

Multiscale model of primary motor cortex circuits predicts in vivo cell type-specific, behavioral state-dependent dynamics

4 Salvador Dura-Bernal^{1,2*}, Samuel A Neymotin², Benjamin A Suter³, Joshua Dacre⁴,
5 Julia Schiemann^{4,5}, Ian Duguid⁴, Gordon MG Shepherd³, William W Lytton^{1,6,7}

***For correspondence:**

salvadord.dura-bernal@downstate.edu (SDB)

6 1Department of Physiology and Pharmacology, State University of New York Downstate
7 Health Sciences University, United States; **2**Center for Biomedical Imaging and
8 Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, United States;
9 **3**Department of Physiology, Northwestern University, United States; **4**Centre for
10 Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of
11 Edinburgh, United Kingdom; **5**Center for Integrative Physiology and Molecular Medicine,
12 Saarland University, Germany; **6**Aligning Science Across Parkinson's (ASAP)
13 Collaborative Research Network, Chevy Chase, MD USA; **7**Department of Neurology,
14 Kings County Hospital Center, Brooklyn, USA

15

16 **Abstract** Understanding cortical function requires studying multiple scales: molecular, cellular,
17 circuit and behavior. We developed a biophysically detailed multiscale model of mouse primary
18 motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities,
19 spatial distributions, morphologies, biophysics, connectivity and dendritic synapse locations were
20 tightly constrained by experimental data. The model includes long-range inputs from 7 thalamic
21 and cortical regions, as well as noradrenergic inputs from locus coeruleus. Connectivity depended
22 on cell class and cortical depth at sublaminar resolution. The model accurately predicted in vivo
23 layer- and cell type-specific responses (firing rates and LFP) associated with behavioral states
24 (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor
25 blocking and thalamus inactivation). It also enabled evaluation of multiple mechanistic
26 hypotheses underlying the observed activity. This quantitative theoretical framework can be used
27 to integrate and interpret M1 experimental data and sheds light on the cell type-specific
28 multiscale dynamics associated with a range of experimental conditions and behaviors.

29

30 **Introduction**

31 Understanding cortical function requires studying its components and interactions at different
32 scales: molecular, cellular, circuit, system and behavior. Biophysically detailed modeling provides
33 a tool to integrate, organize and interpret experimental data at multiple scales and translate isolated
34 knowledge into an understanding of brain function. Previous approaches have emphasized
35 structural aspects based on layers and the broad classification of excitatory and inhibitory neurons
36 (*Potjans and Diesmann, 2014; Douglas et al., 1989*). Modern anatomical, physiological and genetic
37 techniques allow an unprecedented level of detail to be brought to the analysis and understanding
38 of cortical microcircuits (*Luo et al., 2018; Adesnik and Naka, 2018*). In particular, several neuron
39 classes can now be identified based on distinct gene expression, morphology, physiology and con-
40 nectivity. Cortical excitatory neurons are broadly classified by their axonal projection patterns into
41 intratelencephalic (IT), pyramidal-tract (PT) and corticothalamic (CT) types (*Greig et al., 2013; Harris*

42 *and Shepherd, 2015; Zeng and Sanes, 2017*). Recent research has also revealed that connections
43 are cell-type and location specific, often with connectivity differences at different cortical depths
44 within layers (*Anderson et al., 2010; Brown and Hestrin, 2009; Morishima and Kawaguchi, 2006*).

45 Primary motor cortex (M1) plays a central role in motor control, but to date M1 circuits have only
46 been modeled to a limited extent (*Chadderton et al., 2014; Neymotin et al., 2016b; Heinze et al.,
47 2007; Morita and Kawaguchi, 2015; Hoshino et al., 2019*). We and others have extensively studied
48 mouse M1 circuits experimentally, and characterized cell subclasses and many cell-type and
49 sublaminar-specific local and long-range connections (*Papale and Hooks, 2017; Shepherd, 2009;
50 Kaneko, 2013; Morishima et al., 2011*). A major focus of these anatomical and physiological studies
51 has been the distinct cell classes of layer 5 (L5): L5B PT cells – the source of the corticospinal tract,
52 and other pyramidal tract projections, and L5 IT cells which project bilaterally to cortex and striatum.
53 Morphology and physiology differ across the two types. L5 IT cells are thin-tufted and show
54 spike frequency adaptation. L5B PT cells are thick-tufted and show little spike frequency adaptation,
55 but strong sag potentials. Their spiking dynamics *in vivo* have also been shown to differ (*Saiki
56 et al., 2018*). In terms of their synaptic interconnectivity these types exhibit a strong asymmetry:
57 connections go from IT to PT cells, but not in the opposite direction (*Kiritani et al., 2012; Morishima
58 and Kawaguchi, 2006*). The strength of their local excitatory input connections is also dependent
59 on PT position within layer 5B, with cells in the upper sublayer receiving the strongest input from
60 layer 2/3 (*Anderson et al., 2010; Hooks et al., 2013; Yu et al., 2008; Weiler et al., 2008*). These
61 and several other highly specific local and long-range wiring patterns are likely to have profound
62 consequences in terms of understanding cortical dynamics, information processing, function and
63 behavior (*Li et al., 2015b*).

64 A key unanswered question in the motor system, and more generally in neural systems (*Mott
65 et al., 2018; Hsu et al., 2020; Getting, 1989*), is how cell and circuit dynamics relate to behavior. Both
66 IT and PT cell types play a role in motor planning and execution and both have been implicated
67 in motor-related diseases (*Shepherd, 2013*). We have previously shown that the hyperpolarization-
68 activated current (I_h), a target of noradrenergic neuromodulation, is highly expressed in PT cells
69 and affects its synaptic integration and electrophysiological properties (*Sheets et al., 2011; BICCN,
70 2021*). *In vivo* studies also reveal noradrenergic neuromodulatory inputs from locus coeruleus
71 (LC) and long-range inputs from thalamus and cortex causally influence M1 activity and behav-
72 ioral states (*Boychuk et al., 2017; Schiemann et al., 2015; Guo et al., 2021*). Specifically, blocking
73 noradrenergic input to M1 impaired motor coordination (*Schiemann et al., 2015*), and disrupting
74 the cerebellar-recipient motor thalamus projections to M1 can impair dexterity (*Guo et al., 2021*)
75 or block movement initiation (*Dacre et al., 2021*). These modulatory and long-range projections
76 have been shown to be cell type-specific, and characterized in *ex vivo* slice experiments (*Sheets
77 et al., 2011; Yamawaki and Shepherd, 2015; Suter and Shepherd, 2015*), but how these relate to
78 *in vivo* activity, including the exact cellular and circuit mechanisms underpinning behavioral state-
79 dependent M1 activity, remains largely unknown. A biologically realistic model of M1 can be used
80 to address this current knowledge gap by generating hypotheses and predictions relating circuit
81 dynamics to function and behavior.

82 Previous models of M1 circuits are scarce and lack the detail across scales required to adequately
83 address these questions. The M1 models by *Morita and Kawaguchi (2015); Hoshino et al. (2019)*
84 only included a single layer with two cell types. *Heinze et al. (2007)* proposed a microcircuit model
85 of the frontal eye field with 4 layers and multiple cell types. However, all of these circuit mod-
86 els included highly simplified neuron models with limited biophysical detail and no morphological
87 detail. Our previous work modeling M1 (*Chadderton et al., 2014; Neymotin et al., 2016b*) incorpo-
88 rated neuron models with 5-compartment morphologies and multiple ionic channels, as well as
89 several cell types distributed across 5 cortical layers and connected based on layer and cell type.
90 However, it lacked neuron models tuned to cell type-specific electrophysiological data, realistic
91 neuronal densities, noradrenergic and long-range inputs, and certain connectivity details, includ-
92 ing depth-dependence and subcellular distribution of synapses.

93 We have now developed a multiscale model of mouse M1 incorporating recent experimental data and reproducing in vivo layer- and cell type-specific behavior-dependent responses. The
94 model simulates a cylindric cortical volume with over 10 thousand neurons and 30 million synapses.
95 We attempted, as far as possible, to base parameters on data obtained from a single species, strain
96 and age range, and from our own experimental work. However, these data are necessarily incom-
97 plete, and we have therefore combined additional data from multiple other sources. We focused
98 particularly on the role of L5 excitatory neurons, utilizing detailed models of layer 5 IT and PT
99 neurons with full dendritic morphologies of 700+ compartments based on anatomical cell recon-
100 struction and ion channel distributions optimized to in vitro experimental measures. The task of
101 integrating experimental data into the model required us to develop several novel methodological
102 techniques for network simulation design, including: 1) specifying connections as a function of nor-
103 malized cortical depth (NCD) – from pia to white matter – instead of by layer designations, with a
104 100-150 μm resolution; 2) identifying and including specific dendritic distributions associated with
105 particular inputs using features extracted from subcellular Channelrhodopsin-2-Assisted Circuit
106 Mapping (sCRACM) studies (*Hooks et al., 2013; Suter and Shepherd, 2015*); and 3) utilizing a high-
107 level declarative modeling tool, NetPyNE, to develop, simulate, optimize, analyze and visualize the
108 model (*Dura-Bernal et al., 2019*).

109 Our M1 model exhibited neuronal firing rates and oscillations that depended on cell class, layer
110 and sublaminar location, and behavioral state, consistent with in vivo M1 data. Behavioral changes
111 (quiet wakefulness vs movement) were modeled by modifying noradrenergic inputs from LC and
112 motor thalamus inputs. Our cortical model also captured the effects of experimental manipula-
113 tions, including blocking of noradrenergic receptors and motor thalamus inactivation. The model
114 provided different multiscale mechanistic hypotheses for the observed behavioral deficits, linking
115 noradrenaline blockade to cell type specific changes in I_h and/or potassium conductances and
116 the subsequent changes in neuronal firing patterns. The simulations generated experimentally-
117 testable quantitative predictions about layer- and cell type-specific responses for the different be-
118 havioral states and experimental manipulations. Two key model predictions were that stronger
119 thalamic and noradrenergic inputs are required to activate the deeper (associated with motor exe-
120 cution) vs superficial L5B PT neurons, and that L5 interneurons support switching between PT and
121 IT output through mutual disynaptic inhibition. Simulations also shed new light on M1 circuitry and
122 biophysical mechanisms associated with dynamic aspects of behavior-related activity, including PT
123 cells predominantly mediating an increase in gamma physiological oscillations recorded in L5 lo-
124 cal field potentials during movement. We are making our model freely available as a community
125 resource so that others can update and extend it, incorporating new data such as that from the
126 M1 multimodal cell census and atlas recently released by the BRAIN Initiative Cell Census Network
127 (*BICCN, 2021*).

129 Results

130 Overview of model development and simulations

131 We implemented a biophysically-realistic model of the mouse M1 microcircuit representing a cylin-
132 drical volume of 300 μm diameter (Fig. 1). The model included over 10,000 neurons with 35 million
133 synapses. Cell properties, locations, and local and long-range connectivity were largely derived
134 from a coherent set of experimental data. Available experimental data was particularly detailed
135 for two L5 populations that were the focus of this study: pyramidal tract (PT) corticospinal cells
136 and intratelencephalic (IT) corticostriatal cells. One innovative feature in the network presented
137 here was the inclusion of a layer 4 for motor cortex, consistent with its recent characterization (*Ya-*
138 *mawaki et al., 2015; Bopp et al., 2017; Barbas and García-Cabezas, 2015; BICCN, 2021*). The model
139 was developed using the NetPyNE (*Dura-Bernal et al., 2019*) modeling tool and the NEURON simu-
140 lation engine (*Carnevale and Hines, 2006*). Over 20,000 simulations were required to progressively
141 construct and improve the model. Simulations required over 8 million high performance comput-

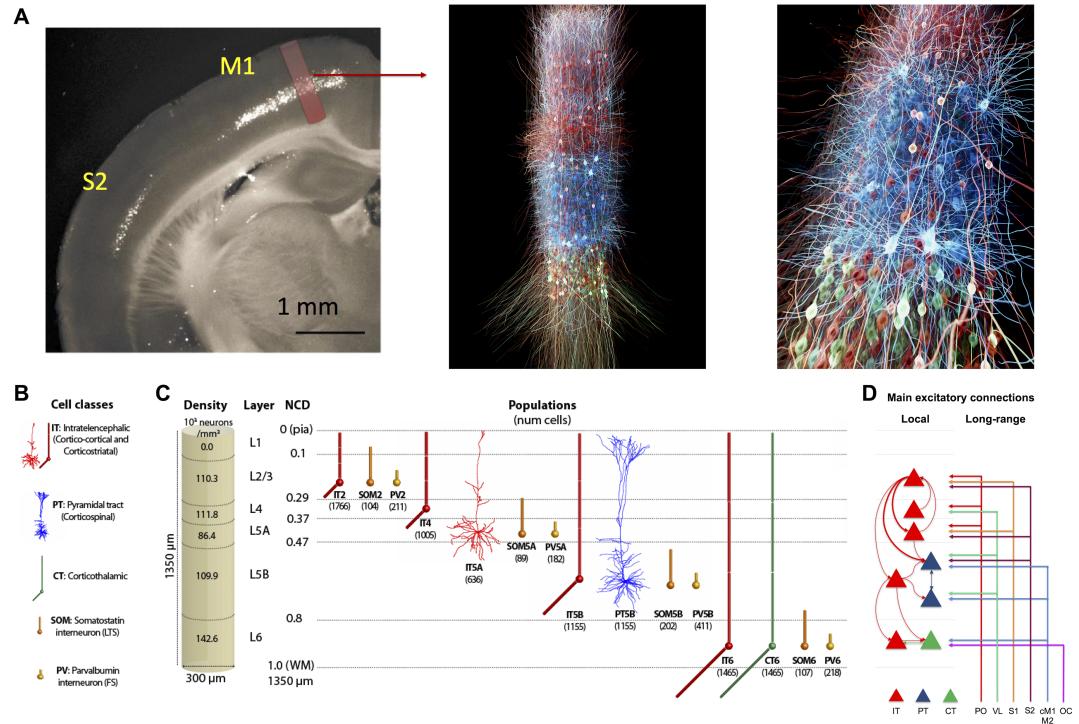


Figure 1. M1 microcircuit model: 3D visualization, connectivity, dimensions, neuronal densities, classes and morphologies. **A.** *left panel*: Epifluorescence image of coronal brain slice of mouse showing M1 and S1 regions, with approximate anatomical location and area of simulated cylindrical tissue (adapted from (Suter et al., 2013)). *middle and right panels*: 3D visualization of M1 network, showing location and stylized morphologies of 20% of excitatory IT (red), PT (blue) and CT (green) cells, and snapshot of simulated activity with spiking neurons in brighter color (visualization by nicolasantille.com). **B.** Cell classes modeled. IT5A and PT5B neurons are simulated in full morphological reconstructions. Other excitatory types and inhibitory neurons use simplified models with 2-6 compartments. All models are conductance-based with multiple ionic channels tuned to reproduce the cell's electrophysiology. **C.** Dimensions of simulated M1 cylindrical volume with overall cell density per layer designation (left), and cell types and populations simulated (right). **D.** Schematic of main local and long-range excitatory connections (thin line: medium; thick line: strong). Note the unidirectional projections from ITs to PTs, with a particularly strong projection arising from L2/3. (IT: intratelencephalic cells – corticostriatal; PT: pyramidal-tract cells – corticospinal; CT: corticothalamic cells. PO: posterior nucleus of thalamus; VL: ventrolateral thalamus; S1: primary somatosensory; S2: secondary somatosensory; cM1: contralateral M1; M2: secondary motor; OC: orbital cortex; PV: parvalbumin basket cells, SOM: somatostatin interneurons; number of cells in each population shown in brackets; left shows L1–L6 boundaries with normalized cortical depth – NCD from 0 = pia to 1 = white matter.)

142 ing (HPC) cluster core-hours to arrive at the results shown, primarily during model building. One
143 second of simulation (model) time required approximately 96 core-hours of HPC time. We em-
144 ployed a grid search on underconstrained connectivity parameters – e.g. inhibitory to excitatory
145 weight ratios – to identify simulations that produced physiologically realistic firing patterns across
146 populations.

147 As expected from results in other systems, there was no single “right” model that produced
148 these realistic firing patterns but rather a family of models (degenerate parameterization) that were
149 within the parameter ranges identified by experiment (*Golowasch et al., 2002; Prinz and Marder,*
150 *2003; Edelman and Gally, 2001; Ratté and Prescott, 2016*). From these, we selected one *base model*,
151 representing a single parameter set, to illustrate in this paper. This base model was tested for
152 robustness by changing randomization settings to provide a *model set*, with analysis of raw and
153 average data from 25 simulations: 5 random synaptic input seeds \times 5 random connectivity seeds
154 (based on connectivity density). This can be considered analogous to testing multiple trials and
155 subjects in an experimental setup. The full model set showed qualitatively similar results with low
156 variance in bulk measures (population rates, oscillation frequencies) for changes in randomization
157 settings.

158 We used the base model and model set to characterize firing and local field potential (LFP)
159 patterns in response to different levels of long-range inputs and noradrenergic (NA) neuromodu-
160 lation associated with different behavioral states and experimental manipulations of mouse M1 in
161 vivo (*Schiemann et al., 2015*) (see Table 1). Long-range inputs originated from seven regions: pos-
162 terior nucleus of thalamus (PO), ventrolateral thalamus (VL), primary somatosensory cortex (S1),
163 secondary somatosensory cortex (S2), contralateral M1 (cM1); secondary motor cortex (M2), and
164 orbital cortex (OC). In the context of this model, VL will be equivalent to the motor thalamus (MTh),
165 for consistency with the experimental study (*Schiemann et al., 2015*). The two behavioral states cor-
166 responded to *quiet* wakefulness and self-paced, voluntary *movement*. Each of these states was sim-
167 ulated under three different experimental manipulations mimicking those previously performed
168 in vivo (*Schiemann et al., 2015*): *control*, motor thalamus inactivation (*MTh inactivation*) and block-
169 ing input from locus coeruleus (LC) via noradrenergic receptor antagonists (*NA-R block*). The effect
170 of changes in noradrenergic neuromodulation, driven by inputs from LC, were simulated by alter-
171 ing I_h conductance in PT cells (see Table 1 and Methods), consistent with in vitro findings (*Sheets*
172 *et al., 2011*). Results are presented both in terms of cell class and cell population. We focused on
173 three excitatory classes: intratelencephalic (IT), pyramidal-tract (PT), corticothalamic (CT); and two
174 inhibitory classes: parvalbumin-expressing fast-spiking basket cells (PV), somatostatin-expressing
175 low-threshold spiking cells (SOM). Cell populations are defined by both class and layer (e.g. IT5A
176 indicates class IT in layer 5A; CT6 is class CT in layer 6). We use our results to explain and predict
177 the response of M1 circuitry under the different behavioral states and experimental manipulations
178 simulated.

Experimental manipulation	Behavioral State	MTh input	NA input (PT I_h)
Control	Quiet	Low (0-2.5 Hz)	Low NA (75% I_h)
Control	Movement	High (0-10 Hz)	High NA (25% I_h)
MTh inactivation	Quiet	Very low (0-0.01 Hz)	Low NA (75% I_h)
MTh inactivation	Movement	Very low (0-0.1 Hz)	High NA (25% I_h)
NA-R block	Quiet	Low (0-2.5 Hz)	Very low (100% I_h)
NA-R block	Movement	High (0-10 Hz)	Very low (100% I_h)

Table 1. Motor thalamus (MTh) input and noradrenergic (NA) input associated with the different experimental manipulations and behavioral states simulated in the M1 model. NA input is modeled by modifying the conductance of PT I_h .

179 **M1 firing dynamics during quiet wakefulness (spontaneous activity)**

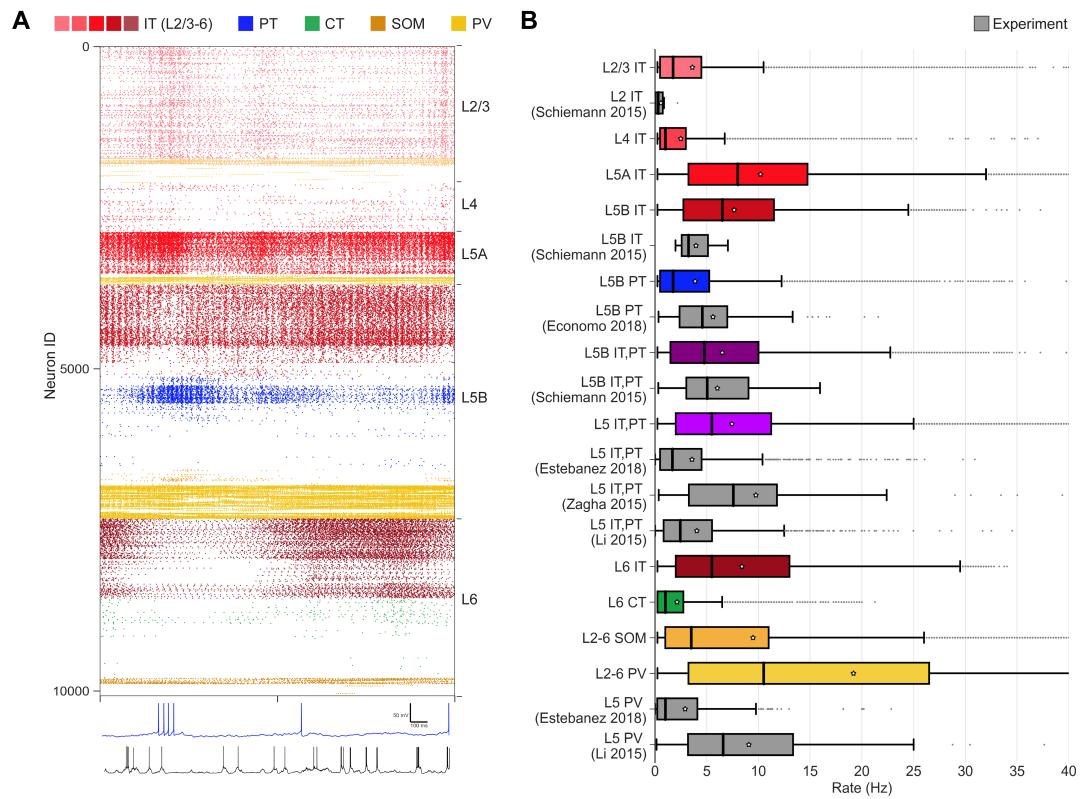


Figure 2. M1 cell type and layer-specific firing dynamics during quiet wakefulness state and control condition (spontaneous activity) The quiet state was simulated by driving the network with background activity (≤ 5 Hz) from all long-range inputs, and medium level I_h (75 %) in PT cells (low NA modulation). **A. Top:** Raster plot of mid-simulation activity (2 s of base model simulation shown; cells grouped by population and ordered by cortical depth within each population). **Bottom:** Example model (blue) and experiment (black) PT5B voltage traces. **B.** Firing rates statistics (boxplots) for different cell types and layers in the model set (color bars) and experiment (gray bars).

180 We characterized *in vivo* spontaneous activity in the base model. This was simulated based
 181 on expected background drive of ≤ 5 Hz from all long-range inputs, and low NA input resulting in
 182 medium level I_h (75 %) in PT cells (Fig. 2) (Yamashita *et al.*, 2013; Hirata and Castro-Alamancos,
 183 2006). These properties were consistent with the quiet wakefulness state and control conditions
 184 as recorded by whole-cell patch-clamp electrophysiology in awake mice *in vivo* (Schiemann *et al.*,
 185 2015). We validated the M1 model cell type- and layer-specific firing rates against available *in vivo*
 186 experimental data from mouse motor cortex (Schiemann *et al.*, 2015; Zagha *et al.*, 2015; Li *et al.*,
 187 2016; Estebanez *et al.*, 2018; Economo *et al.*, 2018) (Fig. 2B). All population mean and median firing
 188 rates ranged between 0.1 and 10 Hz, and maximum rates (excluding outliers) were below 35 Hz,
 189 for both model and experiment. More specifically, we compared L2/3 IT (model=1.8 \pm 4.0 Hz, exp=0.3 \pm 0.7 Hz), L5B IT (model=6.5 \pm 8.8 Hz, exp=3.2 \pm 2.5 Hz), L5B PT (model=1.8 \pm 4.8 Hz, exp=4.6 \pm 4.6 Hz). Since certain studies did not distinguish between cell types or sublayers we also
 190 compared L5B IT/PT (model=4.8 \pm 8.5 Hz, exp=5.1 \pm 6.0 Hz) and L5 IT/PT (model=5.5 \pm 9.2 Hz, exp1=1.7 \pm
 191 4.0 Hz, exp2=7.6 \pm 8.5 Hz, exp3=2.4 \pm 4.7 Hz). Significant statistical differences among population
 192 firing rates from different studies are expected, and therefore these were also expected between
 193 model and experiment. An example is L5 IT/PT where two experimental datasets were statistically
 194 significantly different (exp1=1.7 \pm 4.0 Hz, exp2=7.6 \pm 8.5 Hz; $p = 6.2e-15$, rank-sum test), whereas this
 195 was not the case when comparing the L5 IT/PT model to experiment (model=5.5 \pm 9.2 Hz, exp2=7.6 \pm
 196 8.5 Hz; $p = 0.25$, rank-sum test). The L5 IT/PT model was also in line with the L5 IT/PT experiment
 197 (model=5.5 \pm 9.2 Hz, exp2=7.6 \pm 8.5 Hz; $p = 0.25$, rank-sum test).

198 8.5 Hz $p = 0.43$, rank-sum test). Overall, these results indicate that the range of firing rates and
199 variability in the model was consistent with that of in vivo mouse data.

200 Activity patterns were not only dependent on cell class and cortical-layer location, but also sub-
201 laminar location. This supports the importance of identifying connectivity and analyzing activity by
202 normalized cortical depth (NCD) in addition to layer. For example, L5B PT firing rates decreased
203 with cortical depth (Fig. 2A), consistent with depth-weighted targeting from L2/3 IT projections (An-
204 derson *et al.*, 2010; Weiler *et al.*, 2008). This pattern of firing was consistent across network varia-
205 tions with different wiring and input randomization seeds. L5A/B IT exhibited similar cortical-depth
206 dependent activity. L2/3 and L4 IT populations showed overall lower rates than L5 IT, consistent
207 with weaker excitatory projections onto these populations from local M1 (Weiler *et al.*, 2008; Ya-
208 mawaki *et al.*, 2015), and from long-range inputs (Mao *et al.*, 2011; Suter and Shepherd, 2015; Ya-
209 mawaki *et al.*, 2015). In particular, the main source of L4 IT input was thalamic, in correspondence
210 with the well-described pattern in sensory cortex (Yamawaki *et al.*, 2015). Despite the weaker re-
211 sponse, L2/3 IT showed slow oscillatory activity around delta frequency. Within L6, superficial cells
212 of IT and CT populations were more active than deeper ones. This was due to stronger intralam-
213 inar, L5B IT (Weiler *et al.*, 2008; Yamawaki and Shepherd, 2015) and long-range inputs, primarily
214 from orbital and contralateral motor cortices (for more details on model connectivity see Meth-
215 ods Fig. 8) (Hooks *et al.*, 2013). Weaker local projections onto L6 CT compared to L6 IT resulted in
216 firing rate differences between CT and IT. Although the model anatomical connectivity was empir-
217 ically constrained, population responses are not fully defined by the anatomy, but emerge from
218 the complex dynamical interplay across different excitatory and inhibitory populations.

219 **M1 firing dynamics during movement**

220 The model reproduced experimental cell type-specific dynamics associated with movement. The
221 movement state was simulated by increasing long-range inputs from ventrolateral thalamus (VL;
222 here equivalent to motor thalamus, MTh) to 0-10 Hz (uniform distribution), and reducing I_h con-
223 ductance to 25% in PT cells, to simulate high NA neuromodulatory inputs from LC. The remaining
224 6 long-range inputs (PO, S1, S2, cM1, M2, OC) continued to provide background drive (≤ 5 Hz). This
225 resulted in a large increase in L5B PT activity and the development of a strong gamma oscillation
226 (observable in the spiking raster activity Fig. 3A). PT5B_{lower} neurons, which were largely silent during
227 the quiet state, now exhibited similar activity to PT5B_{upper}. This is consistent with the involvement
228 of PT, and particularly PT5B_{lower} (Economou *et al.*, 2018), in motor control. During movement, the
229 activity of L2/3 IT and L5 IT decreased moderately, whereas L4 IT, L6 IT and L6 CT firing rates re-
230 mained similar. There was a transition period from quiet to movement that lasted approximately
231 500ms, during which there was a peak in the activity of L5 IT and PT5B_{upper}, consistent with efferent
232 motor thalamic projections. This transitory activity peaks could also be seen in most of the remain-
233 ing model set simulations. Although IT2/3 exhibited a similar transition peak in the base model,
234 this was not apparent in other model set simulations, suggesting this could have resulted from the
235 ongoing L2/3 IT delta oscillations.

236 Model firing rate distributions were generally consistent with experimental data across popula-
237 tions and behavioral states. We compared the quiet and movement population firing rates of the
238 model set against M1 in vivo experimental data (Schiemann *et al.*, 2015) (Fig. 3B). Both model and
239 experiment L2/3 IT cells exhibited low firing rates during both quiet (mean \pm SD model: 1.6 ± 3.9 Hz;
240 exp: 0.6 ± 0.7 Hz) and movement states (mean \pm SD model: 0.7 ± 2.8 Hz; exp: 0.6 ± 1.1 Hz). The L5B rates,
241 including both IT and PT, were similar in model and experiment and exhibited a similar increase
242 from quiet (model 4.1 ± 5.5 Hz; exp 5.9 ± 3.9 Hz) to movement (model: 6.9 ± 9.7 Hz; exp: 8.4 ± 7.5 Hz).
243 Following the experimental study data analysis and classification of populations (Schiemann *et al.*,
244 2015), we compared rates of cells that exhibited *enhanced* or *suppressed* activity from quiet to
245 movement. Both L5B_{enhanced} and L5B_{suppressed} rates exhibited comparable trends in model and experi-
246 ment. The quiet state L5B_{enhanced} mean \pm SD rates were higher in the model than experiment (model:
247 1.5 ± 3.6 Hz, exp: 5.1 ± 4.0 Hz) but increased to a similar rate during movement (model: 13.2 ± 11.1 Hz,

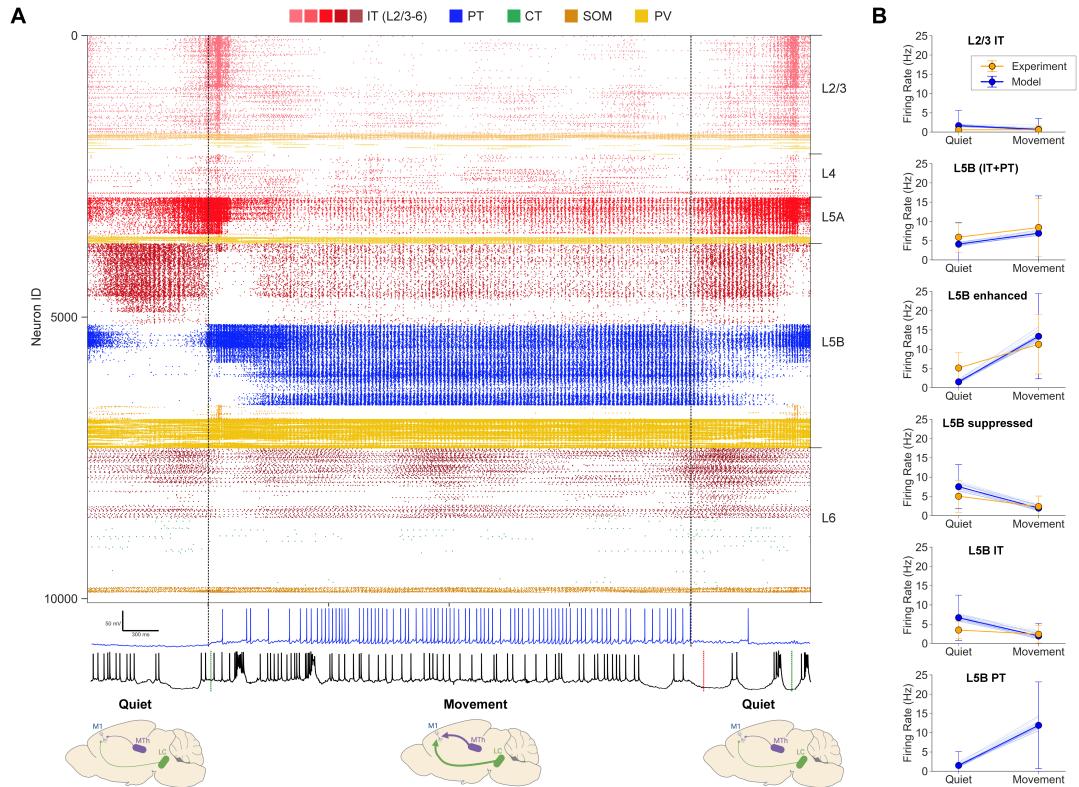


Figure 3. M1 cell-type and layer-specific firing dynamics during quiet and movement states under the control condition. The movement state was simulated by driving the network with increased activity (0-10Hz) from motor thalamus, background activity (≤ 5 Hz) from the 6 remaining long-range inputs, and reducing I_h to 25% in PT cells (mimicking high NA modulation). **A. Top:** Raster plot of activity transitioning from quiet (1s) to movement (4s) to quiet (1s) states (6s of base model simulation shown; cells grouped by population and ordered by cortical depth within each population). **Bottom:** Example model PT5B (blue) and experiment (black) voltage traces. **B.** Firing rate (mean \pm SD) in different cell populations for model set (blue) and experiment (orange). Model set includes cell rates of all 25 simulations; the mean rates of each individual simulation shown as thin blue lines. Statistics were computed across 4s for each state.

248 exp: 11.3 ± 7.7 Hz). L5B_{suppressed} model and experiment rates exhibited a similar decrease from quiet
249 (model: 7.5 ± 5.7 Hz, exp: 5.0 ± 4.2 Hz) to movement states (model: 2.0 ± 3.1 , exp: 2.3 ± 2.7 Hz). L5B IT
250 quiet mean \pm SD rates were higher for model vs experiment (model: 6.7 ± 5.9 Hz, exp: 3.5 ± 2.3 Hz) but
251 also decreased to a similar level during movement (model: 1.9 ± 3.3 Hz, exp: 2.4 ± 2.3 Hz). Model L5B
252 PT rates increased sharply from quiet (1.5 ± 3.6 Hz) to movement (11.9 ± 11.3 Hz). We did not include
253 experiment PT rates in Fig. 3B given their small sample size (N=3) and high variability. However,
254 we note that two of the experiment PT cells showed a decrease from quiet to move (16.0 Hz to
255 5.6 Hz and 4.7 Hz to 0.6 Hz), and one showed a similar sharp increase to that of the model (3.5 Hz
256 to 13.2 Hz). The robustness of the model was evidenced by the small variability across the mean
257 firing rates of the 25 simulations in the model set, each with different randomization seeds (see
258 thin blue lines in Fig. 3B).

259 **M1 layer 5 LFP oscillations depend on behavioral state**

260 In vivo studies in mouse vibrissal M1 have shown a decrease of L5 LFP slow oscillations (3-5 Hz)
261 and an increase in gamma oscillations (30-50 Hz) during active whisking (Zagha *et al.*, 2013). Here,
262 we investigated whether similar changes were observed in the L5 LFP of mouse M1 during the self-
263 paced, voluntary movement task (Schiemann *et al.*, 2015), and if those changes were captured
264 by our simulated M1 LFP (Fig. 4). Importantly, the model was not tuned to reproduce the experi-
265 ment LFP during either quiet or movement states. Despite this, LFP amplitudes were overall similar
266 in model and experiment (order of $500 \mu V$). In both experiment and model, the L5 LFP showed
267 weaker slow oscillations (delta) and stronger fast oscillations (gamma) during movement compared
268 to quiet behavioral states, consistent with the previously reported experiments (Zagha *et al.*, 2013).
269 This is illustrated in the raw LFP signal and spectrogram examples for experiment and model (Fig-
270 ure 4A for quiet and 4B for movement). Model L5 LFP was averaged across the signals recorded
271 from simulated extracellular electrodes at 3 depths within L5: $600 \mu m$ (L5A), $800 \mu m$ (upper L5B)
272 and $1000 \mu m$ (lower L5B). The experimental LFP dataset was recorded in vivo from L5 extracellular
273 electrodes and preprocessed to remove outliers and potential artifacts (see Methods).

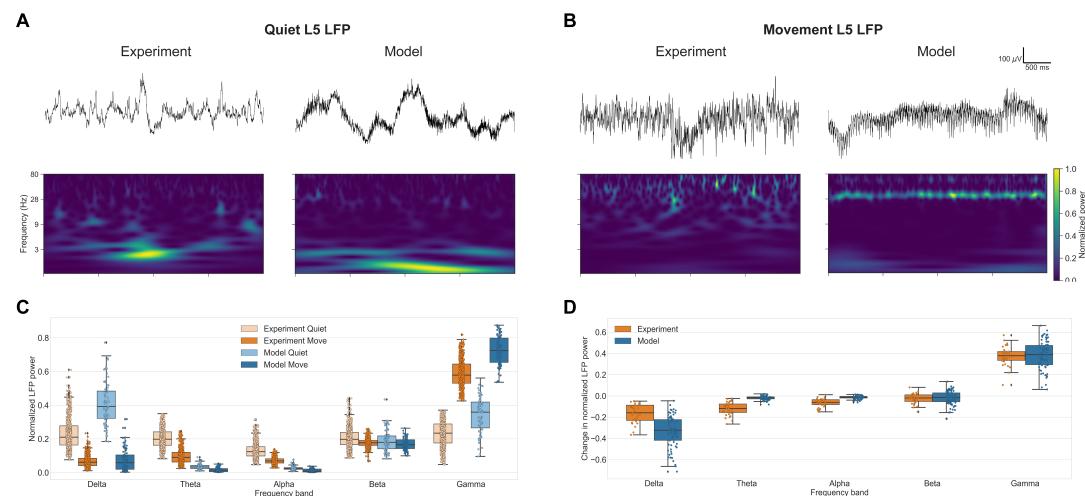


Figure 4. M1 layer 5 LFP oscillations during the quiet and movement states. Example experiment and model raw LFP signals (top) and spectrograms (middle) during the quiet (A) and movement (B) states. **C.** Comparison of experiment and model normalized power spectral density (PSD) power across 5 frequency bands during quiet and movement states. **D.** Comparison of experiment and model changes in normalized power spectral density (PSD) power across 5 frequency bands during quiet and movement states .

274 The model reproduced behavioral-dependent differences across different frequency bands of
275 M1 LFP oscillations. To quantify these differences we calculated the LFP normalized power spec-
276 tral density (PSD) across the major frequency bands for the experimental and modeling datasets

277 (Fig. 4C). To enable comparison, we segmented the experimental data in 4-second samples, matching
278 the duration of the model dataset samples. Both experiment and model datasets exhibited
279 stronger LFP power at the lower end of the spectrum (delta, theta and alpha bands) during the
280 quiet state, and stronger high-frequency (gamma) LFP power during movement. More specifically,
281 delta (0-4 Hz) power in the quiet state was high in both model vs experiment (median \pm IQR: model:
282 0.39 ± 0.16 ; exp: 0.21 ± 0.11) but decreased to a similar level during movement (model: 0.06 ± 0.09 ; exp:
283 0.06 ± -0.04). Theta (4-8 Hz) power was overall higher in experiments compared to the model, but
284 in both cases showed higher amplitude in the quiet vs movement states. A similar pattern was ob-
285 served for the LFP alpha (8-13 Hz) power (model: 0.02 ± 0.01 vs 0.01 ± 0.02 ; exp: 0.12 ± 0.05 vs 0.07 ± 0.03).
286 Beta power (13-30 Hz) remained largely stable from quiet to movement states, and exhibited very
287 similar values for experiment and model (model: 0.18 ± 0.08 and 0.18 ± 0.08 ; exp: 0.20 ± 0.07 and
288 0.18 ± 0.03). Gamma power (30-80 Hz) was stronger during movement for both experiment and
289 model (model: 0.36 ± 0.15 and 0.72 ± 0.14 ; exp: 0.23 ± 0.11 and 0.58 ± 0.11). The increase in PT av-
290 erage firing rates and oscillatory activity depicted in Fig. 3 suggest PT neurons are predominantly
291 responsible for the increase in L5 gamma LFP power.

292 The model also reproduced the main changes in LFP power from quiet to movement states
293 when looking at paired samples occurring within the same recording. In the previous comparison,
294 the experimental dataset included a larger number of 4-second samples for the quiet (N=3890)
295 than movement (N=2840) states. These were obtained from 30 recordings from different animals,
296 trials and recording sites within L5. In order to more directly quantify the change in LFP power
297 from quiet to movement, we selected the subset of paired 4-second quiet and movement samples
298 that occurred consecutively within the same recording. We then calculated the change in normal-
299 ized LFP PSD for the resulting 160 pairs of consecutive quiet and movement samples (Fig. 4D).
300 Both model and experiment showed results consistent with the previous analysis: from quiet to
301 movement there was 1) a strong decrease of delta frequency power during movement (model:
302 -0.32 ± 0.19 ; exp: -0.16 ± 0.14); 2) small changes in theta, alpha and beta power; and 3) large increase
303 in gamma power (model: 0.39 ± 0.18 ; exp: 0.38 ± 0.08). These results provide further validation that
304 the model is capturing behavior-related oscillatory dynamics observed in mouse M1 in vivo.

305 **M1 dynamics during motor thalamus inactivation**

306 To gain insights into the known role of thalamic inputs in regulating M1 output (Guo *et al.*, 2021;
307 Dacre *et al.*, 2021) we simulated an experimental manipulation described in our *in vivo* study (Schie-
308 mann *et al.*, 2015), consisting of blocking thalamic input to M1 by local infusion of the *GABA_A* recep-
309 tor agonist muscimol into the VL/VA complex. Our computational model captured several features
310 of inactivating motor thalamus (MTh) inputs to M1. The MTh inactivation condition was simulated
311 by removing the VL input. The other 6 long-range background inputs (PO, cM1, M2, S1, S2, OC) re-
312 mainded. Under this condition, the change from quiet to movement states only involved reducing
313 and reducing I_h conductance from 75% to 25% in PT cells, simulating the high NA neuromodulatory
314 inputs from LC. The decrease in movement-associated L5B activity (control: 6.9 ± 9.7 Hz, MTh inact:
315 4.00 ± 5.7 Hz) after MTh inactivation (Fig. 5A,B) was consistent with that seen experimentally (control:
316 8.4 ± 7.5 Hz, MTh inact: 2.2 ± 4.0 Hz). The model also captured the strong reduction in the movement-
317 associated L5B_{enhanced} population response following MTh inactivation (model control: 13.3 ± 11.1 Hz,
318 MTh inact: 6.3 ± 7.1 Hz; exp control: 11.3 ± 7.7 , MTh inact: 4.2 ± 4.9). The decrease in the model L5B
319 rates was caused by a strong reduction of PT rates (control: 11.9 ± 11.3 Hz, MTh inact: 2.9 ± 6.0 Hz).
320 MTh inactivation resulted in a particularly strong reduction of the movement-associated PT5B_{lower}
321 population, which was practically silenced.

322 However, results suggested that the model was not adequately capturing some effects of MTh
323 inactivation on M1 L5B, particularly during the quiet state. Specifically, MTh inactivation lead to
324 a reduction of quiet state L5B (control: 5.1 ± 3.9 Hz, MTh inact: 1.1 ± 1.1), as well as L5B_{suppressed},
325 which was not observed in our model, where these two populations rates remained similar. This
326 pointed to future directions to improve our baseline model by evaluating different hypotheses of

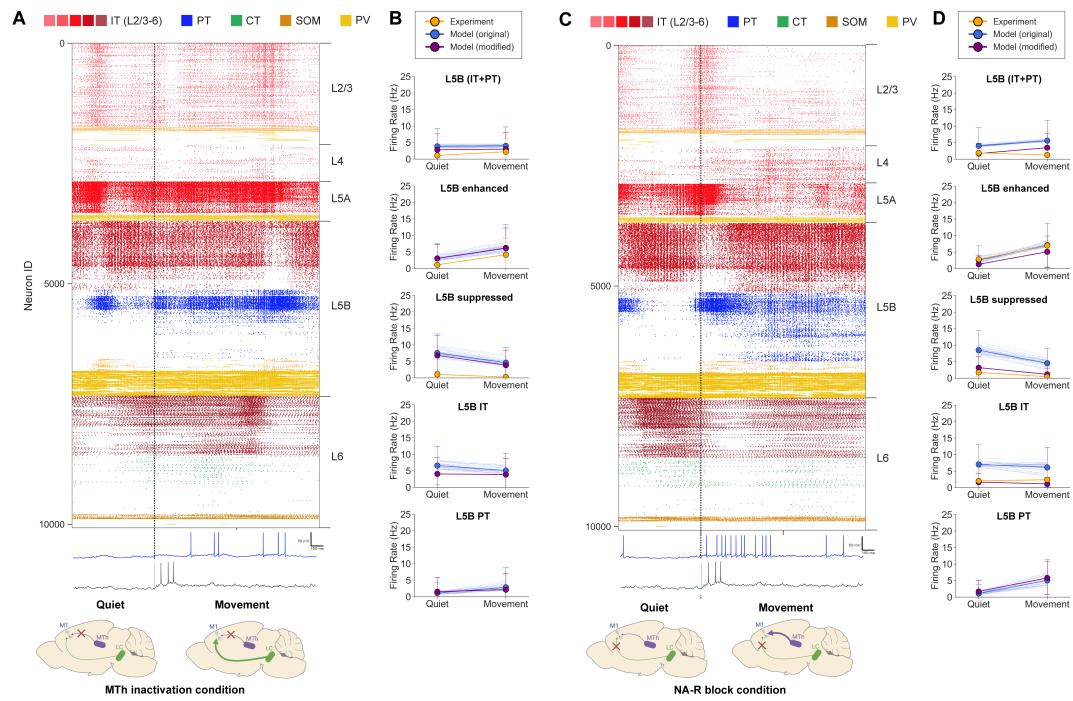


Figure 5. M1 cell-type and layer-specific firing dynamics during the quiet and movement states for the MTh inactivation (A and B) and the NA-R block (C and D) conditions. A. and C. Top: Raster plot of activity transitioning from quiet (1s) to movement (2s) (3s of base model simulation shown; cells grouped by population and ordered by cortical depth within each population). **Bottom:** Example model PT5B (blue) and experiment (black) voltage traces. **B. and D.** Firing rate (mean \pm SD) in different cell populations for the original model set (blue), modified model (purple) and experiment (orange). The modified model decreased long-range inputs from cM1 and M2 for the MTh inactivation condition, and increased K⁺ conductance for the NA-R block condition. The original model set includes cell rates of all 25 simulations; the mean rates of each individual simulation shown as thin blue lines. Statistics were computed across 4s for each state.

327 the mechanisms and circuitry underlying the experimental observations. Here we evaluated one
328 such hypothesis: discrepancies could be due to the lack of interaction between long-range inputs
329 in the model, preventing it from capturing the effects of MTh inactivation on other regions (e.g. M2)
330 that in turn provide input to M1 (see Discussion for more details and alternatives). To evaluate this
331 hypothesis we modified our original model of MTh inactivation by reducing the activity of other
332 cortical long-range inputs (cM1, M2). The modified model better reproduced experimental L5B
333 results (see Fig. 5B purple lines) both for the quiet (orig model: 3.9 ± 5.4 ; modified model for MTh
334 inactivation: 2.8 ± 4.8 ; exp: 1.1 ± 1.1 Hz) and movement (original model: 4.0 ± 5.7 Hz; modified model
335 for MTh inactivation: 3.0 ± 5.0 ; exp: 2.2 ± 4.0 Hz) states, supporting our hypothesis of the circuitry
336 involved in the MTh inactivation condition.

337 **M1 dynamics during noradrenergic (NA) receptor blockade**

338 We then explored the role of NA neuromodulation in the model, motivated by our in vivo study
339 where blocking NA inputs through local infusion of NA-R antagonists resulted in reduced motor
340 coordination (*Schiemann et al., 2015*). Other studies have also shown that NA alters M1 signaling
341 during movement and motor behavior (*Dacre et al., 2021; Guo et al., 2021; Sheets et al., 2011*). The
342 model reproduced key aspects of the experimental M1 L5B responses under this noradrenergic
343 receptor blockade (NA-R block) condition. NA-R block was initially simulated by resetting I_h from
344 the in vivo to the baseline in vitro condition (100% I_h conductance in PT cells), reflecting no NA
345 input from LC. Long-range inputs from seven cortical and thalamic regions were unchanged from
346 the control condition. Under NA-R block condition, the change from quiet to movement states only
347 involved increasing the firing rate of MTh inputs. NA-R block resulted in decreased L5B activation
348 during movement compared to control condition (Fig. 5C,D) (control: 6.9 ± 9.7 Hz, NA-R block: $5.6 \pm$
349 6.2 Hz), particularly in the PT5B population (control: 11.9 ± 11.3 Hz, NA-R block: 5.1 ± 6.3 Hz). In vivo
350 experiments showed a more pronounced decrease in L5B movement rates (control: 8.4 ± 7.5 Hz,
351 NA-R block: 1.3 ± 2.2 Hz). A similar decrease during NA-R block was observed in the quiet rates of
352 L5B and L5B IT, whereas these model populations remained at a similar rate than in the control
353 condition.

354 These discrepancies between experiment and model suggested that the model was not fully
355 capturing some effects of noradrenergic LC inputs. As in the MTh inactivation condition, this pro-
356 vided an opportunity to evaluate hypotheses that could improve future versions of the model. We
357 therefore tested one possible hypothesis by modifying the model to incorporate an additional
358 known effect of NA, namely, the modulation of potassium (K^+) conductance (*Wang and McCormick,
359 1993; Favero et al., 2012; Schiemann et al., 2015*). Increased NA has been shown to reduce K^+
360 conductance, hence to simulate this effect during the NA-block condition we increased potassium
361 conductance by 50% in all excitatory cell types. The combined effect of increasing I_h and K^+ bet-
362 ter captured the experimental responses during the NA-block condition (see Fig. 5D purple lines).
363 More specifically, L5B, L5 IT and L5B_{suppressed} mean firing rates were lower for both the quiet (L5B
364 IT: orig model: 7.0 ± 6.1 ; modified model for NA-R block: 1.7 ± 2.6 ; exp: 2.0 ± 0.7 Hz) and movement
365 (L5B IT: orig model: 6.2 ± 6.0 ; modified model for NA-R block: 1.1 ± 1.9 ; exp: 2.4 ± 3.0 Hz) responses,
366 more closely matching those recorded in vivo. This supports the hypothesis that changes in K^+
367 conductance are an important component of LC-mediated NA modulation.

368 **Motor thalamic and noradrenergic inputs affect L5B dynamics in a cell type and 369 sublayer-specific manner**

370 Our model reproduced the pattern of M1 L5B in vivo responses observed experimentally for dif-
371 ferent levels of MTh and NA inputs, and provided insights and predictions of how the different L5B
372 subpopulations respond and interact (Fig. 6). The experimental and modeling results reported so
373 far suggest that M1 L5B response depends strongly on MTh and NA inputs. Fig. 6A shows the exper-
374 iment (top) and model (bottom) L5B mean firing rates as a function of these two inputs, illustrating
375 that MTh and NA inputs moderately increased the L5B response, but both are simultaneously re-

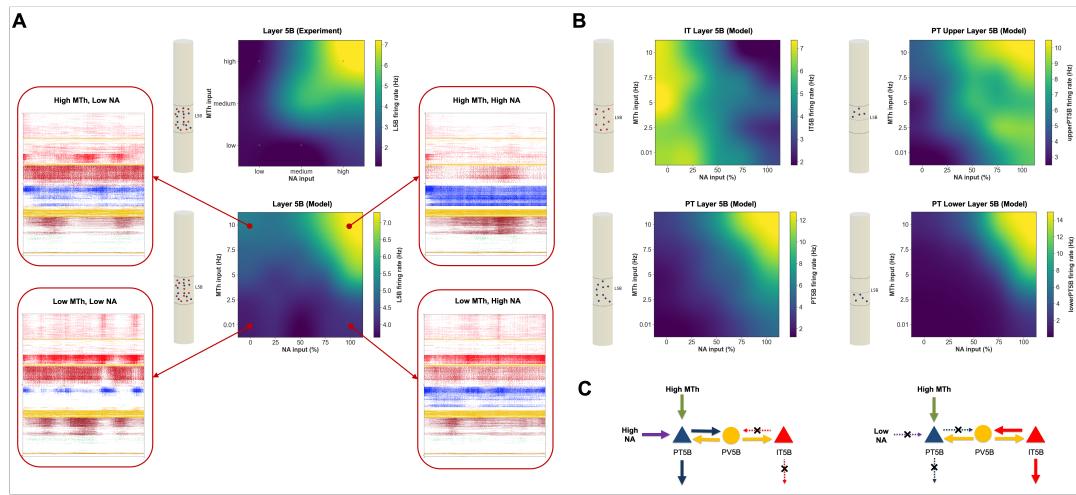


Figure 6. Cell type and sublayer-specific effects of MTh and NA input levels on L5B dynamics **A.** Mean L5B firing rate response of experiment (top) and model (bottom) to different levels of MTh and NA inputs. Firing raster plot of full circuit model (4 secs) shown inset for each of the four extreme conditions. Schematic cylinders illustrate the cell type (IT=red; PT=blue) and layer analyzed. Experimental values derived from the control, MTh inactivation and NA-R block conditions indicated with small gray circle (remaining values were extrapolated) Model results include additional simulations covering the full parameter space explored. **B.** Same as in A but for different L5B cell types and subpopulations (IT, PT, PT5B_{upper} and PT5B_{lower}) each of which showed highly specific response patterns to MTh and NA. **C.** Schematic of hypothesized NA inputs and mutual disynaptic inhibitory pathway mediating the switching between IT- and PT-predominant output modes.

376 required to trigger high L5B activity. Both experiment and model exhibit a similar response pattern,
377 progressively increasing with MTh and NA, and a similar range of L5B firing rates. We note that
378 these experimental results combine and extrapolate data from the control, MTh inactivation and
379 NA-R block conditions. The model results corresponds to the original version (without the modi-
380 fications proposed in the previous sections) but we included additional simulations covering the
381 full parameter space explored, i.e. all combinations of MTh input and NA modulation (PT I_h) values
382 (see Methods for details). To provide a better intuition of the full circuit model dynamics, we also
383 included the spiking raster plots for the 4 conditions with minimum and maximum MTh/NA values
384 (see arrows from the 4 corners of the model heatmap in Fig. 6A).

385 The model revealed highly specific and distinct activity patterns for the different L5B cell types
386 and sublayers (Fig. 6B). Somewhat surprisingly, L5B IT cells exhibited an inverse response pattern
387 to NA compared to L5B PT and to the overall L5B response (Fig. 6B), showing decreased firing
388 with increases of NA inputs; and a largely constant response to MTh inputs. The NA response is
389 consistent with the low levels of I_h expression in L5B IT cells (*Sheets et al., 2011*). We hypothesize
390 the inverse response to NA between L5B IT and PT cells could be caused by mutual inhibition
391 mediated via L5 interneurons (see schematic in Fig. 6C). L5B PT cells showed higher peak firing
392 rates than IT (12.8 Hz vs 7.4 Hz) thus dictating the overall L5B response pattern and overshadowing
393 L5 IT inverse pattern. Supragranular IT2/3 and IT5A populations exhibited generally low activity (see
394 Fig. 6A raster plots) when PT5B fired strongly (high MTh and NA), consistent with the predominant
395 involvement of PT cells in motor execution (*Li et al., 2015b*). The model also exposed sublaminar
396 differences in L5B PT response, with PT5B_{lower} exhibiting more extreme minimum and maximum
397 rates than PT5B_{upper} (0 – 15 Hz vs 3 – 10 Hz). The PT5B_{lower} activation threshold was also higher than
398 for PT5B_{upper}, i.e. PT5B_{upper} required higher MTh and NA inputs to start responding strongly. This
399 suggests PT5B_{upper} would activate first followed by a delayed response from PT5B_{lower}, as inputs
400 associated with motor execution accumulate and reach a threshold. These results in line with the
401 suggested role of PT5B_{upper} in movement preparation and PT5B_{lower} cells in movement initiation
402 (*Economou et al., 2018*).

403 Discussion

404 In this work, we have developed a computational model of the mouse M1 microcircuit and val-
405 idated it against in vivo data. Despite inherent limitations due to gaps in the data (see details
406 in the section below), we believe that this constitutes the most biophysically detailed model of
407 mouse M1 currently available comprising the molecular, cellular and circuit scales. The model in-
408 tegrates quantitative experimental data on neuronal physiology, morphology, laminar density, cell
409 type distribution, dendritic distribution of synapses, and local and long-range synaptic connectiv-
410 ity, obtained from 31 studies, with 12 of these coming from our experimental laboratory. Model
411 development also benefited greatly from extended discussions between the computational and
412 experimental authors. Integrating data across scales and managing such a complex model moti-
413 vated the development of a novel software tool, NetPyNE, that provides a high-level interface to
414 NEURON and facilitates multiscale brain circuit modeling (*Dura-Bernal et al., 2019*).

415 To validate the model we focused on reproducing mouse M1 in vivo experimental results across
416 different behavioral states and experimental conditions from a single study (*Schiemann et al.,*
417 *2015*). Simulation results were consistent across multiple random wiring seeds and background
418 input seeds, demonstrating the robustness of the model. The model cell type-specific sponta-
419 neous firing rates, associated with the quiet behavior, were consistent with experimental data
420 from several in vivo studies (*Schiemann et al., 2015; Zagha et al., 2015; Li et al., 2016; Estebanez*
421 *et al., 2018; Economo et al., 2018*) (Fig. 2). We then simulated activity corresponding to mouse self-
422 paced, voluntary locomotion by increasing motor thalamus (MTh) and noradrenaline (NA) inputs.
423 Movement-related changes in L2/3 and L5B population firing rates were consistent with those re-
424 ported in vivo, including bidirectional (enhanced vs suppressed) firing rate changes in distinct L5B
425 pyramidal neuron populations (Fig. 3). Local field potentials (LFP) oscillations emerged sponta-
426 neously (no oscillatory inputs) at physiological frequencies, and included characteristic delta, beta
427 and gamma oscillatory patterns. LFP power in L5B shifted from lower (delta) to higher (gamma)
428 frequency bands during movement, consistent with in vivo LFP data (Fig. 4).

429 We also simulated two experimental manipulations – inactivation of MTh inputs and blocking
430 of NA receptors – which resulted in cell type-specific activity changes in L5B which matched those
431 measured experimentally (Fig. 5). For each condition, we evaluated two hypotheses of the cellular
432 and circuit mechanisms involved, which suggested MTh inactivation may affect other long-range
433 inputs, and NA modulation affects not only I_h but also K^+ conductances. We used the model to
434 systematically explore the interaction between MTh and NA inputs and predict M1 output at the
435 level of individual cell types at sublaminar resolution. Results captured the overall pattern and
436 response amplitudes measured in vivo, supporting the hypotheses both high MTh and NA inputs
437 are required for self-paced voluntary movement-related L5B activity (Fig. 6). The model predicted a
438 predominant role of PT cells in dictating L5B responses during movement, with $PT5B_{lower}$ providing
439 the strongest response but only when both MTh and NA inputs were high enough, i.e. $PT5B_{lower}$
440 exhibited the highest response threshold. L5B IT cells exhibited an opposite but lower-amplitude
441 pattern, potentially due to PT-mediated disynaptic inhibition, and infragranular IT were less en-
442 gaged during the movement state. These predictions are consistent with findings associating IT
443 and $PT5B_{upper}$ with motor planning and $PT5B_{lower}$ with motor execution (*Li et al., 2015b; Economo*
444 *et al., 2018*).

445 This is, to the best of our knowledge, the first model of the mouse M1 microcircuit where fir-
446 ing rates and LFPs have been directly compared to cell type and layer-specific mouse M1 in vivo
447 data associated with different behaviors and experimental manipulations. The model provides a
448 quantitative theoretical framework to integrate and interpret M1 experimental data across scales,
449 evaluate hypotheses and generate experimentally testable predictions.

450 Challenges and limitations

451 Our ambition was to develop a detailed multiscale computational model of the mouse M1 micro-
452 circuit. We necessarily fell short due to lack of data of some molecular, cellular, network and long-

453 range connectivity details. This model was constructed and evaluated over a period of six years.
454 During this period we updated the model multiple times to incorporate new data, but of course
455 any neurobiological model is always in need of additional updating and improvement as new mea-
456 surements become available.

457 Of some concern is the relative lack of data on dendritic ion channel density, which will affect the
458 influence of distal synaptic inputs on L5 neurons (*Labarrera et al., 2018*). Cell models are precisely
459 tuned to reproduce experimental somatic responses, but limited data is available to characterize
460 dendritic physiology. Although we adapted the morphology and physiology of IT cells based on
461 their layer, we omitted cellular diversity within each model population – all the model neurons of
462 the same cell type and layer have identical morphologies and identical channel parameters. This
463 contrasts with other models which vary both channel conductances and morphologies, the latter
464 by slightly jittering angles and lengths (*Markram et al., 2015a*).

465 Due to the nature of our circuit mapping methods (*Anderson et al., 2010; Hooks et al., 2013;*
466 *Suter and Shepherd, 2015*), our model used local excitatory connectivity primarily based on post-
467 synaptic cell type and presynaptic locations. Our model's normalized cortical-depth-dependent
468 connectivity provided greater resolution than traditional layer-based wiring, but still contained
469 boundaries where connection density changed and did not provide cell level point-to-point res-
470 olution. This could be further improved by fitting discretely binned experimental data to functions
471 of cortical depth, resulting in smoother connectivity profiles. Other recent models have used a
472 sophisticated version of Peters' principle (identifying overlap between axonal and dendritic trees)
473 to provide cell-to-cell resolution for selected cells, which must then still be replicated and general-
474 ized across multiple instances to build a large network (*Rees et al., 2017; Markram et al., 2015a*).
475 Inclusion of synaptic plasticity mechanisms could be used to study the role of different cell types
476 in motor learning, for example, L5A neurons which evidence suggests participate in the evolving
477 network representation of learned movements (*Masamizu et al., 2014*).

478 We are limited not only by lack of precise data for parameter determination, but also by compu-
479 tational constraints. Often, network simulations use point neurons in order to avoid the computa-
480 tional load of multicompartment neurons, but at the expense of accuracy (*Potjans and Diesmann,*
481 *2014; Izhikevich and Edelman, 2008; Schmidt et al., 2018*). Here, we compromised by using rela-
482 tively small multicompartment models for most populations, with the exception of the neurons
483 of L5. In terms of noradrenaline influence, we focused here on one effect on the PT cell type,
484 neglecting the wide-ranging effects of this and other neuromodulators (such as dopamine, acetyl-
485 choline) (*O'Donnell et al., 2012; McCormick, 1992; Graybiel, 1990*) and their the influence of second
486 messenger cascades (*Neymotin et al., 2016a*). Implementing this functionality is now available via
487 NEURON's *rxd* module (*McDougal et al., 2013; Newton et al., 2018*). Even with these compromises,
488 optimizing and exploring our large network model required millions of HPC core-hours.

489 In summary, model firing rate distributions were generally consistent with experimental data
490 across populations and behavioral states. We note that the experimental dataset represents a
491 small sparse sample of neurons in the modeled cortical volume, resulting in a model data sample
492 size approximately 3 orders of magnitude larger than that of experiment (e.g. for L5B $N_{model} = 35182$
493 vs $N_{experiment} = 47$). Therefore, validation of our model results can be understood as showing that
494 the small dataset of experiment cell rates could have been subsampled from the larger dataset
495 of model rates. Novel methods that record from an increasingly larger number of simultaneous
496 neurons (*Hong and Lieber, 2019*) will enable further validation of the model results.

497 **M1 cellular and circuit mechanisms associated with quiet and movement behav- 498 iors**

499 A key question in motor system research is how motor cortex activity gets dissociated from muscle
500 movement during motor planning or mental imagery, and is then shifted to produce commands
501 for action (*Ebbesen and Brecht, 2017; Schieber, 2011; Shenoy et al., 2013*). One hypothesis has
502 been that this planning-to-execution switch might be triggered by NA neuromodulation (*Sheets*

503 *et al., 2011*). Downregulation of I_h , effected via NA and other neuromodulatory factors, has been
504 shown to increase PT activity as a consequence of enhanced temporal and spatial synaptic integration of EPSPs (*Sheets et al., 2011; Labarrera et al., 2018*). This effect is primarily observed in
505 PT cells, since the concentration of HCN channels in these cells has been shown to be significantly
506 higher than in IT cells (*Sheets et al., 2011; BICCN, 2021*). In the model, we used a baseline I_h con-
507 sistent with a cell tuned to reproduce in vitro data with no NA modulation. For the in vivo quiet
508 condition (low NA modulation), we used 75% of that baseline level, and for movement (high NA)
509 we used 25%, consistent with values reported experimentally (*Labarrera et al., 2018*). Paradoxi-
510 cally, I_h downregulation has also been reported to *reduce* pyramidal cell activity in some settings
511 (*George et al., 2009; Migliore and Migliore, 2012*). Here we improved our previous PT cell model
512 (*Neymotin et al., 2017*) to include an I_h model (*Migliore and Migliore, 2012*) that was able to recon-
513 cile these observations: I_h downregulation reduced PT response to weak inputs, while increasing
514 the cell response to strong inputs (*Migliore and Migliore, 2012; George et al., 2009; Sheets et al.,*
515 *2011; Labarrera et al., 2018*).

516 An additional hypothesis to explain differential planning and movement outputs, posits that
517 the shift results from activation of different cell populations in L5, mediated by distinct local and
518 long-range inputs. Accumulated evidence suggests that inputs arising from MTh carrying cerebel-
519 lar signals differentially target M1 populations (*Hooks et al., 2013*) and are involved in triggering
520 movement (*Dacre et al., 2021*) and in dexterous tasks (*Guo et al., 2021*). Using in vivo electrophys-
521 iology and optogenetic perturbations in mouse anterolateral motor cortex, *Li et al. (2015b)* found
522 evidence suggesting that preparatory activity in IT neurons is converted into a movement com-
523 mand in PT neurons. Further support for this hypothesis comes from a study that showed that
524 transcriptomically-identified different PT subtypes in upper vs lower L5B (*Economou et al., 2018*),
525 and showed that PT5B_{upper} projected to thalamus and generated early preparatory activity, while
526 PT5B_{lower} projected to medulla and generated motor commands.

527 These two hypotheses are not incompatible, and indeed our simulations suggest that both of
528 these mechanisms may coexist and be required for movement-related activity (Fig. 6). NA mod-
529 ulation and MTh input by themselves produced an increase in PT5B overall activity, but primarily
530 in the preparatory activity-related PT5B_{upper} population; both mechanisms were required to acti-
531 vate the PT5B_{lower} population associated with motor commands (*Economou et al., 2018*). The model
532 therefore predicts that the transition to motor execution (self-paced, voluntary movement) might
533 require both the neuromodulatory prepared state and circuit-level routing of inputs. Different
534 types of behaviors and contexts (e.g. goal-directed behaviors with sensory feedback) may involve
535 driving inputs from other populations or regions, such as supragranular layers or somatosensory
536 cortex (*Hooks et al., 2013; Dacre et al., 2021; Zareian et al., 2021; Yamawaki et al., 2021*). We
537 note that in our model and in vivo experiments (*Schiemann et al., 2015*) the quiet state does not
538 correspond to a preparatory state, as it lacks short-term memory, delays and other preparatory
539 components. Therefore, whether previous task-related findings (*Li et al., 2015b; Economou et al.,*
540 *2018*) on the role of PT5B_{lower} and PT5B_{upper} generalize to our self-paced voluntary movement results
541 remains an open question.

543 **Simulating experimental manipulations: motor thalamus inactivation and nora- 544 drenergic receptor blocking**

545 Attempting to reproduce the extreme conditions posed by experimental manipulations provided
546 further insights into the circuitry and mechanisms governing M1 dynamics. During MTh inactiva-
547 tion, our baseline model exhibited higher firing rates than in vivo, particularly for the quiet state.
548 We hypothesized this may be due to inactivation of MTh also affecting other afferent regions of M1,
549 such as contralateral M1 and S2; either directly (e.g. VL→S2) and/or indirectly via recurrent inter-
550 areal projections (e.g. M1→S2→M1). We evaluated this by reducing activity in these model regions,
551 which indeed resulted in a closer match to in vivo rates (Fig. 5). Several other hypotheses may also
552 explain the observed discrepancies, for example, that movement-related activity 1) depends on

553 changes in spiking patterns and not just amplitude (e.g. bursts or oscillatory activity); or 2) that it is
554 driven not only by VL but by other long-range inputs (consistent with recent findings (**Dacre et al., 2021**)), and/or by local lateral inputs from non-modeled regions of M1. The inclusion of detailed
555 interactions among afferent cortical and thalamic regions is out of the scope of this paper. How-
556 ever, our results already suggested possible improvements to the model and circuit pathways to
557 explore experimentally, demonstrating that the model can be used to evaluate different candidate
558 circuitries and activity patterns.

560 Similarly, for the NA receptor block condition, we modified the model to evaluate the hypothesis
561 that it not only increases PT I_h but also K⁺ conductance in all pyramidal neurons, as suggested
562 by multiple studies (**Wang and McCormick, 1993; Favero et al., 2012**). This resulted in a closer
563 match between model and experiment. Alternative hypotheses that may also account for the initial
564 differences observed include NA selective modulation of inhibitory synapses, and interactions with
565 other neuromodulators such as acetylcholine (**Conner et al., 2010**). These molecular and cellular
566 level mechanisms can be explored in our model to gain insights into their circuit-level effects.

567 **IT and PT disynaptic inhibition via shared L5 interneuron pools**

568 L5B IT and PT neurons exhibited an inverse response to increased NA inputs: IT rates decreased
569 while PT rates increased (Fig. 6B). We hypothesize this effect may result from mutual inhibition
570 between IT and PT mediated via a shared pool of L5 interneurons, as illustrated in the schematic
571 in (Fig. 6C). This is in line with the finding of shared interneuron pools in L5 IT and PT neurons
572 mediating disynaptic inhibition (**Apicella et al., 2012**), which contrast with the private (non-shared)
573 interneuron pools identified for PT and CT neurons (**Yamawaki and Shepherd, 2015**). Additional
574 support comes from rat *in vivo* results showing PV neurons were recruited predominantly during
575 motor execution and may shape motor commands through balanced or recurrent inhibition of
576 output-related pyramidal neurons (PT), while suppressing pyramidal neurons (IT) associated with
577 other functions such as hold-related activity (**Isomura et al., 2009**). By modeling the M1 circuit con-
578 nectivity and simulating its dynamics we have predicted the computation performed by this par-
579 ticular subcircuit, namely, a switching mechanism between IT- and PT-predominant output modes
580 (mutual inhibition ensures only one of them responds strongly at a time). This is consistent with
581 their suggested complementary roles in motor preparation vs execution (**Li et al., 2015b**). This
582 circuit-level prediction can be tested experimentally in future studies.

583 **Emergence of behavior-dependent physiological oscillations**

584 Our model of M1 neocortex exhibits spontaneous physiological oscillations without rhythmogenic
585 synaptic input. Strong oscillations were observed in the delta and beta/gamma ranges with spe-
586 cific frequency-dependence on cell class, cortical depth, and behavioral state. The simulated re-
587 produced the decrease in delta and increase in gamma power of M1 L5 LFP during movement
588 observed in the *in vivo* dataset (**Schiemann et al., 2015**), and previously reported in mouse vib-
589 rissal M1 during whisking (**Zagha et al., 2013**). The model can be used to provide cell type-specific
590 predictions as to the origins of behavior-related changes in LFP. For example, given the increase
591 of PT firing rates and oscillatory activity observed during movement (Fig. 3), we hypothesized that
592 the movement-related increase in L5 LFP gamma oscillations is largely mediated by PT neurons.
593 Strong LFP beta and gamma oscillations are characteristic of motor cortex activity in both rodents
594 (**Castro-Alamancos, 2013; Tsubo et al., 2013**) and primates (**Rubino et al., 2006; Nishimura et al., 2013**),
595 and have been found to enhance signal transmission in mouse neocortex (**Sohal et al., 2009**).
596 Both beta and gamma oscillations may play a role in information coding during preparation and
597 execution of movements (**Ainsworth et al., 2012; Tsubo et al., 2013**). More generally, these physio-
598 logical oscillations are considered to be fundamental to the relation of brain structure and function
599 (**Buzsáki and Mizuseki, 2014**). As the primary output, PT cells receive and integrate many local and
600 long-range inputs. Their only local connections to other L5 excitatory neurons are to other PT cells
601 (**Kiritani et al., 2012**). However, as described in the previous section, by targeting inhibitory cells in

602 L5 they are able to reach across layers to influence other excitatory populations, either reducing
603 activity or entraining activity (*Naka and Adesnik, 2016*). These disynaptic E→I→E pathways likely
604 play a role in coupling oscillations within and across layers, and in setting frequency bands.

605 **Implications for experimental research and therapeutics**

606 Our model integrates previously isolated experimental data at multiple scales into a unified sim-
607 ulation that can be progressively extended as new data become available. This provides a useful
608 tool for researchers in the field, who can use this quantitative theoretical framework to evaluate
609 hypotheses, make predictions and guide the design of new experiments using our freely-available
610 model (see Methods). This *in silico* testbed can be systematically probed to study microcircuit
611 dynamics and biophysical mechanisms with a level of resolution and precision not available exper-
612 imentally. Unraveling the non-intuitive multiscale interactions occurring in M1 circuits can help us
613 understand disease mechanisms and develop new pharmacological and neurostimulation treat-
614 ments for brain disorders (*Neymotin et al., 2016c,b; Dura-Bernal et al., 2016; Arle and Shils, 2008;*
615 *Wang et al., 2015; Bensmaia and Miller, 2014; Sanchez et al., 2012*), and improve decoding meth-
616 ods for brain-machine interfaces (*Carmena, 2013; Shenoy and Carmena, 2014; Dura-Bernal et al.,*
617 *2017; Kocaturk et al., 2015*).

618 **Methods**

619 The methods below describe model development with data provenance, and major aspects of
620 the final model. The full documentation of the final model is the source code itself, available for
621 download at <http://modeldb.yale.edu/260015>.

622 **Morphology and physiology of neuron classes**

623 Seven excitatory pyramidal cell and two interneuron cell models were employed in the network.
624 Their morphology and physiological responses are summarized in Figs. 1A,B,C and 7. In previ-
625 ous work we developed layer 5B PT corticospinal cell and L5 IT corticostratal cell models that re-
626 produced *in vitro* electrophysiological responses to somatic current injections, including sub- and
627 super-threshold voltage trajectories and f-I curves (*Neymotin et al., 2017; Suter et al., 2013*). To
628 achieve this, we optimized the parameters of the Hodgkin-Huxley neuron model ionic channels –
629 Na, Kdr, Ka, Kd, HCN, CaL, CaN, KCa – within a range of values constrained by the literature. The
630 corticospinal and corticostratal cell model morphologies had 706 and 325 compartments, respec-
631 tively, digitally reconstructed from 3D microscopy images. Morphologies are available via Neuro-
632 Morpho.org (*Ascoli et al., 2007*) (archive name “Suter_Shepherd”). For the current simulations, we
633 further improved the PT model by 1) increasing the concentration of Ca²⁺ channels (“hot zones”)
634 between the nexus and apical tuft, following parameters published in (*Hay et al., 2011*); 2) low-
635 ering dendritic Na⁺ channel density in order to increase the threshold required to elicit dendritic
636 spikes, which then required adapting the axon sodium conductance and axial resistance to main-
637 tain a similar f-I curve; 3) replacing the HCN channel model and distribution with a more recent
638 implementation (*Migliore and Migliore, 2012*). The new HCN channel reproduced a wider range
639 of experimental observations than our previous implementation (*Kole et al., 2006*), including the
640 change from excitatory to inhibitory effect in response to synaptic inputs of increasing strength
641 (*George et al., 2009*). This was achieved by including a shunting current proportional to I_h . We
642 tuned the HCN parameters (I_h and v_{rev_h}) and passive parameters to reproduce the findings noted
643 above, while keeping a consistent f-I curve consistent (*Suter et al., 2013*).

644 The network model includes five other excitatory cell classes: layer 2/3, layer 4, layer 5B and
645 layer 6 IT neurons and layer 6 CT neurons. Since our focus was on the role of L5 neurons, other cell
646 classes were implemented using simpler models as a trade-off to enable running a larger number
647 of exploratory network simulations. Previously we had optimized 6-compartment neuron models
648 to reproduce somatic current clamp recordings from two IT cells in layers 5A and 5B. The layer 5A
649 cell had a lower f-I slope (77 Hz/nA) and higher rheobase (250 nA) than that in layer 5B (98 Hz/nA

650 and 100 nA). Based on our own and published data, we found two broad IT categories based on
651 projection and intrinsic properties: corticocortical IT cells found in upper layers 2/3 and 4 which
652 exhibited a lower f-I slope (~72 Hz/nA) and higher rheobase (~281 pA) than IT corticostriatal cells
653 in deeper layers 5A, 5B and 6 (~96 Hz/nA and ~106 pA) (*Yamawaki et al., 2015; Suter et al., 2013;*
654 *Oswald et al., 2013*). CT neurons' f-I rheobase and slope (69 Hz/nA and 298 pA) was closer to that of corticocortical neurons (*Oswald et al., 2013*). We therefore employed the layer 5A IT model for
655 layers 2/3 and 4 IT neurons and layer 6 CT neurons, and the layer 5B IT model for layers 5A, 5B and
656 6 IT neurons. We further adapted cell models by modifying their apical dendrite length to match
657 the average cortical depth of the layer, thus introducing small variations in the firing responses of
658 neurons across layers.

660 We implemented models for two major classes of GABAergic interneurons (*Huang, 2014; BICCN, 2021; Rudy et al., 2011*): parvalbumin-expressing fast-spiking (PV) and somatostatin-expressing
661 low-threshold spiking neurons (SOM). We employed existing simplified 3-compartment (soma, axon,
662 dendrite) models (*Konstantoudaki et al., 2014*) and increased their dendritic length to better match
663 the average f-I slope and rheobase experimental values of cortical basket (PV) and Martinotti (SOM)
664 cells (Neuroelectro online database (*Tripathy et al., 2015*)).



Figure 7. Microcircuit layer composition and cell type f-I response. **A.** Proportion of cell classes per layer; **B.** f-I curve for each excitatory and inhibitory cell types. All properties were derived from published experimental data. Populations labels include the cell class and layer, e.g. 'IT2' represents the IT class neurons in layer 2/3.

666 **Microcircuit composition: neuron locations, densities and ratios**

667 We modeled a cylindric volume of the mouse M1 cortical microcircuit with a 300 μm diameter and
668 1350 μm height (cortical depth) at full neuronal density for a total of 10,073 neurons (Fig. 1). Cylinder
669 diameter was chosen to approximately match the horizontal dendritic span of a corticospinal
670 neuron located at the center, consistent with the approach used in the Human Brain Project model
671 of the rat S1 microcircuit (*Markram et al., 2015b*). Mouse cortical depth and boundaries for layers
672 2/3, 4, 5A, 5B and 6 were based on our published experimental data (*Weiler et al., 2008; Anderson*
673 *et al., 2010; Yamawaki et al., 2015*). Although traditionally M1 has been considered an agranular
674 area lacking layer 4, we recently identified M1 pyramidal neurons with the expected prototypical
675 physiological, morphological and wiring properties of layer 4 neurons (*Yamawaki et al., 2015*) (see
676 also (*Bopp et al., 2017; Barbas and García-Cabezas, 2015; BICCN, 2021*)), and therefore incorpo-
677 rated this layer in the model.

678 Cell classes present in each layer were determined based on mouse M1 studies (*Suter et al., 2013; Anderson et al., 2010; Yamawaki et al., 2015; Oswald et al., 2013; Naka and Adesnik, 2016*).

680 IT cell populations were present in all layers, whereas the PT cell population was confined to layer
 681 5B, and the CT cell population only occupied layer 6. SOM and PV interneuron populations were
 682 distributed in each layer. Neuronal densities (neurons per mm^3) for each layer (Fig. 1C) were taken
 683 from a histological and imaging study of mouse agranular cortex (*Tsai et al., 2009*). The proportion
 684 of excitatory to inhibitory neurons per layer was obtained from mouse S1 data (*Lefort et al., 2009*). The proportion
 685 of IT to PT and IT to CT cells in layers 5B and 6, respectively, were both estimated as
 686 1:1 (*Suter et al., 2013; Yamawaki and Shepherd, 2015*). The ratio of PV to SOM neurons per layer
 687 was estimated as 2:1 based on mouse M1 and S1 studies (*Katzel et al., 2011; Wall et al., 2016*)
 688 (Fig. 7B). Since data for M1 layer 4 was not available, interneuron populations labeled PV5A and
 689 SOM5A occupy both layers 4 and 5A. The number of cells for each population was calculated based
 690 on the modeled cylinder dimensions, layer boundaries and neuronal proportions and densities per
 691 layer.

692 Local connectivity

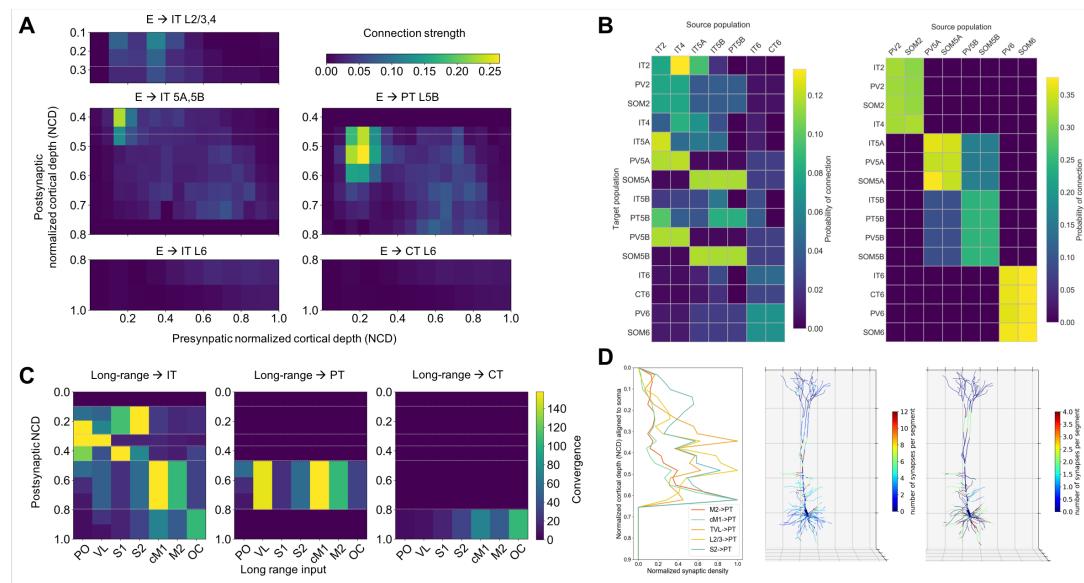


Figure 8. M1 excitatory connectivity: local microcircuitry and long-range inputs. **A.** Strength of local excitatory connections as a function of pre- and post-synaptic normalized cortical depth (NCD) and post-synaptic cell class; values used to construct the network. **B.** Convergence of long-range excitatory inputs from seven thalamic and cortical regions as a function post-synaptic NCD and cell class; values used to construct the network. **C.** Probability of connection matrix for excitatory (left) and inhibitory (right) populations calculated from an instantiation of the base model network. **D.** Left. Synaptic density profile (1D) along the dendritic arbor for inputs from layer 2/3 IT, VL, S1, S2, cM1 and M2 to PT neurons. Calculated by normalizing sCRACM maps (*Suter and Shepherd, 2015* Figs. 5 and 6) by dendritic length at each grid location and averaging across rows. Middle and Right. Synaptic density per neuron segment automatically calculated for each neuron based on its morphology and the pre- and postsynaptic cell type-specific radial synaptic density function. Here, VL → PT and S2 → PT are compared and exhibit partially complementary distributions.

693 We calculated local connectivity between M1 neurons (Figures 1C and 8A) by combining data
 694 from multiple studies. Data on excitatory inputs to excitatory neurons (IT, PT and CT) was pri-
 695 marily derived from mapping studies using whole-cell recording, glutamate uncaging-based laser-
 696 scanning photostimulation (LSPS) and subcellular channelrhodopsin-2-assisted circuit mapping
 697 (sCRACM) analysis (*Weiler et al., 2008; Anderson et al., 2010; Yamawaki et al., 2015; Yamawaki
 698 and Shepherd, 2015*). Connectivity data was postsynaptic cell class-specific and employed nor-
 699 malized cortical depth (NCD) instead of layers as the primary reference system. Unlike layer definitions
 700 which can be interpreted differently between studies, NCD provides a well-defined, consistent and
 701 continuous reference system, depending only on two readily-identifiable landmarks: pia (NCD=0)

702 and white matter (NCD=1). Incorporating NCD-based connectivity into our model allowed us to
703 capture wiring patterns down to a $100\ \mu\text{m}$ spatial resolution, well beyond traditional layer-based
704 cortical models. M1 connectivity varied systematically within layers. For example, the strength of
705 inputs from layer 2/3 to L5B corticospinal cells depends significantly on cell soma depth, with upper
706 neurons receiving much stronger input (Anderson *et al.*, 2010).

707 Connection strength thus depended on presynaptic NCD and postsynaptic NCD and cell class.
708 For postsynaptic IT neurons with NCD ranging from 0.1 to 0.37 (layers 2/3 and 4) and 0.8 to 1.0 (layer
709 6) we determined connection strengths based on data from (Weiler *et al.*, 2008) with cortical depth
710 resolution of $140\ \mu\text{m}$ -resolution. For postsynaptic IT and PT neurons with NCD between 0.37 and 0.8
711 (layers 5A and 5B) we employed connectivity strength data from (Anderson *et al.*, 2010) with cortical
712 depth resolution of $100\ \mu\text{m}$. For postsynaptic CT neurons in layer 6 we used the same connection
713 strengths as for layer 6 IT cells (Weiler *et al.*, 2008), but reduced to 62% of original values, following
714 published data on the circuitry of M1 CT neurons (Yamawaki and Shepherd, 2015; Kuramoto *et al.*,
715 2022). Our data (Yamawaki and Shepherd, 2015) also suggested that connection strength from
716 layer 4 to layer 2/3 IT cells was similar to that measured in S1, so for these projections we employed
717 values from Lefort's S1 connectivity strength matrix (Lefort *et al.*, 2009). Experimentally, these
718 connections were found to be four times stronger than in the opposite direction – from layer 2/3
719 to layer 4 – so we decreased the latter in the model to match this ratio.

720 Following previous publications (Kiritani *et al.*, 2012; Lefort *et al.*, 2009), we defined connection
721 strength (s_{con} , in mV) between two populations, as the product of their probability of connection
722 (p_{con}) and the unitary connection somatic EPSP amplitude in mV (v_{con}), i.e. $s_{con} = p_{con} \times v_{con}$. We
723 employed this equivalence to disentangle the connection s_{con} values provided by the above LSPS
724 studies into p_{con} and v_{con} values that we could use to implement the model. First, we rescaled the
725 LSPS raw current values in pA (Anderson *et al.*, 2010; Weiler *et al.*, 2008; Yamawaki *et al.*, 2015;
726 Yamawaki and Shepherd, 2015) to match s_{con} data from a paired recording study of mouse M1
727 L5 excitatory circuits (Kiritani *et al.*, 2012). Next, we calculated the M1 NCD-based v_{con} matrix by
728 interpolating a layerwise unitary connection EPSP amplitude matrix of mouse S1 (Lefort *et al.*,
729 2009), and thresholding values between 0.3 and 1.0 mV. Finally, we calculated the probability of
730 connection matrix as $p_{con} = s_{con}/v_{con}$.

731 To implement v_{con} values in the model we calculated the required NEURON connection weight
732 of an excitatory synaptic input to generate a somatic EPSP of 0.5 mV at each neuron segment.
733 This allowed us to calculate a scaling factor for each segment that converted v_{con} values into NEU-
734 RON weights, such that the somatic EPSP response to a unitary connection input was independent
735 of synaptic location – also known as synaptic democracy (Rumsey and Abbott, 2006; Poirazi and
736 Papoutsi, 2020). This is consistent with experimental evidence showing synaptic conductances in-
737 creased with distance from soma, to normalize somatic EPSP amplitude of inputs within $300\ \mu\text{m}$
738 of soma (Magee and Cook, 2000). Following this study, scaling factor values above 4.0 – such as
739 those calculated for PT cell apical tufts – were thresholded to avoid overexcitability in the network
740 context where each cell receives hundreds of inputs that interact nonlinearly (Spruston, 2008; Be-
741 habadi *et al.*, 2012). For morphologically detailed cells (layer 5A IT and layer 5B PT), the number
742 of synaptic contacts per unitary connection (or simply, synapses per connection) was set to five,
743 an estimated average consistent with the limited mouse M1 data (Hu and Agmon, 2016) and rat
744 S1 studies (Bruno and Sakmann, 2006; Markram *et al.*, 2015b). Individual synaptic weights were
745 calculated by dividing the unitary connection weight (v_{con}) by the number of synapses per connec-
746 tion. Although the method does not account for nonlinear summation effects (Spruston, 2008), it
747 provides a reasonable approximation and enables employing a more realistic number and spatial
748 distribution of synapses, which may be key for dendritic computations (London and Häusser, 2005).
749 For the remaining cell models, all with six compartments or less, a single synapse per connection
750 was used.

751 For excitatory inputs to inhibitory cell types (PV and SOM) we started with the same values as for
752 IT cell types but adapted these based on the specific connectivity patterns reported for mouse M1

753 interneurons (*Apicella et al., 2012; Yamawaki and Shepherd, 2015*) (Fig. 8A). Following the layer-
754 based description in these studies, we employed three major subdivisions: layer 2/3 (NCD 0.12 to
755 0.31), layers 4, 5A and 5B (NCD 0.31 to 0.77) and layer 6 (NCD 0.77 to 1.0). We increased the prob-
756 ability of layer 2/3 excitatory connections to layers 4, 5A and 5B SOM cells by 50% and decreased
757 that to PV cells by 50% (*Apicella et al., 2012*). We implemented the opposite pattern for excit-
758 atory connections arising from layer 4,5A,5B IT cells such that PV interneurons received stronger
759 intralaminar inputs than SOM cells (*Apicella et al., 2012*). The model also accounts for layer 6 CT
760 neurons generating relatively more inhibition than IT neurons (*Yamawaki and Shepherd, 2015; Ku-*
761 *ramoto et al., 2022*). Inhibitory connections from interneurons (PV and SOM) to other cell types
762 were limited to neurons in the same layer (*Katzel et al., 2011*), with layers 4, 5A and 5B combined
763 into a single layer (*Naka and Adesnik, 2016*). Probability of connection decayed exponentially with
764 the distance between the pre- and post-synaptic cell bodies with length constant of 100 μm (*Gal*
765 *et al., 2017; Fino and Yuste, 2011*). We introduced a correction factor to the distance-dependent
766 connectivity measures to avoid the *border effect*, i.e. cells near the modeled volume edges receiving
767 less or weaker connections than those in the center.

768 For comparison with other models and experiments, we calculated the probability of connec-
769 tion matrices arranged by population (instead of NCD) for the base model network instantiation
770 used throughout the results. (Fig. 8B).

771 Excitatory synapses consisted of colocalized AMPA (rise, decay τ : 0.05, 5.3 ms) and NMDA (rise,
772 decay τ : 15, 150 ms) receptors, both with reversal potential of 0 mV. The ratio of NMDA to AMPA re-
773 ceptors was 1.0 (*Myne et al., 2003*), meaning their weights were each set to 50% of the connection
774 weight. NMDA conductance was scaled by $1/(1 + 0.28 \cdot Mg \cdot \exp(-0.062 \cdot V))$; Mg = 1mM (*Jahr and*
775 *Stevens, 1990b*). Inhibitory synapses from SOM to excitatory neurons consisted of a slow *GABA_A*
776 receptor (rise, decay τ : 2, 100 ms) and *GABA_B* receptor, in a 90% to 10% proportion; synapses from
777 SOM to inhibitory neurons only included the slow *GABA_A* receptor; and synapses from PV to other
778 neurons consisted of a fast *GABA_A* receptor (rise, decay τ : 0.07, 18.2). The reversal potential was
779 -80 mV for *GABA_A* and -95 mV for *GABA_B*. The *GABA_B* synapse was modeled using second mes-
780 senger connectivity to a G protein-coupled inwardly-rectifying potassium channel (GIRK) (*Destexhe*
781 *et al., 1996*). The remaining synapses were modeled with a double-exponential mechanism.

782 Connection delays were estimated as 2 ms plus a variable delay depending on the distance
783 between the pre- and postsynaptic cell bodies assuming a propagation speed of 0.5 m/s.

784 Long-range input connectivity

785 We added long-range input connections from seven regions that are known to project to M1: tha-
786 lamic posterior nucleus (PO), ventro-lateral thalamus (VL), primary somatosensory cortex (S1), sec-
787 ondary somatosensory cortex (S2), contralateral primary motor cortex (cM1), secondary motor
788 cortex (M2) and orbital cortex (OC). We note that VL constitutes the largest nuclei of the motor tha-
789 lamus (MTh) so, in the context of the model, these terms are equivalent. Each region consisted of a
790 population of 1000 (*Constantinople and Bruno, 2013; Bruno and Sakmann, 2006*) spike-generators
791 (NEURON VecStims) that generated independent random Poisson spike trains with uniform dis-
792 tributed rates between 0 and 2.5 Hz or 0 and 5 Hz (*Yamashita et al., 2013; Hirata and Castro-*
793 *Alamancos, 2006*) for spontaneous firing; or 0 and 10 Hz (*Isomura et al., 2009; Jacob et al., 2012*)
794 when simulating increased input from a region. Previous studies provided a measure of normal-
795 ized input strength from these regions as a function of postsynaptic cell type and layer or NCD.
796 Broadly, PO (*Yamawaki et al., 2015; Yamawaki and Shepherd, 2015; Hooks et al., 2013*), S1 (*Mao*
797 *et al., 2011; Yamawaki et al., 2021*) and S2 (*Suter and Shepherd, 2015*) projected strongly to IT cells
798 in layers 2/3 and 5A (PO also to layer 4); VL projected strongly to PT cells and to layer 4 IT cells
799 (*Yamawaki et al., 2015; Yamawaki and Shepherd, 2015; Hooks et al., 2013*); cM1 and M2 projected
800 strongly to IT and PT cells in layers 5B and 6 (*Hooks et al., 2013*); and OC projected strongly to layer
801 6 CT and IT cells (*Hooks et al., 2013*). We implemented these relations by estimating the maximum
802 number of synaptic inputs from each region and multiplying that value by the normalized input

803 strength for each postsynaptic cell type and NCD range. This resulted in a convergence value –
804 average number of synaptic inputs to each postsynaptic cell – for each projection Fig. 8C. We fixed
805 all connection weights (unitary connection somatic EPSP amplitude) to 0.5 mV, consistent with rat
806 and mouse S1 data (*Hu and Agmon, 2016; Constantinople and Bruno, 2013*).

807 To estimate the maximum number of synaptic inputs per region, we made a number of as-
808 sumptions based on the limited data available (Figs. 8C and 1C). First, we estimated the average
809 number of synaptic contacts per cell as 8234 by rescaling rat S1 data (*Meyer et al., 2010b*) based
810 on our own observations for PT cells (*Suter et al., 2013*) and contrasting with related studies (*Schüz
811 and Palm, 1989; DeFelipe et al., 2002*); we assumed the same value for all cell types so we could use
812 convergence to approximate long-range input strength. We assumed 80 % of synaptic inputs were
813 excitatory vs. 20 % inhibitory (*DeFelipe et al., 2002; Markram et al., 2015b*); out of the excitatory
814 inputs, 80 % were long-range vs. 20 % local (*Markram et al., 2015b; Stepanyants et al., 2009*); and
815 out of the inhibitory inputs, 30 % were long-range vs. 70 % local (*Stepanyants et al., 2009*). Finally,
816 we estimated the percentage of long-range synaptic inputs arriving from each region based on
817 mouse brain mesoscale connectivity data (*Oh et al., 2014*) and other studies (*Meyer et al., 2010a;
818 Bruno and Sakmann, 2006; Meyer et al., 2010b; Zhang et al., 2016; Bopp et al., 2017*).

819 Experimental evidence demonstrates the location of synapses along dendritic trees follows very
820 specific patterns of organization that depend on the brain region, cell type and cortical depth (*Pe-
821 treanu et al., 2009; Suter and Shepherd, 2015*); these are likely to result in important functional
822 effects (*Kubota et al., 2015; Laudanski et al., 2014; Spruston, 2008*). We employed sCRACM data to
823 estimate the synaptic density along the dendritic arbor – 1D radial axis – for inputs from PO, VL, M2
824 and OC to layers 2/3, 5A, 5B and 6 IT and CT cell (*Hooks et al., 2013*), and from layer 2/3 IT, VL, S1,
825 S2, cM1 and M2 to PT neurons (*Suter and Shepherd, 2015*) (Fig. 8D). To approximate radial synap-
826 tic density we divided the sCRACM map amplitudes by the dendritic length at each grid location,
827 and averaged across rows. Once all network connections had been generated, synaptic locations
828 were automatically calculated for each cell based on its morphology and the pre- and postsynaptic
829 cell type-specific radial synaptic density function (Fig. 8D). Synaptic inputs from PV to excitatory
830 cells were located perisomatically (50 μm around soma); SOM inputs targeted apical dendrites of
831 excitatory neurons (*Naka and Adesnik, 2016; Katzel et al., 2011*); and all inputs to PV and SOM
832 cells targeted apical dendrites. For projections where no synaptic distribution data was available –
833 IT/CT, S1, S2 and cM1 to IT/CT cells – we assumed a uniform dendritic length distribution.

834 **Model implementation, simulation and analysis**

835 Modeling and simulation tools

836 The model was developed using parallel NEURON (neuron.yale.edu) (*Lytton et al., 2016*) and Net-
837 PyNE (www.netpyne.org) (*Dura-Bernal et al., 2019*), a Python package to facilitate the development
838 of biological neuronal networks in the NEURON simulator. NetPyNE emphasizes the incorporation
839 of multiscale anatomical and physiological data at varying levels of detail. It converts a set of simple,
840 standardized high-level specifications in a declarative format into a NEURON model. This high-level
841 language enables, for example, defining connectivity as function of NCD, and distributing synapses
842 across neurons based on normalized synaptic density maps. NetPyNE facilitates running parallel
843 simulations by taking care of distributing the workload and gathering data across computing nodes,
844 and automates the submission of batches of simulations for parameter optimization and explo-
845 ration. It also provides a powerful set of analysis methods so the user can plot spike raster plots,
846 LFP power spectra, information transfer measures, connectivity matrices, or intrinsic time-varying
847 variables (eg. voltage) of any subset of cells. To facilitate data sharing, the package saves and loads
848 the specifications, network, and simulation results using common file formats (Pickle, Matlab, JSON
849 or HDF5), and can convert to and from NeuroML (*Gleeson et al., 2010, 2019*) and SONATA (*Dai et al.,
850 2019*), standard data formats for exchanging models in computational neuroscience. Simulations
851 were run on XSEDE supercomputers Comet and Stampede, using the Neuroscience Gateway (NSG)
852 and our own resource allocation, and on Google Cloud supercomputers.

853 Parameter exploration/optimization

854 NetPyNE facilitates optimization and exploration of network parameters through automated batch
855 simulations. The user specifies the range of parameters and parameter values to explore and the
856 tool automatically submits the jobs in multicore machines (using NEURON's Bulletin board) or HPCs
857 (using SLURM/Torque). Multiple pre-defined batch simulation setups can be fully customized for
858 different environments. We ran batch simulations using NetPyNE's automated SLURM job submission
859 on San Diego Supercomputer Center's (SDSC) Comet supercomputer and on Google Cloud
860 Platform.

861 Local Field Potentials

862 The NetPyNE tool also includes the ability to simulate local field potentials (LFPs) obtained from
863 extracellular electrodes located at arbitrary 3D locations within the network. The LFP signal at each
864 electrode is obtained using the "line source approximation" (*Parasuram et al., 2016; Buzsáki et al.,*
865 *2012; Lindén et al., 2013*), which is based on the sum of the membrane current source generated at
866 each cell segment divided by the distance between the segment and the electrode. The calculation
867 assumes that the electric conductivity and permittivity of the extracellular medium are constant
868 everywhere and do not depend on frequency.

869 Firing rates statistics

870 Firing rate statistics were always calculated starting at least 1 second after the simulation start time
871 to allow the network to reach a steady state. To enable the statistical comparison of the results in
872 Fig. 2 we only included neurons with firing rates above 0 Hz, given that most experimental datasets
873 (*Estebanez et al., 2018; Zagha et al., 2015; Li et al., 2015a*) already included this constrain. For the
874 statistical comparison in the remaining sections we included neurons with firing rates of 0 Hz, as
875 these were available both in the experimental dataset (*Schiemann et al., 2015*) and the model.
876 Therefore, the quiet state mean firing rates reported in Fig. 2 (which only included rates > 0 Hz)
877 were higher than those in the remaining sections.

878 **Experimental procedures**

879 Details of the experimental procedures used to obtain the data in this study were previously de-
880 scribed in (*Schiemann et al., 2015*), including animals and surgery, motion index and motion pat-
881 tern discrimination, and in vivo electrophysiology and pharmacology. The dataset on cell type-
882 specific in vivo firing rates across states and conditions was collected and previously reported in
883 the same publication. The LFP experimental data reported here was collected during that same
884 study but only a small subset was reported in the experimental paper ((*Schiemann et al., 2015*) Fig.
885 1).

886 The experimental LFP data used in Fig. 4 was preprocessed to remove outliers and potential arti-
887 facts. The raw LFP data consisted of 30 recordings of varying duration during head-restrained mice
888 locomotion (at different speeds) on a cylindrical treadmill. In order to compare it to the simulated
889 data, the quiet in vivo raw LFP were classified into quiet and movement periods (using the same
890 criteria as in (*Schiemann et al., 2015*)) and then segmented into 4-second samples. We then cal-
891 culated the LFP power spectral density (PSD) using the Morlet wavelet transform method, nor-
892 malized within each sample and computed the mean power for five standard frequency bands (delta,
893 theta, alpha, beta and gamma). The resulting dataset of 5-element vectors (normalized power in
894 each frequency band) exhibited high variability: the mean coefficient of variation (CV) across quiet
895 samples was 0.60 and 0.44 for move samples. Therefore we used k-means to cluster the dataset.
896 The quiet condition resulted in one predominant cluster with similar power for all bands (73% of
897 samples), and one with higher gamma power (27% of samples). Conversely, the move condition
898 predominant cluster exhibited significantly higher gamma power (77% of samples), whereas the
899 smaller cluster showed similar power across bands (23%). As expected, the variability within each
900 cluster was significantly reduced compared to the full dataset (large clusters: quiet CV=0.33, move

901 CV=0.32; small clusters: quiet CV=0.31, move CV=0.28). For comparison with the model results we
902 employed the large quiet and move clusters (with over 70% of samples) (Fig. 4). The smaller clusters
903 may correspond to different internal states during behavior, recording from regions/layers with dif-
904 ferent levels of involvement in the behavior, transition periods, and/or experimental artifacts (e.g.
905 inaccurate segmenting of behavior).

906 Acknowledgements

907 We would like to thank Drs. Zhaga and Estebanez for contributing experimental data for Figure
908 2. This work was funded by the following grants: NIH U01EB017695 (WWL), NYS SCIRB DOH01-
909 C32250GG-3450000 (SDB,WWL), NIH U24EB028998 (SDB), NSF 1904444-1042C (SDB,WWL), NIH
910 R01 NS061963 (GMGS), NIH R01EB022903 (WWL), DARPA N66001-10-C-2008 (WWL), ASAP-020572
911 (WWL), NIH R01DC012947 (SAN), ARO W911NF-19-1-0402 (SAN) and ARO URAP Supplement. The
912 views and conclusions contained in this document are those of the authors and should not be in-
913 terpreted as representing the official policies, either expressed or implied, of the U.S. Government
914 or any of its agencies. The U.S. Government is authorized to reproduce and distribute reprints for
915 Government purposes notwithstanding any copyright notation herein. This research was funded
916 in part by Aligning Science Across Parkinson's [ASAP-020572] through the Michael J. Fox Founda-
917 tion for Parkinson's Research (MJFF). For the purpose of open access, the author has applied a CC
918 BY public copyright license to all Author Accepted Manuscripts arising from this submission.

919 Acknowledgments

920 Additional information can be given in the template, such as to not include funder information in
921 the acknowledgments section.

922 References

923 Adesnik H, Naka A. Cracking the Function of Layers in the Sensory Cortex. *Neuron*. 2018; 100(5):1028–1043.

924 Ainsworth M, Lee S, Cunningham MO, Traub RD, Kopell NJ, Whittington MA. Rates and Rhythms:
925 A Synergistic View of Frequency and Temporal Coding in Neuronal Networks. *Neuron*. 2012;
926 75(4):572 – 583. <http://www.sciencedirect.com/science/article/pii/S089662731200709X>, doi:
927 <http://dx.doi.org/10.1016/j.neuron.2012.08.004>.

928 Anderson CT, Sheets PL, Kiritani T, Shepherd GMG. Sublayer-specific microcircuits of corticospinal and corti-
929 costriatal neurons in motor cortex. *Nature neuroscience*. 2010 Jun; 13(6):739–44. doi: [10.1038/nn.2538](https://doi.org/10.1038/nn.2538).

930 Apicella AJ, Wickersham IR, Seung HS, Shepherd GM. Laminarly orthogonal excitation of fast-spiking and low-
931 threshold-spiking interneurons in mouse motor cortex. *The Journal of Neuroscience*. 2012; 32(20):7021–
932 7033.

933 Arle JE, Shils JL. Motor cortex stimulation for pain and movement disorders. *Neurotherapeutics*. 2008 Jan;
934 5(1):37–49. doi: [10.1016/j.nurt.2007.11.004](https://doi.org/10.1016/j.nurt.2007.11.004).

935 Ascoli GA, Donohue DE, Halavi M. NeuroMorpho. Org: a central resource for neuronal morphologies. *Journal*
936 *of Neuroscience*. 2007; 27(35):9247–9251.

937 Barbas H, García-Cabezas MÁ. Motor cortex layer 4: less is more. *Trends in neurosciences*. 2015; 38(5):259–
938 261.

939 Behabadi BF, Polsky A, Jadi M, Schiller J, Mel BW. Location-dependent excitatory synaptic interactions in pyra-
940 midal neuron dendrites. *PLoS Comput Biol*. 2012; 8(7):e1002599.

941 Bensmaia SJ, Miller LE. Restoring sensorimotor function through intracortical interfaces: progress and looming
942 challenges. *Nat Rev Neurosci*. 2014 05; 15(5):313–325. <http://dx.doi.org/10.1038/nrn3724>.

943 BICCN. A multimodal cell census and atlas of the mammalian primary motor cortex. *Nature*. 2021;
944 598(7879):86.

945 **Bopp R**, Holler-Rickauer S, Martin KA, Schuhknecht GF. An ultrastructural study of the thalamic input to
946 layer 4 of primary motor and primary somatosensory cortex in the mouse. *Journal of Neuroscience*. 2017;
947 37(9):2435–2448.

948 **Boychuk JA**, Farrell JS, Palmer LA, Singleton AC, Pittman QJ, Teskey GC. HCN channels segregate stimulation-
949 evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents. *The
950 Journal of Physiology*. 2017; 595(1):247–263. <https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/JP273068>,
951 doi: 10.1113/JP273068.

952 **Brown SP**, Hestrin S. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. *Nature*.
953 2009; 457(7233):1133–1136.

954 **Bruno RM**, Sakmann B. Cortex is driven by weak but synchronously active thalamocortical synapses. *Science*.
955 2006; 312(5780):1622–1627.

956 **Buzsáki G**, Anastassiou CA, Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes.
957 *Nature reviews neuroscience*. 2012; 13(6):407.

958 **Buzsáki G**, Mizuseki K. The log-dynamic brain: how skewed distributions affect network operations. *Nature
959 Reviews Neuroscience*. 2014; 15(4):264.

960 **Carmena JM**. Advances in Neuroprosthetic Learning and Control. *PLoS Biol*. 2013 05; 11(5):e1001561. <http://dx.doi.org/10.1371%2Fjournal.pbio.1001561>, doi: 10.1371/journal.pbio.1001561.

961 **Carnevale NT**, Hines ML. The NEURON book. Cambridge Univ Pr; 2006.

962 **Castro-Alamancos MA**. The motor cortex: a network tuned to 7-14 Hz. *Frontiers in Neural Circuits*. 2013; 7(21).
963 http://www.frontiersin.org/neural_circuits/10.3389/fncir.2013.00021/abstract, doi: 10.3389/fncir.2013.00021.

964 **Chadderdon GL**, Mohan A, Suter BA, Neymotin SA, Kerr CC, Francis JT, Shepherd GM, Lytton WW. Motor cortex
965 microcircuit simulation based on brain activity mapping. *Neural computation*. 2014; 26(7):1239–62.

966 **Conner J**, Kulczycki M, Tuszyński M. Unique contributions of distinct cholinergic projections to motor cortical
967 plasticity and learning. *Cerebral Cortex*. 2010; 20(11):2739–2748.

968 **Constantinople CM**, Bruno RM. Deep cortical layers are activated directly by thalamus. *Science*. 2013;
969 340(6140):1591–1594.

970 **Dacre J**, Colligan M, Clarke T, Ammer JJ, Schiemann J, Chamosa-Pino V, Claudi F, Harston JA, Eleftheriou C, Pakan
971 JMP, Huang CC, Hantman AW, Rochefort NL, Duguid I. A cerebellar-thalamocortical pathway drives behavioral
972 context-dependent movement initiation. *Neuron*. 2021; 109(14):2326–2338.e8. <https://www.sciencedirect.com/science/article/pii/S0896627321003561>, doi: <https://doi.org/10.1016/j.neuron.2021.05.016>.

973 **Dai K**, Hernando J, Billeh YN, Gratia SL, Planas J, Davison AP, Dura-Bernal S, Gleeson P, Devresse A, Gevaert M,
974 King JG, Van Geit WAH, Povolotsky AV, Muller E, Courcol JD, Arkhipov A. The SONATA Data Format for Efficient
975 Description of Large-Scale Network Models. *bioRxiv*. 2019; <https://www.biorxiv.org/content/early/2019/05/02/625491>, doi: 10.1101/625491.

976 **DeFelipe J**, Alonso-Nanclares L, Arellano JI. Microstructure of the neocortex: comparative aspects. *Journal of
977 neurocytology*. 2002; 31(3-5):299–316.

978 **Destexhe A**, Bal T, McCormick D, Sejnowski T. Ionic mechanisms underlying synchronized oscillations and
979 propagating waves in a model of ferret thalamic slices. *J Neurophysiol*. 1996; 76:2049–2070.

980 **Douglas RJ**, Martin KA, Whitteridge D. A canonical microcircuit for neocortex. *Neural computation*. 1989;
981 1(4):480–488.

982 **Dura-Bernal S**, Neymotin SA, Kerr CC, Sivagnanam S, Majumdar A, Francis JT, Lytton WW. Evolutionary al-
983 gorithm optimization of biological learning parameters in a biomimetic neuroprosthesis. *IBM Journal of
984 Research and Development*. 2017 March; 61(2/3):6:1–6:14. doi: 10.1147/JRD.2017.2656758.

985 **Dura-Bernal S**, Li K, Neymotin SA, Francis JT, Principe JC, Lytton WW. Restoring behavior via inverse neurocon-
986 troller in a lesioned cortical spiking model driving a virtual arm. *Frontiers in Neuroscience*. 2016; 10(28). [http://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2016.00028/abstract](https://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2016.00028/abstract), doi: 10.3389/fnins.2016.00028.

987 **Dura-Bernal S**, Li K, Neymotin SA, Francis JT, Principe JC, Lytton WW. Restoring behavior via inverse neurocon-
988 troller in a lesioned cortical spiking model driving a virtual arm. *Frontiers in Neuroscience*. 2016; 10(28). [http://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2016.00028/abstract](https://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2016.00028/abstract), doi: 10.3389/fnins.2016.00028.

989 **Dura-Bernal S**, Li K, Neymotin SA, Francis JT, Principe JC, Lytton WW. Restoring behavior via inverse neurocon-
990 troller in a lesioned cortical spiking model driving a virtual arm. *Frontiers in Neuroscience*. 2016; 10(28). [http://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2016.00028/abstract](https://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2016.00028/abstract), doi: 10.3389/fnins.2016.00028.

991 **Dura-Bernal S**, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, Kedziora DJ, Chadderdon GL,
992 Kerr CC, Neymotin SA, McDougal RA, Hines M, Shepherd GM, Lytton WW. NetPyNE, a tool for data-driven
993 multiscale modeling of brain circuits. *eLife*. 2019 apr; 8:e44494. <https://doi.org/10.7554/eLife.44494>, doi:
994 [10.7554/eLife.44494](https://doi.org/10.7554/eLife.44494).

995 **Ebbesen CL**, Brecht M. Motor cortex—to act or not to act? *Nature Reviews Neuroscience*. 2017; 18(11):694.

996 **Economou MN**, Viswanathan S, Tasic B, Bas E, Winnubst J, Menon V, Graybuck LT, Nguyen TN, Smith KA,
997 Yao Z, Wang L, Gerfen CR, Chandrashekhar J, Zeng H, Looger LL, Svoboda K. Distinct descending motor
998 cortex pathways and their roles in movement. *Nature*. 2018; 563(7729):79–84. <https://doi.org/10.1038/s41586-018-0642-9>, doi: 10.1038/s41586-018-0642-9.

1000 **Edelman GM**, Gally JA. Degeneracy and complexity in biological systems. *Proc Nat Acad Sci*. 2001; 98:13763–
1001 13768.

1002 **Estebanez L**, Hoffmann D, Voigt BC, Poulet JFA. Parvalbumin-Expressing GABAergic Neurons in Primary Motor
1003 Cortex Signal Reaching. *Cell Reports*. 2018 01/19; 20(2):308–318. <http://dx.doi.org/10.1016/j.celrep.2017.06.044>, doi: 10.1016/j.celrep.2017.06.044.

1005 **Favero M**, Varghese G, Castro-Alamancos MA. The state of somatosensory cortex during neuromodulation.
1006 *Journal of neurophysiology*. 2012; 108(4):1010–1024.

1007 **Fino E**, Yuste R. Dense inhibitory connectivity in neocortex. *Neuron*. 2011; 69(6):1188–1203.

1008 **Gal E**, London M, Globerson A, Ramaswamy S, Reimann MW, Muller E, Markram H, Segev I. Rich cell-type-
1009 specific network topology in neocortical microcircuitry. *Nat Neurosci*. 2017 07; 20(7):1004–1013. <http://dx.doi.org/10.1038/nn.4576>.

1011 **George MS**, Abbott L, Siegelbaum SA. HCN hyperpolarization-activated cation channels inhibit EPSPs by inter-
1012 actions with M-type K⁺ channels. *Nature neuroscience*. 2009; 12(5):577–584.

1013 **Getting PA**. Emerging principles governing the operation of neural networks. *Annual review of neuroscience*.
1014 1989; 12(1):185–204.

1015 **Gleeson P**, Cantarelli M, Marin B, Quintana A, Earnshaw M, Sadeh S, Piasini E, Birgiolas J, Cannon RC, Cayco-Gajic
1016 NA, Crook S, Davison AP, Dura-Bernal S, Ecker A, Hines ML, Idili G, Lanore F, Larson SD, Lytton WW, Majumdar
1017 A, et al. Open Source Brain: A Collaborative Resource for Visualizing, Analyzing, Simulating, and Developing
1018 Standardized Models of Neurons and Circuits. *Neuron*. 2019 2019/06/11; <https://doi.org/10.1016/j.neuron.2019.05.019>, doi: 10.1016/j.neuron.2019.05.019.

1020 **Gleeson P**, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US,
1021 Barnes SR, Dimitrova YD, Silver RA. NeuroML: A Language for Describing Data Driven Models of Neurons
1022 and Networks with a High Degree of Biological Detail. *PLoS Comput Biol*. 2010 06; 6(6):e1000815. <http://dx.doi.org/10.1371%2Fjournal.pcbi.1000815>, doi: 10.1371/journal.pcbi.1000815.

1024 **Golowasch J**, Goldman M, Abbott L, Marder E. Failure of averaging in the construction of a conductance-based
1025 neuron model. *Journal of Neurophysiology*. 2002; 87:1129–1131.

1026 **Graybiel AM**. Neurotransmitters and neuromodulators in the basal ganglia. *Trends in neurosciences*. 1990;
1027 13(7):244–254.

1028 **Greig LC**, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. Molecular logic of neocortical projection
1029 neuron specification, development and diversity. *Nature Reviews Neuroscience*. 2013; 14(11):755.

1030 **Guo JZ**, Sauerbrei BA, Cohen JD, Mischiati M, Graves AR, Pisanello F, Branson KM, Hantman AW. Disrupting
1031 cortico-cerebellar communication impairs dexterity. *eLife*. 2021 jul; 10:e65906. <https://doi.org/10.7554/eLife.65906>, doi: 10.7554/eLife.65906.

1033 **Harris KD**, Shepherd GM. The neocortical circuit: themes and variations. *Nature Neuroscience*. 2015;
1034 18(2):170–181.

1035 **Hay E**, Hill S, Schürmann F, Markram H, Segev I. Models of Neocortical Layer 5b Pyramidal Cells Capturing
1036 a Wide Range of Dendritic and Perisomatic Active Properties. *PLoS Comput Biol*. 2011 07; 7(7):e1002107.
1037 <http://dx.doi.org/10.1371%2Fjournal.pcbi.1002107>, doi: 10.1371/journal.pcbi.1002107.

1038 **Heinze J**, Hepp K, Martin KA. A microcircuit model of the frontal eye fields. *Journal of Neuroscience*. 2007;
1039 27(35):9341–9353.

1040 Hirata A, Castro-Alamancos MA. Relief of synaptic depression produces long-term enhancement in thalamo-
1041 cortical networks. *Journal of neurophysiology*. 2006; 95(4):2479–2491.

1042 Hong G, Lieber CM. Novel electrode technologies for neural recordings. *Nature Reviews Neuroscience*. 2019;
1043 20(6):330–345.

1044 Hooks BM, Mao T, Gutnisky DA, Yamawaki N, Svoboda K, Shepherd GMG. Organization of cortical and
1045 thalamic input to pyramidal neurons in mouse motor cortex. *J Neurosci*. 2013 Jan; 33(2):748–760. doi:
1046 [10.1523/JNEUROSCI.4338-12.2013](https://doi.org/10.1523/JNEUROSCI.4338-12.2013).

1047 Hoshino O, Kameno R, Watanabe K. Reducing variability in motor cortex activity at a resting state by extracellular
1048 GABA for reliable perceptual decision-making. *Journal of Computational Neuroscience*. 2019; 47(2):191–
1049 204.

1050 Hsu NS, Fang HY, David KK, Gnadt JW, Peng GC, Talley EM, Ward JM, Ngai J, Koroshetz WJ. The promise of
1051 the BRAIN initiative: NIH strategies for understanding neural circuit function. *Current Opinion in Neu-
1052 robiology*. 2020; 65:162–166. <https://www.sciencedirect.com/science/article/pii/S0959438820301471>, doi:
1053 <https://doi.org/10.1016/j.conb.2020.10.008>.

1054 Hu H, Agmon A. Differential Excitation of Distally versus Proximally Targeting Cortical Interneurons by Unitary
1055 Thalamocortical Bursts. *Journal of Neuroscience*. 2016; 36(26):6906–6916. <http://www.jneurosci.org/content/36/26/6906>, doi: [10.1523/JNEUROSCI.0739-16.2016](https://doi.org/10.1523/JNEUROSCI.0739-16.2016).

1057 Huang ZJ. Toward a genetic dissection of cortical circuits in the mouse. *Neuron*. 2014; 83(6):1284–1302.

1058 Isomura Y, Harukuni R, Takekawa T, Aizawa H, Fukai T. Microcircuitry coordination of cortical motor informa-
1059 tion in self-initiation of voluntary movements. *Nature neuroscience*. 2009; 12(12):1586–1593.

1060 Izhikevich EM, Edelman GM. Large-scale model of mammalian thalamocortical systems. *Proceedings of the
1061 national academy of sciences*. 2008; 105(9):3593–3598.

1062 Jacob V, Petreanu L, Wright N, Svoboda K, Fox K. Regular spiking and intrinsic bursting pyramidal cells show
1063 orthogonal forms of experience-dependent plasticity in layer V of barrel cortex. *Neuron*. 2012; 73(2):391–
1064 404.

1065 Jahr C, Stevens C. Voltage dependence of NMDA-activated macroscopic conductances predicted by single-
1066 channel kinetics. *J Neurosci*. 1990b; 10(9):3178–3182.

1067 Kaneko T. Local Connection of Excitatory Neurons in Rat Motor-Associated Cortical Areas. *Frontiers in Neu-
1068 ral Circuits*. 2013; 7(75). http://www.frontiersin.org/neural_circuits/10.3389/fncir.2013.00075/abstract, doi:
1069 [10.3389/fncir.2013.00075](https://doi.org/10.3389/fncir.2013.00075).

1070 Katzel D, Zemelman BV, Buetfering C, Wolfel M, Miesenbock G. The columnar and laminar organization
1071 of inhibitory connections to neocortical excitatory cells. *Nat Neurosci*. 2011 Jan; 14(1):100–107. doi:
1072 [10.1038/nn.2687](https://doi.org/10.1038/nn.2687).

1073 Kiritani T, Wickersham IR, Seung HS, Shepherd GMG. Hierarchical Connectivity and Connection-
1074 Specific Dynamics in the Corticospinal-Corticostriatal Microcircuit in Mouse Motor Cortex. *The Jour-
1075 nal of Neuroscience*. 2012; 32(14):4992–5001. <http://www.jneurosci.org/content/32/14/4992.abstract>, doi:
1076 [10.1523/JNEUROSCI.4759-11.2012](https://doi.org/10.1523/JNEUROSCI.4759-11.2012).

1077 Kocaturk M, Gulcur HO, Canbeyli R. Towards building hybrid biological/in silico neural networks for motor
1078 neuroprosthetic control. *Frontiers in Neurorobotics*. 2015; 9(8). <http://www.frontiersin.org/neurorobotics/10.3389/fnbot.2015.00008/abstract>, doi: [10.3389/fnbot.2015.00008](https://doi.org/10.3389/fnbot.2015.00008).

1080 Kole M, Hallermann S, Stuart G. Single I_h channels in pyramidal neuron dendrites: properties, distribution, and
1081 impact on action potential output. *Journal of Neuroscience*. 2006; 26(6):1677–1687.

1082 Konstantoudaki X, Papoutsis A, Chalkiadaki K, Poirazi P, Sidiropoulou K. Modulatory effects of inhibition on
1083 persistent activity in a cortical microcircuit model. *Frontiers in Neural Circuits*. 2014; 8:7. <http://journal.frontiersin.org/article/10.3389/fncir.2014.00007>, doi: [10.3389/fncir.2014.00007](https://doi.org/10.3389/fncir.2014.00007).

1085 Kubota Y, Kondo S, Nomura M, Hatada S, Yamaguchi N, Mohamed AA, Karube F, Lübke J, Kawaguchi Y. Func-
1086 tional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons. *eLife*. 2015
1087 jul; 4:e07919. <https://dx.doi.org/10.7554/eLife.07919>, doi: [10.7554/eLife.07919](https://doi.org/10.7554/eLife.07919).

1088 **Kuramoto E**, Tanaka YR, Hioki H, Goto T, Kaneko T. Local Connections of Pyramidal Neurons to Parvalbumin-
1089 Producing Interneurons in Motor-Associated Cortical Areas of Mice. *Eneuro*. 2022; 9(1).

1090 **Labarrera C**, Deitcher Y, Dudai A, Weiner B, Amichai AK, Zylbermann N, London M. Adrenergic Modulation
1091 Regulates the Dendritic Excitability of Layer 5 Pyramidal Neurons In Vivo. *Cell reports*. 2018; 23(4):1034–
1092 1044.

1093 **Laudanski J**, Torben-Nielsen B, Segev I, Shamma S. Spatially Distributed Dendritic Resonance Selectively Filters
1094 Synaptic Input. *PLoS Comput Biol*. 2014 08; 10(8):1–10. <http://dx.doi.org/10.1371/journal.pcbi.1003775>,
1095 doi: 10.1371/journal.pcbi.1003775.

1096 **Lefort S**, Tomm C, Floyd Sarria JC, Petersen CCH. The Excitatory Neuronal Network of the C2 Barrel Column in
1097 Mouse Primary Somatosensory Cortex. *Neuron*. 2009 2015/10/05; 61(2):301–316. <http://dx.doi.org/10.1016/j.neuron.2008.12.020>,
1098 doi: 10.1016/j.neuron.2008.12.020.

1099 **Li K**, Dura-Bernal S, Francis J, Lytton W, Principe J. Repairing Lesions via Kernel Adaptive Inverse Control in
1100 a Biomimetic Model of Sensorimotor Cortex. In: *Neural Engineering (NER), 2015 7th International IEEE/EMBS
1101 Conference* Montpellier; 2015. .

1102 **Li N**, Chen TW, Guo ZV, Gerfen CR, Svoboda K. A motor cortex circuit for motor planning and movement. *Nature*.
1103 2015 03; 519(7541):51–56. <http://dx.doi.org/10.1038/nature14178>.

1104 **Li N**, Daie K, Svoboda K, Druckmann S. Robust neuronal dynamics in premotor cortex during motor planning.
1105 *Nature*. 2016 04; 532(7600):459–464. <http://dx.doi.org/10.1038/nature17643>.

1106 **Lindén H**, Hagen E, Leski S, Norheim E, Pettersen K, Einevoll G. LFPy: A tool for biophysical simulation of
1107 extracellular potentials generated by detailed model neurons. *Front Neuroinform*. 2013; 7:41.

1108 **London M**, Häusser M. Dendritic computation. *Annu Rev Neurosci*. 2005; 28:503–532.

1109 **Luo L**, Callaway EM, Svoboda K. Genetic dissection of neural circuits: a decade of progress. *Neuron*. 2018;
1110 98(2):256–281.

1111 **Lytton WW**, Seidenstein A, Dura-Bernal S, Schurmann F, RobertAMcDougal, Hines ML. Simulation neurotech-
1112 nologies for advancing brain research: Parallelizing large networks in NEURON. *Neural Computation*. 2016;
1113 28:2063–2090.

1114 **Magee JC**, Cook EP. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal
1115 neurons. *Nature neuroscience*. 2000; 3(9):895–903.

1116 **Mao T**, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svoboda K. Long-Range Neuronal Circuits Underlying the
1117 Interaction between Sensory and Motor Cortex. *Neuron*. 2011 2016/12/07; 72(1):111–123. <http://dx.doi.org/10.1016/j.neuron.2011.07.029>,
1118 doi: 10.1016/j.neuron.2011.07.029.

1119 **Markram H**, Muller E, Ramaswamy S, Reimann M, Abdellah M, Sanchez C, Ailamaki A, Alonso-Nanclares L,
1120 Antille N, Arsever S, Kahou G, Berger T, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol J, Delalondre
1121 F, Delattre V, Druckmann S, et al. Reconstruction and simulation of neocortical microcircuitry. *Cell*. 2015;
1122 163:456–492.

1123 **Markram H**, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L,
1124 Antille N, Arsever S, Kahou GAA, Berger TK, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol JD, Delalondre
1125 F, Delattre V, Druckmann S, et al. Reconstruction and Simulation of Neocortical Microcircuitry. *Cell*. 2015
1126 2015/10/09; 163(2):456–492. <http://dx.doi.org/10.1016/j.cell.2015.09.029>, doi: 10.1016/j.cell.2015.09.029.

1127 **Masamizu Y**, Tanaka YR, Tanaka YH, Hira R, Ohkubo F, Kitamura K, Isomura Y, Okada T, Matsuzaki M. Two
1128 distinct layer-specific dynamics of cortical ensembles during learning of a motor task. *Nat Neurosci*. 2014
1129 07; 17(7):987–994. <http://dx.doi.org/10.1038/nn.3739>.

1130 **McCormick DA**. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodula-
1131 tion of thalamocortical activity. *Progress in neurobiology*. 1992; 39(4):337–388.

1132 **McDougal R**, Hines M, Lytton W. Reaction-diffusion in the NEURON simulator. *Frontiers in Neuroinformatics*.
1133 2013; 7:28. <http://journal.frontiersin.org/article/10.3389/fninf.2013.00028>, doi: 10.3389/fninf.2013.00028.

1134 **Meyer HS**, Wimmer VC, Hemberger M, Bruno RM, de Kock CP, Frick A, Sakmann B, Helmstaedter M. Cell type-
1135 specific thalamic innervation in a column of rat vibrissal cortex. *Cerebral Cortex*. 2010; 20(10):2287–2303.

1136 Meyer HS, Wimmer VC, Oberlaender M, De Kock CP, Sakmann B, Helmstaedter M. Number and laminar dis-
1137 tribution of neurons in a thalamocortical projection column of rat vibrissal cortex. *Cerebral cortex*. 2010;
1138 20(10):2277–2286.

1139 Migliore M, Migliore R. Know Your Current I_h : Interaction with a Shunting Current Explains the Puzzling Effects
1140 of Its Pharmacological or Pathological Modulations. *PLOS ONE*. 2012 05; 7(5):1–8. <https://doi.org/10.1371/journal.pone.0036867>, doi: 10.1371/journal.pone.0036867.

1142 Morishima M, Kawaguchi Y. Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex.
1143 *J Neurosci*. 2006 Apr; 26(16):4394–4405. doi: 10.1523/JNEUROSCI.0252-06.2006.

1144 Morishima M, Morita K, Kubota Y, Kawaguchi Y. Highly differentiated projection-specific cortical subnetworks.
1145 *Journal of Neuroscience*. 2011; 31(28):10380–10391.

1146 Morita K, Kawaguchi Y. Computing reward-prediction error: an integrated account of cortical timing and basal-
1147 ganglia pathways for appetitive and aversive learning. *European Journal of Neuroscience*. 2015; 42(4):2003–
1148 2021.

1149 Mott MC, Gordon JA, Koroshetz WJ. The NIH BRAIN Initiative: Advancing neurotechnologies, integrating disci-
1150 plines. *PLOS Biology*. 2018 11; 16(11):1–5. <https://doi.org/10.1371/journal.pbio.3000066>, doi: 10.1371/jour-
1151 nal.pbio.3000066.

1152 Myame CIO, Sugino K, Turrigiano GG, Nelson SB. The NMDA-to-AMPA Ratio at Synapses Onto Layer 2/3 Pyrami-
1153 dal Neurons Is Conserved Across Prefrontal and Visual Cortices. *Journal of Neurophysiology*. 2003; 90(2):771–
1154 779. <http://jn.physiology.org/content/90/2/771>, doi: 10.1152/jn.00070.2003.

1155 Naka A, Adesnik H. Inhibitory circuits in cortical layer 5. *Frontiers in Neural Circuits*. 2016; 10(35). http://www.frontiersin.org/neural_circuits/10.3389/fncir.2016.00035/abstract, doi: 10.3389/fncir.2016.00035.

1157 Newton AJH, McDougal RA, Hines ML, Lytton WW. Using NEURON for Reaction-Diffusion Modeling of Extracellular Dynamics. *Frontiers in Neuroinformatics*. 2018; 12:41. <https://www.frontiersin.org/article/10.3389/fninf.2018.00041>, doi: 10.3389/fninf.2018.00041.

1160 Neymotin S, Dura-Bernal S, Lakatos P, Sanger T, Lytton W. Multitarget multiscale simulation for pharmacolog-
1161 ical treatment of dystonia in motor cortex. *Front Pharmacol*. 2016; 7:157.

1162 Neymotin S, Suter B, Dura-Bernal S, Shepherd G, Migliore M, Lytton W. Optimizing computer models of corti-
1163 cospinal neurons to replicate in vitro dynamics. *J Neurophysiol*. 2017; 117:148–162.

1164 Neymotin SA, Dura-Bernal S, Lakatos P, Sanger TD, Lytton W. Multitarget multiscale simulation for phar-
1165 macological treatment of dystonia in motor cortex. *Frontiers in Pharmacology*. 2016; 7(157). http://www.frontiersin.org/experimental_pharmacology_and_drug_discovery/10.3389/fphar.2016.00157/abstract, doi:
1166 10.3389/fphar.2016.00157.

1168 Neymotin SA, Dura-Bernal S, Moreno H, Lytton WW. Computer modeling for pharmacological treatments for
1169 dystonia. *Drug Discovery Today: Disease Models*. 2016; 19:51 – 57. <http://www.sciencedirect.com/science/article/pii/S174067571730099>, doi: <http://dx.doi.org/10.1016/j.ddmod.2017.02.003>, computational Models
1170 of Neurological Disorder.

1172 Nishimura Y, Perlmuter SI, Fetz EE. Restoration of upper limb movement via artificial corticospinal and
1173 musculospinal connections in a monkey with spinal cord injury. *Frontiers in Neural Circuits*. 2013; 7(57).
1174 http://www.frontiersin.org/neural_circuits/10.3389/fncir.2013.00057/abstract, doi: 10.3389/fncir.2013.00057.

1175 O'Donnell J, Zeppenfeld D, McConnell E, Pena S, Nedergaard M. Norepinephrine: a neuromodulator that
1176 boosts the function of multiple cell types to optimize CNS performance. *Neurochemical research*. 2012;
1177 37(11):2496–2512.

1178 Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, et al. A mesoscale
1179 connectome of the mouse brain. *Nature*. 2014; 508(7495):207–214.

1180 Oswald MJ, Tantirigama ML, Sonntag I, Hughes SM, Empson RM. Diversity of Layer 5 Projection Neurons in the
1181 Mouse Motor Cortex. *Frontiers in Cellular Neuroscience*. 2013; 7(174). http://www.frontiersin.org/cellular_neuroscience/10.3389/fncel.2013.00174/abstract, doi: 10.3389/fncel.2013.00174.

1183 Papale AE, Hooks BM. Circuit changes in motor cortex during motor skill learning. *Neuroscience*. 2017; .

1184 Parasuram H, Nair B, D'Angelo E, Hines M, Naldi G, Diwakar S. Computational Modeling of Single Neuron Ex-
1185 tracellular Electric Potentials and Network Local Field Potentials using LFPsim. *Frontiers in Computational*
1186 *Neuroscience*. 2016; 10:65. <https://www.frontiersin.org/article/10.3389/fncom.2016.00065>, doi: 10.3389/fncom.2016.00065.

1188 Petreanu L, Mao T, Sternson SM, Svoboda K. The subcellular organization of neocortical excitatory connections.
1189 *Nature*. 2009; 457(7233):1142-1145.

1190 Poirazi P, Papoutsis A. Illuminating dendritic function with computational models. *Nature Reviews Neuro-*
1191 *science*. 2020; 21(6):303-321.

1192 Potjans TC, Diesmann M. The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-
1193 Scale Spiking Network Model. *Cerebral Cortex*. 2014; 24(3):785-806. <http://cercor.oxfordjournals.org/content/24/3/785.abstract>, doi: 10.1093/cercor/bhs358.

1195 Prinz A, Marder E. Using a database of 20 million model networks to study a pacemaker circuit. *Soc Neurosci*
1196 *Abstracts*. 2003; 605.3.

1197 Ratté S, Prescott SA. Afferent hyperexcitability in neuropathic pain and the inconvenient truth about its degen-
1198 eracy. *Curr Opin Neurobiol*. 2016 Feb; 36:31-37.

1199 Rees CL, Moradi K, Ascoli GA. Weighing the Evidence in Peters' Rule: Does Neuronal Morphology Predict Con-
1200 nectivity? *Trends Neurosci*. 2017; 40:63-71.

1201 Rubino D, Robbins KA, Hatsopoulos NG. Propagating waves mediate information transfer in the motor cortex.
1202 *Nat Neurosci*. 2006 Dec; 9(12):1549-1557. doi: 10.1038/nn1802.

1203 Rudy B, Fishell G, Lee S, Hjerling-Leffler J. Three groups of interneurons account for nearly 100% of neocortical
1204 GABAergic neurons. *Developmental neurobiology*. 2011; 71(1):45-61.

1205 Rumsey CC, Abbott LF. Synaptic democracy in active dendrites. *Journal of Neurophysiology*. 2006; 96(5):2307-
1206 2318.

1207 Saiki A, Sakai Y, Fukabori R, Soma S, Yoshida J, Kawabata M, Yawo H, Kobayashi K, Kimura M, Isomura Y. In vivo
1208 spiking dynamics of intra-and extratelencephalic projection neurons in rat motor cortex. *Cerebral cortex*.
1209 2018; 28(3):1024-1038.

1210 Sanchez J, Lytton W, Carmena J, Principe J, Fortes J, Barbour R, Francis J. Dynamically repairing and replacing
1211 neural networks: using hybrid computational and biological tools. *IEEE Pulse*. 2012 Jan; 3(1):57-59. doi:
1212 [10.1109/MPUL.2011.2175640](https://doi.org/10.1109/MPUL.2011.2175640).

1213 Schieber MH. Dissociating motor cortex from the motor. *The Journal of physiology*. 2011; 589(23):5613-5624.

1214 Schiemann J, Puggioni P, Dacre J, Pelko M, Domanski A, van Rossum MCW, Duguid I. Cellular Mechan-
1215 isms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output. *Cell Reports*.
1216 2015; 11(8):1319 – 1330. <http://www.sciencedirect.com/science/article/pii/S22112471500443X>, doi:
1217 <https://doi.org/10.1016/j.celrep.2015.04.042>.

1218 Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, van Albada SJ. A multi-scale layer-resolved spiking network
1219 model of resting-state dynamics in macaque visual cortical areas. *PLOS Computational Biology*. 2018 10;
1220 14(10):1-38. <https://doi.org/10.1371/journal.pcbi.1006359>, doi: 10.1371/journal.pcbi.1006359.

1221 Schüz A, Palm G. Density of neurons and synapses in the cerebral cortex of the mouse. *Journal of Comparative*
1222 *Neurology*. 1989; 286(4):442-455.

1223 Sheets PL, Suter BA, Kiritani T, Chan CS, Surmeier DJ, Shepherd GM. Corticospinal-specific HCN expression in
1224 mouse motor cortex: Ih-dependent synaptic integration as a candidate microcircuit mechanism involved in
1225 motor control. *Journal of neurophysiology*. 2011; 106(5):2216-2231.

1226 Shenoy KV, Carmena JM. Combining Decoder Design and Neural Adaptation in Brain-Machine Interfaces. *Neu-*
1227 *ron*. 2014; 84(4):665-680.

1228 Shenoy KV, Sahani M, Churchland MM. Cortical Control of Arm Movements: A Dynamical Systems Perspective.
1229 *Annual review of neuroscience*. 2013; 36(1).

1230 Shepherd GM. Corticostriatal connectivity and its role in disease. *Nature Reviews Neuroscience*. 2013; .

1231 **Shepherd GM.** Intracortical cartography in an agranular area. *Frontiers in neuroscience*. 2009; 3:30.

1232 **Sohal VS, Zhang F, Yizhar O, Deisseroth K.** Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. *Nature*. 2009; 459(7247):698.

1233

1234 **Spruston N.** Pyramidal neurons: dendritic structure and synaptic integration. *Nature Reviews Neuroscience*. 2008; 9(3):206–221.

1235

1236 **Stepanyants A, Martinez LM, Ferecskó AS, Kisvárdy ZF.** The fractions of short-and long-range connections in the visual cortex. *Proceedings of the National Academy of Sciences*. 2009; 106(9):3555–3560.

1237

1238 **Suter BA, Migliore M, Shepherd GM.** Intrinsic electrophysiology of mouse corticospinal neurons: a class-specific triad of spike-related properties. *Cerebral Cortex*. 2013; 23(8):1965–1977.

1239

1240 **Suter BA, Shepherd GM.** Reciprocal Interareal Connections to Corticospinal Neurons in Mouse M1 and S2. *The Journal of Neuroscience*. 2015; 35(7):2959–2974.

1241

1242 **Tripathy SJ, Burton SD, Geramita M, Gerkin RC, Urban NN.** Brain-wide analysis of electrophysiological diversity yields novel categorization of mammalian neuron types. *Journal of Neurophysiology*. 2015; 113(10):3474–3489. <http://jn.physiology.org/content/113/10/3474>, doi: 10.1152/jn.00237.2015.

1243

1244

1245 **Tsai PS, Kaufhold JP, Blinder P, Friedman B, Drew PJ, Karten HJ, Lyden PD, Kleinfeld D.** Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. *The Journal of Neuroscience*. 2009; 29(46):14553–14570.

1246

1247

1248 **Tsubo Y, Isomura Y, Fukai T.** Neural dynamics and information representation in microcircuits of motor cortex. *Frontiers in Neural Circuits*. 2013; 7:85. <http://journal.frontiersin.org/article/10.3389/fncir.2013.00085>, doi: 10.3389/fncir.2013.00085.

1249

1250

1251 **Wall NR, De La Parra M, Sorokin JM, Taniguchi H, Huang ZJ, Callaway EM.** Brain-Wide Maps of Synaptic Input to Cortical Interneurons. *The Journal of Neuroscience*. 2016; 36(14):4000–4009.

1252

1253 **Wang Y, Hutchings F, Kaiser M.** Computational modeling of neurostimulation in brain diseases. *Progress in brain research*. 2015; 222:191–228.

1254

1255 **Wang Z, McCormick DA.** Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S, 3R-ACPD. *Journal of Neuroscience*. 1993; 13(5):2199–2216.

1256

1257

1258 **Weiler N, Wood L, Yu J, Solla SA, Shepherd GMG.** Top-down laminar organization of the excitatory network in motor cortex. *Nat Neurosci*. 2008 Mar; 11(3):360–366. doi: 10.1038/nn2049.

1259

1260 **Yamashita T, Pala A, Pedrido L, Kremer Y, Welker E, Petersen CC.** Membrane potential dynamics of neocortical projection neurons driving target-specific signals. *Neuron*. 2013; 80(6):1477–1490.

1261

1262 **Yamawaki N, Borges K, Suter BA, Harris KD, Shepherd GM.** A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity. *Elife*. 2015; 3:e05422.

1263

1264 **Yamawaki N, Shepherd GMG.** Synaptic circuit organization of motor corticothalamic neurons. *The Journal of Neuroscience*. 2015; 35(5):2293–2307.

1265

1266 **Yamawaki N, Tapias MGR, Stults A, Smith GA, Shepherd GM.** Circuit organization of the excitatory sensorimotor loop through hand/forelimb S1 and M1. *Elife*. 2021; 10:e66836.

1267

1268 **Yu J, Anderson CT, Kiritani T, Sheets PL, Wokosin D, Wood L, Shepherd GM.** Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice. *Frontiers in neural circuits*. 2008; 2:6.

1269

1270 **Zagha E, Casale AE, Sachdev RNS, McGinley MJ, McCormick DA.** Motor Cortex Feedback Influences Sensory Processing by Modulating Network State. *Neuron*. 2013; 79(3):567 – 578. <http://www.sciencedirect.com/science/article/pii/S0896627313004996>, doi: <https://doi.org/10.1016/j.neuron.2013.06.008>.

1271

1272

1273 **Zagha E, Ge X, McCormick DA.** Competing neural ensembles in motor cortex gate goal-directed motor output. *Neuron*. 2015; 88(3):565–577.

1274

1275 **Zareian B, Zhang Z, Zagha E.** Cortical Localization of the Sensory-Motor Transformation in a Whisker Detection Task in Mice. *Eneuro*. 2021; 8(1).

1276

1277 **Zeng H**, Sanes JR. Neuronal cell-type classification: challenges, opportunities and the path forward. *Nature Reviews Neuroscience*. 2017; 18(9):530.

1278

1279 **Zhang S**, Xu M, Chang WC, Ma C, Do JPH, Jeong D, Lei T, Fan JL, Dan Y. Organization of long-range inputs and outputs of frontal cortex for top-down control. *Nature Neuroscience*. 2016; .

1280