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Abstract

DNA methylation data-based precision tumor early diagnostics is emerging as state of
the art technology, which could capture the signals of cancer occurrence 3~5 years in
advance and clinically more homogenous groups. At present, the sensitivity of early
detection for many tumors is about 30%, which needs to be significantly improved.
Nevertheless, based on the genome wide DNA methylation information, one could
comprehensively characterize the entire molecular genetic landscape of the tumors and
subtle differences among various tumors. With the accumulation of DNA methylation
data, we need to develop high-performance methods that can model and consider more
unbiased information. According to the above analysis, we have designed a
self-attention graph convolutional network to automatically learn key methylation sites in
a data-driven way for precision multi-tumor early diagnostics. Based on the selected
methylation sites, we further trained a multi-class classification support vector machine.
Large amount experiments have been conducted to investigate the performance of the
computational pipeline. Experimental results demonstrated the effectiveness of the
selected key methylation sites which are highly relevant for blood diagnosis.

Keywords: Self-attention mechanism, Graph convolutional network, Key methylation
sites, Multi-tumour early diagnostics

#these two authors made equal contributions to this work
*corresponding email: edwin.wang@ucalgary.ca,dqwei@sjtu.edu.cn

1. Introduction

The world health organization (WHO) of the internal agency for research on cancer (IARC)
states that there were 19.29 million cancer cases have appeared and 9.96 million cancer deaths in
2020 [1]. The world’s cancer situation is grim. With the aging and rapid growth of the population,


mailto:edwin.wang@ucalgary.ca
https://doi.org/10.1101/2022.02.11.480173
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.11.480173; this version posted December 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

cancer incidence and the number of deaths continue to rise. While much of current research is
focused on developing new therapeutics, studies have shown that early detection has the potential
to reduce both treatment cost and mortality rates from cancer by a significant amount.

Early cancer diagnosis offers the opportunity to identify tumors when cures are more
achievable, and treatment can be less morbid. However, most cancer types currently lack an
effective non-invasive early screening option [2]. Effective screening paradigms exist only for a
small subset of cancers and focus on single cancer type. In recent years, DNA methylation
(5-methylcytosine, SmC) in cell-free DNA (cfDNA) has been successfully detected in clinical
samples by a range of genome-wide approaches, demonstrating high clinical potential in cancer
early diagnosis, prognosis, and/or treatment response.

DNA methylation is a primary epigenetic mechanism involving covalent modification of
cytosine bases by adding a methyl group at the 5’ position. DNA methylation plays a critical role
in the normal development and regulation of many cellular processes [3], with DNA methylation
profiles being cell type and tissue-specific [4]. DNA methylation occurs before the tumor and is an
essential mechanism of it. A global loss of DNA methylation (hypomethylation) accompanied by
increased de novo DNA methylation (hypermethylation) of CpG-rich regions can be implicated in
many tumors [5, 6]. Generally, the DNA of dead tumour cells can be released and circulates in the
blood stream, termed as circulating tumor DNA (ctDNA). The ctDNA can be detected in the
blood to enable early tumor diagnosis of 3~5 years (ultra-early) before its formation. DNA
methylation based tumor diagnostics is currently emerging as state of the art technology [7-10].

Precision early tumor diagnostics is crucial for patients. Studies have shown that early tumor
detection can significantly increase a patient’s 10-year survival rate (from 30% to 90%). The
S-year survival rate for patients with early-stage can be up to 91% if treated with the early
intervention[11-13]. DNA methylation is particularly suitable for personalized early tumor
diagnostics for three reasons: 1) a large number of researchers have identified characteristics
differences in the DNA methylation profiles between subgroups of patients [14-18], demonstrating
the power of DNA methylation for analyzing epigenetic heterogeneity, 2) since the cancer
methylome is a combination of both somatically acquired DNA methylation changes and
characteristics reflecting the cell of origin, it is especially suitable for molecular classification of
tumors [19-22], 3) it has been convincingly shown that DNA methylation profiling is highly
robust and reproducible even from small samples and poor quality materials [23]. Although 5SmC
biomarkers based on plasma cfDNA are sensitive for early tumor detection, in large-scale
population screening, such a multi-tumor detection approach would require high specificity and
useful clinical sensitivity to limit the scope, cost, and complexity of evaluating asymptomatic
patients.

Nowadays, the sensitivity of the early (stage 1) diagnostics of many tumors, including breast,
esophageal, kidney, lung, prostate, and uterine cancers, is about 30%, which needs to be
significantly improved. Existing studies of tumor diagnostics with DNA methylation mainly
include two steps. Firstly, information regions, including differentially methylated CpG sites and
cancer-related genomic regions reported in the literature, are determined. Then targeted panel is
made for in-depth sequencing. Secondly, regression models often used to fit the methylation beta
value data of the selected sites. The bottlenecks in the current research can be shown in three
aspects. First, as we all know that cancer is a genome-wide disease, key methylation sites
determined with the knowledge-driven way would restrict the understanding of disease
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pathological mechanisms. Second, the linear classification accuracy depends heavily on the
selected methylation sites, limiting its generalization and extensibility. Third, the existing
bioinformatic tools have not fully utilized the whole-genome methylation information to conduct
early tumor diagnostics.

As the development of sequencing and chip technology, it provides great opportunities and
challenges for precision early diagnostics of many tumors. Therefore, a methodology for DNA
methylation analysis, which could effectively use whole-genome information and improve the
early diagnosis sensitivity, is urgently needed. Based on the above analysis, advanced graph neural
network model in the field of artificial intelligence is suitable for modeling the high dimensional
data, improving the robustness and accuracy of early tumour detection. In this study, a
computational framework of a self-attention graph convolutional network (SAGCN) model and a
multi-class classification support vector machine was designed to distinguish the 11 most common
cancers with the DNA methylation data. On the one hand, the self-attention graph convolutional
network learned methylation sites interaction networks in an end-to-end way, automatically
obtained key methylation sites (namely, differentially expressed methylation sites, DEMs); on the
other hand, the computational framework improved the stability and accuracy of prediction while
the sequencing depth is insufficient. Collectively, the framework proposed here advances
multi-tumor diagnostics with robust and higher accuracy of early tumor diagnostic.

2. Materials and Methods

2.1 Study design and data preparation

We propose a workflow based on SAGCN to conduct feature selection and sample
classification with the DNA methylation data. This workflow has four parts. Part 1 is data
preparation, preprocessing, and basic filtering. Part 2 involves the training process with SAGCN.
The clinical sample classification with SVMs is done in part 3. And finally, Part 4 is performance
evaluation. All the steps are diagrammatically represented in Figure 1.

From The Cancer Genome Atlas National Cancer Institute Genomic Data Commons (TCGA
NCI GDC) Repository (https://portal.gdc.cancer.gov/repository), we collected 450k DNA
methylation data from 6557 samples, including 11 types of primary tumor site, such as bladder,
brain, breast, bronchus and lung, cervix uteri, corpus uteri, kidney, liver and intrahepatic bile ducts,
prostate gland, stomach, and thyroid gland. The samples include 5905 primary tumor sites, 596
solid tissue normal samples, 37 recurrent tumor samples, 17 metastatic samples, 2 new primary
samples. Since the sizes of recurrent tumor samples, metastatic samples, and new primary samples
are too small, we only utilize primary tumor samples and solid tissue normal samples for further
analysis. This study divides the samples into 12 classes, all solid tissue normal samples and 11
types of tumor samples. The distribution of these samples is shown in Supplementary Figure S1.

The detailed patient demographics and clinical characteristics can be found in Supplementary
Table 1. For details on how to prepare the 450k DNA methylation tumor samples from TCGA,
please see the GitHub repository
(https://github.com/lizhiqi0506/GNN _CancerPreDiagnosisWithMeth), and to download the source
data, visit the NCI GDC Legacy Archive (https://gdc-portal.nci.njh.gov/legacy-archive).

[llumina Human Methylation BeadChip arrays are a popular tool to measure genome-wide
single-nucleotide CpG site methylation levels [17]. The DNA methylation data is based on
genome-wide quantitative measurements of DNA methylation at 485,577 CpG sites using
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[llumina Human Methylation 450 BeadChip technologies (450k; Illumina). The 450k BeadChip
provides >98% coverage of reference sequence genes and 96% of CpG islands. The beta value
represents the average methylation fraction (AMF), computed for each genomic region by
summing the number of observed cytosines at all covered CpG sites and dividing by the total
sequencing depth at all covered CpG sites in each region. For each methylation locus, the amount
of methylated DNA is denoted as Meth, and the amount of unmethylated DNA is denoted as
Unmeth. The beta value is denoted as Meth/(Unmeth + Meth). The beta value is further used in
downstream analysis.

The matrix X = [z;;] € R¥ "™+ s used to represent the DNA methylation beta value, in
which Ny, is the number of methylation sites, Vs is the number of samples. To reduce the
complexity of downstream analysis and improve the performance of the computational method,
preprocessing and basic filtering steps are needed.

Step 1. filter out samples with uncompleted site covers.

Step2. remove probes of X and Y chromosomes, probes containing single-nucleotide
polymorphisms (dbSNP132Common), and probes not mapping uniquely to human reference
genome 19. Finally, 396,013 methylation sites were left.

Step 3. 2000 most variably methylation sites were further selected according to the highest
standard deviation across all samples.

Step 4. then, a principal component analysis (PCA) was conducted. The first 100 principal
components were then used as input data for the t-Distributed Stochastic Neighbour Embedding
(t-SNE, Rtsne package version 0.11, https://github.com/mwsill/mnp_training/blob/master/tsne.R)
for clustering analysis [26, 27]. The cluster result is shown in Fig. 2. From Fig. 2, we can know
that the samples can be distinguished clearly. However, we need a high performance machine
learning method to automatically select key methylation sites that can classify samples more
accurate and stable.

2.2 Self-attention graph convolutional network

2.2.1 Construction of methylation sites interaction graph

This study used weighted gene co-expression network analysis (WGCNA) to construct a
methylation site interaction graph. Let G(V,4,X) represents a methylation site interaction graph
of one class, where V' represents the methylation sites in the network, A = [a;;] € RY "V g
the adjacency matrix, X = [2;;] € RV""™* s the original feature matrix, Vi is the number of
methylation sites, Ns is the number of samples. It should be noted that, in the network
construction, the interaction relationships between methylation sites were determined by the
following criterion:

C(i,j) = [corrcoef(X;., X;.))”

where corrcoef(.,.) is a function that calculates the Pearson correlation coefficient between
edges. The power for bladder, brain, breast, bronchus, cervix, corpus, kidney, liver, prostate,
stomach, thyroid, and normal is 5, 3, 8, 6, 3, 4, 7, 5, 2, 5, 3 and 10 respectively. So most weights
of the edges are small values (Supplementary Figure S2 shows the weight distribution for each
network). Therefore, we set a threshold 0.01 to determine whether there is an interaction between
two methylation sites. Further more, we conducted significance analysis of the relationships in

each network. The P-values for the weights are far less than 0.05, indicating a significant
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correlation of the relationships in the network.
o {1. C(i,7) > 0.01,
Yo, ¢, ) < 0.01.

It should be noticed that, we used a subsampling strategy to deal with the small sample size
and label imbalance problem, the detailed clinical information statistic can be seen in
Supplementary Table 1. We randomly sampled 200 samples from the corresponding dataset with
replacement for each class. Through the above strategy, 80 graphs were created for each class
(totally 80 x 12 =960 graphs).

2.2.2 Graph convolutional network

Deep learning has made great progress in computer vision and natural language processing.
Meanwhile, in the real world, most issues cannot be described by Euclid field data but can be
abstracted as graphs easily. To perform deep learning based on graph data, different kinds of
graph neural networks (GNNs) were presented. Graph convolutional network (GCN) is one of the
most widely used GNNs. Graph convolutional operation can be defined in either the spectral or
non-spectral domain. Spectral approaches perform convolution on a graph by redefining the
convolution operation in the Fourier domain. The classical spectral graph convolution method is
formulated as below:

Z=a(D 2AD i XW)

Where W = [w;;] € RY*N7 represents weight matrix, s is the updated dimensionality of
output features, A represents adjacency matrix for methylation sites interaction graph, D is the

. . . I),',' = A i1 . . . . . J . 7 .
diagonal matrix of A with ; 7, 0 is a nonlinear activation function, Z € RV=*Nr g

feature matrix after convolution.

2.2.3 Self-attention graph pooling

Attention mechanisms help to focus on those essential features and lose sight of trivial
features, which is very useful in classification and data mining. This study proposed a graph
pooling method with an attention mechanism (SAGPooling). The attention mechanism is realized
by graph convolution. For a methylation sites interaction graph with Vm nodes, the self-attention
score Zgp € RNm*1 s defined and calculated as

Zatr = 0(D"2AD™2 X Wy,)

Where Wi € RY/*! is the only parameter of SAGPooling layer. Both node properties and
graph topology are considered by using graph convolution to obtain self-attention scores. The
hyperparameter of pooling ratio is used to determine the nodes selected during the step. We
ranked the nodes in descending order based on the value of Zatt and selected top N nodes.

idx = TopRank(Z . [kN])

Where TopRank is a function that returns the indices of the top [FN] values. For an input
graph G(V, A, X), the output graph G'(V', A", X") can be obtained as:

V' = V]idz]

A" = Alidx][idzx]

X' = Xidz] ® Zyy|idz]

Where [idx] is an indexing operation, @ is the broadcasted elementwise product.
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2.2.4 Self-attention graph convolutional network model

We proposed a graph neural network mixed with GCN layers and SAGPooling layers
(SAGCN). The structure of SAGCN can be divided into two parts. The first part is used for node
selection and graph embedding. It contains 3 sequential modules, with a GCN layer followed by a
SAGPooling layer in each module.

The activation function of the GCN layer is ReLU. For an input graph G@(V(®, 4@ x @),
in the first module, we get GV (V(?, A X)) after the GCN layer. And then, SAGPooling is
performed on G!):

GV AW XUy = SAGPooling[G"M (V@ A® x W) k]

Where SAGPoolingl.,.] operation of SAGPooling layer and k1 is the pooling rate of the
first module’s SAGPooling layer. And then G} will be the input of the second module. Finally,
after all the three modules processing, we get G3)(VE AW X)) with Ng = Ny kikoks
methylation sites left, ko and K3 are the pooling rate of SAGPooling layers of the second and
third module, respectively. Finally, V(3 is the differentially expressed methylation sites (DEMs)
selected from the input graph by the algorithm.

Next, we perform scatter-max and scatter-mean on Gy’ to get a graph embedding (GE).
Scatter-max operation is to pick the maximum element in each row as the feature of the
corresponding node. Scatter-mean operation calculates the average value of each row as the
feature of the corresponding node. GE is generated by concatenating the two vectors and then
serves as the input of the second part.

The second part of the model mainly functions as a classifier, consisting of a CNN layer and
a multilayer perceptron (MLP) with one hidden layer. Finally, for the computational convenience
of the loss function, a log softmax is computed on the output of MLP as the prediction score. The
SAGCN model is illustrated in Figure 3.

2.3 Selecting DEMs

To obtain a tissue-specific methylation pattern, we first construct interaction relationships
between these methylation sites for each class. Then, those graphs are used to train the SAGCN, in
which graph convolutional layer was used to aggregate features, and a self-attention mechanism
(SAGPooling) was used to extract the DEMs.

For the input graph, we get the methylation sites /(3 from the first part of the SAGCN
model. For different input graphs, theoretically, there is a minor change in the selected V().
Therefore, to get a convergent and robust DEMs set, we utilized a voting mechanism to determine
the final selection that shows up most frequently for all input graphs.

2.4 Clinical sample classification with SVM

To verify the validity of the selected DEMs, we further trained a multi-class classification
support vector machine model with a nested 5x5 cross validation loop. The trained SVM model
can be used to conduct clinical sample classification.

2.5 Performance evaluation

In this study, eight criteria were used to evaluate the performance of the model, including
recall, precision, F1-score, area under the receiver operating characteristic curve (AUROC), an
area under the precision-recall curve (AUPR), misclassification error (ME), Brier score (BS), and
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log loss (LL).
The formulas to compute the recall, precision, F1-score, and ME are as below:

TP
Recall = ————
TP Y FN
TP
Precision = ————
recision TP FP
F1 2 x Prectsion x Recall
— score =
Precision + Recall
TP+ TN
ME=1- +

TP+ FN+FP+TN

Where TP represents true positive rate, TN represents true negative rate, FP represents
false-positive rate, and FN represents false negative rate in the predicting results. Then, the macro
averaged recall, macro averaged precision, macro averaged F1-score, and macro averaged ME to
evaluate the overall model performance of multi-classification. Moreover, macro averaged values
of AUC and AUPR are also calculated. It should be noted that the averaged macro evaluation
criterion is the average of the evaluation criterion measured in each of the 5x5-fold CV (outer) test
sets.

BS is a proper scoring rule that measures the accuracy of probabilistic predictions of
mutually exclusive classes. It is applicable to multiclass prediction and is defined as the quadratic
difference between the assigned probability and the value (1, 0) for the class:

m:iggmpqﬁ

where Ns is the number of samples and K is the number of classes. Ik is calibrated
estimation probability that observation 2 belongs to class k and ©ik is the actual class of
sample 2.

O = {1, if sample i belongs to class k,

) 0, otherwise.

Besides, LL is extensively used to assess probability estimates of predictor models. BS
encourages predicted probabilities and true labels to lie close to each other, whereas LL does not.
However, extensive empirical testing stressed LL’s favorable local property that it will always
assign a higher score to a higher probability estimate for the correct class. In contrast, BS can
perform poorly in this regard. Thus we also used LL to evaluate model performance. A multiclass
extension of log loss is shown below:

N, K
1
logloss = —logPr(P|O) = N Z ZO.Lklog(PL,;‘.)
%=1 k=1

3. Results

3.1 Performance of SAGCN

Large amounts of experiments have been performed to investigate the performance of the
computational framework. DEMs could be extracted through the pooling rate in part one of
SAGCN, making sure robust and good classification performance. To evaluate classification
performance, 5x5-fold cross-validation was implemented. And macro average values of recall,
precision, F1-score, AUC, AUPR, ME, BS, and LL are calculated. We hold the pooling rate of the
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first and the second SAGPooling layers, i.e., kl = kz = 0.5, and changed the value of k3 to
determine the number of finally selected DEMs, denoted as D). The classification performance
with different parameters k3 is shown in Table 1. We can observe that the performance of
SAGCN becomes better then worse with the increase of ]f3, and it achieves the best performance
when k3 = 0.5. The recall, precision, Fl-score, AUC and AUPR are 0.9917, 0.9918, 0.9917,
0.9998, and 0.9995, respectively. The AUC and AUPR are greater than 0.99, indicating that the
proposed method has an outstanding classification ability. The ROC and PR curves with k3 = 0.5
are shown in Supplementary Figure S3, demonstrating the outstanding performance of the
SAGCN.

There are minor changes to the selected 1/(3) for each cross validation fold during the
training process. Therefore, to get a convergent and robust DEMs set, we used a voting
mechanism to determine the final selection that frequently shows up. We conduct experiments for
sample classification with different ks values to assess the selected DEMs. The experimental
results are shown in Table 2, according to which we selected 350 DEMs for downstream analysis.
The extracted DEMs and related annotations can be seen in Supplementary Table 2. To illustrate
the effectiveness of selected DEMs, we draw the cluster heatmap (seaborn, python package,
version 0.10.1) with their beta values (Supplementary Figure S4), where the rows represent the
DEMs and the columns represent samples that are sorted according to the class order. It illustrated
that different blocks are formed among different classes, indicating the effectiveness of selected
DEM:s.

Furthermore, to test the classification performance of SAGCN for each class, the mean
values of the basic metrics for each class on 5 folds are shown in Table 3. For the 11 kinds of
tumor samples, the evaluation metrics are all greater than 0.95, except the precision of the cervix
with a value of 0.93, which suggests that nearly 6.73% of the cervix classified as tumor samples
are misclassified. Additionally, normal samples' recall, Precision, F1-score, AUC, and AUPR are
relatively small. The Precision is only 0.8925, which means that nearly 10.75% of normal samples
are misclassified as tumor samples. The reason is that, firstly, the normal samples are from
different tissues, so they are characterized by tissue-specific DNA methylation features, which
may have an intersection with tissue-cancer-specific DNA methylation sites, leading to a high
misclassification. Secondly, from supplementary Figure S4, we can see that the expression of
selected DEMs is closer between Thyroid gland tumor samples and normal samples, which easily
causes a misclassification between thyroid gland tumor samples and normal samples.

To verify the effectiveness of DEMs selected by SAGCN, we further trained a multi-class
classification SVM, namely SAGCN+SVM. More importantly, we checked and verified the
classification performance of SAGCN + SVM for tumors of stage I and stage II with the selected
DEMs. The results are shown in Table 4 and Table 5, respectively. There are 7 kinds of tumor
with stage I and stage II in the dataset, totally 2615 samples. The recalls, i.e., sensitivity, of them
are all larger than 0.95, illustrating the effectiveness of the computational pipeline and the selected
DEMs. In brief, the SAGCN computational framework can effectively prioritize DEMs, which
could get super classification performance on nearly all kinds of tumour samples.

3.2 Comparisons with classic machine learning models
We compared it with some classic machine learning algorithms based on the original 2000
methylation sites. This included random forest classifier (RF), extremely randomized trees (ERT),
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decision tree (DT), Gaussian naive Bayes (GNB), and SVM. Table 6 tabulates the prediction
results where we can see that the performance of SAGCN + SVM is better, indicating the
effectiveness of SAGCN and the selected DEMs.

For the reason of multi-classification, the classification of each class is a binary
classification on an unbalanced dataset. In this term, the high accuracy of each class is less
believable. Inversely, Recall, Precision, Fl-score, AUC, and AUPR can genuinely reflect

classification performance.

3.3 Comparisons with the state-of-the-art methods

To further prove the superiority of SAGCN+SVM, we compared it with two state-of-the-art
methods proposed after 2020. One is a graph convolutional network-based method for predicting
classification (CGATCPred); another is a hybrid graph convolutional network for predicting
cancer drug response (DeepCDR). The following experiments are carried out under the same
experimental conditions, including 5-fold cross-validation, random seed, and data partitioning
strategy. The three methods can all achieve good performance (Table 7). The statistical test
between SAGCN + SVM and the other two methods is 0.08 and 0.27 for AUC, respectively,
indicating the sample classification performance of the proposed model is compared able to the
state-of-the-art methods.

3.5 External validation with tissue DNA methylation data
To test the stability and extendibility, we applied this computational framework to external
data from NCBI Gene Expression Omnibus (GEO) database, under accession GSE90496 [17],
GSE155207 [30], GSE158075 [31], and GSE164988. The brain tumors DNA methylation dataset
(GSE90496) includes 2801 samples from which 294 (294/2801) were selected, the disease stage
of which is initially operated, the age distribution in the range of 25 to 70, and the WHO grade is I,
IT or III. A fumarate hydratase-deficient renal cell carcinoma dataset (GSE155207) was used as
kidney tumour validation. The EPIC array methylation data of 20 primary tumor tissues was
selected to conduct a validation experiment. Besides, the Human Methylation450-based DNA
methylation analysis of paired samples of bronchoscopic biopsy specimens either from the tumor
side or the contralateral tumor-free bronchus in 37 patients with a definite lung cancer diagnosis
(GSE158075) was used as a validation dataset for bronchus and lung cancer. Moreover, 10
samples with histopathology diagnosed as adenocarcinoma from GSE164988 were used for
stomach cancer validation.
Performance evaluation of SAGCN + SVM on external validation datasets is shown in Table
8. The classification performance for brain and kidney tumors can achieve 100% precision.
Moreover, the classification accuracy for bronchus & lung, and stomach tumors can achieve more
than 94%. It can also achieve 80% for normal samples. The results indicate that the proposed
computational framework is robust, generalizes well, and can be easily applied to other external
methylation datasets to get a well-performing classification.

3.6 External validation with cell-free DNA methylation data

Recent analyses of circulating cell-free DNA suggest that approaches using tumor-specific
alterations may provide new opportunities for early diagnosis. But detecting such alterations may
be challenging because the total number of alterations may be scarce in individuals with low
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tumor burden, hence not all patients have noticeable changes [33]. This study has developed an
end-to-end deep learning framework to realize ultra-sensitive in common cancers. The
genome-wide methylation approach has leveraged the discovery of inherited risk loci for cancer
detection, the inherited risk loci are often involved in tissue-specific DNA methylation.

Methylation features of cfDNA, such as CpG sites, contain information about recent events
in the body, which can be used to detect and localize cancer [34-36]. cfDNA molecules from loci
carrying tissue-specific methylation patterns can be used to identify cell death in a specific tissue.
Consequently, methods based on identifying CpG site markers or exploring the methylome could
be used to accurately recognize cfDNA released by cells and tissues in various human cancer.
However, cfDNA is not uniformly distributed across the genome but rather is differentially
sheared and located depending on chromatin organization, gene expression, tissue of origin,
epigenetic marks, and mechanism of release among other factors [37-40]. Identifying the cell and
tissue of origin of the cfDNA fragment could lead to localization of cancer of unknown primary
with liquid biopsy.

Therefore, we further used cell-free DNA methylation data from the GEO database under
accession number GSE157272 to conduct external validation. First, blood is collected from the
patient individuals. cfDNA is extracted from plasma, processed into sequencing libraries,
examined by WGS, mapped to the genome, and analyzed to determine cfDNA fragmentation
profiles across the genome. 22 samples from GSE157272 with disease stages as high-grade
prostatic intraepithelial neoplasia tissue, indolent prostate cancer tissue, and aggressive prostate
cancer tissue were used to conduct prostate cancer validation.

In this study, we first extracted the 350 DEMs with SAGCN. Then multi-class classification
was conducted with SVM. The extracted DEMs and related annotations can be seen in
Supplementary Table 2. From Supplementary Table 2, we can know that there are 85.2%
methylation sites among all annotated sites located in protein coding region, indicating that can be
easily detected in cell free DNA methylation data. Experimental result with GSE157272 is shown
in Table 9. The result indicates that the proposed computational framework is robust, generalizes

well, and can be easily applied to conduct a blood-based non-invasive liquid biopsy.

4. Conclusion and Discussion

Cancer diagnosis is complex because most malignant tumors present with long periods of
latency and lack of clinical presentation at early stages. Nevertheless, epigenetics provides a
molecular link between genetic programming and environmental signals. Such changes in the
DNA methylation and the somatic genomic DNA from the tumor tissue of origin are highly
consistent in many disease models. Thus, DNA methylation plays an important role in the process
of DNA expression and precision tumor early diagnostics, emerging as state-of-the-art for
molecular tumor recognition.

However, at present, the sensitivity of primary diagnosis for multiple cancers, such as tumour
of breast, lung, prostate, uterine, esophageal and kidney is about 30%, and the diagnostic
technology needs to be improved. Besides, for cancer-specific methylation sites identification
based on DNA methylation data, the existing computational tools cannot fully utilize the
genome-wide methylation information, and the computational tools have much room for
improvement. Finally, it is costly and time-consuming to make a ultra-deep sequencing for the
target panel, which is decided based on preliminarily screened cancer-specific methylation sites.
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To address these challenges and issues, we present a genome-scale computational
framework for precision multi-tumour early diagnostics. First, methylation interaction graphs are
properly constructed. Then, a self-attention graph convolutional neural network model is proposed
to extract the DEMs based on those graphs and conduct sample classification based on the
extracted methylation sites. To improve the sample classification accuracy and robustness with the
selected DEMs, we further designed SVM with inner 5-fold nested cross-validation for input
sample classification. Large amounts of experiments have been conducted and have shown the
effectiveness and robustness of the framework performance compared with either classic machine
learning methods or state-of-the-art methods. External validation with tissue DNA methylation
data and cell-free DNA methylation data also illustrated the effectiveness of the selected DEMs,
indicating that the proposed computational framework is easily applied to other external
methylation datasets to get well-performing tumor classification and tissue origination. In should
be noticed that, in the external validation, the accuracy of several tumor types is large than 91%,
which means that both the DEMs and computational framework can be applied to clinical
practice.

Nevertheless, there also two limitations of this study. First, the DNA methylation data used in
this research is 450k, while there 30 million CpG sites in the whole genome. Second, the research
is retrospective study, while prospective study is more helpful for the detection sensitivity
improvement of natural population. In the future study, we plan to conduct prospective
methylation sequencing research to develop biomarkers of multi-omics and multi-sites, improving

the stability and specificity of early tumor diagnostics.
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Key Points

® We have designed a SAGCN to learn methylation interaction networks in an
end-to-end way, which automatically extracted DEMs.

® Through the pipeline of SAGCN for feature selection and SVM for classification,
we achieved precision multi-tumor early diagnostics in silicon-based simulations.

® The computational pipeline would significantly contribute to tumor classification
and is highly relevant for blood diagnosis.

Data available

The complete methylation data required for the construction and training of the
classifier have been deposited in TCGA. The external validation data can be
downloaded from the NCBI Gene Expression Omnibus (GEO), under accession
number GSE90496, GSE155207, GSE158075, GSE164988, and GSE157272.

Code available

All the codes used in this research are complied with Python programming language.
The codes, some important data files and more detailed description are available at
https://github.com/lizhiqi49/SAGCN.
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Fig. 1. The pipeline of the self-attention graph convolutional network based computational

framework.

(A)

B

Part 1

Part 2. Training of SAGCN
5a5 fold CV loop.
3

©)

Part 3. Chnical sample classification with SYM
Cuabes 55 fild CV heop

D)
18 ] )
; . AN
3 v (RENRED
1 ¢ N
3 RN .
i v S
1 R @
. i
g L Macemtcainror . (B 3 (T topion ]
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Fig. 3. The workflow of the proposed SAGCN model.
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supplementary Figure S2. The weight distribution in each network.
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supplementary Figure S3. The ROC and PR curves of SAGCN model with k3 = 0.3 on the TCGA
dataset.
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