

1 ***Tissue microenvironment dictates the state of human induced pluripotent stem***  
2 ***cell-derived endothelial cells of distinct developmental origin in 3D cardiac***  
3 ***microtissues***

4

5 Xu Cao<sup>1,2</sup>, Maria Mircea<sup>2,3</sup>, Francijna E. van den Hil<sup>1</sup>, Hailiang Mei<sup>3</sup>, Katrin Neumann<sup>4</sup>,  
6 Konstantinos Anastassiadis<sup>4</sup>, Christine L. Mummery<sup>1</sup>, Stefan Semrau<sup>2,\*</sup> and Valeria V.  
7 Orlova<sup>1,\*</sup>

8

9 <sup>1</sup>Department of Anatomy and Embryology, Leiden University Medical Center,  
10 Einthovenweg 20, 2333ZC Leiden, The Netherlands

11 <sup>2</sup>Leiden Institute of Physics, Leiden University, 2333 RA, Leiden, The Netherlands

12 <sup>3</sup>Sequencing analysis support core, Leiden University Medical Center, Leiden,  
13 2333ZA, The Netherlands

14 <sup>4</sup>Stem Cell Engineering, Biotechnology Center, Center for Molecular and Cellular  
15 Bioengineering, Technische Universität Dresden, 01307, Germany

16 #Contributed equally

17 \*Corresponding author

18

19 **ABSTRACT**

20

21 Each tissue and organ in the body has its own type of vasculature. Here we  
22 demonstrate that organotypic vasculature for the heart can be recreated in a three-  
23 dimensional cardiac microtissue (MT) model composed of human induced pluripotent  
24 stem cell (hiPSC)-derived cardiomyocytes (CMs), cardiac fibroblasts (CFs) and  
25 endothelial cells (ECs). ECs in cardiac MTs upregulated expression of markers  
26 enriched in human intramyocardial ECs (iECs), such as *CD36*, *CLDN5*, *APLNR*,  
27 *NOTCH4*, *IGFBP3*, *ARHGAP18*, which were previously identified in the single-cell  
28 RNA-seq dataset from the human fetal heart (6.5-7 weeks post coitum). We further  
29 show that the local microenvironment largely dictates the organ-specific identity of  
30 hiPSC-derived ECs: we compared ECs of different developmental origins derived from  
31 two distinct mesoderm subtypes (cardiac and paraxial mesoderm) and found that  
32 independent of whether the ECs were cardiac or paraxial mesoderm derived, they  
33 acquired similar identities upon integration into cardiac microtissues. This was

34 confirmed by single-cell RNA-seq. Overall, the results indicated that whilst the initial  
35 gene profile of ECs was dictated by developmental origin, this could be modified by  
36 the local tissue environment such that the original identity was lost and the organotypic  
37 identity acquired through local environmental signals. This developmental “plasticity”  
38 in ECs has implications for multiple pathological and disease states.

39

## 40 INTRODUCTION

41

42 Development of the vascular system is one of the earliest events in organogenesis  
43 and defects in this process often result in embryonic and postnatal lethality.  
44 Endothelial cells (ECs) that form the inner lining of blood and lymphatic vessels are  
45 specialized cells that adapt to local microenvironmental cues to support the function  
46 of various organs. The heart is a prime example of the importance that interplay  
47 between the vasculature and the myocardium has in organ growth, remodeling, and  
48 function. ECs in the heart originate from several developmental lineages that later  
49 converge to similar states depending on their location. Structurally and functionally,  
50 ECs in the heart can be divided into the endocardium, intramyocardial capillary ECs,  
51 coronary arteries/veins and lymphatic ECs. During development, heart ECs  
52 predominantly originate in the lateral plate mesoderm that includes both pre-cardiac  
53 and cardiac mesoderm (Milgrom-Hoffman et al., 2011). Endocardium and *sinus*  
54 *venosus* are the two major sources on intramyocardial and coronary ECs (He and  
55 Zhou, 2018; Sharma et al., 2017a, 2017b; Tian and Zhou, 2022). Furthermore, genetic  
56 ablation of the *sinus venosus* EC lineage results in compensation from the endocardial  
57 EC lineage (Sharma et al., 2017b). Endocardium- and *sinus venosus*-derived EC  
58 progenitors, converge to an increasingly similar state that is dictated by the local  
59 microenvironment, despite being initially transcriptionally distinct (Phansalkar et al.,  
60 2021). In addition, recent studies showed that cardiac lymphatic ECs predominately  
61 originate from two lineages, namely *Isl1*+ second heart field and *Pax3*+ paraxial  
62 mesoderm (PM) (Lioux et al., 2020; Stone and Stainier, 2019), which further increases  
63 the spectrum of developmental origins of ECs in the heart.

64

65 Endothelial cells in the intramyocardial capillaries, or iECs, constitute a specialized  
66 barrier between the blood and the myocardium. They deliver oxygen and essential

67 nutrients, specifically fatty acids, to the cardiomyocytes to fulfill high energy demands  
68 of the working myocardium (Brutsaert, 2003). Endocardial ECs (eECs) form the lining  
69 of the inner surface in the ventricles and atria and play important roles during the  
70 development of working myocardium, such as formation of trabeculae network and  
71 compaction of the myocardium (Qu et al., 2022). Analysis of developing mouse heart  
72 identified markers that distinguish eECs and iECs (Iso et al., 2018; Zhang et al.,  
73 2016a). Recent single-cell RNA sequencing (scRNA-seq) studies of the human fetal  
74 heart confirmed that some of the markers identified in mouse are conserved in human,  
75 including *CD36* and *FABP5* for iECs and *NPR3* and *CDH11* for eECs, among others  
76 (McCracken et al., 2022; Miao et al., 2020).

77

78 Human pluripotent stem cells (hPSCs) represent a valuable *in vitro* model to study  
79 early stages of human development, including the heart (Hofbauer et al., 2021a). Over  
80 the past several years, protocols to differentiate cardiac cell types from hPSCs, such  
81 as different sub-types of cardiomyocytes, epicardial cells, cardiac fibroblasts and ECs  
82 were developed (Thomas et al., 2022). Engineered multicellular cardiac tissues can  
83 be generated by combining these different cell types (Campostrini et al., 2021). These  
84 have proved useful to investigate the contribution of non-cardiac cell types to  
85 cardiomyocyte cell maturation and disease (Giacomelli et al., 2020a). In addition,  
86 methods to create multicellular cardioids from hPSCs have been developed to model  
87 embryonic stages from self-organized cardiac and foregut structures to early  
88 morphogenesis during heart tube formation (Drakhlis et al., 2021; Hofbauer et al.,  
89 2021b; Lewis-Israeli et al., 2021; Silva et al., 2021). Recent studies showed that by  
90 following a specialized developmental program, hPSCs can be differentiated into ECs  
91 from several developmental lineages, such as extra- and intraembryonic hemogenic  
92 ECs (Ditadi et al., 2015; Ng et al., 2016; Uenishi et al., 2014), endocardial ECs  
93 (Mikryukov et al., 2021) and liver sinusoidal ECs (Gage et al., 2020). We previously  
94 developed a method to co-differentiate cardiomyocytes and ECs from hPSCs from  
95 cardiac mesoderm (Giacomelli et al., 2017). These hPSC-derived ECs expressed a  
96 number of cardiac specific genes like *MEOX2*, *GATA4*, *GATA6* and *ISL1*, while tissue  
97 specific endocardial or intramyocardial markers were still absent, likely because of the  
98 lack of local microenvironmental cues.

99

100 Recently, we established a three-dimensional (3D) cardiac microtissue (MT) model  
101 composed of ECs, cardiomyocytes and cardiac fibroblasts, all derived from hiPSCs  
102 (Giacomelli et al., 2020). We showed that hPSC-derived cardiomyocytes in cardiac 3D  
103 MTs showed enhanced functional and structural maturation via interaction with ECs  
104 and cardiac fibroblasts. We further showed that developmental origin of the fibroblasts  
105 was critical in this model, as cardiac-, but not skin-, fibroblasts supported  
106 cardiomyocyte maturation in 3D MTs.

107

108 However, whether 3D cardiac MTs actually induce organ-specific characteristics and  
109 to what extent the developmental origin of ECs plays a role has not been investigated.  
110 We therefore aimed here to address these questions by comparing ECs derived from  
111 two distinct mesoderm sub-types: MESP1+ cardiac mesoderm and PAX3+ paraxial  
112 mesoderm. To do this, we utilized our earlier protocol to differentiate cardiac  
113 mesoderm-derived ECs (Giacomelli et al., 2017) and developed a new protocol to  
114 differentiate ECs from paraxial mesoderm. Cardiac MTs were then generated using  
115 these two sources of ECs. Although newly differentiated ECs from the two origins  
116 showed distinct identities, they strikingly became more similar after extended culture  
117 in cardiac MTs. Furthermore, based on eEC- and iEC-specific signatures extracted  
118 from a published scRNA-seq dataset of human fetal heart (Asp et al., 2019), we  
119 observed an iEC rather than an eEC identity for both developmental origins after MT  
120 culture. In summary, this study shows that although certain characteristics are  
121 inherited from progenitors, ECs are “plastic” and efficiently adapt to the  
122 microenvironment to acquire new tissue-specific signatures. Our results provide new  
123 insights into how organ/tissue-specific cell identities are acquired; this will inform the  
124 preparation of hiPSC -derived, organ specific ECs for disease modeling and drug  
125 development but as importantly, will provide a platform for understanding how EC  
126 plasticity might be regulated by microenvironmental context.

127

## 128 **RESULTS**

129

### 130 **Differentiation of endothelial cells from cardiac and paraxial mesoderm**

131

132 We set out to derive ECs from human induced pluripotent stem cells (hiPSCs) via both  
133 cardiac and paraxial mesoderm intermediates. To obtain ECs from cardiac mesoderm  
134 (CMECs), we used a protocol established previously in our group (Giacomelli et al.,  
135 2017) (Figure 1A). Briefly, BMP4 (20 ng/ml), Activin A (ACTA, 20 ng/ml) and  
136 CHIR99021 (CHIR, 1.5  $\mu$ M) were used to induce cardiac mesoderm from day 0 till day  
137 3. XAV-939 (XAV, 5  $\mu$ M) and VEGF (50 ng/ml) were used to induce CMECs and early  
138 cardiomyocytes (CMs) from day 3 to day 6. For paraxial mesoderm-ECs (PMECs), we  
139 adapted a protocol developed by Loh et al. (Loh et al., 2016) (Figure 1B). Briefly, high  
140 CHIR (8  $\mu$ M) was used for the first two days followed by XAV (5  $\mu$ M) for one day to  
141 induce posterior presomitic mesoderm (pPSM) on day 3 and low CHIR (1.5  $\mu$ M) was  
142 used to induce anterior presomitic mesoderm (aPSM) from day 3 to day 5. VEGF was  
143 added to induce PMECs from day 5 to day 6. In order to characterize paraxial  
144 mesoderm differentiation and the PMEC lineage we established a double fluorescent  
145 hiPSC reporter line (NCRM1 PAX3<sup>Venus</sup>MSGN1<sup>mCherry</sup>) (Figure S1A). CRISPR/Cas9  
146 assisted gene editing was used to target the fluorescent protein Venus to the PAX3  
147 locus leading to transcriptional control by the endogenous PAX3 regulatory elements.  
148 The MSGN1<sup>mCherry</sup> reporter was generated using a BAC construct integrated into the  
149 cells using the piggyBac transposon system. Flow cytometry analysis at different  
150 stages of paraxial mesoderm differentiation showed efficient induction of pPSM  
151 (MSGN-mCherry positive cells) and aPSM (PAX3-Venus positive cells) on day 2-3  
152 and day 5, respectively (Figure S1B). Using our paraxial mesoderm protocol, more  
153 than 70% of cells acquired MSGN1-mCherry expression on day 2-3 (Figure S1C) and  
154 more than 50% of cells acquired PAX3-Venus on day 6 (Figure S1D). We next  
155 confirmed induction of endogenous PAX3 protein expression by immunostaining with  
156 a PAX3-specific antibody (Figure S1E). Notably, more than 90% of cells were positive  
157 for PAX3 on day 5; this could be because of relatively weak endogenous expression  
158 of Venus that could not be detected in PAX3<sup>low</sup> cells.

159  
160 Gene expression analysis further confirmed comparable expression of pan-mesoderm  
161 markers *TBXT* and *MIXL1* in both cardiac and paraxial mesoderm differentiation  
162 conditions. On the other hand, expression of cardiac genes (*MESP1*, *GATA4* and  
163 *NKX2-5*) was restricted to cardiac mesoderm differentiation conditions and expression

164 of paraxial mesoderm genes (*MSGN1*, *TBX6*, *PAX3*) was restricted to paraxial  
165 mesoderm differentiation conditions (Figure S1F).

166

167 Both cardiac and paraxial mesoderm differentiation conditions resulted in comparable  
168 percentages of CD144+CD140a- ECs on day 6 and day 8 of differentiation (Figure  
169 1C-D). CD144+CD140a- ECs were sorted on day 6 and day 8 of differentiation from  
170 both cardiac and paraxial mesoderm conditions and underwent RNA sequencing  
171 (RNA-seq). Principle component analysis (PCA) showed that CMECs and PMECs  
172 clustered separately along PC1, and day 6 and day 8 were separated along PC2  
173 (Figure 1E). On day 6, 3307 and 2592 genes were significantly differentially  
174 upregulated (FDR<0.05, fold-change>2) in CMECs and PMECs respectively (Table  
175 S1). Gene ontology (GO) analysis showed that cardiac related genes were specifically  
176 upregulated in day 6 CMECs (CMEC\_D6), while genes related to skeletal system  
177 development and function were specifically upregulated in day 6 PMECs (PMEC\_D6)  
178 (Figure 1F, Table S2). Genes involved in heart development, like *GATA4*, *GATA5*,  
179 *TBX3*, *ISL1* and *MYH6*, were highly expressed in day 6 and day 8 CMECs. *TBX3*,  
180 *ISL1* and *MYH6* were upregulated from day 6 to day 8 in CMECs (Figure 1G).  
181 Essential genes for skeletal muscle development like *PAX3*, *TBX1*, *FOXC1*, *EYA1* and  
182 *MEOX1* were largely expressed in day 6 and day 8 PMECs. *FOXC1* and *EYA1* were  
183 upregulated from day 6 to day 8, while *TBX1* and *MEOX1* were downregulated (Figure  
184 1G). In summary, unbiased expression analysis by bulk RNA-seq showed differential  
185 gene expression signatures of cardiac and paraxial mesoderm derived ECs that  
186 corresponded to their known expression profiles *in vivo*.

187

## 188 **Reconstruction of the differentiation trajectories of ECs by single-cell RNA-seq**

189

190 Having demonstrated that the two differentiation protocols result in ECs with distinct  
191 characteristics, we undertook an unbiased analysis of the complete cell population  
192 and reconstructed the EC differentiation trajectories. To this end, we performed  
193 scRNA-seq on day 6 of CMEC and PMEC differentiation from two independent  
194 biological replicates (Figure 2A-B, Figure S2A-B). The replicates appeared highly  
195 similar in a low-dimensional representation (Figure S2C) and were therefore combined  
196 for further analysis. Any remaining, undifferentiated hiPSCs were excluded from

197 further analysis (Figure S2D-E). In the CMEC differentiation data set, cells were  
198 grouped into 3 clusters (cardiac mesoderm, cardiomyocytes and CMECs), as  
199 established previously (Cao et al., 2022) (Figure 2C). The three cell types were  
200 identified by known marker genes (Figure 2D, S3A-B, Table S3). The cardiac  
201 mesoderm cluster was characterized by mesoderm and early cardiac genes, such as  
202 *MESP1*, *SMARCD3*, *ABLIM1*, *TMEM88*, *ISL1*, *MYL5*, as well as the cell cycle-related  
203 genes *CDK6* and *NEK2*. The CMEC cluster was characterized by EC markers (*CDH5*,  
204 *CD34*, *KDR*, *HEY2*, *TEK*, *TIE1*, *ACVRL1*, *SOX17*, *ENG*, *ICAM2*, *PECAM1*).  
205 Cardiomyocytes were identified by expression of cardiomyocyte-associated genes,  
206 including *MYL4*, *TNNI1*, *MYL7*, *ACTA2*, *TNNT2*, *HAND2* and *NKX2-5*. To reveal the  
207 differentiation trajectories of the cells, we calculated the diffusion pseudotime using a  
208 cardiac cell mesoderm cell as root (Figure 2E). Pseudotime increased towards  
209 CMECs and cardiomyocytes, suggesting that both cell types differentiated from a  
210 common cardiac mesoderm progenitor.

211  
212 In the PMEC differentiation data set, all cells were divided into 3 clusters (Figure 2F),  
213 which were interpreted as being paraxial mesoderm, PMECs and mixed lateral plate  
214 mesoderm (LPM)/sclerotome using marker gene analysis (Figure S3C, D, Table S4).  
215 The paraxial mesoderm cluster was characterized by expression of aPSM and  
216 dermomyotome genes, such as *MEOX1*, *PDGFRB*, *SIX1*, *CRABP2*, *NR2F1*, *EYA1*,  
217 *FOXC1* and *PAX3*. PMECs were characterized by EC markers, like *ETV2*, *CDH5*,  
218 *CD34*, *KDR*, *ENG*, *SOX17*, *PLVAP*, *APLN*, *NRP1*. The mixed LPM/sclerotome cluster  
219 was characterized by LPM and sclerotome specific genes, such as *TMEM88*, *HAND1*,  
220 *TNNI1*, *PRRX1*, *ACTA2*, *DES*, *FOXH1*, *LEF1* and *JAG1* (Figure 2G, S3C-D). Diffusion  
221 pseudotime rooted in the paraxial mesoderm increased towards both PMECs and  
222 LPM/Sclerotome (Figure 2H). Both cell types therefore likely differentiated from a  
223 common paraxial mesoderm progenitor.

224  
225 **Acquisition of an organ-specific identity in cardiac microtissues**  
226  
227 Being able to produce ECs with properties corresponding to their mesodermal origins  
228 enabled us to test in how far the cellular microenvironment can either reinforce or  
229 reverse this specification i.e. how “plastic” the ECs are. Specifically, we set out to

230 mimic the cardiac microenvironment *in vitro* using a protocol for creating cardiac MTs,  
231 published previously by our group (Giacomelli et al., 2020). Briefly, CD34+ CMECs or  
232 PMECs were sorted on day 6 and combined with hiPSC-derived cardiomyocytes  
233 (hiPSC-CMs) and hiPSC-derived fibroblasts (hiPSC-CFs) in a ratio of 15:70:15 to form  
234 MTs. MTs made from CMECs (CM\_MTs) and PMECs (PM\_MTs) were collected after  
235 21 days from two independent biological replicates by scRNA-seq (Figure 3A, Figure  
236 S2A-B). The replicates appeared highly similar in a low-dimensional representation  
237 (Figure S2C) and were therefore combined for further analysis. Any remaining,  
238 undifferentiated hiPSCs were excluded from further analysis (Figure S2F-G). Both  
239 CM\_MTs and PM\_MTs datasets were divided into three clusters that correspond to  
240 hiPSC-CFs, hiPSC-CMs and hiPSC-ECs (Figure 3B). Marker genes identified for each  
241 cluster, confirmed the cluster identities (Table S6).

242

243 In order to assess to what extent ECs in MTs acquired an organ-specific identity, we  
244 compared their expression profiles to primary ECs in a published data set of the  
245 human fetal heart (Asp et al., 2019) (Figure S4A). In this data set, we reannotated the  
246 original endothelium/pericytes/adventia cluster (cluster 10) as intramyocardial ECs,  
247 based on differentially expressed markers such as *A2M*, *CD36*, *APLNR*, *ARHGAP18*,  
248 *IGFBP3*, *CLDN5*, *FABP4* and *FABP5* (Figure S4B, Table S5). The cluster annotated  
249 as capillary endothelium (cluster 0) in the original publication was reannotated as  
250 endocardium, due to the presence of differentially expressed markers like *NPR3*,  
251 *ALDH2*, *CDH11*, *ECE1*, *TMEM100*, *FOXC1* and *EDN1* (Figure S4B, Table S5).  
252 Supporting the differential expression test, UMAP visualization of representative intra-  
253 myocardial and endocardial markers showed specific expression in the respective  
254 clusters (Figure S4C-D).

255

256 We next compared CMECs and PMECs on day 6 of differentiation (CMECs\_day 6 and  
257 PMECs\_day 6) with the CMECs and PMECs in MTs (CMECs\_MT and PMECs\_MTs)  
258 respectively. CMECs in MTs upregulated expression of intramyocardial makers, such  
259 as *CLDN5*, *GMFG*, *APLNR*, *CD36*, *NOTCH4*, *OIT3*, *IGFBP3*, *ARHGAP18*, *A2M* and  
260 *BCAM*, but not *FABP5*, compared to CMECs isolated on day 6 of differentiation (Figure  
261 3C,D, Table S7). PMECs in MTs upregulated expression of a few intramyocardial  
262 markers, such as *CLDN5*, *GMFG*, *NOTCH4*, *IGFBP3*, *ARHGAP18*, *A2M* and *BCAM*,

263 but not *APLNR*, *CD36*, *OIT3* and *FABP5* compared to PMECs isolated on day 6 of  
264 differentiation (Figure 3C,E, Table S7). We also found some endocardial markers  
265 upregulated in both CMECs and PMECs in MTs (*TFPI2*, *EDN1*, *ECE1*, *FOXP1*)(S5A-  
266 B, Table S7). However, the differences in endocardial marker expression were smaller  
267 compared to intramyocardial markers. Notably, the expression of several  
268 intramyocardial markers, especially *APLNR*, *CD36*, *OIT3*, *ARHGAP18*, *A2M*, *BCAM*  
269 and *FABP5* was higher in CMECs in MTs compared to PMECs in MTs (Figure 3F,  
270 Table S8). Although the expression of endocardial markers was also higher in CMECs  
271 in MTs compared to PMECs in MTs, their average expression levels were lower in  
272 general when compared to intramyocardial markers (Figure S5C, Table S8).  
273 Importantly, endocardial makers, including *CDH11*, *FOXC1*, *FZD6*, *TMEM100* and  
274 *NPR3*, were barely expressed in either CMECs or PMECs in MTs (Figure S5C).  
275 Overall, intramyocardial EC identity was acquired by all hiPSC-ECs in the cardiac MT  
276 environment.

277

278 **Distinct cell identities are preserved in cardiac microtissues composed of either**  
279 **cardiac or paraxial mesoderm-derived ECs**

280

281 To obtain a clearer view of the similarities between ECs in MTs and primary fetal heart  
282 ECs, we merged the CM\_MT and PM\_MT datasets with the human fetal heart dataset  
283 (Asp et al., 2019) (Figure 4A-B). In the case of both the CM\_MT and the PM\_MT  
284 dataset, we found that CFs in MTs (CF\_MT) clustered together with fetal heart  
285 fibroblast-like cells and CMs in MTs (CM\_MT) clustered together with fetal heart  
286 ventricular CMs. Notably, both CMECs in MTs (CMECs\_MT) and PMECs in MTs  
287 (PMECs\_MT) clustered together with fetal heart intramyocardial ECs and not  
288 endocardium (Figure 4A-D). To quantify our observation, we calculated the distances  
289 (in expression space) between each cell in MTs and the fetal heart dataset. This  
290 calculation showed that CF\_MT cells are closest to fibroblast-like cells *in vivo* (related  
291 to cardiac skeleton connective tissue), CM\_MT cells are closest to ventricular  
292 cardiomyocytes and CMECs\_MT as well as PMECs\_MT are closest to intramyocardial  
293 ECs in human fetal heart (Figure 4E). Annotating the *in vitro* cells based on the closest  
294 *in vivo* neighbors revealed that cell type identities were very similar in CM\_MTs and  
295 PM\_MTs (Figure 4E).

296

297 Correspondingly, the set of markers of the EC cluster in CM\_MTs and the PM\_MTs,  
298 CM\_MTs (ECs) and PM\_MT (ECs) respectively, showed a high overlap (Jaccard  
299 similarity) with the markers of intra-myocardial ECs we extracted from the *in vivo* data  
300 set (Figure 4F). The gene set upregulated in CMECs\_MT compared to CMECs\_day 6  
301 (Up in CMECs\_MTs) had a higher overlap with intramyocardial EC markers than the  
302 set of genes upregulated in PMECs\_MTs compared to PMECs\_day 6 (Up in  
303 PMECs\_MTs) (Figure 4F). For comparison, we also profiled CMECs that were  
304 cultured for two additional passages in monoculture. Genes that were upregulated in  
305 these cells compared to CMECs\_day 6 (Up in P2 CMECs) overlapped the least with  
306 intra-myocardial EC markers (Figure 4F). This result excludes the possibility that the  
307 effects observed in MTs are simply due to environment-independent differentiation  
308 progression over time. CMECs\_MT and PMECs\_MT thus both resembled  
309 intramyocardial ECs but a difference between the two differentiation methods  
310 remained. To quantify this difference directly, we used differential gene expression  
311 analysis. On day 6 of differentiation, 1446 genes were differentially expressed  
312 between CMECs and PMECs (Table S9), while only 332 genes were differentially  
313 expressed between CMECs\_MT and PMECs\_MT (Table S8). 81 genes were shared  
314 between the two sets and 251 genes were differentially expressed only between  
315 CMECs\_MT and PMECs\_MT (Figure 4G). Intramyocardial marker genes (*CD36*, *OIT3*,  
316 *A2M*, *CLDN5*, *APLNR*, *FABP5*) were among these 251 genes that were differentially  
317 expressed between the CMECs\_MT and PMECs\_MT. This is also in line with our  
318 observations that expression of some intramyocardial marker genes were higher in  
319 CMECs in MTs compared to PMECs in MTs. Next, all EC clusters from bulk and single  
320 cell RNA-seq datasets were combined and visualized using principal component  
321 analysis (PCA) (Figure 4H). CMECs\_day 6 and PMECs\_day 6 clustered far apart,  
322 while CMECs\_MT and PMECs\_MT clustered closely together. Bulk and single cell  
323 RNA-seq samples clustered together for both CMECs and PMECs. CMECs\_MT and  
324 PMECs\_MT were found closer to fetal heart intramyocardial ECs and fetal heart ECs  
325 (Figure 4H) sequenced in our previous study (Giacomelli et al., 2020). Altogether,  
326 analysis of the *in vitro* and *in vivo* data sets demonstrated that the cardiac tissue  
327 microenvironment resulted in hiPSC-ECs acquiring an intramyocardial EC identity

328 independent of their developmental origin and, further, gene expression differences  
329 due to distinct mesodermal origins were partially removed.

330

### 331 **DISCUSSION**

332 In the present study we derived ECs from hiPSCs from two mesoderm lineages  
333 namely LPM and PM, as previous lineage tracing studies have shown that LPM and  
334 PM serve as a major source of ECs in the developing embryo (Lagha et al., 2009;  
335 Mayeuf-Louchart et al., 2016; Pardanaud et al., 1996). We showed that ECs isolated  
336 on day 6 and day 8 of differentiation retained their developmental lineage history.  
337 Transcription factors involved in the heart and skeletal muscle development were  
338 highly expressed in CMECs and PMECs, respectively. Additional approaches,  
339 including scRNA-seq, showed lineage diversification from a common cardiac and  
340 paraxial mesoderm progenitor during differentiation of CMECs and PMECs,  
341 respectively. At the same time, an organ-specific EC signature was absent in ECs  
342 differentiated either from cardiac or paraxial mesoderm on day 6 and day 8 of  
343 differentiation, or upon extended culture.

344

345 Local microenvironmental cues result in acquisition of organ-specific characteristics in  
346 ECs (Aird, 2012). To model the influence of cell-extrinsic factors, we took advantage  
347 of our cardiac MT model which mimics the heart-specific microenvironment, as it  
348 integrates CMs, CFs and ECs (Giacomelli et al., 2020). Although both CMECs and  
349 PMECs acquired an iEC identity after incorporation into MTs, several intramyocardial  
350 EC markers (*APLNR*, *CD36*, *OIT3*, *ARHGAP18*, *A2M*, *BCAM* and *FABP5*) were more  
351 strongly upregulated in CMECs compared to PMECs in cardiac MTs. A recent study  
352 in mouse embryos showed that transcriptional heterogeneity in the sinus venosus (SV)  
353 and endocardium-derived iECs declines over time (Phansalkar et al., 2021).  
354 Therefore, it would be interesting to investigate whether PMECs require longer culture  
355 in cardiac MTs to acquire comparable expression of intramyocardial EC markers as in  
356 CMECs. On the other hand, endocardial markers were not detected in either CMECs  
357 or PMECs in cardiac MTs. This is in line with previous evidence that the cardiac MTs  
358 microenvironment recapitulates myocardial and not endocardial layers of the heart.  
359 Importantly, CFs and CMs in both CM\_MT and PM\_MT datasets were highly similar  
360 and clustered together with fetal heart fibroblast-like cells and fetal heart ventricular

361 CMs respectively. This showed that developmental origin of ECs does not influence  
362 CF or CM identities in cardiac MTs.

363

364 Among EC lineages, PM serves a source of lymphatic ECs in the heart, skin and lymph  
365 node (Lenti et al., 2022; Lupu et al., 2022; Stone and Stainier, 2019). PMECs showed  
366 increased expression of genes important for the development of lymphatic vasculature,  
367 such as *TBX1*, *FOXC1*, *LYVE1*, *VEGFC*. At the same time, expression of the master  
368 regulator of lymphatic EC differentiation (*PROX1*) was not detected in PMECs either  
369 at day 6 or in cardiac MTs. It would be interesting to explore whether addition of known  
370 lymphatic EC growth factors promotes *PROX1* expression in PMECs.

371

372 Genetic lineage tracing in mice has identified a variety of developmental origins for  
373 organ-specific ECs in different tissues. However, whether developmental origin is a  
374 prerequisite- or simply a default developmental route remains an open question. On  
375 the other hand, the present and previous studies demonstrate that local  
376 microenvironmental cues might play a bigger role in not only the acquisition but also  
377 the maintenance of the organ-specific characteristics. This is also in line with recent  
378 study on sinusoidal ECs of the liver (Gómez-Salinero et al., 2022). Earlier studies have  
379 demonstrated the importance of the *Gata4* transcription factor in the differentiation of  
380 liver ECs and the acquisition of sinusoidal-like identity (Géraud et al., 2017; Zhang et  
381 al., 2016b). However, scRNA-seq analysis of liver ECs showed that *Gata4* is not  
382 restricted to sinusoidal ECs but it is expressed by all ECs in the liver (Gómez-Salinero  
383 et al., 2022). Instead, the *c-Maf* transcription factor was restricted to sinusoidal liver  
384 ECs and was regulated by BMP9 that is highly expressed by hepatic stellate cells  
385 (HSC) (Breitkopf-Heinlein et al., 2017). Furthermore, overexpression of c-Maf was  
386 sufficient to induce sinusoidal-like characteristics in human umbilical vein ECs  
387 (HUVECs). The same is true for heart ECs that are derived from multiple  
388 developmental pools of EC progenitors that converge to a similar state over time  
389 (Milgrom-Hoffman et al., 2011; Phansalkar et al., 2021; Sharma et al., 2017b).

390

391 In summary, we demonstrated that ECs, derived from two distinct mesoderm lineages  
392 namely LPM and PM, acquire organ-specific characteristics upon incorporation into  
393 the cardiac MT environment which includes CMs and CFs. We expect that our findings

394 will guide the derivation of organ-specific ECs from hiPSCs in the future and lay the  
395 foundation for various biomedical applications, from creating of disease models to  
396 transplantation therapies.

397

### 398 **Materials and Methods**

#### 399 **hiPSC culture**

400 hiPSC lines LUMC0020iCTRL-06 and NCRM1 (NIH Center for Regenerative Medicine  
401 NIH CRM, obtained from RUDCR Infinite Biologics at Rutgers University) were  
402 cultured in in TeSR-E8 on Vitronectin XF and were routinely passaged once a week  
403 using Gentle Cell Dissociation Reagent (all from Stem Cell Technologies, Vancouver,  
404 Canada).

405

#### 406 **Generation of PAX3<sup>Venus</sup>MSGN1<sup>mCherry</sup> hiPSC dual reporter line**

407 Prior to targeting, NCRM1 hiPSCs were passaged as a bulk on feeders in hESC-  
408 medium (Costa et al., 2007). RevitaCell (Life Technologies, Carlsbad, CA, USA) was  
409 added to the medium (1:200) after every passage to enhance viability after single cell  
410 passaging with TrypLE (Life technologies). PAX3<sup>Venus</sup> was generated by  
411 CRISPR/Cas9 as follow: NCRM1 hiPSCs were passaged with ratio 1:3 into 60 mm  
412 dishes to reach 60-70% confluence the next day for transfection. Cells were  
413 transfected with pCas9-GFP (Addgene plasmid #44719), pBR322-U6-hPAX3-gRNA-  
414 S1 containing sgRNA CCGGCCAGCGTGGTCATCCT and repair template p15A-cm-  
415 hPAX3-Venus-neo-1kb containing a Venus-neo cassette with 1 kb hPAX3 homology  
416 arms. The antibiotic selection marker is flanked by FRT sites for Flp-mediated  
417 excision. 20 µl lipofectamine (Invitrogen, Waltham, Massachusetts, USA), 8 µg of  
418 pCas9-GFP, 8 µg of sgRNA plasmid and 8 µg of linearized repair template were  
419 diluted in 600 µl of Opti-MEM and added to each 60 mm dish. After 18 hours the  
420 medium was changed to hESC medium. After another 6 hours G-418 (50 µg/ml)  
421 selection was started and was kept for 1 week. Surviving cells were cultured in hESC  
422 medium, passaged and transferred into 6-well plates for the transfection of Flp  
423 recombinase expression vector to remove the neomycin cassette. 300 µl of Opti-MEM  
424 containing 10 µl lipofectamine and 4 µg CAGGs-Flpo-IRES-puro plasmid was added  
425 per well for 18 hours. Puromycin (0,5 µg/ml) selection was started 24 hours post  
426 transfection and lasted for 2 days. Once recovered, cells were passage into 96-well

427 format for clonal expansion via limited dilution. Targeted clones were identified by PCR  
428 and Sanger sequencing (BaseClear, Leiden, Netherlands). The MSGN1<sup>mCherry</sup> reporter  
429 line was generated by Transposon mediated BAC transgenesis using protocols  
430 described by (Rostovskaya et al., 2012). In brief, a human BAC (RP11-12L16) with  
431 piggyBac transposon repeats flanking the bacterial backbone and with mCherry  
432 inserted directly after the initiating Methionine of MSGN1 was transfected together with  
433 a piggyBac Transposase into NCRM1 hiPSCs.

434

#### 435 **Differentiation of ECs from cardiac and paraxial mesoderm**

436 ECs from cardiac mesoderm were differentiated as previously described (Giacomelli  
437 et al., 2017). ECs from paraxial mesoderm were differentiated using a modified Loh et  
438 al. protocol (Loh et al., 2016). Briefly,  $5 \times 10^4$  cells per  $\text{cm}^2$  were seeded on plates  
439 coated with 75  $\mu\text{g}/\text{mL}$  Matrigel (growth factor reduced) (Corning) the day before  
440 differentiation (day -1). At day 0, paraxial mesoderm was induced by changing TeSR-  
441 E8 to BPEL (Bovine Serum Albumin [BSA], Polyvinyl alcohol, Essential Lipids)  
442 medium (Ng et al., 2008), supplemented with 8  $\mu\text{M}$  CHIR99021. At day 2, cells were  
443 refreshed with BPEL supplemented with 5  $\mu\text{M}$  XAV939. At day 3, cells were refreshed  
444 with BPEL supplemented with 4  $\mu\text{M}$  CHIR99021. From day 5 onwards, cells were  
445 refreshed every 3 days with BPEL medium supplemented with 50 ng/ml VEGF.

446

#### 447 **Fluorescence-activated cell sorting**

448 Cells were dissociated with TrypLE on day 6 and 8 of CMEC and PMEC protocol and  
449 stained with VE-Cadherin PE-conjugated Antibody (R&D Systems). Then VEC+ cells  
450 were sorted using FACSaria III. Total RNA was extracted right after sorting using the  
451 NucleoSpin® RNA kit (Macherey-Nagel, Düren, Germany).

452

#### 453 **Generation of 3D Cardiac Microtissues (MTs)**

454 Cardiac MTs were generated from hiPSC-derived ECs, CFs and CMs as previously  
455 described (Giacomelli et al., 2020). Briefly, on day 6 of CMEC and PMEC  
456 differentiation, CD34<sup>+</sup> ECs were isolated using a Human cord blood CD34 Positive  
457 selection kit II (StemCell Technologies) following the manufacturer's instructions. On  
458 the day of MT formation, freshly isolated hiPSC-ECs and cultured hiPSCs-CFs and  
459 hiPSC-CMs were combined together to 5000 cells (70% cardiomyocytes, 15%

460 endothelial cells and 15% cardiac fibroblasts) per 50 $\mu$ l BPEL medium supplemented  
461 with VEGF (50 ng/ml) and FGF2 (5 ng/ml). Cell suspensions were seeded on V-bottom  
462 96 well microplates (Greiner bio-one, Kremsmünster, Austria) and centrifuged for 10  
463 min at 1100 rpm. MTs were incubated at 37°C, 5% CO<sub>2</sub> for 21 days with media  
464 refreshed every 3-4 days. scRNASeq analysis of MTs was performed after 21 days.

465

#### 466 **Fluorescence-activated cell sorting**

467 Cells were detached using TrypLE for 5 min at 37°C and washed once with FACS  
468 buffer (PBS containing 0.5% BSA and 2 mM EDTA). Primary antibodies CD144 (1:50,  
469 eBioscience), CD140a (1:20, BD Bioscience) were added for 1 hr at 4°C. Samples  
470 were measured on MACSQuant VYB (Miltenyi Biotech) equipped with a violet (405  
471 nm), blue (488 nm) and yellow (561 nm) laser. The results were analyzed using Flowjo  
472 v10 (FlowJo, LLC). For FACS sorting on day 6 and day 8 of the CMEC and PMEC  
473 protocol, CD144+CD140a- cells were sorted using FACSaria III (BD-Biosciences).

474

#### 475 **Quantitative Real-Time Polymerase Chain Reaction (qPCR)**

476 Total RNA was extracted using the NucleoSpin® RNA kit according to the  
477 manufacturer's protocol. cDNA was synthesized using an iScript-cDNA Synthesis kit  
478 (Bio-Rad, Hercules, CA, USA). iTaq Universal SYBR Green Supermixes (Bio-Rad)  
479 and Bio-Rad CFX384 real-time system were used for the PCR reaction and detection.  
480 Relative gene expression was determined according to the standard ΔCT calculation  
481 and normalized to the housekeeping gene RPL37A.

482

#### 483 **Bulk RNA sequencing and analysis**

484 Bulk RNASeq of passage two CMECs (CMECs P2) and human fetal heart ECs at  
485 gestation age Week(W)12.5, W15 and W21 were performed in our previous study  
486 (Giacomelli et al., 2020) and obtained from GEO accession number GSE116464.

487 Bulk RNASeq of day 6 and 8 of CMEC and PMEC differentiation were performed at  
488 BGI (Shenzhen, China) using the Illumina Hiseq4000 (100bp paired end reads). Raw  
489 data was processed using the LUMC BIOPET Gentrap pipeline  
490 (<https://github.com/biopet/biopet>), which comprises FASTQ preprocessing, alignment  
491 and read quantification. Sickle (v1.2) was used to trim low-quality read ends  
492 (<https://github.com/najoshi/sickle>). Cutadapt (v1.1) was used for adapter clipping

493 (Martin, 2011), reads were aligned to the human reference genome GRCh38 using  
494 GSNAp (gmap-2014-12-23) (Wu and Nacu, 2010; Wu and Watanabe, 2005) and gene  
495 read quantification with htseq-count (v0.6.1p1) against the Ensembl v87 annotation  
496 (Yates et al., 2015). Gene length and GC content bias were normalized using the R  
497 package cqn (v1.28.1) (Hansen et al., 2012). Genes were excluded if the number of  
498 reads was below 5 reads in  $\geq 90\%$  of the samples.

499

500 Differentially expressed genes were identified using generalized linear models as  
501 implemented in edgeR (3.24.3) (Robinson et al., 2009). P-values were adjusted using  
502 the Benjamini-Hochberg procedure and  $FDR \leq 0.05$  was considered significant.  
503 Analyses were performed using R (version 3.5.2). PCA plot was generated with the  
504 built-in R functions prcomp using transposed normalized RPKM matrix. Correlation  
505 among samples was calculated using cor function with spearman method and the  
506 correlation heatmap was generated with aheatmap function (NMF package). Gene  
507 ontology enrichment was performed using compareCluster function of clusterProfiler  
508 package (v3.10.1) (Yu et al., 2012) and  $q \leq 0.05$  was considered significant.

509

## 510 **Single-cell RNA sequencing and analysis**

### 511 **Library preparation and sequencing**

512 Library preparation was performed as previously described (Giacomelli et al., 2020).  
513 Briefly, single cells were loaded into the 10X Chromium Controller for library  
514 construction using the Single-Cell 3' Library Kit, Version 2 Chemistry (10x Genomics,  
515 Pleasanton, CA, USA) according to the manufacturer's protocol. Next, indexed cDNA  
516 libraries were sequenced on the HiSeq4000 platform. Single-cell expression was  
517 quantified using unique molecular identifiers (UMIs) by 10x Genomics' "Cell Ranger"  
518 software.

519

520 The mean reads per cell for all eight data sets: CMEC (R1): 28,499; CMEC (R2):  
521 29,388; PMEC (R1): 31,860; PMEC (R2): 38,415; CM\_MT (R1): 39,319; CM\_MT (R2):  
522 29,741; PM\_MT (R1): 36,726; PM\_MT (R2): 26,421.

523

### 524 **Single-cell RNAseq data pruning and normalization**

525 For data pruning and normalization, the two replicates of each of the 4 conditions  
526 (CMEC, PMEC, CM\_MT and PM\_MT) were combined without batch correction. Then,  
527 cells with a low number of genes per cell (1200 [CMEC], 1200 [PMEC], 900 [CM\_MT],  
528 750 [PM\_MT], see Fig. S2A-B) were removed. Genes expressed in less than 2 of the  
529 remaining cells with a count of at most 1 were excluded from further analysis. Each  
530 combined data set was normalized using the R package *scran* (V 1.14.6) (Lun et al.,  
531 2016). Highly variable genes (HVGs) were calculated (improvedCV2 from the *scran*  
532 package) for each replicate of the combined data sets after excluding ribosomal genes  
533 [Ribosomal Protein Gene Database], stress markers (Brink et al., 2017) and  
534 mitochondrial genes. For downstream analysis the top 5% HVGs were used after  
535 excluding proliferation (Whitfield et al., 2006) and cell cycle (Giotti et al., 2017) related  
536 genes.

537

### 538 **Cell cycle analysis and batch correction**

539 For each combined data set, cell cycle analysis was performed with the *scran* package  
540 using the *cyclone* function (Scialdone et al., 2015) on normalized counts (Figure S2H).  
541 Cells with a G2/M score higher than 0.2 were considered to be in G2/M phase.  
542 Otherwise, they were classified as G1/S. Using this binary classifier as predictor, we  
543 regressed out cell cycle effects with the R package *limma* (V 3.42.2) (Ritchie et al.,  
544 2015) applied to log-transformed normalized counts. Then, for each combined data  
545 set, the two replicates were batch corrected with fast mutual nearest neighbors  
546 correction method (MNN) (Haghverdi et al., 2016) on the cell cycle corrected counts,  
547 using the 30 first principal components and 20 nearest-neighbors (Figure S2C).

548

### 549 **Clustering**

550 For each combined data set, batch-corrected counts were standardized per gene and  
551 then used to create a shared nearest neighbour (SNN) graph with the *scran* R package  
552 ( $d = 30$ ,  $k = 2$ ). Louvain clustering was applied to the SNN graph using the *igraph*  
553 python package (V 0.7.1) with these resolution parameters: 0.4 [CMEC], 0.4 [CM\_MT],  
554 0.3 [PMEC], 0.1 [PM\_MT]. For the CMEC data set, this resulted in 5 clusters (Figure  
555 S2D). Two of these 5 clusters were excluded from further analysis based on the  
556 expression of pluripotency markers (Figure S2E). For the PMEC data set, this resulted  
557 in 3 clusters (Figure 2F). For CM\_MT and PM\_MT, clustering resulted in 4 clusters

558 (Figure S2F and S2G), where one cluster was excluded from further analysis, because  
559 it was mainly present in one of the two replicates. Additionally, the attempt to map this  
560 cluster to *in vivo* data, resulted in mostly unassigned cell types (plot not shown). For  
561 PMEC, clustering resulted in 3 clusters.

562

### 563 **Dimensionality reduction and pseudotime**

564 Dimensionality reduction was performed using the python *scanpy* pipeline (V 1.4.6).  
565 For both data sets, CMEC and PMEC, a 20 nearest-neighbors (knn, k=20) graph was  
566 created from diffusion components of the batch corrected data sets. Diffusion  
567 components are the eigenvectors of the diffusion operator which is calculated from  
568 Euclidean distances and a gaussian kernel. The aim is to find a lower dimensional  
569 embedding which considers the cellular progression. Both graphs were projected into  
570 two dimensions with the default force-directed graph layout and starting positions  
571 obtained from the partition-based graph abstraction (PAGA) output (Wolf et al., 2019).  
572 PAGA estimates connectivities between partitions and performs an improved version  
573 of diffusion pseudotime. Diffusion pseudotime (Haghverdi et al., 2016; Wolf et al.,  
574 2019) was calculated on these graphs with root cells selected based on the graph  
575 layout from the “Cardiac Mesoderm” cluster in CMEC, and the “Paraxial Mesoderm”  
576 cluster in PMEC.

577

578 For CM\_MT and PM\_MT, the knn graphs (k=50 for PM\_MT, k=100 for CM\_MT) were  
579 created from the first 30 principal components of the batch corrected data sets. These  
580 graphs were projected into two dimensions with the default force-directed graph layout  
581 and starting positions from the PAGA output.

582

### 583 ***In vivo* data analysis and mapping**

584 The *in vivo* data set, downloaded from <https://www.spatialresearch.org/resources-published-datasets/doi-10-1016-j-cell-2019-11-025/>, contains a 6.5 PCW human  
585 embryonic cardiac tissue sample. The clusters and cluster annotations were obtained  
586 from the original publication (Asp et al., 2019). The data set was normalized with the  
587 *scran* R package and HVGs were calculated as described in section “Single-cell RNA-  
588 seq data pruning and normalization”. Dimensionality reduction was performed with the

590 R package *umap* (V 0.2.5.0) using 20 nearest-neighbors, *min\_dist* = 0.7 and Euclidean  
591 distance.

592

### 593 **Differential expression analysis**

594 All differential expression tests were performed with *edgeR* (V 3.28.1) (Robinson et  
595 al., 2009) using a negative binomial regression and raw counts. The predictors in the  
596 regression were: cluster and replicate (both discrete variables), as well as the total  
597 number of counts per cell.

598

599 For marker gene analysis (Figures S3A and S3C), p-values were obtained for a  
600 contrast between the cluster of interest and all other clusters using regression  
601 coefficients averaged over the replicates. For tests between different data sets (Figure  
602 3C), the corresponding endothelial cell cluster was extracted from each data set. Then,  
603 a contrast between MT and day 6 was calculated by averaging over the predictors of  
604 both replicates. For the *in vivo* test (Figure S4B), intra-myocardial EC and  
605 endocardium clusters were extracted from the data set to calculate the contrast  
606 between them. P-values were adjusted for multiple hypothesis testing with the  
607 Benjamini-Hochberg method.

608

### 609 **Comparison to the *in vivo* data set**

610 CM\_MT and PM\_MT data sets were mapped on the *in vivo* data set using the MNN  
611 method (*d* = 30 principal components, *k* = 100 nearest neighbors). First, *in vitro*  
612 replicates were mapped to each other, then the *in vivo* data was mapped on the  
613 combined *in vitro* data, using normalized, log- transformed counts and the 10% top  
614 HVGs of the *in vivo* data set. Dimensionality reduction was performed with the R  
615 package *umap* using 100 nearest-neighbors, *min\_dist* = 0.3 and Euclidean distance.  
616 K-nearest-neighbour (KNN) assignment was performed in the batch corrected,  
617 principal component space (30 PCs). The 100 nearest-neighbors in the *in vivo* data  
618 set based on Euclidean distances were calculated for each *in vitro* cell. The *in vitro*  
619 cell was ascribed the cell type most abundant among the 100 *in vivo* neighbors. Each  
620 such assignment received a confidence score, which is the number of *in vivo*  
621 neighbors with that cell type divided by the number of all nearest neighbors (=100). A  
622 cell was not ascribed a cell type if either the average distance to its nearest neighbour

623 exceeded a certain threshold (determined by the long tail of the histogram of average  
624 distances: 0.35), or the assignment had a confidence score less than 0.5. In addition,  
625 clusters containing less than 10 cells were not ascribed a cell type.

626

627 For the Jaccard similarity measure, marker genes of each differential expression test  
628 were selected with adjusted p-value < 0.05. The remaining genes were ranked by log2  
629 fold change and the first 478 genes were selected for analysis. Then, the Jaccard  
630 distances were calculated between the marker genes of intra-myocardial endothelial  
631 cells and each of the other gene sets.

632

633 For principal component analysis (Figure 4H), human fetal bulk samples and in vitro  
634 bulk samples (Giacomelli et al., 2020) were combined with the single cell data sets.  
635 For each single-cell data set, the endothelial cells were extracted and the sum per  
636 gene over all cells was calculated. Then, bulk and single cell samples were log-  
637 transformed and combined into one data set. Principal component analysis was  
638 applied on the gene-wise standardized data set, using marker genes of the intra-  
639 myocardial endothelial cells from the *in vivo* data set.

640

#### 641 **Data Availability Statement**

642 The accession numbers for the bulk and single cell RNA sequencing datasets reported  
643 in this paper are <https://www.ncbi.nlm.nih.gov/geo/> GEO: GSE151427 (day 6 and day  
644 8 CMEC and PMEC (bulk); day 6 PMEC (single cell); PM\_MT (single cell));  
645 GSE202901 (day 6 CMEC (single cell)); GSE147694 (CM\_MT (single cell)).

646

#### 647 **Statistics**

648 Statistical analysis was conducted with GraphPad Prism 7 software (San Diego, CA,  
649 USA). Data are represented as mean $\pm$  SD.

650

#### 651 **Acknowledgements**

652 This project received funding from the European Union's Horizon 2020 Framework  
653 Programme (668724); Netherlands Organ-on-Chip Initiative, an NWO Gravitation  
654 project funded by the Ministry of Education, Culture and Science of the government of

655 the Netherlands (024.003.001); the European Union's Horizon 2020 and innovation  
656 program under a Marie Skłodowska-Curie grant agreement no. 707404. We thank  
657 Elisa Giacomelli and Milena Bellin for generation of cardiac microtissues; S.L. Kloet  
658 and E.de Meijer (Leiden Genome Technology Center) for help with 10X Genomics  
659 experiments (cell encapsulation, library preparation, single-cell sequencing, primary  
660 data mapping, and quality control); the LUMC Flow Cytometry Core Facility, and the  
661 LUMC Light and Electron Microscopy Facility. Illustrations were created with  
662 BioRender.

663

#### 664 **Author contributions**

665 X.C., M.M., S.S., V.V.O. designed the research, analyzed and interpreted results,  
666 wrote the manuscript; X.C., F.E.vdH, V.V.O. performed experiments; M.M., S.S.  
667 performed scRNA-Seq analysis; K.N. generated MSGN1<sup>mCherry</sup> hiPSC reporter line;  
668 K.A. generated gene targeting constructs for reporter hiPSC lines; X.C., H.M.  
669 performed bulk RNA-seq analysis; C.L.M. designed the research and edited the  
670 manuscript.

671

#### 672 **Competing interests**

673 C.L.M. is co-founder of Ncardia bv. The other authors indicated no potential conflicts  
674 of interest.

675

676

677

#### 678 **Figure Legends**

679

#### 680 **Figure 1. Characterization of ECs differentiated from hiPSCs using CMEC and 681 PMEC protocols**

682 **(A-B)** Schematic overview of CMEC (**A**) and PMEC (**B**) differentiation protocols.  
683 Endothelial cell (CD144+CD140a-) were FACS sorted on days 6 and day 8 for bulk  
684 RNA-seq. ACTA: activin-A. CHIR: CHIR99021. pPSM/aPSM: posterior/anterior  
685 presomitic mesoderm. LPM: lateral plate mesoderm. **(C)** Flow cytometry analysis of  
686 CD140a and CD144 expression on day 6 and day 8 of CMEC and PMEC  
687 differentiation. **(D)** Quantification of VEC (CD144)+CD140a- cells on day 6 and day 8

688 of CMEC and PMEC differentiation. Error bars represented standard deviations  
689 calculated from five to six independent differentiations. (E) PCA analysis of ECs sorted  
690 on day 6 and 8 of the CMEC or PMEC protocol. (F) GO term enrichment analysis for  
691 DEGs between CMECs and PMECs on day 6 of differentiation. Complete list of GO  
692 terms can be found in Table S2. Color represents the  $p_{adjusted}$  of enrichment analysis  
693 and dot size represents the count of genes mapped to the GO term. (G) Normalized  
694 gene expression levels (RPKM) of cardiac and skeletal related genes in CMECs and  
695 PMECs on day 6 and 8.

696

697 **Figure 2. Single-cell RNA sequencing analysis of ECs differentiated from**  
698 **cardiac and paraxial mesoderm**

699 (A-B) Schematic overview of CMEC (A) and PMEC (B) differentiation protocols until  
700 day 6. Cells were collected for scRNA-seq on day 6. ACTA: activin-A. CHIR: CHIR99021. pPSM/aPSM: posterior/anterior presomitic mesoderm. LPM: lateral plate  
701 mesoderm. (C) scRNA-seq of CMEC differentiation on day 6 (PAGA plot). Three  
702 clusters of cells, indicated by color, were identified. (D) PAGA plots show expression  
703 of *MESP1*, *ISL1*, *SMARCD3*, *CDH5*, *MYL4* on day 6 of CMEC differentiation. Color  
704 represents log transformed expression. (E) Diffusion pseudotime analysis of CMEC  
705 differentiation on day 6. (F) scRNA-seq of PMEC differentiation on day 6 (PAGA plot).  
706 Three clusters of cells, indicated by color, were identified. (G) PAGA plots show  
707 expression *PAX3*, *EYA1*, *FOXC1*, *CDH5*, *PPRX1* on day 6 of CMEC differentiation.  
708 Color represents log transformed expression. (H) Diffusion pseudotime analysis of  
709 PMEC differentiation on day 6.

711

712 **Figure 3. hiPSC-ECs acquired organ-specific signatures in a cardiac**  
713 **microenvironment**

714 (A) Generation of cardiac MTs from hiPSC-CMs, hiPSC-CFs and hiPSC-ECs. CMECs  
715 and PMECs were used for CM\_MTs and PM\_MTs respectively. MTs were collected  
716 after 21 days for scRNAseq. (B) scRNAseq data of CM\_MTs (left) and PM\_MTs (right)  
717 were visualized using PAGA. Three clusters of cells were identified in both datasets.  
718 (C) Volcano plot showing fold changes and p-values of differential expression tests  
719 between CMECs\_day 6 and CMECs\_MTs (left), or PMECs\_day 6 and PMECs\_MTs  
720 (right). Representative intra-myocardial and endocardial markers that are differentially

721 expressed ( $p_{adjusted} < 0.05$ ) are highlighted in red and green, respectively. (D-F) Violin  
722 plots of gene expression in PMECs\_ day 6, CMECs\_day6, CMECs\_MT and  
723 PMECs\_MT for representative Intra-myocardial EC markers. Asterisks indicate  
724 significance level of differential gene expression tests between the respective  
725 populations. ns:  $p > 0.05$ ; \*  $p \leq 0.05$ ; \*\*  $p \leq 1e-10$ ; \*\*\*  $p \leq 1e-100$ ; \*\*\*\*  $p \leq 1e-200$ .  
726 The clusters with higher expression value were labeled. ne: not expressed (0 counts)  
727 in >85% of cells in both groups.

728

729 **Figure 4. CMECs and PMECs acquired intramyocardial identity in cardiac**  
730 **microenvironment**

731 (A-B) Low-dimensional representation (UMAP) of the human fetal heart data set (Asp  
732 et al., 2019) integrated with the CM\_MTs (A, C) or PM\_MTs (B, D) dataset. EC clusters  
733 are marked with squares. Cell clusters are indicated by color. Cells in fetal heart  
734 dataset are presented with dots and cells in MTs datasets are presented with contour  
735 lines. (C-D) Zoom-ins of the EC clusters marked in (A-B). (E) Annotation of CM\_MT  
736 and PM\_MT cells based on nearest neighbors in the *in vivo* dataset. Cells from  
737 CM\_MTs and PM\_MTs are outlined with a green or violet contour, respectively. (F)  
738 Jaccard similarity to intramyocardial ECs from the human fetal heart dataset was  
739 calculated for each indicated group of genes. CM\_MTs (ECs): specific markers of  
740 cluster CMECs within the CM\_MT dataset; PM\_MTs (ECs): specific markers of cluster  
741 PMECs within the PM\_MT dataset; Up in CMECs\_MT: DEGs that are higher in  
742 CMECs\_MT compared to CMECs\_day 6; Up in PMECs\_MT: DEGs that are higher in  
743 PMECs\_MT compared to PMECs\_day 6; Up in P2 CMECs: DEGs that are higher in  
744 passage two CMECs compared to CMECs\_day 6. (G) Venn diagram shows numbers  
745 and overlap of DEGs ( $p_{adjusted} < 0.05$  and fold-change  $> 1.5$ ) between CMECs and  
746 PMECs from day 6 (in red) and MTs (in blue). (H) PCA plot of different EC populations  
747 in scRNAseq (triangle and diamond) and bulk RNA-seq (circle) datasets. Average  
748 expression values of all cells in the cluster were used for the scRNA-seq data.

749

750 **Figure S1. Characterization of PMEC differentiation using**  
751 **MSGN1<sup>mCherry</sup>PAX3<sup>Venus</sup> dual reporter line**

752 (A) Targeting constructs used to generate PAX3-Venus and MSGN1-mCherry hiPSC  
753 reporter line. (B) Flow cytometry analysis of PAX3<sup>Venus</sup> and MSGN1<sup>mCherry</sup> expression

754 on day 2, 3, 5, 6 and 8 of PMEC differentiation. **(C-D)** Quantification of mCherry+ **(C)**  
755 and Venus+ **(D)** cells in the total population by flow cytometry on day 2, 3, 5, 6 and 8.  
756 **(E)** Representative fluorescence image of PAX3<sup>Venus</sup> expression on day 5 of PMEC  
757 differentiation. Scale bar: 200  $\mu$ m. **(F)** Quantification of *TBXT*, *MIXL1*, *MESP1*,  
758 *GATA4*, *NKX2-5*, *MSGN1*, *TBX6* and *PAX3* expression by qPCR on day 0, 2, 5 and 8  
759 of CMEC (green) and PMEC (purple) differentiation.

760

761 **Figure S2. Quality control of scRNASeq datasets**

762 **(A-B)** Distribution of the number of detected genes **(A)** and total expression **(B)** in  
763 each cell of the scRNASeq datasets. The dotted blue lines indicate quality control  
764 thresholds. Two different batches are labelled with different colors. **(C)** Two different  
765 batches of cells collected for each scRNASeq dataset were visualized with PAGA.  
766 **(D)** scRNASeq data of CMECs on day 6 is visualized using PAGA. Five cell clusters  
767 were identified and labelled with different colors. **(E)** Expression of pluripotency genes  
768 *POU5F1* and *NANOG* in the CMECa dataset on day 6 is shown in PAGA plot. Color  
769 represents log transformed expression. **(F-G)** scRNASeq data of CM\_MTs **(F)** and  
770 PM\_MTs **(G)** were visualized using PAGA. Four cell clusters were identified. Clusters  
771 labelled with “Other” were excluded from downstream analysis. **(H)** Boxplot of G2M  
772 phase-score in individual clusters of each dataset.

773

774 **Figure S3. scRNASeq analysis of CMEC and PMEC datasets on day 6**

775 **(A)** Volcano plots showing fold changes and p-values of differential expression tests  
776 between individual CMEC clusters and all other cells. Representative significantly up-  
777 regulated genes ( $p_{adjusted} < 0.05$  & fold-change  $> 1.2$ ) are labelled in red. **(B)** *MESP1*,  
778 *SMARCD3*, *KDR*, *CDH5*, *MYL4* and *NKX2-5* expression (log transformed) in three  
779 clusters of the CMEC dataset on day 6. **(C)** Volcano plots showing fold-changes and  
780 p-values of differential expression tests between individual PMEC clusters and all  
781 other cells. Representative significantly up-regulated genes ( $p_{adjusted} < 0.05$  & fold  
782 change  $> 1.2$ ) are labelled in red. **(D)** *PAX3*, *MEOX1*, *CD34*, *CDH5*, *HAND1* and  
783 *PRRX1* expression (log transformed) in three clusters of PMEC dataset on day 6.

784

785 **Figure S4. Re-analysis of a published scRNASeq dataset to identify organ**  
786 **specific signatures of human fetal heart ECs**

787 (A) Low-dimensional representation (UMAP) of scRNAseq of the human fetal heart  
788 (Asp et al., 2019). 14 cell clusters were identified and named based on the original  
789 publication, except for two EC clusters: intramyocardial ECs and endocardium. (B)  
790 Volcano plot showing fold changes and p-values for differential expression tests  
791 between intra-myocardial ECs and endocardium in the data set shown in (A).  
792 Representative differentially expressed genes ( $p_{adjusted} < 0.05$ ) that are known as  
793 intramyocardial and endocardial markers are labelled in red and green respectively.  
794 (C-D) Low-dimensional representation (UMAP) of scRNAseq of the human fetal heart  
795 (Asp et al., 2019). Log-transformed expression of representative intramyocardial EC  
796 markers (C) and endocardium markers (D) is indicated by color.

797

798 **Figure S5. Comparison of organ-specific signatures of hiPSC-ECs on day 6 with  
799 ECs in MTs**

800 (A-C) Differential expression test between clusters CMECs\_day 6 and CMECs\_MT  
801 (A), PMECs\_ day 6 and PMECs\_MT (B), CMECs\_MT and PMECs\_MT (C) for  
802 representative endocardial EC markers. ns:  $p > 0.05$ ; \*  $p \leq 0.05$ ; \*\*  $p \leq 1e-10$ ; \*\*\*  $p \leq$   
803  $1e-100$ ; \*\*\*\*  $p \leq 1e-200$ . Clusters with higher expression value were indicated with  
804 stars. ne: not expressed (0 counts) in >85% of cells in both groups.

805

806 **References**

807

808 Aird WC. 2012. Endothelial Cell Heterogeneity. *Cold Spring Harbor Perspectives in  
809 Medicine* 2:a006429–a006429. doi:10.1101/cshperspect.a006429

810 Asp M, Giacomello S, Larsson L, Wu C, Fürth D, Qian X, Wärdell E, Custodio J,  
811 Reimegård J, Salmén F, Österholm C, Ståhl PL, Sundström E, Åkesson E,  
812 Bergmann O, Bienko M, Månsson-Broberg A, Nilsson M, Sylvén C, Lundeberg J.  
813 2019. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the  
814 Developing Human Heart. *Cell* 179:1647-1660.e19.  
815 doi:10.1016/j.cell.2019.11.025

816 Breitkopf-Heinlein K, Meyer C, König C, Gaitantzi H, Addante A, Thomas M,  
817 Wiercinska E, Cai C, Li Q, Wan F, Hellerbrand C, Valous NA, Hahnel M, Ehlting

818 C, Bode JG, Müller-Bohl S, Klingmüller U, Altenöder J, Ilkavets I, Goumans M-J,  
819 Hawinkels LJAC, Lee S-J, Wieland M, Mogler C, Ebert MP, Herrera B, Augustin  
820 H, Sánchez A, Dooley S, Dijke P ten. 2017. BMP-9 interferes with liver  
821 regeneration and promotes liver fibrosis. *Gut* 66:939. doi:10.1136/gutjnl-2016-  
822 313314

823 Brink SC van den, Sage F, Vértesy Á, Spanjaard B, Peterson-Maduro J, Baron CS,  
824 Robin C, Oudenaarden A van. 2017. Single-cell sequencing reveals dissociation-  
825 induced gene expression in tissue subpopulations. *Nat Methods*, Nature methods  
826 14:935–936. doi:10.1038/nmeth.4437

827 Brutsaert DL. 2003. Cardiac Endothelial-Myocardial Signaling: Its Role in Cardiac  
828 Growth, Contractile Performance, and Rhythmicity. *Physiological Reviews* 83:59–  
829 115. doi:10.1152/physrev.00017.2002

830 Campostrini G, Windt LM, Meer BJ van, Bellin M, Mummery CL. 2021. Cardiac  
831 Tissues From Stem Cells. *Circ Res* 128:775–801.  
832 doi:10.1161/circresaha.121.318183

833 Cao X, Mircea M, Yakala GK, Hil FE van den, Brescia M, Mei H, Mummery CL,  
834 Semrau S, Orlova VV. 2022. ETV2 upregulation marks the specification of early  
835 cardiomyocytes and endothelial cells during co-differentiation. *bioRxiv*  
836 2022.11.15.516686. doi:10.1101/2022.11.15.516686

837 Costa M, Dottori M, Sourris K, Jamshidi P, Hatzistavrou T, Davis R, Azzola L,  
838 Jackson S, Lim SM, Pera M, Elefanty AG, Stanley EG. 2007. A method for  
839 genetic modification of human embryonic stem cells using electroporation. *Nat  
840 Protoc* 2:792–796. doi:10.1038/nprot.2007.105

841 Ditadi A, Sturgeon CM, Tober J, Awong G, Kennedy M, Yzaguirre AD, Azzola L, Ng  
842 ES, Stanley EG, French DL, Cheng X, Gadue P, Speck NA, Elefanty AG, Keller  
843 G. 2015. Human definitive haemogenic endothelium and arterial vascular  
844 endothelium represent distinct lineages. *Nature Cell Biology* 17:580–591.  
845 doi:10.1038/ncb3161

846 Drakhlis L, Biswanath S, Farr C-M, Lupanow V, Teske J, Ritzenhoff K, Franke A,  
847 Manstein F, Bolesani E, Kempf H, Liebscher S, Schenke-Layland K, Hegermann  
848 J, Nolte L, Meyer H, Roche J de la, Thiemann S, Wahl-Schott C, Martin U,  
849 Zweigerdt R. 2021. Human heart-forming organoids recapitulate early heart and  
850 foregut development. *Nat Biotechnol* 1–10. doi:10.1038/s41587-021-00815-9

851 Gage BK, Liu JC, Innes BT, MacParland SA, McGilvray ID, Bader GD, Keller GM.  
852 2020. Generation of Functional Liver Sinusoidal Endothelial Cells from Human  
853 Pluripotent Stem-Cell-Derived Venous Angioblasts. *Cell Stem Cell* 27:254-269.e9.  
854 doi:10.1016/j.stem.2020.06.007

855 Géraud C, Koch P-S, Zierow J, Klapproth K, Busch K, Olsavszky V, Leibing T,  
856 Demory A, Ulbrich F, Diett M, Singh S, Sticht C, Breitkopf-Heinlein K, Richter K,  
857 Karppinen S-M, Pihlajaniemi T, Arnold B, Rodewald H-R, Augustin HG,  
858 Schledzewski K, Goerdt S. 2017. GATA4-dependent organ-specific endothelial  
859 differentiation controls liver development and embryonic hematopoiesis. *J Clin  
860 Invest* 127:1099–1114. doi:10.1172/jci90086

861 Giacomelli E, Bellin M, Sala L, Meer BJ van, Tertoolen LGJ, Orlova VV, Mummery  
862 CL. 2017. Three-dimensional cardiac microtissues composed of cardiomyocytes  
863 and endothelial cells co-differentiated from human pluripotent stem cells.  
864 *Development* 144:1008–1017. doi:10.1242/dev.143438

865 Giacomelli E, Meraviglia V, Campostrini G, Cochrane A, Cao X, Helden RWJ van,  
866 Garcia AK, Mircea M, Kostidis S, Davis RP, Meer BJ van, Jost CR, Koster AJ, Mei  
867 H, Míguez DG, Mulder AA, Ledesma-Terrón M, Pompilio G, Sala L, Salvatori  
868 DCF, Slieker RC, Sommariva E, Vries AAF de, Giera M, Semrau S, Tertoolen  
869 LGJ, Orlova VV, Bellin M, Mummery CL. 2020. Human-iPSC-Derived Cardiac  
870 Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-  
871 cardiomyocyte Contributions to Heart Disease. *Cell Stem Cell* 26:862-879.e11.  
872 doi:10.1016/j.stem.2020.05.004

873 Giotti B, Joshi A, Freeman TC. 2017. Meta-analysis reveals conserved cell cycle  
874 transcriptional network across multiple human cell types. *Bmc Genomics* 18:30.  
875 doi:10.1186/s12864-016-3435-2

876 Gómez-Salinero JM, Izzo F, Lin Y, Houghton S, Itkin T, Geng F, Bram Y, Adelson  
877 RP, Lu TM, Inghirami G, Xiang JZ, Lis R, Redmond D, Schreiner R, Rabbany SY,  
878 Landau DA, Schwartz RE, Rafii S. 2022. Specification of fetal liver endothelial  
879 progenitors to functional zonated adult sinusoids requires c-Maf induction. *Cell*  
880 *Stem Cell* 29:593-609.e7. doi:10.1016/j.stem.2022.03.002

881 Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ. 2016. Diffusion pseudotime  
882 robustly reconstructs lineage branching. *Nat Methods* 13:845–848.  
883 doi:10.1038/nmeth.3971

884 Hansen KD, Irizarry RA, Wu Z. 2012. Removing technical variability in RNA-seq data  
885 using conditional quantile normalization. *Biostat Oxf Engl*, *Biostatistics* 13:204–16.  
886 doi:10.1093/biostatistics/kxr054

887 He L, Zhou B. 2018. The Development and Regeneration of Coronary Arteries. *Curr*  
888 *Cardiol Rep* 20:54. doi:10.1007/s11886-018-0999-2

889 Hofbauer P, Jähnel SM, Mendjan S. 2021a. In vitro models of the human heart.  
890 *Development* 148. doi:10.1242/dev.199672

891 Hofbauer P, Jähnel SM, Papai N, Giesshammer M, Deyett A, Schmidt C, Penc M,  
892 Tavernini K, Grdseloff N, Meledeth C, Ginistrelli LC, Ctortecka C, Šalic Š,  
893 Novatchkova M, Mendjan S. 2021b. Cardioids reveal self-organizing principles of  
894 human cardiogenesis. *Cell*. doi:10.1016/j.cell.2021.04.034

895 Iso T, Maeda K, Hanaoka H, Suga T, Goto K, Syamsunarno MRAA, Hishiki T,  
896 Nagahata Y, Matsui H, Arai M, Yamaguchi A, Abumrad NA, Sano M, Suematsu  
897 M, Endo K, Hotamisligil GS, Kurabayashi M. 2018. Capillary Endothelial Fatty  
898 Acid Binding Proteins 4 and 5 Play a Critical Role in Fatty Acid Uptake in Heart  
899 and Skeletal Muscle. *Arteriosclerosis Thrombosis Vasc Biology* 33:2549–2557.  
900 doi:10.1161/atvbaha.113.301588

901 Lagha M, Brunelli S, Messina G, Cumano A, Kume T, Relaix F, Buckingham ME.  
902 2009. Pax3:Foxc2 Reciprocal Repression in the Somite Modulates Muscular  
903 versus Vascular Cell Fate Choice in Multipotent Progenitors. *Developmental Cell*  
904 17:892–899. doi:10.1016/j.devcel.2009.10.021

905 Lenti E, Genovese L, Bianchessi S, Maurizio A, Sain SB, Lillo A di, Mattavelli G,  
906 Harel I, Bernassola F, Hehlgans T, Pfeffer K, Crosti M, Abrignani S, Evans SM,  
907 Sitia G, Guimarães-Camboa N, Russo V, Pavert SA van de, Garcia-Manteiga JM,  
908 Brendolan A. 2022. Fate mapping and scRNA sequencing reveal origin and  
909 diversity of lymph node stromal precursors. *Immunity* 55:606-622.e6.  
910 doi:10.1016/j.jimmuni.2022.03.002

911 Lewis-Israeli YR, Wasserman AH, Gabalski MA, Volmert BD, Ming Y, Ball KA, Yang  
912 W, Zou J, Ni G, Pajares N, Chatzistavrou X, Li W, Zhou C, Aguirre A. 2021. Self-  
913 assembling human heart organoids for the modeling of cardiac development and  
914 congenital heart disease. *Nat Commun* 12:5142. doi:10.1038/s41467-021-25329-  
915 5

916 Lioux G, Liu X, Temiño S, Oxendine M, Ayala E, Ortega S, Kelly RG, Oliver G,  
917 Torres M. 2020. A Second Heart Field-Derived Vasculogenic Niche Contributes to  
918 Cardiac Lymphatics. *Dev Cell* 52:350-363.e6. doi:10.1016/j.devcel.2019.12.006

919 Loh KM, Chen A, Koh PW, Deng TZ, Sinha R, Tsai JM, Barkal AA, Shen KY, Jain R,  
920 Morganti RM, Shyh-Chang N, Fernhoff NB, George BM, Wernig G, Salomon  
921 REA, Chen Z, Vogel H, Epstein JA, Kundaje A, Talbot WS, Beachy PA, Ang LT,  
922 Weissman IL. 2016. Mapping the Pairwise Choices Leading from Pluripotency to  
923 Human Bone, Heart, and Other Mesoderm Cell Types. *Cell* 166:451–467.  
924 doi:10.1016/j.cell.2016.06.011

925 Lun ATL, Bach K, Marioni JC. 2016. Pooling across cells to normalize single-cell  
926 RNA sequencing data with many zero counts. *Genome Biol*, Genome biology  
927 17:75. doi:10.1186/s13059-016-0947-7

928 Lupu I-E, Kirschnick N, Weischer S, Martinez-Corral I, Forrow A, Lahmann I, Riley  
929 PR, Zobel T, Makinen T, Kiefer F, Stone OA. 2022. Direct specification of

930 lymphatic endothelium from non-venous angioblasts. *Biorxiv* 2022.05.11.491403.  
931 doi:10.1101/2022.05.11.491403

932 Martin M. 2011. Cutadapt removes adapter sequences from high-throughput  
933 sequencing reads. *Embnet J, EMBnet.journal* 17:10–12. doi:10.14806/ej.17.1.200

934 Mayeuf-Louchart A, Montarras D, Bodin C, Kume T, Vincent SD, Buckingham M.  
935 2016. Endothelial cell specification in the somite is compromised in Pax3-positive  
936 progenitors of Foxc1/2 conditional mutants, with loss of forelimb myogenesis.  
937 *Development* 1–26. doi:10.1242/dev.128017

938 McCracken IR, Dobie R, Bennett M, Passi R, Beqqali A, Henderson NC, Mountford  
939 JC, Riley PR, Ponting CP, Smart N, Brittan M, Baker AH. 2022. Mapping the  
940 developing human cardiac endothelium at single cell resolution identifies MECOM  
941 as a regulator of arteriovenous gene expression. *Cardiovasc Res* cvac023-.  
942 doi:10.1093/cvr/cvac023

943 Miao Y, Tian L, Martin M, Paige SL, Galdos FX, Li J, Klein A, Zhang H, Ma N, Wei Y,  
944 Stewart M, Lee S, Moonen J-R, Zhang B, Grossfeld P, Mital S, Chitayat D, Wu  
945 JC, Rabinovitch M, Nelson TJ, Nie S, Wu SM, Gu M. 2020. Intrinsic Endocardial  
946 Defects Contribute to Hypoplastic Left Heart Syndrome. *Cell Stem Cell* 27:574-  
947 589.e8. doi:10.1016/j.stem.2020.07.015

948 Mikryukov AA, Mazine A, Wei B, Yang D, Miao Y, Gu M, Keller GM. 2021. BMP10  
949 Signaling Promotes the Development of Endocardial Cells from Human  
950 Pluripotent Stem Cell-Derived Cardiovascular Progenitors. *Cell Stem Cell* 28.  
951 doi:10.1016/j.stem.2020.10.003

952 Milgrom-Hoffman M, Harrelson Z, Ferrara N, Zelzer E, Evans SM, Tzahor E. 2011.  
953 The heart endocardium is derived from vascular endothelial progenitors.  
954 *Development* 138:4777–4787. doi:10.1242/dev.061192

955 Ng ES, Azzola L, Bruveris FF, Calvanese V, Phipson B, Vlahos K, Hirst C, Jokubaitis  
956 VJ, Yu QC, Maksimovic J, Liebscher S, Januar V, Zhang Z, Williams B,  
957 Conscience A, Durnall J, Jackson S, Costa M, Elliott D, Haylock DN, Nilsson SK,

958 Saffery R, Schenke-Layland K, Oshlack A, Mikkola HKA, Stanley EG, Elefantiy  
959 AG. 2016. Differentiation of human embryonic stem cells to HOXA+ hemogenic  
960 vasculature that resembles the aorta-gonad-mesonephros. *Nature Biotechnology*  
961 34:1168–1179. doi:10.1038/nbt.3702

962 Ng ES, Davis R, Stanley EG, Elefantiy AG. 2008. A protocol describing the use of a  
963 recombinant protein-based, animal product-free medium (APEL) for human  
964 embryonic stem cell differentiation as spin embryoid bodies. *Nature Protocols*  
965 3:768–776. doi:10.1038/nprot.2008.42

966 Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lievre F. 1996.  
967 Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis.  
968 *Development* 122:1363–1371. doi:10.1242/dev.122.5.1363

969 Phansalkar R, Krieger J, Zhao M, Kolluru SS, Jones RC, Quake SR, Weissman I,  
970 Bernstein D, Winn VD, D'Amato G, Red-Horse K. 2021. Coronary blood vessels  
971 from distinct origins converge to equivalent states during mouse and human  
972 development. *Elife* 10:e70246. doi:10.7554/elife.70246

973 Qu X, Harmelink C, Baldwin HS. 2022. Endocardial-Myocardial Interactions During  
974 Early Cardiac Differentiation and Trabeculation. *Frontiers Cardiovasc Medicine*  
975 9:857581. doi:10.3389/fcvm.2022.857581

976 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma  
977 powers differential expression analyses for RNA-sequencing and microarray  
978 studies. *Nucleic Acids Res* 43:e47. doi:10.1093/nar/gkv007

979 Robinson MD, McCarthy DJ, Smyth GK. 2009. edgeR: a Bioconductor package for  
980 differential expression analysis of digital gene expression data. *Bioinform Oxf  
981 Engl, Bioinformatics (Oxford, England)* 26:139–40.  
982 doi:10.1093/bioinformatics/btp616

983 Rostovskaya M, Fu J, Obst M, Baer I, Weidlich S, Wang H, Smith AJH,  
984 Anastassiadis K, Stewart AF. 2012. Transposon-mediated BAC transgenesis in  
985 human ES cells. *Nucleic Acids Res* 40:e150–e150. doi:10.1093/nar/gks643

986 Scialdone A, Natarajan KN, Saraiva LR, Proserpio V, Teichmann SA, Stegle O,  
987 Marioni JC, Buettner F. 2015. Computational assignment of cell-cycle stage from  
988 single-cell transcriptome data. *Methods San Diego Calif* 85:54–61.  
989 doi:10.1016/j.ymeth.2015.06.021

990 Sharma B, Chang A, Red-Horse K. 2017a. Coronary Artery Development: Progenitor  
991 Cells and Differentiation Pathways. *Annual Review of Physiology* 79:1–19.  
992 doi:10.1146/annurev-physiol-022516-033953

993 Sharma B, Ho L, Ford GH, Chen HI, Goldstone AB, Woo YJ, Quertermous T,  
994 Reversade B, Red-Horse K. 2017b. Alternative Progenitor Cells Compensate to  
995 Rebuild the Coronary Vasculature in Elabela- and Apj-Deficient Hearts.  
996 *Developmental Cell* 42:1–16. doi:10.1016/j.devcel.2017.08.008

997 Silva AC, Matthys OB, Joy DA, Kauss MA, Natarajan V, Lai MH, Turaga D, Blair AP,  
998 Alexanian M, Bruneau BG, McDevitt TC. 2021. Co-emergence of cardiac and gut  
999 tissues promotes cardiomyocyte maturation within human iPSC-derived  
1000 organoids. *Cell Stem Cell* 28:2137–2152.e6. doi:10.1016/j.stem.2021.11.007

1001 Stone OA, Stainier DYR. 2019. Paraxial Mesoderm Is the Major Source of Lymphatic  
1002 Endothelium. *Dev Cell* 50:247–255.e3. doi:10.1016/j.devcel.2019.04.034

1003 Thomas D, Choi S, Alamana C, Parker KK, Wu JC. 2022. Cellular and Engineered  
1004 Organoids for Cardiovascular Models. *Circ Res* 130:1780–1802.  
1005 doi:10.1161/circresaha.122.320305

1006 Tian X, Zhou B. 2022. Coronary vessel formation in development and regeneration:  
1007 origins and mechanisms. *J Mol Cell Cardiol* 167:67–82.  
1008 doi:10.1016/j.yjmcc.2022.03.009

1009 Uenishi G, Theisen D, Lee J-H, Kumar A, Raymond M, Vodyanik M, Swanson S,  
1010 Stewart R, Thomson J, Slukvin I. 2014. Tenascin C promotes hematoendothelial  
1011 development and T lymphoid commitment from human pluripotent stem cells in  
1012 chemically defined conditions. *STEMCR* 3:1073–1084.  
1013 doi:10.1016/j.stemcr.2014.09.014

1014 Whitfield ML, George LK, Grant GD, Perou CM. 2006. Common markers of  
1015 proliferation. *Nat Rev Cancer*, Nature reviews. Cancer 6:99–106.  
1016 doi:10.1038/nrc1802

1017 Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Göttgens B, Rajewsky N, Simon  
1018 L, Theis FJ. 2019. PAGA: graph abstraction reconciles clustering with trajectory  
1019 inference through a topology preserving map of single cells. *Genome Biol* 20:59.  
1020 doi:10.1186/s13059-019-1663-x

1021 Wu TD, Nacu S. 2010. Fast and SNP-tolerant detection of complex variants and  
1022 splicing in short reads. *Bioinform Oxf Engl*, Bioinformatics (Oxford, England)  
1023 26:873–81. doi:10.1093/bioinformatics/btq057

1024 Wu TD, Watanabe CK. 2005. GMAP: a genomic mapping and alignment program for  
1025 mRNA and EST sequences. *Bioinformatics*, Bioinformatics (Oxford, England)  
1026 21:1859–1875. doi:10.1093/bioinformatics/bti310

1027 Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C,  
1028 Clapham P, Fitzgerald S, Gil L, Girón CG, Gordon L, Hourlier T, Hunt SE,  
1029 Janacek SH, Johnson N, Juettemann T, Keenan S, Lavidas I, Martin FJ, Maurel  
1030 T, McLaren W, Murphy DN, Nag R, Nuhn M, Parker A, Patricio M, Pignatelli M,  
1031 Rahtz M, Riat HS, Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP,  
1032 Zadissa A, Birney E, Harrow J, Muffato M, Perry E, Ruffier M, Spudich G,  
1033 Trevanion SJ, Cunningham F, Aken BL, Zerbino DR, Flicek P. 2015. Ensembl  
1034 2016. *Nucleic Acids Res*, Nucleic acids research 44:D710-6.  
1035 doi:10.1093/nar/gkv1157

1036 Yu G, Wang L-G, Han Y, He Q-Y. 2012. clusterProfiler: an R Package for Comparing  
1037 Biological Themes Among Gene Clusters. *Omics J Integr Biology*, OMICS: A  
1038 Journal of Integrative Biology 16:284–287. doi:10.1089/omi.2011.0118

1039 Zhang H, Pu W, Li G, Huang X, He L, Tian X, Liu Q, Zhang L, Wu SM, Sucov HM,  
1040 Zhou B. 2016a. Endocardium Minimally Contributes to Coronary Endothelium in  
1041 the Embryonic Ventricular Free Walls. *Circulation Research* 118:1880–1893.  
1042 doi:10.1161/circresaha.116.308749

1043 Zhang H, Pu W, Tian X, Huang X, He Lingjuan, Liu Q, Li Y, Zhang L, He Liang, Liu  
1044 K, Gillich A, Zhou B. 2016b. Genetic lineage tracing identifies endocardial origin of  
1045 liver vasculature. *Nature Genetics* 48:1–9. doi:10.1038/ng.3536

1046

Figure 1.

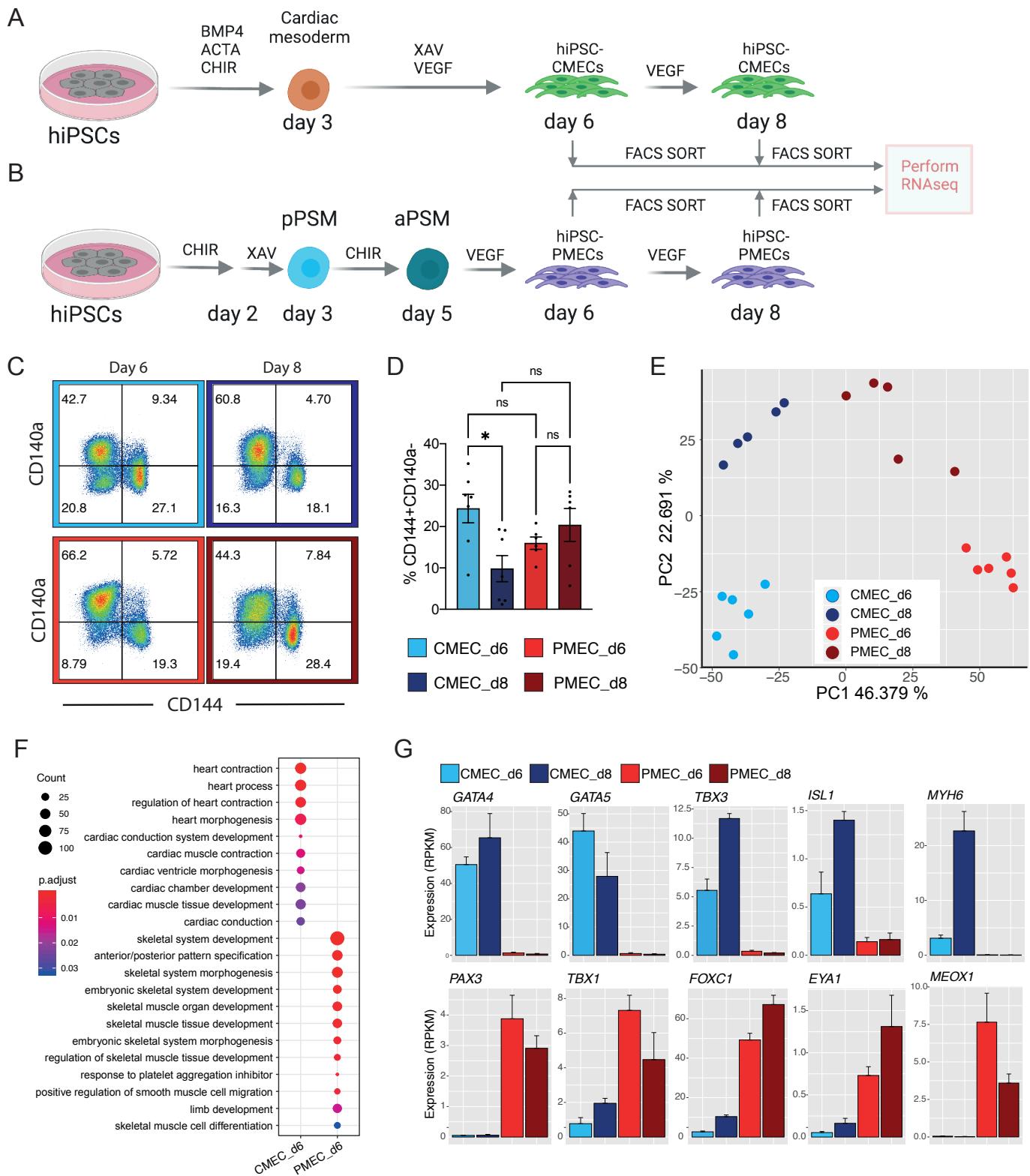



Figure 2.

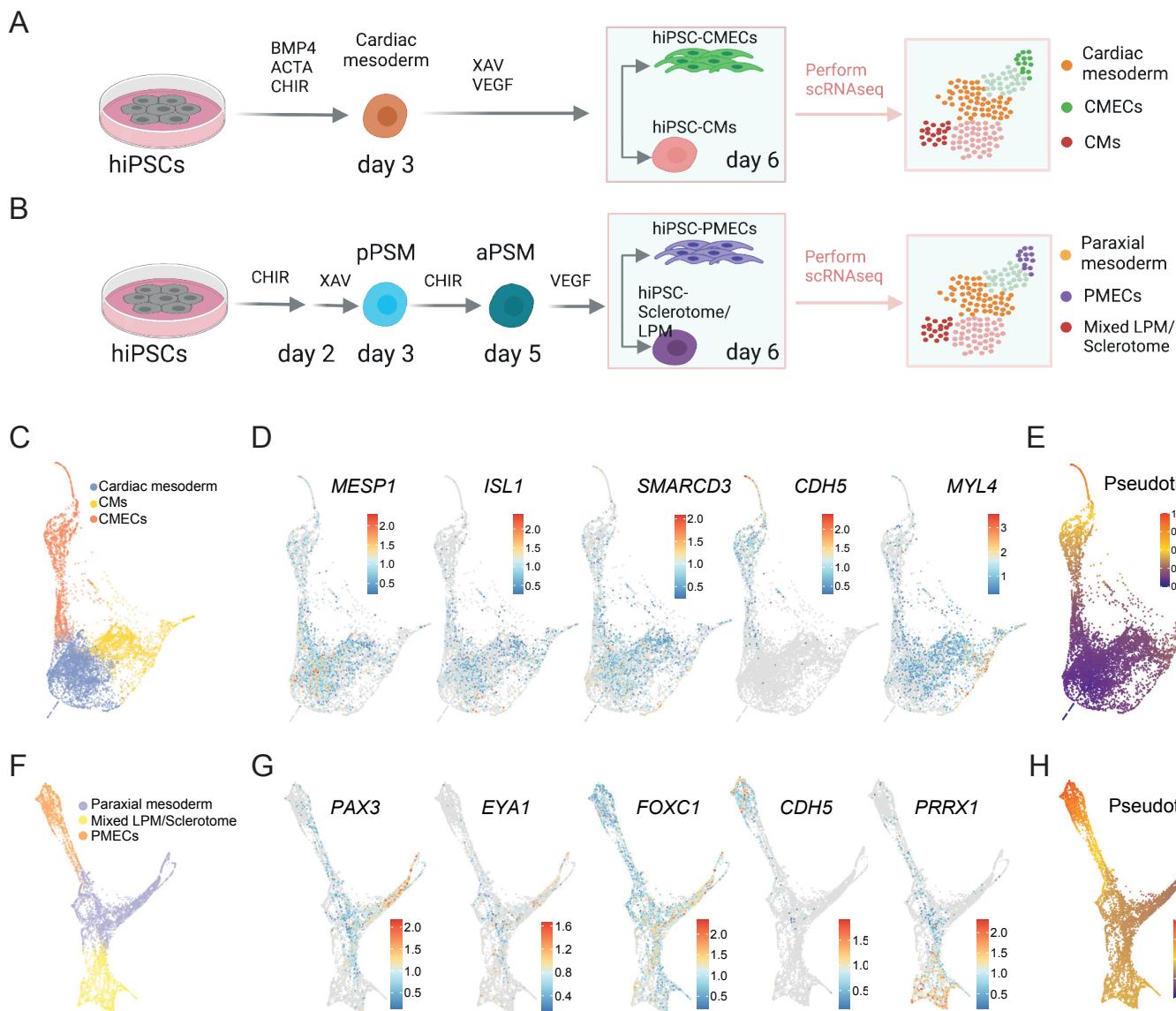
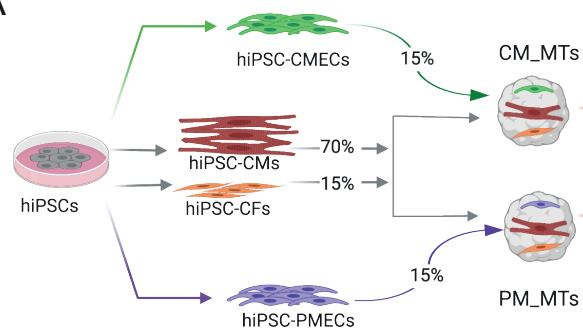
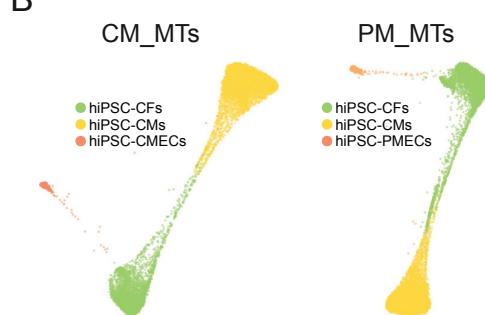
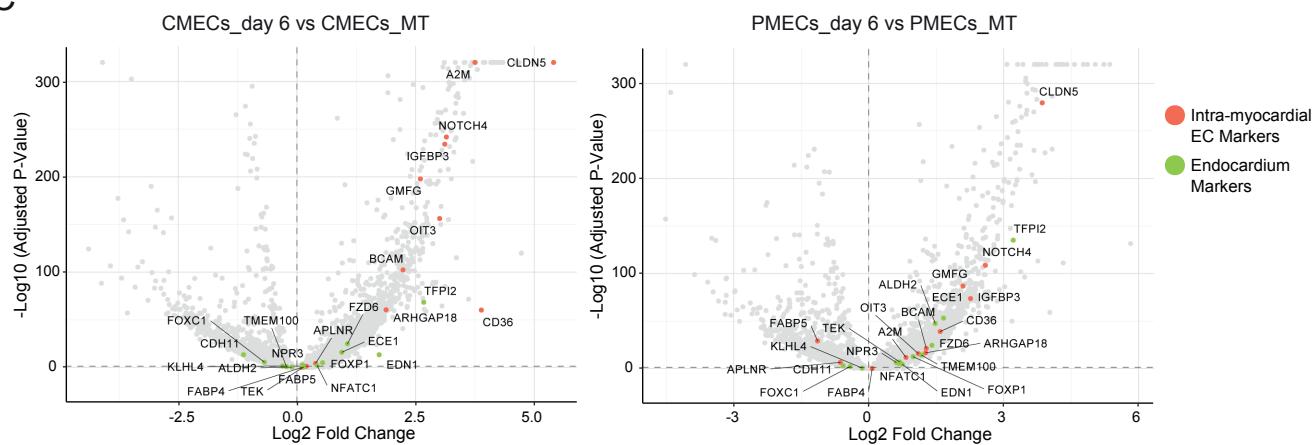
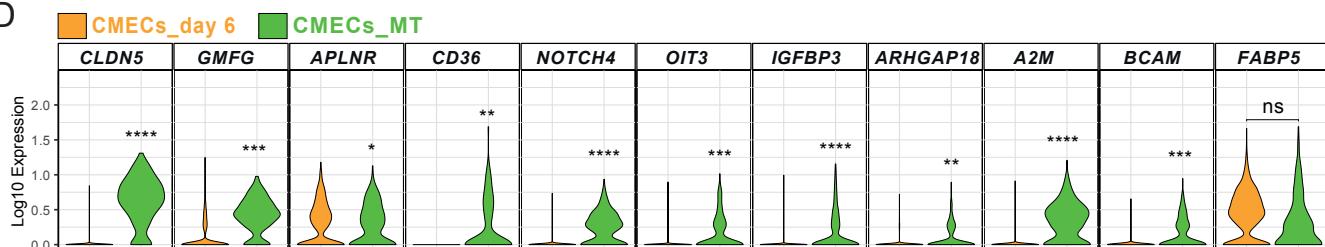




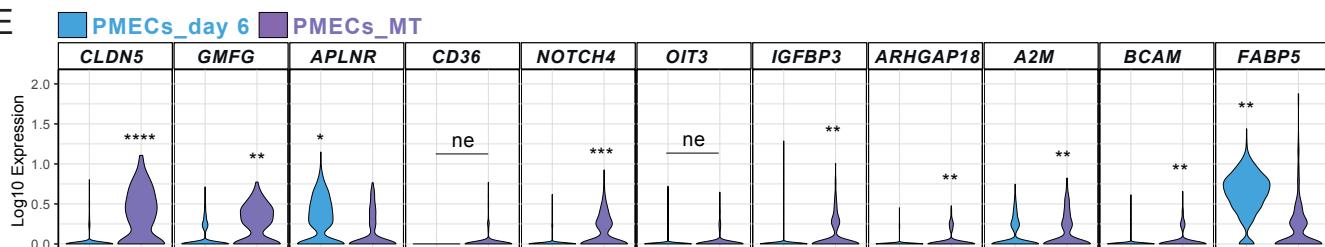

Figure 3.


A




B




C



D



E



F

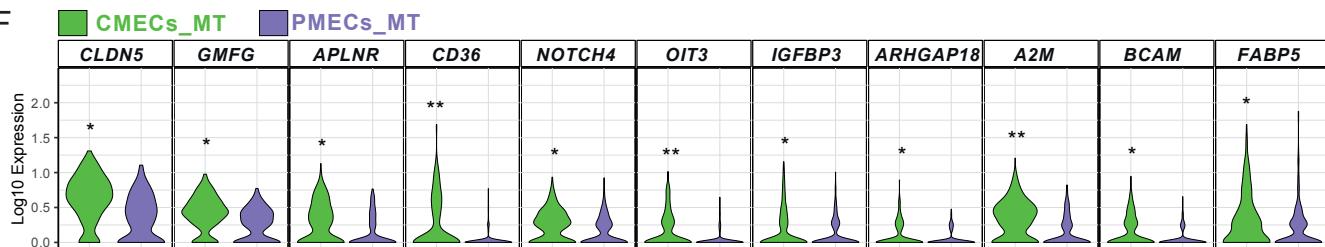



Figure 4.

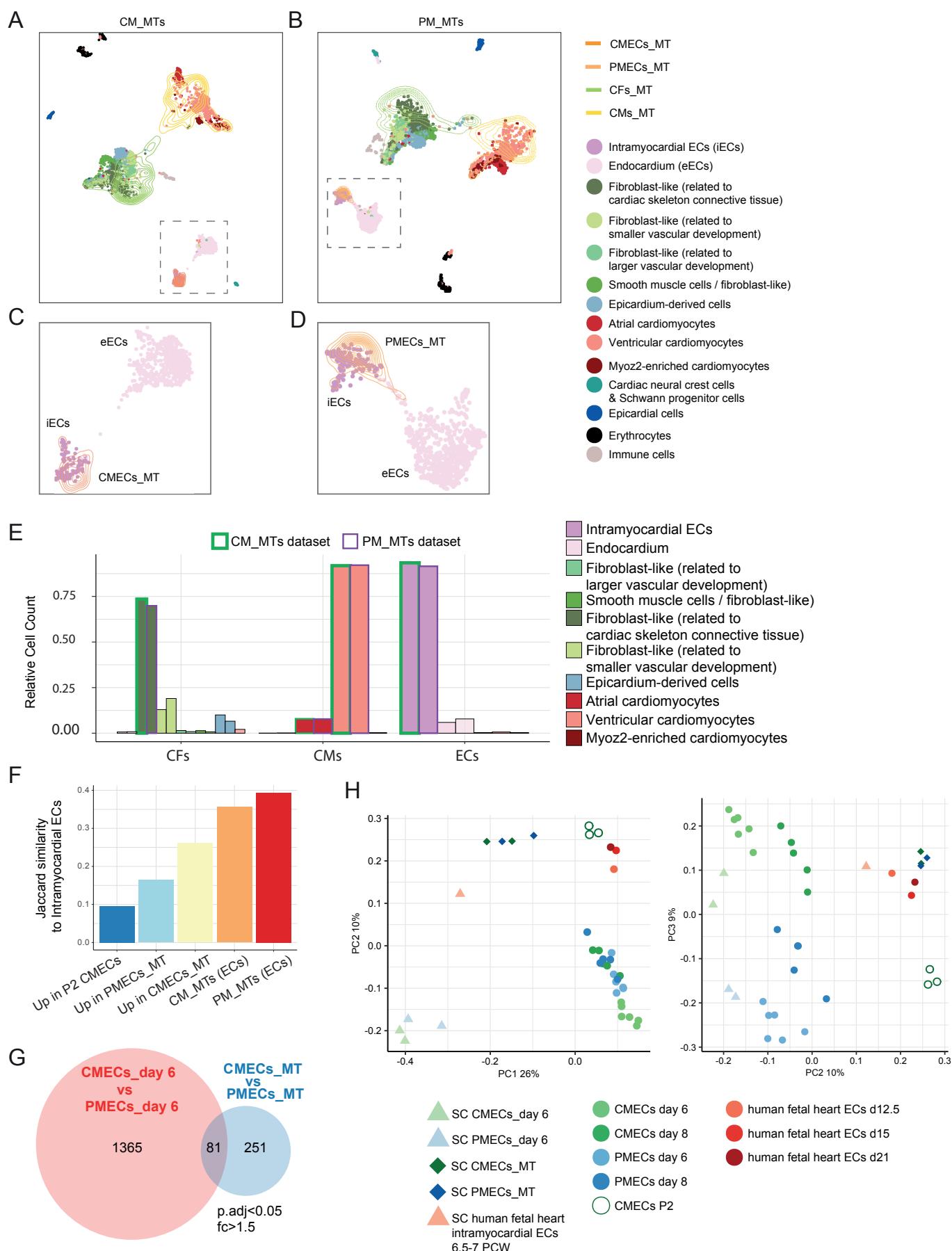



Figure S1.

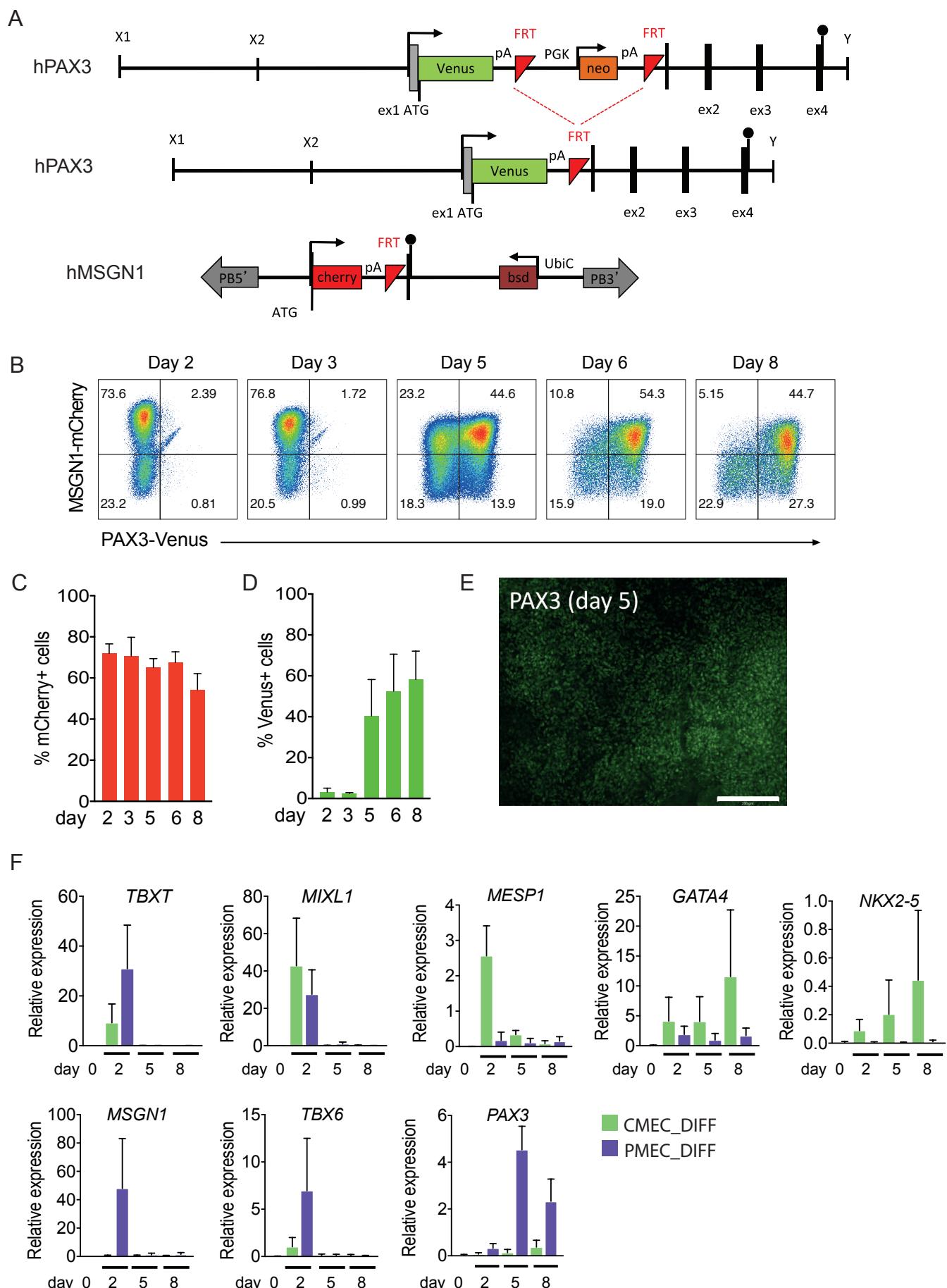
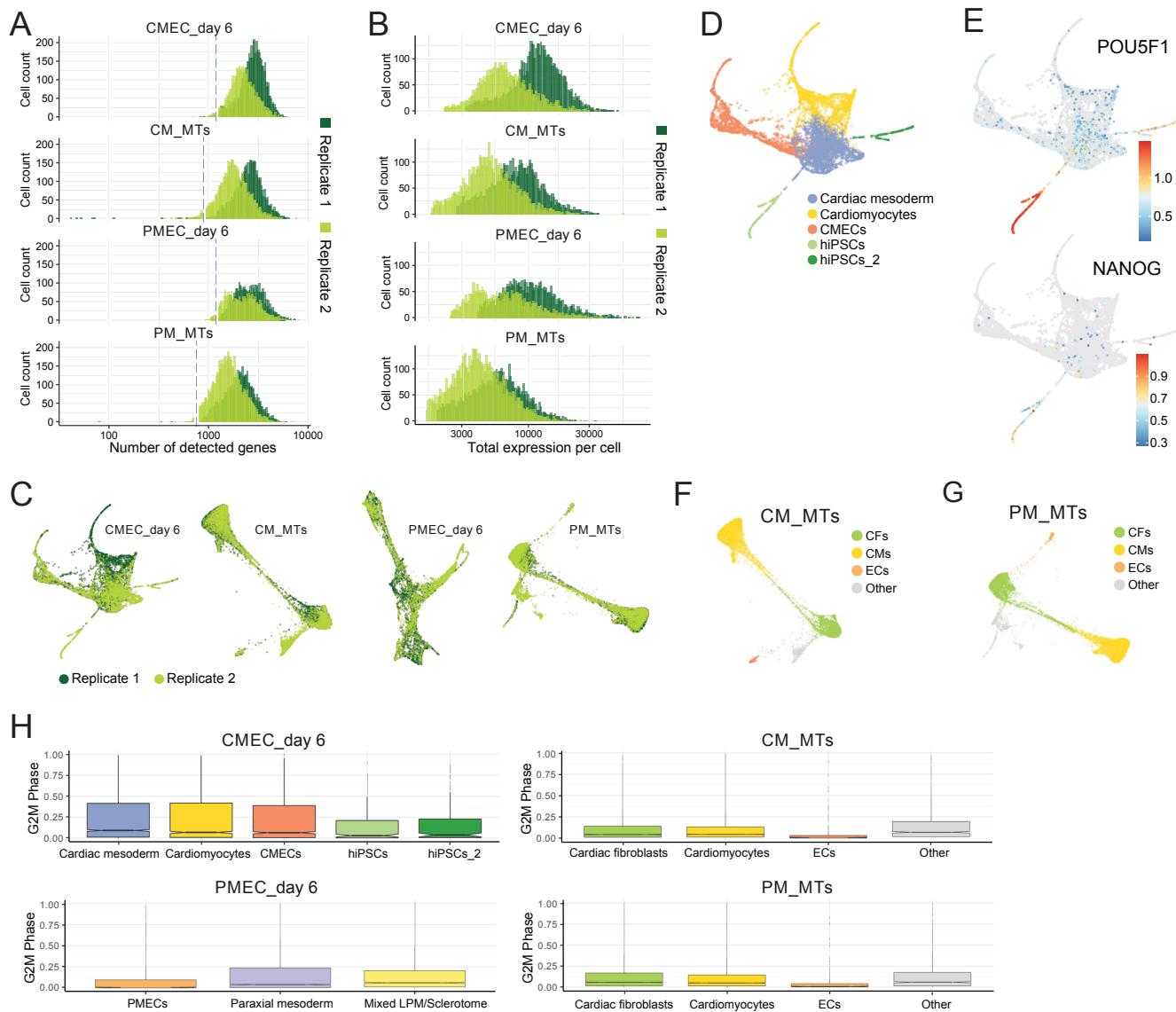
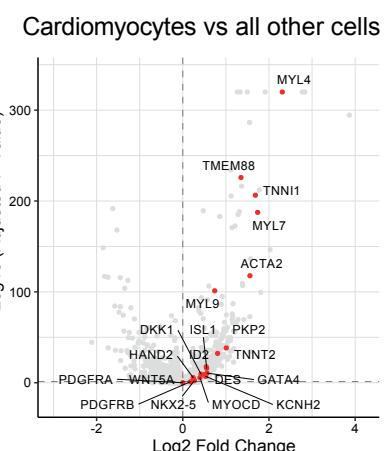
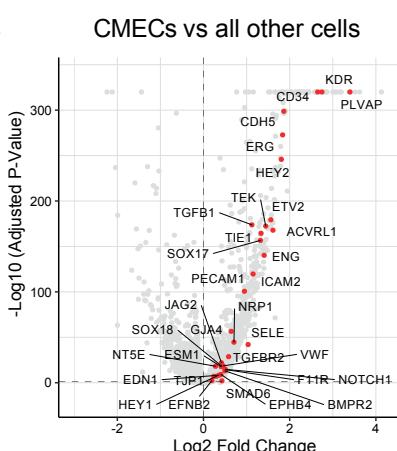
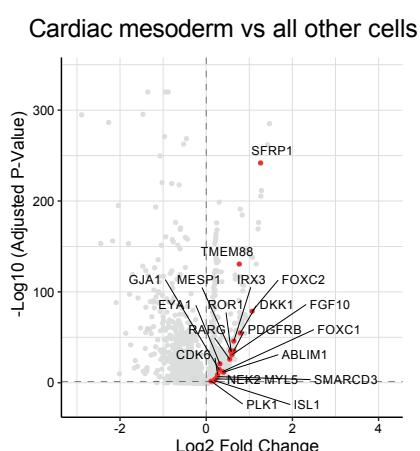
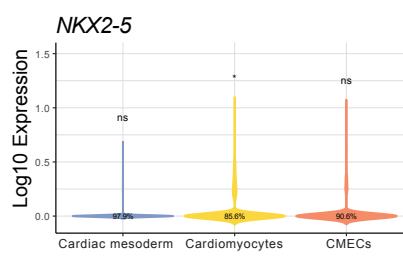
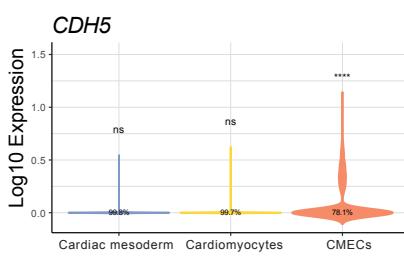
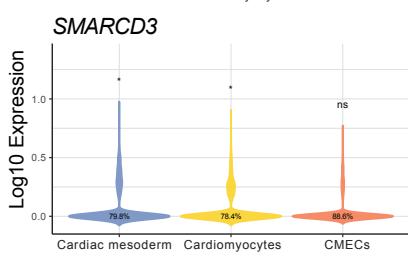
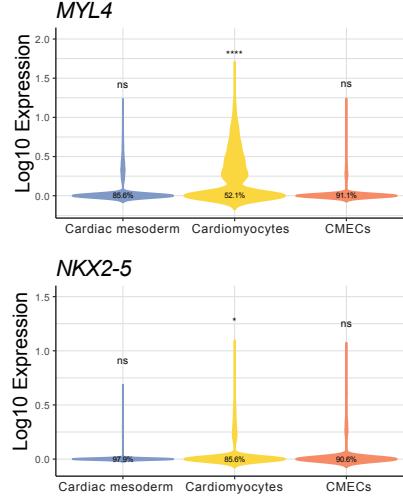
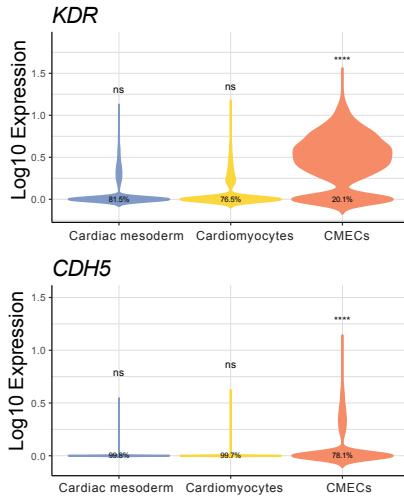
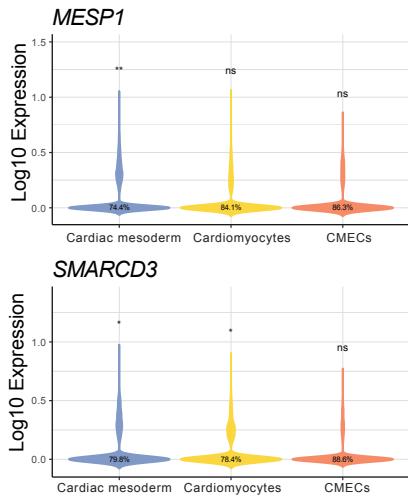
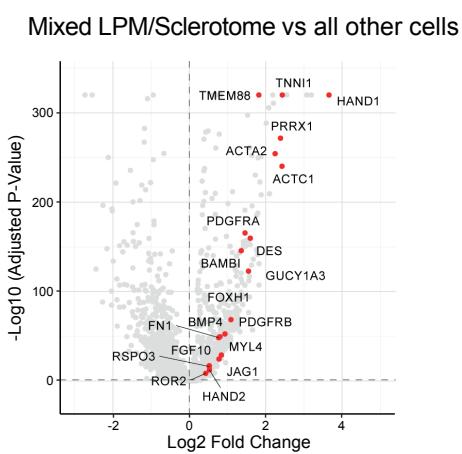
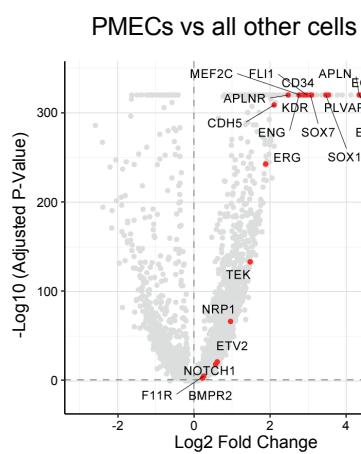
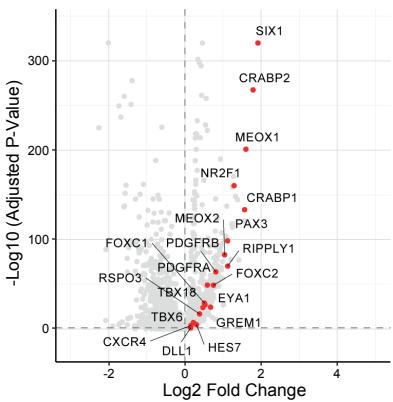






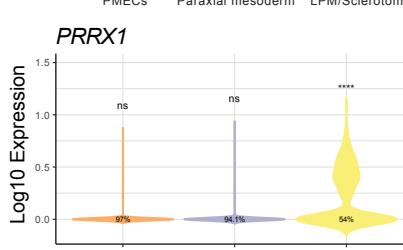
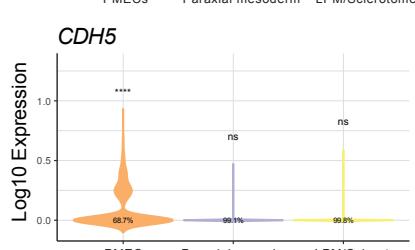
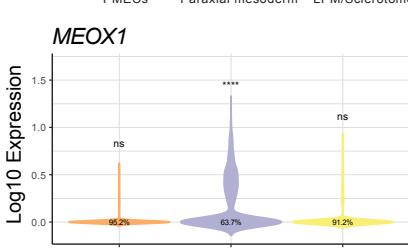
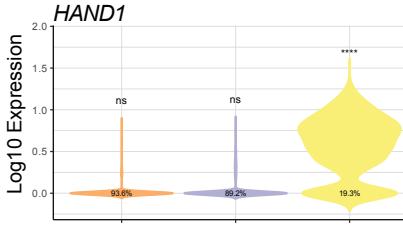
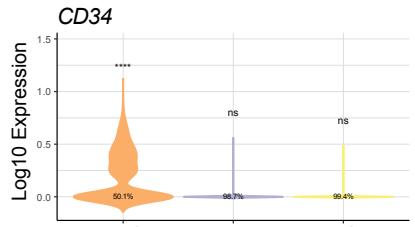
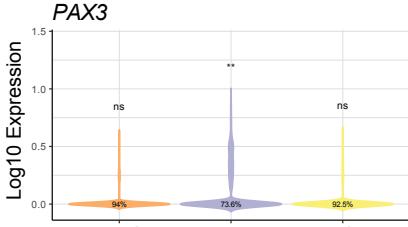

Figure S2.


## Figure S3.

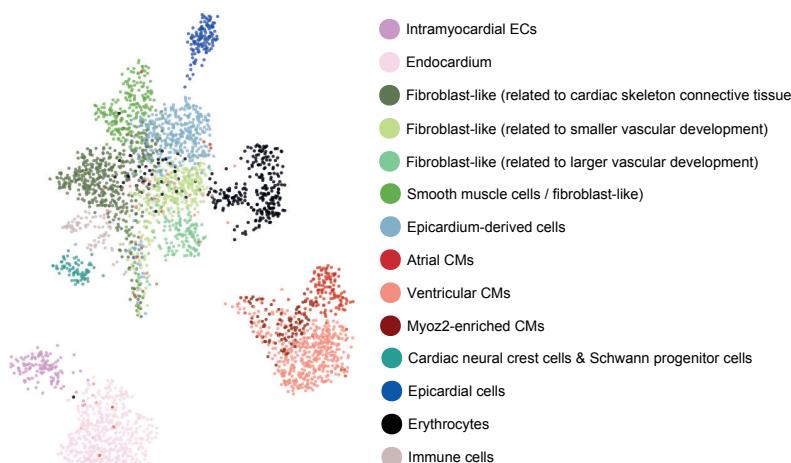



A



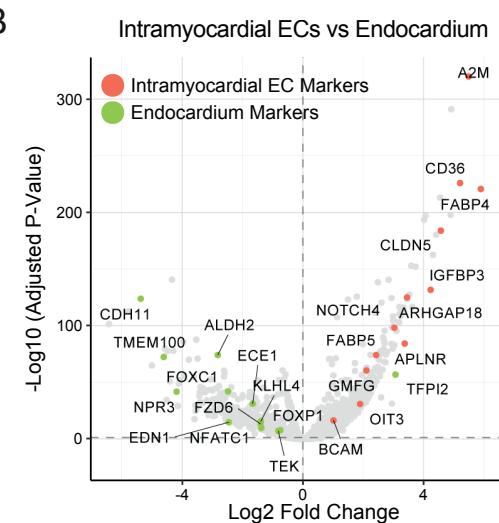






B



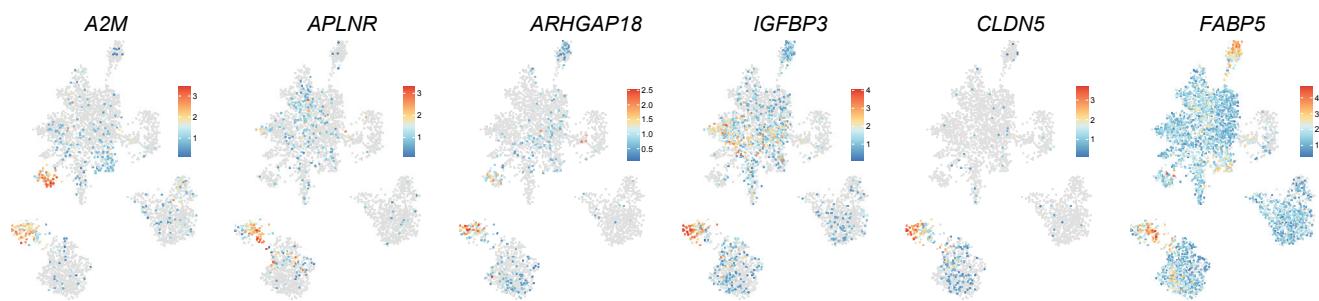
C Paraxial mesoderm vs all other cells




D




## Figure S4.


A



B



C



D

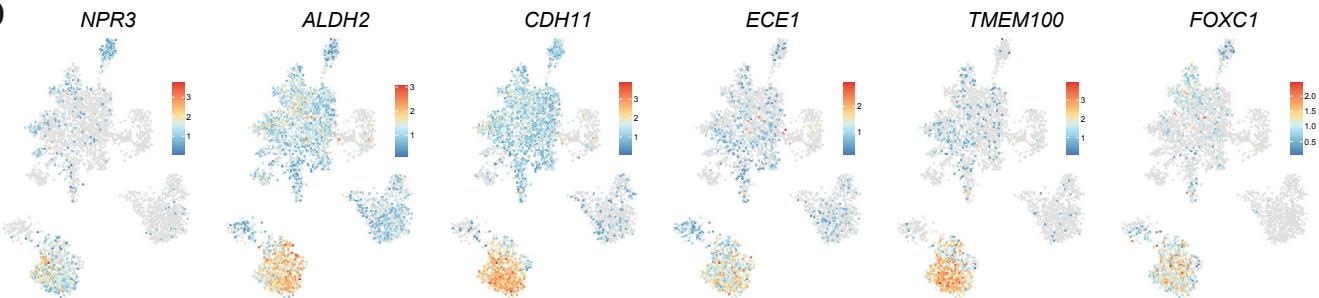
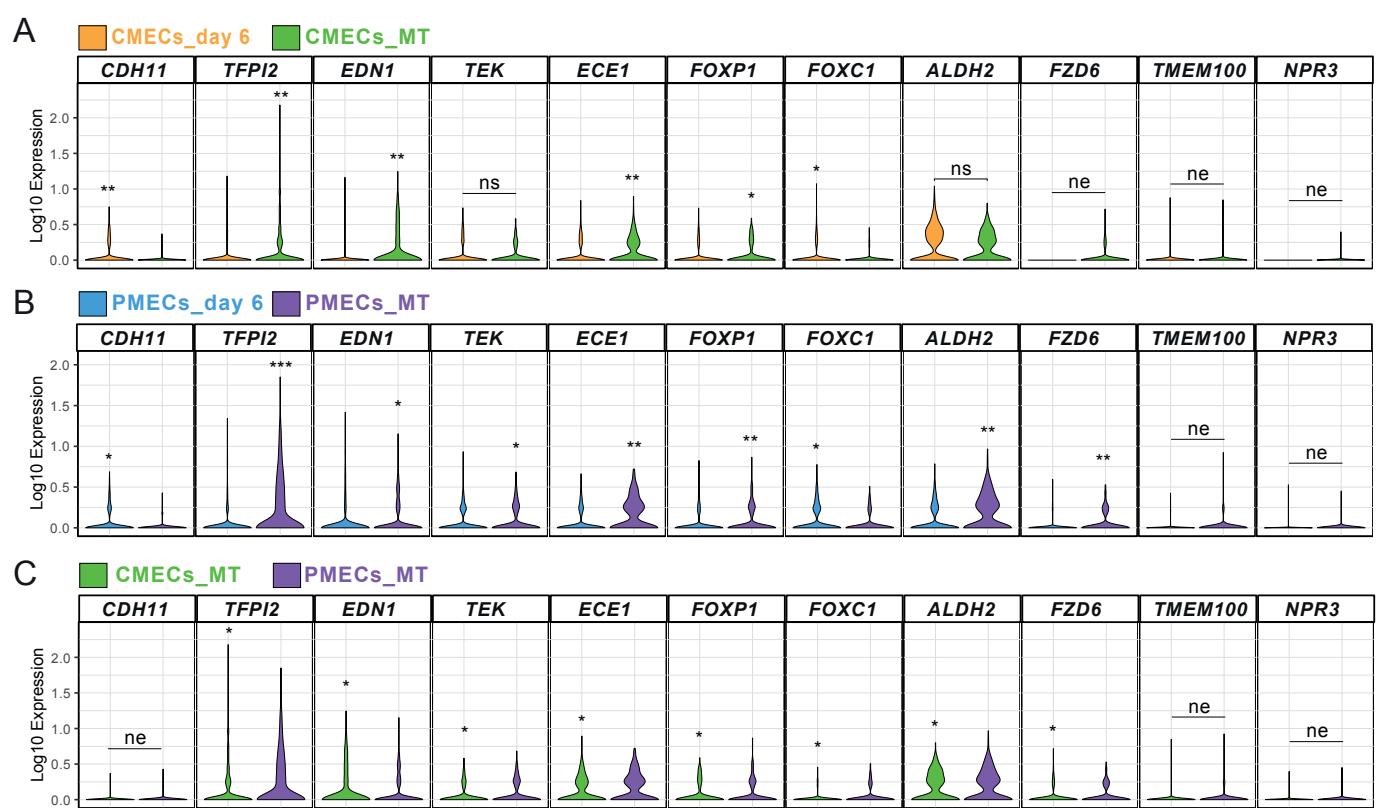




Figure S5.

