

Genetic architecture of spatially complex color patterning in hybrid *Mimulus*

Arielle M. Cooley^{1,*}, Caroline Schlutius², Melia Matthews¹, Xingyu Zheng^{2,3}, Daniel Thomas¹, Patrick Edger⁴, Adrian Platts⁴, Logan George², Aaron Williams¹, Amy LaFountain⁵, Douglas Hundley⁶, Yao-Wu Yuan⁵, Alex Twyford⁷ and Joshua R. Puzey²

¹Biology Dept, Whitman College, Walla Walla WA, USA, ²Biology Dept, College of William & Mary, Williamsburg VA, USA, ³School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, ⁴Department of Horticulture, Michigan State University, East Lansing, MI, USA, ⁵Dept of Ecology & Evolutionary Biology, University of Connecticut, Storrs CT, USA, ⁶Math Dept, Whitman College, Walla Walla WA, USA, ⁷School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK, *Corresponding author: cooleya@whitman.edu, 345 Boyer Ave., Walla Walla WA 99362 U.S.A.

1 ABSTRACT

2 Interspecies hybridization generates inter-genomic interactions, which may result in unique traits not seen in either parent
3 species. Here we explore the genetic basis of two types of floral pigment phenotypes, in hybrids between monkeyflower species
4 *Mimulus cupreus* and *M. luteus* var. *variegatus*. *Mimulus cupreus* has abundant yellow carotenoid pigmentation in its petal
5 lobes, while *M. l. variegatus* has a derived reduction in carotenoid intensity. Thus, as expected, carotenoid intensity segregates
6 in an F2 hybrid population. More surprisingly, both species appear to have petal lobes solidly and identically covered in magenta
7 anthocyanin pigment (leading to an orange color in the high-carotenoid species *M. cupreus*), yet F1 and F2 hybrids exhibit
8 novel and complex spatial patterns of anthocyanin spotting. A rare yellow morph of *M. cupreus*, which lacks petal anthocyanins,
9 also generates spatially patterned offspring when hybridized with *M. l. variegatus*. We use this cross, together with newly
10 developed genomic and image analysis tools, to investigate the genetic architecture of color and pattern variation in an F2 hybrid
11 population. We report that the non-patterned carotenoid reduction in *M. l. variegatus* is genetically simple, and is explained by
12 a single QTL which contains the *Beta-carotene hydroxylase-1 (BCH1)* gene. HPLC results show that beta-carotene content
13 differs between dark yellow and light yellow petals, which supports a causal role for *BCH1*. The hybrid-specific anthocyanin
14 patterning phenotypes are more complex, with one QTL of large effect and four detectable QTLs of small effect. These results
15 illustrate how different types of traits may have predictably distinct genetic architectures, and provide candidate genomic regions
16 for investigating the molecular mechanisms of both simple and complex floral color patterning.

17 **KEYWORDS** Keyword; Keyword2; Keyword3; ...

1 **Introduction**

2 Hybridization between species forces two divergent genomes to
3 co-exist within the same organism. These genomic interactions
4 can yield surprising results at both molecular and phenotypic
5 levels, with evolutionary consequences ranging from species
6 extinction (Levin *et al.* 1996; Epifanio and Philipp 2000) to adap-
7 tation (Anderson and Stebbins Jr 1954; Rieseberg *et al.* 2003;

8 Suarez-Gonzalez *et al.* 2018), adaptive radiation (Seehausen 2004;
9 Marques *et al.* 2019; Grant and Grant 2019), and hybrid speci-
10 ation (Grant 1971; Rieseberg 1997; Mallet 2007). Finding the
11 genetic architecture of hybrid-specific phenotypes is an impor-
12 tant step towards understanding the origins and evolutionary
13 consequences of inter-genome interactions.

14 Plant pigmentation has long served as a vehicle for investi-
15 gating genomic, developmental, and evolutionary mechanisms
16 (McClintock 1950; Davies *et al.* 2012; Sobel and Streisfeld 2013).
17 A change in plant pigmentation can have profound ecological
18 and evolutionary consequences, due to the diverse roles of pig-
19 ment including pollinator attraction, herbivore deterrence, and
20 protection against abiotic stressors such as light and extreme

1 temperatures (Chalker-Scott 1999; Gould 2004; Demmig-Adams
2 *et al.* 1996). These factors have the potential to impose strong
3 purifying selection, but may also promote the maintenance of
4 phenotypic variation (Takahashi *et al.* 2015; Sapir *et al.* 2021; Kellenberger
5 *et al.* 2019) as well as the evolution of new pigment
6 traits as environmental conditions change (Trunschke *et al.* 2021;
7 Niu *et al.* 2017). Indeed, color patterning has evolved frequently
8 and has generated spectacular amounts of phenotypic diversity,
9 particularly in the petals of flowering plants.

10 In flowers, the two major classes of pigments are the yellow-
11 to-orange carotenoids and the red-to-purple anthocyanins
12 (Grotewold 2006). The anthocyanin biosynthetic pathway, and
13 its regulation by R2R3 MYB, bHLH, and WDR transcription
14 factors, is among the best understood of any pigment pathway
15 in any kingdom (Holton and Cornish 1995; Davies *et al.* 2012; Xu
16 *et al.* 2015; Chen *et al.* 2019).

17 Much of floral pigmentation research to date has focused
18 on binary (presence-absence) traits (e.g. Zufall and Rausher
19 (2003); Cooley *et al.* (2011)), or overall pigment intensity (e.g.
20 Bradshaw Jr and Schemske (2003)), with the bulk of studies
21 addressing anthocyanin rather than carotenoid pigmentation.
22 Complex patterning traits such as speckling and spotting offer
23 an opportunity to explore fundamental principles of evolution
24 and development, as has been done with eyespot formation in
25 butterflies (Beldade and Brakefield (2002)), yet such traits in
26 plants are only beginning to be addressed (Martins *et al.* (2013,
27 2017); Neher and Hallatschek (2013); Yamagishi *et al.* (2014); Ding
28 *et al.* (2020)). Unanswered questions include: To what extent
29 is this type of variation genetic, rather than environmental or
30 stochastic? Do complex spatial patterns reflect an underlying
31 genetic complexity (many loci of individually small effect), or is
32 a simple one- or two-locus system sufficient? And, in the case
33 of hybrid-specific color patterning, what is the role of genetic
34 divergence between the parent species in creating the overall
35 phenotype?

36 Genetic mapping is an important first step in answering many
37 of these questions. A necessary prerequisite to genetic mapping
38 is a quantifiable phenotype. The difficulty of scoring and
39 analyzing spatially complex variation has been a major barrier to
40 genetic and developmental analyses of many evolutionarily fas-
41 cinating traits (Houle *et al.* (2010); Minervini *et al.* (2015); Gehan
42 and Kellogg (2017)), and a variety of algorithms are now being
43 developed to help lessen this barrier. These include machine-
44 learning approaches as in Boogaard *et al.* (2020) and computer
45 vision based techniques as in Galkovskyi *et al.* (2012). In plants,
46 phenotypic image analysis has been developed for traits includ-
47 ing color intensity (De Keyser *et al.* 2013; Trivellini *et al.* 2014; Li
48 *et al.* 2020), leaf shape (de Souza *et al.* 2016; Weight *et al.* 2008),
49 root characteristics (Kimura *et al.* 1999; Nakano *et al.* 2012), and
50 overall plant architecture (Knecht *et al.* 2016). The analysis of
51 complex color patterning is still relatively uncommon, perhaps
52 because of the sheer abundance of flower color traits that are
53 readily categorized using "by-eye" methods. As interest in com-
54 plex color patterning increases, the development of new tools
55 will be essential, because techniques developed for other types
56 of biological traits are not easily adapted to capturing variation
57 across a heterogeneously pigmented petal surface. Examples
58 of digital image processes developed specifically for complex
59 color patterning in plants include an older principal-components
60 based approach by Yoshioka *et al.* (2004) and a not-yet-published
61 pre-print (Li *et al.* 2019).

62 An attractive biological system for studying the evolution of

63 plant pigmentation and color patterning is the monkeyflower
64 genus *Mimulus* (synonym *Erythranthe* (Barker *et al.* 2012; Lowry
65 *et al.* 2019)). The genus features an abundance of floral diversity
66 and an array of ecological, molecular, and genomic resources
67 (Wu *et al.* 2008; Sobel and Streisfeld 2013; Yuan 2019). Antho-
68 cyanin and carotenoid pigmentation vary across *Mimulus*. Unfor-
69 tunately, most of the complex color patterns are found in species
70 that are rare, unstudied, or both. One exception is the *luteus*
71 species group from Chile (Grant 1924; Watson and Von Bohlen
72 2000; Cooley *et al.* 2008), which combines ease of growth in the
73 greenhouse, a solid foundation of prior pigmentation research
74 (Medel *et al.* 2003, 2007; Cooley *et al.* 2011; Zheng *et al.* 2021),
75 ease of hybridization (Stanton *et al.* 2016), and an intriguing
76 hybrid-specific petal pattern phenotype. The *luteus* group con-
77 sists of the broadly distributed *M. luteus* var. *luteus*, as well as *M.*
78 *l. variegatus*, *M. naiandinus*, *M. cupreus*, and *M. depressus*, all of
79 which have more limited distributions in mid- to high-elevation
80 regions of the Andes mountains (Von Bohlen 1995).

81 The *luteus* group is nested within the *Simiolus* section of *Mimulus*,
82 which is characterized almost uniformly by yellow-flowered
83 plants displaying red dots of anthocyanin pigment in the nect-
84 aral guide region of the flower (Grant 1924). Within the *luteus*
85 group, however, flower color has evolved dramatically (Fig. 1A).
86 Petal carotenoid pigmentation has been lost or greatly downreg-
87 ulated in petals of the white-and-pink flowered *M. naiandinus*
88 and the magenta-flowered *M. l. variegatus* (Cooley and Willis
89 2009). The two carotenoid reductions are genetically distinct:
90 recessive in *M. naiandinus* versus semi-dominant in *M. l. variegatus*
91 (Fig. 1B-C: compare yellow intensity of *naiandinus* x *luteus* F1s to
92 *variegatus* x *luteus* F1s).

93 Petal lobe anthocyanin pigmentation, meanwhile, has been
94 gained in *M. naiandinus*, *M. l. variegatus*, and *M. cupreus* (Cooley
95 and Willis 2009). In each case, petal lobe anthocyanin is domi-
96 nant and segregates in a 3:1 ratio in an F2 hybrid population, but
97 maps to either of two genomic regions - *pla1* for *M. naiandinus*
98 and the common orange morph of *M. cupreus*, and *pla2* for *M.*
99 *l. variegatus* (Cooley and Willis 2009; Cooley *et al.* 2011). A rare
100 yellow morph of *M. cupreus*, found at only a single locality, likely
101 represents a secondary loss of petal lobe anthocyanins, and a
102 complementation test indicates that the causal locus is in the
103 *pla1* region (Cooley and Willis 2009).

104 Hybridization reveals an unexpected property of the antho-
105 cyanin pigmentation in *M. l. variegatus* versus *M. cupreus*: hy-
106 brids are characterized by a spatially complex distribution of
107 petal anthocyanin pigmentation not seen in either parent (Fig.
108 1B-D). This patchy color patterning is seen regardless of whether
109 the cross involves the common orange morph of *M. cupreus* (high
110 carotenoids and high anthocyanins), or a rare yellow morph
111 (high carotenoids but no petal lobe anthocyanins) (Fig. 1B-D).

112 Genetic mapping (Cooley *et al.* 2011) and functional genetic
113 experiments ((Zheng *et al.* 2021)) indicate that the R2R3 MYB
114 transcription factor gene *MYB5a/NEGAN* is responsible for the
115 gain of petal anthocyanin in *M. l. variegatus*, while an unlinked
116 genomic region containing candidate genes *MYB2b* and *MYB3a*
117 is responsible for the gain of petal anthocyanin in the orange-
118 flowered morph of *M. cupreus* and its subsequent loss in the
119 yellow morph. Interestingly, crosses to a third taxon (*M. l. luteus*)
120 that lacks petal anthocyanins reveal underlying pattern differ-
121 ences between *M. l. variegatus* and *M. cupreus*. Using *M. l. variegatus*
122 as the anthocyanin donor yields F1 hybrids with a "globular"
123 phenotype of large patches of petal anthocyanin. In contrasting,
124 using the orange morph of *M. cupreus* as the anthocyanin donor

1 yields F1 hybrids with a fine spray of anthocyanin, referred to
2 here as the "blush" phenotype (Fig. 1B-C).

3 The variation in spot size between *variegatus* x *luteus* hybrids
4 versus *cupreus* x *luteus* hybrids suggests that the apparently solid-
5 colored *M. l. variegatus* and *M. cupreus* have in fact colored their
6 petals by means of two evolutionarily distinct spot formation
7 systems, functioning at different spatial scales. We hypothesize
8 that the two species' divergent spot formation systems are inter-
9 acting in the hybrids to generate the observed diversity of color
10 patterns. This hypothesis gives rise to the hypothesis that, at
11 QTLs associated with spot size variation, *M. l. variegatus* alleles
12 will confer larger spots than *M. cupreus* alleles.

13 To help investigate these ideas, we have developed digital
14 tools for quantifying color patterning on a petal surface, as well
15 as a new and highly improved *M. l. luteus* reference genome. Us-
16 ing these resources, we demonstrate that the spatially complex
17 red (anthocyanin) color patterns found in an F2 hybrid mapping
18 population have a correspondingly complex genetic basis, com-
19 pared to the spatially simple trait of carotenoid intensity. We
20 identify a candidate gene and propose a possible mechanism for
21 the evolutionarily recent loss of yellow carotenoid pigmentation
22 in *M. l. variegatus*. Finally, we explore the effects of *cupreus* com-
23 pared to *variegatus* alleles on spot-size related traits, as a step
24 towards understanding the evolutionary and developmental
25 mechanisms that generate hybrid-specific phenotypic complex-
26 ity.

27 Materials and Methods

28 Plant Materials and Growth Conditions

29 Two highly inbred lines, *Mimulus luteus* var. *variegatus* RC6 and
30 *M. cupreus* LM43 (Table 6), were grown in the Whitman Col-
31 lege greenhouse under 14-hour days with daily misting from an
32 automatic watering system. Temperatures ranged from approxi-
33 mately 10-15 °C overnight and 15-30 °C during the day. Pollen
34 from *M. cupreus* LM43 was applied to *M. l. variegatus* stigmas to
35 generate F1 hybrid seeds. F1 plants were raised in the Whitman
36 College greenhouse and manually self-fertilized to generate F2
37 hybrid seeds. The cross was performed in only one direction,
38 because previous work indicated that cross direction does not
39 influence color patterning traits in either an F1 or F2 hybrid pop-
40 ulation of *variegatus* x *cupreus* (Cooley and Willis 2009). F2 plants
41 were grown in two locations: the Whitman College greenhouse,
42 and the College of William & Mary greenhouse. At the latter
43 location, plants were grown under 16 hour light regiment at
44 18-25 °C. *Mimulus l. luteus* line EY7 was grown at the College
45 of William & Mary and was used for preparation of a reference
46 genome.

47 Petal Photography and Pattern Quantification

48 Each *Mimulus* flower consists of five petals: two dorsal, two
49 lateral, and one ventral (Fig. 1). In many *Mimulus* species,
50 including those studied here, the ventral petal differs from the
51 other five in that it has a series of anthocyanin spots leading
52 from the petal lobe into the throat. These spots presumably act
53 as nectar guides.

54 We decided to examine both dorsal petals of each flower, con-
55 sidering them to be approximate (though mirror image) repli-
56 cates of the same pattern, and thus potentially able to provide
57 some insight into the degree to which pattern variation is ge-
58 netically determined versus stochastic. We also examined the
59 ventral petal, hypothesizing that the genes which pattern the

60 nectar guide region might alter how color patterns are produced
61 throughout this unique petal.

62 From each of 2-4 flowers per F2 plant, the two dorsal petals
63 and the ventral petal were cut at the end of the nectar guide
64 and placed face-up on a strip of white tape. Petals were pho-
65 tographed in a darkroom. A single 60-watt bulb was used to
66 provide illumination. Each photo included a color standard
67 and a ruler. Photographs were taken using an Olympus VG-120
68 digital camera (Whitman College), and a Nikon D3200 (William
69 and Mary). Each photograph was cropped and rotated in Gimp
70 v. 2.10.8 (<https://www.gimp.org/>) so that only the tape back-
71 ground and petals were visible. The resulting jpg image was
72 processed using the digital image analysis pipeline described
73 below. Additional traits were scored by eye (Table 2).

74 Digital Image Analysis Pipeline

75 To enhance downstream analysis of flower photos, full-color
76 photos were first transformed to a 3-color space ($L^*a^*b^*$), us-
77 ing k-means clustering with 3 centroids: red for anthocyanin-
78 pigmented petal tissue, yellow for non-anthocyanin-pigmented
79 petal tissue, and white for the background (Fig. 2). Using a
80 custom script in combination with the Matlab plotter, clustering
81 was supervised with manual repositioning of color centroids to
82 ensure optimum retention of detail of spot shapes. Color cate-
83 gorization was implemented in Matlab version 2017b (Matlab
84 2017).

85 Following color-categorization, image analysis was under-
86 taken using a custom pipeline (Fig. 2), implemented within the
87 SciPy Ecosystem (Virtanen et al. 2020), with tools from the Scikit
88 Image (Van der Walt et al. 2014) and Shapely (Gillies 2007) pack-
89 ages. In brief, spots and petals were vectorized to polygons from
90 rasters using the Marching Squares (Cubes) algorithm (Loren-
91 son and Cline 1987), holes in spots were detected with a custom
92 algorithm, and all polygons were checked for validity and re-
93 paired, if possible. Repairs to polygons were implemented by
94 both automated methods based on Shapely validation tools, and
95 a series of manual correction programs based on the Matplotlib
96 pyplot framework. These manual curations also acted as a final
97 quality control step for vector images. All petal polygons were
98 assigned a unitless area of one, and their respective spots were
99 scaled accordingly, to allow generalized comparisons among
100 flower petals and images of different sizes. Several programs for
101 hand-curation of spot and petal vectors were created and used
102 to ensure final image quality.

103 The final set of vectors representing the petal, spots, and
104 holes-within-spots, were saved by the pipeline as geojson files
105 that are readable with standard GIS software. Following the
106 conversion of photos to vectors, spots were counted and measured
107 in relation to the size of their respective petals and their position
108 within the petals (Table 3). These measurements were then used
109 as quantitative phenotypic traits in the QTL survey.

110 Code for the python image pro-
111 cessing package is available on github
112 at: <https://github.com/danchurch/mimulusSpeckling>. It is also
113 available at [pypi.org: https://pypi.org/project/makeFlowerPolygons-dcthom/](https://pypi.org/project/makeFlowerPolygons-dcthom/). A guided tour to the use of the
114 pipeline is available as a jupyter notebook at:
115 https://nbviewer.jupyter.org/github/danchurch/mimulusSpeckling/blob/master/make_polygons/notebooks/petals_to_polygons.ipynb.

1 **Variance Components Analysis**

2 To determine the proportion variation in our measured petal
3 spot phenotypes that is due to genetic variation between in-
4 dividuals, we conducted a variance component analysis. We
5 performed a PCA using Python to reduce all 15 quantitative
6 phenotypes (Table 3) to four PC axes. A total of 353 individual
7 plants were included in this analysis. For variance component
8 analysis, the 'VCA' packing in R was used. The PCA data frame
9 was split by petal type. Variance components were determined
10 separately for the dorsal petals and the ventral petal.

11 **Dimensionality reduction of traits for QTL analysis**

12 A total of 94 petal spot traits were computationally measured,
13 to assess the features listed in Table 3 for both upper petals and
14 lower petals (47 traits each). Due to high degrees of correlation
15 between traits, these were reduced to the main axes of variation
16 using PCA. Within a plant, for a given petal type (upper petals
17 or lower center petal), each phenotype was separately averaged
18 to give a single value per plant. A total of 353 unique plants
19 were used. PCA dimension reduction was performed separately
20 for the upper and lower petals. The first and second PC axes
21 explained 39% and 22% of the variation for the upper petals and
22 36% and 24% for the lower petals. For the final QTL mapping,
23 a dataset of the manually measured traits and the first four PC
24 axes for the upper and lower petal were used.

25 **Discrete phenotypic traits**

26 In addition to the quantitative traits described above, eleven
27 traits were scored "by eye" based on visual assessment of the
28 petal photographs (Table 2). These traits were not included in
29 the dimensionality reduction described above.

30 **Assembly of the *M. l. luteus* reference genome**

31 High molecular weight DNA was extracted from dark treated
32 (to reduce levels of secondary compounds) *Mimulus luteus*
33 var. *luteus* line EY7, and sequenced using the PacBio HiFi
34 system. Approximately 35x genome-wide PacBio HiFi cov-
35 erage was generated. In addition, a HiC library was con-
36 structed and sequenced to approximately 100x to aid in scaf-
37 folding. The primary assembly was constructed using hifi-
38 asm (<https://github.com/chhylp123/hifiasm>) with primarily
39 default parameters (except -D 10) to assemble PacBio highly
40 accurate long reads (HiFi reads) into a set of contigs with a low
41 probability of chimerism between subgenomes. Next, HiC reads
42 were aligned to the primary assembly with bwa (mem) and pro-
43 cessed with SALSA 2.2 (<https://github.com/marbl/SALSA>) to
44 generate a scaffolded assembly. Analysis of synteny (COGE syn-
45 map) with the diploid *M. guttatus* suggested that read alignment
46 included some mis-alignments between subgenomes and this
47 had been incorporated into the scaffolding. We therefore moved
48 away from bwa to novoalign for HiC alignments with parame-
49 ters (-r None -t 30) selected to reject any alignments with even a
50 low chance of alignment ambiguity. To aid in annotation, RNA
51 was extracted from young floral and vegetative buds and se-
52 quenced using PacBio IsoSeq. The resulting assembly was anno-
53 tated using two rounds of Maker with a transcriptome input gen-
54 erated using stringtie (<https://ccb.jhu.edu/software/stringtie/>)
55 in reference guided long-read mode based on a set of *M. l. luteus*
56 IsoSeq reads, together with the *M. guttatus* v5.0 proteome from
57 Phytozome 12 (<https://phytozome.jgi.doe.gov/pz/portal.html>)
58 and a repeat library generated on the assembly using repeatMod-
59 eler (<https://www.repeatmasker.org/RepeatModeler/>). HMMs

60 for Augustus (<http://bioinf.uni-greifswald.de/augustus/>) and
61 SNAP (<https://github.com/KorfLab/SNAP>) were initially
62 trained on *M. guttatus* gene models and then retrained
63 on the first round *M. l. luteus* maker gene models,
64 while geneMark used the standard eukaryotic gene models.
65 Genome statistics were generated using the assemblathon stats
66 (<https://github.com/KorfLab/Assemblathon/>) code and as-
67 sembly/annotation completeness was assessed using BUSCO
68 v4 (<https://busco.ezlab.org/>) with Eudicot odb10 models in
69 genome and proteome modes respectively. Completeness as-
70 sessment with the recently released BUSCO v5 code did not
71 significantly change these results.

72 **QTL Mapping**

73 Fresh leaf tissue (0.09 - 0.10 g per leaf) was collected from each
74 of 373 *M. l. variegatus* RC6 x yellow *M. cupreus* LM43 F2 plants
75 and was snap frozen in liquid nitrogen. DNA was extracted
76 a Qiagen DNeasy Plant Mini Kit (Germantown, MD, USA),
77 double eluted in 30-35 μ L of warm dH2O, and checked for purity
78 and concentration using either a Nanodrop Lite (Thermo Fisher
79 Scientific, Waltham, MA, U.S.A.) or a Qubit 4 Fluorometer
80 (Invitrogen, Carlsbad, CA, U.S.A.). Genotyping by Sequencing
81 (GBS) libraries were subsequently prepared using 100ng DNA
82 per sample. The GBS protocol followed Elshire et al. 2011
83 with the enzyme ApeKI, with up to 95 samples and a water
84 control pooled per lane. Three lanes of Illumina sequencing
85 were performed by the Duke University Center for Genomic
86 and Computational Biology using 100bp single end sequencing.
87 Sequences were demultiplexed using Stacks version 2.1
88 (<https://catchenlab.org/stacks/>) and aligned to the *M. l. luteus* genome using
89 bowtie2 and SNPs were called using GATK HaplotypeCaller.
90 The resultant VCF file was filtered to remove sites with greater
91 than 50% missing data, converted into a HapMap using Tassel,
92 and then processed with the Tassel 'run_pipeline.pl' to convert
93 HapMap to csv. The 'run_pipeline.pl' script filters the SNP
94 dataset to include locations that meet the following cutoffs: (1)
95 the parents were genotyped and (2) the parental genotype is not
96 heterozygous. (<https://bitbucket.org/tasseladmin/tassel-5-source/wiki/UserManual/GenosToABH/GenosToABHPlugin>).
97 A total of 7767 sites survived this filtering.

98 The resultant CSV file was used in R/QTL to create linkage
99 groups and conduct QTL mapping ([Broman et al. 2003](https://doi.org/10.1101/153750)). To create
100 linkage groups, the data was further filtered to remove individ-
101 uals with more than 250 missing marker calls and remove markers
102 with more than 100 missing individuals. Next, duplicate indi-
103 viduals, defined as those who shared greater than 80% identity
104 at markers, were removed from the dataset. Finally, markers
105 with distorted segregation patterns (as determined by cutoff of
106 $p < 1e-5$) were filtered. Using this filtered dataset, we estimated
107 recombination fractions between alleles, formed linkage groups,
108 and reordered markers using this newly formed linkage map.
109 Finally, we carried out QTL mapping for 19 petal spot patterning
110 traits using R/qtl. The R/QTL 'scanone' function, using the
111 'em' method and 'np' model and 500 permutations was used to
112 identify QTL. After QTL mapping, genes falling under the peak
113 or nearby wings (within X cM) of the peak were extracted.

114 **Carotenoid extraction and analysis**

115 Carotenoids were extracted from ventral petals of yellow-
116 flowered *M. cupreus* and *M. cupreus* x *M. l. variegatus* F1 hy-
117 brids, as well as from a series of four F2 hybrids that display
118 pigmentation ranging from pale to dark yellow (Fig. 5). The
119

1 petal area used for each extraction was standardized by closing
2 a 1.5 mL Eppendorf tube over the petals to create a "punch".
3 Two punches per flower were placed in 200 μ l of methanol and
4 ground with a nylon pestle until the tissue appeared colorless.

5 The ground tissue was centrifuged at 16,000 g for 1 min to
6 pellet debris, after which the supernatant was transferred to a
7 clean Eppendorf tube. Carotenoids and flavonoids were then
8 partitioned by adding 150 μ l of methylene chloride and 150
9 μ l of distilled water was added to each tube. The carotenoid-
10 containing layer (i.e., lower phase) of selected samples was col-
11 lected and dried under a gentle stream of nitrogen gas. The
12 dried extracts were treated with ethanolic potassium hydroxide
13 to remove fatty acid esters according to the methods of Schiedt
14 (1995). Saponified carotenoids were dried under nitrogen gas,
15 redissolved in 9:1 (v/v) hexanes/acetone and chromatographed
16 according to the method outlined in LaFountain *et al.* (2015).

17 Carotenoids were identified based on their absorption spectra
18 and relative order of elution as compared to a previously pub-
19 lished analysis (LaFountain *et al.* 2015). The relative percentages
20 of each carotenoid per sample were determined by integrating
21 the area under each carotenoid peak (Waters Empower 2.0 Soft-
22 ware), manually correcting for differences in their extinction
23 coefficients (Britton 1995) and comparing each value to the total
24 carotenoid content.

25 **Data Availability**

26 Seeds are available upon request. File S1 contains trait data
27 used for dimensionality reduction via Principal Components
28 Analysis. File S2 lists the 94 traits used for the PCA. File S3
29 contains genes identified within each mapped QTL. Sequence
30 data will become available on GenBank upon publication. The
31 Python image processing package is available on github at
32 <github.com/danchurch/mimulusSpeckling>.

33 **Results**

34 **Chromosome-level assembly of the *M. l. luteus* reference 35 genome**

36 The *Mimulus luteus* assembly was generated from PacBio
37 HiFi reads assembled (see methods) with Hifiasm Cheng
38 *et al.* (2021) and scaffolded with Illumina HiC reads using
39 SALSA2 (<https://github.com/marbl/SALSA>) after a careful
40 alignment of scaffolding reads to the largely homozy-
41 gous tetraploid contigs (round of selfing = Z) with the
42 novoalign (<http://www.novocraft.com/products/novoalign/>)
43 aligner. The genome size of 599MBase with a scaffold L50 of
44 32 and N50 of 6.4MBase compares favorably with estimates for
45 the genome size of 640-680MBase made by flow cytometry and
46 a previous assembly of 410MBase that had a scaffold N50 of
47 0.28MBase Vallejo-Marin (2012); Edger *et al.* (2017). Notably
48 this revised assembly appears to incorporate both more dupli-
49 cated polyploid gene space and pericentromeric sequence space
50 missing from the previous luteus assembly and the assembly
51 of the diploid relative *M. guttatus* ssp. *guttatus* (JGI version
52 5.0, Phytozome-13: MguttatusTOL551v5.0) respectively (Fig. 3).
53 The distribution of Ks scores from a self-self synmap alignment
54 validates the rich history of genome amplifications previously
55 described in this species.

56 Consistent with a more complete polyploid gene space,
57 the maker annotation (methods) gene count increased to
58 53,411 genes from 46,855 in the previous assembly and ap-
59 proaches twice the *M. guttatus* diploid protein-coding gene count
60 (2x26,718(guttatus): 53,436). The similarity of these two values

61 may however be somewhat coincidental since the short read
62 guttatus assembly was likely depleted in gene space relative to
63 the long-read *M. luteus* assembly whilst diploidization will have
64 begun to reduce the gene count in *M. luteus*, bringing these two
65 values together. Missing BUSCO genes remained around 2.5%,
66 similar to the level in the previous assembly (2.6%). The luteus as-
67 sembly contains significant blocks of sequence without evident
68 CDS homology in the assembled *M. guttatus* genome (Fig. 3),
69 albeit similar sequence can be found in unassembled *M. guttatus*
70 BAC and clone sequence available in genbank. The size of these
71 gene-poor blocks missing from the *M. guttatus* assembly ranges
72 up to c. 10MBase, and is consistent with the incorporation of
73 more complete centromeric and pericentromeric sequence in the
74 long-read *M. luteus* assembly. However tandem duplicate arrays
75 make scaffolding of these regions with HiC reads more prone to
76 error than HiC scaffolding of chromosome arm regions.

77 **Pattern variation is genetically influenced**

78 A trait that is completely genetically determined would be ex-
79 pected to show no variation among the flowers on a single plant;
80 all variation would be found among the genetically diverse F2
81 hybrid plants. Conversely, a trait that is completely determined
82 by non-genetic factors should similar variation, on average, be-
83 tween any two flowers, regardless of whether they originated
84 from the same or different plants. In other words, within-plant
85 variation would be similar to among-plant variation.

86 The first two PCs for both the upper and lower petal clearly
87 show that the majority of variation in the petal spot phenotypes
88 is found among plants. For the PC1 trait, 81% and 72% of the
89 variation was among plants for the dorsal and ventral petals,
90 respectively, consistent with a substantial genetic component to
91 trait variation.

92 **Five anthocyanin QTLs and one carotenoid QTL contribute to 93 hybrid flower color variation**

94 QTL mapping revealed six distinct QTL peaks – five cor-
95 responding to patterning of anthocyanin and one to the level of
96 carotenoid pigment (Fig. 4). Of the 19 traits mapped (11 "eye-
97 eye" traits; 4 principal components (PC) traits extracted from
98 upper-petal phenotypes; and 4 PC traits extracted from ventral-
99 petal phenotypes), 15 had significant peaks as determined by a
100 permutation test.

101 The peak on LG3, which contains known anthocyanin-
102 activating gene *MYB5*, was shared by the largest number of traits:
103 AnthocyaninPresence, Lower-petal Proportion Red, Upper-
104 petal Proportion Red, PC1-LowerPetals, PC1-UpperPetals,
105 PC2-LowerPetals, PC2-UpperPetals, PC3-LowerPetals, PC4-
106 UpperPetals, PC4-LowerPetals, and RimSpots. The peak on
107 LG17 is linked to two traits that are specific to the upper petals:
108 GlobularSpray-UpperPetals and PC3-UpperPetals. The peaks
109 on LG4, 6, 14, and 15 each corresponded to only one trait (Blush,
110 PC2-lower, AnthocyaninPresence, and CarotenoidIntensity, re-
111 spectively). Four traits (FineSpray, HugeSpot, TipSpotsOnly,
112 and Column) did not map to any QTL.

113 Overall, these QTLs explained relatively low proportions of
114 total trait variation. The two traits that appear to segregate in
115 a single-locus Mendelian fashion – AnthocyaninPresence and
116 CarotenoidIntensity – have 16.6% and 17.2%, respectively, of
117 trait variation explained by the identified QTLs. Other traits
118 have about one third as much trait variation explained (Table X),
119 or less (not shown).

1 **Carotenoid composition changes with pigment intensity**

2 Liquid-liquid phase partitioning of flavonoids and carotenoids,
3 depicted in Fig. 5, reveals that the yellow pigmentation of these
4 flowers is due to carotenoids. Flavonoid-based pigments (e.g.,
5 anthocyanins or chalcones) would be expected to migrate to the
6 aqueous (upper) layer but were not observed in these samples.
7 Carotenoids are expected to migrate to the methylene chloride
8 (lower) layer. The range of yellow pigmentation observed in
9 the lower layer of these samples corresponds to their respective
10 floral colors, providing strong support that this pigmentation is
11 carotenoid-based.

12 To further interrogate the identity of these pigments, the
13 extracts from the *M. cupreus*, *M. cupreus* × *M. l. variegatus* F1
14 hybrids, and darkest and lightest F2 hybrids were separated by
15 high-performance liquid chromatography (HPLC). These data
16 reveal that all flowers sampled can synthesize the xanthophylls
17 produced by the late carotenoid biosynthetic pathway enzymes
18 (e.g., neoxanthin, deepoxyneoxanthin, and mimaluxanthin; Fig.
19 6). However, the F1 and light F2 individual show an increased
20 relative concentration of beta-carotene, as would be expected if
21 an early carotenoid biosynthesis pathway structure gene such
22 as *BCH1* were disrupted.

23 **Discussion**

24 Interspecies hybrids expand the range of phenotypic variation
25 seen in nature, presenting opportunities to investigate traits that
26 are not typically seen in existing species. Here we compare the
27 genetic architecture of a classic, spatially simple interspecies
28 difference in yellow carotenoid pigmentation with that of a
29 spatially complex anthocyanin pigmentation phenotype that
30 emerges only in interspecies hybrids.

31 The two traits show distinct genetic architectures. The evolutionarily
32 recent carotenoid reduction in *M. l. variegatus* maps to
33 a single QTL, which encompasses the carotenoid biosynthetic
34 gene *Beta-carotene hydroxylase-1*. In contrast, hybrid-specific
35 anthocyanin pattern variation is influenced by a large-effect locus
36 and four detectable smaller-effect loci, approximately consistent
37 with the idea of a distribution of effect sizes proposed by Orr
38 (1998) for adaptive evolution. The adaptive significance is un-
39 known for either of the traits studied here. However, within
40 the very small *luteus* group of *Mimulus*, carotenoid loss appears
41 to have evolved twice (as a recessive trait in *M. naianinus* and
42 as a semi-dominant trait in *M. l. variegatus*; Fig. 1) and the
43 gain of petal lobe anthocyanin pigmentation has evolved at least
44 twice (Cooley and Willis 2009; Cooley *et al.* 2011). The repeated
45 evolution of similar traits under similar ecological conditions is
46 suggestive of adaptation (Endler 1986), but regardless of adap-
47 tive benefit, the argument that genetic architecture will vary by
48 system and trait type (Dittmar *et al.* 2016) appears to be illus-
49 trated by our results.

50 In the course of investigating these questions, new resources
51 were developed for the plant research community. The substan-
52 tially improved, high-quality *M. l. luteus* genome will contribute
53 to genetic research within the *luteus* group as well as compara-
54 tive studies across *Mimulus*. The digital image analysis pipeline
55 adds to the repertoire of tools available for studying complex
56 spatial patterns in plants, an area that has been less accessible to
57 geneticists compared to more qualitative traits.

58 ***BCH1* is a strong candidate for the evolution of reduced
59 carotenoid pigmentation in *M. l. variegatus***

60 The carotenoid-based yellow intensity variation was mapped to
61 a major QTL that contains the *Beta-Carotene Hydroxylase 1* gene
62 (*BCH1*). *BCH1* is a particularly promising candidate gene for two
63 reasons. (i) The dark yellow genotypes, including the *M. cupreus*
64 parent and dark yellow F2s, accumulate no beta-carotene but a
65 mixture of xanthophylls that are downstream of beta-carotene
66 in the flower petals, whereas the light yellow genotypes, includ-
67 ing the *M. cupreus* × *M. l. variegatus* F1 hybrid and pale yellow
68 F2 individuals, accumulate beta-carotene as a major carotenoid
69 component (Fig. 6). This is consistent with low level of *BCH*
70 activity in the light yellow genotypes, as *BCH* is the enzyme
71 converting beta-carotene to downstream xanthophylls. (ii) *BCH*
72 is not only a key enzyme determining the relative composition
73 between beta-carotene and downstream xanthophylls, but also
74 underlies major QTLs explaining total carotenoid content varia-
75 tion in other plant systems. For example, *BCH* was implicated
76 as the causal gene underlying the Y-locus determining potato
77 tuber flesh color (yellow vs. white); elevated expression level of
78 *BCH* is tightly associated with yellow flesh color (Kloosterman
79 *et al.* 2010). Similarly, *BCH* expression level was found to be a
80 major determinant of petal carotenoid content variation among
81 *Ipomoea* species (Yamamoto *et al.* 2010).

82 How *BCH1* activity affects total carotenoid accumulation is
83 unknown. One possibility is that higher *BCH1* activity increases
84 metabolic flux into the carotenoid biosynthesis pathway, and
85 hence leads to higher carotenoid production (Zhou *et al.* 2011).
86 Another possibility is that chromoplasts in some plants have bet-
87 ter storage capacity for esterified carotenoids than beta-carotene
88 (Ariizumi *et al.* 2014). Since *BCH* catalyzes the addition of hydroxyl
89 residues to beta-carotene and these hydroxyl groups are
90 required for carotenoid esterification, *BCH* activity could affect
91 total carotenoid accumulation by enhancing carotenoid storage
92 in chromoplasts.

93 ***Transcriptional activator NEGAN/MYB5a underlies the largest-
94 effect QTL for anthocyanin patterning***

95 In flowering plants, the anthocyanin biosynthetic pathway that
96 produces red to purple pigments is regulated by an "MBW"
97 complex consisting of a subgroup-6 R2R3 MYB transcriptional
98 activator and bHLH and WDR cofactors, possibly characterized
99 by homodimers of the MYB and bHLH components (Petroni and
100 Tonelli 2011). In dicots, the MBW complex specifically activates
101 the "late" biosynthetic genes in the pathway, typically *DFR* and
102 *ANS/LDOX* (Lepiniec *et al.* 2006; Dubos *et al.* 2010). In contrast
103 to this relatively constant mechanism of anthocyanin activation,
104 anthocyanin repression has been ascribed to at least 14 different
105 protein and/or small RNA families to date, most of which act
106 upon the MBW complex (LaFountain and Yuan 2021).

107 In principle, an anthocyanin pigmentation feature could be
108 gained either through activation (evolutionary change in a mem-
109 ber of the MBW anthocyanin-activating complex or its down-
110 stream target genes), or through de-repression (evolutionary
111 change in an anthocyanin repressor). In practice, color patter-
112 ning changes have frequently been tracked to the anthocyanin-
113 activating subgroup 6 R2R3 MYB genes (Yuan *et al.* 2014; Streis-
114 feld *et al.* 2013; Lowry *et al.* 2012; Yamagishi 2013; Schwinn *et al.*
115 2006), possibly because their high copy number and correspond-
116 ingly tissue-specific expression make them less pleiotropically
117 constrained than other regulators (Streisfeld and Rausher 2011).

118 The evolutionarily recent and genetically dominant gains of

1 petal lobe anthocyanin pigmentation, in both the the common
2 orange morph of *M. cupreus* and the magenta-flowered *M. l.
3 variegatus*, follow this pattern. Pigment gain has been mapped in
4 each case to a single genomic region (*pla1* and *pla2* respectively).
5 Each genomic region spans a tandem array of subgroup 6 R2R3
6 MYB genes, and the "activating" allele at each region is associated
7 with higher expression of the late biosynthetic genes that
8 are the targets of the MBW complex (Cooley *et al.* 2011).

9 The *pla1* genomic region, responsible for petal lobe antho-
10 cyanin in the orange morph of *M. cupreus*, harbors seven candi-
11 date MYB genes. In the present study, however, we used a rare
12 yellow-flowered morph of *M. cupreus* that lacks the anthocyanin-
13 activating allele at *pla1* (Cooley *et al.* 2011). Thus, all anthocyanin
14 activation in our genetic mapping population is expected to be
15 caused by the *M. l. variegatus* allele of the *pla2* genomic region.
16 Consistent with this expectation, approximately a quarter of
17 all F2 plants (82/310) lacked petal lobe anthocyanin, having
18 inherited two copies of the recessive *M. cupreus* *pla2* allele.

19 Within *pla2*, a combination of transgenic overexpression,
20 RNAi, and transcriptomics has identified *MYB5a* as the causal
21 gene for petal lobe anthocyanin activation in *M. l. variegatus*
22 (Zheng *et al.* 2021). Thus, it is not surprising that the QTL of
23 largest effect discovered in this study, on LG3, is centered di-
24 rectly over the *MYB5a* gene. What is more surprising is that, in
25 fact, a weak second QTL (on LG14) was also associated with
26 the trait of anthocyanin presence versus absence, even though
27 the trait segregated in a 3:1 ratio in the F2 population. Out of
28 310 F2 plants, 228 (73.5%) had petal lobe anthocyanin and 82
29 (26.5%) did not. It is possible that these two QTLs are genetically
30 (though not physically) linked, or that the weaker LG14 peak is
31 a false positive.

32 The major-effect LG3 QTL impacts variation in ten other traits
33 in addition to anthocyanin presence versus absence, including
34 many of the summary traits drawn from the principal compo-
35 nents dimensionality reduction. Variation in these 11 traits is
36 likely dominated by the complete lack of petal lobe anthocyanin
37 pigment in one quarter of our F2 plants. A QTL analysis re-
38 stricted to the 228 plants that possess petal lobe anthocyanins
39 did not identify any new QTLs (unupbl. data), possibly due to
40 the modest sample size of this subset of our mapping population.
41 In future work, focusing research effort on plants with the domi-
42 nant anthocyanin-present phenotype would maximize statistical
43 power to detect non-LG3 QTLs that contribute to quantitative
44 pattern variation, rather than to the qualitative presence versus
45 absence of petal lobe anthocyanins.

46 While the *variegatus* allele of *MYB5a*, at the LG3 locus, is re-
47 quired to activate anthocyanin production (Cooley and Willis
48 2009; Cooley *et al.* 2011; Zheng *et al.* 2021), we expect that the
49 QTLs outside of the LG3 region are largely responsible for cre-
50 ating the spatial patterns of anthocyanin distribution. Each of
51 these loci on its own contributes to one or two specific aspects
52 of color patterning, according to the main effects in our QTL
53 analysis, and interactions amongst loci may also be important in
54 explaining the genetic component of pattern variation.

55 **Inter-genomic interactions**

56 In the *luteus* group of *Mimulus*, patterned petal anthocyanin
57 pigmentation is seen only in hybrids. This observation alone
58 indicates an important role for inter-genomic interactions. Per-
59 haps the simplest interaction that could create a hybrid-specific
60 trait is between two alleles at a single locus, with heterozygotes
61 displaying a different phenotype from either homozygote. We

62 tested this hypothesis by more closely examining the genotype-
63 phenotype relationship for two QTLs: LG4, which associates
64 with the "blush" or fine-spray phenotype, and LG17, which as-
65 sociates with the "globular" or large-spot phenotype. We asked
66 whether either of these traits might arise only in a heterozygous
67 genotype. Tables 5 and 6 show that this is not the case: the
68 "blush" phenotype is commonly observed in both c/v heterozy-
69 gotes and c/c homozygotes (where c indicates a *cupreus* allele at
70 LG4, and v indicates a *variegatus* allele). Similarly, the "globular"
71 phenotype is commonly observed for both c/v heterozygotes
72 and v/v homozygotes at LG17.

73 Although this pattern does not support a simple within-locus
74 explanation for the cause of hybrid-specific complexity, it does
75 shed light on the question of whether the apparently solid an-
76 thocyanin pigmentation of orange-flowered *M. cupreus* is in fact
77 the product of a dense spray of tiny spots, while the lobes of *M.
l. variegatus* petals are each pigmented by one large spot with
78 a single developmental origin. If so, we predict that *variegatus*
79 alleles will, on average, be correlated with larger spot sizes than
80 *cupreus* alleles, and the overall spot size will vary linearly with
81 the total number of *variegatus* versus *cupreus* alleles at spot-size
82 QTLs. At the LG4 (blush) QTL, nearly all plants with the blush
83 phenotype had at least one *cupreus* allele. At the LG17 (globular
84 spray-upper petals and PC3-upper petals) QTL, nearly all plants
85 with the globular spray phenotype had at least one *variegatus* al-
86 lele. Taken together, these two patterns suggests that spot size is
87 a trait that differs genetically between the two apparently solid-
88 colored parents, with the small-spot alleles tending to originate
89 from *M. cupreus*.

90 Although plants with blush tended to have a *cupreus* allele (c)
91 at the LG4 QTL, plants without blush showed all three possible
92 genotypes (c/c, c/v, and v/v). Plants without blush included
93 many c/c and c/v individuals, and in fact did not differ sig-
94 nificantly from the 1:2:1 ratio expected for an F2 population
95 (X-squared = 2.6175, df = 2, p-value = 0.2702). Thus, having
96 a *cupreus* allele at the LG4 QTL appears to be nearly always
97 necessary, but not at all sufficient, to generate the blush trait
98 (Table 5).

99 The converse pattern was observed for the trait of globular
100 spray. Plants with globular spray tended to have a *variegatus*
101 allele at the LG17 QTL. Plants that lacked globular spray had
102 fewer heterozygotes at the LG17 QTL than predicted by the
103 1:2:1 null hypothesis (X-squared = 15.833, df = 2, p-value =
104 0.0003646), but showed similar numbers of the two homozygous
105 genotypes (c/c and v/v). Having a *variegatus* allele at the LG17
106 QTL, therefore, appears to be nearly necessary but not sufficient
107 to generate the globular spray trait (Table 6).

108 If a dominant genotype is necessary but not sufficient to gen-
109 erate either blush or globular spots, then other factors must
110 contribute - possibly including inter-locus epistasis. In favor of
111 this hypothesis is the discovery that nectar-guide spots in *M.
guttatus* are consistent with a two-component reaction-diffusion
112 system, in which an autocatalytic R2R3 MYB anthocyanin activa-
113 tor orthologous to *MYB5a* eventually activates its own repressor
114 (Ding *et al.* 2020). Interactions between the activator and the
115 repressor determine spot size through dynamic mechanisms
116 that are likely to be non-additive, a finding that is supported by
117 preliminary mathematical modeling results in our lab (unpubl.
118 data). A larger mapping population will be required to provide
119 enough power to search for the epistatic interactions predicted
120 by this mechanism.

1 Conclusions

2 Hybrids can be intermediate in phenotype to their two parents;
 3 similar to only one parent; or, in some cases, entirely different
 4 from what would be predicted based on the parents' appearance.
 5 Here we present an intriguing example of the latter case. We
 6 show that the genetic architecture of a hybrid-specific antho-
 7 cyanin color patterning trait is complex, especially as compared
 8 to a more 'typical' pigmentation trait (carotenoid intensity) that
 9 differs between the two parent *Mimulus* species. Interspecific
 10 allele interactions at a single locus do not appear to explain hy-
 11 brid patterning. Rather, two- or multi-locus interactions may
 12 be responsible for these emergent traits, perhaps due to an un-
 13 derlying developmental mechanism such as a reaction-diffusion
 14 system.

15 Acknowledgements

16 We thank former William & Mary and Whitman undergraduates
 17 Matthias Leu, Taylor Wilke, and Aaron Williams, for earlier
 18 work that helped pave the way for ideas explored in this paper.
 19 Funding was provided by NSF-DEB 1655311 (to AMC), NSF-
 20 DEB 1754075 (to AMC and JRP), NSF-IOS 2031272 (to AMC and
 21 JRP), Whitman College, and the College of William & Mary.

22 Literature Cited

23 Anderson, E. and G. L. Stebbins Jr, 1954 Hybridization as an
 24 evolutionary stimulus. *Evolution* **8**: 378–388.

25 Ariizumi, T., S. Kishimoto, R. Kakami, T. Maoka, H. Hirakawa,
 26 *et al.*, 2014 Identification of the carotenoid modifying gene
 27 pale yellow petal 1 as an essential factor in xanthophyll esterifi-
 28 cation and yellow flower pigmentation in tomato (*Solanum*
 29 *lycopersicum*). *The Plant Journal* **79**: 453–465.

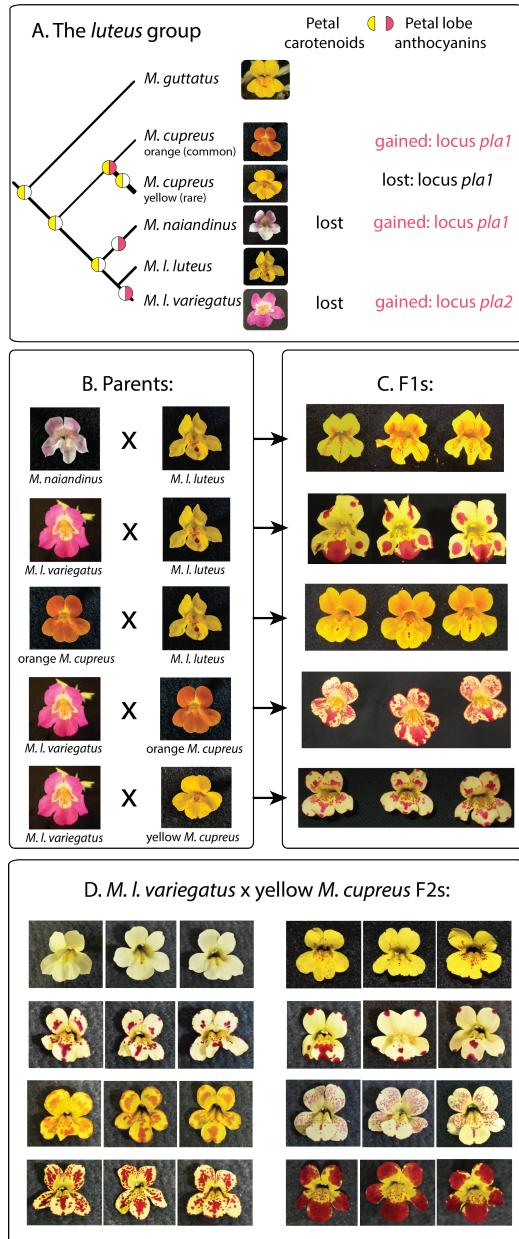
30 Barker, W., G. Nesom, P. M. Beardsley, and N. S. Fraga, 2012
 31 A taxonomic conspectus of phrymaceae: a narrowed circum-
 32 scription for *mimulus*, new and resurrected genera, and new
 33 names and combinations. *Phytoneuron* **39**: 1–60.

34 Beldade, P. and P. M. Brakefield, 2002 The genetics and evo–devo
 35 of butterfly wing patterns. *Nature Reviews Genetics* **3**: 442.

36 Boogaard, F. P., K. S. Rongen, and G. W. Kootstra, 2020 Robust
 37 node detection and tracking in fruit-vegetable crops using
 38 deep learning and multi-view imaging. *Biosystems Engineering* **192**: 117–132.

39 Bradshaw Jr, H. and D. W. Schemske, 2003 Allele substitution
 40 at a flower colour locus produces a pollinator shift in mon-
 41 keyflowers. *Nature* **426**: 176.

42 Britton, G., 1995 Carotenoids today and challenges for the future.
 43 *Carotenoids* **1**: 13–26.


44 Broman, K. W., H. Wu, S. Sen, and G. A. Churchill, 2003 R/qtl:
 45 Qtl mapping in experimental crosses. *Bioinformatics* **19**: 889–
 46 890.

47 Catchen, J. M., A. Amores, P. Hohenlohe, W. Cresko, and J. H.
 48 Postlethwait, 2011 Stacks: building and genotyping loci de
 49 novo from short-read sequences. *G3: Genes, genomes, genetics* **1**: 171–182.

50 Chalker-Scott, L., 1999 Environmental significance of antho-
 51 cyanins in plant stress responses. *Photochemistry and photo-
 52 biology* **70**: 1–9.

53 Chen, L., B. Hu, Y. Qin, G. Hu, and J. Zhao, 2019 Advance of
 54 the negative regulation of anthocyanin biosynthesis by myb
 55 transcription factors. *Plant physiology and biochemistry* .

56 Cheng, H., G. T. Concepcion, X. Feng, H. Zhang, and H. Li, 2021
 57 Haplotype-resolved de novo assembly using phased assembly
 58 graphs with hifiasm. *Nature methods* **18**: 170–175.

Figure 1 Flower color divergence yields complex spatial patterning in *Mimulus* hybrids. A. Because the *luteus* group is nested within a large monophyletic grouping of yellow-flowered species, the ancestral state is inferred to consist of yellow, carotenoid-pigmented petals (indicated by yellow color in the left side of the circle) with no petal lobe anthocyanins (indicated by a lack of magenta color in the right side of the circle). Carotenoids are hypothesized to have been lost twice independently, while anthocyanins are hypothesized to have been gained three times and lost once. B. Crosses are shown with maternal parent first; no differences were observed between reciprocal crosses. C. Three flowers per plant are shown for each F1 hybrid to illustrate the degree of consistency across flowers of the same genotype. D. Three flowers per plant are shown for each of X different F2 hybrids derived from the *M. I. variegatus* x yellow-flowered *M. cupreus* cross. Photos courtesy Bella Rivera, Joshua Shin, Leah Samuels.

Table 1 Seed sources

Taxon	Line ID	Inbreeding	Population	Location ^a
<i>M. luteus</i> var. <i>luteus</i>	Mll-EY7	13 generations	El Yeso	33.4°S, 70.0°W (2600 m)
<i>M. luteus</i> var. <i>variegatus</i>	Mlv-RC6	13 generations	Río Cipreses	34.2°S, 70.3°W (1200 m)
<i>M. cupreus</i> yellow morph	Mcu-LM43	10 generations	Laguna del Maule	36.0°S, 70.3°W (2300 m)

^a Locations from which seeds were collected is given as latitude, longitude (meters above sea level).

Table 2 Qualitative traits utilized in genetic mapping

Trait name	Description
Carotenoid intensity	Darkness of yellow petal pigment, scored as low, medium, or high.
Anthocyanin presence	Binary indicator of whether any anthocyanin pigment is present on the petal lobes outside of the nectar guide region.
Blush	Binary indicator of whether any of the petals had a very thin layer of diffuse anthocyanin pigment.
Tip spot	Binary indicator of whether the two upper (dorsal) petals have a single spot at the tip of the petal.
Rim	Amount of rim covered by spots, scored as low, medium, or high.
Huge Spot	Binary indicator of whether there is a spot that covers nearly all of the petal.
Column	Binary indicator of whether majority of the central column of the lower (ventral) petal is anthocyanin pigmented.
Spray	Binary indicator of whether there is a spray of spots coming up from the throat on the two upper (dorsal) petals.

Table 3 Quantitative traits utilized in dimensionality reduction, for genetic mapping of principal components

Trait category	Traits assessed
General polygon info	Average Spot Size
	Number of spots
	Size of largest spot
Centeredness	Number of spots in the central zone
	Percentage of center covered by spots
	Average distance to center from all spots
Edgeness	Number of spots in the edge zones
	Percentage of total spots located in the edge zones
	Percent of edge zone covered by spots
	Average distance from all spots to edge
Throat region	Number of spots in the throat zone
	Percentage of total spots located in the throat zone
	Percentage of throat zone covered by spots
Quadrants	Number of spots in each of the four quadrants (proximal, distal, lower, upper)
	Percentage of spots in each of the four quadrants (proximal, distal, lower, upper)

Table 4 Phenotypic Variation Explained (PVE), by mapped QTLs. The five traits shown in Figure 3 are listed below; these are the mapped traits with the highest PVE.

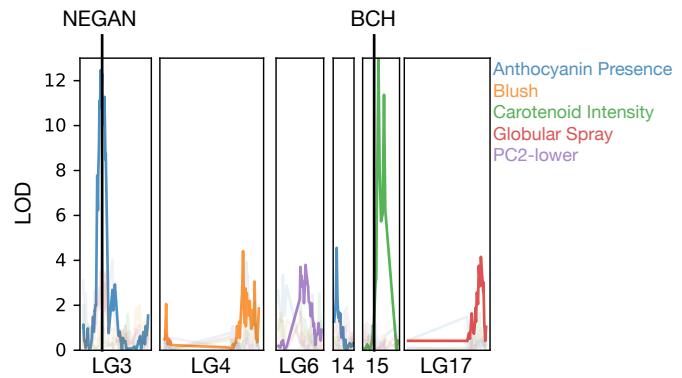
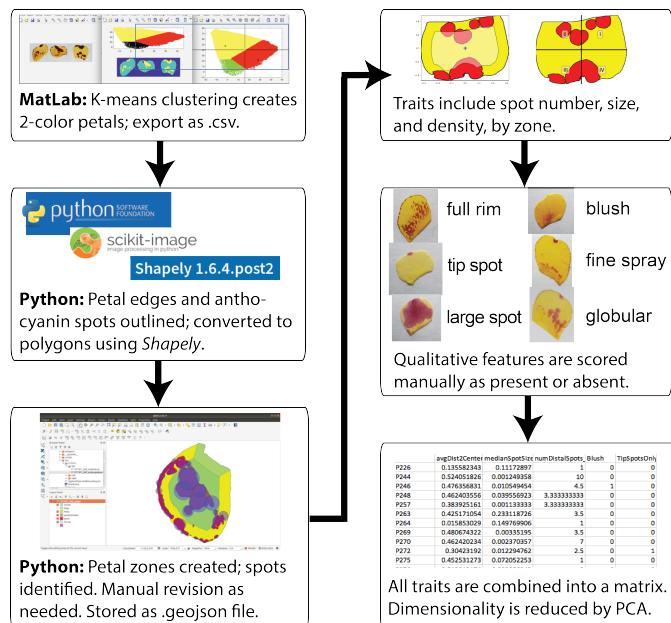
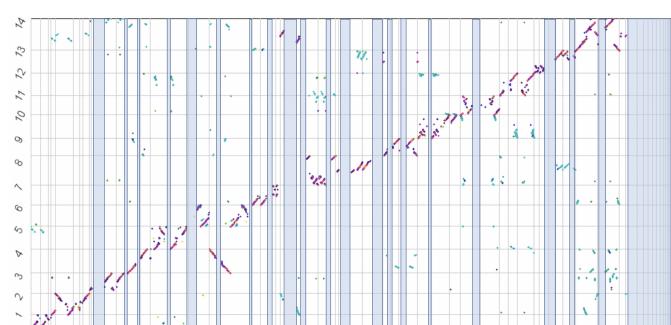


Trait	PVE
Carotenoid intensity	0.172
Anthocyanin presence	0.166
Blush	0.062
Globular spray - upper petals	0.059
PC2 - lower petals	0.057

Table 5 Genotype at the LG4 QTL is predictive of blush phenotype. Genotypes and phenotypes are non-randomly associated (Chi-square contingency table: $\chi^2 = 17.823$, $df = 2$, $p\text{-value} = 0.0001348$). Plants with the Blush trait tend to have at least one *cupreus* allele at this locus. c, a *cupreus* allele at the LG4 QTL. v, a *variegatus* allele at the LG4 QTL.

Genotype	Blush present	Blush absent
c/c	24	53
c/v	25	127
v/v	4	71


Table 6 Genotype at the LG17 QTL is predictive of globular spray phenotype. Genotypes and phenotypes are non-randomly associated (Chi-square contingency table: X-squared = 17.333, df = 2, p-value = 0.0001723). Plants with the Globular Spray trait tend to have at least one variegatus allele at this locus. c, a cupreus allele at the LG17 QTL. v, a variegatus allele at the LG17 QTL.

Genotype	Blush present	Blush absent
c/c	4	80
c/v	32	90
v/v	25	70

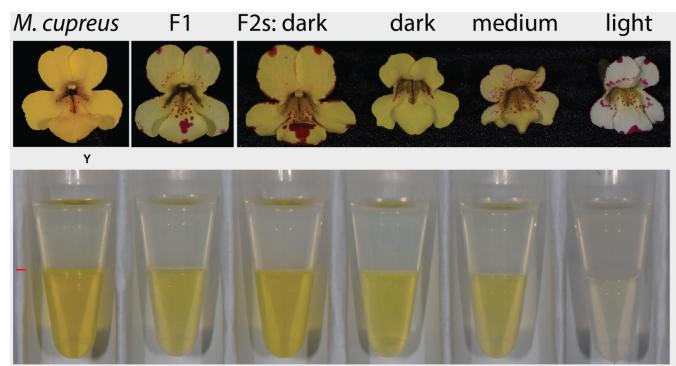


Figure 4 QTL mapping revealed six statistically significant peaks. The locations of two genes known to be important in anthocyanin spotting and carotenoid levels, NEGAN and BCH, are noted. The peak on LG3 was shared by eleven traits, only one of which is shown in full color here. The peak on LG17 is shared by two traits: Globular Spray-Upper Petals (shown in color) and PC3-Upper Petals (in grey).

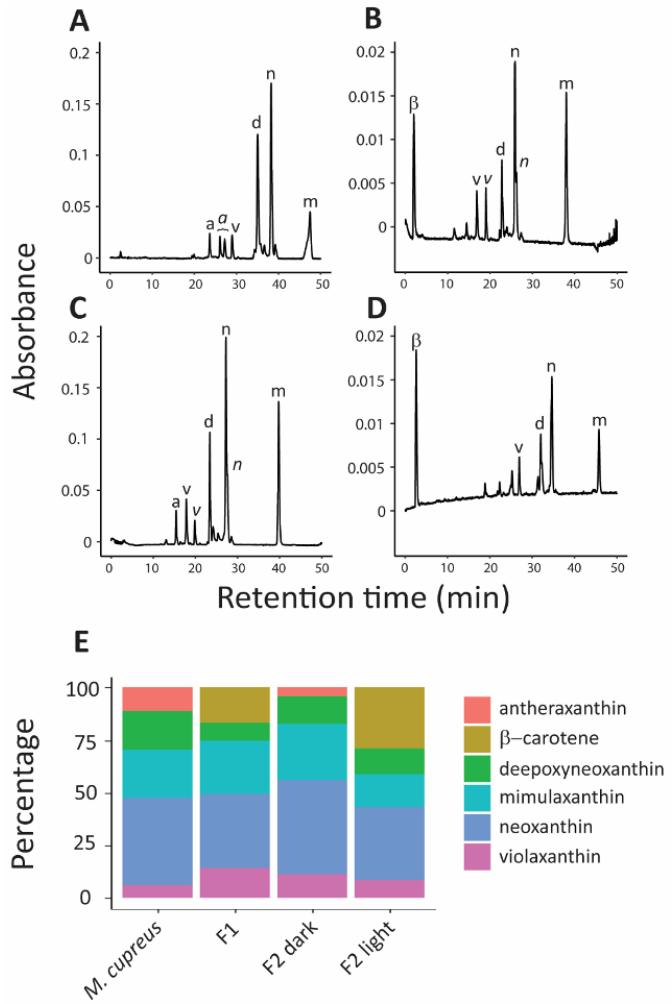

Figure 2 Digital image analysis workflow.

Figure 3 Synteny mapping between newly assembled *M. luteus* and publicly available *M. guttatus* genome reveals many missing portions in the *M. guttatus* assembly. The *M. luteus* genome is on the x-axis and *M. guttatus* on the y-axis. Blue vertical boxes indicate portions of the *M. luteus* assembly that are missing in *M. guttatus*. The *M. luteus* whole genome duplication is also clearly evident in this plot as each *M. guttatus* genomic portion is typically represented by two *M. luteus* genomic segments.

Figure 5 Flowers chosen for pigment extraction (top panel) and corresponding liquid phase partitioning of flavonoids and carotenoids (bottom panel). Red arrow denotes the interface between phases. The *M. cupreus* parent, *M. cupreus* x *M. l. variegatus* F1 hybrid, darkest F2 individual (third from left), and a pale-yellow individual (fifth from left) were further analyzed by high-performance liquid chromatography (HPLC).

Figure 6 (A-D) HPLC chromatograms of floral extracts from *M. cupreus* (A), F1 hybrid (B), dark yellow F2 (C), and light yellow F2 (D). Detection wavelength for all chromatograms is 450nm. Absorbance values in panels A and C have been corrected for differences in injection volume, which were 4x and 2x, respectively. Abbreviations are as follows: b, beta-carotene; a, antheraxanthin; v, violaxanthin; d, deepoxyneoxanthin; n, neoxanthin; m, mimulaxanthin. Labels in italics denote cis-isomers. (E) Relative percentages of carotenoids as determined by integration of HPLC peak areas. **Note: I think we could place the photo of each plant within each graph, for easier reference. I can do that once I get my Adobe Illustrator license renewed - Arielle.**

1 Cooley, A., G. Carvallo, and J. Willis, 2008 Is floral diversification
2 associated with pollinator divergence? flower shape, flower
3 colour and pollinator preference in chilean mimulus. Annals
4 of Botany **101**: 641–650.
5 Cooley, A. M., J. L. Modliszewski, M. L. Rommel, and J. H. Willis,
6 2011 Gene duplication in mimulus underlies parallel floral
7 evolution via independent trans-regulatory changes. Current
8 Biology **21**: 700–704.
9 Cooley, A. M. and J. H. Willis, 2009 Genetic divergence causes
10 parallel evolution of flower color in chilean mimulus. New
11 Phytologist pp. 729–739.
12 Davies, K. M., N. W. Albert, and K. E. Schwinn, 2012 From
13 landing lights to mimicry: the molecular regulation of flower
14 colouration and mechanisms for pigmentation patterning.
15 Functional Plant Biology **39**: 619–638.
16 De Keyser, E., P. Lootens, E. Van Bockstaele, and J. De Riek,
17 2013 Image analysis for qtl mapping of flower colour and leaf
18 characteristics in pot azalea (*rhododendron simsii* hybrids).
19 Euphytica **189**: 445–460.
20 de Souza, M. M., F. N. Medeiros, G. L. Ramalho, I. C. de Paula Jr,
21 and I. N. Oliveira, 2016 Evolutionary optimization of a multi-
22 scale descriptor for leaf shape analysis. Expert Systems with
23 Applications **63**: 375–385.
24 Demmig-Adams, B., A. M. Gilmore, and W. Adams 3rd, 1996
25 Carotenoids 3: in vivo function of carotenoids in higher plants.
26 The FASEB Journal **10**: 403–412.
27 Ding, B., E. L. Patterson, S. V. Holalu, J. Li, G. A. Johnson, *et al.*,
28 2020 Two myb proteins in a self-organizing activator-inhibitor
29 system produce spotted pigmentation patterns. Current Biology
30 .
31 Dittmar, E. L., C. G. Oakley, J. K. Conner, B. A. Gould, and D. W.
32 Schemske, 2016 Factors influencing the effect size distribution
33 of adaptive substitutions. Proceedings of the Royal Society B:
34 Biological Sciences **283**: 20153065.
35 Dubos, C., R. Stracke, E. Grotewold, B. Weisshaar, C. Martin,
36 *et al.*, 2010 Myb transcription factors in arabidopsis. Trends in
37 plant science **15**: 573–581.
38 Edger, P. P., R. Smith, M. R. McKain, A. M. Cooley, M. Vallejo-
39 Marin, *et al.*, 2017 Subgenome dominance in an interspecific
40 hybrid, synthetic allopolyploid, and a 140-year-old naturally
41 established neo-allopolyploid monkeyflower. The Plant Cell
42 **29**: 2150–2167.
43 Endler, J., 1986 Natural selection in the wild. Monogr. Popul.
44 Biol. **21**: 1–33.
45 Epifanio, J. and D. Philipp, 2000 Simulating the extinction of
46 parental lineages from introgressive hybridization: the effects
47 of fitness, initial proportions of parental taxa, and mate choice.
48 Reviews in Fish Biology and Fisheries **10**: 339–354.
49 Galkovskyi, T., Y. Mileyko, A. Bucksch, B. Moore, O. Symonova,
50 *et al.*, 2012 Gia roots: software for the high throughput analysis
51 of plant root system architecture. BMC plant biology **12**: 116.
52 Gehan, M. A. and E. A. Kellogg, 2017 High-throughput pheno-
53 typing. American Journal of Botany **104**.
54 Gould, K. S., 2004 Nature's swiss army knife: the diverse protec-
55 tive roles of anthocyanins in leaves. BioMed Research Interna-
56 tional **2004**: 314–320.
57 Grant, A. L., 1924 A monograph of the genus *mimulus*. Annals
58 of the Missouri Botanical Garden **11**: 99–388.
59 Grant, P. R. and B. R. Grant, 2019 Hybridization increases popu-
60 lation variation during adaptive radiation. Proceedings of the
61 National Academy of Sciences **116**: 23216–23224.
62 Grant, V., 1971 *Plant Speciation*. Columbia University Press.

1 Grotewold, E., 2006 The genetics and biochemistry of floral
2 pigments. *Annu. Rev. Plant Biol.* **57**: 761–780.

3 Holton, T. A. and E. C. Cornish, 1995 Genetics and biochemistry
4 of anthocyanin biosynthesis. *The Plant Cell* **7**: 1071.

5 Houle, D., D. R. Govindaraju, and S. Omholt, 2010 Phenomics:
6 the next challenge. *Nature reviews genetics* **11**: 855–866.

7 Kellenberger, R. T., K. J. Byers, R. M. D. B. Francisco, Y. M.
8 Staedler, A. M. LaFountain, *et al.*, 2019 Emergence of a floral
9 colour polymorphism by pollinator-mediated overdominance.
10 *Nature communications* **10**: 1–11.

11 Kimura, K., S. Kikuchi, and S.-i. Yamasaki, 1999 Accurate root
12 length measurement by image analysis. *Plant and Soil* **216**:
13 117–127.

14 Kloosterman, B., M. Oortwijn, J. Uitdewilligen, T. America,
15 R. de Vos, *et al.*, 2010 From qtl to candidate gene: genetic
16 genomics of simple and complex traits in potato using a
17 pooling strategy. *BMC genomics* **11**: 1–16.

18 Knecht, A. C., M. T. Campbell, A. Caprez, D. R. Swanson, and
19 H. Walia, 2016 Image harvest: an open-source platform for
20 high-throughput plant image processing and analysis. *Journal
21 of experimental botany* **67**: 3587–3599.

22 LaFountain, A. M., H. A. Frank, and Y.-W. Yuan, 2015 Carotenoid
23 composition of the flowers of *mimulus lewisii* and related
24 species: implications regarding the prevalence and origin of
25 two unique, allenic pigments. *Archives of biochemistry and
26 biophysics* **573**: 32–39.

27 LaFountain, A. M. and Y.-W. Yuan, 2021 Repressors of antho-
28 cyanin biosynthesis. *New Phytologist* .

29 Lepiniec, L., I. Debeaujon, J.-M. Routaboul, A. Baudry, L. Pour-
30 cel, *et al.*, 2006 Genetics and biochemistry of seed flavonoids.
31 *Annu. Rev. Plant Biol.* **57**: 405–430.

32 Levin, D. A., J. Francisco-Ortega, and R. K. Jansen, 1996 Hy-
33 bridization and the extinction of rare plant species. *Conserva-
34 tion biology* **10**: 10–16.

35 Li, D., C. Li, Y. Yao, M. Li, and L. Liu, 2020 Modern imaging
36 techniques in plant nutrition analysis: A review. *Computers
37 and Electronics in Agriculture* **174**: 105459.

38 Li, M., M. H. Frank, and Z. Migicovsky, 2019 Colourquant: a
39 high-throughput technique to extract and quantify colour phe-
40 notypes from plant images. *arXiv preprint arXiv:1903.01652*
41 .

42 Lowry, D. B., C. C. Sheng, J. R. Lasky, and J. H. Willis, 2012 Five
43 anthocyanin polymorphisms are associated with an r2r3-myb
44 cluster in *mimulus guttatus* (phrymaceae). *American journal
45 of botany* **99**: 82–91.

46 Lowry, D. B., J. M. Sobel, A. L. Angert, T.-L. Ashman, R. L. Baker,
47 *et al.*, 2019 The case for the continued use of the genus name
48 *mimulus* for all monkeyflowers. *Taxon* **68**: 617–623.

49 Mallet, J., 2007 Hybrid speciation. *Nature* **446**: 279–283.

50 Marques, D. A., J. I. Meier, and O. Seehausen, 2019 A combina-
51 torial view on speciation and adaptive radiation. *Trends in
52 ecology & evolution* .

53 Martins, T. R., J. J. Berg, S. Blinka, M. D. Rausher, and D. A. Baum,
54 2013 Precise spatio-temporal regulation of the anthocyanin
55 biosynthetic pathway leads to petal spot formation in *clarkia
56 gracilis* (onagraceae). *New Phytologist* **197**: 958–969.

57 Martins, T. R., P. Jiang, and M. D. Rausher, 2017 How petals
58 change their spots: cis-regulatory re-wiring in *clarkia* (on-
59 graceae). *New Phytologist* **216**: 510–518.

60 McClintock, B., 1950 The origin and behavior of mutable loci in
61 maize. *Proceedings of the National Academy of Sciences* **36**:
62 344–355.

63 Medel, R., C. Botto-Mahan, and M. Kalin-Arroyo, 2003
64 Pollinator-mediated selection on the nectar guide phenotype
65 in the andean monkey flower, *mimulus luteus*. *Ecology* **84**:
66 1721–1732.

67 Medel, R., A. Valiente, C. Botto-Mahan, G. Carvallo, F. Pérez,
68 *et al.*, 2007 The influence of insects and hummingbirds on the
69 geographical variation of the flower phenotype in *mimulus
70 luteus*. *Ecography* **30**: 812–818.

71 Minervini, M., H. Scharr, and S. A. Tsafaris, 2015 Image analysis:
72 the new bottleneck in plant phenotyping [applications corner].
73 *IEEE signal processing magazine* **32**: 126–131.

74 Nakano, A., H. Ikeno, T. Kimura, H. Sakamoto, M. Dannoura,
75 *et al.*, 2012 Automated analysis of fine-root dynamics using
76 a series of digital images. *Journal of Plant Nutrition and Soil
77 Science* **175**: 775–783.

78 Neher, R. A. and O. Hallatschek, 2013 Genealogies of rapidly
79 adapting populations. *Proceedings of the National Academy
80 of Sciences* **110**: 437–442.

81 Niu, Y., Z. Chen, M. Stevens, and H. Sun, 2017 Divergence in
82 cryptic leaf colour provides local camouflage in an alpine
83 plant. *Proceedings of the Royal Society B: Biological Sciences*
84 **284**: 20171654.

85 Orr, H. A., 1998 The population genetics of adaptation: the dis-
86 tribution of factors fixed during adaptive evolution. *Evolution*
87 **52**: 935–949.

88 Petroni, K. and C. Tonelli, 2011 Recent advances on the regula-
89 tion of anthocyanin synthesis in reproductive organs. *Plant
90 science* **181**: 219–229.

91 Rieseberg, L. H., 1997 Hybrid origins of plant species. *Annual
92 review of Ecology and Systematics* **28**: 359–389.

93 Rieseberg, L. H., O. Raymond, D. M. Rosenthal, Z. Lai, K. Liv-
94 ingstone, *et al.*, 2003 Major ecological transitions in wild sun-
95 flowers facilitated by hybridization. *Science* **301**: 1211–1216.

96 Sapir, Y., M. K. Gallagher, and E. Senden, 2021 What maintains
97 flower colour variation within populations? *Trends in Ecology
98 & Evolution* .

99 Schiedt, K., 1995 Isolation and analysis. *Carotenoids* **1**: 81–108.

100 Schwinn, K., J. Venail, Y. Shang, S. Mackay, V. Alm, *et al.*, 2006 A
101 small family of myb-regulatory genes controls floral pigmen-
102 tation intensity and patterning in the genus *antirrhinum*. *The
103 Plant Cell* **18**: 831–851.

104 Seehausen, O., 2004 Hybridization and adaptive radiation.
105 *Trends in ecology & evolution* **19**: 198–207.

106 Sobel, J. M. and M. A. Streisfeld, 2013 Flower color as a model
107 system for studies of plant evo-devo. *Frontiers in plant science*
108 **4**: 321.

109 Stanton, K., C. M. Valentín, M. E. Wijnen, S. Stutstman, J. J.
110 Palacios, *et al.*, 2016 Absence of postmating barriers between a
111 selfing vs. outcrossing chilean *mimulus* species pair. *American
112 journal of botany* **103**: 1030–1040.

113 Streisfeld, M. A. and M. D. Rausher, 2011 Population genetics,
114 pleiotropy, and the preferential fixation of mutations during
115 adaptive evolution. *Evolution: International Journal of Or-
116 ganic Evolution* **65**: 629–642.

117 Streisfeld, M. A., W. N. Young, and J. M. Sobel, 2013 Diver-
118 gent selection drives genetic differentiation in an r2r3-myb
119 transcription factor that contributes to incipient speciation in
120 *mimulus aurantiacus*. *PLoS genetics* **9**: e1003385.

121 Suarez-Gonzalez, A., C. Lexer, and Q. C. Cronk, 2018 Adap-
122 tive introgression: a plant perspective. *Biology letters* **14**:
123 20170688.

124 Takahashi, Y., K.-i. Takakura, and M. Kawata, 2015 Flower color

1 polymorphism maintained by overdominant selection in sisy-
2 rinchium sp. *Journal of plant research* **128**: 933–939.

3 Trivellini, A., B. Gordillo, F. J. Rodriguez-Pulido, E. Borghesi,
4 A. Ferrante, *et al.*, 2014 Effect of salt stress in the regulation of
5 anthocyanins and color of hibiscus flowers by digital image
6 analysis. *Journal of agricultural and food chemistry* **62**: 6966–
7 6974.

8 Trunschke, J., K. Lunau, G. H. Pyke, Z.-X. Ren, and H. Wang,
9 2021 Flower color evolution and the evidence of pollinator-
10 mediated selection. *Frontiers in plant science* **12**.

11 Vallejo-Marin, M., 2012 *Mimulus peregrinus* (phrymaceae): A
12 new british allopolyploid species. *PhytoKeys* p. 1.

13 Von Bohlen, C., 1995 El género *mimulus* l.(scrophulariaceae) en
14 chile. *Gayana Botanica* **52**: 7–28.

15 Watson, J. M. and C. Von Bohlen, 2000 Plate 400. *mimulus* na-
16 iandinus. *Curtis's Botanical Magazine* **17**: 195–201.

17 Weight, C., D. Parnham, and R. Waites, 2008 Technical advance:
18 Leafanalyser: a computational method for rapid and large-
19 scale analyses of leaf shape variation. *The Plant Journal* **53**:
20 578–586.

21 Wu, C., D. Lowry, A. Cooley, K. Wright, Y. Lee, *et al.*, 2008
22 *Mimulus* is an emerging model system for the integration
23 of ecological and genomic studies. *Heredity* **100**: 220.

24 Xu, W., C. Dubos, and L. Lepiniec, 2015 Transcriptional control of
25 flavonoid biosynthesis by myb-bhlh-wdr complexes. *Trends*
26 in plant science **20**: 176–185.

27 Yamagishi, M., 2013 How genes paint lily flowers: regulation of
28 colouration and pigmentation patterning. *Scientia Horticul-
29 turae* **163**: 27–36.

30 Yamagishi, M., S. Toda, and K. Tasaki, 2014 The novel allele of
31 the lh myb 12 gene is involved in splatter-type spot formation
32 on the flower tepals of asiatic hybrid lilies (*lilium* spp.). *New*
33 *Phytologist* **201**: 1009–1020.

34 Yamamoto, C., S. Kishimoto, and A. Ohmiya, 2010 Carotenoid
35 composition and carotenogenic gene expression during ipo-
36 moea petal development. *Journal of experimental botany* **61**:
37 709–719.

38 Yoshioka, Y., H. Iwata, R. Ohsawa, and S. Ninomiya, 2004 Quan-
39 titative evaluation of flower colour pattern by image analysis
40 and principal component analysis of *primula sieboldii* e. mor-
41 ren. *Euphytica* **139**: 179–186.

42 Yuan, Y.-W., 2019 Monkeyflowers (*mimulus*): new model for
43 plant developmental genetics and evo-devo. *New Phytologist*
44 **222**: 694–700.

45 Yuan, Y.-W., J. M. Sagawa, L. Frost, J. P. Vela, and H. D. Brad-
46 shaw Jr, 2014 Transcriptional control of floral anthocyanin
47 pigmentation in monkeyflowers (*Mimulus*). *New Phytologist*
48 **204**: 1013–1027.

49 Zheng, X., K. Om, K. A. Stanton, D. Thomas, P. A. Cheng, *et al.*,
50 2021 The regulatory network for petal anthocyanin pigmen-
51 tation is shaped by the myb5a/negan transcription factor in
52 *mimulus*. *Genetics* **217**: iyaa036.

53 Zhou, X., R. McQuinn, Z. Fei, A.-M. A. WOLTERS, J. Van Eck,
54 *et al.*, 2011 Regulatory control of high levels of carotenoid
55 accumulation in potato tubers. *Plant, Cell & Environment* **34**:
56 1020–1030.

57 Zufall, R. A. and M. Rausher, 2003 The genetic basis of a flower
58 color polymorphism in the common morning glory (*ipomoea*
59 *purpurea*). *Journal of Heredity* **94**: 442–448.