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Abstract

Constant pH molecular dynamics (MD) simulations sample protonation states on

the fly according to the conformational environment and user specified pH condition;

however, the current accuracy is limited due to the use of implicit-solvent models or

a hybrid solvent scheme. Here we report the first GPU-accelerated implementation,

parameterization, and validation of the all-atom continuous constant pH MD (CpHMD)

method with particle-mesh Ewald (PME) electrostatics in the Amber22 pmemd.cuda

engine. The titration parameters for Asp, Glu, His, Cys, and Lys were derived for

the CHARMM c22 and Amber ff14sb and ff19sb force fields. We then evaluated

the PME-CpHMD method using the asynchronous pH replica-exchange titration sim-

ulations with the c22 force field for six benchmark proteins, including BBL, hen egg

white lysozyme (HEWL), staphylococcal nuclease (SNase), thioredoxin, ribonuclease

A (RNaseA), and human muscle creatine kinase (HMCK). The root-mean-square de-

viation from the experimental pK a’s of Asp, Glu, His, and Cys is 0.76 pH units, and

the Pearson’s correlation coefficient for the pK a shifts with respect to model values

is 0.80. We demonstrated that a finite-size correction or much enlarged simulation

box size can remove a systematic error of the calculated pK a’s and improve agree-

ment with experiment. Importantly, the simulations captured the relevant biology in

several challenging cases, e.g., the titration order of the catalytic dyad Glu35/Asp52 in

HEWL and the coupled residues Asp19/Asp21 in SNase, the large pK a upshift of the

deeply buried catalytic Asp26 in thioredoxin, and the large pK a downshift of the deeply

buried catalytic Cys283 in HMCK. We anticipate that PME-CpHMD offers proper pH

control to improve the accuracies of MD simulations and enables mechanistic stud-

ies of proton-coupled dynamical processes that are ubiquitous in biology but remain

poorly understood due to the lack of experimental tools and limitation of current MD

simulations.
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1 Introduction

Accurate and efficient molecular modeling of proton-coupled dynamic processes is im-

portant, as biological functions and material properties often depend on protonation and

deprotonation. For example, many secondary active membrane transporters utilize pH

gradient and proton coupling to drive the conformation transitions for function.1 Many en-

zymes have pH-dependent catalytic activities, e.g., the active site of SARS-CoV-2 main

protease collapses upon protonation of a conserved histidine residue.2,3 Well known ex-

amples of pH-dependent materials include aminopolysaccharide chitosan which self as-

sembles into hydrogels in response to a small increase in solution pH.4 The ability to

model proton-coupled dynamic processes is also important for studying protein-ligand

binding, as upon protein-ligand association, the protonation state of the protein and the

ligand may change.5,6

Unlike the conventional molecular dynamics (MD) that assumes fixed protonation states,

constant pH MD allows protonation states to evolve with time according to the conforma-

tional environment and a preset solution pH. Currently, perhaps the most popular constant

pH approaches are based on λ dynamics and the hybrid Monte-Carlo (MC)/MD scheme

(also known as the stochastic titration method7). The former8–12 uses continuous titration

coordinates to propagate protonation states based on an extended Lagrange approach

called λ dynamics,13 while the latter7,14–16 combines MD with periodic MC sampling of

discrete protonated and deprotonated states. Hereafter, we will refer to the former as the

continuous and the latter as the discrete constant pH methods. The details of these tech-

niques can be found in the recent reviews.17–19 Although the first (discrete) constant pH

method7 is based on a hybrid-solvent scheme (see later discussion), the early implemen-

tations of the constant pH methods are solely based on the implicit-solvent generalized

Born (GB) models, i.e., both conformational and protonation state sampling is conducted

in implicit solvent.8,9,14 The use of the implicit-solvent models significantly reduces sys-
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tem size and allows faster sampling of solute conformational states relative to simulations

with explicit water models.17 However, for many biologically relevant systems, e.g., trans-

membrane proteins (with heterogeneous dielectric environment), nucleic acids (highly

charged), and protein-ligand and protein-protein bound states, implicit-solvent models are

not sufficiently accurate. This has motivated the development of explicit-solvent constant

pH methods, which include the hybrid-solvent scheme and the all-atom approaches.

In a hybrid-solvent constant pH scheme, the MC sampling of protonation states or λ

dynamics propagation of titration coordinates is conducted in implicit solvent, while MD

is conducted in explicit water. The first hybrid-solvent constant pH method was devel-

oped by Baptista and Soares, who combined MD in explicit solvent with MC sampling

based on Poisson-Boltzmann (PB) calculations.7 This method was first implemented

in GROMOS9620 and later improved and implemented21 in GROMACS.22 Following

the aforementioned work and making use of the state-of-the-art GB models, the hybrid-

solvent continuous23 and discrete15 constant pH methods were developed and imple-

mented in CHARMM24 and Amber.25 Compared to the purely GB based constant pH

methods, the hybrid-solvent approaches demonstrated significantly improved accuracy

for conformational dynamics and consequently better agreement with the experimen-

tal pK a’s.15,23,26,27 Importantly, the hybrid-solvent approach allowed the investigations

of pH-dependent mechanisms of a variety of systems that are (due to inaccuracy) un-

feasible to model with implicit-solvent models, e.g., proteins in mixed solvent,28 phase

transition of surfactants,29 polysaccharides,4 and lipid bilayers,30 proteins at the water-

membrane interface,31 as well as transmembrane proteins32 and peptides inserted in

the membrane.33 Nonetheless, a drawback is that the Hamiltonian cannot be expressed

in a hybrid scheme (semigrand canonical ensemble), and thus energy conservation is

not proven to hold. In terms of applications, hybrid-solvent simulations of protein-ligand

complexes are challenging, as the implicit-solvent description for ligand is not very accu-

rate and the effects of explicit water and ions which play significantly roles cannot be fully
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modeled.34

To overcome the limitations of the hybrid-solvent scheme, much effort has been made

in the development of all-atom constant pH methods over the past decade. The CHARMM

program24 contains the CPU implementations of the all-atom continuous constant pH

method with generalized reaction field35,36 or particle-mesh Ewald (PME) electrostat-

ics for λ dynamics,11 and the multiple site λ dynamics (MSλD)37 based constant pH

method.10,38 These methods have been validated using pK a calculations for a number

of proteins10,11,36 as well as RNAs.38 The λ dynamics based constant pH method was

also implemented in the GROMACS program,22 although only the single-site titratable

model was considered and performance for proteins remains to be demonstrated.12 The

NAMD program39 contains an implementation of the all-atom constant pH method based

on a non-equilibrium MD-MC approach,16 which overcomes the issue of low acceptance

of MC moves due to a large energy change resulting from a sudden switch in protonation

state, as in the aforementioned hybrid MC/MD constant pH approaches.15,21

The aforementioned all-atom continuous constant pH methods10,11,35,38 are promis-

ing; however, the CPU implementations limit the simulation time scale and system size

that can be studied. Recently, the Brooks group developed the basic lambda dynamics

engine (BLaDE) which enables GPU acceleration for MSλD based alchemical free en-

ergy calculations and constant pH simulations.40 In this work, we report the development

and validation of the GPU all-atom continuous constant pH method in the pmemd.cuda

engine of Amber program (version 2020).41 Following the discussion of the model param-

eterization and validation, we present the data from the pK a calculations of benchmark

proteins, including BBL, HEWL, SNase, RNase A, BACE 1, thioredoxin, and HMCK. In

addition to comparison to experimental pK a values, we will discuss the coupled titration of

catalytic residues, pH-dependent response of solvent exposure, titration of deeply buried

sites. Finally, we will discuss the finite-size effects and project future directions.
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2 Methods and Implementation

The all-atom PME continuous constant pH MD (CpHMD) method. In contrast to the

conventional MD, the continuous constant pH MD (CpHMD) method treats the protonation

states of titratable sites as dynamic variables {λα} and propagates them simultaneously

with the spatial coordinates using an extended Hamiltonian,8,42

H({r i}, {λα}) =
1

2

∑
i

mi ṙ
2
i +

1

2

∑
α

mαλ̇
2
α + U ind({r i})

+ U hybr({r i}, {λα}) +
∑
α

U ∗(λα),

(1)

where {r i} and {λα} refer to the spatial and titration coordinates, respectively. A depro-

tonated state is represented by the λ values close to 1 (λ > 0.8 in this work), whereas a

protonated state is represented by the λ values close to 0 (λ ≤ 0.2 in this work). In order

to impose the boundaries 0 and 1 for λ, we express it as11,23,42

λ = sin2 θ, (2)

where the θ variable is allowed to assume any real value, as with the spatial coordinates.

Therefore, θ is the actual coordinate in the integrator. However, for the convenience of

discussion, we will write all equations in terms of λ.

The two first terms in the Hamiltonian (Eq. 1) describe the kinetic energies of the real

atoms and λ particles. The λ particles are assigned a fictitious mass, which is similar to

a heavy atom (10 amu). U ind represent the λ-independent bonded energies (see later

discussion) and non-bonded energies. For the all-atom CpHMD method, U hybr is a sum

of the λ-dependent Lennard Jones and electrostatic energies.11 The last term U ∗ in the

Hamiltonian (Eq. 1) represents three biasing potentials that are only dependent on λ,

U ∗(λα) = –Umod(λα) + U barr(λα) + U pH(λα). (3)
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Umod represents the potential of mean force (PMF) for titrating a model compound or

peptide in solution, which can be obtained from the traditional free energy simulations

such as thermodynamic integration (TI). U barr is a quadratic barrier potential centered in

the middle of the λ coordinate to prolong the residence times of the end states (λ close to

0 or 1):

U barr(λα) = 4β(λα – 1/2)2, (4)

where β is a parameter affecting the barrier height. In the current implementation, it is set

to 2.0 kcal/mol for all types of residues, similar to our previous work.11 U pH represents

the free energy added to the deprotonation reaction due to a change in solution (infinite

proton bath) pH

U pH(λα) = ln10 · kBT (pH – pKmod
a )λα (5)

where kB is the Boltzmann constant, T is the system temperature, and pK a
mod is refer-

ence pK a of the model compound or peptide.

When λ = 0, the proton is present and fully interacts with its environment, and when

λ = 1, it is treated as a ghost particle without non-bonded interactions with its environ-

ment. The partial charges on the titratable residue are linearly scaled between the proto-

nated and deprotonated states, as in the original CpHMD framework.8,42 This differs from

the multi-site λ dynamics37 dynamics based MSλD CpHMD method,10,38 which scales

potential energies. Formally, the λ-dependent Lennard-Jones interaction energy between

a titratable hydrogen i and another non-titratable atom j is given by

Ũ LJ
ij (λi ) = (1 – λi )U

LJ
ij , (6)

where λi is the titration variable associated with the titratable hydrogen, and U LJ
ij is the

Lennard-Jones interaction energy between atoms i and j when the hydrogen is present.

Similarly, the Lennard-Jones interaction energy between two titratable hydrogens is given
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by

Ũ LJ
ij

(
λi ,λj

)
= (1 – λi )

(
1 – λj

)
U LJ
ij . (7)

The charge of atom j in the titratable residue α is given by

qj (λα) = (1 – λα) qj (0) + λαqj (1) , (8)

where qj (0) is the charge appropriate to the protonated form of the residue, and qj (1) is

the charge appropriate to the deprotonated form.

The implementation presented in this paper uses fully explicit water molecules and

treats the nonbonded electrostatic interaction energy between atoms with particle-mesh

Ewald (PME) electrostatics. Because the λ values are treated as dynamic coordinates of

the system, the derivatives of the energy with respect to the λ values are required. In the

pmemd implementation25 of PME electrostatics, this interaction energy is separated into

several terms,

VCoulomb = Vdirect + Vreciprocal + Vself + Vplasma, (9)

where

Vdirect =
1

2

∑
n

natoms∑
i ,j

qiqj
erfc

(
αrij ,n

)
rij ,n

(10)

is the short-range component of the electrostatic energy, where n enumerates the copies

of each atom from the neighboring periodic cells. This summation is performed only over

those atom pairs i , j for which rij falls within a small cutoff distance.

Vreciprocal =
1

2πν

∑
m 6=0

exp
(

– (πm/α)2
)

m2
S (m) S (–m) (11)

is the reciprocal space energy, where ν is the volume of the unit cell, m is reciprocal lattice

vector, and S (m) is the structure factor,

8
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S (m) =

natoms∑
i=1

qi exp (2πim× ri ), (12)

which can be approximated by

S (m) ≈ ∑
k1,k2,k3

Q (k1, k2, k3) exp

(
2πi

(
m1k1
K1

+
m2k2
K2

+
m3k3
K3

))

= F (Q) (m1,m2,m3) ,

(13)

where Q (k1, k2, k3) is a matrix constructed by interpolating the charge distribution in the

simulation cell to a grid with the same dimensions k1, k2, k3, and F (Q) (m1,m2,m3) is the

fast Fourier transform of the Q matrix.

The Vreciprocal can then be written as

1

2πν

∑
m 6=0

exp
(

– (πm/α)2
)

m2
F (Q) (m)F (Q) (–m) , (14)

Vself =
–α√
π

natoms∑
i=1

q2i , (15)

is a term that removes the self-interaction energies contained in Vreciprocal, and

Vplasma = –
π

2Vα2

(∑
i

qi

)2

, (16)

where V is the volume of the unit cell is a term that counterbalances any net charge on

the system.

Implementation in the pmemd.cuda engine. As in our previous CPU implementa-

tion of the PME-CpHMD method in CHARMM,11 the derivatives of Ũ LJ
ij (λi ) with respect
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to the titration variables can be derived from Eqs. 6 and 7, and computing them requires

changes to be made to the Lennard-Jones forces between titratable atoms. In the present

implementation, these modifications were made by making appropriate changes to the

direct-force CUDA kernel in pmemd.cuda where the Lennard-Jones forces are computed.

This kernel was also modified to compute the Lennard-Jones contributions to the forces

on the λ titration variables. The electrostatic spatial forces on the atoms can be made to

depend on the λ values by using the normal force calculations with the charges given in

Eq. 8 according to the instantaneous values of the λ titration variables. Since Vself and

Vplasma are independent of the spatial coordinates of the atoms, they are not computed

during standard MD runs in pmemd.cuda. However, because these energies do depend

on the λ titration coordinates, their derivatives with respect to the titration coordinates are

required in CpHMD. The calculation of these derivatives was added to the kernel that

interpolates the λ-dependent atomic partial charges, which was previously implemented

by us for the generalized Born based CpHMD method.43 This kernel otherwise required

minimal changes for the present implementation. The derivatives of Vdirect with respect

to λ are computed through appropriate changes to the direct-force kernel in pmemd.cuda.

The derivatives of Vreciprocal with respect to λ are computed with a new kernel that com-

putes the derivatives given by Eq. 14 using the same method as outlined in our previous

CPU implementation in CHARMM.11

Modification of the force field parameters. The current constant pH methods are

based on single topology, i.e., titration is represented by switching on/off the charge and

Lenard-Jones interactions of the dummy hydrogen as well as by transforming between the

protonated and deprotonated forms of sidechain partial charges.19 The latter is straight-

forward to implement for the CHARMM force fields,44 as the backbone partial charges

are independent of the side chain. This is however not the case for the Amber force

fields,45,46 in which the backbone charges are dependent on the side chain protonation

10
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state. Due to the 1-4 interactions between the backbone and adjacent sidechain, this

dependency makes it impossible to use a single reference scheme, i.e., one model for

one type of sidechain. To circumvent this problem, we adopted the scheme used in the

discrete constant pH implementation in Amber14 by fixing the backbone charges to the

values of one protonation state (charged Asp/Glu and neutral His in our implementation)

and absorbing the residual change in charge (ranging from 0.10 to 0.14 e for Asp, Glu and

His) onto the Cβ atom. Such a scheme is not ideal and might introduce potential artifacts

to conformational dynamics; thus, we only adopted it for titration dynamics. For conforma-

tional dynamics, the partial charges are unmodified and the charge interpolation between

the protonated and deprotonated states is made to both backbone and sidechain atoms.

Here we note that in our approach the conformational dynamics and titration dynamics are

treated on an equal footing, with both sets of coordinates propagating together. We don’t

separate these into separate phases of the simulation. Simply, we use different charge

sets for the forces on the titration and spatial coordinates. By doing so, the conformational

dynamics from the optimized force field is preserved.

Another compromise and approximation we made is in the bonded terms, which are

not scaled between two protonation states as in the early CpHMD implementations.8,42

For Asp and Glu, the bonded parameters for the protonated and deprotonated forms are

different in both CHARMM and Amber force fields.44,46 The parameters of the deproto-

nated forms (which are most common at physiological pH) were used except for those

related to the dummy hydrogens, which were taken from the protonated forms. For His,

the bonded parameters for the protonated and deprotonated forms are the same in the

Amber ff14SB46 and CHARMM c2244 force fields. Including the bonded terms in the cal-

culation would require significant modifications to the code, and as such is deferred to the

future work. However, from a large number of application studies we have conducted, no

artifacts have been observed, which may be due to our choice of adopting the dominant

form (e.g., charged Asp/Glu). Therefore, we believe that the improvement with adding the
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bonded term perturbation may be minimal.

Finally, the use of two dummy hydrogens for Asp/Glu introduces an issue, namely,

once an uncharged (ghost) dummy hydrogen rotates to the anti configuration, it loses

the ability to titrate. This is because a ghost proton in the anti position is unfavorable to

protonate, and due to zero force it is unlikely to move until it is protonated, as noted in

the early developments of constant pH methods.8,14 Following our previous work,42 the

rotation barrier of the C-O bond in the carboxylate group of Asp/Glu was increased to 6

kcal/mol to keep the dummy hydrogens in the syn configuration. This is a limitation, as the

anti configuration might become favorable in some protein, although it is unfavorable in

the peptide.47 One solution is to include both anti- and syn- positions for each oxygen as

implemented in the discrete constant pH methods in Amber.14,15 This solution however

is difficult to implement for CpHMD methods, as it would add additional variables which

makes the analytic form of the model PMF impossible to derive (Eq. 18). To complicate

the case, experimental evidence of syn vs. anti configuration is lacking. This is a topic

that warrants future investigation.

Potential of mean force functions for model titration. The linear response theory

states that the charging free energy of an ion in polar solvent is quadratic in the charge

perturbation.48 Thus, the PMF for protonation/deprotonation of a single-site titratable

group (e.g., Cys and Lys) in explicit solvent can be approximated as a quadratic func-

tion in terms of λ.11,36

Umod
single(λ) = A(λ – B)2. (17)

Following our previous work,42 for residues with two titratable sites such as carboxylic

acids and histidines an additional variable x is introduced to represent the tautomer states.

The underlying variable θx which is defined in analogy to θ (Eq. 2) is dynamically prop-

agated on the same footing as θ. For carboxylic acids Asp and Glu which have two

equivalent protonation sites (carboxyl oxygens), the model PMF function can be written

12
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as9 42,49

Umod
Asp/Glu(λ, x ) =(R1λ

2 + R2λ+ R3)(x + R4)2 + R5λ
2 + R6λ (18)

where R1, ..., R6 are parameters that can be determined by one-dimensional fitting of the

corresponding mean forces (∂U /∂θ)|θx and (∂U /∂θx )|θ calculated using thermodynamic

integration (TI) at different combinations of θ and θx values. The detailed derivation and

protocol are given in Ref.9,49

The model PMF function for His titration can be written as9

Umod =A10λ
2x2 + 2 (A1B1 – A0B0)λx

+ 2 (A0B0 – A1B1 – A10B10)λ2x

+ A1λ
2 – 2A1B1λ. (19)

The parameters in Eq. 19 are those in the one-dimensional PMF functions, where either

λ or x is fixed at one of the end points (1 or 0).9

Umod
His (λ, 0) = A0(λ – B0)2 (20)

Umod
His (λ, 1) = A1(λ – B1)2 (21)

Umod
His (1, x ) = A10(x – B10)2 (22)

Detailed protocols for obtaining the parameters are given in Ref.9,49

Finite-size corrections to the calculated pK a values for proteins. In our previous

work,11 we proposed a correction for the pK a’s calculated from the all-atom PME con-

stant pH simulations under periodic boundary conditions. According to the analysis of

Hünenberger and colleagues, the finite-size errors for the ligand charging free energies

arise from four physical effects, among which the discrete solvent effect dominates when
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the protein’s net charge is neutralized by counter-ions.50 The discrete solvent effect arises

from a homogeneous, constant potential that is applied to offset the potential generated by

isotropically tumbling solvent molecules so that the average potential over the simulation

box is zero.50 This “offset” potential is positive for typical three-site water models, and

needs to be corrected when calculating ligand charging free energies.50 Hünenberger

and colleagues developed an analytic correction to the ligand charging free energy50

∆Gcorr(charging) = –
2π

3
kγsQ

N s

V
, (23)

where k is the electrostatic constant, γs is the quadrupole moment trace of the solvent

model relative to a van der Waals interaction site. γs is calculated as 0.764 e·Å2 for TIP3P

water model.11 Q is the charge (-1 for charging to -1 e and +1 for charging to +1 e), N s

is the number of solvent molecules, and V is the simulation box volume. We note, the

correction in Eq. 23 is very similar to that proposed by Roux and coworkers.51

Now we consider the deprotonation reactions of protein titratable residues, which

refers to the charging process of an acidic sidechain, e.g., aspartic acid, Asp −−→ Asp – ,

or the discharging process of a basic sidechain, e.g., histidine, His+ −−→ His. Based on

Eq. 23 (correction for the charging free energy), we obtain the correction for the deproto-

nation free energy of a titratable residue in a protein in reference to a model system

∆∆Gcorr(deprot) =
2π

3
kγs(

N s
p

Vp
–
N s
m

Vm
), (24)

where N s
p/Vp and N s

m/Vm refer to the solvent number density in the protein and model

systems, respectively. Note, the minus sign in Eq. 23 and Q are absorbed due to the fact

that Q is -1 for acidic residues, and for basic residues ∆G(deprot)=-∆G(charging). The

corresponding pK a correction is

∆pK corr
a (deprot) =

∆∆Gcorr(deprot)

ln(10)RT
(25)
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where R is the ideal gas constant, T is the temperature. Since the solvent number density

is higher in the model system than in the protein system, the pK a correction is negative

for both acidic and basic sites.

3 Simulation Protocols

Preparation of model peptide systems. Capped pentapeptides ACE-AAXAA-NH2 (X

= Asp, Glu, His, Cys, or Lys) were used to parameterize and validate the model PMF

functions. First, each peptide structure was generated and placed in a cubic water box

using CHARMM scripts (version c38b2).24 The minimum distance between the heavy

atoms of the peptide and the edges of the box was set as 10 Å. Next, to neutralize the

system at pH 7.5, one Cl– counterion was added to the Lys pentapeptide system, and

one Na+ counterion was added to the Asp and Glu pentapeptide systems. The peptides

were represented by the CHARMM c22,44 Amber ff14SB,46 or Amber ff19SB52 force

field. Water was represented by the TIP3P water model.53

Thermodynamic integration and titration simulations of the model peptides. We

carried out an energy minimization in each pentapeptides system applying a force con-

stant of 100 kcal mol–1Å–2 to the peptide heavy atoms for 200 steps of SD followed by

300 steps of conjugate gradient method. Then, the system was heated from 100 to 300K

using Langevin thermostat and a force constant of 5 kcal mol–1Å–2 on the heavy atoms.

After heating, three stages of equilibration were performed with 250 ps each, whereby the

force constant was 2 and 1, and 0 kcal mol–1Å–2. Finally, thermodynamic integration (TI)

simulations were conducted for the model pentapeptides under constant NPT conditions

at fixed θ or θx values of 0.2, 0.4, 0.6, 0.7854, 1.0, 1.2, and 1.4. Each simulation lasted

10 ns. The TI simulations gave the mean forces, 〈∂U /∂θ|θx 〉 and 〈∂U /∂θx |θ〉, which were

used to obtain parameters in the PMF functions (Eq. 17, 18, and 19). The detailed

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.06.04.494833doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.04.494833
http://creativecommons.org/licenses/by-nc/4.0/


protocols are given in a recent tutorial.49

As validation of the model parameters, titration simulations were conducted for the

model peptides at independent pH conditions, which were placed at 0.5-pH intervals in

the range of 2–5.5 for Asp, 2.5–6 for Glu, 4.5–8 for His, 6.5–10 for Cys, and 8–11.5 for Lys

model peptides. The equilibration and production runs of the peptide systems followed the

same protocols as the protein simulations (see latter discussion). The production run at

each pH lasted 20 ns and was repeated three times. With the CHARMM c22 force field,44

we also performed pH replica-exchange simulations of 10 ns/replica for Asp, His, and Lys

model peptides with the same pH conditions. Additional pH replica-exchange simulations

were also performed with the hydrogen mass repartition scheme54,55 and 4-fs timestep.

The simulation length was 10 ns/replica.

Preparation of the protein systems. For protein simulations, the following PDB files

were downloaded: 1W4H (peripheral subunit-binding domain protein BBL),56 2LZT (hen

egg white lysozyme or HEWL),57 3BDC (Staphylococcus nuclease or SNase),58 7RSA

(ribonucleas A or RNaseA),59 1ERU (thioredoxin),60 and 1I0E (human muscle creatine ki-

nase or HMCK).61 The coordinates were first processed using the convpdb.pl script from

MMTSB Toolset62 to remove hetero atoms, ions, water, ligands, and hydrogen atoms.

The CHARMM c22 protein force field and CHARMM modified TIP3P water model were

used to represent the protein and water, respectively.44 The following steps were per-

formed using the CHARMM package (c38b2).24 The proteins were embedded in a pre-

equilibrated cubic TIP3P water box with at least 10 Å cushion between the protein heavy

atoms and the edges of the box. Sodium and chloride ions were added to neutralize

the systems (assuming model pK a’s and pH 7.5) and to provide a physiological (0.15

M) or experimental salt concentration (0.1 M for SNase, 0.5 M for thioredoxin, and 0.06

M for RNase A). Using the HBUILD facility, missing hydrogens were added, and a cus-

tom CHARMM script is used to add two dummy hydrogens on the carboxylate oxygens.9
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The protein structures were energy minimized using 50 steps of steepest descent (SD)

method with a harmonic force constant of 50 kcal· mol–1Å–2 on the heavy atoms followed

by 100 steps of adoptive basis Newton-Raphson (ABNR) method.

Equilibration of the protein systems at independent pH conditions. The CHARMM22

topology and parameter files were converted to the Amber compatible format with the

command chamber in ParmEd.63 With the Amber input files prepared, a last round of

minimization was performed in Amber22,25 using 200 steps of SD followed by 300 steps

of conjugate gradient method, whereby a force constant of 100 kcal mol–1Å–2 was applied

to the protein heavy atoms. Keeping the same restraint and with a time step of 1 fs, the

system was then heated for 100 ps from the initial temperature of 100 K to 300 K using

Langevin thermostat). Following heating, two stages of equilibration was performed. The

first stage consisted of two runs of 250 ps each performed at pH 7, whereby the harmonic

force constant was 100 and 10 kcal · mol–1Å–2. The second stage of equilibration was

performed at the individual pH conditions of the replica-exchange simulations. Here, four

runs of 500 ns were performed using a time step of 2 fs. The heavy-atom force constant

was gradually reduced from 10.0 to 1.0, 0.1, and 0.0 kcal mol–1Å–2.

Production CpHMD simulations of proteins with pH replica-exchange. For CpHMD

production runs, the asynchronous pH replica exchange algorithm64 was employed to ac-

celerate sampling convergence of conformational and protonation states and accelerate

pK a calculations.23 2 NVIDIA GTX 2080 Ti GPU cards were used. The pH range of the

protein simulations was extended at least 1 pH unit below or above the lowest or high-

est experimental pK a values, and the pH spacing was 0.5 pH unit. Additional pH replica

at 0.25 pH units were added in some cases to increase the probabilities of replica ex-

change. The exchanges between adjacent pH replicas were attempted every 2 ps (1000

MD steps). Each replica in the simulations of BBL, HEWL, SNase, thioredoxin, RNase

A, and HMCK was run for 34, 40, 40, 50, 40, and 30 ns, respectively. The simulation
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length was sufficient to converge the pK a’s of all titratable sites (for HMCK we were only

interested in Cys283). For SNase, additional simulations with larger box sizes were car-

ried out. In these systems, the distance between the protein and edges of the water box

was increased from the default 10 Å to 12, 14, and 18 Å, and the corresponding simula-

tions lasted 20, 20, 60, and 75 ns per replica, respectively. All settings in the CpHMD are

identical to our previous work.11,43

Settings in the MD. Unless otherwise noted, the integration timestep in the produc-

tion runs was 2 fs. Lennard Jones energies and forces were smoothly switched off over

the range of 10–12 Å. For long-range electrostatics, the PME method was used with a

real-space cutoff of 12 Å and grid spacing of 1 Å. Each pH replica simulations was per-

formed under constant NPT conditions, where the pressure was maintained at 1 atm by

the Berendsen barostat with a relaxation time of 0.1 ps and the temperature was main-

tained at 300 K by the Langevin thermostat with a collision frequency of 1.0 ps–1.25

pK a calculation. λ coordinates from the titration simulations were post-processed to

calculate pK a values. Following our previous definition of protonated and deprotonated

states,43 λ ≤ 0.2 and λ ≥ 0.8 represent the protonated and unprotonated states, respec-

tively, while 0.2 < λ < 0.8 is considered unphysical and discarded. The unprotonated

fractions S at all simulation pH conditions were collected and the data were fit to the Hill

(or generalized Henderson-Hasselbalch) equation

S =
1

1 + 10n(pKa–pH)
, (26)

where pK a and n are the fitting parameters, and S is defined as S = Nunprot/Nunprot +

Nprot, where Nunprot and Nprot refer to the number of λ values representing the unproto-

nated and protonated states, respectively.

For two residues experiencing linked titration, the average number of protons bound to
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the two residues (〈P〉) are calculated at all simulation pH, and fit to the following coupled

titration model to determine the macroscopic stepwise pK a’s,35,65

〈P〉 =
10pKa2–pH + 2 · 10pKa1+pKa2–2pH

1 + 10pKa2–pH + 10pKa1+pKa2–2pH (27)

where pKa1 and pKa2 are the two stepwise pK a’s.

Finite-size corrections. A finite-size correction (Eq. 25) was applied to the calculated

pK a’s. For the pK a’s in Table 2 (i.e., a minimum of 10 Å distance between the protein

and the edge of the water box), the corrections are: BBL (Asp: -0.33, Glu: -0.39, His:

-0.30); HEWL (Asp: -0.63, Glu: -0.70, His: -0.61); SNase (Asp: -0.70, Glu: -0.77, His:

-0.67); thioredoxin (Asp: -0.96, Glu: -1.02, His: -0.93); RnaseA (Asp: -0.66, Glu: -0.72,

His: -0.63); creatine kinase (Cys: -0.64). Corrections for the simulations with larger box

sizes (Table 3) are given in Table S1. At a first glance, it may seem odd that these

corrections differ by residue type. This is because the corrections for the model pK a’s are

different. In the future, these differences can be eliminated by using larger solvent boxes

for the model simulations. Additionally, the reference pK a’s can be adjusted to account

for the pK a corrections which can be calculated at the simulation set up by using lattice

parameters.11

4 Results and Discussion

4.1 Model parameterization and validation

Parameterization of the model potential of mean functions for titrating model pen-

tapeptides. First, TI simulations of model pentapeptides CH3CO-Ala-Ala-X-Ala-Ala-CONH2

(X=Asp, Glu, His, Cys or Lys) were performed to obtain the mean forces, 〈∂U /∂θ〉 |θx
and/or 〈∂U /∂θx 〉 |θ), which were then fit to the analytic functions (derivatives of Eqs.17, 18,
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and 19 expressed in θ) to obtain the parameters. The fitting was generally very good (see

an example fitting of His in Fig. 1), suggesting that the linear response theory holds,

consistent with the results of both the GRF-based and PME-CpHMD in CHARMM.11,36

Integration of the mean forces followed by coordinate transformation gives the PMF as a

function of λ (see examples in Ref36). We note, the parameters are more accurate when

they are derived from fitting the mean forces (as in our early work23,42 rather than the

PMF (as in the PME-CpHMD implementation in CHARMM11).

Table S2 gives the parameters in the model PMF functions of Asp, Glu, and His (Eq. 18

and 19) for the CHARMM c22,44 Amber ff14sb,46 and ff19sb52 force fields. The model

PMF parameters for Cys titration were also obtained for the CHARMM c2244 and Amber

ff14sb46 force fields (Table S2). In the rest of the paper, we focused on the CHARMM c22

force field66 to facilitate comparisons with our previous PME-CpHMD11 and the Brooks’

lab’s MSλD CpHMD implementations10,37 in CHARMM.24 A force field comparison study

will be conducted in the near future.
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Figure 1: Nonlinear fitting of the mean forces to obtain the model PMF parameters
for His titration. a) and b) Fitting 〈∂U /∂θ〉 at θx = 0 (a) or at θx = π/2 (b) to 2A0(sin2θ –
B0)sin2θ gives A0 and B0 (a) or A1 and B1 (b), respectively. c) Fitting 〈∂U /∂θx 〉 at θ = π/2
to 2A10(sin2θx – B10)sin2θx gives A10 and B10. The fitting equations are derivatives of
Eqs. 20, 21, and 22. The red curves are the best fits.
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Independent pH and replica-exchange simulations of model pentapeptides. The

PMF function obtained from the TI simulations describes the free energy change along

λ, and the difference between the two end points (λ=1 and 0) gives the deprotonation

free energy. If the latter is reproduced by the CpHMD simulation, λ should sample two

end (protonated and deprotonated) states with equal probabilities when pH is set to the

reference pK a value. In other words, the pK a calculated from the titration simulation

should be the same as the reference pK a. To test it, we carried out titration simulations

of model pentapeptides at 8 independent pH conditions. Three replica runs of 20 ns

each were performed at each pH. The unprotonated fractions at all pH conditions are

converged (see time series analysis in Fig. S1). Fitting the unprotonated fractions to

the Henderson-Hasselbalch equation (Eq. 26) gave the pK a’s of 3.4±0.04, 4.2±0.02,

6.5±0.12, 8.4±0.03, and 10.3±0.01 for Asp, Glu, His, Cys, and Lys, respectively (Fig. 2).

Fitting to the generalized Henderson-Hasselbalch equation gave identical pK a’s and error

estimates, but revealed a small underestimation of the Hill coefficient for all but Cys model

peptides. Except for Asp, the calculated pK a’s are within 0.1 unit of the target experimen-

tal values (Table 1). His has two titratable nitrogens and hence three protonation states:

the doubly protonated Hip (charge +1) and two neutral tautomers, with a proton on either

Nδ or Nε, These tautomer are respectively named Hid and Hid in Amber25 or HSD and

HSE in CHARMM.24 The calculated pK a’s of Nδ (Hip −−⇀↽−− Hie) and Nε (Hip −−⇀↽−− Hid)

are 7.0±0.11 and 6.7±0.12, respectively. These values are also within 0.1 units from the

values estimated by Tanokura based on NMR data of a model compound.67 The titration

of Asp and His is nosier than Glu, Cys, and Lys, as evident from the larger uncertainties

of the unprotonated fractions at pH conditions near the pK a value, consistent with the

larger bootstrap errors (0.09 and 0.12, see Table 1). Trajectory analysis showed that the

Asp and His sidechains can form hydrogen bonds (h-bonds) with the neighboring back-

bone group, resulting in meta-stable states. The carboxylate group of Asp is stabilized by

h-bonding with the neighboring backbone amide, which contributes to the 0.3-unit under-
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Figure 2: Simulated titration plots of model peptides ACEAAXAANH2 (X=Asp, Glu,
His, Cys, and Lys) at independent pH conditions. Top panel: unprotonated fractions
of Asp, Glu, and His at different pH. Bottom panel: unprotonated fractions of Cys and Lys
at different pH. At each pH, three simulation runs were performed starting from different
initial velocity seeds. The pK a, Hill coefficient (n), and fitting error are given. The boot
strap errors are given in Table 2. The fitting was performed on all data points using the
generalized Henderson-Hasselbalch equation. Performing the fits against the Henderson-
Hasselbalch equation yields identical pK a values and error estimates.

estimation of the target pK a value. This behavior was previously observed in both the GB

and PME-CpHMD simulations in CHARMM.9,11

To investigate if the proton-coupled conformational dynamics is adequately sampled

for Asp and His in the independent pH simulations, we compared the results with those

from three sets of pH replica-exchange simulations. The latter were conducted with the

asynchronous pH replica-exchange scheme that was recently implemented for Amber

simulations.64 The previous work of us11,23,43 and others10,15 demonstrated that the pH
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replica-exchange protocol significant accelerates protonation state and conformational

sampling. Indeed, the pK a convergence is significantly accelerated; the unprotonated

fractions generally plateau after about 5 ns, compared to more than 10 ns in the indepen-

dent pH simulations (Fig. S2 and S3). Interestingly, the resulting pK a’s (3.3 and 6.5) of

Asp and His are very similar to those from the independent pH titration, which suggests

that sampling is sufficient in the latter (Fig. S2 and S3). Note, to account for the (∼0.3

unit) difference between the calculated and target pK a’s of Asp pentapeptide, we changed

the Asp reference pK a (from the experimental value of 3.7 to 4.0 in the CpHMD parameter

file (charmm22 pme.parm) for protein simulations.

Table 1: Calculated and target experimental pK a values of model pentapeptides

Calc (IN)a Calc (REX)b Calc (HMR)c Exptd

Asp 3.4±0.09 3.3±0.10 3.6±0.07 3.7
Glu 4.2±0.04 4.3±0.02 4.2
His 6.5±0.12 6.5±0.02 6.3±0.03 6.5
Hiee 7.0±0.11 7.1±0.02 6.9±0.01 7.0
Hidf 6.7±0.12 6.7±0.03 6.4±0.03 6.6
Cys 8.4±0.03 8.6±0.01 8.5
Lys 10.3±0.01 10.3±0.01 10.0±0.01 10.4

a Independent pH simulations, whereby each simulation was conducted for 20 ns and
repeated three times. bThree sets of pH replica-exchange simulations of 10 ns/replica.
cThree sets of pH replica-exchange simulations of 10 ns/replica with the HMR scheme
and 4-fs timestep. All pK a’s and errors were calculated from bootstrap. dExpt refers to the
NMR derived pK a’s of the model pentapeptides from Thurlkill et al.68 The His tautomer
pK a’s are those estimated by Tanokura based on the NMR data of a model compound.67
e Hie refers to the pK a associated with Hip −−⇀↽−− Hid. f Hid refers to the pK a associated
with Hip −−⇀↽−− Hie.

In order to further accelerate simulations, we tested the sensitivities of pK a’s for 4-fs

timestep in conjunction with the hydrogen mass repartitioning (HMR) scheme.54,55 Three

sets of pH replica-exchange simulations of 10 ns/replica were conducted for the five model

peptides with HMR/4-fs timestep. All simulations converged within 5-10 ns/replica, repre-

senting a twice speed up relative to the standard 2-fs simulations. The calculated pK a is

3.6±0.07 for Asp, 4.3±0.02 for Glu, 6.3±0.03 for His, 8.6±0.01 for Cys, and 10.0±0.01
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for Lys. These pK a’s deviate from the 2-fs simulations by 0.1–0.3 units. Notably, the

pK a’s of the basic residues are lower, by 0.2 units for His and 0.3 units for Lys. The latter

is surprising, given the rapid convergence (less than 5 ns/replica) and small random error

(bootstrap error of 0.01). Trajectory analysis showed that the solvent accessible surface

area (SASA) of the Lys sidechain with HMR has similar pH response, i.e., slightly decreas-

ing with pH; however, the value for all pH conditions are higher by about 4% compared to

the 2-fs simulations (data not shown). This might be related to the slightly increased dif-

fusion constant and decreased order parameter with the 4-fs timestep, as demonstrated

by a recent benchmark study.69 We note, evaluation of the 4-fs/HMR scheme for CpHMD

simulations of proteins is not in the scope of the present work and will be conducted in

the near future.

4.2 Titration simulations of proteins

Overall comparison of the calculated and experimental pK a values. To test the ac-

curacy of the PME-CpHMD method for modeling protonation states of proteins, we cal-

culated the pK a’s of Asp, Glu, His, and Cys residues in BBL, HEWL, SNase, RNase A,

thioredoxin, and creatine kinase (HMCK) proteins, which have been previously used to

benchmark CpHMD methods.11,43,70,71 For a total of 67 residues, the root mean square

error (RMSE) and the mean unsigned error (MUE) of the calculated pK a’s are 0.76 and

0.61, respectively, while the Pearson’s correlation coefficient r is 0.85 (Figure 3). A more

stringent test of the pK a prediction accuracy is to correlate the calculated and experimen-

tal pK a shifts (∆pK a) with respect to model values, as the ∆pK a range is much smaller

than the pK a range, exposing potentially problematic cases. Encouragingly, the r value

for ∆pK a’s is 0.80, similar to the the r value for absolute pK a’s, suggesting that a good

correlation with experimental is achieved and consistent for different residue types (see

later discussion).
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Comparison of the calculated pK a’s with the all-atom CpHMD implementations in

CHARMM. The pK a’s of BBL, HEWL, and SNase have been previously calculated us-

ing the all-atom PME-CpHMD implementation in CHARMM (Table S4).11 The r value

of ∆pK a’s (from correlation with experiment) for these proteins from the present work is

0.80, which is nearly identical to that (0.78) using the CHARMM PME-CpHMD titration.11

A comparison between the individual pK a’s shows that most pK a values agree within 0.2-

0.3 units (Table S4); the agreement is especially remarkable for the pK a’s of the catalytic

dyad in HEWL, which differ by 0.2 units for Glu35 and are identical for Asp52.11 Note,

the previous CHARMM PME-CpHMD simulations were run for 10 ns/replica,11 whereas

the present Amber PME-CpHMD simulations were run until full convergence for 30–40

ns/replica. This analysis suggests that the pK a drift is small over time and the replica-

exchange CpHMD simulations offer pK a calculations with good precision, consistent with

our previous observations.11,23 We further compared the calculated pK a’s of BBL and

HEWL, which were previously reported with the MSλD method in CHARMM (Table S4).10

Note, the MSλD simulations in Ref. used a force-based cutoff for long-range electrostatics

in λ dynamics and therefore we did not apply a finite-size correction for the pK a’s.10 For

BBL, the order of the two His pK a’s are in agreement between the MSλD and and CpHMD

results. Although the pK a’s from MSλD are 0.6–0.8 units higher, in better agreement with

experiment, the simulation length was only 5 ns/replica and no finite-size correction was

applied (which downshifts the pK a’s). As to HEWL, the RMSE from MSλD10 is nearly

identical to the current work.

Comparison of the calculated and experimental pK a’s of different residue types.

The Asp pK a’s vary the most in this dataset. Encompassing both down- and upshifted

pK a’s, the experimental pK a range for Asp is 1.2 to 8.1, similar to the calculated range

of 1.5 to 7.7 (Fig. 3a, magenta). The experimental pK a’s of Glu also display both the

down- and upshifts, but the range is smaller than Asp, from 2.6 to 6.1, compared to the
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RMSE : all = 0.76, Asp = 0.76, Glu = 0.69, His = 0.92
        r  : Asp = 0.87, Glu = 0.72, His = 0.71

(a) (b)

(c)

Figure 3: Comparison between the calculated and experimental pK a’s and pK a

shifts of the benchmark proteins. a) Calculated pK a’s vs. experimental pK a’s. b)
Calculated vs. experimental pK a shifts with respect to the experimental model peptide
pK a’s (Table 1). The data for Asp, Glu, His, and Cys are shown in magenta, cyan, blue,
and orange, respectively. Pearson’s correlation coefficient (r ) and RMSE are given. The
solid black lines represent the linear regression. The shaded region indicates the calcu-
lated pK a’s within the overall RMSE (0.76 units) of the experimental values. To guide the
eye, the dashed diagonal line (x=y) is shown. c) Histograms of the deviations between the
calculated and experimental pK a’s for Asp (left), Glu (middle), and His (right) residues.

.
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Table 2: Calculated and experimental pK a’s of benchmark proteinsa

Residue Expt Calc CHM Residue Expt Calc CHM Residue Expt Calc Residue Expt Calc
BBL SNase Thioredoxin RNase A
Asp129 3.9 3.5 3.7 His8 6.5 6.6 n.d. Glu6 4.9 4.1 Glu2 2.6 1.0
Glu141 4.5 4.0 4.3 Glu10 2.8 2.9 3.2 Glu13 4.4 4.0 Glu9 4.0 4.3
His142 6.5 5.8 5.4 Asp19∗ 2.2 2.5 3.3 Asp16 4.2 3.8 His12 6.0 4.3
Asp145 3.7 3.2 3.4 Asp21∗ 6.5 5.6 6.0 Asp20 3.8 3.1 Asp14 1.8 2.3
Glu161 3.7 4.0 4.0 Asp40 3.9 2.6 2.9 Asp26 8.1 7.7 Asp38 3.5 2.8
Asp162 3.2 2.9 2.7 Glu43 4.3 3.6 4.1 His43 n/d 5.4 His48 6.1 6.5
Glu164 4.5 4.0 4.3 Glu52 3.9 4.3 4.7 Glu47 4.3 4.1 Glu49 4.7 4.1
His166 5.4 4.2 4.1 Glu57 3.5 4.2 4.1 Glu56 3.2 3.4 Asp53 3.7 3.4
RMSE 0.62 0.66 Glu67 3.8 3.4 4.0 Asp58 5.2 6.8 Asp83 3.3 3.4
HEWL Glu73 3.3 3.0 3.6 Asp60 2.7 3.5 Glu86 4.1 5.1
Glu7 2.6 2.9 3.2 Glu75 3.3 3.1 2.7 Asp61 3.9 4.2 His105 6.5 5.9
His15 5.5 4.3 4.0 Asp77 <2.2 -0.2 <-0.0 Asp64 3.2 2.3 Glu111 3.5 3.6
Asp18 2.8 2.7 2.9 Asp83 <2.2 0.3 0.0 Glu68 5.1 4.0 His119 6.5 5.7
Glu35 6.1 6.9 7.1 Asp95 2.2 3.4 3.0 Glu70 4.8 3.8 Asp121 3.0 2.9
Asp48 1.4 1.5 0.9 Glu101 3.8 4.2 4.7 Glu88 3.6 2.9 RMSE 0.81
Asp52 3.6 5.6 5.6 His121 5.2 5.0 / Glu95 4.1 3.9 HMCK
Asp66 1.2 1.5 1.1 Glu122 3.9 3.6 4.4 Glu98 3.9 3.8 Cys283 5.6 6.7
Asp87 2.2 2.3 2.3 Glu129 3.8 5.0 5.5 Glu103 4.5 4.0
Asp101 4.5 5.0 5.2 Glu135 3.8 2.2 2.9 RMSE 0.71
Asp119 3.5 2.9 3.5 RMSE 0.76 0.80
RMSE 0.83 0.92 All Max RMSE MUE

2.0 0.76 0.61
aCHM column contains the pK a’s from the CHARMM PME-CpHMD simulations with finite-
size corrections for Asp, Glu, and His (∼-0.5 for BBL; ∼-0.9 for HEWL/SNase).11 Exper-
imental data are taken from ref72,73 for BBL, ref74 for HEWL, ref58 for SNase, ref75 for
thioredoxin, ref76 for RNaseA, and ref77 for HMCK. Glu56 of thioredoxin has two reported
pK a’s, 3.2 and 5.1, and former was used to calculate the error. For coupled residues (indi-
cated by an asterisk), the macroscopic stepwise pK a’s (from experiment and simulations)
are listed.

calculated range of 1.0 to 6.9 (Fig. 3a, cyan). The overall accuracy of the pK a calculation

for Asp is slightly worse than Glu (RMSE of 0.76 and 0.69 respectively), but the r value

for Asp (0.87) is somewhat larger than for Glu (0.72), which may be attributed to the larger

pK a range. There are only 9 experimental pK a’s for His in the current dataset, which has

a range of 5.2–6.5 and do not include upshifted values (Fig. 3a, blue). The calculated His

pK a range is 4.2–6.6 (Fig. 3a, blue), and there is a trend of systematic overestimation of

pK a downshifts (Fig. 3c, right). In contrast, there is no clear trend for the pK a errors of

Asp and Glu (Fig. 3c, left and middle). The RMSE (0.92) for His pK a’s is larger than those

for Asp (0.76) or Glu (0.9).
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pK a calculation for BBL: pH-dependent solvent exposure of His166. BBL is a mini-

protein with 45 residues and 8 titratable sites. The RMSE of the calculated pK a’s is 0.62

units, with His166 showing the largest error of 1.2 units, representing an overestimation to

the experimentally observed pK a downshift (Table 2). The pK a downshift of His166 can

be attributed to solvent exclusion and lack of hydrogen bonding (h-bonding) or electro-

static interactions (Fig. 4a). As pH decreases from 6 to 4, His166 undergoes a sigmoidal

transition (Fig. 4b) from the deprotonated fraction of 1 (singly protonated neutral state) to

0 (doubly protonated charged state). As expected, the fraction of the fully buried state

also decreases (i.e., solvent exposure increases); however, the decrease does not ap-

pear to be sufficient, i.e., at low pH values the buried fraction doe not plateau (Fig. 4c).

This analysis suggests that while the PME-CpHMD method is able to reproduce the ex-

perimental pK a downshift by capturing the pH-induced decrease in solvent exclusion or

increase in solvent exposure of His166, sampling of the exposed state at low pH may be

insufficient, which contributes to the pK a underestimation. Another potential contributor

is an overestimation of the desolvation penalty by the CHARMM c22 force field.44 Note,

our previous CHARMM PME-CpHMD simulations gave a similarly underestimated pK a

for His166 (by 1.3 units),11 and the MSλD simulations underestimated the pK a by 0.6

units (analysis of conformational sampling was not given).10

pK a calculation for HEWL: titration order of the catalytic dyad. HEWL is a small

protein with 129 residues and 10 titratable sites; it is a popular test system for pK a predic-

tion methods due to the abundance of experimental data.74 The RMSE of the calculated

pK a’s is 0.83 units. The two largest errors are for Asp52 and His15; the calculated pK a’s

are 2 units over- and 1 unit underestimated, respectively (Table 2). Despite the overes-

timation, the calculated pK a of Asp52 is 1.4 units lower than that of Glu35 (the second

catalytic residue, Fig. 5), which indicates that Glu35 is a general acid and Asp52 is a

general base in catalysis, in agreement with experiment (Table 2). Consistent with the
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(a) (b)

(c)

H166

Figure 4: Protonation of His166 in BBL is correlated with the pH-dependent increase
in solvent exposure. a) Deprotonated fraction of His166 at different pH. b) Buried ratio
of His166 at different pH, defined as 1-fSASA. fSASA (fraction of solvent accessible sur-
face area) was calculated as SASA of the sidechain atoms relative to that in the model
pentapeptide.

.

CHARMM PME-CpHMD as well as the hybrid-solvent CpHMD simulations,78 the titration

events of Glu35 and Asp52 are uncoupled, as evident from the nearly identical stepwise

pK a’s (7.0 and 5.5) from fitting to the two-proton titration model (Eq. 27; figure not shown).

The lack of coupled titration is due to the relatively large distance between the carboxylate

sidechains (>6.5 Å between the nearest carboxylate oxygens at any pH). Note, the cal-

culated dyad pK a’s are nearly the same as the values from the CHARMM PME-CpHMD

simulations.11 The MSλD method in CHARMM gave a nearly identical pK a for Glu35, but

a 1.1-unit lower pK a for Asp52.10

To understand the pK a order of the catalytic dayd Glu35/Asp52 and the possible fac-

tors for the pK a overestimation of the latter, we compared the pH profiles of the sol-

vent exposure, h-bonding and electrostatic interactions of the dyad residues with the

pH-dependent titration curves (Fig. 5b–d). Both residues are partially buried. As Glu35

switches from being fully unprotonated to fully protonated in the pH range 7 to 10, the sol-

vent exposure decreases from about 30% to just under 20% (Fig. 5b and c, blue). Asp52
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(a) (b)

(c)

(d)

R114

E35

D52

N46

N59

Figure 5: Factors influencing the pK a’s of the catalytic dyad in HEWL. (a) A repre-
sentative snapshot at pH 7.5 showing the h-bonding and salt bridge environment of Glu35
and Asp52. (b) The unprotonation fractions of Glu35 and Asp52 at different pH. (c) Frac-
tions of the sidechain solvent exposure (SASA value relative to the model pentapeptide)
of Glu35 and Asp52 at different pH. (d) The h-bond and salt bridge occupancies of Glu35
and Asp52 at different pH.

.
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has a similar behavior, except that the titration and change in solvent exposure are shifted

to a lower pH range 7 to 4 (Fig. 5b and c, red). Now we turn to h-bonding and electrostatic

interactions that are also physical determinants of pK a shifts.79 Glu35 does not form h-

bonds below pH 7.5, and above pH 7.5, occasional salt-bridge interaction with Arg114

was observed, with an occupancy less than 20% (Fig. 5d, blue). In contrast, the carboxy-

late group of Asp52 can accept h-bonds from the sidechains of Asn46 and Asn59, and

the occupancy increases to nearly 2 with increased deprotonation of Asp52 (Fig. 5d, red).

The analysis of solvent exposure and h-bond suggests that the latter is the major deter-

minant for the lower pK a value of Asp52 relative to Glu35, in agreement with our previous

work using the hybrid-solvent as well as the PME-CpHMD in CHARMM.78 It is noteworthy

that despite the correlation between charging of Asp52 and the increase in solvent expo-

sure and h-bond formation, the pH profiles of solvent exposure and h-bond occupancy

are more gradual than the titration curve, which may indicate that the pH-dependent con-

formational changes might be undersampled, contributing the overestimation of the pK a

of Asp52.

pK a calculation for SNase: partially buried residues and coupled titration of Asp19

and Asp21. SNase has a large number of engineered mutants, which are popular

model systems for testing pK a prediction methods.79 Here we used the hyperstable, acid-

resistant form of SNase ∆+PHS (hereafter referred to as SNase)58 which is only slightly

(14 residues) larger than HEWL, but has 9 more titratable sites. The pK a’s of SNase

are more challenging to predict than HEWL due to the fact that most titratable sites are

partially buried.23 The calculated pK a’s have a RMSE of 0.76 units, similar to the RMSE

of 0.80 from the CHARMM PME-CpHMD simulations.11 The largest error is for Glu129,

for which the experimental pK a is 0.4 units down- and the calculated pK a is 0.8 units

upshifted relative to the model value of 4.2. Curiously, simulation also fails to reproduce

the direction of the experimental pK a shifts of Glu52, Glu57, and Glu101, although the
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magnitude of the errors is smaller (0.4, 0.7, and 0.4 respectively). Analysis showed that

all these residues are partially buried, suggesting that desolvation penalty contributes to

the pK a upshift. Based on the analysis of BBL’s His166 and HEWL’s Asp52, we hypoth-

esized that simulation overestimates the desolvation penalty due to inadequate sampling

of the solvent exposed state. To test this, we plotted the fractional SASA values vs. pH for

Glu52, Glu57, Glu101, and Glu129 (Fig. S4). Deprotonation of glutamic acid is expected

to induce larger solvent exposure. This is indeed the case for the more exposed residues

Glu52 and Glu57 (fractional SASA about 60% at low pH), although the degree of increase

is small. However, solvent exposure change with pH for the more buried residues Glu101

and Glu129, for which the fractional SASA values remain at about 40 and 20% through-

out the entire pH range (Fig. S4). These data support the hypothesis that the solvent

exposed state may be inadequately sampled, contributing to the desolvation related pK a

upshift for Asp and Glu.

The NMR data58 as well as our previous work78 based on the hybrid-solvent and

PME-CpHMD simulations in CHARMM suggest that the titration Asp19 and Asp21 is

coupled. The current simulations confirmed the strong coupling as a result of h-bond

formation between the two residues (Fig. 6a). Fitting the titration data to a two-proton

coupled equation (Eq. 27) gives the stepwise macroscopic pK a’s of 2.5 and 5.6 (Fig. 6b),

which are in good agreement with the experimental values of 2.2 and 6.5.58 To assign the

stepwise pK a’s to individual residues, we examine the pH-dependent probabilities of four

microscopic states, doubly protonated (HH), singly protonated with proton on D19 (H–)

or Asp21 (–H), and doubly deprotonated (––) states (Fig. 6c). Above pH 7, Asp19/Asp21

are in the –– state (Fig. 6c, blue). As pH decreases from 7 to 5, the probability of ––

decreases, while that of the –H or H– increases. Since the –H state (cyan) is more prob-

able than the H– state (magenta) as protonation first occurs, Asp21 receives a proton

first, which means the higher pK a should be assigned to Asp21. As pH further decreases

from 5 to 2, both –H and H– states are possible; however, their combined probability
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decreases, while the probability of the HH state increases (Fig. 6c, red). Below pH 2,

the latter state dominates. Analysis of h-bonding and electrostatic interactions (Fig. 6a)

shows a network among Asp19, Asp21, Thr22, Thr41, and Arg35, consistent with the

CHARMM hybrid-solvent and PME-CpHMD simulations.43

(a) (b)

(c)

R35
T41

D19 D21

T22

Figure 6: Linked titration of Asp19 and Asp21 in SNase. (a) A snapshot from the pH
4 simulation showing the h-bonding environment of Asp19 and Asp21. (b) Total number
of protons of Asp19/Asp21 at different pH. The stepwise pK a’s are obtained from the
best fit (black curve) to the two-proton coupled equation (Eq. 27). (c) The pH-dependent
probabilities of four microscopic states: two protons (HH, red); proton on Asp19 (H–,
magenta) or Asp21 (–H, cyan); zero proton (––, blue).

.

pK a calculation for thioredoxin: the deeply buried Asp26 and Asp58. Thioredoxin

has 105 residues with 18 titratable sites. The RMSE of the calculated pK a’s is 0.71. We

first consider Asp26, which has one of the highest measured pK a’s of any carboxylic acids

in proteins. Encouragingly, the calculated pK a of Asp26 is 7.7, in excellent agreement with

the NMR-derived value of 8.1. The large pK a upshift of nearly 4 units can be attributed

to the extremely low fraction of solvent exposure (below 7% at all pH, Fig. S5). Trajectory

analysis showed that Asp26 does not form h-bonds with nearby residues. The only factor

that may stabilize the deprotonated form is the salt-bridge formation with Lys39; however,

the salt bridge is only formed above pH 8 and the solvent exposure is very low (<20% at

pH 8, Fig. S5). A previous experimental study75 suggested that the protonated Asp26
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may be stabilized by donating a h-bond to the nearby Ser28; however, in the simulation

the average distance from the hydroxyl oxygen of Ser28 to the nearest carboxylate oxygen

of Asp26 is about 4.9 Å at pH 7, similar to the distance of 4.7 Å in the X-ray structure (PDB

1ERU). Thus, the dry environment, along with lack of polar interactions, results in the very

large pK a upshift of Asp26.

The largest error in the calculated pK a’s of thioredoxin is for Asp58, whose direction

of pK a shift is reproduced but the magnitude is 1.6 units too large (Table 2). Analysis

showed that the Asp58 is also deeply buried, with ∼20% solvent exposure below pH 5,

which explains the pK a upshift relative to the model. However, the solvent exposure only

slightly increases to ∼30% at pH 8 before increasing steeply to over 50% at pH 10 (Fig.

S6). H-bond analysis showed that the deprotonated Asp58 can accept h-bonds from

the backbones of neighboring Asp60 and Asp61, which can stabilize the deprotonated

state; however, the pH profile of the h-bond occupancy is irregular, showing a nearly 50%

decreased occupancy in the pH range 4–8 (Fig. S6). The latter indicates a sampling

issue, which explains the overestimation of the pK a of Asp58.

pK a calculation for RNase A: the deeply buried His12. RNase A has 124 residues

with 14 titratable sidechains. The RMSE for the calculated pK a’s is 0.81, and the largest

error is for His12 (Fig. 7a). The experimental pK a of His12 is 0.5 units downshifted rela-

tive to the model, and the simulation overestimated the downshift by 1.7 units (Table 2).

Analysis showed that His12 titrates over the pH range 3 to 6 (Fig. 7b), and the titration

is correlated with two physical determinants, an increase in solvent exposure (decreased

buried fraction) at lower pH (Fig. 7c) and an increase in h-bond formation at higher pH

(Fig. 7d). However, unlike in the previous GB- or hybrid-solvent CpHMD simulations,19,43

the pH profiles of the buried fraction and the h-bond occupancy do not fully match the

titration curve. Above pH 6, His12 is over 90% buried, and the decrease in the buried

fraction at lower pH does not follow an expected sigmoidal curve. The buried fraction
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decreases by about 5% as pH decreases from 9 to 5 and remains constant between pH

4.5 and 2, before further decreasing to 80% at pH 0 (Fig. 7c). A major h-bond partner is

the neighboring Asn11, which can donate a h-bond from its carboxamide group to the ε

nitrogen of His12 to stabilize its deprotonated form (Fig. 7a). As pH increases from 3 to 6,

the occupancy of the h-bond increases from zero to about 60%, and it further increases to

nearly 100% at pH 8. Based on the above analysis, we suggest that the h-bond formation

and solvent exposure of His12 may be insufficiently sampled in the pH range 3–6. The

under-sampling of the solvent exposed state (buried fraction remains unchanged between

pH 2 and 4.5) is particularly evident, which may be a major factor for the overestimation

of pK a downshift of His12.

(a) (b)

(d)(c)

Q11

H12

Figure 7: Protonation of His12 in RNaseA is correlated with the decreased solvent
exclusion and hydrogen bonding. a) A zoomed-in view of the hydrogen bonding be-
tween His12 and Asn11 in RNase A. The snapshot was taken from the simulation at pH
7. b) Unprotonated fraction of His12 at different pH. c) Buried fraction of His12 at different
pH. Definition of the buried fraction is given in the caption of Fig. 4. d) Occupancy of the
h-bond between His12 and Asn11 at different pH.

.

pK a calculation for HMCK: a buried active-site cysteine. To test the accuracy of Cys

titration, we calculated the pK a of Cys283 in the active site of HMCK, which has a NMR

measured pK a of 5.6,77 one of the lowest in the literature.80 Our simulations correctly

reproduced the direction of the pK a shift relative to the model; however the downshift is
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1.1 units underestimated compared to the experiment (Table 2). Analysis showed that

Cys283 is buried and does not have nearby cationic residues; however, once deproto-

nated it can accept h-bonds from the sidechains and backbones of Ser285 and Asn286

(Fig. 8a and b), consistent with the GB-based CpHMD titration simulation.71 Based on

the structural analysis of the thioredoxin family of proteins,81 Roos and Messens hypoth-

esized that hydrogen bonding rather than electrostatics plays a major role in stabilizing

Cys thiolates. Our current data and recent GB-based CpHMD simulations of a large num-

ber of proteins80,82,83 are in support of this hypothesis.

As Cys283 becomes deprotonated in the pH range 6 to 9, the total h-bond occupancy

increases and plateaus at 1; however, the exposed fraction does not increase and instead

remains at about 40% (Fig. 8c and d). Since solvent exposure promotes the charged

thiolate state and decreases the pK a, we suggest that insufficient sampling of the solvent-

exposed conformations may contribute to the overestimation the pK a of Cys283.

(a) (b)

(d)(c)

C283

S285
N286

Figure 8: Factors influencing the pK a of Cys283 in HMCK. (a) A zoomed-in view of
the h-bond environment of Cys283 (from simulation at pH 7.5). Cys283 thiolate can form
h-bonds with the backbones and sidechains of Ser285 and Asn286. (b) Unprotonated
fraction of Cys283 at different pH. (c) Exposure fraction (SASA relative to that of the
model pentapeptide) at different pH. d) Occupancy of the total h-bond formation of Cys283
thiolate with Ser285 and Asn286 at different pH.
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Finite-size effect and corrections. Following the work of Hünenberger and colleagues,50

we previously proposed an analytical pK a correction (Eq. 25) to correct for the effect of

an offset potential introduced in PME simulations under periodic boundaries.11 For the

current simulations, the pK a corrections for Asp, Glu, His, and Cys are between -0.3 and

-1.0 pH units (see Methods). To assess the effectiveness of the corrections and better

understand the finite-size effect, we performed additional titration simulations of SNase

with increased box sizes, i.e., adding more water to the simulation system. Table 3 sum-

marizes the raw and corrected pK a’s using four different boxes, which have 10 (default),

12, 14, or 18 Å cushion space between the protein and edges of the box (minimum dis-

tance between the heavy atoms of protein and water oxygens on the box edges). The

corresponding cubic box lengths are 68, 71, 76, and 84 Å, respectively.

We first examine the raw calculated pK a’s from simulations with different box sizes.

As expected, with increasing box size the raw pK a’s decrease for all but four residues

(Fig. 9a). Increasing box size also leads to better agreement with the experimental pK a’s;

the RMSEs of the raw pK a’s are 1.0, 1.0, 0.97 and 0.76 for boxes with 10, 12, 14, and

18 Å cushion space, respectively (Table 3 and Fig. 9a). The MUE also decreases from

0.86 (10 Å cushion) to 0.81 (12 Å cushion), 0.80 (14 Å cushion), and 0.62 (18 Å cushion)

(Table 3). Comparison of the raw pK a’s between the smallest (10 Å cushion) and largest

(18 Å cushion) boxes shows that the pK a changes due to box size increase vary (Table 3,

last column). Excluding the four residues (Asp19, Asp21, H121, and Glu135) that show

very little pK a changes, the pK a’s mostly decrease by 0.3 to 0.7 units, as compared to

the finite-size corrections of -0.70 to -0.8 units for the smallest box. The effect of box size

is not clear for the coupled residues Asp19/Asp21, which have the raw calculated pK a’s

of 3.2/6.3 with the smallest box; however, the pK a’s increase to 3.6/6.5 and 3.4/7.1 with

the larger boxes (12 and 14 Å cushion space), and then decrease back to 3.1/6.4 with the

largest box (18 Å cushion). Increasing box size has negligible effect on the downshifted

pK a of His121. With the increasing box sizes, its raw pK a changes from 5.7 to 6.1,
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5.7, and 5.8. Box size also shows little effect on the pK a of Glu135, which has the raw

calculated pK a’s of 3.0, 3.4, 3.0, and 3.0 with the increasing box sizes.

Now we examine the pK a corrections for the different simulation boxes. It is appar-

ent that application of the finite-size correction removes the systematic overshift error

(Fig. 9b). As the box size increases, the solvent number density increases and therefore

the magnitude of the correction decreases (Eq. 24). The magnitude of the corrections de-

creases by about 0.4 pH units going from the smallest to the largest box. Interestingly, this

difference is roughly the same as the average difference between the raw pK a’s (of all but

the aforementioned four residues) calculated with the smallest and largest box (Table 3,

last column), which suggests that the finite-size correction is valid. Another interesting

observation is that the increasing box size does not significantly reduce the RMSE of the

finite-size corrected pK a’s. The RMSE’s are 0.76, 0.80, 0.80, and 0.70 with the increas-

ing box sizes (Fig. 9b), which is another piece of evidence supporting the validity of the

finite-size corrections.

(a)

(b)

Figure 9: Effect of box size on the calculated pK a’s. The errors of the raw (a) and finite-
size corrected (b) pK a of SNase with different solvent cushion spaces, 10 (magenta), 12
(orange), 14 (green), and 18 Å (cyan). The corresponding RMSE values are shown next
to the legends.
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Table 3: Effect of simulation box size on the calculated pK a values of SNasea

Residue Expt Raw Corr Raw Corr Raw Corr Raw Corr ∆Box
Lcus (Å) 10 12 14 18
Lbox (Å) 67.6 70.6 75.5 83.5

H8 6.5 7.3 6.6 7.1 6.5 7.0 6.5 7.0 6.7 -0.3
E10 2.8 3.7 2.9 3.5 2.8 3.5 2.9 3.1 2.7 -0.6
D19 2.2 3.2 2.5 3.6 3.0 3.4 3.0 3.1 2.8 -0.1
D21 6.5 6.3 5.6 6.5 5.9 7.1 6.6 6.4 6.1 0.1
D40 3.9 3.3 2.6 2.9 2.3 2.5 2.0 2.6 2.3 -0.7
E43 4.3 4.4 3.6 4.4 3.7 4.3 3.7 4.1 3.7 -0.3
E52 3.9 5.1 4.3 5.2 4.5 4.9 4.3 4.8 4.4 -0.3
E57 3.5 5.0 4.2 5.1 4.4 5.2 4.6 4.4 4.0 -0.6
E67 3.8 4.2 3.4 4.1 3.4 4.0 3.5 3.7 3.3 -0.5
E73 3.3 3.8 3.0 3.6 3.0 3.3 2.8 3.1 2.7 -0.7
E75 3.3 3.9 3.1 3.3 2.6 3.9 3.3 3.4 3.0 -0.5
D77 <2.2 0.5 -0.2 0.6 0.0 0.5 -0.1 0.4 0.1 -
D83 <2.2 1.0 0.3 2.1 1.5 <0.0 <0.0 <0.0 <0.0 -
D95 2.2 4.1 3.4 4.1 3.5 3.8 3.3 3.2 2.9 -0.9
E101 3.8 5.0 4.2 4.9 4.2 4.7 4.2 4.6 4.2 -0.4
H121 5.2 5.7 5.0 6.1 5.6 5.7 5.2 5.8 5.5 0.1
E122 3.9 4.4 3.6 4.1 3.4 4.1 3.5 4.1 3.7 -0.3
E129 3.8 5.8 5.0 5.8 5.1 5.5 5.0 5.4 5.0 -0.4
E135 3.8 3.0 2.2 3.4 2.7 3.0 2.5 3.0 2.6 0.0
RMSE 1.0 0.76 1.0 0.80 0.97 0.80 0.76 0.70
MUE 0.86 0.61 0.81 0.67 0.80 0.60 0.62 0.58

a Box size is represented by the solvent cushion space (Lcus), i.e., minimum distance
(10, 12, 14, and 18 Å) between the protein heavy atoms and edges of the water box,
and the length of a cubic box (Lbox) converted from the average system volume. The
columns Raw and Corr refer to the pK a’s before and after the finite-size corrections (see
Methods). The column ∆Box refers to the raw pK a difference between the largest and
smallest boxes.

39

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.06.04.494833doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.04.494833
http://creativecommons.org/licenses/by-nc/4.0/


5 Concluding Discussion

We presented the first implementation, parameterization, and validation of the GPU-

accelerated continuous constant pH particle-mesh Ewald molecular dynamics method

in Amber22 (hereafter referred to as Amber PME-CpHMD). Titration parameters for three

force fields (CHARMM c22,44 Amber ff14SB,46 and ff19SB52) were derived and vali-

dated using model pentapeptides AAXAA, where X represents Asp, Glu, His, Cys, or Lys.

To benchmark the performance and accuracy for constant pH simulations of proteins,

we carried out titration simulations with the c22 force field for 6 proteins, including BBL,

HEWL, SNase, RNase A, thioredoxin, and HMCK, which have NMR derived pK a values

of Asp, Glu, His, and Cys residues. The asynchronous pH replica-exchange algorithm64

was employed to enhance sampling of protonation and conformational states. The simu-

lations were run for 30-50 ns per pH replica until all pK a’s were converged. The resulting

RMSE and MUE with respect to the experimental pK a’s are 0.76 and 0.61, respectively,

and the largest pK a deviation is 2 units. The Pearson’s correlation coefficients for the cal-

culated vs. experimental pK a’s and pK a shifts are 0.85 or 0.80, respectively. Importantly,

the titration simulations quantitatively reproduced the experiment pK a orders of the cat-

alytic dyad in HEWL and the coupled residues in SNase. Simulations also quantitatively

captured one of the largest upshifted pK a’s of a deeply buried Asp in thioredoxin as well

as the downshifted pK a of an active-site Cys in HMCK.

We compared the current validation data with those based on the CHARMM24 CPU

all-atom PME-CpHMD11 and MSλD10 simulations with the same c22 force field.44 The

Asp, Glu, and His pK a’s calculated from the CHARMM PME-CpHMD simulations of 10 ns

per replica (much shorter than the present work) are in close agreement with the present

work, suggesting that the pK a drifts over prolonged simulation time are small. Comparing

to the calculated pK a’s of HEWL and the two His residues in BBL based on the MSλD

simulations of 5-20 ns per pH replica (with a 12-Å electrostatic cutoff),10 the overall RMSE
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is similar, and the pK a orders of the catalytic Glu35/Asp52 in HEWL and His142/His166

in BBL are consistent with the present simulations.

In agreement with the previous CHARMM PME-CpHMD simulations11 the present

data demonstrated that the finite-size effect needs to be taken into account for the accu-

rate calculation of titration free energies with lattice sum methods under periodic boundary

conditions. Applying the pK a correction11 to account for a positive offset potential due to

TIP3P water in periodic boxes, a systematic pK a upshift error in the calculated pK a’s was

removed, and the overall agreement with experiment was improved. We note, in the re-

vision stage of the current paper, the work from the Roux group84 was published which

used a similar pK a correction to account for the (Gavani) offset potential.51

To further examine the finite-size effect and the validity of the correction, the pK a’s of

SNase were calculated from simulations with four different box sizes. Consistent with the

negative sign of the correction, increasing box size lowers the raw pK a’s of all but four

residues that do not show significant changes. The RMSE of the raw pK a’s decreases

from 1.0 with the smallest box to 0.76 with the largest box; the latter is identical to the

RMSE (0.76) of the corrected pK a’s obtained from the simulation with the smallest box.

The quantitative validity of the correction is also supported by a good agreement between

the change in the finite-size correction and the average change of the raw pK a’s going

from the smallest to the largest box size. As expected, the finite-size correction decreases

with increasing box size, and consistently, the reduction in RMSE due to the correction

also decreases. Using the 18-Å cushion space, the correction is 0.3–0.4, and the RMSE

(0.70) of the corrected pK a’s is only slightly smaller than the RMSE (0.76) of the raw

pK a’s. This suggests that the box size effect may start to become negligible with this size

of water box.

Although the overall box-size dependent trend of pK a’s is consistent with the positive

offset potential being the dominant factor,11 there are exceptions. The simulations of

SNase showed that box size has negligible effect on the coupled pK a’s of Asp19 and
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Asp21 as well as the downshifted pK a’s of His121 and Glu135. We note that the effect

of the offset potential and the corresponding pK a correction deal with an ideal situation

in which a single residue titrates in a neutral background. Thus, it is possible that the

correction is not valid for coupled pK a’s. However, with regards to the pK a’s of His121 and

Glu135, the cause for the box size independence is difficult to speculate. An alternative

approach to the finite-size pK a correction is to enforce system charge neutrality i.e., by

including titratable water as in our previous work.11 We tested this approach on the BBL

protein; however, due to the slower convergence and small pK a differences compared to

the simulations without titratable water, studies of other proteins were not pursued. We

defer a more thorough investigation of the finite-size effects to a future work.

We analyzed the pH-dependent solvent exposure and formation of hydrogen bonds

as well as electrostatic interactions of catalytic residues and those that exhibit larger pK a

deviations from experiment. These analyses suggested while PME-CpHMD captures the

proton-coupled conformational rearrangements, charging-induced increase of solvent ex-

posure for buried residues is inadequate. This may be a major contributor to the pK a

errors, including the overestimated pK a downshifts for buried His residues, e.g., His166 in

BBL and His12 in RNaseA; the overestimated pK a upshifts for buried carboxyl residues,

e.g., Glu57 in SNase and Asp58 in thioredoxin; and the overestimated pK a upshift for

buried Cys, e.g., Cys283 in HMCK. Undersampling of the solvent-exposed state may also

be related to the combination of c22/TIP3P force field,44 which slightly biased solute-

solute over solute-solvent interactions.85 Overestimation of desolvation penalty may also

be a source of error, which can be attributed to the low dielectric constant in the protein

interior as a result of the lack of polarization in simulations with additive force fields.86

Lack of polarization in the interior of protein may also lead to overly strong salt bridges,

which may explain the overestimation of the pK a downshifts of Asp140 and Glu135 in

SNase. While the use of polarizable force field for both protein and water is desirable,

it may not be currently feasible due to speed. One intriguing idea worth exploring is to
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mix a polarizable water model such as OPC3-pol87 with an additive force field to improve

solute-solvent interactions. The present study did not examine the potential dependence

on the additive force field. The force field related topics as well as the evaluation of PME-

CpHMD for model proton-coupled conformational dynamics of catalytic residues in larger

proteins (e.g., BACE170) will be explored in a future work.

By removing the reliance on the implicit-solvent model, the PME-CpHMD method

can be applied to any system that has a force field representation. We anticipate the

GPU accelerated PME-CpHMD to become a powerful tool for the investigation of a vari-

ety of proton-coupled dynamical phenomena that are poorly understood due to the cur-

rent limitations in experimental and MD techniques, for example, secondary transport of

ions/substrates across membrane transporter proteins and pH-dependent self-assembly

of materials. Another important application of PME-CpHMD is to offer proper pH con-

trol, for example, by allowing protein and ligand to titrate while binding and unbinding,5,6

or allowing His residues to fluctuate among the doubly protonated and two singly proto-

nated tautomer states, which has been shown to affect the ligand binding mechanism and

kinetics.88,89

Supporting Information Available

Supporting Information contains additional tables and figures.
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GROMACS: High Performance Molecular Simulations through Multi-Level Paral-

lelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25.

(23) Wallace, J. A.; Shen, J. K. Continuous Constant pH Molecular Dynamics in Explicit

Solvent with pH-Based Replica Exchange. J. Chem. Theory Comput. 2011, 7, 2617–

2629.

(24) Brooks, B.; Brooks III, C.; MacKerell, A.; Nilsson, L.; Petrella, R.; Roux, B.; Won, Y.;

Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A.;

Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.;

Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.; Post, C.; Pu, J.; Schaefer, M.; Tidor, B.;

Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D.; Karplus, M. CHARMM:

The Biomolecular Simulation Program. J. Comput. Chem. 2009, 30, 1545–1614.

(25) Case, D.; Aktulga, H.; Belfon, K.; Ben-Shalom, I.; Berryman, J.; Brozell, S.;

Cerutti, D.; Cheatham, T., III; Cisneros, G.; Cruzeiro, V.; Darden, T.; Duke, R.; Gi-

ambasu, G.; Gilson, M.; Gohlke, H.; Goetz, A.; Harris, R.; Izadi, S.; Izmailov, S.;

Kasavajhala, K.; Kaymak, M.; King, E.; Kovalenko, A.; Kurtzman, T.; Lee, T.;

LeGrand, S.; Li, P.; Lin, C.; Liu, J.; Luchko, T.; Luo, R.; Machado, M.; Man, V.;

46

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.06.04.494833doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.04.494833
http://creativecommons.org/licenses/by-nc/4.0/


Manathunga, M.; Merz, K.; Miao, Y.; Mikhailovskii, O.; Monard, G.; Nguyen, H.;

O’Hearn, K.; Onufriev, A.; Pan, F.; Pantano, S.; Qi, R.; Rahnamoun, A.; Roe, D.;

Roitberg, A.; Sagui, C.; Schott-Verdugo, S.; Shajan, A.; Shen, J.; Simmerling, C.;

Skrynnikov, N.; Smith, J.; Swails, J.; Walker, R.; Wang, J.; Wang, J.; Wei, H.; Wolf, R.;

Wu, X.; Xiong, Y.; Xue, Y.; York, D.; Zhao, S.; Kollman, P. AMBER 2022. 2022.

(26) Shi, C.; Wallace, J.; Shen, J. Thermodynamic Coupling of Protonation and Con-

formational Equilibria in Proteins: Theory and Simulation. Biophys. J. 2012, 102,

1590–1597.

(27) Hofer, F.; Kraml, J.; Kahler, U.; Kamenik, A. S.; Liedl, K. R. Catalytic Site p K a

Values of Aspartic, Cysteine, and Serine Proteases: Constant pH MD Simulations.

J. Chem. Inf. Model. 2020, 60, 3030–3042.

(28) Carvalheda, C. A.; Campos, S. R. R.; Machuqueiro, M.; Baptista, A. M. Structural

Effects of pH and Deacylation on Surfactant Protein C in an Organic Solvent Mixture:

A Constant-pH MD Study. J. Chem. Inf. Model. 2013, 53, 2979–2989.

(29) Morrow, B. H.; Koenig, P. H.; Shen, J. K. Atomistic simulations of pH-dependent self-

assembly of micelle and bilayer from fatty acids. J. Chem. Phys. 2012, 137, 194902.
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