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Abstract 
Homo-oligomeric ligand-activated proteins are ubiquitous in biology. The functions of such 
molecules are commonly regulated by allosteric coupling between ligand binding sites. 
Understanding the basis for this regulation requires both quantifying the free energy ΔG 
transduced between sites, and the structural basis by which it is transduced. We consider 
allostery in three variants of the model ring-shaped homo-oligomeric trp RNA binding 
attenuation protein, TRAP. First, we developed nearest-neighbor statistical thermodynamic 
binding models comprising microscopic free energies for ligand binding to isolated sites ΔGN0, 
and for coupling between one or both adjacent sites, ΔGN1 and ΔGN2. Using the resulting 
partition function (PF) we explored the effects of these parameters on simulated population 
distributions for the 2N possible liganded states. We then experimentally monitored ligand-
dependent population shifts using conventional spectroscopic and calorimetric methods, and 
using native mass spectrometry (MS). By resolving species with differing numbers of bound 
ligands by their mass, native MS revealed striking differences in their ligand-dependent 
population shifts. Fitting the populations to a binding polynomial derived from the PF yielded 
coupling free energy terms corresponding to orders of magnitude differences in cooperativity. 
Uniquely, this approach predicts which of the possible 2N liganded states are populated at 
different ligand concentrations, providing necessary insights into regulation. The combination of 
statistical thermodynamic modeling with native MS may provide the thermodynamic foundation 
for a meaningful understanding of the structure-thermodynamic linkage that drives cooperativity. 

 

TOC Figure (draft): 

 
TOC Figure. Ligand (Trp) binding to multiple sites on homo-oligomeric ring-shaped proteins like TRAP alters their 
functional states. Homotropic cooperativity is expected to alter the activation pathway in response to cellular ligand 
concentration. In the presence of positive nearest-neighbor cooperativity, ligand binding is favored at adjacent sites, 
whereas in the absence of cooperativity, a random “Normal” distribution is expected. 
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Introduction 
Homotropic allostery is widespread in biology 

Homotropic cooperativity describes a ubiquitous process in biological regulation. It arises 
commonly in proteins that form symmetric homo-oligomeric assemblies whose biological activity 
is modified by ligands.1,2 In such symmetric assemblies, even though the binding sites are 
identical, ligand binding affinities depend on the liganded state of the oligomeric protein; that is, 
the affinity K of a ligand for a receptor with no bound ligands will be different for a receptor that 
already has one or more bound ligands.3 This difference in affinity arises through “allosteric” 
interactions between the ligand binding sites, which alter the free energy change upon 
additional ligand binding.4,5 Such thermodynamic changes are most often associated with 
structural changes that accompany ligand binding, though changes in protein dynamics have 
also been implicated.6,7 A large proportion of biological processes are regulated by homo-
oligomeric ligand binding proteins, from hemoglobin8 to p97 ATPase9. Therefore, to understand 
biological regulation we must first understand the linkage between ligand-induced structural 
changes and changes to protein-ligand free energy landscapes.10 

TRAP protein rings as models of homotropic allostery 

We explore homotropic cooperativity in the homo-oligomeric trp RNA binding attenuation protein 
TRAP, which plays a central role in regulating tryptophan (Trp) production in Bacilli.11 TRAP was
originally identified in Bacillus subtilis (Bsu) as a 76-residue protein that assembles into homo-
oligomeric complexes. Upon binding multiple Trp ligands, TRAP is activated to bind specific 
RNA sequences in the 5’ untranslated region of the trp operon mRNA.12,13 Crystal structures of 
TRAP from Bsu, B. stearothermophilus (Bst), B. licheniformis, and B. halodurans (Bha) revealed 
undecameric (11mer) and dodecameric (12mer) rings with binding sites for Trp in the interfaces 
between each of the protomers (Figure 1A-C). Trp-dependent sequence-specific RNA 
recognition is achieved via base contacts from amino acids located on loops that are flexible in 
the absence of Trp and become structured upon Trp binding; these loops thus mediate 
heterotropic Trp-RNA cooperativity.13 The same loops that mediate RNA binding also are points 
of contact between neighboring Trp binding sites, providing a structural scaffolding for mediating 
site-site interactions (Figure 1D). 

 
Figure 1. TRAP forms ring-shaped homo-oligomers to bind tryptophan and RNA. (A-C) Crystal structures of Trp-
bound TRAP revealed 12mers for Bha TRAP (A; 3zzl), and for an engineered Bst TRAP-Δ71 (B; 3zzs), while wild-
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type Bst TRAP crystallized as 11mers (C; 1qaw). Bound Trp ligands are shown as spheres. (D) Crystal structure of 
Bst TRAP bound to an idealized trp leader RNA (green; 1C9S). Protein loops that become structured upon Trp 
binding participate in RNA recognition and mediate interactions between Trp binding sites (red arrows). 

Quantifying the detailed thermodynamics of ligand binding to homo-oligomeric 
proteins is difficult.  

Experimentally, binding affinities are usually quantified by measuring ligand-dependent changes 
in an observable that is proportional to the fraction of bound states Y; for example, a 

spectroscopic signal, or heat released upon binding. Y has the familiar form  � � ���
����� �⁄

, where 

[L] is the free ligand concentration and K is the equilibrium association constant. For a 
dodecameric protein with 12 binding sites, there are 212 = 4096 possible configurations with 0-
12 bound ligands. If the binding sites are identical and independent (i.e., in the absence of 
cooperativity), the populations of states with 0 to 12 bound ligands L follow a binomial 
distribution: ���,�,�� � �!
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, where n is the number of bound ligands, M is 

the total number of sites, and Y is the fraction of bound sites (i.e., the probability of sites being 
bound).14,15 Thus, for example, when enough ligand is present so that on average 1/12 of all 
sites are occupied (Y = 1/12 = 0.083), we find that states of the oligomer with one ligand bound 
are only slightly more abundant than those with none bound, or with two bound (0: 35%, 1: 38%, 
2: 19%, 3: 6%) (Figure S1). If enough ligand is present to fill half of the sites (Y = 0.5), the most 
dominant states are those with six bound ligands, but other states are abundant according to a 
normal distribution, with coefficients 1:12:66:220:495:792:924:792:495:220:66:12:1 for 0-12 
bound ligands. Thus, the resulting signal represents the average over all liganded states. 
Moreover, the liganded states have configurational degeneracies: e.g., there are 
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!
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�
924 ways of binding 6 ligands to a symmetric homo-oligomer with 12 identical binding sites. The 
experimentally measured signal is thus the average over all liganded states and their 
configurations. Nevertheless, as long as the signal is proportional to Y, we can determine K by 
measuring how it changes with [L].  

Cooperativity implies that i ligand binding events occur with different affinities Ki. These 
differences result in altered population distributions, and how they respond to changes in ligand 
concentration. In the absence of cooperativity, populations can be expected to follow a purely 
statistical distribution that maximizes configurational entropy. At the extreme of infinitely positive 
cooperativity, under conditions of half maximal saturation (Y = 0.5), instead of a normal 
distribution we would observe a strict bimodal distribution: half of the oligomers will be fully 
bound, and half will be empty.  Thus, cooperativity makes some configurations more favorable 
than others; which states are more favored depends on the mechanism and magnitude of the 
cooperative interactions. Thus, the population distribution encodes rich information about 
cooperative mechanisms that are convolved in the average metric Y.  

A complicating factor in measuring population distributions is that cooperativity may distort the 
proportionality between the observable signal and fractional saturation Y. For example, in 
isothermal titration calorimetry (ITC) experiments, ligands may bind with differing affinities Ki, 
but also with different enthalpies ΔHi; this makes complicates the use of heat as a metric for 
quantifying populations. Likewise, if a ligand bound at a site allosterically favors structural shifts 
in neighboring binding sites, subsequent ligand binding events as measured by circular 
dichroism (CD) might generate smaller structural changes and therefore lose proportionality to 
bound population.  
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Native MS can measure population distributions 

Native mass spectrometry (MS) has the potential to distinguish allosteric mechanisms by more 
directly probing bound-state distributions.6,16–18 Unlike aggregate measurements of average 
fractional saturation, native MS can directly probe the populations of states with different 
numbers of bound ligands.18 The mass (and mass-to-charge ratios, m/z) of a macromolecular 
complex is exactly determined by the molecular weight of its constituents. Thus, for an ionized 
macromolecule with n bound ligands, the signal will appear at the m/z dictated by the mass of 
the components and the charge on the ion. This direct proportionality between signal and ligand 
occupancy thus makes native MS well suited to characterize populations of states for molecules 
with multiple binding sites.  

Proper model selection is important 

Finally, a severe confounding factor in understanding mechanisms of cooperativity is the 
selection of an appropriate model to extract thermodynamic parameters from binding data. In 
the absence of cooperativity, one may fit the signal change with the hyperbolic binding equation 

������� � ��������� � ���
����� �⁄

 if the free ligand concentration is known or can be approximated, 

or the quadratic equation: ������� � ��������� � ����������� �⁄ �������������� �⁄ 
�����������
�����

 

(Equation 1), if only total ligand and binding site concentrations [L]T and [M]T are known; 
Amplitude is the proportionality between fractional saturation Y and the signal change. However, 
these equations are inappropriate for cooperative binding since they only include one 
equilibrium constant K. Cooperativity is plainly evident if binding curves cannot be fit accurately 
with one of these equations.  

Parsimonious approaches to data analysis demand adding only as many parameters as needed 
to produce a good fit to the binding data. A common approach is to use the Hill equation, which 
can generate sigmoidal binding curves but is uninformative about free energy differences 
between binding modes. Phenomenological multi-site independent binding models can also 
produce cooperative binding curves as well as different apparent affinities, yielding free energy 
differences between phenomenological binding modes.19  

However, to decipher cooperativity mechanisms it is necessary to apply an appropriate physical 
binding model to the thermodynamic parameters. In the concerted Monod-Wyman-Changeux 
(MWC) model, all subunits of a homo-oligomer are posited to simultaneously exchange between 
distinct structures with different affinities for the ligand binding.20 In the sequential Koshland-
Nemethy-Filmer (KNF) model, each subunit independently undertakes conformational changes 
upon ligand binding, altering the binding affinity for subsequent binding events.21 While each of 
these models are able to reproduce cooperative binding curves, they are unable to clarify which 
of the 2N = 4096 possible liganded configurations of a 12mer are more favorable.  

Mechanistic insights from statistical thermodynamic models and native MS 

Here, we explore the use of mechanistic nearest-neighbor (NN) lattice-based statistical 
thermodynamic models, along with native MS, to quantify and describe the cooperative behavior 
of three TRAP protein variants. We apply additive and non-additive NN models parametrized 
with free energies of binding to isolated sites, and microscopic free energies for communication 
between sites. We iterate over all possible 2N liganded configurations of TRAP rings to develop 
statistical thermodynamic partition functions (PF) that describe the probabilities of each of the 2N 
possible liganded states. We explore the effect of nearest-neighbor interaction energies on 
population distributions during simulated ligand titrations and examine the sensitivity of average 
site occupancy to the underlying population distributions.  
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We then measure Trp binding to TRAP variants using conventional bulk methods (CD, ITC), 
and using native MS. We find that native MS makes it possible to resolve and quantify states 
with 0 to n bound ligands, thereby allowing measurement of the statistical thermodynamic PF. 
Fitting of the populations of states with different numbers of bound ligands to a binding 
polynomial derived from the PF allows quantification of the microscopic free energy transduced 
between adjacent ligand binding sites. Armed with these tools, it is possible to predict which of 
the 2N possible states are populated under different conditions, potentially distinguishing the 
active and inactive populations. Given the widespread occurrence in nature of homo-oligomeric 
protein assemblies,1,2 the approach outlined here for obtaining microscopic thermodynamic 
parameters should advance our understanding of structure-thermodynamic relationships in 
biological regulation.  
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Materials and Methods 
Protein Preparation 

Three TRAP variants were prepared for these studies: Bha TRAP, which forms predominantly 
12mers, Bst TRAP, which forms predominantly 11mers, and Bst TRAP-Δ71, which forms 
predominantly 12mers.22,23 The proteins share the same protomer extinction coefficient (ε = 
2980 M-1cm-1) at 280 nm as predicted using ProtParam (https://web.expasy.org/protparam/). 
Protein concentrations were determined using a Nanodrop 2000c spectrophotometer (Thermo 
Scientific) in droplet mode. 

To produce Bha TRAP (WP_010897809.1), the coding region for the wild-type protein, in the 
pET17b plasmid (Novagen),24 was modified by the insertion at the C-terminus of sequences 
encoding the TEV protease cleavage site (ENLYFQ/G) followed by six histidine residues (a His-
tag); after removal of the His-tag, the resulting protein consists of ENLYFQ on C-terminus 
(Figure S2B). Proteins were expressed in Escherichia coli BL21(DE3) cells and grown at 37˚C 
in LB. At mid-log phase (OD600 = 0.4 to 0.6), 0.5 mM IPTG (isopropyl ß-D-1-
thiogalactopyranosid) was added for induction of protein expression. Cells were harvested by 
centrifugation at 5,000 g for 5 min, resuspended in lysis buffer (500 mM NaCl, 20 mM NaPi, 100 
mM imidazole, pH = 7.4, 1 mM benzamidine, 1 mM PMSF (phenylmethylsulfonyl fluoride)), and 
lysed in a French pressure cell at 10,000 psi. The lysate was centrifuged at 30,000 × g for 20 
min and filtered (0.45 um cellulose acetate filters, Advantec) before loading onto 1mL HisTrapTM 
HP nickel column (GE Healthcare) on an AKTA fast protein liquid chromatography (FPLC) 
system. His-tagged Bha TRAP WT protein was eluted with an imidazole gradient from 100mM 
to 1M in elution buffer (0.1 to 1 M imidazole, 500 mM NaCl, 20 mM NaPi, pH = 7.4). The pooled 
protein sample was dialyzed into buffer A (100 mM NaCl, 50 mM NaPO4, pH 8.0) and treated 
with TEV protease at a mass ratio of 100:1 to cleave the C-terminal His-tag. The protease-
treated fraction was then reloaded onto the 1mL HisTrapTM HP nickel column (GE Healthcare) 
and eluted with lysis buffer and the flow-through fraction collected. To remove bound 
Tryptophan (Trp), protein was denatured by dialysis for more than 6 hours at room temperature 
in a 3.5 kDa cut-off dialysis tubing membrane (Spectrum Labs) against 6 M guanidinium 
hydrochloride (Gdn-HCl) in buffer A. The fraction was then filtered using a 25mm minisart® 
syringe filter (pore size: 0.2 µm, Sartorius) and further purified using reversed-phase high-
performance liquid chromatography (RP-HPLC) on a 250 × 10 mm Proto 300 C4 column 
(Higgins Analytical) as previously described.25 The resulting protein fractions were lyophilized 
and stored at -80 °C until needed. The protein was refolded by dissolving the lyophilized pellet 
in 6 M Gdn-HCl buffer A at a concentration of ~1 mg ml-1, and gradually refolded by sequential 
dialysis against 3 M, 1.5 M, 0.75 M, and 0 M Gdn-HCl in buffer A in 3.5 kDa cut-off dialysis 
membrane (Spectrum Labs) for 12 hours per round at room temperature. The refolded protein 
was then purified by size-exclusion chromatography using a HiloadTM 16/600 SuperdexTM 75 pg 
column (Sigma-Aldrich) in buffer A.  

The gene of Bst TRAP WT (WP_033013997.1) and the C-terminal-five-residue-truncated Bst 
TRAP Δ71 were expressed from pET17b and pET9a vectors (Novagen, Inc.), respectively, as 
previously described.16,22 The proteins were separately expressed in E. coli BL21(DE3) cells, 
grown at 37˚C in LB, and induced at OD600 = 0.4 to 0.6 with 0.5 mM IPTG. Cells were harvested 
by centrifugation, resuspended in lysis buffer B (100 mM K2HPO4, 50 mM KCl, 1 mM EDTA, pH 
= 8.0) plus 1 mM benzamidine and 1 mM PMSF (phenylmethylsulfonyl fluoride). The cells were 
broken in a French pressure cell at 10,000 psi. The lysate was clarified by centrifugation at 
30,000 × g for 25 minutes. For every 5 mL of supernatant, 1 mL of 2% protamine sulfate was 
added. Then the lysate was stirred on ice for 30 minutes. The lysate was centrifuged at 30,000 
× g for 25 minutes and the supernatant was heated to 80˚C for 10 minutes followed by another 
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centrifugation at 30,000 × g for 25 minutes. The supernatant was then dialyzed overnight 
against 50 mM Tris-HCl (pH = 8.0). Dialyzed proteins were loaded on Mono QTM 10/100 GL 
column (GE Healthcare) in 50 mM Tris-HCl (pH 8.0). Proteins were eluted with a salt gradient 
from 0 M to 1 M NaCl in 50 mM Tris-HCl (pH 8.0). The same protocol, and buffers described 
above, were used to remove Trp and refold proteins to obtain apo (ligand-free) proteins, except 
that the 0.75M Gdn-HCl dialysis step was omitted during refolding, and that RP-HPLC purified 
Bst TRAP Δ71 was refolded at 55˚C instead of at room temperature.  
 

Circular Dichroism (CD) 

Tryptophan binding to TRAP was measured by CD spectroscopy at 25˚C using a JASCO model 
J-715 spectropolarimeter with cell path length of 1 mm. Spectra were recorded between 226 nm 
and 230 nm using ~24 µM TRAP protomers (~2 µM ring) in 50 mM sodium phosphate buffer, 
pH 8.0, in the presence of increasing concentrations of Trp (0 to 300 µM). The change in CD 
signal at 228 nm, which shows the maximal difference between spectra of apo- and Trp-
liganded TRAP, was used as a measure of tryptophan binding.26 The change in CD signal was 
fit with the quadratic single-site binding equation (Eq. 1). 

 

Isothermal Titration Calorimetry (ITC) 

RP-HPLC-purified, refolded, and SEC-purified TRAP proteins were dialyzed extensively against 
buffer A. A stock solution of tryptophan was prepared by dissolving L-Trp powder (Sigma 
Aldrich, 93659) in the dialysate. Trp concentration was determined from its extinction coefficient 
at 280 nm of ε =5540 M-1 cm-1 using a Nanodrop 2000c spectrophotometer (Thermo Scientific) 
in droplet mode. The measured concentrations of Trp in the syringe and of TRAP protomers in 
the cell were 293 µM and 23 µM for Bha TRAP, 433 µM and 38 µM for Bst TRAP Δ71, and 645 
µM and 74.7 µM for Bst TRAP WT, respectively. ITC thermograms were recorded on a MicroCal 
VP-ITC (Malvern Instruments) at 25 ˚C. A reference power of 30 µcal sec-1 and a stirring speed 
of 307 rpm were applied for all experiments. Deionized water was used in the reference cell. 
The software NITPIC was used to correct the baseline for each isotherm by iteratively 
optimizing the noise parameter wrmsd and then integrating the enthalpy at each titration point.27 

The integrated heats showed bimodal binding behavior for Bha TRAP, and single mode for Bst 
Δ71 and Bst TRAP. The integrated enthalpy data were then fit with two-sites or one-site binding 
models using itcsimlib.5 TRAP oligomer concentrations were corrected assuming a 
stoichiometry of 1 Trp per protomer based on the fitted stoichiometry n; corrected 
concentrations were 25.4 µM for Bha TRAP, 40.0 µM for Bst TRAP Δ71, and 48.6 µM for Bst 
TRAP WT. Confidence intervals in fitted parameters were estimated from 200 bootstrapped 
samples. 

 

Native Mass Spectrometry 

Aliquots of purified proteins were dialyzed into 400 mM ammonium acetate (Sigma Aldrich, 
431311). For Bha TRAP and Bst TRAP Δ71, the pH was adjusted to pH 8 by adding ammonium 
hydroxide (~1M NH3 in H2O, Sigma-Aldrich). Dialyzed protein concentrations (~ 60 µM 
protomers) were measured as above (ε = 2980 M-1cm-1) at 280 nm using a Nanodrop 2000c 
spectrophotometer (Thermo Scientific) in droplet mode. The Trp was dissolved in 400 mM 
ammonium acetate and the Trp concentration was measured as above (ε = 5540 M-1 cm-1) at 
280 nm28. Samples for each titration point were prepared freshly in parallel by mixing the 
dialyzed protein solutions with serial dilutions from a 1 M Trp stock solution to the indicated 
ligand concentrations (0 to 140 µM).  
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Native mass spectrometry (MS) experiments were performed at room temperature (~25°C) on a 
Q Exactive Ultra-High Mass Range (UHMR) Orbitrap mass spectrometer (Thermo Fisher 
Scientific) modified to allow for surface induced dissociation, similar to that previously 
described.29 Emitters were pulled from borosilicate filament capillaries (OD 1.0 mm, ID 0.78 mm, 
Sutter Instrument) in-house on a P-97 Flaming/Brown Micropipette Puller (Sutter Instrument) 
that is fitted with a thermometer placed near the heating element. The temperature near the 
heating element was stabilized below 30 °C between each pull, and the same tip pulling 
parameters were used for each titration set. Each sample was loaded into an emitter using gel 
loading tips (Genesee Scientific, 0.5-10µl Ultra Micro Gel Tip) to avoid contamination, and then 
placed on a Nanospray Flex ion source (Thermo Fisher Scientific) equipped with a platinum wire 
to allow for static nano electrospray ionization. To obtain a stable total ion current, the spray 
voltage was initially ramped to about 1.4 kV and then gradually decreased to between 0.6 – 0.9 
kV and held constant. For all measurements, the following instrument tune settings were kept 
constant: capillary temperature 250°C, Source DC Offset 21 V, S-lens RF level 200, detector 
optimization to low m/z, ion transfer target high m/z, injection flatapole DC 5 V, inter flatapole 
lens 4 V, bent flatapole DC 2 V, transfer multipole DC 0 V, C-trap entrance lens inject 1.8 V, 
HCD energy 1 V, HCD field gradient 200 V, and HCD cell pressure 4 (UHV Sensor ~3 - 4E-10 
mbar). For most emitters, spectra were collected at resolutions of 6250, 12500 and 25000, as 
defined at 400 m/z. Each spectrum was obtained by averaging the same number of scans, and 
the injection time and averaged micro-scans were fixed. For Bha TRAP and Bst TRAP ∆71, 
each titration point was recorded three times using different emitters. For Bst TRAP, each 
titration point was recorded two times. 

Data were manually examined using Xcalibur Qual Browser software (Thermo Fisher Scientific), 
and spectral deconvolution was carried out using UniDec.30 For quantification of Trpn-TRAPm 
populations, all spectra from each titration set were initially deconvolved using MetaUniDec V4.4 
and then later each spectrum was reprocessed using UniDec V5.0.1 to allow for the double 
deconvolution approach to be used to produce deconvolved zero-charge mass spectra where 
the proteoforms found in the apo TRAP spectrum from each titration are combined.31,32 The 
titration spectra collected at a resolution of 12,500 were used for the final deconvolutions. 
Custom deconvolution parameters were used for each protein titration set. For all sets, UniDec 
parameters were adjusted to a narrow m/z range around the dominant oligomer charge state 
distribution, the charge range was set to less than 11 charges surrounding the most abundant 
charge state; mass sampling was set every 1 Da, FWHM (full width at half maximum) was set to 
0.8 Th, peak shape function was set to split Gaussian/Lorentzian; artifact suppression, point 
smooth width and mass smooth width were set to 0; charge smooth width was set to 1.5, native 
charge offset range was set to +/- 6, and m/z to Mass transform was set to interpolate. A Mass 
List Window width of +/- 1200 Da was used. A mass list for each protein was generated based 
on the expected protein mass, expected oligomeric state(s), and 0 to 13 tryptophan bound 
(including bound 13mer). For Bst TRAP and Bst TRAP Δ71 this list consisted of just the 
expected 11mer and 12mer oligomeric states, respectively, with variable Trp. For Bha TRAP, 
we found that in addition to the expected 12mer, overlapping 13mer charge states were present, 
so the mass list was set to include the 13mer with variable Trp. The respective deconvolved apo 
TRAP zero-charge mass spectrum was used as the double deconvolution kernel file. The areas 
for each species in the deconvolved spectra were extracted, sum normalized, and used for the 
model fitting. The area extraction window was set to +/- two times the standard deviation. The 
standard deviation was determined based on the average FWHM of the deconvolved apo and 
holo peaks using the simplified equation where FWHM divided by 2.35 equals the standard 
deviation. 

Accurate determination of protein concentration is complicated for TRAP proteins because they 
lack encoded Trp residues and have low extinction coefficients as noted above. Before 
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thermodynamic analysis of the MS titration data, protein concentrations were corrected by fitting 
the bound fraction at each Trp concentration with the quadratic independent sites model; [L]t 
was assumed to be accurate, while [M]t and the apparent dissociation constant Kd were fit 
parameters.16 This fit yielded the binding site concentration [M]t that was in general about 33% 
higher than initial estimated concentration (Table S3, Figure S8).  

 

Fitting of population distributions with NN models 

Following TRAP concentration correction, experimental data obtained from native MS were fit 
using an additive nearest-neighbor (NN-add) model for 12 binding sites via itcsimlib5, as 
described previously.16 Briefly, the relative abundance of Trp-TRAP ligand-bound species (13 in 
total) were determined from the integrated peak areas, as mentioned above. To fit this 
population distribution the NN-add model was parametrized with values for ΔG0 (intrinsic binding 
free energy) and ΔGN2 (binding free energy with two occupied neighbors, equal to 2ΔGN1). A 
binding partition function that includes all possible Trpn-TRAP12 configurations (212 = 4096) was 
generated using itcsimlib. The statistical thermodynamic probabilities of each configuration were 
then computed at each experimental ligand and binding site concentration. The ST probability of 
each of 4096 configurations were summed and converted into the relative abundance of 13 
ligand-bound species, permitting generation of a virtual titration dataset. Then the discrepancy 
between native MS experimental titration data and the virtual titration data was globally 
minimized by iteratively varying the parameters of ΔG0 and ΔGN2 using a Powell33 gradient-
descent optimization algorithm. Uncertainties in fit parameters were obtained from the standard 
deviation of three independent experimental repeats. Each dataset was also fit using a non-
additive nearest-neighbor model (NN-nonadd) with three parameters, ΔG0, ΔGN1, and ΔGN2. 
Inclusion of the extra parameter did not significantly improve the quality of the fits, so data were 
analysed using the simpler NN-add model. 

 

Population simulations with NN models 

Simulated population distributions for 12-mer proteins were computed using additive or non-
additive nearest neighbor (NN) statistical thermodynamic models, with the same ΔGN2 = -7.5 
kcal mol-1 (binding free energy with two occupied neighbors) but varied NN cooperativity factor α 
(and β in NN-nonadd model), and therefore different ΔG0 (intrinsic binding free energy).5 In the 
NN-add model, given ΔG0 and α values, the statistical thermodynamic probability of each of 
Trpn-TRAP12 configuration (212 = 4096), along with the probabilities of the four basic NN energy 
configurations (0, N0, N1, N2) were computed over a range of 280 ligand concentrations using 
itcsimlib.5 From these trajectories we computed fractional saturation curves by summing the 
three ligand-bound states, N0, N1, and N2, as a function of free ligand concentration (Figure 
2C; Figure S3). The relative abundance of species with 0 to 12 bound Trp was used to simulate 
gaussian peak shapes for each state (Figure 2B). A similar set of simulations was performed for 
NN-nonadd model, including all three thermodynamic parameters of ΔG0, ΔG1, and ΔG2 (Figure 
3; Figure S5).  
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Results 
Nearest-neighbor statistical thermodynamic models can quantify cooperativity 
and provide mechanistic insights 

Nearest-neighbor (NN) models posit that the thermodynamics of ligand binding to a site are 
most strongly influenced by the liganded states of the nearest-neighbor binding sites.5  Thus, the 
thermodynamics of binding to a given site can be parametrized using three microscopic free 
energy terms (ΔG0, ΔG1, ΔG2, Figure 2A), corresponding to free energies for binding to sites 
with no bound neighbors, and thermodynamic contributions from having one or two occupied 
neighbors, respectively; ΔG1 = ΔG2 = 0 in the absence of cooperativity. Therefore, four 
fundamental ligand binding states are: a) state-0, empty sites; b) state-N0 (ΔGN0 = ΔG0), bound 
sites with no occupied neighbor; c) state-N1 (ΔGN1 = ΔG0 + ΔG1), bound sites with one occupied 
neighbor; and d) state-N2 (ΔGN2 = ΔG0 + 2ΔG1 + ΔG2), bound sites with two occupied neighbors. 

The corresponding ligand binding affinity for each state is �� � 1, ��� � ��� �����
��

�, ��� �
��� ��������

��
�, and ��� � ��� �������������

��
�, respectively. If the nearest-neighbor interactions 

are additive, i.e., ΔG2 = 0, the models are reduced to two free energy terms, with ��� �
��� ���������

��
�. In addition, it is convenient to quantify “cooperativity” by comparing the affinities 

for ligand binding in various modes, such that α = KN1/KN0 > 1 quantifies the fold increase in 
affinity afforded by having the first occupied neighbor, while α < 1 quantifies the fold decrease in 
affinity from negative cooperativity. Likewise, we define αβ = KN2/KN1 to describe the additional 
fold change in affinity contributed from the second bound neighbor. Thus, α2β = KN2/KN0 
quantifies the accumulated changes in affinity from both two occupied neighbors. With these 
parameters, NN models enable elaboration of a statistical partition function that enumerates the 
free energies and Boltzmann probabilities of all possible 2N states by straightforward iteration 
and examination of their nearest-neighbor site occupancy.5,34  
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Figure 2. Nearest-neighbor models can explain and predict population distributions for cooperative ligand binding to 
ring-shaped oligomeric proteins. (A)  In a nearest-neighbor (NN) model of cooperativity, four basic ligand binding 
states can be described by three energy parameters: an intrinsic free energy change for binding to sites with no 
occupied neighbors (ΔG0), a coupling free energy term contributed solely from each adjacent bound ligand (ΔG1), 
and a coupling free energy term contributed solely from the additive degree of two bound ligands (ΔG2). An empty 
site is defined as reference state (State 0) with ΔG0 = 0. Cooperativity from one bound neighbor (α) then can be 
defined by comparing the intrinsic equilibrium association constant (K0) to that with one bound neighbor (KN1). 
Cooperativity from having two bound neighbors (αβ) can be defined by comparing the two-neighbor binding (KN2) to 
one-neighbor binding (KN1). α and β values > 1 indicate stronger binding to sites with occupied neighbors. If KN1/ KN0 
= KN2/KN1, i.e., ΔG2 = 0, β = 1, the coupling energy for two bound neighbors is the sum of each individual NN 
interaction, and the nearest neighbor effect is additive (NN-add); otherwise, it is non-additive (NN-nonadd). 
Cooperativity for binding with two neighbors (α2

β) is defined by comparing the two-neighbor binding (KN2) to intrinsic 
binding (K0). (B) Effect of nearest-neighbor cooperativity on simulated population distributions for dodecameric rings 
with 0 to 12 bound ligands at half-saturation. Simulated populations for a non-cooperative binding (α = 1, black), 
equivalent to non-interacting sites, yields the expected binomial distribution. Population distributions arising from both 
positive (α > 1, red) and negative (α < 1, blue) cooperativity were simulated using an additive NN model. In the 
presence of stronger positive cooperativity, as expected, the apo and holo populations dominate the distribution. In 
contrast, negative cooperativity favors states with half of the sites occupied. (C) Effects of NN cooperativity on 
fractional saturation of ligand binding sites. Positive cooperativity (red) generates sigmoidal binding curves whereas 
negative cooperativity (blue) generates steep but shallow curves; the non-cooperative binding curve is hyperbolic 
(black). 
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Application of an additive NN (NN-add) model to a cyclic homo-dodecamer results in a partition 
function (PF) ΞNN-add with 38 unique energetic terms, out of 212 = 4096 configurations (Equation 
2): 

ΞNN-add = 1 

+ ����
��12� 

+ ����
��54 	 12
�� 

+ ����
��112 	 96
� 	 12
�� 

+ ����
��105 	 252
� 	 126
� 	 12
�� 

+ ����
��36 	 240
� 	 360
� 	 144
� 	 12
�� 

+ ����
��2 	 60
� 	 300
� 	 400
� 	 150
� 	 12
��� 

+ �	��
	
��36 	 240
� 	 360
� 	 144
� 	 12
�� 

+ ����
�
��105 	 252
� 	 126
� 	 12
�� 

+ �
��


���112 	 96
� 	 12
�� 

+ �����
��
���54 	 12
�� 

+ �����
��
���12� 

+ �����
��
�� 

Here, W is the free Trp concentration and K0 and α are as defined above; generation of the PF 
was automated using itcsimlib.5 Each row in Equation 2 corresponds to states with different 
numbers of bound ligands, from 0 to 12, with 1 assigned as the statistical weight of the state 
with zero bound ligands. For each term, the coefficients reflect the degeneracy of the energetic 
states. For example, there are 12 equivalent ways to configure 1 or 11 ligands on a 12-mer. For 
two bound ligands, there are 12 ways to arrange them next to each other, and modified by a 
cooperativity term α2, and 54 ways to arrange them in isolation, with no α2 term (Figure S3A). 
The exponent on the α terms reflects the number of nearest-neighbor interactions in that 
configuration, such that, for example, the half-bound state with the 400α6 term corresponds to 
configurations that arrange the six bound ligands with three pairs of interactions (e.g., Figure 
S3B).  

With the NN-add partition constructed, it is possible predict the effect of cooperativity on the 
populations of each of the 4096 states in a ring-shaped homo-dodecameric proteins. As noted 
above, in the absence of cooperativity, at ligand concentrations that result in half of the sites 
being bound, the populations follow a binomial distribution (Figure 2B, black). Positive 
cooperativity increases the population of states with more bound ligands because they feature 
more nearest-neighbor interactions; this also results in more states with fewer sites bound, due 
to mass balance (Figure 2B, red graphs; Figure S4A). In the case of strong positive 
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cooperativity, apo and holo states dominate the population distribution, with intermediate states 
being lowly populated. In contrast, negative cooperativity has the opposite effect, favoring half-
bound configurations that spread out ligands over all available sites while minimizing NN 
interactions (Figure 2B, blue graphs; Figure S4B).  

Nearest neighbor interactions may also be non-additive, meaning that the thermodynamic 
contributions from having two bound neighbors is not simply twice the contribution of having one 
bound neighbor (β ≠ 1). In this case, a non-additive nearest-neighbor (NN-nonadd) model is 
described by three independent energetic terms: ΔG0, ΔG1, and ΔG2 (Figure 2A). This 
formulation results in a partition function with 61 unique energy terms (Figure S5). The 
population distribution of states with 0-12 bound ligands were also simulated for a NN-nonadd 
model under conditions of half-maximal saturation (Figure 3) with a range of cooperativity 
strengths α and β. Compared to the additive model, we see that divergence from additivity 
(larger differences in ΔGN1 and ΔGN2) results in asymmetry in the population distributions. For 
example, more favorable ΔGN2 than ΔGN1 (or β > 1) favors more state-N2, depleting states with 
only a few ligands bound (Figure 3A, Figure S6A). Detection of such asymmetry in the 
underlying distributions would be important for distinguishing mechanisms of allosteric 
communication. 

 

 
Figure 3. Simulated population for a cyclic-12mer bound to 0-12 ligands at concentrations that yield half maximal 
saturation, predicted by a non-additive nearest-neighbor (NN-nonadd) model with fixed or varied cooperativity 
strength, α2

β. Fractional saturations and population distributions are shown for (A) positive cooperativity with fixed α2
β 

= 100 and varied α, β; (B) negative cooperativity with fixed α2
β = 0.01 and varied α, β; (C) positive cooperativity with 

fixed α = 5 and varied β; (D) negative cooperativity with fixed α = 0.2 and varied β. 
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In addition to providing details of the underlying populations, NN models can be used to 
compute bulk properties for comparison with experimental measurements (Figure 2C).  A plot of 
fractional saturation versus free ligand concentration generates the expected hyperbolic curve in 
the absence of cooperativity (black). Positive cooperativity produces the expected sigmoidal 
curves (red) and negative cooperativity yields compressed saturation curves (blue). Notably, 
different degrees of non-additivity may not be evident from bulk properties: for example, in the 
case of net favorable cooperativity with α2β = 100, though different values of α and β yield 
different underlying distributions, the saturation trajectories overlap (Figure 3A). Other 
combinations of parameters yield somewhat distinguishable saturation curves, but the 
underlying population distributions are much more informative of the underlying 
thermodynamics (Figure 3). Because ligand binding may alter the structure and function of 
oligomeric proteins (i.e., activating or repressing its function), such an analysis provides a 
thermodynamic link between the function of the protein and specific ligand-protein states.  

Cooperative Trp binding to multimers can be difficult to characterize using 
traditional bulk binding assays 

To quantify Trp binding to oligomeric TRAP rings, we first used circular dichroism (CD) 
spectropolarimetry to measure its ellipticity at 228 nm, which reports on Trp binding (Figure 
4A).26 CD measurements were conducted at 25˚C with ~24 µM TRAP (2 µM rings) over a range 
of Trp concentrations. Binding curves were fit with the binding quadratic (Eq. 1), yielding 
apparent dissociation constants (Kd,app). The three TRAP variants yielded similar apparent Trp 
binding affinities of 3-14 µM (Table S1), consistent with previous findings.22 Under these 
conditions, cooperative binding of Trp to the TRAP variants is not evident. 

 
Figure 4. Bulk binding and phenomenological modeling provide limited information on cooperative ligand-binding to 
dodecameric Bha TRAP and Bst TRAP Δ71 (left, middle), or undecameric wild-type Bst TRAP (right). (A) The circular 
dichroism signal at 228 nm in 50 mM sodium phosphate buffer (pH = 8) was measured as a function of added Trp, 
and the data fit with the quadratic binding equation (Eq. 1; Table S1). CD data were acquired by using 2 µM TRAP 
with increasing Trp concentration from 0 to 300 µM. The fitted parameters of CD suggest all three proteins exhibit 
similar µM binding affinity. Homotropic cooperativity is not evident under these conditions. (B) ITC experiments 
titrating Trp into TRAP at 25˚C in buffer A (see Methods) were fit with quadratic independent site models (Table S2). 
Bst TRAP Δ71 (middle) and Bst TRAP (right) can be well fitted with one-site binding model, in which 12mer Bst TRAP 
Δ71 (Kd = 0.09 µM) has two-times higher binding affinity than 11mer Bst TRAP (Kd = 0.19 µM). However, the data for 
Bha TRAP (left) is better fit to a two-sites binding model with improbable parameters in which the first Trp binds with 
Kd of 1.79 µM while the remaining eleven bind with a Kd of 0.81 µM. 
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Homotropic cooperativity can alter thermodynamic parameters other than binding free energy 
(i.e., Kd), so we also studied Trp binding to TRAP using isothermal titration calorimetry (ITC), 
which directly measures enthalpy changes resulting from ligand binding. The binding 
thermograms for Bst TRAP12 ∆71 and Bst TRAP11 could be well fit with single-site (non-
cooperative) model, with comparable affinities (Figure 4B; Table S2). However, the binding 
thermogram for Bha TRAP12 is biphasic (Figure 4B), indicative of thermodynamically 
inequivalent binding events. Fitting of the thermograms for Bha TRAP to a two-site binding 
model yielded parameters with an initial (n ≈ 1) ligand binding event of Kd,1 = 1.79 ± 0.30 µM, 
and subsequent 11 binding events with Kd,2 = 0.8 ± 0.11 µM. Such parameters would suggest a 
binding model in which initial weaker binding of the first ligand fundamentally alters the 
structures of all other binding sites to favor binding, or alternatively, that all subsequent binding 
events occur in a defined sequential manner. These models describe drastically different modes 
of cooperativity but are indistinguishable by this method, which provides little insight into the 
mechanism by which thermodynamic communication occurs between sites. The results are also 
seemingly at odds with the CD experiments, which indicated weak cooperativity for Bst and Bst 
Δ71, but no cooperativity for Bha TRAP.  

 

Native MS enables quantification of TRAP states with different numbers of bound 
ligands 

We used native mass spectrometry to quantity populations of Trpn-TRAPm states over a range 
of Trp concentrations for Bha TRAP12, Bst TRAP12 Δ71 and Bst TRAP11 (Figure 5A). For each 
protein, titration samples were prepared in parallel by incubating the proteins in 400 mM 
ammonium acetate solutions with differing concentrations of Trp. For each oligomer, we 
obtained spectra with narrow charge distributions indicative of native structure.35 The most 
abundant charge states for each protein were 24+, 22+ and 21+ for Bha, Bst-Δ71 and Bst 
TRAP, respectively. Recorded spectra provided baseline resolution of signals with different 
numbers of bound Trp. Double deconvolution of the m/z spectra to include proteoforms 32 
resulted in very clean zero-charge mass spectra, and reduced chi-squared values when fitting 
(Figure 5b; Figure S7). Spectra recorded in the absence of Trp contained signals corresponding 
to the apo oligomeric protein rings, and spectra at the highest Trp concentrations were 
dominated by the fully bound holo states, while intermediate states could be discerned at all 
non-zero Trp concentrations. Thus, these spectra enable us to resolve and quantify populations 
of states corresponding to the ligand-free apo states, the fully liganded holo states, and 
intermediate species with differing numbers of bound Trp ligands. These populations can be 
directly compared to the populations predicted by NN models (Figures 2, 3), and used to 
determine mechanisms and thermodynamic cooperativity parameters. 
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Figure 5. Population distributions measured by native MS reveal extents of homotropic cooperativity in ligand binding 
to 12mer Bha and Bst Δ71 TRAP (left, middle), and 11mer wild-type Bst TRAP (right). (A) Native mass spectra of the 
three TRAP oligomers (6.0-7.4 µM Table S3) titrated with 0-140 µM Trp. Increasing Trp in each titration shifts the 
Trpn-TRAP populations from apo (Trp0, circles) to holo (Trp11/12, squares). Each Trp titration set with either Bha 
TRAP12 (left), Bst TRAP12 Δ71 (middle), or Bst TRAP11 (right) features different population distributions, reflecting 
different degrees of cooperativity. (B) Deconvolved zero-charge mass spectra for the three TRAP oligomers: Bha 
TRAP12 (left), Bst TRAP12 ∆71 (middle), or Bst TRAP11 (right). Each experimental dataset (colored) is superimposed 
with a simulated mass spectrum obtained from best-fit parameters to an additive nearest-neighbor model (grey). 
Cooperativity is quantified by the parameter α2, which is the ratio of the association constant for binding to sites with 
two bound neighbors, and no bound neighbors (KN2/K0; figure 2A). Bha TRAP12 (left) shows the strongest 
cooperativity (α2 = 256, 1/K0 = 718 µM), with populations dominated by apo and holo rings. Cooperativity is moderate 
(α2 = 28, 1/K0 = 217 µM) in Bst TRAP12 Δ71 (middle) and weak (α2 = 8, 1/K0 = 36 µM) in Bst TRAP11 (right). 
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Differing extent of Trp-Trp cooperativity is evident from population distributions in 
native MS titrations. 

Strikingly different population distributions were observed for Bha, Bst Δ71, and Bst TRAP in 
native MS titrations (Figure 5). For the Bha Trpn-TRAP12 titration, distributions were dominated 
by either Trp0-TRAP12 (apo) or fully bound Trp12-TRAP12 (holo) with minimal population of 
intermediate Trpn-TRAP12 states (Figure 5, left). Such a pattern is consistent with strong positive 
cooperativity (i.e., Figure 2B). Population distributions for Bst TRAP were similar to those 
previously described16, with a high population of intermediate states consistent with weak 
cooperativity. The distributions for Bst TRAP Δ71 reflected an intermediate cooperativity   
between the Bst and Bha TRAP (Figure 5, middle). In contrast to the highly congruent CD and 
ITC titrations, the native MS titration data were quite divergent, implying distinctly different 
underlying thermodynamics. 

Fitting of ligand-dependent population distributions revealed strong cooperativity for Bha 
TRAP12, moderate cooperativity for Bst TRAP12 Δ71, and weak cooperativity for Bst TRAP11. 
After correcting binding site concentrations using mass-balance (see Methods) the experimental 
Trpn-TRAP12 populations were fit with a binding polynomial corresponding to the additive 
nearest-neighbor (NN-add) model.  Datasets were also fit with the non-additive NN model (NN-
nonadd), but those resulted in similar thermodynamic parameters and the additional complexity 
of the model was not justified based on the insignificant improvement in the fits as measured by 
chi-squared values (see Methods); thus, datasets were analyzed using the simpler NN-add 
model. For each dataset, we obtained good agreement between populations determined from 
integration of deconvoluted spectra, and those simulated from best-fit thermodynamic 
parameters (Figure 5B, Table 1).  

 

Table 1. Best-fit thermodynamic parameters for NN-add model of Trp binding cooperativity for 
native MS titration data (room temperature ~25˚C).† 

 ΔGN# (kcal mol-1) 1/KN# (µM)§ NN cooperativity strength 

# Bound 
Neighbors 

0 1 2 0 1 2 α α
2 

Bha TRAP12 
-4.29 ± 

0.12 
-5.93 ± 

0.14 
-7.57 ± 

0.16 720 ± 140 45 ± 11 2.8 ± 0.8 16 ± 5 256 ± 87 

Bst TRAP12 ∆71 -5.00 ± 
0.03 

-5.98 ± 
0.06 

-6.97 ± 
0.09 217 ± 13 41 ± 5 7.8 ± 1.2 5.3 ± 0.7 28 ± 5 

Bst TRAP11 
-6.06 ± 

0.20 
-6.68 ± 

0.23 
-7.31 ± 

0.26 36 ± 12 13 ± 5 4.4 ± 1.9 2.85 ± 1.47 8.2 ± 4.5 

† Thermodynamic data were obtained by global fitting of titration data to an additive nearest-neighbor thermodynamic 
model, with parameters for binding to sites with no occupied neighbors ΔG, and cooperativity terms due to 
interactions with one or two bound neighbors. In this additive model, the contributions from two neighbors are twice 
that of one neighbor. Values are best fit from nonlinear least-squares fitting, while standard deviations were 
determined within three repeats for Bha, and Bst-∆71 TRAP, and two repeats for Bst TRAP. Standard deviation was 
calculated between replicates. § Dissociation equilibrium constants are the reciprocal of the corresponding association 
equilibrium constants. 

 

The best fit parameter values obtained from the additive nearest-neighbor model (Table 1) were 
consistent with expectations from inspection of the population distribution shifts in the native 
mass spectra (Figure 5). Cooperativity in Bst TRAP yielded a mild eight-fold increase in affinity 
for sites with two neighbors compared to no neighbors, α2 = 8.15, consistent with prior 
findings.16 Bha TRAP exhibited remarkably strong cooperativity, with a 256-fold higher affinity 
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for sites with two occupied neighbors. This is consistent with the observation of low abundance 
for partially loaded states throughout the titration. This is also consistent with the nearest-
neighbor model for strong positive cooperativity (Figure 2B). Fits for the engineered 12mer, Bst 
TRAP Δ71 revealed intermediate cooperativity, α2 = 28, consistent with the mixed population 
distributions of partially and fully loaded states (Figure 5). Thus, the nMS experiments, coupled 
with statistical thermodynamic modeling enabled an accurate description of the thermodynamics 
of Trp-TRAP binding for variants with cooperativity values differing by a factor of 32 (256/8). 

 

Microscopic parameters predict macroscopic behavior 

Typical methods used for measuring bound fractions (e.g., CD, ITC) yield an average signal that 
is obtained from all extant micro-states and populations, whereas the NN statistical 
thermodynamic models are able to define the populations of each individual micro-state. To 
compare the bulk observable and predicted populations, we simulated macroscopic properties 
of population distributions of individual protein micro-states over a range of ligand 
concentrations using the NN-add model and microscopic parameters obtained from fitting the 
nMS data (Figure 6A, B). These simulations show good agreement between the MS and 
solution experiments. Discrepancies were largest for the Bha TRAP data, whereas they were 
arguably within experimental error for Bst and Bst-Δ71 TRAP.  

Cooperative behavior in ligand binding is often recognized from sigmoidal isotherms that 
correlate fractional saturation and free ligand concentration. To approximate this behavior, we 
simulated fractional saturations over various free Trp concentrations [Trpfree] (Figure 6C). The 
cellular concentration of TRAP protein rings in B. subtilis cells has been estimated at ~80 nM 
(0.9 µM Trp binding sites),36, while cellular tryptophan concentrations have been measured in 
the low micromolar range.37 Thus, simulations were performed with a binding site concentration 
of 1 µM and [Trpfree] to 20 µM. Compared to experimental titrations which monitor response to 
total ligand concentration (Figure 5), we see the expected sigmoidal curves predicted for 
positive cooperativity. Despite twenty-fold differences in intrinsic affinities K0, the apparent 
affinities fall in a relatively narrow range between ~2 and 8 µM, consistent with those 
measurements. 

We briefly extended the analysis to consider the activation of TRAP for RNA binding. TRAP 
binds RNA in a Trp-dependent manner, while several binding elements in a single ring are 
required to achieve high affinity RNA binding.38,39 To approximate this behavior, we separately 
compute bulk saturation and the relative abundance of the four basic nearest-neighbor states 
(empty sites 0, sites with no bound neighbors N0, sites with 1 bound neighbor N1, and sites with 
two bound neighbors N2) as a function of free ligand concentration [Trpfree] (Figure 6D). 
Consistent with the bulk parameters for Bha TRAP (Figure 6C), populations of empty sites drop 
off steeply in exchange for sites with two bound neighbors, whereas for Bst and Bst Δ71 TRAP 
states with one bound neighbor become significantly populated. This behavior can be expected 
to affect the trajectory of Trp-dependent RNA binding. 
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Figure 6. Microscopic parameters from nearest-neighbor cooperativity models can predict macroscopic behavior. (A) 
Simulated native MS bound fraction from nearest-neighbor parameters (green) and experimental CD signal change 
(at 228 nm). (B) Simulated native MS bound fraction nearest-neighbor parameters (green) and computed ITC 
fractional saturation curves based on phenomenological model parameters ΔG and n (Table S2). Simulations used 
thermodynamic parameters from native MS at room temperature, and temperature and concentrations used in CD 
and ITC experiments. (C) Simulated mean site occupancy of TRAP proteins over a range of ligand concentrations 
[Trpfree]. Bha TRAP12 (pink) features a sharp change from almost empty to near complete saturation over the range 
[Trpfree] of 2 to 3 µM. Bst TRAP11 (yellow) and Bst TRAP12 ∆71 (blue) have more gradual saturation curves due to 
their weaker cooperativity. Saturation curves with the same apparent KD values in the absence of Trp-Trp 
cooperativity are shown by dashed lines. (D) Population evolution for the four distinct nearest neighbor binding 
configurations as a function of [Trpfree]: (1) empty sites (0), (2) bound sites with no bound neighbors (N0), (3) bound 
sites with one bound neighbor (N1), and (4) bounds sites with two bound neighbors (N2). The strong cooperativity in 
Bha TRAP12 (pink) makes N2 the most dominant bound configuration through the range of concentrations. Weaker 
cooperativity in Bst TRAP11 (yellow) and Bst TRAP12 ∆71 (blue) allows significant populations of N0, N1, and N2 
states over the concentration range. The concentration of populations with adjacent bound ligands can be understood 
to affect the protein’s regulatory response. 
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Discussion 
Statistical thermodynamic nearest-neighbor models can readily predict complex 
ligand behavior in cyclic oligomeric proteins 

We used a statistical thermodynamic approach to model the binding of ligands to symmetric 
ring-shaped homo-oligomeric proteins. By applying nearest-neighbor circular lattice models, we 
generated partition functions corresponding to the 2n possible liganded states of dodecameric 
12mer and undecameric 11mer TRAP rings (Equation 2). Our models considered scenarios in 
which cooperative interactions between two neighboring ligands are additive, meaning simply 
twice that of having one bound neighbor, and non-additive, in which case the effect is not a 
simple sum of single nearest-neighbor interactions. These parsimonious models allowed us to 
compute the probability distributions of these states as a function of ligand concentration for a 
range of cooperativity strengths (Figure 2). Population distributions of states with zero to n 
bound ligands are revealed to be much more sensitive to the underlying microscopic 
thermodynamic parameters than the bulk metric of fractional saturation. The ability to measure 
more directly those underlying population distributions can enable us to decipher mechanisms 
and magnitudes of cooperativity. 

 

Native MS can directly quantify populations of states with 0 to n bound ligands, 
informing mechanistic binding models 

For each of the homo-oligomeric protein variants examined here, native MS enabled us to 
resolve and quantify populations of oligomers with 0 to n bound ligands (Figure 5). These data 
showed clear and distinct ligand concentration-dependent populations shifts, reminiscent of the 
population distributions simulated with NN statistical thermodynamic models. Population 
distributions in each titration series could be fit accurately with an additive nearest-neighbor 
thermodynamic model NN-add, yielding thermodynamic parameters that quantify the affinity of a 
ligand for isolated sites, K0, and coupling terms that quantify the allosteric thermodynamic 
coupling between sites (Table 1). For Bst TRAP this coupling energy was 0.62 
kcal/mol/neighbor, resulting in an 8-fold higher affinity for binding sites with two neighbors 
compared to isolated sites, while for Bha TRAP a stronger coupling energy of 1.64 
kcal/mol/neighbor results in a 256-fold higher affinity. In contrast, conventional ligand binding 
measurements by spectroscopic and calorimetric methods (Figure 4), failed to clearly 
distinguish magnitudes of allosteric coupling. Although the population distributions are strikingly 
different for the three proteins, bulk properties computed from these distributions were in fact 
similar, suggesting that the native MS measurements have the unique power to resolve 
underlying population shifts hidden when averaging over all micro-states. 

 

Implications for understanding of TRAP function 

TRAP proteins have evolved to regulate expression of the trp operon in response to changing 
levels of free Trp. Although the TRAP protein sequence is highly conserved,40 disparities exist 
between proteins from organisms that inhabit vastly different environment conditions (i.e., Bst – 
a thermophile, Bha – a halophile), in the encoding of the trans-acting protein factor Anti-TRAP 
(AT),41 where the fully transcribed leader possesses sequences capable of preventing ribosome 
binding to the Shine-Dalgarno sequence24, and in their predominant oligomeric states.42,43 In the 
three proteins studied here, two 12mers and an 11mer, we observed orders of magnitude 
differences in Trp-Trp homotropic cooperativity. The origins of these differences merit additional 
characterization, but it is tempting to speculate that tighter packing of the otherwise isosteric 
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protomers22 results in stronger coupling between sites. Nevertheless, apparent overall affinities 
of Trp for Bha and Bst TRAP were similar, possibly reflecting similarities in the fluctuating 
concentrations of Trp in bacterial cells.  

 

Limitations 

The combination of statistical thermodynamic modeling and native MS to extract and quantify 
allosteric parameters from the partition function is powerful but has limitations. The most 
obvious is that while mechanistic models can be readily envisioned for lattices in which nearest-
neighbor interactions can be expected to be dominant, such as ring-shaped proteins, it is less 
straightforward to develop such models for hetero-oligomeric proteins, or homo-oligomers with 
non-cyclic symmetry elements (e.g., double-rings like GroEL6 and the proteosome44). Another 
limitation has to do with the degeneracy of liganded states: e.g., for the NN-add model, the 
measured populations with half-filled 12mers convolve 924 individual configurations distributed 
among six distinct statistical weights (Equation 2). Other limitations have to do with the 
measurements themselves:  Solution conditions suitable for high resolution native MS typically 
deviate from the physiological and from solution conditions typical for in vitro biochemical 
measurements; such deviations could result in context-dependent populations. Moreover, even 
when native MS-friendly solutions do not perturb populations of states, care must be taken to 
ensure that ion detection mirrors the populations of states in the solution, avoiding or correcting 
for differences in ionization efficiencies of different microstates, differences in transmission 
efficiencies of different ions through the mass spectrometer, or due to potential for dissociation 
of ligands during ionization and transmission.18,45,46 The native MS measurements showed that 
purified TRAP proteins exhibit additional states, including double-rings and numbers of 
protomers, and possessed proteofoms (Figure S9, S10). These factors could introduce 
competing equilibria that complicate efforts to quantify major-state populations in different bound 
states; of course, such factors would also skew traditional binding measurements that are 
simultaneously blind to their presence. Nevertheless, with rapidly improving technology for the 
analysis of proteins by native MS, its combination with statistical thermodynamic models has 
tremendous potential to advance our understanding of mechanisms of regulation. 

Conclusions 
Deciphering mechanisms of allosteric communication between ligand binding sites in oligomeric 
proteins is difficult. One serious challenge is that for most biophysical measurements the 
proportionality between the measured signal and populations of liganded states can be distorted 
by the very property of interest (i.e., allosteric coupling). As an analytical tool, native mass 
spectrometry has the advantage that the signal does not suffer from this confounding effect – 
the mass unambiguously tells us the number of bound ligands. As long as the intensity of each 
signal is proportional to its population, we have an accurate measurement of the underlying 
distribution of states. Armed with such information, one is then in the position to design and test 
mechanistic models of site-site communication. In favorable cases, the result can be an 
understanding of the thermodynamic quantities exchanged between binding sites. These 
microscopic thermodynamic parameters provide a genuine basis for establishing the structure-
thermodynamic relationships responsible for thermodynamic coupling and biological regulation. 
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