manuscript.

429 **References**

- 430 1. Denli, A. M., and Hannon, G. J. (2003) RNAi: an ever-growing puzzle. *Trends Biochem. Sci.* **28**, 196–201
- 431 2. Siomi, H., and Siomi, M. C. (2009) On the road to reading the RNA-interference code. *Nature*. **457**, 396–404
- 432 3. Okamura, K. (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. *Genes Dev.* **18**, 1655–1666
- 433 4. Olina, A. V., Kulbachinskiy, A. V., Aravin, A. A., and Esyunina, D. M. (2018) Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes. *Biochemistry Moscow*. **83**, 483–497
- 434 5. Kwak, P. B., and Tomari, Y. (2012) The N domain of Argonaute drives duplex unwinding during RISC assembly. *Nat Struct Mol Biol.* **19**, 145–151
- 435 6. Boland, A., Tritschler, F., Heimstädt, S., Izaurralde, E., and Weichenrieder, O. (2010) Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. *EMBO Rep.* **11**, 522–527
- 436 7. Ma, J.-B., Yuan, Y.-R., Meister, G., Pei, Y., Tuschl, T., and Patel, D. J. (2005) Structural basis for 5'-end-specific recognition of guide RNA by the *A. fulgidus* Piwi protein. *Nature*. **434**, 666–670
- 437 8. Lingel, A., Simon, B., Izaurralde, E., and Sattler, M. (2003) Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. *Nature*. **426**, 465–469
- 438 9. Parker, J. S., Roe, S. M., and Barford, D. (2004) Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. *EMBO J.* **23**, 4727–4737
- 439 10. Song, J.-J. (2004) Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity. *Science*. **305**, 1434–1437
- 440 11. Hain, D., Bettencourt, B. R., Okamura, K., Csorba, T., Meyer, W., Jin, Z., Biggerstaff, J., Siomi, H., Hutvagner, G., Lai, E. C., Welte, M., and Müller, H.-A. J. (2010) Natural Variation of the Amino-Terminal Glutamine-Rich Domain in Drosophila Argonaute2 Is Not Associated with Developmental Defects. *PLoS ONE*. **5**, e15264
- 441 12. Meyer, W. (2006) Overlapping Functions of Argonaute Proteins in Patterning and Morphogenesis of Drosophila Embryos. *PLoS Genet.* **2**, e134
- 442 13. Liu, Y., Ye, X., Jiang, F., Liang, C., Chen, D., Peng, J., Kinch, L. N., Grishin, N. V., and Liu, Q. (2009) C3PO, an Endoribonuclease That Promotes RNAi by Facilitating RISC Activation. *Science*. **325**, 750–753

465 14. Banani, S. F., Lee, H. O., Hyman, A. A., and Rosen, M. K. (2017) Biomolecular
466 condensates: organizers of cellular biochemistry. *Nat Rev Mol Cell Biol.* **18**,
467 285–298

468 15. Gotor, N. L., Armaos, A., Calloni, G., Vabulas, R. M., de Groot, N. S., and
469 Tartaglia, G. G. (2020) *RNA-Binding and Prion Domains: The Yin and Yang of*
470 *Phase Separation*, Molecular Biology, 10.1101/2020.01.14.904383

471 16. Jakobson, C. M., and Jarosz, D. F. (2018) Organizing biochemistry in space and
472 time using prion-like self-assembly. *Curr. Opin. Syst. Biol.* **8**, 16–24

473 17. Keleman, K., Krüttner, S., Alenius, M., and Dickson, B. J. (2007) Function of the
474 Drosophila CPEB protein Orb2 in long-term courtship memory. *Nat Neurosci.* **10**,
475 1587–1593

476 18. Alberti, S., Halfmann, R., King, O., Kapila, A., and Lindquist, S. (2009) A
477 Systematic Survey Identifies Prions and Illuminates Sequence Features of
478 Prionogenic Proteins. *Cell.* **137**, 146–158

479 19. King, O. D., Gitler, A. D., and Shorter, J. (2012) The tip of the iceberg:
480 RNA-binding proteins with prion-like domains in neurodegenerative disease.
481 *Brain Research.* **1462**, 61–80

482 20. Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., and Dunker, A. K.
483 (2001) Sequence complexity of disordered protein. *Proteins.* **42**, 38–48

484 21. Lancaster, A. K., Nutter-Upham, A., Lindquist, S., and King, O. D. (2014)
485 PLAAC: a web and command-line application to identify proteins with prion-like
486 amino acid composition. *Bioinformatics.* **30**, 2501–2502

487 22. Toombs, J. A., Petri, M., Paul, K. R., Kan, G. Y., Ben-Hur, A., and Ross, E. D.
488 (2012) De novo design of synthetic prion domains. *PNAS.* **109**, 6519–6524

489 23. Zambrano, R., Conchillo-Sole, O., Iglesias, V., Illa, R., Rousseau, F., Schymkowitz,
490 J., Sabate, R., Daura, X., and Ventura, S. (2015) PrionW: a server to identify
491 proteins containing glutamine/asparagine rich prion-like domains and their
492 amyloid cores. *Nucleic Acids Res.* **43**, W331–W337

493 24. Halfmann, R., and Lindquist, S. (2008) Screening for Amyloid Aggregation by
494 Semi-Denaturing Detergent-Agarose Gel Electrophoresis. *J Vis Exp.* **17**, e838

495 25. Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A.
496 E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow
497 fluorescent proteins derived from *Discosoma* sp. red fluorescent protein. *Nat*
498 *Biotechnol.* **22**, 1567–1572

499 26. King, C.-Y., Tittmann, P., Gross, H., Gebert, R., Aebi, M., and Wuthrich, K. (1997)
500 Prion-inducing domain 2–114 of yeast Sup35 protein transforms in vitro into

501 amyloid-like \square filaments. *Proc. Natl. Acad. Sci. USA.* **94**, 6618–6622

502 27. Gade Malmos, K., Blancas-Mejia, L. M., Weber, B., Buchner, J.,
503 Ramirez-Alvarado, M., Naiki, H., and Otzen, D. (2017) ThT 101: a primer on the
504 use of thioflavin T to investigate amyloid formation. *Amyloid.* **24**, 1–16

505 28. Levine, H. (1993) Thioflavine T interaction with synthetic Alzheimer's disease β
506 -amyloid peptides: Detection of amyloid aggregation in solution: Thioflavine T
507 fluorescence with β /A4 peptides. *Protein Sci.* **2**, 404–410

508 29. Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A., and Radford, S. E.
509 (2018) A new era for understanding amyloid structures and disease. *Nat Rev Mol
510 Cell Biol.* **19**, 755–773

511 30. Glover, J. R., Kowal, A. S., Schirmer, E. C., Patino, M. M., Liu, J.-J., and
512 Lindquist, S. (1997) Self-Seeded Fibers Formed by Sup35, the Protein
513 Determinant of [PSI $^+$], a Heritable Prion-like Factor of *S. cerevisiae*. *Cell.* **89**,
514 811–819

515 31. Wu, H., and Fuxreiter, M. (2016) The Structure and Dynamics of Higher-Order
516 Assemblies: Amyloids, Signalosomes, and Granules. *Cell.* **165**, 1055–1066

517 32. Murr, M. M., and Morse, D. E. (2005) Fractal intermediates in the self-assembly of
518 silicatein filaments. *Proc. Natl. Acad. Sci. U.S.A.* **102**, 11657–11662

519 33. Herrera, M. G., Benedini, L. A., Lonez, C., Schilardi, P. L., Hellweg, T.,
520 Ruysschaert, J.-M., and Dodero, V. I. (2015) Self-assembly of 33-mer gliadin
521 peptide oligomers. *Soft Matter.* **11**, 8648–8660

522 34. Hernández, N. E., Hansen, W. A., Zhu, D., Shea, M. E., Khalid, M., Manichev, V.,
523 Putnins, M., Chen, M., Dodge, A. G., Yang, L., Marrero-Berrios, I., Banal, M.,
524 Rechani, P., Gustafsson, T., Feldman, L. C., Lee, S.-H., Wackett, L. P., Dai, W., and
525 Khare, S. D. (2019) Stimulus-responsive self-assembly of protein-based fractals by
526 computational design. *Nat. Chem.* **11**, 605–614

527 35. Khatun, S., Singh, A., Maji, S., Maiti, T. K., Pawar, N., and Gupta, A. N. (2020)
528 Fractal self-assembly and aggregation of human amylin. *Soft Matter.* **16**,
529 3143–3153

530 36. Otzen, D., and Riek, R. (2019) Functional Amyloids. *Cold Spring Harb Perspect
531 Biol.* **11**, a033860

532 37. Nishida, K. M., Miyoshi, K., Ogino, A., Miyoshi, T., Siomi, H., and Siomi, M. C.
533 (2013) Roles of R2D2, a Cytoplasmic D2 Body Component, in the Endogenous
534 siRNA Pathway in *Drosophila*. *Mol. Cell.* **49**, 680–691

535 38. Palmer, W. H., and Obbard, D. J. (2016) Variation and Evolution in the
536 Glutamine-Rich Repeat Region of *Drosophila* Argonaute-2. *G3.* **6**, 2563–2572

537 39. Toombs, J. A., McCarty, B. R., and Ross, E. D. (2010) Compositional
538 Determinants of Prion Formation in Yeast. *Mol Cell Biol.* **30**, 319–332

539 40. Cascarina, S. M., Paul, K. R., and Ross, E. D. (2017) Manipulating the aggregation
540 activity of human prion-like proteins. *Prion.* **11**, 323–331

541 41. Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K., and Uversky, V. N.
542 (2010) PONDR-FIT: A meta-predictor of intrinsically disordered amino acids.
543 *Biochim. Biophys. Acta - Proteins Proteom.* **1804**, 996–1010

544 42. Gasteiger, E. (2003) ExPASy: the proteomics server for in-depth protein
545 knowledge and analysis. *Nucleic Acids Res.* **31**, 3784–3788

546 43. Edelstein, A. D., Tsuchida, M. A., Amodaj, N., Pinkard, H., Vale, R. D., and
547 Stuurman, N. (2014) Advanced methods of microscope control using μ Manager
548 software. *J Biol Methods.* **1**, e10

549 44. van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D.,
550 Yager, N., Gouillart, E., and Yu, T. (2014) scikit-image: image processing in
551 Python. *PeerJ.* **2**, e453

552 45. Hunter, J. D. (2007) Matplotlib: A 2D Graphics Environment. *Comput. Sci. Eng.* **9**,
553 90–95

554

555 **Figure legends**

556 **Figure 1. DmAgo2 has a long characteristic N-terminal region**

557 (A) A schematic diagram of the full-length DmAgo2 protein and the sequence of N-ter.
558 The four conserved domains are shown in gray, while the N-terminal region is shown in
559 orange. In the N-ter sequence, glutamine and glycine residues are shown in orange. (B)
560 Plot of the prion-like probability of the DmAgo2 sequence predicted by PLAAC (top) and
561 a heatmap of the degree of disorder predicted by PONDR analysis (bottom).

562

563 **Figure 2. mCherry-Nter formed SDS-resistant aggregates**

564 SDD-AGE analysis of mCherry-Nter aggregates. mCherry and Sup35NM-mCherry were

565 used as reference controls. mCherry-tagged polypeptides were detected by western
566 blotting with anti-RFP polyclonal antibodies. NB, non-boiled fraction; B, boiled fraction.

567

568 **Figure 3 Nter aggregated in the same manner as common amyloids**

569 **(A)** Fluorescence spectra of ThT in the absence (blue) and presence (orange) of Nter
570 aggregates.

571 **(B)** Time-course of the ThT fluorescence intensity in the absence (blue) and presence
572 (orange) of mCherry-Nter monomers. The solid curves and filled area indicate the mean
573 value and standard deviation of three repetitive experiments, respectively.

574 **(C)** Time-course of ThT fluorescence intensity in the absence (blue) and presence
575 (orange) of mCherry-Nter seeds. The solid curves and filled area indicate the mean value
576 and standard deviation of three repetitive experiments, respectively.

577

578 **Figure 4 Fluorescence imaging of the Nter aggregate morphology**

579 **(A–C)** Representative fluorescent images of linear fractal-shaped **(A)**, branched
580 fractal-shaped **(B)** and fibril-shaped aggregates **(C)**. Fluorescence signals from mCherry
581 (left panels, magenta) and ThT (middle panels, green) showed almost identical images.
582 Merged images are shown in the right panels. Scale bars represent 1 μm **(A, B)** and 5 μm
583 **(C)**.

584 **(D)** Fluorescence intensity profiles of mCherry and ThT along the line in the merged
585 image of Figure 4C. Intensities were normalized.

586 **(E)** PCA analysis of the shapes of the Nter aggregates. The plots were colored according

587 to the classified group (blue, linear fractal-shaped; green, branched fractal-shaped;
588 orange, fibril-shaped).

589

590 **Figure 5 Fractal-shaped Nter aggregates grew by docking between puncta**

591 (A–C) Time-lapse images of the Nter aggregates formation. Ten-minute intervals are
592 shown from left to right. Scale bars represent 5 μm (A, B) and 10 μm (C).

593 (D) Model of the aggregate formation. Assuming both fibril- and fractal-shaped Nter
594 aggregates grew from a single punctum, the polymerization of Nter monomers from the
595 punctum results in fibril-shaped aggregates, while the fractal-shaped aggregates result
596 from puncta binding to each other (i). The binding of several linear fractal-shaped
597 aggregates produces branched fractal-shaped aggregates (ii). The branched
598 fractal-shaped aggregate becomes bigger by docking with other fractal-shaped aggregates
599 (iii).

Figure 1

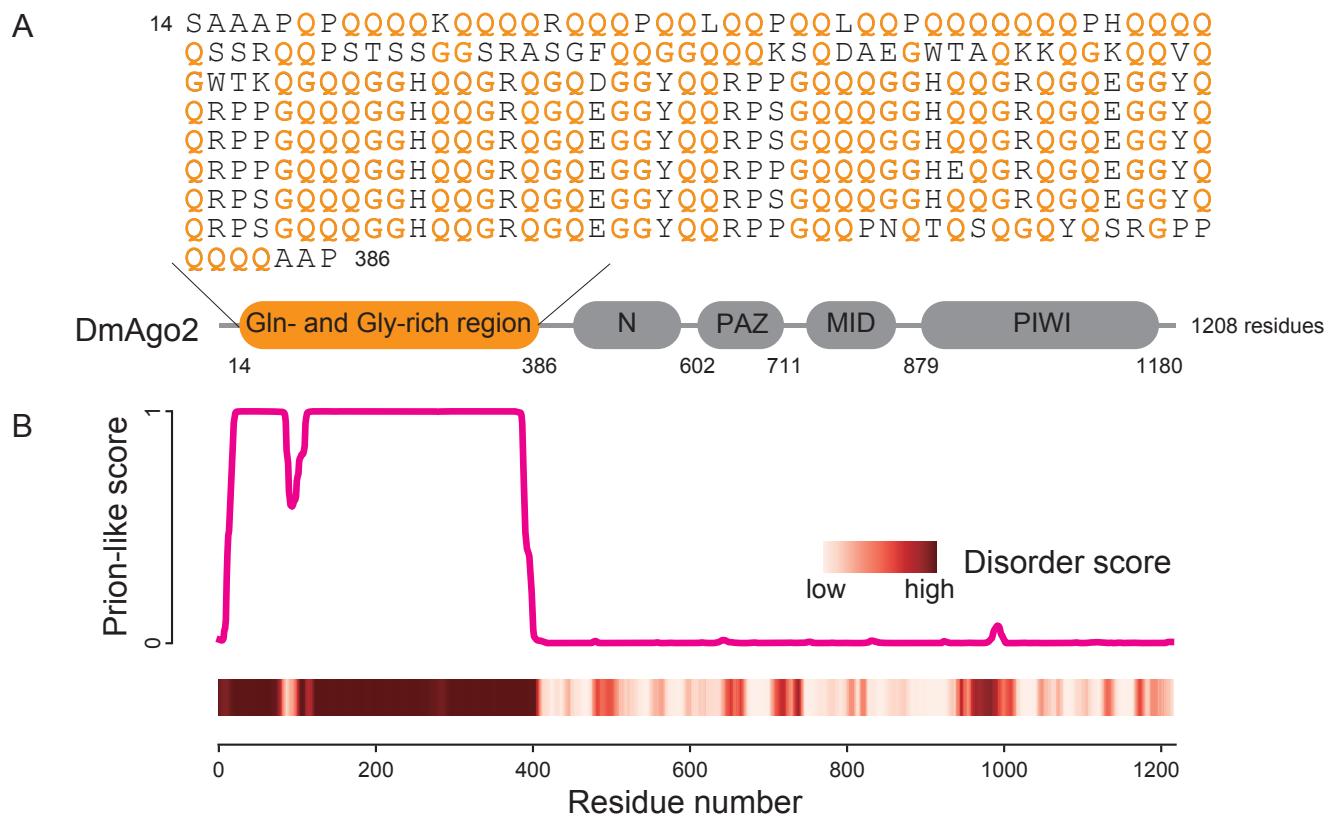


Figure 2

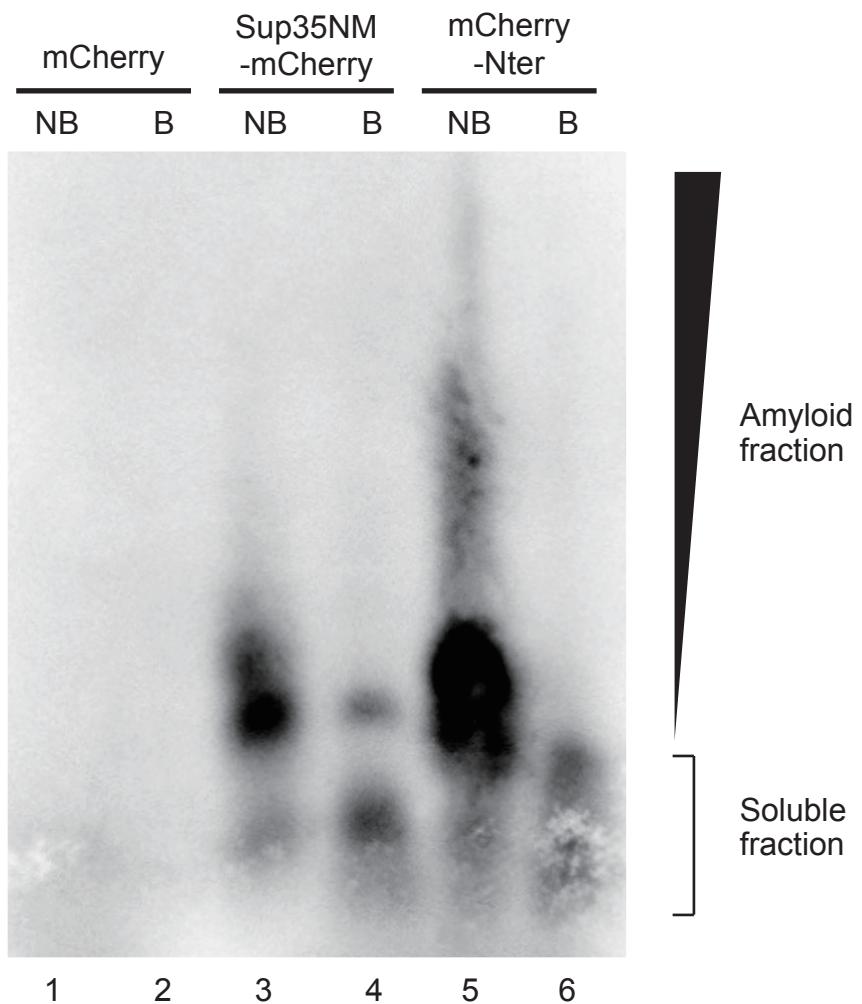


Figure 3

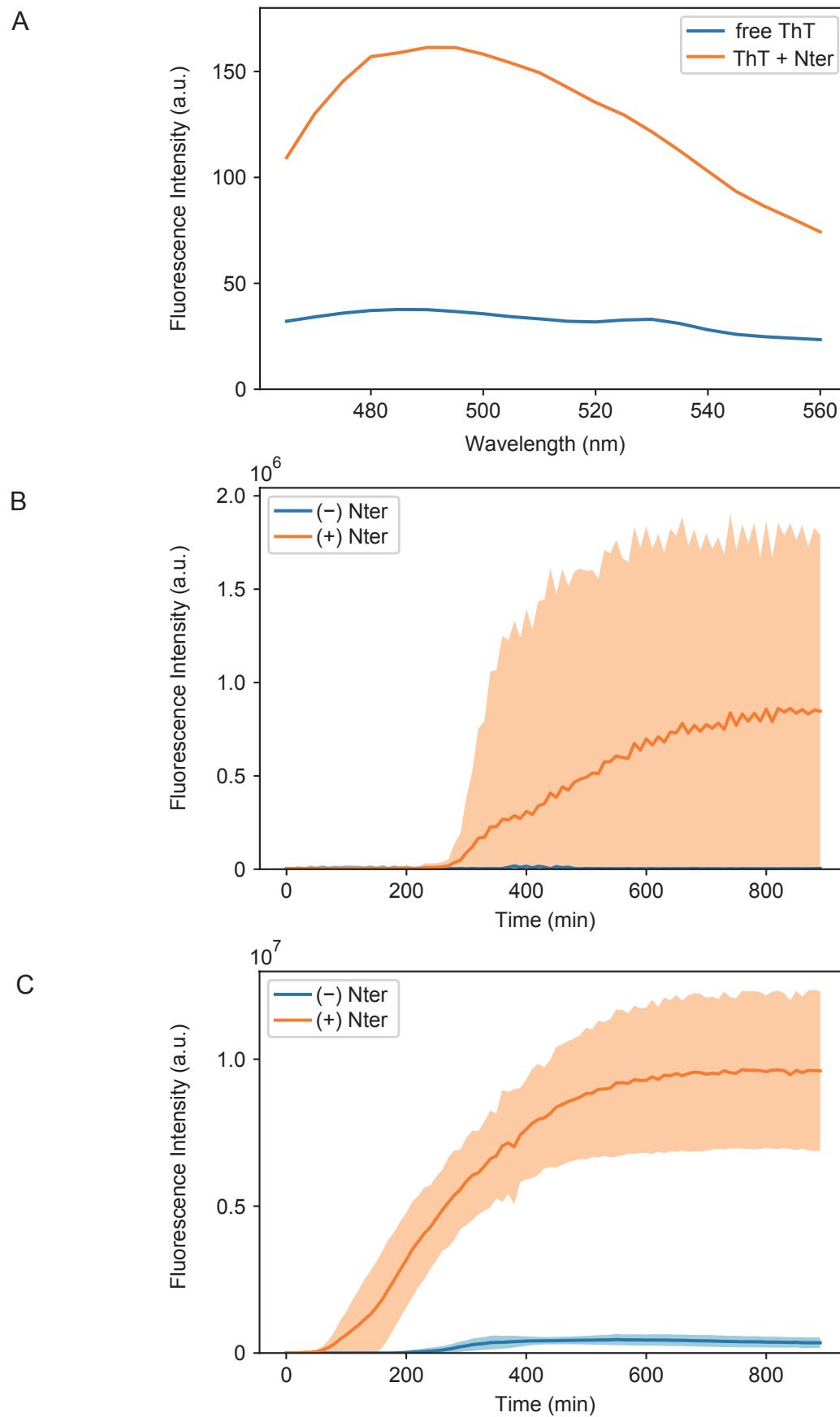


Figure 4

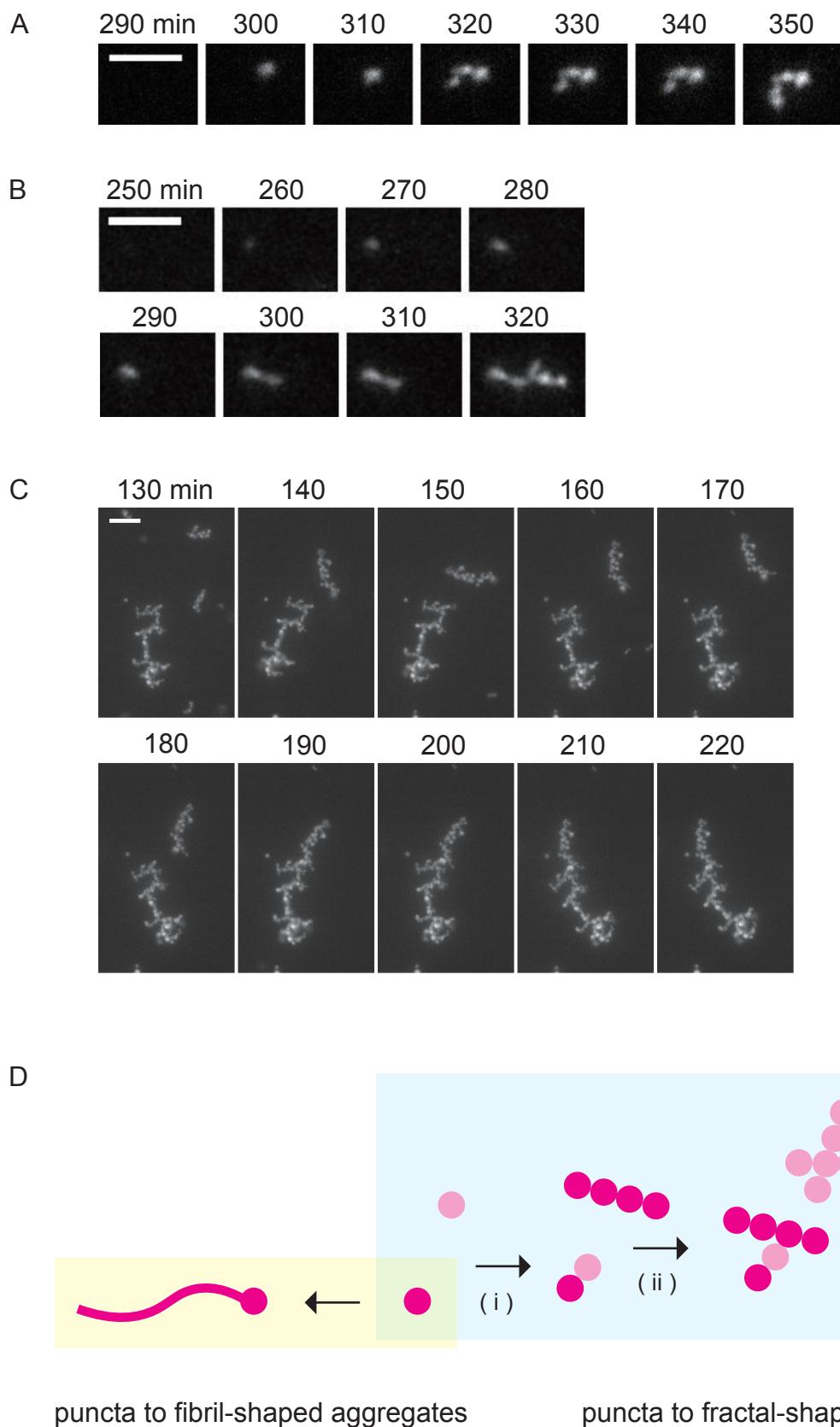



Figure 5

