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Abstract

Constant pH molecular dynamics (MD) simulations sample protonation states on
the fly according to the conformational environment and user specified pH condition;
however, the current accuracy is limited due to the use of implicit-solvent models or
a hybrid solvent scheme. Here we report the first GPU-accelerated implementation,
parameterization, and validation of the all-atom continuous constant pH MD (CpHMD)
method with particle-mesh Ewald (PME) electrostatics in the Amber22 pmemd.cuda
engine. The titration parameters for Asp, Glu, His, Cys, and Lys were derived for
the CHARMM c22 and Amber ff14sb and ff19sb force fields. We then evaluated
the PME-CpHMD method using the asynchronous pH replica-exchange titration sim-
ulations with the c22 force field for six benchmark proteins, including BBL, hen egg
white lysozyme (HEWL), staphylococcal nuclease (SNase), thioredoxin, ribonuclease
A (RNaseA), and human muscle creatine kinase (HMCK). The root-mean-square de-
viation from the experimental pK,’s of Asp, Glu, His, and Cys is 0.76 pH units, and
the Pearson’s correlation coefficient for the pKj, shifts with respect to model values
is 0.80. We demonstrated that a finite-size correction or much enlarged simulation
box size can remove a systematic error of the calculated pK,’s and improve agree-
ment with experiment. Importantly, the simulations captured the relevant biology in
several challenging cases, e.g., the titration order of the catalytic dyad Glu35/Asp52 in
HEWL and the coupled residues Asp19/Asp21 in SNase, the large pK, upshift of the
deeply buried catalytic Asp26 in thioredoxin, and the large pK, downshift of the deeply
buried catalytic Cys283 in HMCK. We anticipate that PME-CpHMD offers proper pH
control to improve the accuracies of MD simulations and enables mechanistic stud-
ies of proton-coupled dynamical processes that are ubiquitous in biology but remain
poorly understood due to the lack of experimental tools and limitation of current MD

simulations.
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1 Introduction

Accurate and efficient molecular modeling of proton-coupled dynamic processes is im-
portant, as biological functions and material properties often depend on protonation and
deprotonation. For example, many secondary active membrane transporters utilize pH
gradient and proton coupling to drive the conformation transitions for function.! Many en-
zymes have pH-dependent catalytic activities, e.g., the active site of SARS-CoV-2 main
protease collapses upon protonation of a conserved histidine residue. 23 Well known ex-
amples of pH-dependent materials include aminopolysaccharide chitosan which self as-
sembles into hydrogels in response to a small increase in solution pH.# The ability to
model proton-coupled dynamic processes is also important for studying protein-ligand
binding, as upon protein-ligand association, the protonation state of the protein and the
ligand may change. %6
Unlike the conventional molecular dynamics (MD) that assumes fixed protonation states,

constant pH MD allows protonation states to evolve with time according to the conforma-
tional environment and a preset solution pH. Currently, perhaps the most popular constant
pH approaches are based on A dynamics and the hybrid Monte-Carlo (MC)/MD scheme
(also known as the stochastic titration method”). The former8-12 uses continuous titration
coordinates to propagate protonation states based on an extended Lagrange approach
called A dynamics, '3 while the latter”-'4~16 combines MD with periodic MC sampling of
discrete protonated and deprotonated states. Hereafter, we will refer to the former as the
continuous and the latter as the discrete constant pH methods. The details of these tech-
niques can be found in the recent reviews. =19 Although the first (discrete) constant pH
method’ is based on a hybrid-solvent scheme (see later discussion), the early implemen-
tations of the constant pH methods are solely based on the implicit-solvent generalized
Born (GB) models, i.e., both conformational and protonation state sampling is conducted

in implicit solvent.8:2:14 The use of the implicit-solvent models significantly reduces sys-
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tem size and allows faster sampling of solute conformational states relative to simulations
with explicit water models. 7 However, for many biologically relevant systems, e.g., trans-
membrane proteins (with heterogeneous dielectric environment), nucleic acids (highly
charged), and protein-ligand and protein-protein bound states, implicit-solvent models are
not sufficiently accurate. This has motivated the development of explicit-solvent constant
pH methods, which include the hybrid-solvent scheme and the all-atom approaches.

In a hybrid-solvent constant pH scheme, the MC sampling of protonation states or A
dynamics propagation of titration coordinates is conducted in implicit solvent, while MD
is conducted in explicit water. The first hybrid-solvent constant pH method was devel-
oped by Baptista and Soares, who combined MD in explicit solvent with MC sampling
based on Poisson-Boltzmann (PB) calculations.” This method was first implemented
in GROMOS962° and later improved and implemented?! in GROMACS.22 Following
the aforementioned work and making use of the state-of-the-art GB models, the hybrid-
solvent continuous23 and discrete '® constant pH methods were developed and imple-
mented in CHARMM?4 and Amber.2®> Compared to the purely GB based constant pH
methods, the hybrid-solvent approaches demonstrated significantly improved accuracy
for conformational dynamics and consequently better agreement with the experimen-
tal pKy’s. 19:23:26.27 |mportantly, the hybrid-solvent approach allowed the investigations
of pH-dependent mechanisms of a variety of systems that are (due to inaccuracy) un-
feasible to model with implicit-solvent models, e.g., proteins in mixed solvent,?8 phase
transition of surfactants,?® polysaccharides,4 and lipid bilayers,3° proteins at the water-
membrane interface,3! as well as transmembrane proteins32 and peptides inserted in
the membrane.33 Nonetheless, a drawback is that the Hamiltonian cannot be expressed
in a hybrid scheme (semigrand canonical ensemble), and thus energy conservation is
not proven to hold. In terms of applications, hybrid-solvent simulations of protein-ligand
complexes are challenging, as the implicit-solvent description for ligand is not very accu-

rate and the effects of explicit water and ions which play significantly roles cannot be fully
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modeled. 34
To overcome the limitations of the hybrid-solvent scheme, much effort has been made
in the development of all-atom constant pH methods over the past decade. The CHARMM

program24

contains the CPU implementations of the all-atom continuous constant pH
method with generalized reaction field3°:3¢ or particle-mesh Ewald (PME) electrostat-
ics for A dynamics,'! and the multiple site A dynamics (MSAD)37 based constant pH
method. 10:38 These methods have been validated using pK, calculations for a number
of proteins 10:11:36 35 well as RNAs.38 The A dynamics based constant pH method was
also implemented in the GROMACS program,22 although only the single-site titratable
model was considered and performance for proteins remains to be demonstrated. 12 The
NAMD program3° contains an implementation of the all-atom constant pH method based
on a non-equilibrium MD-MC approach, 16 which overcomes the issue of low acceptance
of MC moves due to a large energy change resulting from a sudden switch in protonation
state, as in the aforementioned hybrid MC/MD constant pH approaches. 19:21

The aforementioned all-atom continuous constant pH methods 10:11.35.38

are promis-
ing; however, the CPU implementations limit the simulation time scale and system size
that can be studied. Recently, the Brooks group developed the basic lambda dynamics
engine (BLaDE) which enables GPU acceleration for MSAD based alchemical free en-
ergy calculations and constant pH simulations. 49 In this work, we report the development
and validation of the GPU all-atom continuous constant pH method in the pmemd.cuda
engine of Amber program (version 2020).4! Following the discussion of the model param-
eterization and validation, we present the data from the pK, calculations of benchmark
proteins, including BBL, HEWL, SNase, RNase A, BACE 1, thioredoxin, and HMCK. In
addition to comparison to experimental pK, values, we will discuss the coupled titration of

catalytic residues, pH-dependent response of solvent exposure, titration of deeply buried

sites. Finally, we will discuss the finite-size effects and project future directions.
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2 Methods and Implementation

The all-atom PME continuous constant pH MD (CpHMD) method. In contrast to the
conventional MD, the continuous constant pH MD (CpHMD) method treats the protonation
states of titratable sites as dynamic variables {\,} and propagates them simultaneously

with the spatial coordinates using an extended Hamiltonian, 842

H{rit {Aa}) = Zmﬂ“ +3 Zma)‘Q Umd ({ri})

+ UMY (i} {Aa]) + D UF(ha),

where {r;} and {)\,} refer to the spatial and titration coordinates, respectively. A depro-
tonated state is represented by the A values close to 1 (A > 0.8 in this work), whereas a
protonated state is represented by the )\ values close to 0 (A < 0.2 in this work). In order

to impose the boundaries 0 and 1 for \, we express it as 11:23:42

A = sin? 0, (2)

where the 6 variable is allowed to assume any real value, as with the spatial coordinates.
Therefore, 0 is the actual coordinate in the integrator. However, for the convenience of
discussion, we will write all equations in terms of A.

The two first terms in the Hamiltonian (Eq. 1) describe the kinetic energies of the real
atoms and X particles. The \ particles are assigned a fictitious mass, which is similar to
a heavy atom (10 amu). U4 represent the A-independent bonded energies (see later
discussion) and non-bonded energies. For the all-atom CpHMD method, U™P" is a sum
of the A-dependent Lennard Jones and electrostatic energies.!! The last term U* in the

Hamiltonian (Eq. 1) represents three biasing potentials that are only dependent on A,

U*(Aa) = -U™00) + UP(Ag) + UPH(A). (3)
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umed represents the potential of mean force (PMF) for titrating a model compound or
peptide in solution, which can be obtained from the traditional free energy simulations
such as thermodynamic integration (TI). U2 is a quadratic barrier potential centered in
the middle of the \ coordinate to prolong the residence times of the end states (A close to
Oorf):

UP™™ (M) = 48(Na ~ 1/2)”, (4)

where 3 is a parameter affecting the barrier height. In the current implementation, it is set
to 2.0 kcal/mol for all types of residues, similar to our previous work.'! /PH represents
the free energy added to the deprotonation reaction due to a change in solution (infinite
proton bath) pH

UPH(Aa) = In10 - kg T(pH - pK3"*N)Aq (5)

where kg is the Boltzmann constant, 7' is the system temperature, and pK,™°4 is refer-
ence pK, of the model compound or peptide.

When \ = 0, the proton is present and fully interacts with its environment, and when
A = 1, it is treated as a ghost particle without non-bonded interactions with its environ-
ment. The partial charges on the titratable residue are linearly scaled between the proto-
nated and deprotonated states, as in the original CoHMD framework.8:42 This differs from
the multi-site A dynamics3” dynamics based MSAD CpHMD method, 10:38 which scales
potential energies. Formally, the A\-dependent Lennard-Jones interaction energy between
a titratable hydrogen i and another non-titratable atom j is given by

UET (A = (1-\) UF, (6)

where ); is the titration variable associated with the titratable hydrogen, and Ué?J is the
Lennard-Jones interaction energy between atoms i and j when the hydrogen is present.

Similarly, the Lennard-Jones interaction energy between two titratable hydrogens is given
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U (M Aj) = (1= 2) (1- ) UF. (7)

The charge of atom j in the titratable residue « is given by

g; (Aa) = (1-Xa) ¢ (0) + Aagj (1), (8)

where ¢; (0) is the charge appropriate to the protonated form of the residue, and ¢; (1) is
the charge appropriate to the deprotonated form.

The implementation presented in this paper uses fully explicit water molecules and
treats the nonbonded electrostatic interaction energy between atoms with particle-mesh
Ewald (PME) electrostatics. Because the ) values are treated as dynamic coordinates of
the system, the derivatives of the energy with respect to the \ values are required. In the
pmemd implementation2® of PME electrostatics, this interaction energy is separated into

several terms,

Vcoulomb = Vdirect + Vreciprocal + Veelt + Vplasma7 (9)
where
Matoms erfc arzj )
Vidirect = Z Z G4 — - (10)

ij,n
is the short-range component of the electrostatic energy, where n enumerates the copies
of each atom from the neighboring periodic cells. This summation is performed only over

those atom pairs 4, j for which r;; falls within a small cutoff distance.

exp (- (mm/a)?
Vreciprocal = 271”/ Z < m2 ) S (m) § (-m) (11)

m=£0

is the reciprocal space energy, where v is the volume of the unit cell, m is reciprocal lattice

vector, and S (m) is the structure factor,
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Sm)= S gexp (2rim x 1), (12)
i=1
which can be approximated by
S (m) ~
S Q (ki ko, k3)exp <2m' (m;(fl + mg? + m;;:?’)) (13)

Ky ko, k3

= F(Q) (my, mg, m3),

where @ (kq, ko, k3) is a matrix constructed by interpolating the charge distribution in the
simulation cell to a grid with the same dimensions k1, ko, k3, and F' (Q) (mq, mg, m3) is the
fast Fourier transform of the () matrix.

The Vieciprocal €N then be written as

exp (7 (ﬂm/a)2>

1

o ,,;0 LR (@) (m) F(Q) (m) (14)
‘ :ﬁnatoms 2 o
Vself ﬁ Z:ZI q; s ( )

is a term that removes the self-interaction energies contained in Vi ¢ciprocal, @nd

2
™
Vplasma = Va2 (Z Qi> ) (16)
1

where V is the volume of the unit cell is a term that counterbalances any net charge on

the system.

Implementation in the pmemd.cuda engine. As in our previous CPU implementa-

tion of the PME-CpHMD method in CHARMM, 11 the derivatives of f]ng (\;) with respect
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to the titration variables can be derived from Egs. 6 and 7, and computing them requires
changes to be made to the Lennard-Jones forces between titratable atoms. In the present
implementation, these modifications were made by making appropriate changes to the
direct-force CUDA kernel in pmemd.cuda where the Lennard-Jones forces are computed.
This kernel was also modified to compute the Lennard-Jones contributions to the forces
on the A\ titration variables. The electrostatic spatial forces on the atoms can be made to
depend on the X values by using the normal force calculations with the charges given in
Eqg. 8 according to the instantaneous values of the A titration variables. Since V. and

Vv

blasma are independent of the spatial coordinates of the atoms, they are not computed

during standard MD runs in pmemd.cuda. However, because these energies do depend
on the A\ titration coordinates, their derivatives with respect to the titration coordinates are
required in CpHMD. The calculation of these derivatives was added to the kernel that
interpolates the \-dependent atomic partial charges, which was previously implemented
by us for the generalized Born based CpHMD method. 43 This kernel otherwise required
minimal changes for the present implementation. The derivatives of Vj;.ect With respect
to A are computed through appropriate changes to the direct-force kernel in pmemd.cuda.
The derivatives of Vieciprocal With respect to A are computed with a new kernel that com-
putes the derivatives given by Eq. 14 using the same method as outlined in our previous

CPU implementation in CHARMM. '

Modification of the force field parameters. The current constant pH methods are
based on single topology, i.e., titration is represented by switching on/off the charge and
Lenard-Jones interactions of the dummy hydrogen as well as by transforming between the
protonated and deprotonated forms of sidechain partial charges.19 The latter is straight-
forward to implement for the CHARMM force fields, 44 as the backbone partial charges
are independent of the side chain. This is however not the case for the Amber force

fields, 446 in which the backbone charges are dependent on the side chain protonation

10
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state. Due to the 1-4 interactions between the backbone and adjacent sidechain, this
dependency makes it impossible to use a single reference scheme, i.e., one model for
one type of sidechain. To circumvent this problem, we adopted the scheme used in the
discrete constant pH implementation in Amber!4 by fixing the backbone charges to the
values of one protonation state (charged Asp/Glu and neutral His in our implementation)
and absorbing the residual change in charge (ranging from 0.10 to 0.14 e for Asp, Glu and
His) onto the C3 atom. Such a scheme is not ideal and might introduce potential artifacts
to conformational dynamics; thus, we only adopted it for titration dynamics. For conforma-
tional dynamics, the partial charges are unmodified and the charge interpolation between
the protonated and deprotonated states is made to both backbone and sidechain atoms.
Here we note that in our approach the conformational dynamics and titration dynamics are
treated on an equal footing, with both sets of coordinates propagating together. We don’t
separate these into separate phases of the simulation. Simply, we use different charge
sets for the forces on the titration and spatial coordinates. By doing so, the conformational
dynamics from the optimized force field is preserved.

Another compromise and approximation we made is in the bonded terms, which are
not scaled between two protonation states as in the early CoHMD implementations. 8:42
For Asp and Glu, the bonded parameters for the protonated and deprotonated forms are
different in both CHARMM and Amber force fields.4446 The parameters of the deproto-
nated forms (which are most common at physiological pH) were used except for those
related to the dummy hydrogens, which were taken from the protonated forms. For His,
the bonded parameters for the protonated and deprotonated forms are the same in the
Amber ff14SB*6 and CHARMM c2244 force fields. Including the bonded terms in the cal-
culation would require significant modifications to the code, and as such is deferred to the
future work. However, from a large number of application studies we have conducted, no
artifacts have been observed, which may be due to our choice of adopting the dominant

form (e.g., charged Asp/Glu). Therefore, we believe that the improvement with adding the

11
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bonded term perturbation may be minimal.

Finally, the use of two dummy hydrogens for Asp/Glu introduces an issue, namely,
once an uncharged (ghost) dummy hydrogen rotates to the anti configuration, it loses
the ability to titrate. This is because a ghost proton in the anti position is unfavorable to
protonate, and due to zero force it is unlikely to move until it is protonated, as noted in
the early developments of constant pH methods.8:14 Following our previous work, 42 the
rotation barrier of the C-O bond in the carboxylate group of Asp/Glu was increased to 6
kcal/mol to keep the dummy hydrogens in the syn configuration. This is a limitation, as the
anti configuration might become favorable in some protein, although it is unfavorable in
the peptide.#” One solution is to include both anti- and syn- positions for each oxygen as
implemented in the discrete constant pH methods in Amber. '4:15 This solution however
is difficult to implement for CoHMD methods, as it would add additional variables which
makes the analytic form of the model PMF impossible to derive (Eq. 18). To complicate
the case, experimental evidence of syn vs. anti configuration is lacking. This is a topic

that warrants future investigation.

Potential of mean force functions for model titration. The linear response theory
states that the charging free energy of an ion in polar solvent is quadratic in the charge
perturba’[ion.48 Thus, the PMF for protonation/deprotonation of a single-site titratable
group (e.g., Cys and Lys) in explicit solvent can be approximated as a quadratic func-
tion in terms of X.11.36

mod (\) = A(A- B)2. (17)

single

Following our previous work, *2 for residues with two titratable sites such as carboxylic
acids and histidines an additional variable z is introduced to represent the tautomer states.
The underlying variable 6, which is defined in analogy to 6 (Eq. 2) is dynamically prop-
agated on the same footing as #. For carboxylic acids Asp and Glu which have two

equivalent protonation sites (carboxyl oxygens), the model PMF function can be written

12
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25942,49

VR N #) =(RiA% + RoA + R3) (s + Ra)? + B5)? + R (18)

where Ry, ..., Rg are parameters that can be determined by one-dimensional fitting of the
corresponding mean forces (0U /90)|y_and (0U /00 )|g calculated using thermodynamic
integration (TI) at different combinations of # and 6, values. The detailed derivation and
protocol are given in Ref.9:4?

The model PMF function for His titration can be written as®

yed :Alo)\2$2 + 2 (A1 By — AgBy) Az
+2(AgBy— A1B1 — A19B1o) PR

+ Aj N2 - 241 B\ (19)

The parameters in Eq. 19 are those in the one-dimensional PMF functions, where either

X or z is fixed at one of the end points (1 or 0).°

Uod(A,0) = Ag(A - By)? (20)
URod(N 1) = Ay(A- By)? (21)
URod(1,2) = Ayo(z — Byg)? (22)

Detailed protocols for obtaining the parameters are given in Ref.9:49

Finite-size corrections to the calculated pK, values for proteins. In our previous
work, ! we proposed a correction for the pK.’s calculated from the all-atom PME con-
stant pH simulations under periodic boundary conditions. According to the analysis of
Hlnenberger and colleagues, the finite-size errors for the ligand charging free energies

arise from four physical effects, among which the discrete solvent effect dominates when

13
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the protein’s net charge is neutralized by counter-ions.° The discrete solvent effect arises
from a homogeneous, constant potential that is applied to offset the potential generated by
isotropically tumbling solvent molecules so that the average potential over the simulation
box is zero.?0 This “offset” potential is positive for typical three-site water models, and
needs to be corrected when calculating ligand charging free energies.®9 Hiinenberger

and colleagues developed an analytic correction to the ligand charging free energy50

2 N®
A G (charging) = fgkstV,

(23)
where £ is the electrostatic constant, +° is the quadrupole moment trace of the solvent
model relative to a van der Waals interaction site. +° is calculated as 0.764 ¢-AZ for TIP3P
water model.'! @ is the charge (-1 for charging to -1 ¢ and +1 for charging to +1 ¢), N*
is the number of solvent molecules, and V is the simulation box volume. We note, the
correction in Eq. 23 is very similar to that proposed by Roux and coworkers. !

Now we consider the deprotonation reactions of protein titratable residues, which
refers to the charging process of an acidic sidechain, e.g., aspartic acid, Asp — Asp~,
or the discharging process of a basic sidechain, e.g., histidine, His* — His. Based on
Eq. 23 (correction for the charging free energy), we obtain the correction for the deproto-
nation free energy of a titratable residue in a protein in reference to a model system

27 Ny - MNa

AA Gcorr(deprot) = ?k’j/s(? V_
P m

), (24)
where N/ Vp, and Ny, / Vi refer to the solvent number density in the protein and model
systems, respectively. Note, the minus sign in Eq. 23 and @ are absorbed due to the fact

that @ is -1 for acidic residues, and for basic residues A G(deprot)=-A G(charging). The

corresponding pK, correction is

AA G (deprot)
In(10)RT

ApK " (deprot) = (25)
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where R is the ideal gas constant, T is the temperature. Since the solvent number density
is higher in the model system than in the protein system, the pK, correction is negative

for both acidic and basic sites.

3 Simulation Protocols

Preparation of model peptide systems. Capped pentapeptides ACE-AAXAA-NH5 (X
= Asp, Glu, His, Cys, or Lys) were used to parameterize and validate the model PMF
functions. First, each peptide structure was generated and placed in a cubic water box
using CHARMM scripts (version ¢38b2).24 The minimum distance between the heavy
atoms of the peptide and the edges of the box was set as 10 A. Next, to neutralize the
system at pH 7.5, one CI" counterion was added to the Lys pentapeptide system, and
one Na™ counterion was added to the Asp and Glu pentapeptide systems. The peptides
were represented by the CHARMM c22,44 Amber f14SB,*® or Amber ff19SB%2 force

field. Water was represented by the TIP3P water model. %3

Thermodynamic integration and titration simulations of the model peptides. We
carried out an energy minimization in each pentapeptides system applying a force con-
stant of 100 kcal mol 1A 2 to the peptide heavy atoms for 200 steps of SD followed by
300 steps of conjugate gradient method. Then, the system was heated from 100 to 300K
using Langevin thermostat and a force constant of 5 kcal mol"!A=2 on the heavy atoms.
After heating, three stages of equilibration were performed with 250 ps each, whereby the
force constant was 2 and 1, and 0 kcal mol A2, Finally, thermodynamic integration (TI)
simulations were conducted for the model pentapeptides under constant NPT conditions
at fixed 6 or 6, values of 0.2, 0.4, 0.6, 0.7854, 1.0, 1.2, and 1.4. Each simulation lasted
10 ns. The Tl simulations gave the mean forces, (0U /90|y ) and (OU /00;]g), which were

used to obtain parameters in the PMF functions (Eq. 17, 18, and 19). The detailed
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protocols are given in a recent tutorial. 4

As validation of the model parameters, titration simulations were conducted for the
model peptides at independent pH conditions, which were placed at 0.5-pH intervals in
the range of 2-5.5 for Asp, 2.5—6 for Glu, 4.5-8 for His, 6.5-10 for Cys, and 8-11.5 for Lys
model peptides. The equilibration and production runs of the peptide systems followed the
same protocols as the protein simulations (see latter discussion). The production run at
each pH lasted 20 ns and was repeated three times. With the CHARMM c22 force field, 44
we also performed pH replica-exchange simulations of 10 ns/replica for Asp, His, and Lys
model peptides with the same pH conditions. Additional pH replica-exchange simulations
were also performed with the hydrogen mass repartition scheme®4:55 and 4-fs timestep.

The simulation length was 10 ns/replica.

Preparation of the protein systems. For protein simulations, the following PDB files
were downloaded: 1W4H (peripheral subunit-binding domain protein BBL),%6 2LZT (hen
egg white lysozyme or HEWL),®” 3BDC (Staphylococcus nuclease or SNase),8 7RSA
(ribonucleas A or RNaseA),>° 1ERU (thioredoxin), 9 and 110E (human muscle creatine ki-
nase or HMCK).81 The coordinates were first processed using the convpdb.pl script from
MMTSB Toolset®2 to remove hetero atoms, ions, water, ligands, and hydrogen atoms.
The CHARMM c22 protein force field and CHARMM modified TIP3P water model were
used to represent the protein and water, respectively.4* The following steps were per-
formed using the CHARMM package (c38b2).24 The proteins were embedded in a pre-
equilibrated cubic TIP3P water box with at least 10 A cushion between the protein heavy
atoms and the edges of the box. Sodium and chloride ions were added to neutralize
the systems (assuming model pKy's and pH 7.5) and to provide a physiological (0.15
M) or experimental salt concentration (0.1 M for SNase, 0.5 M for thioredoxin, and 0.06
M for RNase A). Using the HBUILD facility, missing hydrogens were added, and a cus-

tom CHARMM script is used to add two dummy hydrogens on the carboxylate oxygens.9
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The protein structures were energy minimized using 50 steps of steepest descent (SD)
method with a harmonic force constant of 50 kcal- mol 'A% on the heavy atoms followed

by 100 steps of adoptive basis Newton-Raphson (ABNR) method.

Equilibration of the protein systems at independent pH conditions. The CHARMM22
topology and parameter files were converted to the Amber compatible format with the
command chamber in ParmEd.®3 With the Amber input files prepared, a last round of
minimization was performed in Amber22,2° using 200 steps of SD followed by 300 steps
of conjugate gradient method, whereby a force constant of 100 kcal mol~!A~2 was applied
to the protein heavy atoms. Keeping the same restraint and with a time step of 1 fs, the
system was then heated for 100 ps from the initial temperature of 100 K to 300 K using
Langevin thermostat). Following heating, two stages of equilibration was performed. The
first stage consisted of two runs of 250 ps each performed at pH 7, whereby the harmonic
force constant was 100 and 10 kcal - mol *A~2. The second stage of equilibration was
performed at the individual pH conditions of the replica-exchange simulations. Here, four
runs of 500 ns were performed using a time step of 2 fs. The heavy-atom force constant

was gradually reduced from 10.0 to 1.0, 0.1, and 0.0 kcal mol 1A 2,

Production CoHMD simulations of proteins with pH replica-exchange. For CoHMD
production runs, the asynchronous pH replica exchange algorithm®* was employed to ac-
celerate sampling convergence of conformational and protonation states and accelerate
pK, calculations.23 2 NVIDIA GTX 2080 Ti GPU cards were used. The pH range of the
protein simulations was extended at least 1 pH unit below or above the lowest or high-
est experimental pK, values, and the pH spacing was 0.5 pH unit. Additional pH replica
at 0.25 pH units were added in some cases to increase the probabilities of replica ex-
change. The exchanges between adjacent pH replicas were attempted every 2 ps (1000
MD steps). Each replica in the simulations of BBL, HEWL, SNase, thioredoxin, RNase
A, and HMCK was run for 34, 40, 40, 50, 40, and 30 ns, respectively. The simulation
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length was sufficient to converge the pKy’s of all titratable sites (for HMCK we were only
interested in Cys283). For SNase, additional simulations with larger box sizes were car-
ried out. In these systems, the distance between the protein and edges of the water box
was increased from the default 10 A to 12, 14, and 18 A, and the corresponding simula-
tions lasted 20, 20, 60, and 75 ns per replica, respectively. All settings in the CpHMD are

identical to our previous work. 11:43

Settings in the MD. Unless otherwise noted, the integration timestep in the produc-
tion runs was 2 fs. Lennard Jones energies and forces were smoothly switched off over
the range of 10-12 A. For long-range electrostatics, the PME method was used with a
real-space cutoff of 12 A and grid spacing of 1 A. Each pH replica simulations was per-
formed under constant NPT conditions, where the pressure was maintained at 1 atm by
the Berendsen barostat with a relaxation time of 0.1 ps and the temperature was main-

tained at 300 K by the Langevin thermostat with a collision frequency of 1.0 ps1.2°

pK, calculation. )\ coordinates from the titration simulations were post-processed to
calculate pK, values. Following our previous definition of protonated and deprotonated
states,*3 \ < 0.2 and \ > 0.8 represent the protonated and unprotonated states, respec-
tively, while 0.2 < X\ < 0.8 is considered unphysical and discarded. The unprotonated
fractions S at all simulation pH conditions were collected and the data were fit to the Hill

(or generalized Henderson-Hasselbalch) equation

1
1 4+ 10MPKapH)’

S (26)

where pK, and n are the fitting parameters, and S is defined as S = Nunprot/Nunprot +
Nprot, where Nunprot @nd Nprot, refer to the number of A values representing the unproto-
nated and protonated states, respectively.

For two residues experiencing linked titration, the average number of protons bound to
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the two residues ((P)) are calculated at all simulation pH, and fit to the following coupled

titration model to determine the macroscopic stepwise pK,’s, 3°:6°

10PKa2PH o . 1gPKa1+PKa2-2pH
a 1+ 1OpKa27pH + 10pKa1+pKa2*2pH

(P) (27)

where pK,; and pK,o are the two stepwise pK,’s.

Finite-size corrections. A finite-size correction (Eqg. 25) was applied to the calculated
pK.’s. For the pK,'s in Table 2 (i.e., a minimum of 10 A distance between the protein
and the edge of the water box), the corrections are: BBL (Asp: -0.33, Glu: -0.39, His:
-0.30); HEWL (Asp: -0.63, Glu: -0.70, His: -0.61); SNase (Asp: -0.70, Glu: -0.77, His:
-0.67); thioredoxin (Asp: -0.96, Glu: -1.02, His: -0.93); RnaseA (Asp: -0.66, Glu: -0.72,
His: -0.63); creatine kinase (Cys: -0.64). Corrections for the simulations with larger box
sizes (Table 3) are given in Table S1. At a first glance, it may seem odd that these
corrections differ by residue type. This is because the corrections for the model pK,’s are
different. In the future, these differences can be eliminated by using larger solvent boxes
for the model simulations. Additionally, the reference pKy,’s can be adjusted to account
for the pK, corrections which can be calculated at the simulation set up by using lattice

parameters. !

4 Results and Discussion

4.1 Model parameterization and validation

Parameterization of the model potential of mean functions for titrating model pen-
tapeptides. First, Tl simulations of model pentapeptides CH;CO-Ala-Ala-X-Ala-Ala-CONH,
(X=Asp, Glu, His, Cys or Lys) were performed to obtain the mean forces, (0U/d0) |y,

and/or (0U /00;) |), which were then fit to the analytic functions (derivatives of Eqs.17, 18,
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and 19 expressed in 0) to obtain the parameters. The fitting was generally very good (see
an example fitting of His in Fig. 1), suggesting that the linear response theory holds,
consistent with the results of both the GRF-based and PME-CpHMD in CHARMM. 1136
Integration of the mean forces followed by coordinate transformation gives the PMF as a
function of A (see examples in Ref36). We note, the parameters are more accurate when
they are derived from fitting the mean forces (as in our early work23:42 rather than the
PMF (as in the PME-CpHMD implementation in CHARMM ).

Table S2 gives the parameters in the model PMF functions of Asp, Glu, and His (Eq. 18
and 19) for the CHARMM c22,44 Amber ff14sb,46 and ff19sb®2 force fields. The model
PMF parameters for Cys titration were also obtained for the CHARMM ¢2244 and Amber
ff14sb*8 force fields (Table S2). In the rest of the paper, we focused on the CHARMM c22
force field®® to facilitate comparisons with our previous PME-CpHMD 1 and the Brooks’
lab’s MSAD CpHMD implementations 1937 in CHARMM. 24 A force field comparison study

will be conducted in the near future.

a) b) C)
6,=0 0, =m/2 0=rm/2

Mean force
N
o o
1 1

|
N
o
]

00 05 10 1500 05 10 15 00 05 1.0 15
8 8 6,

Figure 1: Nonlinear fitting of the mean forces to obtain the model PMF parameters
for His titration. a) and b) Fitting (0U/06) at 6, = 0 (a) or at 8, = 7/2 (b) to 24¢(sin6 —
By)sin26 gives Ag and By (a) or A; and By (b), respectively. c) Fitting (0U /00,) at 0 = 7/2
to 2410(sin%0; — Bjg)sin26, gives Ajo and Bjg. The fitting equations are derivatives of
Egs. 20, 21, and 22. The red curves are the best fits.

20


https://doi.org/10.1101/2022.06.04.494833
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.04.494833; this version posted September 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Independent pH and replica-exchange simulations of model pentapeptides. The
PMF function obtained from the Tl simulations describes the free energy change along
A, and the difference between the two end points (A=1 and 0) gives the deprotonation
free energy. If the latter is reproduced by the CpHMD simulation, A\ should sample two
end (protonated and deprotonated) states with equal probabilities when pH is set to the
reference pK, value. In other words, the pK, calculated from the titration simulation
should be the same as the reference pK,. To test it, we carried out titration simulations
of model pentapeptides at 8 independent pH conditions. Three replica runs of 20 ns
each were performed at each pH. The unprotonated fractions at all pH conditions are
converged (see time series analysis in Fig. S1). Fitting the unprotonated fractions to
the Henderson-Hasselbalch equation (Eq. 26) gave the pK,’'s of 3.44+0.04, 4.24+0.02,
6.5+0.12, 8.4+0.03, and 10.3+0.01 for Asp, Glu, His, Cys, and Lys, respectively (Fig. 2).
Fitting to the generalized Henderson-Hasselbalch equation gave identical pK,'s and error
estimates, but revealed a small underestimation of the Hill coefficient for all but Cys model
peptides. Except for Asp, the calculated pK,’s are within 0.1 unit of the target experimen-
tal values (Table 1). His has two titratable nitrogens and hence three protonation states:
the doubly protonated Hip (charge +1) and two neutral tautomers, with a proton on either
Né or Ne, These tautomer are respectively named Hid and Hid in Amber2® or HSD and
HSE in CHARMM.24 The calculated pK,’s of Né (Hip == Hie) and Ne (Hip = Hid)
are 7.0+0.11 and 6.7+0.12, respectively. These values are also within 0.1 units from the
values estimated by Tanokura based on NMR data of a model compound.87 The titration
of Asp and His is nosier than Glu, Cys, and Lys, as evident from the larger uncertainties
of the unprotonated fractions at pH conditions near the pK, value, consistent with the
larger bootstrap errors (0.09 and 0.12, see Table 1). Trajectory analysis showed that the
Asp and His sidechains can form hydrogen bonds (h-bonds) with the neighboring back-
bone group, resulting in meta-stable states. The carboxylate group of Asp is stabilized by

h-bonding with the neighboring backbone amide, which contributes to the 0.3-unit under-
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Figure 2: Simulated titration plots of model peptides ACEAAXAANH, (X=Asp, Glu,
His, Cys, and Lys) at independent pH conditions. Top panel: unprotonated fractions
of Asp, Glu, and His at different pH. Bottom panel: unprotonated fractions of Cys and Lys
at different pH. At each pH, three simulation runs were performed starting from different
initial velocity seeds. The pK,, Hill coefficient (n), and fitting error are given. The boot
strap errors are given in Table 2. The fitting was performed on all data points using the
generalized Henderson-Hasselbalch equation. Performing the fits against the Henderson-
Hasselbalch equation yields identical pK, values and error estimates.

estimation of the target pK, value. This behavior was previously observed in both the GB
and PME-CpHMD simulations in CHARMM.2:11

To investigate if the proton-coupled conformational dynamics is adequately sampled
for Asp and His in the independent pH simulations, we compared the results with those
from three sets of pH replica-exchange simulations. The latter were conducted with the
asynchronous pH replica-exchange scheme that was recently implemented for Amber

simulations.®* The previous work of us 11:23:43 and others 1015 demonstrated that the pH
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replica-exchange protocol significant accelerates protonation state and conformational
sampling. Indeed, the pK, convergence is significantly accelerated; the unprotonated
fractions generally plateau after about 5 ns, compared to more than 10 ns in the indepen-
dent pH simulations (Fig. S2 and S3). Interestingly, the resulting pKy’s (3.3 and 6.5) of
Asp and His are very similar to those from the independent pH titration, which suggests
that sampling is sufficient in the latter (Fig. S2 and S3). Note, to account for the (~0.3
unit) difference between the calculated and target pK,’s of Asp pentapeptide, we changed
the Asp reference pK, (from the experimental value of 3.7 to 4.0 in the CoHMD parameter

file (charmm22_pme.parm) for protein simulations.

Table 1: Calculated and target experimental pK, values of model pentapeptides

Calc (IN)* Calc (REX)? Calc (HMR)¢ Expt?
Asp 3.4+0.09 3.3£0.10 3.6+£0.07 3.7
Glu 4.2+0.04 43+0.02 4.2
His 6.5+0.12  6.54+0.02 6.3+0.03 6.5
Hie¢® 7.0+£0.11  7.1+0.02 6.9+0.01 7.0
Hid/ 6.7+0.12  6.7+0.03 6.4+0.03 6.6
Cys 8.4+0.03 8.6+0.01 85
Lys 10.3+£0.01 10.3£0.01  10.0+£0.01 10.4

%Independent pH simulations, whereby each simulation was conducted for 20 ns and
repeated three times. Three sets of pH replica-exchange simulations of 10 ns/replica.
“Three sets of pH replica-exchange simulations of 10 ns/replica with the HMR scheme
and 4-fs timestep. All pK,’s and errors were calculated from bootstrap. ?Expt refers to the
NMR derived pK,’s of the model pentapeptides from Thurlkill et al.58 The His tautomer
pK.’s are those estimated by Tanokura based on the NMR data of a model compound. 8’
¢ Hie refers to the pK, associated with Hip = Hid. /Hid refers to the pK, associated
with Hip = Hie.

In order to further accelerate simulations, we tested the sensitivities of pKy’s for 4-fs
timestep in conjunction with the hydrogen mass repartitioning (HMR) scheme.®*5° Three
sets of pH replica-exchange simulations of 10 ns/replica were conducted for the five model
peptides with HMR/4-fs timestep. All simulations converged within 5-10 ns/replica, repre-

senting a twice speed up relative to the standard 2-fs simulations. The calculated pKj, is

3.6+0.07 for Asp, 4.3+0.02 for Glu, 6.3+0.03 for His, 8.6+0.01 for Cys, and 10.0+0.01
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for Lys. These pKj,’s deviate from the 2-fs simulations by 0.1-0.3 units. Notably, the
pK.'s of the basic residues are lower, by 0.2 units for His and 0.3 units for Lys. The latter
is surprising, given the rapid convergence (less than 5 ns/replica) and small random error
(bootstrap error of 0.01). Trajectory analysis showed that the solvent accessible surface
area (SASA) of the Lys sidechain with HMR has similar pH response, i.e., slightly decreas-
ing with pH; however, the value for all pH conditions are higher by about 4% compared to
the 2-fs simulations (data not shown). This might be related to the slightly increased dif-
fusion constant and decreased order parameter with the 4-fs timestep, as demonstrated
by a recent benchmark study.®°® We note, evaluation of the 4-fs/HMR scheme for CpHMD
simulations of proteins is not in the scope of the present work and will be conducted in

the near future.

4.2 Titration simulations of proteins

Overall comparison of the calculated and experimental pK, values. To test the ac-
curacy of the PME-CpHMD method for modeling protonation states of proteins, we cal-
culated the pK,’s of Asp, Glu, His, and Cys residues in BBL, HEWL, SNase, RNase A,
thioredoxin, and creatine kinase (HMCK) proteins, which have been previously used to
benchmark CpHMD methods. '1:43:70.71 For a total of 67 residues, the root mean square
error (RMSE) and the mean unsigned error (MUE) of the calculated pK,’s are 0.76 and
0.61, respectively, while the Pearson’s correlation coefficient r is 0.85 (Figure 3). A more
stringent test of the pK, prediction accuracy is to correlate the calculated and experimen-
tal pK, shifts (ApK,) with respect to model values, as the ApK, range is much smaller
than the pK, range, exposing potentially problematic cases. Encouragingly, the r value
for ApKy’s is 0.80, similar to the the r value for absolute pK,’s, suggesting that a good
correlation with experimental is achieved and consistent for different residue types (see

later discussion).
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Comparison of the calculated pK,’s with the all-atom CpHMD implementations in
CHARMM. The pK,’s of BBL, HEWL, and SNase have been previously calculated us-
ing the all-atom PME-CpHMD implementation in CHARMM (Table S4).7" The r value
of ApKy,’s (from correlation with experiment) for these proteins from the present work is
0.80, which is nearly identical to that (0.78) using the CHARMM PME-CpHMD titration. !
A comparison between the individual pK;’'s shows that most pK, values agree within 0.2-
0.3 units (Table S4); the agreement is especially remarkable for the pK,’s of the catalytic
dyad in HEWL, which differ by 0.2 units for Glu35 and are identical for Asp52.'" Note,
the previous CHARMM PME-CpHMD simulations were run for 10 ns/replica,'! whereas
the present Amber PME-CpHMD simulations were run until full convergence for 30—40
ns/replica. This analysis suggests that the pK, drift is small over time and the replica-
exchange CpHMD simulations offer pK, calculations with good precision, consistent with
our previous observations. 123 We further compared the calculated pK,’s of BBL and
HEWL, which were previously reported with the MSAD method in CHARMM (Table S4). 10
Note, the MSAD simulations in Ref. used a force-based cutoff for long-range electrostatics
in A dynamics and therefore we did not apply a finite-size correction for the pKy’s. 10 For
BBL, the order of the two His pK’s are in agreement between the MSAD and and CpHMD
results. Although the pK,’s from MSAD are 0.6—0.8 units higher, in better agreement with
experiment, the simulation length was only 5 ns/replica and no finite-size correction was
applied (which downshifts the pK,’s). As to HEWL, the RMSE from MSAD 10 is nearly

identical to the current work.

Comparison of the calculated and experimental pK.’s of different residue types.
The Asp pK,'s vary the most in this dataset. Encompassing both down- and upshifted
pKa's, the experimental pK, range for Asp is 1.2 to 8.1, similar to the calculated range
of 1.5 to 7.7 (Fig. 3a, magenta). The experimental pKy’s of Glu also display both the

down- and upshifts, but the range is smaller than Asp, from 2.6 to 6.1, compared to the
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Figure 3: Comparison between the calculated and experimental pK,’s and pK,
shifts of the benchmark proteins. a) Calculated pK,’s vs. experimental pKj,’'s. b)
Calculated vs. experimental pK, shifts with respect to the experimental model peptide
pK.'s (Table 1). The data for Asp, Glu, His, and Cys are shown in magenta, cyan, blue,
and orange, respectively. Pearson’s correlation coefficient () and RMSE are given. The
solid black lines represent the linear regression. The shaded region indicates the calcu-
lated pK’s within the overall RMSE (0.76 units) of the experimental values. To guide the
eye, the dashed diagonal line (x=y) is shown. c) Histograms of the deviations between the
calculated and experimental pK,’s for Asp (left), Glu (middle), and His (right) residues.
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Table 2: Calculated and experimental pK,’s of benchmark proteins®

Residue Expt Calc CHM Residue Expt Calc CHM Residue Expt Calc Residue Expt Calc
BBL SNase Thioredoxin RNase A

Asp129 39 35 37 His8 6.5 6.6 nd  Glub 4.9 41 Glu2 2.6 1.0
Glu141 45 40 43 Glu10 28 29 3.2 Glu13 4.4 4.0 Glu9 4.0 43
His142 65 58 54  Aspl9* 22 25 33 Asp16 42 3.8 His12 6.0 43
Asp145 3.7 3.2 3.4  Asp21* 6.5 56 6.0 Asp20 3.8 3.1 Aspl4 1.8 2.3
Glut61 37 40 40 Asp40 39 26 29 Asp26 8.1 7.7 Asp38 35 2.8
Asp162 3.2 29 27 Glu43 43 36 4.1 His43 n/d 5.4 His48 6.1 6.5
Glu164 45 40 43 Glub52 39 43 47 Glu47 4.3 41 Glu49 4.7 4.1
His166 54 42 41 Glus7 35 42 41 Glu56 3.2 3.4 Asp53 3.7 3.4

RMSE 0.62 0.66 Glue7 3.8 34 40 Asp58 52 6.8 Asp83 3.3 3.4
HEWL Glu73 33 3.0 36 Asp60 2.7 3.5 Glue 4.1 5.1
Glu7 26 29 3.2 Glu75 33 31 27 Asp61 3.9 4.2 His105 6.5 5.9

His15 55 43 4.0 Asp77 <22 -02 <-0.0 Asp64 3.2 23 Glu111 35 3.6
Asp18 28 27 29 Asp83 <22 03 0.0 Glu68 5.1 4.0 His119 6.5 5.7
Glu35 6.1 69 7.1 Asp95 22 34 30 Glu70 4.8 3.8 Aspi21 3.0 2.9
Asp48 14 15 09 Glu101 38 42 47 Glugs8 3.6 2.9 RMSE 0.81
Asp52 36 56 56 His121 52 5.0 / Glug5 4.1 3.9 HMCK

Asp66 1.2 15 141 Glu122 39 36 44 Glu9og 3.9 3.8 Cys283 5.6 6.7
Asp87 22 23 23 Glu129 38 50 55 Glu103 4.5 4.0

Asp101 45 50 52 Glul3s 3.8 22 29 RMSE 0.71
Asp119 35 29 35 RMSE 0.76 0.80
RMSE 0.83 0.92 All Max RMSE MUE

20 076 0.61
®CHM column contains the pK’s from the CHARMM PME-CpHMD simulations with finite-
size corrections for Asp, Glu, and His (~-0.5 for BBL; ~-0.9 for HEWL/SNase).!! Exper-
imental data are taken from ref’2:73 for BBL, ref’4 for HEWL, ref® for SNase, ref’® for
thioredoxin, ref’® for RNaseA, and ref’’ for HMCK. Glu56 of thioredoxin has two reported
pKa's, 3.2 and 5.1, and former was used to calculate the error. For coupled residues (indi-
cated by an asterisk), the macroscopic stepwise pK,’s (from experiment and simulations)
are listed.

calculated range of 1.0 to 6.9 (Fig. 3a, cyan). The overall accuracy of the pK, calculation
for Asp is slightly worse than Glu (RMSE of 0.76 and 0.69 respectively), but the r value
for Asp (0.87) is somewhat larger than for Glu (0.72), which may be attributed to the larger
pK, range. There are only 9 experimental pK’s for His in the current dataset, which has
a range of 5.2—6.5 and do not include upshifted values (Fig. 3a, blue). The calculated His
pK, range is 4.2—-6.6 (Fig. 3a, blue), and there is a trend of systematic overestimation of
pK, downshifts (Fig. 3c, right). In contrast, there is no clear trend for the pK, errors of
Asp and Glu (Fig. 3c, left and middle). The RMSE (0.92) for His pK’s is larger than those
for Asp (0.76) or Glu (0.9).
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pK. calculation for BBL: pH-dependent solvent exposure of His166. BBL is a mini-
protein with 45 residues and 8 titratable sites. The RMSE of the calculated pK,’s is 0.62
units, with His166 showing the largest error of 1.2 units, representing an overestimation to
the experimentally observed pK, downshift (Table 2). The pK, downshift of His166 can
be attributed to solvent exclusion and lack of hydrogen bonding (h-bonding) or electro-
static interactions (Fig. 4a). As pH decreases from 6 to 4, His166 undergoes a sigmoidal
transition (Fig. 4b) from the deprotonated fraction of 1 (singly protonated neutral state) to
0 (doubly protonated charged state). As expected, the fraction of the fully buried state
also decreases (i.e., solvent exposure increases); however, the decrease does not ap-
pear to be sufficient, i.e., at low pH values the buried fraction doe not plateau (Fig. 4c).
This analysis suggests that while the PME-CpHMD method is able to reproduce the ex-
perimental pK, downshift by capturing the pH-induced decrease in solvent exclusion or
increase in solvent exposure of His166, sampling of the exposed state at low pH may be
insufficient, which contributes to the pK, underestimation. Another potential contributor
is an overestimation of the desolvation penalty by the CHARMM c22 force field.** Note,
our previous CHARMM PME-CpHMD simulations gave a similarly underestimated pK,
for His166 (by 1.3 units),!! and the MSAD simulations underestimated the pK, by 0.6

units (analysis of conformational sampling was not given). 10

pK. calculation for HEWL.: titration order of the catalytic dyad. HEWL is a small
protein with 129 residues and 10 titratable sites; it is a popular test system for pK, predic-
tion methods due to the abundance of experimental data.’4 The RMSE of the calculated
pKy.’s is 0.83 units. The two largest errors are for Asp52 and His15; the calculated pK,’s
are 2 units over- and 1 unit underestimated, respectively (Table 2). Despite the overes-
timation, the calculated pK, of Asp52 is 1.4 units lower than that of Glu35 (the second
catalytic residue, Fig. 5), which indicates that Glu35 is a general acid and Asp52 is a

general base in catalysis, in agreement with experiment (Table 2). Consistent with the
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Figure 4: Protonation of His166 in BBL is correlated with the pH-dependent increase
in solvent exposure. a) Deprotonated fraction of His166 at different pH. b) Buried ratio
of His166 at different pH, defined as 1-fSASA. f{SASA (fraction of solvent accessible sur-
face area) was calculated as SASA of the sidechain atoms relative to that in the model
pentapeptide.

CHARMM PME-CpHMD as well as the hybrid-solvent CpHMD simulations, /8 the titration
events of Glu35 and Asp52 are uncoupled, as evident from the nearly identical stepwise
pKy.'s (7.0 and 5.5) from fitting to the two-proton titration model (Eq. 27; figure not shown).
The lack of coupled titration is due to the relatively large distance between the carboxylate
sidechains (>6.5 A between the nearest carboxylate oxygens at any pH). Note, the cal-
culated dyad pK3’s are nearly the same as the values from the CHARMM PME-CpHMD
simulations. ! The MSAD method in CHARMM gave a nearly identical pK, for Glu35, but
a 1.1-unit lower pK, for Asp52.10

To understand the pK, order of the catalytic dayd Glu35/Asp52 and the possible fac-
tors for the pK, overestimation of the latter, we compared the pH profiles of the sol-
vent exposure, h-bonding and electrostatic interactions of the dyad residues with the
pH-dependent titration curves (Fig. 5b—d). Both residues are partially buried. As Glu35
switches from being fully unprotonated to fully protonated in the pH range 7 to 10, the sol-

vent exposure decreases from about 30% to just under 20% (Fig. 5b and c, blue). Asp52
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Figure 5: Factors influencing the pK.’s of the catalytic dyad in HEWL. (a) A repre-
sentative snapshot at pH 7.5 showing the h-bonding and salt bridge environment of Glu35
and Asp52. (b) The unprotonation fractions of Glu35 and Asp52 at different pH. (c) Frac-
tions of the sidechain solvent exposure (SASA value relative to the model pentapeptide)
of Glu35 and Asp52 at different pH. (d) The h-bond and salt bridge occupancies of Glu35

and Asp52 at different pH.
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has a similar behavior, except that the titration and change in solvent exposure are shifted
to a lower pH range 7 to 4 (Fig. 5b and c, red). Now we turn to h-bonding and electrostatic
interactions that are also physical determinants of pKj, shifts.”® Glu35 does not form h-
bonds below pH 7.5, and above pH 7.5, occasional salt-bridge interaction with Arg114
was observed, with an occupancy less than 20% (Fig. 5d, blue). In contrast, the carboxy-
late group of Asp52 can accept h-bonds from the sidechains of Asn46 and Asn59, and
the occupancy increases to nearly 2 with increased deprotonation of Asp52 (Fig. 5d, red).
The analysis of solvent exposure and h-bond suggests that the latter is the major deter-
minant for the lower pK, value of Asp52 relative to Glu35, in agreement with our previous
work using the hybrid-solvent as well as the PME-CpHMD in CHARMM. 8 It is noteworthy
that despite the correlation between charging of Asp52 and the increase in solvent expo-
sure and h-bond formation, the pH profiles of solvent exposure and h-bond occupancy
are more gradual than the titration curve, which may indicate that the pH-dependent con-
formational changes might be undersampled, contributing the overestimation of the pK,

of Asp52.

pK. calculation for SNase: partially buried residues and coupled titration of Asp19
and Asp21. SNase has a large number of engineered mutants, which are popular
model systems for testing pK, prediction methods.”® Here we used the hyperstable, acid-
resistant form of SNase A+PHS (hereafter referred to as SNase)®8 which is only slightly
(14 residues) larger than HEWL, but has 9 more titratable sites. The pK,’s of SNase
are more challenging to predict than HEWL due to the fact that most titratable sites are
partially buried.23 The calculated pK,’s have a RMSE of 0.76 units, similar to the RMSE
of 0.80 from the CHARMM PME-CpHMD simulations.'! The largest error is for Glu129,
for which the experimental pK, is 0.4 units down- and the calculated pK, is 0.8 units
upshifted relative to the model value of 4.2. Curiously, simulation also fails to reproduce

the direction of the experimental pK, shifts of Glu52, Glu57, and Glu101, although the
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magnitude of the errors is smaller (0.4, 0.7, and 0.4 respectively). Analysis showed that
all these residues are partially buried, suggesting that desolvation penalty contributes to
the pK, upshift. Based on the analysis of BBLs His166 and HEWLs Asp52, we hypoth-
esized that simulation overestimates the desolvation penalty due to inadequate sampling
of the solvent exposed state. To test this, we plotted the fractional SASA values vs. pH for
Glu52, Glu57, Glu101, and Glu129 (Fig. S4). Deprotonation of glutamic acid is expected
to induce larger solvent exposure. This is indeed the case for the more exposed residues
Glu52 and Glu57 (fractional SASA about 60% at low pH), although the degree of increase
is small. However, solvent exposure change with pH for the more buried residues Glu101
and Glu129, for which the fractional SASA values remain at about 40 and 20% through-
out the entire pH range (Fig. S4). These data support the hypothesis that the solvent
exposed state may be inadequately sampled, contributing to the desolvation related pK,
upshift for Asp and Glu.

The NMR data®® as well as our previous work’8 based on the hybrid-solvent and
PME-CpHMD simulations in CHARMM suggest that the titration Asp19 and Asp21 is
coupled. The current simulations confirmed the strong coupling as a result of h-bond
formation between the two residues (Fig. 6a). Fitting the titration data to a two-proton
coupled equation (Eq. 27) gives the stepwise macroscopic pKy,’s of 2.5 and 5.6 (Fig. 6b),
which are in good agreement with the experimental values of 2.2 and 6.5.%8 To assign the
stepwise pK,’s to individual residues, we examine the pH-dependent probabilities of four
microscopic states, doubly protonated (HH), singly protonated with proton on D19 (H-)
or Asp21 (-H), and doubly deprotonated (—) states (Fig. 6¢). Above pH 7, Asp19/Asp21
are in the — state (Fig. 6c, blue). As pH decreases from 7 to 5, the probability of —
decreases, while that of the —H or H- increases. Since the —H state (cyan) is more prob-
able than the H- state (magenta) as protonation first occurs, Asp21 receives a proton
first, which means the higher pK, should be assigned to Asp21. As pH further decreases

from 5 to 2, both -H and H- states are possible; however, their combined probability
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decreases, while the probability of the HH state increases (Fig. 6¢, red). Below pH 2,
the latter state dominates. Analysis of h-bonding and electrostatic interactions (Fig. 6a)
shows a network among Asp19, Asp21, Thr22, Thr41, and Arg35, consistent with the
CHARMM hybrid-solvent and PME-CpHMD simulations. 43
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Figure 6: Linked titration of Asp19 and Asp21 in SNase. (a) A snapshot from the pH
4 simulation showing the h-bonding environment of Asp19 and Asp21. (b) Total number
of protons of Asp19/Asp21 at different pH. The stepwise pK,’s are obtained from the
best fit (black curve) to the two-proton coupled equation (Eq. 27). (c) The pH-dependent
probabilities of four microscopic states: two protons (HH, red); proton on Asp19 (H-,
magenta) or Asp21 (—H, cyan); zero proton (—, blue).

pK. calculation for thioredoxin: the deeply buried Asp26 and Asp58. Thioredoxin
has 105 residues with 18 titratable sites. The RMSE of the calculated pKy,’'s is 0.71. We
first consider Asp26, which has one of the highest measured pK,’s of any carboxylic acids
in proteins. Encouragingly, the calculated pK, of Asp26 is 7.7, in excellent agreement with
the NMR-derived value of 8.1. The large pK, upshift of nearly 4 units can be attributed
to the extremely low fraction of solvent exposure (below 7% at all pH, Fig. S5). Trajectory
analysis showed that Asp26 does not form h-bonds with nearby residues. The only factor
that may stabilize the deprotonated form is the salt-bridge formation with Lys39; however,
the salt bridge is only formed above pH 8 and the solvent exposure is very low (<20% at

pH 8, Fig. S5). A previous experimental study’® suggested that the protonated Asp26
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may be stabilized by donating a h-bond to the nearby Ser28; however, in the simulation
the average distance from the hydroxyl oxygen of Ser28 to the nearest carboxylate oxygen
of Asp26 is about 4.9 A at pH 7, similar to the distance of 4.7 A in the X-ray structure (PDB
1ERU). Thus, the dry environment, along with lack of polar interactions, results in the very
large pK, upshift of Asp26.

The largest error in the calculated pK,’s of thioredoxin is for Asp58, whose direction
of pKy shift is reproduced but the magnitude is 1.6 units too large (Table 2). Analysis
showed that the Asp58 is also deeply buried, with ~20% solvent exposure below pH 5,
which explains the pK, upshift relative to the model. However, the solvent exposure only
slightly increases to ~30% at pH 8 before increasing steeply to over 50% at pH 10 (Fig.
S6). H-bond analysis showed that the deprotonated Asp58 can accept h-bonds from
the backbones of neighboring Asp60 and Asp61, which can stabilize the deprotonated
state; however, the pH profile of the h-bond occupancy is irregular, showing a nearly 50%
decreased occupancy in the pH range 4-8 (Fig. S6). The latter indicates a sampling

issue, which explains the overestimation of the pK, of Asp58.

pK. calculation for RNase A: the deeply buried His12. RNase A has 124 residues
with 14 titratable sidechains. The RMSE for the calculated pKy’s is 0.81, and the largest
error is for His12 (Fig. 7a). The experimental pK, of His12 is 0.5 units downshifted rela-
tive to the model, and the simulation overestimated the downshift by 1.7 units (Table 2).
Analysis showed that His12 titrates over the pH range 3 to 6 (Fig. 7b), and the titration
is correlated with two physical determinants, an increase in solvent exposure (decreased
buried fraction) at lower pH (Fig. 7c) and an increase in h-bond formation at higher pH
(Fig. 7d). However, unlike in the previous GB- or hybrid-solvent CpHMD simulations, 1943
the pH profiles of the buried fraction and the h-bond occupancy do not fully match the
titration curve. Above pH 6, His12 is over 90% buried, and the decrease in the buried

fraction at lower pH does not follow an expected sigmoidal curve. The buried fraction
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decreases by about 5% as pH decreases from 9 to 5 and remains constant between pH
4.5 and 2, before further decreasing to 80% at pH 0 (Fig. 7c). A major h-bond partner is
the neighboring Asn11, which can donate a h-bond from its carboxamide group to the ¢
nitrogen of His12 to stabilize its deprotonated form (Fig. 7a). As pH increases from 3 to 6,
the occupancy of the h-bond increases from zero to about 60%, and it further increases to
nearly 100% at pH 8. Based on the above analysis, we suggest that the h-bond formation
and solvent exposure of His12 may be insufficiently sampled in the pH range 3—6. The
under-sampling of the solvent exposed state (buried fraction remains unchanged between
pH 2 and 4.5) is particularly evident, which may be a major factor for the overestimation
of pK, downshift of His12.
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Figure 7: Protonation of His12 in RNaseA is correlated with the decreased solvent
exclusion and hydrogen bonding. a) A zoomed-in view of the hydrogen bonding be-
tween His12 and Asn11 in RNase A. The snapshot was taken from the simulation at pH
7. b) Unprotonated fraction of His12 at different pH. c) Buried fraction of His12 at different
pH. Definition of the buried fraction is given in the caption of Fig. 4. d) Occupancy of the
h-bond between His12 and Asn11 at different pH.

pK. calculation for HMCK: a buried active-site cysteine. To test the accuracy of Cys
titration, we calculated the pK, of Cys283 in the active site of HMCK, which has a NMR
measured pK, of 5.6,” one of the lowest in the literature.8% Our simulations correctly

reproduced the direction of the pK, shift relative to the model; however the downshift is
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1.1 units underestimated compared to the experiment (Table 2). Analysis showed that
Cys283 is buried and does not have nearby cationic residues; however, once deproto-
nated it can accept h-bonds from the sidechains and backbones of Ser285 and Asn286
(Fig. 8a and b), consistent with the GB-based CpHMD titration simulation.”! Based on
the structural analysis of the thioredoxin family of proteins,®! Roos and Messens hypoth-
esized that hydrogen bonding rather than electrostatics plays a major role in stabilizing
Cys thiolates. Our current data and recent GB-based CpHMD simulations of a large num-
ber of proteins80:82:83 are in support of this hypothesis.

As Cys283 becomes deprotonated in the pH range 6 to 9, the total h-bond occupancy
increases and plateaus at 1; however, the exposed fraction does not increase and instead
remains at about 40% (Fig. 8c and d). Since solvent exposure promotes the charged
thiolate state and decreases the pK,, we suggest that insufficient sampling of the solvent-

exposed conformations may contribute to the overestimation the pK, of Cys283.

@. “~ N (b
\/\\02/8 E 1.0 -
> o f, L
N286 ¢ J ©0.51
4 e
N 250.0-
(S 4 6 8 1¢C
(c (d) pH

o

o

[

o
|

Exposed Frac™

o
B

[e)]

o)

HB Occu

o
ul

o
(N)
o
o

pH pH

g
'—I
(@]
g
(o)}
(o0}
=
(@]

Figure 8: Factors influencing the pK, of Cys283 in HMCK. (a) A zoomed-in view of
the h-bond environment of Cys283 (from simulation at pH 7.5). Cys283 thiolate can form
h-bonds with the backbones and sidechains of Ser285 and Asn286. (b) Unprotonated
fraction of Cys283 at different pH. (c) Exposure fraction (SASA relative to that of the
model pentapeptide) at different pH. d) Occupancy of the total h-bond formation of Cys283
thiolate with Ser285 and Asn286 at different pH.
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Finite-size effect and corrections. Following the work of Hiinenberger and colleagues, °°
we previously proposed an analytical pK, correction (Eqg. 25) to correct for the effect of
an offset potential introduced in PME simulations under periodic boundaries. ! For the
current simulations, the pK, corrections for Asp, Glu, His, and Cys are between -0.3 and
-1.0 pH units (see Methods). To assess the effectiveness of the corrections and better
understand the finite-size effect, we performed additional titration simulations of SNase
with increased box sizes, i.e., adding more water to the simulation system. Table 3 sum-
marizes the raw and corrected pKy’s using four different boxes, which have 10 (default),
12, 14, or 18 A cushion space between the protein and edges of the box (minimum dis-
tance between the heavy atoms of protein and water oxygens on the box edges). The
corresponding cubic box lengths are 68, 71, 76, and 84 A, respectively.

We first examine the raw calculated pK,’s from simulations with different box sizes.
As expected, with increasing box size the raw pKy,’s decrease for all but four residues
(Fig. 9a). Increasing box size also leads to better agreement with the experimental pK’s;
the RMSEs of the raw pK,’s are 1.0, 1.0, 0.97 and 0.76 for boxes with 10, 12, 14, and
18 A cushion space, respectively (Table 3 and Fig. 9a). The MUE also decreases from
0.86 (10 A cushion) to 0.81 (12 A cushion), 0.80 (14 A cushion), and 0.62 (18 A cushion)
(Table 3). Comparison of the raw pK.’s between the smallest (10 A cushion) and largest
(18 A cushion) boxes shows that the pK, changes due to box size increase vary (Table 3,
last column). Excluding the four residues (Asp19, Asp21, H121, and Glu135) that show
very little pK, changes, the pKy,'s mostly decrease by 0.3 to 0.7 units, as compared to
the finite-size corrections of -0.70 to -0.8 units for the smallest box. The effect of box size
is not clear for the coupled residues Asp19/Asp21, which have the raw calculated pK,’s
of 3.2/6.3 with the smallest box; however, the pK,’s increase to 3.6/6.5 and 3.4/7.1 with
the larger boxes (12 and 14 A cushion space), and then decrease back to 3.1/6.4 with the
largest box (18 A cushion). Increasing box size has negligible effect on the downshifted

pK, of His121. With the increasing box sizes, its raw pK, changes from 5.7 to 6.1,
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5.7, and 5.8. Box size also shows little effect on the pK, of Glu135, which has the raw
calculated pK,’s of 3.0, 3.4, 3.0, and 3.0 with the increasing box sizes.

Now we examine the pK, corrections for the different simulation boxes. It is appar-
ent that application of the finite-size correction removes the systematic overshift error
(Fig. 9b). As the box size increases, the solvent number density increases and therefore
the magnitude of the correction decreases (Eq. 24). The magnitude of the corrections de-
creases by about 0.4 pH units going from the smallest to the largest box. Interestingly, this
difference is roughly the same as the average difference between the raw pK3’s (of all but
the aforementioned four residues) calculated with the smallest and largest box (Table 3,
last column), which suggests that the finite-size correction is valid. Another interesting
observation is that the increasing box size does not significantly reduce the RMSE of the
finite-size corrected pK,'s. The RMSE’s are 0.76, 0.80, 0.80, and 0.70 with the increas-
ing box sizes (Fig. 9b), which is another piece of evidence supporting the validity of the

finite-size corrections.
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Figure 9: Effect of box size on the calculated pK,’s. The errors of the raw (a) and finite-
size corrected (b) pK, of SNase with different solvent cushion spaces, 10 (magenta), 12
(orange), 14 (green), and 18 A (cyan). The corresponding RMSE values are shown next
to the legends.

38


https://doi.org/10.1101/2022.06.04.494833
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.04.494833; this version posted September 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Table 3: Effect of simulation box size on the calculated pK, values of SNase®

Residue Expt Raw Corr Raw Corr Raw Corr Raw Corr ABox

Leus (A) 10 12 14 18

Liox (A) 67.6 70.6 75.5 83.5

H8 65 73 66 71 65 70 65 70 6.7 -0.3

E10 28 37 29 35 28 35 29 31 2.7 -0.6
D19 22 32 25 36 30 34 30 31 2.8 -0.1
D21 65 63 56 65 59 71 6.6 6.4 6.1 0.1
D40 39 33 26 29 23 25 20 26 23 -0.7
E43 43 44 36 44 37 43 37 441 3.7 -0.3
E52 39 51 43 52 45 49 43 48 44 -0.3
E57 35 50 42 51 44 52 46 44 40 -0.6
E67 38 42 34 41 34 40 35 37 33 -0.5
E73 33 38 30 36 30 33 28 3.1 2.7 -0.7
E75 33 39 31 33 26 39 33 34 3.0 -0.5
D77 <22 05 -02 06 00 05 -0.1 04 0.1 -
D83 <22 10 03 21 1.5 <00 <0.0 <0.0 <0.0 -
D95 22 41 34 41 35 38 33 32 29 -0.9
E101 38 50 42 49 42 47 42 46 4.2 -0.4
H121 52 57 50 61 56 57 52 58 55 0.1
E122 39 44 36 41 34 441 35 4.1 3.7 -0.3
E129 38 58 50 58 51 55 50 54 50 -0.4
E135 38 30 22 34 27 30 25 30 26 0.0

RMSE 10 076 1.0 0.80 097 0.80 0.76 0.70
MUE 0.86 0.61 0.81 0.67 0.80 0.60 0.62 0.58

% Box size is represented by the solvent cushion space (Lcys), i.€., minimum distance
(10, 12, 14, and 18 A) between the protein heavy atoms and edges of the water box,
and the length of a cubic box (L) converted from the average system volume. The
columns Raw and Corr refer to the pK,’s before and after the finite-size corrections (see
Methods). The column ABox refers to the raw pK, difference between the largest and
smallest boxes.
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5 Concluding Discussion

We presented the first implementation, parameterization, and validation of the GPU-
accelerated continuous constant pH particle-mesh Ewald molecular dynamics method
in Amber22 (hereafter referred to as Amber PME-CpHMD). Titration parameters for three
force fields (CHARMM c22,44 Amber ff14SB,46 and ff19SB52) were derived and vali-
dated using model pentapeptides AAXAA, where X represents Asp, Glu, His, Cys, or Lys.
To benchmark the performance and accuracy for constant pH simulations of proteins,
we carried out titration simulations with the c22 force field for 6 proteins, including BBL,
HEWL, SNase, RNase A, thioredoxin, and HMCK, which have NMR derived pK, values
of Asp, Glu, His, and Cys residues. The asynchronous pH replica-exchange algorithm®4
was employed to enhance sampling of protonation and conformational states. The simu-
lations were run for 30-50 ns per pH replica until all pK,’s were converged. The resulting
RMSE and MUE with respect to the experimental pK,’s are 0.76 and 0.61, respectively,
and the largest pK, deviation is 2 units. The Pearson’s correlation coefficients for the cal-
culated vs. experimental pK,’s and pK, shifts are 0.85 or 0.80, respectively. Importantly,
the titration simulations quantitatively reproduced the experiment pK, orders of the cat-
alytic dyad in HEWL and the coupled residues in SNase. Simulations also quantitatively
captured one of the largest upshifted pK,’s of a deeply buried Asp in thioredoxin as well
as the downshifted pK, of an active-site Cys in HMCK.

We compared the current validation data with those based on the CHARMM24 CPU
all-atom PME-CpHMD ! and MSAD 9 simulations with the same c22 force field.** The
Asp, Glu, and His pK3’s calculated from the CHARMM PME-CpHMD simulations of 10 ns
per replica (much shorter than the present work) are in close agreement with the present
work, suggesting that the pK, drifts over prolonged simulation time are small. Comparing
to the calculated pK,’s of HEWL and the two His residues in BBL based on the MSAD

simulations of 5-20 ns per pH replica (with a 12-A electrostatic cutoff), 19 the overall RMSE
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is similar, and the pK, orders of the catalytic Glu35/Asp52 in HEWL and His142/His166
in BBL are consistent with the present simulations.

In agreement with the previous CHARMM PME-CpHMD simulations'! the present
data demonstrated that the finite-size effect needs to be taken into account for the accu-
rate calculation of titration free energies with lattice sum methods under periodic boundary
conditions. Applying the pK, correction! to account for a positive offset potential due to
TIP3P water in periodic boxes, a systematic pK, upshift error in the calculated pK,’s was
removed, and the overall agreement with experiment was improved. We note, in the re-
vision stage of the current paper, the work from the Roux group®* was published which
used a similar pK, correction to account for the (Gavani) offset potential.®’

To further examine the finite-size effect and the validity of the correction, the pK’s of
SNase were calculated from simulations with four different box sizes. Consistent with the
negative sign of the correction, increasing box size lowers the raw pKy’s of all but four
residues that do not show significant changes. The RMSE of the raw pK,’s decreases
from 1.0 with the smallest box to 0.76 with the largest box; the latter is identical to the
RMSE (0.76) of the corrected pK,’s obtained from the simulation with the smallest box.
The quantitative validity of the correction is also supported by a good agreement between
the change in the finite-size correction and the average change of the raw pK,’s going
from the smallest to the largest box size. As expected, the finite-size correction decreases
with increasing box size, and consistently, the reduction in RMSE due to the correction
also decreases. Using the 18-A cushion space, the correction is 0.3-0.4, and the RMSE
(0.70) of the corrected pKy,’s is only slightly smaller than the RMSE (0.76) of the raw
pKa's. This suggests that the box size effect may start to become negligible with this size
of water box.

Although the overall box-size dependent trend of pK’s is consistent with the positive
offset potential being the dominant factor,!! there are exceptions. The simulations of

SNase showed that box size has negligible effect on the coupled pK,’s of Asp19 and
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Asp21 as well as the downshifted pK,’s of His121 and Glu135. We note that the effect
of the offset potential and the corresponding pK, correction deal with an ideal situation
in which a single residue titrates in a neutral background. Thus, it is possible that the
correction is not valid for coupled pK,’s. However, with regards to the pK’s of His121 and
Glu135, the cause for the box size independence is difficult to speculate. An alternative
approach to the finite-size pK, correction is to enforce system charge neutrality i.e., by
including titratable water as in our previous work.'! We tested this approach on the BBL
protein; however, due to the slower convergence and small pK, differences compared to
the simulations without titratable water, studies of other proteins were not pursued. We
defer a more thorough investigation of the finite-size effects to a future work.

We analyzed the pH-dependent solvent exposure and formation of hydrogen bonds
as well as electrostatic interactions of catalytic residues and those that exhibit larger pK,
deviations from experiment. These analyses suggested while PME-CpHMD captures the
proton-coupled conformational rearrangements, charging-induced increase of solvent ex-
posure for buried residues is inadequate. This may be a major contributor to the pK,
errors, including the overestimated pK, downshifts for buried His residues, e.g., His166 in
BBL and His12 in RNaseA; the overestimated pK, upshifts for buried carboxyl residues,
e.g., Glu57 in SNase and Asp58 in thioredoxin; and the overestimated pK, upshift for
buried Cys, e.g., Cys283 in HMCK. Undersampling of the solvent-exposed state may also
be related to the combination of c22/TIP3P force field,4* which slightly biased solute-
solute over solute-solvent interactions.8% Overestimation of desolvation penalty may also
be a source of error, which can be attributed to the low dielectric constant in the protein
interior as a result of the lack of polarization in simulations with additive force fields.86
Lack of polarization in the interior of protein may also lead to overly strong salt bridges,
which may explain the overestimation of the pK, downshifts of Asp140 and Glu135 in
SNase. While the use of polarizable force field for both protein and water is desirable,

it may not be currently feasible due to speed. One intriguing idea worth exploring is to
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mix a polarizable water model such as OPC3-pol87 with an additive force field to improve
solute-solvent interactions. The present study did not examine the potential dependence
on the additive force field. The force field related topics as well as the evaluation of PME-
CpHMD for model proton-coupled conformational dynamics of catalytic residues in larger
proteins (e.g., BACE179) will be explored in a future work.

By removing the reliance on the implicit-solvent model, the PME-CpHMD method
can be applied to any system that has a force field representation. We anticipate the
GPU accelerated PME-CpHMD to become a powerful tool for the investigation of a vari-
ety of proton-coupled dynamical phenomena that are poorly understood due to the cur-
rent limitations in experimental and MD techniques, for example, secondary transport of
ions/substrates across membrane transporter proteins and pH-dependent self-assembly
of materials. Another important application of PME-CpHMD is to offer proper pH con-
trol, for example, by allowing protein and ligand to titrate while binding and unbinding,5=6
or allowing His residues to fluctuate among the doubly protonated and two singly proto-
nated tautomer states, which has been shown to affect the ligand binding mechanism and

kinetics. 88:89
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