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Abstract

Cortical columns of direction-selective neurons in the motion sensitive area (MT) have been successfully established as

a microscopic feature of the neocortex in animals. The same property has been investigated at mesoscale (<1mm) in

the homologous brain area (hMT+) in living humans by using ultra-high field fMRI. Despite the reproducibility of the

selective response to axis-of-motion stimuli, clear quantitative evidence for the columnar organization of hMT+ is still

lacking. Using cerebral blood volume (CBV)-sensitive fMRI at 7 Tesla with submillimeter resolution and high spatial

specificity to microvasculature, we investigate the columnar functional organization of hMT+ (V5) in 5 participants

perceiving axis-of-motion stimuli for both blood oxygenation level dependent (BOLD) and vascular space occupancy

(VASO) contrast mechanisms provided by the used Slab-Selective Slice Inversion (SS-SI)-VASO sequence. With the

development of a new searchlight-like algorithm for column detection, we provide the first quantitative columnarity

map that characterizes the entire 3D hMT+ volume. We demonstrate the advantage of using CBV-sensitive fMRI to

detect mesoscopic cortical features by showing, through our new voxel-wise measures of sensitivity and specificity, the

higher specificity of axis-of-motion cortical columns detected by VASO compared to BOLD contrast. These voxel-wise

metrics also provide further insights on how to mitigate the highly debated draining veins effect. We conclude that using

CBV-VASO fMRI together with voxel-wise measurements of sensitivity, specificity and columnarity offers a promising

avenue to quantify the mesoscopic organization of hMT+ with respect to axis-of-motion stimuli. Furthermore, our

approach and methodological developments are generalizable and applicable to other human brain areas where similar

mesoscopic research questions are addressed.
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1. Introduction

An important task of the visual system is to recognize moving objects in a dynamic environment. The macaque

middle temporal (MT) area and its homologue in humans (hMT+, V5) is a high order cortical visual area sensitive to
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the direction of motion (Watson et al., 1993; Born and Bradley, 2005; Zeki, 1974; Maunsell and Van Essen, 1983; Rees

et al., 2000; Zimmermann et al., 2011). It also plays an important role in constructive motion perception as revealed

by illusory (e.g. apparent) motion stimuli (Goebel et al., 1998; Born and Bradley, 2005; Schneider et al., 2019). The

hypothesis that the macaque extra-striate area MT is functionally organized in cortical columns similarly to V1 (Hubel

and Wiesel, 1965) was supported by results from invasive electrophysiological recordings (Albright et al., 1984; Diogo

et al., 2003) and optical imaging (Malonek et al., 1994). In particular, Albright et al. (1984) demonstrated in macaque

MT the occurrence of a systematic relationship between the penetration angle of the electrode and the rate of change of

preferred direction of motion, indicating that cells with a similar preference are arranged in vertically oriented columns

(Mountcastle, 1997; Buxhoeveden and Casanova, 2002). Albright et al. also discovered that opposing directions of

motion are located in neighboring columns forming larger axis-of-motion columns.

The advent of magnetic resonance imaging opened the avenue to bridge the gap to animal literature, by non-

invasively investigating the functional organization of the human brain. Especially the advent of ultra high field

(UHF) functional magnetic resonance imaging (fMRI) combined with recent advances in MR hardware and pulse

sequences offers sub-millimeter spatial resolution (Uǧurbil et al., 2003; Shmuel et al., 2007; Uludaǧ et al., 2009;

Koopmans and Yacoub, 2019) providing a unique way to unveil mesoscopic properties underlying cognitive functions

at the level of cortical layers and cortical columns (Rakic, 2008; Petro and Muckli, 2017; Ugurbil, 2016; Dumoulin

et al., 2018; De Martino et al., 2018; Viessmann and Polimeni, 2021; Uğurbil, 2021; Huber et al., 2020; Cho et al.,

2022). Mesoscopic 7T fMRI has already been used to investigate the columnar organization of human MT using

3D-GRASE (Zimmermann et al., 2011; De Martino et al., 2013; Oshio and Feinberg, 1992; Feinberg et al., 1995;

Kemper et al., 2015) and BOLD contrast. Zimmermann et al. (2011) provided the first direct demonstration of axis of

motion selectivity and tuning characteristics in the human brain together with first insights into the spatial organization

of hMT. However, their columnar results can only be seen as an early approximation, since the provided limited number

of samples across cortical depth could still be insufficient to capture the full arrangement of vertical columnar property.

To validate and enhance previous findings, we investigate the functional organization of hMT+ in humans perceiving

axis-of-motion stimuli with three novel aspects: (I) we use cerebral blood volume (CBV)-sensitive fMRI in addition to

conventional BOLD fMRI, (II) we provide a new local or voxel-wise measure of sensitivity and specificity, and (III) we

develop a novel method to detect, characterize and visualize cortical columns.

CBV-sensitive fMRI. We use the SS-SI VASO (Huber et al., 2014) pulse sequence to get high-resolution CBV-

sensitive fMRI. The VASO sequence is more suitable for imaging mesoscopic features compared to standard gradient

echo BOLD echo planar imaging (GE-BOLD EPI), since it provides higher spatial specificity to the microvasculature

and it is less compromised by both oxygenation related vascular changes as well as large draining effects from vessels

penetrating the cortex orthogonally or from pial veins lying on top of the gray matter surface (Duvernoy et al., 1981;

Weber et al., 2008; Lauwers et al., 2008).

Local measure of sensitivity and specificity. For more precise quantification of responses, we develop a voxel-wise

measure of sensitivity and specificity as an extended version of the conventional global measure (Beckett et al., 2020;
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Huber et al., 2017). Global metrics summarize the behavior of an entire region of interest, whereas our local metrics

provide a functional characterization for each voxel inside a region of interest, resulting in more complete information

for addressing mesoscopic questions at submillimeter resolution. More specifically, our new local metrics allow to

evaluate the tuning property encoded in each voxel: if a voxel is strongly tuned to a specific condition its specificity

will be high and its sensitivity will be inherited by the contrast mechanism, whereas if a voxel is poorly tuned, as in

the case of a voxel sampling a big vessel, the specificity will be very low while the sensitivity will be very high. The

information provided by our metrics is also used to compare results from BOLD and VASO contrast mechanisms

(Huber et al., 2017, 2020; Oliveira et al., 2022).

Novel method to characterize cortical columns. To overcome depth-sampling limitations (Zimmermann et al.,

2011), we develop a new searchlight-like algorithm for column detection that inspects the whole cortical depth of a

specific volume of interest and provides a quantitative columnarity map that is useful to detect highly-columnar patches

inside the volume. The algorithm provides a new generalized framework for investigating the columnar functional

organization for any cortical gray matter ribbon and it can potentially improve the replicability and comparability of

columnar results across studies using a variety of columnar quantification methods (Yacoub et al., 2008; Zimmermann

et al., 2011; De Martino et al., 2013, 2015; Schneider et al., 2019).

In this study we acquire ultra-high field (7 Tesla) fMRI at submillimeter isotropic resolution (0.8mm) to investigate

the axis of motion cortical columns in hMT+ (V5). By using our new algorithm for column detection, we provide

a quantitative columnarity map that fully characterizes the functional organization of hMT+ with respect to axis-of-

motion preference. We demonstrate the advantage of using CBV-sensitive fMRI to detect mesoscopic cortical features

by showing the higher specificity of axis of motion cortical columns detected by VASO compared to BOLD contrast.

2. Methods

2.1. Experimental design

Five healthy participants (4 males and 1 female, 28-34 years old) with normal or corrected-to-normal vision

were recruited for the study. Participants received a monetary reward. All participants had been in an MRI scanner

at least once before and were trained and experienced at maintaining fixation for long periods of time. Informed

consent was obtained from each participant before conducting the experiment. The study was approved by the ethics

review committee of the Faculty of Psychology and Neuroscience (ERCPN) of Maastricht University and experimental

procedures followed the principles expressed in the Declaration of Helsinki. A frosted screen at the rear of the magnet

was used to project the visual stimuli that participants could watch through a tilted mirror attached to the head coil. An

MR compatible button box was used to register participants’ responses for the attention task during the entire functional

scanning procedure. In a two hour scanning session we acquired 1 run to functionally locate hMT+, 3-4 runs to map

four axes of motion and an MP2RAGE scan for the structural images (only if not already available from a previous

scanning session). For the hMT+ functional localizer, a standard block design paradigm was used presenting moving
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dots in alternation with static dots in a circular aperture (Tootell et al., 1995). We did not separate MST from hMT

(Huk et al., 2002; Kolster et al., 2010; Zimmermann et al., 2011) since we aimed to cover the whole human motion

complex (hMT+). Dots traveled inwards and outwards from the center of the aperture for 10 seconds (speed = 8 degree

of visual angle per second, dot size = 0.2 degree of visual angle, number of dots = 200, black dots on gray background),

were followed by a stationary dots display presented for the same amount of time. A total of 27 repetitions of task-rest

blocks were collected. For the axis of motion mapping, we presented dots in a circular aperture moving coherently

along one of four axes (0°↔ 180°,45°↔ 225°, 90°↔ 320°, 135°↔ 315°, in both directions of motion) (Zimmermann

et al., 2011) alternated with static flickering dots. Moving dot patterns (speed = 8 degrees of visual angle per second,

dot size = 0.2 degree of visual angle, number of dots = 250) were presented for 24 seconds followed by a variable

inter-trial interval (ITI) of 24–29 seconds to reduce functional signal carry over effects. Each motion axis block was

repeated four times per run. In all conditions, a black disk (target/fixation dot) surrounded by an annulus was presented

in the center of the aperture. Participants were instructed to fixate the black disk and respond through the button box

every time the annulus changed color (attention task). The scripts used for the stimulus presentation were developed

based on Schneider et al. (2019) and presented using the open source application PsychoPy3 (v2020.2.4) which are

available on https://github.com/27-apizzuti/AOM-VASO_project.

2.2. MRI acquisition

Data acquisition was performed on a whole-body “classical” MAGNETOM 7T (Siemens Healthineers, Erlangen,

Germany) at Scannexus B.V. (Maastricht, The Netherlands) using a 32-channel RX head-coil (Nova Medical, Wilming-

ton, MA, USA). A second and a third order B0 shimming procedure was used to improve the homogeneity of the main

magnetic field B0 in the shim volume containing the interested region. The localizer experiment was conducted using a

GE EPI sequence with BOLD contrast (Moeller et al., 2010) (echo time (TE)=15 ms, nominal flip angle (FA)=55°,

echo repetition time (TR)=1000 ms, multi band factor (MB)=3, 57 slices) with a whole brain field of view and a

(98×98) matrix at 2 mm isotropic nominal resolution. Before the acquisition of the run, we collected 5 volumes for

distortion correction with the settings specified above but opposite phase encoding (posterior-anterior). For the axis of

motion mapping experiment, we used a Vascular Space Occupancy (VASO) sequence (Lu et al., 2003) optimized for 7T

(Hua et al., 2013). Specifically, we used the Slab-Selective Slice Inversion (SS-SI VASO) approach (Huber et al., 2014)

with a 3D EPI readout (Poser et al., 2010) at nominal isotropic voxel resolution of 0.8 mm. Previous work has shown

that the 3D readout is beneficial for sub-millimeter applications (Huber et al., 2018). The in-plane field of view was

129×172 mm (162×216 matrix) for a total of 26 acquired slices. The imaging parameters were: TE=25ms, ‘temporal

resolution’ of pairs of images=4840ms, variable flip angle scheme FA=26+°, in plane partial Fourier factor 6/8 with

POCS reconstruction of 8 iterations, inversion time (TI)=1530ms for the blood nulling point and FLASH-GRAPPA=3

(Talagala et al., 2016). Variable flip angles were used to minimize T1-related blurring along the slice direction (Huber

et al., 2018). The sequence was implemented using the vendor provided IDEA environment (VB17A-UHF) and is

available to download via C2P on the SIEMENS App-Store in Teamplay. The placement of the small functional slab
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was guided by an online analysis of the hMT+ localizer data (general linear modeling by Siemens), to ensure a bilateral

coverage of area hMT+ for every participant. The anatomical images were acquired with an MP2RAGE (magnetization

prepared two rapid gradient echoes) (Marques et al., 2009) at 0.7 mm isotropic resolution (TR/TE=6000ms/2.39ms,

TI=800ms/2750ms, FA=4°/5°, GRAPPA=3). MP2RAGE sequence parameters are optimized to overcome the large

spatial inhomogeneity in the transmit B1 field by generating and combining in a novel fashion two different images

at two different inversion times (TI1, TI2) to create T1-weighted MP2RAGE uniform (UNI) images (Marques et al.,

2009). Physiological traces of respiration and heartbeat were recorded but not used for the analysis, since we did not

observe any improvements by conducting RETROICOR physiological noise correction during the piloting stage (Glover

et al., 2000). Indeed, sub-millimeter data are expected to be in the thermal noise-dominated regime (Triantafyllou et al.,

2005).

2.3. Structural data analysis

2.3.1. Preprocessing and registration

T1-weighted UNI images with high contrast-to-noise ratio from MP2RAGE were used to guide the determination

of the anatomical location of hMT+ and to derive layers in the cortical ribbon of interest. T1-w UNI images were

skull-stripped using a brain mask obtained by inputting the MP2RAGE INV2 (TI2) images to FSL BET (v.6.0.5)

(Smith et al., 2004). When needed, we manually corrected the results and used Segmentator (v.1.6.0) (Gulban

et al., 2018) to remove dura mater contribution. Then, we used the anatomical bias correction algorithm from

SPM12 (Wellcome Trust Center for Neuroimaging, London, UK) to further reduce inhomogeneities in the T1-w

UNI images (Friston et al., 2007; Ashburner and Friston, 2005). In order to preserve the high-resolution functional

data from issues of registration and interpolation while computing depth-dependent analysis (Huber et al., 2017;

Guidi et al., 2020), we aligned the T1-w UNI images to the high-resolution functional VASO data, according to

https://layerfmri.com/2019/02/11/high-quality-registration/. The target functional slab “T1-w EPI”

was derived from the original SS-SI VASO time series by computing the inverse of signal variability that provides a

good contrast between gray matter (GM) and white matter (WM) using AFNI (v.20.3.01) (Cox, 1996; Cox and Hyde,

1997) (function: -cvar). In ITK-SNAP (v.3.8) (Yushkevich et al., 2006) we manually aligned the T1-w UNI whole

brain images to the T1-w EPI slab and then ran ITK-SNAP’s automatic co-registration tool. Then, we used the obtained

transformation matrix as input for running ANTS’s “Syn” registration algorithm (v.20.3.01) (Avants et al., 2009, 2011;

Madge, 2020). Finally, the T1-w UNI images were resampled to the T1-w EPI space using ANTS b-spline interpolation

(antsApplyTransforms -BSpline).

2.3.2. Segmentation

Tissue segmentation is a crucial step to investigate cortical layers and columns. Since conventional segmentation

packages are inadequately optimized for data with a restricted field of view, a semi-automated segmentation approach

with manual intervention was used here. Therefore, although we define the functional location of hMT+ and process
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functional responses to axis-of-motion stimuli in both hemispheres, we restrict depth-dependent analysis only to the

left hemisphere where we get higher cross-validated activity compared to the right one (see result section “Axes of

motion tuning curves confirm motion-selective behavior”). We used -3dresample command from AFNI (v.20.3.01) to

upsample (with cubic interpolation) the processed T1-w UNI images with an upscaling factor of 4 (nominal resolution

= 0.2 mm isotropic). This step allowed a smoothed calculation of cortical features (e.g. curvature or thickness). Then,

we confined the segmentation process to a “scoop of interest” in the left hemisphere: in ITK-SNAP we centered a

spherical mask around the anatomically expected area hMT+. We ran FSL FAST to obtain a first definition of the

CSF/GM and the GM/WM tissue borderlines. Tissue labels were carefully quality controlled and manually edited

when necessary (by A.P.), and later revised independently by another expert (O.F.G.). In combination, we also used

morphological operations (dilation and erosion) (Virtanen et al., 2020) to further improve the segmentation output.

These operations, when applied in combination with the same parameters, remove mislabeled isolated voxels and

smooth boundaries between tissues.

2.3.3. Cortical depths

Once the segmentation was completed, we used LN2 LAYERS program from LayNii (v2.2.1) (Huber et al., 2021) to

compute, for each gray matter voxel, a normalized equi-volume cortical depth measurement (Bok, 1959; Waehnert

et al., 2014) as well as a cortical thickness and a curvature value.

2.3.4. Flattening

We used LN2 LAYERS, LN2 MULTILATERATE, and LN2 PATCH FLATTEN programs within LayNii (Gulban et al.,

2021) to flatten our cortical patches. We first establish the center of gravity of the gray matter activated ROI (left hMT+).

Then a disk of a predefined radius (see Supplementary Table 1) is grown geodesically and a local 2D coordinate system

(U and V coordinates) was imposed on it (using LN2 MULTILATERATE program). Together with the “metric” file from

LN2 LAYERS (D coordinate), the end result of this procedure is a full continuous mapping between flat cortex space

(UVD) and the original folded cortex space (XYZ). This mapping allows us to flatten 3D chunks of cortical data (in

NIfTI format) to explore mesoscopic cortical structures as it was done in previous studies (Zimmermann et al., 2011;

De Martino et al., 2013; Schneider et al., 2019).

2.4. Functional data analysis: Localizer experiment

Functional localizer data were pre-processed in BrainVoyager v.22.1 (Goebel et al., 2012) as follows: slice scan

time correction, motion-correction, linear trend removal and high-pass filtering (6 cycles). We corrected for EPI

geometric distortion using the image registration-based method based on the opposite phase encoding direction EPI

data as implemented in COPE BrainVoyager plugin (Breman et al., 2020). The same aligning procedure explained

for structural images was also used to align functional localizer data to high-resolution VASO data. The registration

parameters (ITK-SNAP, ANTS “Syn”) were estimated matching the computed temporal mean image from localizer

data (Smith et al., 2004) with T1-w EPI and then applied to the time series using ANTS B-spline interpolation. Then,
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in order to functionally define our ROI (bilateral hMT+), we calculated a voxel-wise general linear model (GLM) for

each participant in BrainVoyager. The GLM was corrected for temporal auto-correlation (AR2). The model contained

a single predictor for the stimulus condition “moving dots” convolved with a standard hemodynamic response function.

Voxels that showed a significant response to “moving vs static dots” contrast (using a threshold (q) corrected for

multiple comparisons using false discovery rate; q(FDR) < .05) were selected. Finally, we defined a bilateral hMT+

ROI, by intersecting these voxels with two spheres of 16 mm in radius (one for each hemisphere) placed inside the

expected anatomical location (Zimmermann et al., 2011; Schneider et al., 2019).

2.5. Functional data analysis: Axes of motion experiment

2.5.1. Preprocessing and functional maps

Axis of motion functional data were analyzed following the optimized preprocessing pipeline for SS-SI VASO

sequence https://layerfmri.com/example-analysis-pipeline-of-layer-VASO. For each run, the first four

time points (non-steady state images) were overwritten with steady-state images. Then, we separated odd and even time

points from raw data, corresponding to MR signals with and without blood nulling and we separately performed motion

correction using SPM12 (Friston et al., 2007). A fourth-order spline was used for resampling to minimize blurring. For

every participant, motion parameters between the two contrasts were very similar, as expected, and never higher than

the nominal voxel resolution. The original time series length was restored for both blood-nulled and BOLD images

using 7th order polynomial interpolation method before multiple runs were averaged to minimize noise amplification in

the next processing steps. Dynamic division of blood-nulled and BOLD volumes was performed to generate VASO

images with reduced BOLD contrast contamination (LayNii LN BOCO program). BOLD correction is valid under

the assumption that T2
* contrast is the same in images with both contrasts, because they are acquired concomitantly

(Huber et al., 2014). For each participant, we fit a voxel-wise general linear model restricted to the bilateral hMT+ ROI

(previously defined) on both the BOLD and VASO time series in BrainVoyager. The model contained five predictors,

one for each axis of motion condition and one for the flickering condition. Each predictor was then convolved with a

standard hemodynamic response function. The GLM was corrected for temporal auto-correlation (AR2). Statistical

t-maps were then computed. While generating the t-map by contrasting one axis of motion stimulus condition (e.g.

horizontal) versus flickering dots baseline condition, the two contrasting conditions were balanced in terms of number

of time points considered in the computation, since in the experimental paradigm the latter was repeated four times

more than the former one. In addition to the t-maps, we also computed voxel-wise percent signal change (Huber et al.,

2017; Beckett et al., 2020) between mean signal during task (e.g. moving dots along one axis of motion) and baseline

(flickering dots) with the same balancing rationale used for computing t-maps. This method has been shown to provide

results that are easier to interpret than methods using inferential statistics, which can be affected by laminar differences

in noise and hemodynamic response function shape (Huber et al., 2017).
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2.5.2. Preference maps and tuning curves

After the GLM fitting, we defined “tuned voxels” as all voxels that exhibited a significant t-value response (using a

threshold (q) corrected for multiple comparisons using false discovery rate; q(FDR)<.05) when contrasting “all axes

of motion moving dots vs flickering dots” and survived to a cluster-size thresholding (threshold=4) (using https:

//gist.github.com/ofgulban/27c4491592126dce37e97c578cbf307b). The higher sensitivity of BOLD was

used to define the initial set of tuned voxels (BOLD mask) that were used in the following analysis steps for both BOLD

and VASO contrasts. Having the same number of voxels allowed a more straightforward comparison between the two

contrasts. Then, a main “preference map” was created by assigning to each voxel the preferred axis of motion, based

on the predictor showing the highest fit (among the four axes of motion), representing the highest stimulus-induced

normalized fMRI response (t-value). We computed tuning curves for each axis of motion, by averaging t-values

responses of all voxels sharing the same preferred axis of motion. This procedure was separately performed for each

participant and for both BOLD and VASO contrast in both hemispheres. A leave-one-run-out cross-validation method

was implemented to assess the robustness of voxel tuning properties (Zimmermann et al., 2011; Emmerling, 2016).

Iteratively, we divided the available number of runs (learning set) into training set (average of all runs excluding the

test run) and test set (left out run) and for each set we labeled voxels according to their preferred axis, by fitting a GLM

as explained above. Within each fold of the cross-validation process, only voxels showing the same axis preference

between training and test set were kept for the next step. Finally, we cross-validated the “main preference map” by

removing all voxels whose labeled preferred axis did not match with the cross-validated predicted label. A global

measure of tuning specificity index was also computed for each tuning curve, by calculating the ratio of the response for

the labeled axis of motion divided by the average response towards all other axes of motion (De Martino et al., 2013).

2.5.3. Voxel-wise sensitivity and specificity calculation

To investigate the signal behavior and differences between BOLD and VASO contrast, we developed new voxel-wise

measures of sensitivity and specificity. By coding the voxel response to each axis of motion with a t-value, a four entries

t-value vector was associated to each voxel. Negative t-values were zeroed. Sensitivity was computed by calculating

the Euclidean norm of t-values vector (−→v ) (Eq.1).

S ensitivity def
= ∥−→v ∥ (1)

For each voxel, a normalized measure of specificity was derived by normalizing the dot product between the

t-values vector (entries were in ascending order) (̂v) and a reference winning vector [0 0 0 1] (ŵ). Since the ordering

operation constrains the angle computation in the range 0-60° (in 4 dimensions), we scaled the computed angle by the

maximum angle (θmax). Finally, we defined “specificity” the additive inverse of the computed scaled angle (Eq. 2).

S peci f icity def
= 1 −

arccos(̂v · ŵ)
θmax

(2)
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Figure 1: Numerical example of how to compute voxel-wise sensitivity and specificity for a 2 dimensional case. In A)

the fMRI response of a voxel is modeled using a General Linear Model and the response modulation or “weight” (e.g.

beta, t-value, percent signal change) during each stimulus is computed. In B) and C) we show step-by-step how to use

the weights to compute our voxel-wise sensitivity and specificity.

In Fig.1 we show with two numerical examples how to compute step-by-step our voxel-wise sensitivity and

specificity measures. The sensitivity measure quantifies how strongly a voxel responds to any axis of motion. The

specificity measure quantifies how well a voxel is tuned towards a specific axis of motion. We used a scatter plot to

observe relationships between these two variables: different regions of the space were associated with different voxel’s

behavior (e.g. highly-tuned voxels or vessel-dominated voxels) (see Fig.4A). Furthermore, to detect and localize

vessel-dominated voxels we combined sensitivity and specificity information with time-averaged T2
*-weighted EPI

intensity from BOLD time series, since it was demonstrated to be a robust marker of vascular effects (Kay et al., 2019).

Alternative global measures of sensitivity and specificity were also implemented to compare our results to the literature

(Beckett et al., 2020; Huber et al., 2017; Huber, 2017).

2.5.4. Voxel-wise columnarity index calculation

Cortical column detection and quantification using fMRI is a challenging task (Yacoub et al., 2008; Zimmermann

et al., 2011; De Martino et al., 2015; Schneider et al., 2019). Inspired by Blazejewska et al. (2019), we implemented a

searchlight-like algorithm to seek cylindrical columnar structures following the local coordinates of the cortical gray

matter. This algorithm is implemented as a part of LN2 UVD FILTER program (accessible via “-columns” option) in

LayNii v2.2.1 and consists of the following steps:

1. Our primary inputs are the local coordinates of the cortical gray matter. These local coordinates consists of: (i) a

voxel-wise parametrization of the cortical surface that contains the orthogonal U and V coordinates (computed by

LN2 MULTILATERATE program), and (ii) voxel-wise equi-volume cortical depths that contains the D coordinates

(“metric” file output as computed by LN2 LAYERS program) (see Fig.2A).
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2. Our secondary input is a scalar map. This scalar map consists of the BOLD or VASO preference map (see

Fig.2B).

3. Our tertiary input is a binary map which we refer to as “domain”. This binary map consists of the initial set

of tuned voxels (the “BOLD mask” used for both BOLD and VASO contrast, defined in the method section

“Preference maps and tuning curves”). Note that we extended these activated voxels to cover the rest of the

cortical thickness (using LN2 UVD FILTER with “-max” option). For instance, if only a single middle gray matter

voxel is available at a location, we include the voxels above and below until it covers the local cortical thickness.

4. The algorithm starts by evaluating a cylindrical 3D window centered at every voxel within the domain. This

evaluation is done by (i) computing Euclidean distances using the UVD coordinates of the center voxel to all the

other voxels within the domain, and (ii) by detecting the voxels that fall within user-determined radius and height

of the cylinder. Note that we set the cylinder radius to 0.6 mm and the height to cover the full cortical depth

(independent of a voxel being at the deep, middle, or superficial part of the cortex, see number I, II, III, IV in

Fig.2C). We chose the diameter of the cylinder to be slightly higher than the nominal resolution (0.8 mm) in

order to take into account all the possible orientations that a voxel can assume to sample the brain geometry.

5. This step determines a set of voxels for each window. Note that the number of windows is equal to the number of

voxels within the domain input. However the total number of voxels for each window can change as a function

of local cortical thickness and local curvature. Note that this behavior is natural and expected.

6. For the set of voxels within each window, we compute the modal (most frequently occurring) value within the

BOLD or VASO preference maps.

7. Finally, we compute the “columnarity index” by dividing the number of voxels of the modal value with the total

number of voxels evaluated in the cylindrical window (see Fig.2D). Note that the columnarity index ranges

between 0 (no columnarity) to 1 (ideal or pure columnarity).

Upon completion, our algorithm yields a map where each voxel contains a unique columnarity index. This procedure

allows us to reveal cortical columns for any value of the columnarity index by accordingly thresholding the columnarity

map and applying it as a binary mask to the input preference map. We summarize the columnar behavior of hMT+ for

both BOLD and VASO contrast by providing the following quantitative measurements as a function of the columnarity

index: voxel-wise sensitivity and specificity (see Fig.8A,B) and percentage of columnar volume with respect to the

volume of the domain (see Fig.8C). Finally, we evaluate the spatial similarity between BOLD and VASO columnarity

maps by computing the spatial consistency: for each value of the columnarity index we quantify the percentage of

voxels that appear in the same spatial location and with the same axis-of-motion preference in both contrasts with

respect to the total amount of columnar voxels (see Fig.8D).
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Figure 2: Overview of the searchlight algorithm for cortical column detection. A-B) Input examples of local coordinates

(U, V, D) and BOLD preference map of left-hMT+ for one example participant (sub-01). C) Conceptualization of the

algorithm on a toy model of a cortical ribbon. A searchlight with a cylindrical 3D window is evaluated at each voxel

position. On the toy model, we show the searchlight (dark gray voxels with cardinal axes) and its relative 3D window

(light gray). For every position of the searchlight, the window adapts to the geometry of the ribbon and covers the

entire cortical depth (see examples (I) voxel close to the outer gray matter, (II) voxel close to the inner gray matter, (III)

voxel close to the middle gray matter on a wall, (IV) voxel close to the middle gray matter on a gyrus). Pink cylinder is

an example of a high columnarity index (V), whereas the blue cylinder is an example of a low columnarity index (VI).

D) Output example of the columnarity index map generated for the data (B) of the same participant.
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3. Results

3.1. Axes of motion tuning curves confirm motion-selective behavior

Participants performed well (97% accuracy) on the change detection task, indicating proper fixation throughout

the experimental runs. For each participant, for both BOLD and VASO contrasts, we found voxels that exhibited a

significant t-value response when contrasting “all axes of motion moving dots vs flickering dots” (see Supplementary

Fig.1). As expected due to differences in sensitivity between BOLD and VASO contrast, the number of activated

voxels for VASO was lower compared to BOLD when the same statistical threshold was used for both contrasts. The

percentage of surviving cross-validated voxels for the left hMT+ was on average 35.8% for BOLD and 24.8% for

VASO contrast across participants (S1 (38%, 25%); S2 (31%, 16%); S3 (39%, 25%); S4 (34%, 25%); S5 (37%, 33%)).

The percentage of surviving cross-validated voxels for the right hMT+ was on average 37.6% for BOLD and 19.2% for

VASO contrast across participants (S1 (39%, 16%); S2 (35%, 19%); S3 (40%, 24%); S4 (31%, 17%); S5 (43%, 20%)).

We found axes of motion specific tuning curves for all cross-validated voxels in all participants for BOLD contrast

in both hemispheres. This result confirms the previous fMRI results (Zimmermann et al., 2011; De Martino et al.,

2013; Schneider et al., 2019). For the first time the results show that VASO is also sufficiently sensitive to map axes

of motion in hMT+. Indeed, a characteristic peak at the preferred axis of motion is observed in each group of tuned

voxels, showing a clear preference towards a single axis of motion (see Fig.3 and Supplementary Fig.2). Despite

the reduced signal sensitivity, the VASO tuning selectivity index was higher compared to BOLD (for VASO=4.8, for

BOLD=1.7, on average across participants, conditions and hemispheres). Moreover, the percentage of cross-validated

voxels for bilateral coverage across all participants characterizing each specific axis of motion was approximately

uniform for BOLD (Horizontal 0°-180°: 27%, Vertical 90°-270°: 25%, Diagonal 45°-225°: 31%, Diagonal 135°-315°:

17%) and VASO (Horizontal 0°-180°: 24%, Vertical 90°-270°: 24%, Diagonal 45°-225°: 29%, Diagonal 135°-315°:

23%), without a clear bias towards any particular axis as previously observed by Albright (1984). See Supplementary

Supplementary Fig.3 as an example to compare tuning curves computed before and after the cross-validation process

for the left-hMT+.

3.2. Voxel-wise sensitivity and specificity metrics quantify differences in imaging contrast

We computed voxel-wise sensitivity and specificity for all cross-validated tuned voxels for both BOLD and VASO

contrast in both hemispheres. As observed in Fig.4 and in Supplementary Fig.4, characteristic sensitivity-specificity

scatter plots were found for both BOLD and VASO contrast. For all participants, we observed that BOLD cross-

validated voxels are more sensitive (spanning a wider sensitivity range) and less specific (spanning a narrower specificity

range) compared to VASO voxels. Despite its reduced signal sensitivity, VASO contrast provides greater specificity to

microvasculature and less contributions from large vessels, in agreement with the higher functional tuning selectivity

Fig.3.

Conventional layer profiles (Supplementary Fig.5) and global sensitivity and specificity measures were also

computed (Supplementary Fig.6) to compare our results with the literature (Beckett et al., 2020; Huber et al., 2017).
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Figure 3: Group average axis of motion selectivity tuning curves for each axis of motion for both BOLD and VASO

contrast in the left hMT+. Tuning curves are computed by averaging t-values of all cross-validated (leave-one-run-out

approach) voxels sharing the same preferred axis of motion. The plots depict the mean and the standard error of all

voxels for each category. Tuning selectivity index is reported on the bottom of each subplot for both BOLD and VASO

contrast (colors refer to the legend reported in the second column). Consistently, the VASO tuning selectivity index is

higher than the BOLD. Cross validated tuning curves for the right hMT+ are shown in Supplementary Fig.2
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Figure 4: A) Sensitivity-specificity scatter plot. Different regions of the space are associated with different voxel

characteristics. The red area refers to highly tuned voxels, whereas the blue area describes vessel-dominated voxels.

B) Sensitivity and specificity quantify cross-validated voxel behavior of all participants for both BOLD and VASO

contrast. Squares highlight main differences between contrast types. In this figure, voxels belong to the left hMT+.

Consistently, voxels belonging to the right hMT+ show the same behavior (see Supplementary Fig.4).

Both supplementary results are in agreement with results in Fig.4. Our new local sensitivity and specificity measures

offer a voxel-wise perspective on the draining veins effect: the vessel-dominated voxels responsible for this effect can

be straightforwardly detected and localized.

As shown for an exemplary participant in Fig.5, the combination of high sensitivity and low specificity help

detecting vessel-dominated voxels (highlighted by green arrows) similarly to decreased BOLD T2
*-weighted EPI

intensity that has been shown to be a robust marker of vascular effects (Kay et al., 2019). A lower number of vessel-

dominated voxels are found for VASO contrast compared to BOLD, demonstrating the reduced signal contamination

by draining veins and its improved specificity.

In Fig.6, we project the vessels-dominated voxels shown in Fig.5 in the flat laminar-resolved domain. This

representation provides a more convenient visual representation to evaluate voxel localization across cortical depths.

As shown in Fig.6, the vessels-dominated voxels appear mostly in the superficial layers and disappear in the deep

layers. This result demonstrates BOLD signal contamination by pial vasculature that lies above the cortex. The same

phenomenon is strongly attenuated in VASO signals.

3.3. Quantification of the columnar organization of axes of motion tuned voxels

We explored the spatial organization of axes of motion tuned voxels for both BOLD and VASO contrast by using a

new searchlight-style algorithm for column detection. We evaluated both BOLD and VASO columnarity maps for 25%,

50%, and 65% of the columnarity index in left hMT+ ROI. We used the flattening algorithm (Gulban et al., 2021) and

3D rendering visualization tools (Sullivan and Kaszynski, 2019) to show our columnar results.
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Figure 5: Volume-based visualization of voxel-wise sensitivity and specificity maps for one example participant

(sub-01) in the left hMT+ ROI. The same axial slice is shown for both T2
*-w EPI signal and T1-w signal (nominal

resolution 0.2 iso mm). The green arrow points to a vascular structure detectable only through T2
*-w EPI intensity as

a dark spot (reflecting static susceptibility effects). High sensitivity and low specificity characterizes all the voxels

belonging to this vascular structure (green arrows) for BOLD contrast. The detectability of this vascular structure is

less evident for VASO contrast, as expected.
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Figure 6: Depth-dependent T2
*-w EPI intensity, voxel-wise sensitivity and specificity maps for BOLD and VASO

contrast showed for the flattened left hMT+ ROI for one example participant (sub-01) (nominal resolution 0.05 mm

iso.). Note that in this figure we project the same vessels-dominated voxels shown in Fig.5 in the flat laminar-resolved

domain. The vascular structure highlighted by the green arrow corresponding to the dark spot in T2
*-w EPI intensity is

clearly visible at superficial layers but not at middle or deep layers, which indicates that it is a pial vein. High sensitivity

and low specificity are in agreement with the spatial displacement of darkness of T2
*-w EPI intensity.
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Figure 7: Examples of BOLD (A) and VASO (B) axes of motion cortical columns for one example participant

(sub-01) at 25%, 50%, 65% of the columnarity index. C) BOLD-VASO spatial consistency shows only axes of motion

columns that are detected in both BOLD and VASO contrasts for each columnarity threshold (see animations here:

https://doi.org/10.6084/m9.figshare.20393667.
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In particular, Fig.7A,B shows BOLD and VASO columnar results for one representative participant. We further

emphasized the visualization of our columnar results by creating rotating animations available here: https://doi.

org/10.6084/m9.figshare.20393667. We found that the animations allowed us to qualitatively communicate the

spatial organization of our volume of interest in an effective way. For each participant and for both BOLD and VASO

we quantified four features as a function of the columnarity index: the amount of spatial overlap or consistency between

BOLD and VASO columnar results, the local sensitivity and specificity and the columnar volume. Fig.7C shows

BOLD-VASO spatial consistency for the same three columnarity indices (25%, 50%, 65%).

As it can be seen in the group results of Fig.8D the BOLD-VASO spatial consistency decreases as the columnarity

index increases. The same trend is also found for the columnarity volume (Fig.8C). Despite the higher sensitivity of

the BOLD columnarity results compared to VASO (Fig.8A), interestingly, we found that VASO columnarity results are

always more specific according to our local measure of specificity compared to BOLD results (Fig.8B).

4. Discussion

4.1. Overview of the results

This study shows for the first time the feasibility of mapping axes of motion cortical columns in the extrastriate area

hMT+ in living humans using CBV-VASO fMRI at 7T. The SS-SI VASO sequence with 3D EPI readout enabled us to

simultaneously acquire BOLD and VASO responses in hMT+. Therefore, we separately applied the same analysis

pipeline to both VASO and BOLD fMRI data (Huber et al., 2015, 2017; Oliveira et al., 2022; Oliveira et al.). In this

regard, the development of new local metrics of sensitivity and specificity was pivotal to quantitatively compare and

interpret results found with VASO and BOLD contrast. Our metrics not only confirmed the higher specificity and

lower sensitivity of VASO compared to BOLD voxels (Beckett et al., 2020), but also allowed us to clearly highlight

pial vein effects in BOLD contrast. Finally, the new searchlight algorithm for functional column detection provides

a unique framework to investigate mesoscopic cortical features with its improved quantifiability and comparability

with respect to previous used methodologies (Yacoub et al., 2008; Zimmermann et al., 2011; De Martino et al., 2013,

2015; Schneider et al., 2019). The columnarity map computed by our algorithm provides a full representation of the 3D

functional organization of hMT+ allowing a transparent evaluation of columnarity.

4.1.1. Local vs global sensitivity and specificity metrics

Conventionally, global measures of sensitivity and specificity (Huber et al., 2017; Beckett et al., 2020) are used

to compare different contrast mechanisms in terms of draining veins effects. As described in (Beckett et al., 2020)

those global indices are computed by fitting a linear regression model to layer profiles (see Supplementary Fig.6). In

this work, we extended the concept of sensitivity and specificity from a global to a voxel-wise scale, by exploiting

the tuning property of hMT+ voxels. By visualizing our sensitivity and specificity maps, we observed that untuned

voxels show very low specificity. Voxels close to pial vessels show a very low specificity and very high sensitivity in
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Figure 8: Descriptive statistics for columnarity group results for the left hMT+ ROI. A-B) Voxel-wise sensitivity and

specificity is evaluated for both BOLD (blue line) and VASO (red line) as a function of the columnarity index. Line plot

represents the mean specificity computed across participants. Error bar represents the standard error across participants.

C) The percentage of columnarity volume is evaluated as a function of the columnarity index for both BOLD and

VASO contrast. Each line is representative of one participant. D) BOLD-VASO spatial consistency quantified for each

value of the columnarity index. Line plot represents the averaged BOLD-VASO spatial consistency computed across

participants and error bar represents the standard error across participants.
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combination with a low T2
*-w EPI signal as an additional independent diagnostic marker. For the data of the participant

reported in Fig.5 and in Fig.6, we clearly showed BOLD voxels sampling a pial vessel. The VASO contrast is expected

to be not sensitive to macrovasculature. However, we still observe a smaller number of voxels with the aforementioned

properties. Two possible candidate mechanisms can be leading to this phenomenon: a flow-dependent vein effect as

described in (Huber, 2015) or a dilatation effect of big arteries on the pial surface (Kim et al., 2013), which is still

disputed. We believe that our new local metrics of sensitivity and specificity provide an alternative way to evaluate the

draining veins effect and to visualize pial vessels responsible for it.

4.1.2. General perspective on cortical columns

While the existence of direction selective neurons within area MT is a well-established feature in primates (Albright,

1984) and cats (Hubel and Wiesel, 1962, 1965) only preliminary evidence has been reported in humans (Zimmermann

et al., 2011; De Martino et al., 2013). Our findings provide strong evidence for a functional columnar organization of

axis-of-motion features also in human MT+. The obtained columnarity maps, however, indicate that functional clusters

are only partially in line with proposed ideal (anatomical) column models (Mountcastle, 1956) that are assumed to

penetrate vertically from the pial surface to the white matter boundary in a regular manner. The hypothesis of 3D

columns was mostly investigated by multi-unit electrophysiological recordings in animals. Pioneering results from

Hubel and Wiesel (1962, 1965); Albright et al. (1984), were put in perspective by reports showing that the preferred

orientations were not necessarily represented in a columnar fashion in animal visual cortex (Bauer et al., 1983, 1989;

Berman et al., 1987). In particular, Bauer et al. (1983) reported that the preferred orientations jump by 90° along

the vertical track of the electrode penetration in the cat area 18. It’s worth noting that this technique comes with the

cumbersome task of accurately tracing the penetrating electrodes together with the limited sampling space, affecting the

robustness of those results (Horton and Adams, 2005). Later findings (Tanaka et al., 2011) provided a new perspective

on the conventional columnar view of orientation representation of the visual cortex: simulations based on a 3D

self-organized model predicted the occurrence of direction reversal in columns along the cortical depth dimension

being proportional to the curvature of the cortex, and orientation columns having wedge-like shape when sampling gyri

or sulci. The same study confirmed these theoretical predictions with multi-slice, high-resolution functional MRI in cat

areas 17 and 18. These mechanisms were also discussed by (Zimmermann et al., 2011) to explain the variability of

iso-oriented feature maps across cortical depths observed with high-resolution fMRI in humans. Recently, Nakamichi

et al. (2018) proposed a new explanation for the variability across cortical depths based on functional optical coherence

tomography in cats: their results show that the 3D structure of orientation columns were heavily distorted around

pinwheel centers. Orientation singularities were rarely straight solid bars connecting pinwheel centers, instead they

typically ran inside the cortex creating “singularity strings” with peculiar trajectories. Besides findings challenging a

simplistic view of columnar organization (Rakic, 2008), the functional relevance of cortical columns has also been

debated (Horton and Adams, 2005; Haueis, 2021). Whether cortical columns “are a structure without a function”

(Horton and Adams, 2005) or not, the presence of functional clusters with groups of neurons that share similar tuning
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properties allows high-resolution human fMRI studies to reveal coding principles of the brain, which would otherwise

only be possible at microscopic resolution.

Our columnar results are to our knowledge the first to provide a quantitative columnarity map to characterize the

functional organization of axis-of-motion features in hMT+ exploiting the benefits of CBV-based fMRI at 7T. Our new

algorithm for column detection not only improved the quantifiability and comparability with other studies, but it also

takes into account the curvature effect (Tanaka et al., 2011). However, we found that the spatial consistency between

VASO and BOLD columnar results decreased as a function of the columnarity index. We believe that this variability is

due to an interplay of two effects. On the one hand, the differences in terms of sensitivity but especially specificity

between VASO and BOLD would mostly affect the columnar results when a conservative columnarity index threshold

is applied. On the other hand, the aforementioned theory of variability of orientation selectivity across cortical depths

could explain the trend of spatial consistency.

Future CBV-sensitive fMRI studies with higher spatial resolution (e.g. < 0.5 mm isotropic) and improved sensitivity

would be able to investigate the functional organization of hMT+ in more detail that would be likely sufficient to

resolve direction-of-motion columns instead of the larger axis-of-motion columns. Such higher-resolution fMRI studies

might also reveal direct evidence for pinwheels and their effect on columnarity. The improved quantifiability provided

by our new method for column detection will make the comparison of our results with future studies straightforward.
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VASO at 7 tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. Magnetic Resonance in Medicine 72,

137–148. doi:10.1002/mrm.24916.

Huber, L.R., Poser, B.A., Bandettini, P.A., Arora, K., Wagstyl, K., Cho, S., Goense, J., Nothnagel, N., Morgan, A.T., van den Hurk, J., Müller,

A.K., Reynolds, R.C., Glen, D.R., Goebel, R., Gulban, O.F., 2021. LayNii: A software suite for layer-fMRI. NeuroImage 237, 118091. URL:

https://doi.org/10.1016/j.neuroimage.2021.118091, doi:10.1016/j.neuroimage.2021.118091.

Huber, L.R.R., 2017. Which fMRI contrast is most specific for high resolution layer-dependent fMRI? Comparison study of GE-BOLD, SE-BOLD,

T2-prep BOLD and blood volume fMRI.

Huk, A.C., Dougherty, R.F., Heeger, D.J., 2002. Retinotopy and functional subdivision of human areas MT and MST. Journal of Neuroscience 22,

7195–7205. URL: https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.22-16-07195.2002, doi:10.1523/jneurosci.

22-16-07195.2002.

Kay, K., Jamison, K.W., Vizioli, L., Zhang, R., Margalit, E., Ugurbil, K., 2019. A critical assessment of data quality and venous effects in

sub-millimeter fMRI. NeuroImage 189, 847–869. URL: https://doi.org/10.1016/j.neuroimage.2019.02.006, doi:10.1016/j.

neuroimage.2019.02.006.

Kemper, V.G., De Martino, F., Vu, A.T., Poser, B.A., Feinberg, D.A., Goebel, R., Yacoub, E., 2015. Sub-millimeter T2 weighted fMRI at 7 T:

24

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.07.29.502034doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502034
http://creativecommons.org/licenses/by-nd/4.0/


Comparison of 3D-GRASE and 2D SE-EPI. Frontiers in Neuroscience 9, 1–14. doi:10.3389/fnins.2015.00163.

Kim, S.G., Harel, N., Jin, T., Kim, T., Lee, P., Zhao, F., 2013. Cerebral blood volume MRI with intravascular superparamagnetic iron oxide

nanoparticles. NMR in Biomedicine 26, 949–962. doi:10.1002/nbm.2885.

Kolster, H., Peeters, R., Orban, G.A., 2010. The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors.

Journal of Neuroscience 30, 9801–9820. doi:10.1523/JNEUROSCI.2069-10.2010.

Koopmans, P.J., Yacoub, E., 2019. Strategies and prospects for cortical depth dependent T2 and T2* weighted BOLD fMRI studies. NeuroImage

197, 668–676. URL: https://doi.org/10.1016/j.neuroimage.2019.03.024, doi:10.1016/j.neuroimage.2019.03.024.

Lauwers, F., Cassot, F., Lauwers-Cances, V., Puwanarajah, P., Duvernoy, H., 2008. Morphometry of the human cerebral cortex microcirculation:

General characteristics and space-related profiles. NeuroImage 39, 936–948. doi:10.1016/j.neuroimage.2007.09.024.

Lu, H., Golay, X., Pekar, J.J., Van Zijl, P.C., 2003. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magnetic

Resonance in Medicine 50, 263–274. URL: https://pubmed.ncbi.nlm.nih.gov/12876702/, doi:10.1002/mrm.10519.

Madge, V., 2020. Evaluating Voxelmorph: A learning-based 3D non-linear registration algorithm, against the non-linear symmetric normalization

technique from ANTs. Ph.D. thesis. McGill University. URL: https://escholarship.mcgill.ca/concern/theses/zp38wj23v.

Malonek, D., Tootell, R.B., Grinvald, A., 1994. Optical imaging reveals the functional architecture of neurons processing shape and motion in owl

monkey area MT. Proceedings of the Royal Society B: Biological Sciences 258, 109–119. doi:10.1098/rspb.1994.0150.

Marques, J.P., Kober, T., Krueger, G., Zwaag, W.V.D., 2009. MP2RAGE , a self bias-field corrected sequence for improved segmentation and

T1-mapping at high field NeuroImage MP2RAGE , a self bias- fi eld corrected sequence for improved segmentation and T 1 -mapping at high

fi eld. NeuroImage 49, 1271–1281. URL: http://dx.doi.org/10.1016/j.neuroimage.2009.10.002, doi:10.1016/j.neuroimage.

2009.10.002.

Maunsell, J.H., Van Essen, D.C., 1983. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for

stimulus direction, speed, and orientation. Journal of Neurophysiology 49, 1127–1147. doi:10.1152/jn.1983.49.5.1127.

Moeller, S., Yacoub, E., Olman, C.A., Auerbach, E., Strupp, J., Harel, N., Uǧurbil, K., 2010. Multiband multislice GE-EPI at 7 tesla, with 16-fold
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Supplementary Material

Supplementary Figure 1: SS-SI VASO functional images for an example participant (sub-01). A) Slab coverage (in

warm colors) relative to a whole brain MP2RAGE. B) Temporal signal-to-noise ratio. C) Activation map for BOLD

and VASO time series for the contrast: “all axes of motion vs flickering dots” (q(False Discovery Rate) < 0.05). for the

left-hMT+
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Supplementary Figure 2: Group average axis of motion selectivity tuning curves for each axis of motion for both

BOLD and VASO contrast in the right hMT+. Tuning curves are computed by averaging t-values of all cross-validated

(leave-one-run-out approach) voxels sharing the same preferred axis of motion. The plots depict the mean and the

standard error of all voxels for each category. Tuning selectivity index is reported on the bottom of each subplot for

both BOLD and VASO contrast (colors refer to the legend reported in the second column). Consistently, the VASO

tuning selectivity index is higher than the BOLD one.
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Supplementary Figure 3: Example of BOLD and VASO tuning curves before and after the cross-validation for the

left-hMT+.
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Supplementary Figure 4: Sensitivity and specificity quantify the behavior of cross-validated voxels belonging to the

right-hMT+ for all participants for both BOLD and VASO contrast.
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Supplementary Figure 5: Layer profiles across three cortical depths: deep (25%), middle (50%), superficial (75%)

with respect to the white-gray matter boundary in the left hMT+. For each cortical depth, the averaged percent signal

change of all cross-validated voxels is reported for both BOLD and VASO. The yellow box shows the group result of

all five participants.
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Supplementary Figure 6: Global metrics of sensitivity and inverse specificity computed for each subject (columns),

for both BOLD (first row) and VASO contrast (second row) considering cross-validated voxels in the left hMT+. Each

subplot shows single layer profiles for each axis of motion condition. The square brackets report global sensitivity and

inverse measure of global specificity (Beckett et al., 2020). B) Global metrics of sensitivity and inverse specificity

(Beckett et al., 2020) computed for each participant, for both BOLD (black bar) and VASO (red bar). Each barplot

depicts the mean value evaluated across the four axes of motion.
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Supplementary Table 1: Descriptive statistics for “perimeter chunk” (volume of interest used to fit the disk to compute

flat coordinates) for all participants in the left hMT+. First column reports the volume in cm3. Second column reports

the radius of the disk used for each participant. The third column refers to cortical thickness measurements: mean and

standard deviation is reported in curly brackets, percentage value refers to the percentage of volume whose cortical

thickness measure falls in the expected range 1.5-3.5 mm. Third column summarizes the curvature measures for the

volume of interest. The amount of sulcus, wall and gyrus in the region is reported as a percentage of the volume of

interest.
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