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Abstract Understanding cortical function requires studying multiple scales: molecular, cellular,16

circuit and behavior. We developed a biophysically detailed multiscale model of mouse primary17

motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities,18

spatial distributions, morphologies, biophysics, connectivity and dendritic synapse locations were19

tightly constrained by experimental data. The model includes long-range inputs from 7 thalamic20

and cortical regions, as well as noradrenergic inputs from locus coeruleus. Connectivity depended21

on cell class and cortical depth at sublaminar resolution. The model accurately predicted in vivo22

layer- and cell type-specific responses (firing rates and LFP) associated with behavioral states23

(quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor24

blocking and thalamus inactivation). It also enabled evaluation of multiple mechanistic25

hypotheses underlying the observed activity. This quantitative theoretical framework can be used26

to integrate and interpret M1 experimental data and sheds light on the cell type-specific27

multiscale dynamics associated with a range of experimental conditions and behaviors.28

29

Introduction30

Understanding cortical function requires studying its components and interactions at different31

scales: molecular, cellular, circuit, system and behavior. Biophysically detailed modeling provides32

a tool to integrate, organize and interpret experimental data at multiple scales and translate iso-33

lated knowledge into an understanding of brain function. Previous approaches have emphasized34

structural aspects based on layers and the broad classification of excitatory and inhibitory neurons35

(Potjans and Diesmann, 2014; Douglas et al., 1989). Modern anatomical, physiological and genetic36

techniques allow an unprecedented level of detail to be brought to the analysis and understanding37

of cortical microcircuits (Luo et al., 2018; Adesnik and Naka, 2018). In particular, several neuron38

classes can now be identified based on distinct gene expression, morphology, physiology and con-39

nectivity. Cortical excitatory neurons are broadly classified by their axonal projection patterns into40

intratelencephalic (IT), pyramidal-tract (PT) and corticothalamic (CT) types (Greig et al., 2013;Harris41
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and Shepherd, 2015; Zeng and Sanes, 2017). Recent research has also revealed that connections42

are cell-type and location specific, often with connectivity differences at different cortical depths43

within layers (Anderson et al., 2010; Brown and Hestrin, 2009;Morishima and Kawaguchi, 2006).44

Primarymotor cortex (M1) plays a central role inmotor control, but to dateM1 circuits have only45

been modeled to a limited extent (Chadderdon et al., 2014; Neymotin et al., 2016b; Heinzle et al.,46

2007; Morita and Kawaguchi, 2015; Hoshino et al., 2019). We and others have extensively stud-47

ied mouse M1 circuits experimentally, and characterized cell subclasses and many cell-type and48

sublaminar-specific local and long-range connections (Papale and Hooks, 2017; Shepherd, 2009;49

Kaneko, 2013;Morishima et al., 2011). Amajor focus of these anatomical and physiological studies50

has been the distinct cell classes of layer 5 (L5): L5B PT cells – the source of the corticospinal tract,51

and other pyramidal tract projections, and L5 IT cells which project bilaterally to cortex and stria-52

tum. Morphology and physiology differ across the two types. L5 IT cells are thin-tufted and show53

spike frequency adaptation. L5B PT cells are thick-tufted and show little spike frequency adapta-54

tion, but strong sag potentials. Their spiking dynamics in vivo have also been shown to differ (Saiki55

et al., 2018). In terms of their synaptic interconnectivity these types exhibit a strong asymmetry:56

connections go from IT to PT cells, but not in the opposite direction (Kiritani et al., 2012;Morishima57

and Kawaguchi, 2006). The strength of their local excitatory input connections is also dependent58

on PT position within layer 5B, with cells in the upper sublayer receiving the strongest input from59

layer 2/3 (Anderson et al., 2010; Hooks et al., 2013; Yu et al., 2008; Weiler et al., 2008). These60

and several other highly specific local and long-range wiring patterns are likely to have profound61

consequences in terms of understanding cortical dynamics, information processing, function and62

behavior (Li et al., 2015b).63

A key unanswered question in the motor system, and more generally in neural systems (Mott64

et al., 2018;Hsu et al., 2020;Getting, 1989), is how cell and circuit dynamics relate to behavior. Both65

IT and PT cell types play a role in motor planning and execution and both have been implicated66

in motor-related diseases (Shepherd, 2013). We have previously shown that the hyperpolarization-67

activated current (𝐼h), a target of noradrenergic neuromodulation, is highly expressed in PT cells68

and affects its synaptic integration and electrophysiological properties (Sheets et al., 2011; BICCN,69

2021). In vivo studies also reveal noradrenergic neuromodulatory inputs from locus coeruleus70

(LC) and long-range inputs from thalamus and cortex causally influence M1 activity and behav-71

ioral states (Boychuk et al., 2017; Schiemann et al., 2015; Guo et al., 2021). Specifically, blocking72

noradrenergic input to M1 impaired motor coordination (Schiemann et al., 2015), and disrupting73

the cerebellar-recipient motor thalamus projections to M1 can impair dexterity (Guo et al., 2021)74

or block movement initiation (Dacre et al., 2021). These modulatory and long-range projections75

have been shown to be cell type-specific, and characterized in ex vivo slice experiments (Sheets76

et al., 2011; Yamawaki and Shepherd, 2015; Suter and Shepherd, 2015), but how these relate to77

in vivo activity, including the exact cellular and circuit mechanisms underpinning behavioral state-78

dependent M1 activity, remains largely unknown. A biologically realistic model of M1 can be used79

to address this current knowledge gap by generating hypotheses and predictions relating circuit80

dynamics to function and behavior.81

Previousmodels ofM1 circuits are scarce and lack the detail across scales requied to adequately82

address these questions. The M1 models by Morita and Kawaguchi (2015); Hoshino et al. (2019)83

only included a single layer with two cell types. Heinzle et al. (2007) proposed a microcircuit model84

of the frontal eye field with 4 layers and multiple cell types. However, all of these circuit mod-85

els included highly simplified neuron models with limited biophysical detail and no morphological86

detail. Our previous work modeling M1 (Chadderdon et al., 2014; Neymotin et al., 2016b) incorpo-87

rated neuron models with 5-compartment morphologies and multiple ionic channels, as well as88

several cell types distributed across 5 cortical layers and connected based on layer and cell type.89

However, it lacked neuron models tuned to cell type-specific electrophysiological data, realistic90

neuronal densities, noradrenergic and long-range inputs, and certain connectivity details, includ-91

ing depth-dependence and subcellular distribution of synapses.92
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We have now developed a multiscale model of mouse M1 incorporating recent experimen-93

tal data and reproducing in vivo layer- and cell type-specific behavior-dependent responses. The94

model simulates a cylindric cortical volumewith over 10 thousandneurons and 30million synapses.95

We attempted, as far as possible, to base parameters on data obtained from a single species, strain96

and age range, and from our own experimental work. However, these data are necessarily incom-97

plete, and we have therefore combined additional data from multiple other sources. We focused98

particularly on the role of L5 excitatory neurons, utilizing detailed models of layer 5 IT and PT99

neurons with full dendritic morphologies of 700+ compartments based on anatomical cell recon-100

struction and ion channel distributions optimized to in vitro experimental measures. The task of101

integrating experimental data into the model required us to develop several novel methodological102

techniques for network simulation design, including: 1) specifying connections as a function of nor-103

malized cortical depth (NCD) – from pia to white matter – instead of by layer designations, with a104

100-150 𝜇𝑚 resolution; 2) identifying and including specific dendritic distributions associated with105

particular inputs using features extracted from subcellular Channelrhodopsin-2-Assisted Circuit106

Mapping (sCRACM) studies (Hooks et al., 2013; Suter and Shepherd, 2015); and 3) utilizing a high-107

level declarative modeling tool, NetPyNE, to develop, simulate, optimize, analyze and visualize the108

model (Dura-Bernal et al., 2019).109

OurM1model exhibited neuronal firing rates and oscillations that depended on cell class, layer110

and sublaminar location, and behavioral state, consistent with in vivoM1 data. Behavioral changes111

(quiet wakefulness vs movement) were modeled by modifying noradrenergic inputs from LC and112

motor thalamus inputs. Our cortical model also captured the effects of experimental manipula-113

tions, including blocking of norardrenergic receptors and motor thalamus inactivation. The model114

provided different multiscale mechanistic hypotheses for the observed behavioral deficits, linking115

noradrenaline blockade to cell type specific changes in 𝐼h and/or potassium conductances and116

the subsequent changes in neuronal firing patterns. The simulations generated experimentally-117

testable quantitative predictions about layer- and cell type-specific responses for the different be-118

havioral states and experimental manipulations. Two key model predictions were that stronger119

thalamic and noradrenergic inputs are required to activate the deeper (associated with motor exe-120

cution) vs superficial L5B PT neurons, and that L5 interneurons support switching between PT and121

IT output throughmutual disynaptic inhibition. Simulations also shed new light onM1 circuitry and122

biophysical mechanisms associated with dynamic aspects of behavior-related activity, including PT123

cells predominantly mediating an increase in gamma physiological oscillations recorded in L5 lo-124

cal field potentials during movement. We are making our model freely available as a community125

resource so that others can update and extend it, incorporating new data such as that from the126

M1multimodal cell census and atlas recently released by the BRAIN Initiative Cell Census Network127

(BICCN, 2021).128

Results129

Overview of model development and simulations130

We implemented a biophysically-realistic model of the mouse M1microcircuit representing a cylin-131

drical volume of 300 𝜇𝑚 diameter (Fig. 1). The model included over 10,000 neurons with 35 million132

synapses. Cell properties, locations, and local and long-range connectivity were largely derived133

from a coherent set of experimental data. Available experimental data was particularly detailed134

for two L5 populations that were the focus of this study: pyramidal tract (PT) corticospinal cells135

and intratelencephalic (IT) corticostriatal cells. One innovative feature in the network presented136

here was the inclusion of a layer 4 for motor cortex, consistent with its recent characterization (Ya-137

mawaki et al., 2015; Bopp et al., 2017; Barbas and García-Cabezas, 2015; BICCN, 2021). The model138

was developed using the NetPyNE (Dura-Bernal et al., 2019) modeling tool and the NEURON simu-139

lation engine (Carnevale and Hines, 2006). Over 20,000 simulations were required to progressively140

construct and improve the model. Simulations required over 8 million high performance comput-141
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Figure 1. M1 microcircuit model: 3D visualization, connectivity, dimensions, neuronal densities,
classes and morphologies. A. left panel: Epifluorescence image of coronal brain slice of mouse showing M1
and S1 regions, with approximate anatomical location and area of simulated cylindrical tissue (adapted from
(Suter et al., 2013)). middle and right panels>: 3D visualization of M1 network, showing location and stylized
morphologies of 20% of excitatory IT (red), PT (blue) and CT (green) cells, and snapshot of simulated activity
with spiking neurons in brighter color (visualization by nicolasantille.com). B. Cell classes modeled. IT5A and
PT5B neurons are simulated in full morphological reconstructions. Other excitatory types and inhibitory
neurons use simplified models with 2-6 compartments. All models are conductance-based with multiple ionic
channels tuned to reproduce the cell’s electrophysiology. C. Dimensions of simulated M1 cylindrical volume
with overall cell density per layer designation (left), and cell types and populations simulated (right). D.
Schematic of main local and long-range excitatory connections (thin line: medium; thick line: strong). Note
the unidirectional projections from ITs to PTs, with a particularly strong projection arising from L2/3. (IT:
intratelencephalic cells – corticostriatal; PT: pyramidal-tract cells – corticospinal; CT corticothalamic cells. PO:
posterior nucleus of thalamus; VL: ventrolateral thalamus; S1: primary somatosensory; S2: secondary
somatosensory; cM1: contralateral M1; M2: secondary motor; OC: orbital cortex; PV: parvalbumin basket
cells, SOM: somatostatin interneurons; number of cells in each population shown in brackets; left shows
L1–L6 boundaries with normalized cortical depth – NCD from 0 = pia to 1 = white matter.)
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ing (HPC) cluster core-hours to arrive at the results shown, primarily during model building. One142

second of simulation (model) time required approximately 96 core-hours of HPC time. We em-143

ployed a grid search on underconstrained connectivity parameters – e.g. inhibitory to excitatory144

weight ratios – to identify simulations that produced physiologically realistic firing patterns across145

populations.146

As expected from results in other systems, there was no single “right” model that produced147

these realistic firing patterns but rather a family ofmodels (degenerate parameterization) thatwere148

within the parameter ranges identified by experiment (Golowasch et al., 2002; Prinz and Marder,149

2003; Edelman and Gally, 2001; Ratté and Prescott, 2016). From these, we selected one basemodel,150

representing a single parameter set, to illustrate in this paper. This base model was tested for151

robustness by changing randomization settings to provide a model set, with analysis of raw and152

average data from 25 simulations: 5 random synaptic input seeds × 5 random connectivity seeds153

(based on connectivity density). This can be considered analogous to testing multiple trials and154

subjects in an experimental setup. The full model set showed qualitatively similar results with low155

variance in bulk measures (population rates, oscillation frequencies) for changes in randomization156

settings.157

We used the base model and model set to characterize firing and local field potential (LFP)158

patterns in response to different levels of long-range inputs and noradrenergic (NA) neuromodu-159

lation associated with different behavioral states and experimental manipulations of mouse M1 in160

vivo (Schiemann et al., 2015) (see Table 1). Long-range inputs originated from seven regions: pos-161

terior nucleus of thalamus (PO), ventrolateral thalamus (VL), primary somatosensory cortex (S1),162

secondary somatosensory cortex (S2), contralateral M1 (cM1); secondary motor cortex (M2),and163

orbital cortex (OC). In the context of this model, VL will be equivalent to the motor thalamus (MTh),164

for consistencywith the experimental study (Schiemann et al., 2015). The two behavioral states cor-165

responded to quiet wakefulness and self-paced, voluntarymovement. Each of these states was sim-166

ulated under three different experimental manipulations mimicking those previously performed167

in vivo (Schiemann et al., 2015): control, motor thalamus inactivation (MTh inactivation) and block-168

ing input from locus coeruleus (LC) via noradrenergic receptor antagonists (NA-R block). The effect169

of changes in noradrenergic neuromodulation, driven by inputs from LC, were simulated by alter-170

ing 𝐼h conductance in PT cells (see Table 1 and Methods), consistent with in vitro findings (Sheets171

et al., 2011). Results are presented both in terms of cell class and cell population. We focused on172

three excitatory classes: intratelencephalic (IT), pyramidal-tract (PT), corticothalamic (CT); and two173

inhibitory classes: parvalbumin-expressing fast-spiking basket cells (PV), somatostatin-expressing174

low-threshold spiking cells (SOM). Cell populations are defined by both class and layer (e.g. IT5A175

indicates class IT in layer 5A; CT6 is class CT in layer 6). We use our results to explain and predict176

the response ofM1 circuitry under the different behavioral states and experimental manipulations177

simulated.178

Experimental manipulation Behavioral State MTh input NA input (PT 𝐼h)
Control Quiet Low (0-2.5Hz) Low NA (75% 𝐼h)
Control Movement High (0-10Hz) High NA (25% 𝐼h)
MTh inactivation Quiet Very low (0-0.01Hz) Low NA (75% 𝐼h)
MTh inactivation Movement Very low (0-0.1Hz) High NA (25% 𝐼h)
NA-R block Quiet Low (0-2.5Hz) Very low (100% 𝐼h)
NA-R block Movement High (0-10Hz) Very low (100% 𝐼h)

Table 1. Motor thalamus (MTh) input and noradrenergic (NA) input associated with the different
experimental manipulations and behavioral states simulated in the M1 model. NA input is modeled by
modifying the conductance of PT 𝐼h.
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M1 firing dynamics during quiet wakefulness (spontaneous activity)179

Figure 2. M1 cell type and layer-specific firing dynamics during quiet wakefulness state and control
condition (spontaneous activity) The quiet state was simulated by driving the network with background
activity (≤ 5Hz) from all long-range inputs, and medium level 𝐼h (75%) in PT cells (low NA modulation). A. Top:
Raster plot of mid-simulation activity (2 s of base model simulation shown; cells grouped by population and
ordered by cortical depth within each population). Bottom: Example model (blue) and experiment (black)
PT5B voltage traces. B. Firing rates statistics (boxplots) for different cell types and layers in the model set
(color bars) and experiment (gray bars).

We characterized in vivo spontaneous activity in the base model. This was simulated based180

on expected background drive of ≤5Hz from all long-range inputs, and low NA input resulting in181

medium level 𝐼h (75%) in PT cells (Fig. 2) (Yamashita et al., 2013; Hirata and Castro-Alamancos,182

2006). These properties were consistent with the quiet wakefulness state and control conditions183

as recorded by whole-cell patch-clamp electrophysiology in awake mice in vivo (Schiemann et al.,184

2015). We validated the M1 model cell type- and layer-specific firing rates against available in vivo185

experimental data from mouse motor cortex (Schiemann et al., 2015; Zagha et al., 2015; Li et al.,186

2016; Estebanez et al., 2018; Economo et al., 2018) (Fig. 2𝐵). All populationmean andmedian firing187

rates ranged between 0.1 and 10Hz, and maximum rates (excluding outliers) were below 35Hz,188

for both model and experiment. More specifically, we compared L2/3 IT (median±IQRmodel=1.8±189

4.0Hz, exp=0.3 ± 0.7Hz), L5B IT (model=6.5 ± 8.8Hz, exp=3.2 ± 2.5Hz), L5B PT (model=1.8 ± 4.8Hz,190

exp=4.6 ± 4.6Hz). Since certain studies did not distinguish between cell types or sublayers we also191

compared L5B IT/PT (model=4.8±8.5Hz, exp=5.1±6.0Hz) and L5 IT/PT (model=5.5±9.2Hz, exp1=1.7±192

4.0Hz, exp2=7.6 ± 8.5Hz, exp3=2.4 ± 4.7Hz). Significant statistical differences among population193

firing rates from different studies are expected, and therefore these were also expected between194

model and experiment. An example is L5 IT/PT where two experimental datasets were statistically195

significantly different (exp1=1.7±4.0Hz, exp2=7.6±8.5Hz; 𝑝 = 6.2e−15, rank-sum test), whereas this196

was not the case when comparing the L5 IT/PTmodel to experiment (model=5.5±9.2Hz, exp2=7.6±197
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8.5Hz 𝑝 = 0.43, rank-sum test). Overall, these results indicate that the range of firing rates and198

variability in the model was consistent with that of in vivo mouse data.199

Activity patterns were not only dependent on cell class and cortical-layer location, but also sub-200

laminar location. This supports the importance of identifying connectivity and analyzing activity by201

normalized cortical depth (NCD) in addition to layer. For example, L5B PT firing rates decreased202

with cortical depth (Fig. 2𝐴), consistent with depth-weighted targeting from L2/3 IT projections (An-203

derson et al., 2010;Weiler et al., 2008). This pattern of firing was consistent across network varia-204

tions with different wiring and input randomization seeds. L5A/B IT exhibited similar cortical-depth205

dependent activity. L2/3 and L4 IT populations showed overall lower rates than L5 IT, consistent206

with weaker excitatory projections onto these populations from local M1 (Weiler et al., 2008; Ya-207

mawaki et al., 2015), and from long-range inputs (Mao et al., 2011; Suter and Shepherd, 2015; Ya-208

mawaki et al., 2015). In particular, the main source of L4 IT input was thalamic, in correspondence209

with the well-described pattern in sensory cortex (Yamawaki et al., 2015). Despite the weaker re-210

sponse, L2/3 IT showed slow oscillatory activity around delta frequency. Within L6, superficial cells211

of IT and CT populations were more active than deeper ones. This was due to stronger intralam-212

inar, L5B IT (Weiler et al., 2008; Yamawaki and Shepherd, 2015) and long-range inputs, primarily213

from orbital and contralateral motor cortices (for more details on model connectivity see Meth-214

ods Fig. 8) (Hooks et al., 2013). Weaker local projections onto L6 CT compared to L6 IT resulted in215

firing rate differences between CT and IT. Although the model anatomical connectivity was empir-216

ically constrained, population responses are not fully defined by the anatomy, but emerge from217

the complex dynamical interplay across different excitatory and inhibitory populations.218

M1 firing dynamics during movement219

The model reproduced experimental cell type-specific dynamics associated with movement. The220

movement state was simulated by increasing long-range inputs from ventrolateral thalamus (VL;221

here equivalent to motor thalamus, MTh) to 0-10Hz (uniform distribution), and reducing 𝐼h con-222

ductance to 25% in PT cells, to simulate high NA neuromodulatory inputs from LC. The remaining223

6 long-range inputs (PO, S1, S2, cM1, M2, OC) continued to provide background drive (≤ 5Hz). This224

resulted in a large increase in L5B PT activity and the development of a strong gamma oscillation225

(observable in the spiking raster activity Fig. 3A). PT5Blower neurons, which were largely silent during226

the quiet state, now exhibited similar activity to PT5Bupper . This is consistent with the involvement227

of PT, and particularly PT5Blower (Economo et al., 2018), in motor control. During movement, the228

activity of L2/3 IT and L5 IT decreased moderately, whereas L4 IT, L6 IT and L6 CT firing rates re-229

mained similar. There was a transition period from quiet to movement that lasted approximately230

500ms, during which there was a peak in the activity of L5 IT and PT5Bupper , consistent with efferent231

motor thalamic projections. This transitory activity peaks could also be seen in most of the remain-232

ing model set simulations. Although IT2/3 exhibited a similar transition peak in the base model,233

this was not apparent in other model set simulations, suggesting this could have resulted from the234

ongoing L2/3 IT delta oscillations.235

Model firing rate distributions were generally consistent with experimental data across popula-236

tions and behavioral states. We compared the quiet and movement population firing rates of the237

model set against M1 in vivo experimental data (Schiemann et al., 2015) (Fig. 3B). Both model and238

experiment L2/3 IT cells exhibited low firing rates during both quiet (mean±SD model: 1.6 ± 3.9Hz;239

exp: 0.6±0.7Hz) andmovement states (mean±SDmodel: 0.7±2.8Hz; exp: 0.6±1.1Hz). The L5B rates,240

including both IT and PT, were similar in model and experiment and exhibited a similar increase241

from quiet (model 4.1 ± 5.5Hz; exp 5.9 ± 3.9Hz) to movement (model: 6.9 ± 9.7Hz; exp: 8.4 ± 7.5Hz).242

Following the experimental study data analysis and classification of populations (Schiemann et al.,243

2015), we compared rates of cells that exhibited enhanced or suppressed activity from quiet to244

movement. Both L5Benhanced and L5Bsuppressed rates exhibited comparable trends in model and experi-245

ment. The quiet state L5Benhanced mean±SD rates were higher in the model than experiment (model:246

1.5±3.6Hz, exp: 5.1±4.0Hz) but increased to a similar rate during movement (model: 13.2±11.1Hz,247
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Figure 3. M1 cell-type and layer-specific firing dynamics during quiet and movement states under the
control condition. The movement state was simulated by driving the network with increased activity
(0-10Hz) from motor thalamus, background activity (≤5Hz) from the 6 remaining long-range inputs, and
reducing 𝐼h to 25% in PT cells (mimicking high NA modulation). A. Top: Raster plot of activity transitioning
from quiet (1s) to movement (4s) to quiet (1s) states (6s of base model simulation shown; cells grouped by
population and ordered by cortical depth within each population). Bottom: Example model PT5B (blue) and
experiment (black) voltage traces. B. Firing rate (mean±SD) in different cell populations for model set (blue)
and experiment (orange). Model set includes cell rates of all 25 simulations; the mean rates of each individual
simulation shown as thin blue lines. Statistics were computed across 4 s for each state.

8 of 33

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.02.03.479040doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.03.479040
http://creativecommons.org/licenses/by-nc-nd/4.0/


exp: 11.3 ± 7.7Hz). L5Bsuppressed model and experiment rates exhibited a similar decrease from quiet248

(model: 7.5 ± 5.7Hz, exp: 5.0 ± 4.2Hz) to movement states (model: 2.0 ± 3.1, exp: 2.3 ± 2.7Hz). L5B IT249

quietmean±SD rates were higher formodel vs experiment (model: 6.7±5.9Hz, exp: 3.5±2.3Hz) but250

also decreased to a similar level during movement (model: 1.9±3.3Hz, exp: 2.4±2.3Hz). Model L5B251

PT rates increased sharply from quiet (1.5±3.6Hz) to movement (11.9±11.3Hz). We did not include252

experiment PT rates in Fig. 3B given their small sample size (N=3) and high variability. However,253

we note that two of the experiment PT cells showed a decrease from quiet to move (16.0Hz to254

5.6Hz and 4.7Hz to 0.6Hz), and one showed a similar sharp increase to that of the model (3.5Hz255

to 13.2Hz). The robustness of the model was evidenced by the small variability across the mean256

firing rates of the 25 simulations in the model set, each with different randomization seeds (see257

thin blue lines in Fig. 3B).258

M1 layer 5 LFP oscillations depend on behavioral state259

In vivo studies in mouse vibrissal M1 have shown a decrease of L5 LFP slow oscillations (3-5Hz)260

and an increase in gamma oscillations (30-50Hz) during active whisking (Zagha et al., 2013). Here,261

we investigated whether similar changes were observed in the L5 LFP of mouse M1 during the self-262

paced, voluntary movement task (Schiemann et al., 2015), and if those changes were captured263

by our simulated M1 LFP (Fig. 4). Importantly, the model was not tuned to reproduce the experi-264

ment LFP during either quiet ormovement states. Despite this, LFP amplitudes were overall similar265

in model and experiment (order of 500 𝜇𝑉 ). In both experiment and model, the L5 LFP showed266

weaker slowoscillations (delta) and stronger fast oscillations (gamma) duringmovement compared267

to quiet behavioral states, consistent with the previously reported experiments (Zagha et al., 2013).268

This is illustrated in the raw LFP signal and spectrogram examples for experiment and model (Fig-269

ure 4A for quiet and 4B for movement). Model L5 LFP was averaged across the signals recorded270

from simulated extracellular electrodes at 3 depths within L5: 600𝜇m (L5A), 800𝜇m (upper L5B)271

and 1000𝜇m (lower L5B). The experimental LFP dataset was recorded in vivo from L5 extracellular272

electrodes and preprocessed to remove outliers and potential artifacts (see Methods).273

Figure 4. M1 layer 5 LFP oscillations during the quiet and movement states. Example experiment and
model raw LFP signals (top) and spectrograms (middle) during the quiet (A) and movement (B) states. C.
Comparison of experiment and model normalized power spectral density (PSD) power across 5 frequency
bands during quiet and movement states. D. Comparison of experiment and model changes in normalized
power spectral density (PSD) power across 5 frequency bands during quiet and movement states .

The model reproduced behavioral-dependent differences across different frequency bands of274

M1 LFP oscillations. To quantify these differences we calculated the LFP normalized power spec-275

tral density (PSD) across the major frequency bands for the experimental and modeling datasets276
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(Fig. 4C). To enable comparison, we segmented the experimental data in 4-second samples, match-277

ing the duration of the model dataset samples. Both experiment and model datasets exhibited278

stronger LFP power at the lower end of the spectrum (delta, theta and alpha bands) during the279

quiet state, and stronger high-frequency (gamma) LFP power during movement. More specifically,280

delta (0-4Hz) power in the quiet state was high in both model vs experiment (median±IQR: model:281

0.39±0.16; exp: 0.21±0.11) but decreased to a similar level duringmovement (model: 0.06±0.09; exp:282

0.06 + −0.04). Theta (4-8Hz) power was overall higher in experiments compared to the model, but283

in both cases showed higher amplitude in the quiet vs movement states . A similar pattern was ob-284

served for the LFP alpha (8-13Hz) power (model: 0.02±0.01 vs 0.01±0.02; exp:0.12±0.05 vs 0.07±0.03).285

Beta power (13-30Hz) remained largely stable from quiet to movement states, and exhibited very286

similar values for experiment and model (model: 0.18 ± 0.08 and 0.18 ± 0.08; exp: 0.20 ± 0.07 and287

0.18 ± 0.03). Gamma power (30-80Hz) was stronger during movement for both experiment and288

model (model: 0.36 ± 0.15 and 0.72 ± 0.14; exp: 0.23 ± 0.11 and 0.58 ± 0.11). The increase in PT av-289

erage firing rates and oscillatory activity depicted in Fig. 3 suggest PT neurons are predominantly290

responsible for the increase in L5 gamma LFP power.291

The model also reproduced the main changes in LFP power from quiet to movement states292

when looking at paired samples occurring within the same recording. In the previous comparison,293

the experimental dataset included a larger number of 4-second samples for the quiet (N=3890)294

than movement (N=2840) states. These were obtained from 30 recordings from different animals,295

trials and recording sites within L5. In order to more directly quantify the change in LFP power296

from quiet to movement, we selected the subset of paired 4-second quiet andmovement samples297

that occurred consecutively within the same recording. We then calculated the change in normal-298

ized LFP PSD for the resulting 160 pairs of consecutive quiet and movement samples (Fig. 4D).299

Both model and experiment showed results consistent with the previous analysis: from quiet to300

movement there was 1) a strong decrease of delta frequency power during movement (model:301

−0.32±0.19; exp: −0.16±0.14); 2) small changes in theta, alpha and beta power; and 3) large increase302

in gamma power (model: 0.39 ± 0.18; exp: 0.38 ± 0.08). These results provide further validation that303

the model is capturing behavior-related oscillatory dynamics observed in mouse M1 in vivo.304

M1 dynamics during motor thalamus inactivation305

To gain insights into the known role of thalamic inputs in regulating M1 output (Guo et al., 2021;306

Dacre et al., 2021) we simulated an experimentalmanipulation described in our in vivo study (Schie-307

mann et al., 2015), consisting of blocking thalamic input toM1by local infusion of the𝐺𝐴𝐵𝐴𝐴 recep-308

tor agonist muscimol into the VL/VA complex. Our computational model captured several features309

of inactivating motor thalamus (MTh) inputs to M1. The MTh inactivation condition was simulated310

by removing the VL input. The other 6 long-range background inputs (PO, cM1, M2, S1, S2, OC) re-311

mained. Under this condition, the change from quiet to movement states only involved reducing312

and reducing 𝐼h conductance from 75% to 25% in PT cells, simulating the high NA neuromodulatory313

inputs from LC. The decrease in movement-associated L5B activity (control: 6.9 ± 9.7Hz, MTh inact:314

4.00±5.7Hz) afterMTh inactivation (Fig. 5A,B) was consistent with that seen experimentally (control:315

8.4±7.5Hz, MTh inact: 2.2±4.0Hz). Themodel also captured the strong reduction in themovement-316

associated L5Benhanced population response following MTh inactivation (model control: 13.3±11.1Hz,317

MTh inact: 6.3 ± 7.1Hz; exp control: 11.3 ± 7.7, MTh inact: 4.2 ± 4.9). The decrease in the model L5B318

rates was caused by a strong reduction of PT rates (control: 11.9 ± 11.3Hz, MTh inact: 2.9 ± 6.0Hz).319

MTh inactivation resulted in a particularly strong reduction of the movement-associated PT5Blower320

population, which was practically silenced.321

However, results suggested that the model was not adequately capturing some effects of MTh322

inactivation on M1 L5B, particularly during the quiet state. Specifically, MTh inactivation lead to323

a reduction of quiet state L5B (control: 5.1 ± 3.9Hz, MTh inact: 1.1 ± 1.1), as well as L5Bsuppressed,324

which was not observed in our model, where these two populations rates remained similar. This325

pointed to future directions to improve our baseline model by evaluating different hypotheses of326
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Figure 5. M1 cell-type and layer-specific firing dynamics during the quiet and movement states for the
MTh inactivation (A and B) and the NA-R block (C and D) conditions. A. and C. Top: Raster plot of activity
transitioning from quiet (1s) to movement (2s) (3s of base model simulation shown; cells grouped by
population and ordered by cortical depth within each population). Bottom: Example model PT5B (blue) and
experiment (black) voltage traces. B. and D. Firing rate (mean±SD) in different cell populations for the original
model set (blue), modified model (purple) and experiment (orange). The modified model decreased
long-range inputs from cM1 and M2 for the MTh inactivation condition, and increased K+ conductance for the
NA-R block condition. The original model set includes cell rates of all 25 simulations; the mean rates of each
individual simulation shown as thin blue lines. Statistics were computed across 4s for each state.
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the mechanisms and circuitry underlying the experimental observations. Here we evaluated one327

such hypothesis: discrepancies could be due to the lack of interaction between long-range inputs328

in themodel, preventing it from capturing the effects of MTh inactivation on other regions (e.g. M2)329

that in turn provide input to M1 (see Discussion for more details and alternatives). To evaluate this330

hypothesis we modified our original model of MTh inactivation by reducing the activity of other331

cortical long-range inputs (cM1, M2). The modified model better reproduced experimental L5B332

results (see Fig. 5B purple lines) both for the quiet (orig model: 3.9 ± 5.4; modified model for MTh333

inactivation: 2.8±4.8; exp: 1.1±1.1Hz) and movement (original model: 4.0±5.7Hz; modified model334

for MTh inactivation: 3.0 ± 5.0; exp: 2.2 ± 4.0Hz) states, supporting our hypothesis of the circuitry335

involved in the MTh inactivation condition.336

M1 dynamics during noradrenergic (NA) receptor blockade337

We then explored the role of NA neuromodulation in the model, motivated by our in vivo study338

where blocking NA inputs through local infusion of NA-R antagonists resulted in reduced motor339

coordination (Schiemann et al., 2015). Other studies have also shown that NA alters M1 signaling340

duringmovement andmotor behavior (Dacre et al., 2021;Guo et al., 2021; Sheets et al., 2011). The341

model reproduced key aspects of the experimental M1 L5B responses under this noradrenergic342

receptor blockade (NA-R block) condition. NA-R block was initially simulated by resetting 𝐼h from343

the in vivo to the baseline in vitro condition (100% 𝐼h conductance in PT cells), reflecting no NA344

input from LC. Long-range inputs from seven cortical and thalamic regions were unchanged from345

the control condition. Under NA-R block condition, the change from quiet tomovement states only346

involved increasing the firing rate of MTh inputs. NA-R block resulted in decreased L5B activation347

during movement compared to control condition (Fig. 5C,D) (control: 6.9 ± 9.7Hz, NA-R block: 5.6 ±348

6.2Hz), particularly in the PT5B population (control: 11.9 ± 11.3Hz, NA-R block: 5.1 ± 6.3Hz). In vivo349

experiments showed a more pronounced decrease in L5B movement rates (control: 8.4 ± 7.5Hz,350

NA-R block: 1.3 ± 2.2Hz). A similar decrease during NA-R block was observed in the quiet rates of351

L5B and L5B IT, whereas these model populations remained at a similar rate than in the control352

condition.353

These discrepancies between experiment and model suggested that the model was not fully354

capturing some effects of noradrenergic LC inputs. As in the MTh inactivation condition, this pro-355

vided an opportunity to evaluate hypotheses that could improve future versions of the model. We356

therefore tested one possible hypothesis by modifying the model to incorporate an additional357

known effect of NA, namely, themodulation of potassium (𝐾+) conductance (Wang andMcCormick,358

1993; Favero et al., 2012; Schiemann et al., 2015). Increased NA has been shown to reduce 𝐾+359

conductance, hence to simulate this effect during the NA-block condition we increased potassium360

conductance by 50% in all excitatory cell types. The combined effect of increasing 𝐼h and 𝐾+ bet-361

ter captured the experimental responses during the NA-block condition (see Fig. 5D purple lines).362

More specifically, L5B, L5 IT and L5Bsuppressed mean firing rates were lower for both the quiet (L5B363

IT: orig model: 7.0 ± 6.1; modified model for NA-R block: 1.7 ± 2.6; exp: 2.0 ± 0.7Hz) and movement364

(L5B IT: orig model: 6.2 ± 6.0; modified model for NA-R block: 1.1 ± 1.9; exp: 2.4 ± 3.0Hz) responses,365

more closely matching those recorded in vivo. This supports the hypothesis that changes in 𝐾+366

conductance are an important component of LC-mediated NA modulation.367

Motor thalamic and noradrenergic inputs affect L5B dynamics in a cell type and368

sublayer-specific manner369

Our model reproduced the pattern of M1 L5B in vivo responses observed experimentally for dif-370

ferent levels of MTh and NA inputs, and provided insights and predictions of how the different L5B371

subpopulations respond and interact (Fig. 6). The experimental and modeling results reported so372

far suggest thatM1 L5B response depends strongly onMTh andNA inputs. Fig. 6A shows the exper-373

iment (top) andmodel (bottom) L5Bmean firing rates as a function of these two inputs, illustrating374

that MTh and NA inputs moderately increased the L5B response, but both are simultaneously re-375
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Figure 6. Cell type and sublayer-specific effects of MTh and NA input levels on L5B dynamics A.Mean
L5B firing rate response of experiment (top) and model (bottom) to different levels of MTh and NA inputs.
Firing raster plot of full circuit model (4 secs) shown inset for each of the four extreme conditions. Schematic
cylinders illustrate the cell type (IT=red; PT=blue) and layer analyzed. Experimental values derived from the
control, MTh inactivation and NA-R block conditions indicated with small gray circle (remaining values were
extrapolated) Model results include additional simulations covering the full parameter space explored. B.
Same as in A but for different L5B cell types and subpopulations (IT, PT, PT5Bupper and PT5Blower ) each of which
showed highly specific response patterns to MTh and NA. C. Schematic of hypothesized NA inputs and mutual
disynaptic inhibitory pathway mediating the switching between IT- and PT-predominant output modes.

quired to trigger high L5B activity. Both experiment and model exhibit a similar response pattern,376

progressively increasing with MTh and NA, and a similar range of L5B firing rates. We note that377

these experimental results combine and extrapolate data from the control, MTh inactivation and378

NA-R block conditions. The model results corresponds to the original version (without the modi-379

fications proposed in the previous sections) but we included additional simulations covering the380

full parameter space explored, i.e. all combinations of MTh input and NAmodulation (PT 𝐼h) values381

(see Methods for details). To provide a better intuition of the full circuit model dynamics, we also382

included the spiking raster plots for the 4 conditions with minimum andmaximumMTh/NA values383

(see arrows from the 4 corners of the model heatmap in Fig. 6A).384

The model revealed highly specific and distinct activity patterns for the different L5B cell types385

and sublayers (Fig. 6B). Somewhat surprisingly, L5B IT cells exhibited an inverse response pattern386

to NA compared to L5B PT and to the overall L5B response (Fig. 6B), showing decreased firing387

with increases of NA inputs; and a largely constant response to MTh inputs. The NA response is388

consistent with the low levels of 𝐼h expression in L5B IT cells (Sheets et al., 2011). We hypothesize389

the inverse response to NA between L5B IT and PT cells could be caused by mutual inhibition390

mediated via L5 interneurons (see schematic in Fig. 6C). L5B PT cells showed higher peak firing391

rates than IT (12.8Hz vs 7.4Hz) thus dictating the overall L5B response pattern and overshadowing392

L5 IT inverse pattern. Supragranular IT2/3 and IT5Apopulations exhibited generally lowactivity (see393

Fig. 6A raster plots) when PT5B fired strongly (high MTh and NA), consistent with the predominant394

involvement of PT cells in motor execution (Li et al., 2015b). The model also exposed sublaminar395

differences in L5B PT response, with PT5Blower exhibiting more extreme minimum and maximum396

rates than PT5Bupper (0 − 15Hz vs 3 − 10Hz). The PT5Blower activation threshold was also higher than397

for PT5Bupper , i.e. PT5Bupperrequired higher MTh and NA inputs to start responding strongly. This398

suggests PT5Bupper would activate first followed by a delayed response from PT5Blower , as inputs399

associated with motor execution accumulate and reach a threshold. These results in line with the400

suggested role of PT5Bupper in movement preparation and PT5Blower cells in movement initiation401

(Economo et al., 2018).402
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Discussion403

In this work, we have developed a computational model of the mouse M1 microcircuit and val-404

idated it against in vivo data. Despite inherent limitations due to gaps in the data (see details405

in the section below), we believe that this constitutes the most biophysically detailed model of406

mouse M1 currently available comprising the molecular, cellular and circuit scales. The model in-407

tegrates quantitative experimental data on neuronal physiology, morphology, laminar density, cell408

type distribution, dendritic distribution of synapses, and local and long-range synaptic connectiv-409

ity, obtained from 31 studies, with 12 of these coming from our experimental laboratory. Model410

development also benefited greatly from extended discussions between the computational and411

experimental authors. Integrating data across scales and managing such a complex model moti-412

vated the development of a novel software tool, NetPyNE, that provides a high-level interface to413

NEURON and facilitates multiscale brain circuit modeling (Dura-Bernal et al., 2019).414

To validate themodel we focused on reproducingmouseM1 in vivo experimental results across415

different behavioral states and experimental conditions from a single study (Schiemann et al.,416

2015). Simulation results were consistent across multiple random wiring seeds and background417

input seeds, demonstrating the robustness of the model. The model cell type-specific sponta-418

neous firing rates, associated with the quiet behavior, were consistent with experimental data419

from several in vivo studies (Schiemann et al., 2015; Zagha et al., 2015; Li et al., 2016; Estebanez420

et al., 2018; Economo et al., 2018) (Fig. 2). We then simulated activity corresponding to mouse self-421

paced, voluntary locomotion by increasing motor thalamus (MTh) and noradrenaline (NA) inputs.422

Movement-related changes in L2/3 and L5B population firing rates were consistent with those re-423

ported in vivo, including bidirectional (enhanced vs suppressed) firing rate changes in distinct L5B424

pyramidal neuron populations (Fig. 3). Local field potentials (LFP) oscillations emerged sponta-425

neously (no oscillatory inputs) at physiological frequencies, and included characteristic delta, beta426

and gamma oscillatory patterns. LFP power in L5B shifted from lower (delta) to higher (gamma)427

frequency bands during movement, consistent with in vivo LFP data (Fig. 4).428

We also simulated two experimental manipulations – inactivation of MTh inputs and blocking429

of NA receptors – which resulted in cell type-specific activity changes in L5B which matched those430

measured experimentally (Fig. 5). For each condition, we evaluated two hypotheses of the cellular431

and circuit mechanisms involved, which suggested MTh inactivation may affect other long-range432

inputs, and NA modulation affects not only 𝐼h but also K+ conductances. We used the model to433

systematically explore the interaction between MTh and NA inputs and predict M1 output at the434

level of individual cell types at sublaminar resolution. Results captured the overall pattern and435

response amplitudes measured in vivo, supporting the hypotheses both high MTh and NA inputs436

are required for self-paced voluntarymovement-related L5B activity (Fig. 6). Themodel predicted a437

predominant role of PT cells in dictating L5B responses during movement, with PT5Blower providing438

the strongest response but only when both MTh and NA inputs were high enough, i.e. PT5Blower439

exhibited the highest response threshold. L5B IT cells exhibited an opposite but lower-amplitude440

pattern, potentially due to PT-mediated disynaptic inhibition, and infragranular IT were less en-441

gaged during the movement state. These predictions are consistent with findings associating IT442

and PT5Bupper with motor planning and PT5Blower with motor execution (Li et al., 2015b; Economo443

et al., 2018).444

This is, to the best of our knowledge, the first model of the mouse M1 microcircuit where fir-445

ing rates and LFPs have been directly compared to cell type and layer-specific mouse M1 in vivo446

data associated with different behaviors and experimental manipulations. The model provides a447

quantitative theoretical framework to integrate and interpret M1 experimental data across scales,448

evaluate hypotheses and generate experimentally testable predictions.449

Challenges and limitations450

Our ambition was to develop a detailed multiscale computational model of the mouse M1 micro-451

circuit. We necessarily fell short due to lack of data of some molecular, cellular, network and long-452
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range connectivity details. This model was constructed and evaluated over a period of six years.453

During this period we updated the model multiple times to incorporate new data, but of course454

any neurobiological model is always in need of additional updating and improvement as newmea-455

surements become available.456

Of some concern is the relative lack of data on dendritic ion channel density, whichwill affect the457

influence of distal synaptic inputs on L5 neurons (Labarrera et al., 2018). Cell models are precisely458

tuned to reproduce experimental somatic responses, but limited data is available to characterize459

dendritic physiology. Although we adapted the morphology and physiology of IT cells based on460

their layer, we omitted cellular diversity within each model population – all the model neurons of461

the same cell type and layer have identical morphologies and identical channel parameters. This462

contrasts with other models which vary both channel conductances and morphologies, the latter463

by slightly jittering angles and lengths (Markram et al., 2015a).464

Due to the nature of our circuit mapping methods (Anderson et al., 2010; Hooks et al., 2013;465

Suter and Shepherd, 2015), our model used local excitatory connectivity primarily based on post-466

synaptic cell type and presynaptic locations. Our model’s normalized cortical-depth-dependent467

connectivity provided greater resolution than traditional layer-based wiring, but still contained468

boundaries where connection density changed and did not provide cell level point-to-point res-469

olution. This could be further improved by fitting discretely binned experimental data to functions470

of cortical depth, resulting in smoother connectivity profiles. Other recent models have used a471

sophisticated version of Peters’ principle (identifying overlap between axonal and dendritic trees)472

to provide cell-to-cell resolution for selected cells, which must then still be replicated and general-473

ized across multiple instances to build a large network (Rees et al., 2017; Markram et al., 2015a).474

Inclusion of synpatic plasticity mechanisms could be used to study the role of different cell types475

in motor learning, for example, L5A neurons which evidence suggests participate in the evolving476

network representation of learned movements (Masamizu et al., 2014).477

We are limited not only by lack of precise data for parameter determination, but also by compu-478

tational constraints. Often, network simulations use point neurons in order to avoid the computa-479

tional load of multicompartment neurons, but at the expense of accuracy (Potjans and Diesmann,480

2014; Izhikevich and Edelman, 2008; Schmidt et al., 2018). Here, we compromised by using rela-481

tively small multicompartment models for most populations, with the exception of the neurons482

of L5. In terms of noradrenaline influence, we focused here on one effect on the PT cell type,483

neglecting the wide-ranging effects of this and other neuromodulators (such as dopamine, acetyl-484

choline) (O’Donnell et al., 2012;McCormick, 1992; Graybiel, 1990) and their the influence of second485

messenger cascades (Neymotin et al., 2016a). Implementing this functionality is now available via486

NEURON’s rxdmodule (McDougal et al., 2013; Newton et al., 2018). Even with these compromises,487

optimizing and exploring our large network model required millions of HPC core-hours.488

In summary, model firing rate distributions were generally consistent with experimental data489

across populations and behavioral states. We note that the experimental dataset represents a490

small sparse sample of neurons in the modeled cortical volume, resulting in a model data sample491

size approximately 3 orders ofmagnitude larger than that of experiment (e.g. for L5B𝑁𝑚𝑜𝑑𝑒𝑙 = 35182492

vs 𝑁𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 = 47). Therefore, validation of our model results can be understood as showing that493

the small dataset of experiment cell rates could have been subsampled from the larger dataset494

of model rates. Novel methods that record from an increasingly larger number of simultaneous495

neurons (Hong and Lieber, 2019) will enable further validation of the model results.496

M1 cellular and circuit mechanisms associated with quiet and movement behav-497

iors498

A key question inmotor system research is howmotor cortex activity gets dissociated frommuscle499

movement during motor planning or mental imagery, and is then shifted to produce commands500

for action (Ebbesen and Brecht, 2017; Schieber, 2011; Shenoy et al., 2013). One hypothesis has501

been that this planning-to-execution switch might be triggered by NA neuromodulation (Sheets502
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et al., 2011). Downregulation of 𝐼h, effected via NA and other neuromodulatory factors, has been503

shown to increase PT activity as a consequence of enhanced temporal and spatial synaptic inte-504

gration of EPSPs (Sheets et al., 2011; Labarrera et al., 2018). This effect is primarily observed in505

PT cells, since the concentration of HCN channels in these cells has been shown to be significantly506

higher than in IT cells (Sheets et al., 2011; BICCN, 2021). In the model, we used a baseline 𝐼h con-507

sistent with a cell tuned to reproduce in vitro data with no NA modulation. For the in vivo quiet508

condition (low NA modulation), we used 75% of that baseline level, and for movement (high NA)509

we used 25%, consistent with values reported experimentally (Labarrera et al., 2018). Paradoxi-510

cally, 𝐼h downregulation has also been reported to reduce pyramidal cell activity in some settings511

(George et al., 2009; Migliore and Migliore, 2012). Here we improved our previous PT cell model512

(Neymotin et al., 2017) to include an 𝐼h model (Migliore and Migliore, 2012) that was able to recon-513

cile these observations: 𝐼h downregulation reduced PT response to weak inputs, while increasing514

the cell response to strong inputs (Migliore and Migliore, 2012; George et al., 2009; Sheets et al.,515

2011; Labarrera et al., 2018).516

An additional hypothesis to explain differential planning and movement outputs, posits that517

the shift results from activation of different cell populations in L5, mediated by distinct local and518

long-range inputs. Accumulated evidence suggests that inputs arising from MTh carrying cerebel-519

lar signals differentially target M1 populations (Hooks et al., 2013) and are involved in triggering520

movement (Dacre et al., 2021) and in dexterous tasks (Guo et al., 2021). Using in vivo electrophys-521

iology and optogenetic perturbations in mouse anterolateral motor cortex, Li et al. (2015b) found522

evidence suggesting that preparatory activity in IT neurons is converted into a movement com-523

mand in PT neurons. Further support for this hypothesis comes from a study that showed that524

transcriptomically-identified different PT subtypes in upper vs lower L5B (Economo et al., 2018),525

and showed that PT5Bupper projected to thalamus and generated early preparatory activity, while526

PT5Blower projected to medulla and generated motor commands.527

These two hypotheses are not incompatible, and indeed our simulations suggest that both of528

these mechanisms may coexist and be required for movement-related activity (Fig. 6). NA mod-529

ulation and MTh input by themselves produced an increase in PT5B overall activity, but primarily530

in the preparatory activity-related PT5Bupper population; both mechanisms were required to acti-531

vate the PT5Blower population associated with motor commands (Economo et al., 2018). The model532

therefore predicts that the transition to motor execution (self-paced, voluntary movement) might533

require both the neuromodulatory prepared state and circuit-level routing of inputs. Different534

types of behaviors and contexts (e.g. goal-directed behaviors with sensory feedback) may involve535

driving inputs from other populations or regions, such as supragranular layers or somatosensory536

cortex (Hooks et al., 2013; Dacre et al., 2021; Zareian et al., 2021; Yamawaki et al., 2021). We537

note that in our model and in vivo experiments (Schiemann et al., 2015) the quiet state does not538

correspond to a preparatory state, as it lacks short-term memory, delays and other preparatory539

components. Therefore, whether previous task-related findings (Li et al., 2015b; Economo et al.,540

2018) on the role of PT5Blower and PT5Bupper generalize to our self-paced voluntarymovement results541

remains an open question.542

Simulating experimental manipulations: motor thalamus inactivation and nora-543

drenergic receptor blocking544

Attempting to reproduce the extreme conditions posed by experimental manipulations provided545

further insights into the circuitry and mechanisms governing M1 dynamics. During MTh inactiva-546

tion, our baseline model exhibited higher firing rates than in vivo, particularly for the quiet state.547

We hypothesized this may be due to inactivation of MTh also affecting other afferent regions of M1,548

such as contralateral M1 and S2; either directly (e.g. VL→S2) and/or indirectly via recurrent inter-549

areal projections (e.g. M1→S2→M1). We evaluated this by reducing activity in these model regions,550

which indeed resulted in a closer match to in vivo rates (Fig. 5). Several other hypotheses may also551

explain the observed discrepancies, for example, that movement-related activity 1) depends on552
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changes in spiking patterns and not just amplitude (e.g. bursts or oscillatory activity); or 2) that it is553

driven not only by VL but by other long-range inputs (consistent with recent findings (Dacre et al.,554

2021)), and/or by local lateral inputs from non-modeled regions of M1. The inclusion of detailed555

interactions among afferent cortical and thalamic regions is out of the scope of this paper. How-556

ever, our results already suggested possible improvements to the model and circuit pathways to557

explore experimentally, demonstrating that themodel can be used to evaluate different candidate558

circuitries and activity patterns.559

Similarly, for theNA receptor block condition, wemodified themodel to evaluate the hypothesis560

that it not only increases PT 𝐼h but also K+ conductance in all pyramidal neurons, as suggested561

by multiple studies (Wang and McCormick, 1993; Favero et al., 2012). This resulted in a closer562

match betweenmodel and experiment. Alternative hypotheses thatmay also account for the initial563

differences observed include NA selectivemodulation of inhibitory synapses, and interactions with564

other neuromodulators such as acetylcholine (Conner et al., 2010). These molecular and cellular565

level mechanisms can be explored in our model to gain insights into their circuit-level effects.566

IT and PT disynaptic inhibition via shared L5 interneuron pools567

L5B IT and PT neurons exhibited an inverse response to increased NA inputs: IT rates decreased568

while PT rates increased (Fig. 6B). We hypothesize this effect may result from mutual inhibition569

between IT and PT mediated via a shared pool of L5 interneurons, as illustrated in the schematic570

in (Fig. 6C). This is in line with the finding of shared interneuron pools in L5 IT and PT neurons571

mediating disynaptic inhibition (Apicella et al., 2012), which contrast with the private (non-shared)572

interneuron pools identified for PT and CT neurons (Yamawaki and Shepherd, 2015). Additional573

support comes from rat in vivo results showing PV neurons were recruited predominantly during574

motor execution and may shape motor commands through balanced or recurrent inhibition of575

output-related pyramidal neurons (PT), while supressing pyramidal neurons (IT) associated with576

other functions such as hold-related activity (Isomura et al., 2009). By modeling the M1 circuit con-577

nectivity and simulating its dynamics we have predicted the computation performed by this par-578

ticular subcircuit, namely, a switching mechanism between IT- and PT-predominant output modes579

(mutual inhibition ensures only one of them responds strongly at a time). This is consistent with580

their suggested complementary roles in motor preparation vs execution (Li et al., 2015b). This581

circuit-level prediction can be tested experimentally in future studies.582

Emergence of behavior-dependent physiological oscillations583

Our model of M1 neocortex exhibits spontaneous physiological oscillations without rhythmogenic584

synaptic input. Strong oscillations were observed in the delta and beta/gamma ranges with spe-585

cific frequency-dependence on cell class, cortical depth, and behavioral state. The simulated re-586

produced the decrease in delta and increase in gamma power of M1 L5 LFP during movement587

observed in the in vivo dataset (Schiemann et al., 2015), and previously reported in mouse vib-588

rissal M1 during whisking (Zagha et al., 2013). The model can be used to provide cell type-specific589

predictions as to the origins of behavior-related changes in LFP. For example, given the increase590

of PT firing rates and oscillatory activity observed during movement (Fig. 3), we hypothesized that591

the movement-related increase in L5 LFP gamma oscillations is largely mediated by PT neurons.592

Strong LFP beta and gamma oscillations are characteristic of motor cortex activity in both rodents593

(Castro-Alamancos, 2013; Tsubo et al., 2013) and primates (Rubino et al., 2006; Nishimura et al.,594

2013), and have been found to enhance signal transmission inmouse neocortex (Sohal et al., 2009).595

Both beta and gamma oscillations may play a role in information coding during preparation and596

execution of movements (Ainsworth et al., 2012; Tsubo et al., 2013). More generally, these physio-597

logical oscillations are considered to be fundamental to the relation of brain structure and function598

(Buzsáki and Mizuseki, 2014). As the primary output, PT cells receive and integrate many local and599

long-range inputs. Their only local connections to other L5 excitatory neurons are to other PT cells600

(Kiritani et al., 2012). However, as described in the previous section, by targeting inhibitory cells in601
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L5 they are able to reach across layers to influence other excitatory populations, either reducing602

activity or entraining activity (Naka and Adesnik, 2016). These disynaptic E→I→E pathways likely603

play a role in coupling oscillations within and across layers, and in setting frequency bands.604

Implications for experimental research and therapeutics605

Our model integrates previously isolated experimental data at multiple scales into a unified sim-606

ulation that can be progressively extended as new data become available. This provides a useful607

tool for researchers in the field, who can use this quantitative theoretical framework to evaluate608

hypotheses, make predictions and guide the design of new experiments using our freely-available609

model (see Methods). This in silico testbed can be systematically probed to study microcircuit610

dynamics and biophysical mechanisms with a level of resolution and precision not available exper-611

imentally. Unraveling the non-intuitive multiscale interactions occurring in M1 circuits can help us612

understand disease mechanisms and develop new pharmacological and neurostimulation treat-613

ments for brain disorders (Neymotin et al., 2016c,b; Dura-Bernal et al., 2016; Arle and Shils, 2008;614

Wang et al., 2015; Bensmaia and Miller, 2014; Sanchez et al., 2012), and improve decoding meth-615

ods for brain-machine interfaces (Carmena, 2013; Shenoy and Carmena, 2014; Dura-Bernal et al.,616

2017; Kocaturk et al., 2015).617

Methods618

The methods below describe model development with data provenance, and major aspects of619

the final model. The full documentation of the final model is the source code itself, available for620

download at http://modeldb.yale.edu/260015.621

Morphology and physiology of neuron classes622

Seven excitatory pyramidal cell and two interneuron cell models were employed in the network.623

Their morphology and physiological responses are summarized in Figs. 1A,B,C and 7. In previ-624

ous work we developed layer 5B PT corticospinal cell and L5 IT corticostriatal cell models that re-625

produced in vitro electrophysiological responses to somatic current injections, including sub- and626

super-threshold voltage trajectories and f-I curves (Neymotin et al., 2017; Suter et al., 2013). To627

achieve this, we optimized the parameters of the Hodgkin-Huxley neuron model ionic channels –628

Na, Kdr, Ka, Kd, HCN, CaL, CaN, KCa – within a range of values constrained by the literature. The629

corticospinal and corticostriatal cell model morphologies had 706 and 325 compartments, respec-630

tively, digitally reconstructed from 3D microscopy images. Morphologies are available via Neuro-631

Morpho.org (Ascoli et al., 2007) (archive name “Suter_Shepherd”). For the current simulations, we632

further improved the PT model by 1) increasing the concentration of Ca2+ channels (“hot zones")633

between the nexus and apical tuft, following parameters published in (Hay et al., 2011); 2) low-634

ering dendritic Na+ channel density in order to increase the threshold required to elicit dendritic635

spikes, which then required adapting the axon sodium conductance and axial resistance to main-636

tain a similar f-I curve; 3) replacing the HCN channel model and distribution with a more recent637

implementation (Migliore and Migliore, 2012). The new HCN channel reproduced a wider range638

of experimental observations than our previous implementation (Kole et al., 2006), including the639

change from excitatory to inhibitory effect in response to synaptic inputs of increasing strength640

(George et al., 2009). This was achieved by including a shunting current proportional to 𝐼h. We641

tuned the HCN parameters (𝑙𝑘 and 𝑣𝑟𝑒𝑣𝑙𝑘) and passive parameters to reproduce the findings noted642

above, while keeping a consistent f-I curve consistent (Suter et al., 2013).643

The network model includes five other excitatory cell classes: layer 2/3, layer 4, layer 5B and644

layer 6 IT neurons and layer 6 CT neurons. Since our focus was on the role of L5 neurons, other cell645

classes were implemented using simpler models as a trade-off to enable running a larger number646

of exploratory network simulations. Previously we had optimized 6-compartment neuron models647

to reproduce somatic current clamp recordings from two IT cells in layers 5A and 5B. The layer 5A648

cell had a lower f-I slope (77 Hz/nA) and higher rheobase (250 nA) than that in layer 5B (98 Hz/nA649
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and 100 nA). Based on our own and published data, we found two broad IT categories based on650

projection and intrinsic properties: corticocortical IT cells found in upper layers 2/3 and 4 which651

exhibited a lower f-I slope (∼72 Hz/nA) and higher rheobase (∼281 pA) than IT corticostriatal cells652

in deeper layers 5A, 5B and 6 (∼96 Hz/nA and ∼106 pA) (Yamawaki et al., 2015; Suter et al., 2013;653

Oswald et al., 2013). CT neurons’ f-I rheobase and slope (69 Hz/nA and 298 pA) was closer to that654

of corticocortical neurons (Oswald et al., 2013). We therefore employed the layer 5A IT model for655

layers 2/3 and 4 IT neurons and layer 6 CT neurons, and the layer 5B IT model for layers 5A, 5B and656

6 IT neurons. We further adapted cell models by modifying their apical dendrite length to match657

the average cortical depth of the layer, thus introducing small variations in the firing responses of658

neurons across layers.659

We implementedmodels for twomajor classes of GABAergic interneurons (Huang, 2014; BICCN,660

2021; Rudy et al., 2011): parvalbumin-expressing fast-spiking (PV) and somatostatin-expressing661

low-threshold spiking neurons (SOM).Weemployed existing simplified 3-compartment (soma, axon,662

dendrite)models (Konstantoudaki et al., 2014) and increased their dendritic length to bettermatch663

the average f-I slope and rheobase experimental values of cortical basket (PV) andMartinotti (SOM)664

cells (Neuroelectro online database (Tripathy et al., 2015)).665

A

B

Figure 7. Microcircuit layer composition and cell type f-I response. A. Proportion of cell classes per layer;
B. f-I curve for each excitatory and inhibitory cell types. All properties were derived from published
experimental data. Populations labels include the cell class and layer, e.g. ’IT2’ represents the IT class neurons
in layer 2/3.

Microcircuit composition: neuron locations, densities and ratios666

We modeled a cylindric volume of the mouse M1 cortical microcircuit with a 300 𝜇𝑚 diameter and667

1350 𝜇𝑚 height (cortical depth) at full neuronal density for a total of 10,073 neurons (Fig. 1). Cylin-668

der diameter was chosen to approximately match the horizontal dendritic span of a corticospinal669

neuron located at the center, consistent with the approach used in the Human Brain Project model670

of the rat S1 microcircuit (Markram et al., 2015b). Mouse cortical depth and boundaries for layers671

2/3, 4, 5A, 5B and 6 were based on our published experimental data (Weiler et al., 2008; Anderson672

et al., 2010; Yamawaki et al., 2015). Although traditionally M1 has been considered an agranular673

area lacking layer 4, we recently identified M1 pyramidal neurons with the expected prototypical674

physiological, morphological and wiring properties of layer 4 neurons (Yamawaki et al., 2015) (see675

also (Bopp et al., 2017; Barbas and García-Cabezas, 2015; BICCN, 2021)), and therefore incorpo-676

rated this layer in the model.677

Cell classes present in each layer were determined based on mouse M1 studies (Suter et al.,678

2013; Anderson et al., 2010; Yamawaki et al., 2015; Oswald et al., 2013; Naka and Adesnik, 2016).679
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IT cell populations were present in all layers, whereas the PT cell population was confined to layer680

5B, and the CT cell population only occupied layer 6. SOM and PV interneuron populations were681

distributed in each layer. Neuronal densities (neurons per 𝑚𝑚3) for each layer (Fig. 1𝐶) were taken682

from a histological and imaging study of mouse agranular cortex (Tsai et al., 2009). The proportion683

of excitatory to inhibitory neurons per layer was obtained frommouse S1 data (Lefort et al., 2009).684

The proportion of IT to PT and IT to CT cells in layers 5B and 6, respectively, were both estimated as685

1:1 (Suter et al., 2013; Yamawaki and Shepherd, 2015). The ratio of PV to SOM neurons per layer686

was estimated as 2:1 based on mouse M1 and S1 studies (Katzel et al., 2011; Wall et al., 2016)687

(Fig. 7𝐵). Since data for M1 layer 4 was not available, interneuron populations labeled PV5A and688

SOM5A occupy both layers 4 and 5A. The number of cells for each population was calculated based689

on themodeled cylinder dimensions, layer boundaries and neuronal proportions and densities per690

layer.691

Local connectivity692

Figure 8. M1 excitatory connectivity: local microcircuitry and and long-range inputs. A. Strength of local
excitatory connections as a function of pre- and post-synaptic normalized cortical depth (NCD) and
post-synaptic cell class; values used to construct the network. B. Convergence of long-range excitatory inputs
from seven thalamic and cortical regions as a function post-synaptic NCD and cell class; values used to
construct the network. C. Probability of connection matrix for excitatory (left) and inhibitory (right)
populations calculated from an instantiation of the base model network. D. Left. Synaptic density profile (1D)
along the dendritic arbor for inputs from layer 2/3 IT, VL, S1, S2, cM1 and M2 to PT neurons. Calculated by
normalizing sCRACM maps ((Suter and Shepherd, 2015) Figs. 5 and 6) by dendritic length at each grid location
and averaging across rows. Middle and Right. Synaptic density per neuron segment automatically calculated
for each neuron based on its morphology and the pre- and postsynaptic cell type-specific radial synaptic
density function. Here, VL→PT and S2→PT are compared and exhibit partially complementary distributions.

We calculated local connectivity between M1 neurons (Figures 1𝐶 and 8𝐴) by combining data693

from multiple studies. Data on excitatory inputs to excitatory neurons (IT, PT and CT) was pri-694

marily derived from mapping studies using whole-cell recording, glutamate uncaging-based laser-695

scanning photostimulation (LSPS) and subcellular channelrhodopsin-2-assisted circuit mapping696

(sCRACM) analysis (Weiler et al., 2008; Anderson et al., 2010; Yamawaki et al., 2015; Yamawaki697

and Shepherd, 2015). Connectivity data was postsynaptic cell class-specific and employed normal-698

ized cortical depth (NCD) instead of layers as the primary reference system. Unlike layer definitions699

which can be interpreted differently between studies, NCD provides a well-defined, consistent and700

continuous reference system, depending only on two readily-identifiable landmarks: pia (NCD=0)701
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and white matter (NCD=1). Incorporating NCD-based connectivity into our model allowed us to702

capture wiring patterns down to a 100 𝜇𝑚 spatial resolution, well beyond traditional layer-based703

cortical models. M1 connectivity varied systematically within layers. For example, the strength of704

inputs from layer 2/3 to L5B corticospinal cells depends significantly on cell soma depth, with upper705

neurons receiving much stronger input (Anderson et al., 2010).706

Connection strength thus depended on presynaptic NCD and postsynaptic NCD and cell class.707

For postsynaptic IT neuronswithNCD ranging from0.1 to 0.37 (layers 2/3 and 4) and 0.8 to 1.0 (layer708

6) we determined connection strengths based on data from (Weiler et al., 2008) with cortical depth709

resolution of 140 𝜇𝑚-resolution. For postsynaptic IT andPTneuronswithNCDbetween0.37 and0.8710

(layers 5A and 5B)we employed connectivity strength data from (Anderson et al., 2010) with cortical711

depth resolution of 100 𝜇𝑚. For postsynaptic CT neurons in layer 6 we used the same connection712

strengths as for layer 6 IT cells (Weiler et al., 2008), but reduced to 62% of original values, following713

published data on the circuitry of M1 CT neurons (Yamawaki and Shepherd, 2015; Kuramoto et al.,714

2022). Our data (Yamawaki and Shepherd, 2015) also suggested that connection strength from715

layer 4 to layer 2/3 IT cells was similar to thatmeasured in S1, so for these projections we employed716

values from Lefort’s S1 connectivity strength matrix (Lefort et al., 2009). Experimentally, these717

connections were found to be four times stronger than in the opposite direction – from layer 2/3718

to layer 4 – so we decreased the latter in the model to match this ratio.719

Following previous publications (Kiritani et al., 2012; Lefort et al., 2009), we defined connection720

strength (𝑠𝑐𝑜𝑛, in mV) between two populations, as the product of their probability of connection721

(𝑝𝑐𝑜𝑛) and the unitary connection somatic EPSP amplitude in mV (𝑣𝑐𝑜𝑛), i.e. 𝑠𝑐𝑜𝑛 = 𝑝𝑐𝑜𝑛 × 𝑣𝑐𝑜𝑛. We722

employed this equivalence to disentangle the connection 𝑠𝑐𝑜𝑛 values provided by the above LSPS723

studies into 𝑝𝑐𝑜𝑛 and 𝑣𝑐𝑜𝑛 values that we could use to implement the model. First, we rescaled the724

LSPS raw current values in pA (Anderson et al., 2010; Weiler et al., 2008; Yamawaki et al., 2015;725

Yamawaki and Shepherd, 2015) to match 𝑠𝑐𝑜𝑛 data from a paired recording study of mouse M1726

L5 excitatory circuits (Kiritani et al., 2012). Next, we calculated the M1 NCD-based 𝑣𝑐𝑜𝑛 matrix by727

interpolating a layerwise unitary connection EPSP amplitude matrix of mouse S1 (Lefort et al.,728

2009), and thresholding values between 0.3 and 1.0 mV. Finally, we calculated the probability of729

connection matrix as 𝑝𝑐𝑜𝑛 = 𝑠𝑐𝑜𝑛∕𝑣𝑐𝑜𝑛.730

To implement 𝑣𝑐𝑜𝑛 values in the model we calculated the required NEURON connection weight731

of an excitatory synaptic input to generate a somatic EPSP of 0.5 mV at each neuron segment.732

This allowed us to calculate a scaling factor for each segment that converted 𝑣𝑐𝑜𝑛 values into NEU-733

RONweights, such that the somatic EPSP response to a unitary connection input was independent734

of synaptic location – also known as synaptic democracy (Rumsey and Abbott, 2006; Poirazi and735

Papoutsi, 2020). This is consistent with experimental evidence showing synaptic conductances in-736

creased with distance from soma, to normalize somatic EPSP amplitude of inputs within 300 𝜇𝑚737

of soma (Magee and Cook, 2000). Following this study, scaling factor values above 4.0 – such as738

those calculated for PT cell apical tufts – were thresholded to avoid overexcitability in the network739

context where each cell receives hundreds of inputs that interact nonlinearly (Spruston, 2008; Be-740

habadi et al., 2012). For morphologically detailed cells (layer 5A IT and layer 5B PT), the number741

of synaptic contacts per unitary connection (or simply, synapses per connection) was set to five,742

an estimated average consistent with the limited mouse M1 data (Hu and Agmon, 2016) and rat743

S1 studies (Bruno and Sakmann, 2006; Markram et al., 2015b). I ndividual synaptic weights were744

calculated by dividing the unitary connection weight (𝑣𝑐𝑜𝑛) by the number of synapses per connec-745

tion. Although the method does not account for nonlinear summation effects (Spruston, 2008), it746

provides a reasonable approximation and enables employing a more realistic number and spatial747

distribution of synapses, whichmay be key for dendritic computations (London and Häusser, 2005).748

For the remaining cell models, all with six compartments or less, a single synapse per connection749

was used.750

For excitatory inputs to inhibitory cell types (PV and SOM)we startedwith the same values as for751

IT cell types but adapted these based on the specific connectivity patterns reported for mouse M1752
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interneurons (Apicella et al., 2012; Yamawaki and Shepherd, 2015) (Fig. 8𝐴). Following the layer-753

based description in these studies, we employed three major subdivisions: layer 2/3 (NCD 0.12 to754

0.31), layers 4, 5A and 5B (NCD 0.31 to 0.77) and layer 6 (NCD 0.77 to 1.0). We increased the prob-755

ability of layer 2/3 excitatory connections to layers 4, 5A and 5B SOM cells by 50% and decreased756

that to PV cells by 50% (Apicella et al., 2012). We implemented the opposite pattern for excita-757

tory connections arising from layer 4,5A,5B IT cells such that PV interneurons received stronger758

intralaminar inputs than SOM cells (Apicella et al., 2012). The model also accounts for layer 6 CT759

neurons generating relatively more inhibition than IT neurons (Yamawaki and Shepherd, 2015; Ku-760

ramoto et al., 2022). Inhibitory connections from interneurons (PV and SOM) to other cell types761

were limited to neurons in the same layer (Katzel et al., 2011), with layers 4, 5A and 5B combined762

into a single layer (Naka and Adesnik, 2016). Probability of connection decayed exponentially with763

the distance between the pre- and post-synaptic cell bodies with length constant of 100 𝜇𝑚 (Gal764

et al., 2017; Fino and Yuste, 2011). We introduced a correction factor to the distance-dependent765

connectivitymeasures to avoid the border effect, i.e. cells near themodeled volume edges receiving766

less or weaker connections than those in the center.767

For comparison with other models and experiments, we calculated the probability of connec-768

tion matrices arranged by population (instead of NCD) for the base model network instantiation769

used throughout the results. (Fig. 8𝐵).770

Excitatory synapses consisted of colocalized AMPA (rise, decay 𝜏: 0.05, 5.3 ms) and NMDA (rise,771

decay 𝜏: 15, 150ms) receptors, both with reversal potential of 0mV. The ratio of NMDA to AMPA re-772

ceptors was 1.0 (Myme et al., 2003), meaning their weights were each set to 50% of the connection773

weight. NMDA conductance was scaled by 1∕(1 + 0.28 ⋅𝑀𝑔 ⋅ exp (−0.062 ⋅ 𝑉 )); Mg = 1mM (Jahr and774

Stevens, 1990b). Inhibitory synapses from SOM to excitatory neurons consisted of a slow 𝐺𝐴𝐵𝐴𝐴775

receptor (rise, decay 𝜏: 2, 100ms) and𝐺𝐴𝐵𝐴𝐵 receptor, in a 90% to 10% proportion; synapses from776

SOM to inhibitory neurons only included the slow𝐺𝐴𝐵𝐴𝐴 receptor; and synapses from PV to other777

neurons consisted of a fast 𝐺𝐴𝐵𝐴𝐴 receptor (rise, decay 𝜏: 0.07, 18.2). The reversal potential was778

-80 mV for 𝐺𝐴𝐵𝐴𝐴 and -95 mV for 𝐺𝐴𝐵𝐴𝐵 . The 𝐺𝐴𝐵𝐴𝐵 synapse was modeled using second mes-779

senger connectivity to a G protein-coupled inwardly-rectifying potassium channel (GIRK) (Destexhe780

et al., 1996). The remaining synapses were modeled with a double-exponential mechanism.781

Connection delays were estimated as 2 ms plus a variable delay depending on the distance782

between the pre- and postsynaptic cell bodies assuming a propagation speed of 0.5 m/s.783

Long-range input connectivity784

We added long-range input connections from seven regions that are known to project to M1: tha-785

lamic posterior nucleus (PO), ventro-lateral thalamus (VL), primary somatosensory cortex (S1), sec-786

ondary somatosensory cortex (S2), contralateral primary motor cortex (cM1), secondary motor787

cortex (M2) and orbital cortex (OC). We note that VL constitutes the largest nuclei of the motor tha-788

lamus (MTh) so, in the context of themodel, these terms are equivalent. Each region consisted of a789

population of 1000 (Constantinople and Bruno, 2013; Bruno and Sakmann, 2006) spike-generators790

(NEURON VecStims) that generated independent random Poisson spike trains with uniform dis-791

tributed rates between 0 and 2.5 Hz or 0 and 5 Hz (Yamashita et al., 2013; Hirata and Castro-792

Alamancos, 2006) for spontaneous firing; or 0 and 10 Hz (Isomura et al., 2009; Jacob et al., 2012)793

when simulating increased input from a region. Previous studies provided a measure of normal-794

ized input strength from these regions as a function of postsynaptic cell type and layer or NCD.795

Broadly, PO (Yamawaki et al., 2015; Yamawaki and Shepherd, 2015; Hooks et al., 2013), S1 (Mao796

et al., 2011; Yamawaki et al., 2021) and S2 (Suter and Shepherd, 2015) projected strongly to IT cells797

in layers 2/3 and 5A (PO also to layer 4); VL projected strongly to PT cells and to layer 4 IT cells798

(Yamawaki et al., 2015; Yamawaki and Shepherd, 2015; Hooks et al., 2013); cM1 and M2 projected799

strongly to IT and PT cells in layers 5B and 6 (Hooks et al., 2013); and OC projected strongly to layer800

6 CT and IT cells (Hooks et al., 2013). We implemented these relations by estimating the maximum801

number of synaptic inputs from each region and multiplying that value by the normalized input802

22 of 33

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.02.03.479040doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.03.479040
http://creativecommons.org/licenses/by-nc-nd/4.0/


strength for each postsynaptic cell type and NCD range. This resulted in a convergence value –803

average number of synaptic inputs to each postsynaptic cell – for each projection Fig. 8𝐶 . We fixed804

all connection weights (unitary connection somatic EPSP amplitude) to 0.5 mV, consistent with rat805

and mouse S1 data (Hu and Agmon, 2016; Constantinople and Bruno, 2013).806

To estimate the maximum number of synaptic inputs per region, we made a number of as-807

sumptions based on the limited data available (Figs. 8𝐶 and 1𝐶). First, we estimated the average808

number of synaptic contacts per cell as 8234 by rescaling rat S1 data (Meyer et al., 2010b) based809

on our own observations for PT cells (Suter et al., 2013) and contrasting with related studies (Schüz810

and Palm, 1989;DeFelipe et al., 2002); we assumed the same value for all cell types so we could use811

convergence to approximate long-range input strength. We assumed 80 % of synaptic inputs were812

excitatory vs. 20 % inhibitory (DeFelipe et al., 2002; Markram et al., 2015b); out of the excitatory813

inputs, 80 % were long-range vs. 20 % local (Markram et al., 2015b; Stepanyants et al., 2009); and814

out of the inhibitory inputs, 30 % were long-range vs. 70 % local (Stepanyants et al., 2009). Finally,815

we estimated the percentage of long-range synaptic inputs arriving from each region based on816

mouse brain mesoscale connectivity data (Oh et al., 2014) and other studies (Meyer et al., 2010a;817

Bruno and Sakmann, 2006;Meyer et al., 2010b; Zhang et al., 2016; Bopp et al., 2017).818

Experimental evidence demonstrates the location of synapses along dendritic trees follows very819

specific patterns of organization that depend on the brain region, cell type and cortical depth (Pe-820

treanu et al., 2009; Suter and Shepherd, 2015); these are likely to result in important functional821

effects (Kubota et al., 2015; Laudanski et al., 2014; Spruston, 2008). We employed sCRACM data to822

estimate the synaptic density along the dendritic arbor – 1D radial axis – for inputs from PO, VL, M2823

and OC to layers 2/3, 5A, 5B and 6 IT and CT cell (Hooks et al., 2013), and from layer 2/3 IT, VL, S1,824

S2, cM1 and M2 to PT neurons (Suter and Shepherd, 2015) (Fig. 8𝐷). To approximate radial synap-825

tic density we divided the sCRACM map amplitudes by the dendritic length at each grid location,826

and averaged across rows. Once all network connections had been generated, synaptic locations827

were automatically calculated for each cell based on its morphology and the pre- and postsynaptic828

cell type-specific radial synaptic density function (Fig. 8𝐷). Synaptic inputs from PV to excitatory829

cells were located perisomatically (50 𝜇𝑚 around soma); SOM inputs targeted apical dendrites of830

excitatory neurons (Naka and Adesnik, 2016; Katzel et al., 2011); and all inputs to PV and SOM831

cells targeted apical dendrites. For projections where no synaptic distribution data was available –832

IT/CT, S1, S2 and cM1 to IT/CT cells – we assumed a uniform dendritic length distribution.833

Model implementation, simulation and analysis834

Modeling and simulation tools835

The model was developed using parallel NEURON (neuron.yale.edu) (Lytton et al., 2016) and Net-836

PyNE (www.netpyne.org) (Dura-Bernal et al., 2019), a Python package to facilitate the development837

of biological neuronal networks in the NEURON simulator. NetPyNE emphasizes the incorporation838

ofmultiscale anatomical and physiological data at varying levels of detail. It converts a set of simple,839

standardized high-level specifications in a declarative format into a NEURONmodel. This high-level840

language enables, for example, defining connectivity as function of NCD, and distributing synapses841

across neurons based on normalized synaptic density maps. NetPyNE facilitates running parallel842

simulations by taking care of distributing theworkload and gathering data across computing nodes,843

and automates the submission of batches of simulations for parameter optimization and explo-844

ration. It also provides a powerful set of analysis methods so the user can plot spike raster plots,845

LFP power spectra, information transfer measures, connectivity matrices, or intrinsic time-varying846

variables (eg. voltage) of any subset of cells. To facilitate data sharing, the package saves and loads847

the specifications, network, and simulation results using common file formats (Pickle, Matlab, JSON848

or HDF5), and can convert to and fromNeuroML (Gleeson et al., 2010, 2019) and SONATA (Dai et al.,849

2019), standard data formats for exchanging models in computational neuroscience. Simulations850

were run on XSEDE supercomputers Comet and Stampede, using the Neuroscience Gateway (NSG)851

and our own resource allocation, and on Google Cloud supercomputers.852
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Parameter exploration/optimization853

NetPyNE facilitates optimization and exploration of network parameters through automated batch854

simulations. The user specifies the range of parameters and parameter values to explore and the855

tool automatically submits the jobs inmulticoremachines (usingNEURON’s Bulletin board) or HPCs856

(using SLURM/Torque). Multiple pre-defined batch simulation setups can be fully customized for857

different environments. We ran batch simulations using NetPyNE’e automated SLURM job submis-858

sion on San Diego Supercomputer Center’s (SDSC) Comet supercomputer and on Google Cloud859

Platform.860

Local Field Potentials861

The NetPyNE tool also includes the ability to simulate local field potentials (LFPs) obtained from862

extracellular electrodes located at arbitrary 3D locations within the network. The LFP signal at each863

electrode is obtained using the "line source approximation" (Parasuram et al., 2016; Buzsáki et al.,864

2012; Lindén et al., 2013), which is based on the sumof themembrane current source generated at865

each cell segment divided by the distance between the segment and the electrode. The calculation866

assumes that the electric conductivity and permittivity of the extracellular medium are constant867

everywhere and do not depend on frequency.868

Firing rates statistics869

Firing rate statistics were always calculated starting at least 1 second after the simulation start time870

to allow the network to reach a steady state. To enable the statistical comparison of the results in871

Fig. 2 we only included neurons with firing rates above 0 Hz, given that most experimental datasets872

(Estebanez et al., 2018; Zagha et al., 2015; Li et al., 2015a) already included this constrain. For the873

statistical comparison in the remaining sections we included neurons with firing rates of 0 Hz, as874

these were available both in the experimental dataset (Schiemann et al., 2015) and the model.875

Therefore, the quiet state mean firing rates reported in Fig. 2 (which only included rates > 0𝐻𝑧)876

were higher than those in the remaining sections.877

Experimental procedures878

Details of the experimental procedures used to obtain the data in this study were previously de-879

scribed in (Schiemann et al., 2015), including animals and surgery, motion index and motion pat-880

tern discrimination, and in vivo electrophysiology and pharmacology. The dataset on cell type-881

specific in vivo firing rates across states and conditions was collected and previously reported in882

the same publication. The LFP experimental data reported here was collected during that same883

study but only a small subset was reported in the experimental paper ((Schiemann et al., 2015) Fig.884

1).885

The experimental LFP data used in Fig. 4 was preprocessed to remove outliers and potential arti-886

facts. The raw LFP data consisted of 30 recordings of varying duration during head-restrainedmice887

locomotion (at different speeds) on a cylindrical treadmill. In order to compare it to the simulated888

data, the quiet in vivo raw LFP were classified into quiet and movement periods (using the same889

criteria as in (Schiemann et al., 2015)) and then segmented into 4-second samples. We then cal-890

culated the LFP power spectral density (PSD) using the Morlet wavelet transform method, normal-891

ized within each sample and computed the mean power for five standard frequency bands (delta,892

theta, alpha, beta and gamma). The resulting dataset of 5-element vectors (normalized power in893

each frequency band) exhibited high variability: the mean coefficient of variation (CV) across quiet894

samples was 0.60 and 0.44 for move samples. Therefore we used k-means to cluster the dataset.895

The quiet condition resulted in one predominant cluster with similar power for all bands (73% of896

samples), and one with higher gamma power (27% of samples). Conversely, the move condition897

predominant cluster exhibited significantly higher gamma power (77% of samples), whereas the898

smaller cluster showed similar power across bands (23%). As expected, the variability within each899

cluster was significantly reduced compared to the full dataset (large clusters: quiet CV=0.33, move900
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CV=0.32; small clusters: quiet CV=0.31, move CV=0.28). For comparison with the model results we901

employed the large quiet andmove clusters (with over 70%of samples) (Fig. 4). The smaller clusters902

may correspond to different internal states during behavior, recording from regions/layers with dif-903

ferent levels of involvement in the behavior, transition periods, and/or experimental artifacts (e.g.904

inaccurate segmenting of behavior).905
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