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Abstract

Despite long knowing what brain areas support language comprehension, our knowledge of the
neural computations that these frontal and temporal regions implement remains limited. One
important unresolved question concerns functional differences among the neural populations
that comprise the language network. Leveraging the high spatiotemporal resolution of
intracranial recordings, we examined responses to sentences and linguistically degraded
conditions and discovered three response profiles that differ in their temporal dynamics. These
profiles appear to reflect different temporal receptive windows (TRWs), with average TRWs of
about 1, 4, and 6 words, as estimated with a simple one-parameter model. Neural populations
exhibiting these profiles are interleaved across the language network, which suggests that all
language regions have direct access to distinct, multi-scale representations of linguistic input—a
property that may be critical for the efficiency and robustness of language processing.
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Introduction

Language processing engages a network of brain regions that reside in the temporal and frontal
lobes and are typically left-lateralized (e.g., Fedorenko et al., 2010; Pallier et al., 2011). These
brain regions respond strongly to linguistic stimuli across presentation modalities (Fedorenko et
al., 2010; Vagharchakian et al., 2012; Regev et al., 2013; Scott et al., 2017), tasks (Fedorenko et
al.,, 2010; Cheung et al., 2020; Diachek, Blank, Siegelman et al., 2020), and languages (Malik-
Moraleda, Ayyash et al. 2022). This language-responsive network is highly selective for language,
showing little or no response to diverse non-linguistic inputs and tasks (e.g., Fedorenko et al.,
2011; Monti et al., 2012; Deen et al., 2015; Ivanova et al., 2020, 2021; Liu et al., 2020; Chen et
al., 2023; Shain, Paunov, Chen et al., 2023; see Fedorenko, Ivanova & Regev, in press, for a
review). However, the precise computations and neuronal dynamics that underlie language
comprehension remain debated.

Based on neuroimaging and aphasia evidence, some have argued for dissociations among
different aspects of language, including phonological/word-form processing (e.g., Okada and
Hickok, 2006; Graves et al., 2008; DeWitt and Rauschecker, 2012), the processing of word
meanings (e.g., Price et al, 1997, Rodd et al.,, 2005; Mesulam et al., 2013), and
syntactic/combinatorial processing (e.g., Friederici, 2002, 2011; Hagoort, 2005; Grodzinsky and
Santi, 2008; Matchin and Hickok, 2020). However, other studies have reported distributed
sensitivity to these aspects of language across the language network (Fedorenko et al., 2010,
2020; Bautista and Wilson, 2016; Blank et al., 2016; Anderson et al., 2021; Caucheteux et al.,
2021; Reddy & Wehbe, 2021; Shain, Blank et al., 2020; Regev et al., 2024). Some of the challenges
in discovering robust functional differences within the language network may have to do with
the limitations of fMRI—the dominant methodology available for studying language processing.
Each fMRI voxel contains a million or more individual neurons, which may differ functionally. If
different linguistic computations are implemented in distinct neural populations that are
distributed and interleaved across the language cortex, such dissociations may be difficult to
detect with fMRI. Further, the relatively slow temporal resolution of fMRI (typically, ~2 seconds)
may obscure the dynamics of linguistic computations.

In recent years, invasive recordings of human neural activity (e.g., Mukamel and Fried, 2011),
including electrocorticography (ECoG) and stereo electroencephalography (sEEG), have become
increasingly available to language neuroscience researchers, as patients undergoing presurgical
evaluation (usually for intractable epilepsy) agree to perform linguistic tasks while implanted with
intracranial electrodes. These data have high spatial and temporal resolution, allowing the
tracking of neural dynamics across both space and time. Several previous studies have probed
intracranial neural responses during language comprehension (e.g., Fedorenko et al., 2016;
Nelson et al., 2017; Woolnough et al., 2023; Desbordes et al., 2023; Goldstein et al., 2022; 2023).
For example, Fedorenko et al. (2016) reported sensitivity in language-responsive electrodes to
both word meanings and combinatorial processing, in line with fMRI findings (e.g., Fedorenko et
al., 2010; Bedny et al., 2011). They also reported a temporal profile where neural activity
gradually increases (builds up) across the sentence (replicated by Nelson et al., 2017; Desbordes
et al., 2023; Woolnough et al., 2023), which they interpreted as reflecting the construction of a
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sentence meaning. However, considerable disagreement exists in the field regarding the number
of distinct profiles that characterize cortical language responses, how they functionally differ,
and what computations they collectively support in the service of language comprehension and
production.

Here, we report a detailed investigation of neural responses during language processing. To
isolate the language network from nearby lower-level perceptual areas and domain-general
cognitive areas, we focus on electrodes that show a characteristic functional signature of the
language areas: a stronger response to sentences than to sequences of nonwords (as in
Fedorenko et al., 2016). To foreshadow our findings, we report three response profiles that differ
in their temporal dynamics and overall magnitude of response to linguistically degraded
conditions. Using a toy model with a single parameter—the timescale of information
integration—we argue that these profiles reflect distinct temporal receptive window sizes in the
language system (e.g., Lerner et al., 2011; Blank and Fedorenko, 2020; Jain et al., 2020).
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Results

We used intracranial recordings from patients with intractable epilepsy to investigate neural
responses during language comprehension. Participants in Dataset 1 were presented with four
types of linguistic stimuli that have been traditionally used to tease apart neural responses to
word meanings and syntactic structure (Fedorenko et al., 2010, 2012, 2016; Pallier et al., 2011;
Shain, Kean et al., in press; Desbordes et al., 2023; for earlier uses of this paradigm, see Mazoyer
et al., 1993; Friederici et al., 2000; Humphries et al., 2001; Vandenberghe et al., 2002): sentences
(S), lists of unconnected words (W), Jabberwocky sentences (J), and lists of unconnected
nonwords (N) (Figure 1A-B, Methods, all stimuli are available at osf.io/xfbr8/). In each trial, 8
words or nonwords were presented on a screen serially and participants were asked to silently
read them. To maintain alertness, after each trial, participants judged whether a probe
word/nonword had appeared in that trial. See Methods for further details of stimulus
presentation and behavioral response data. In Dataset 2, just two of these conditions were used:
sentences and lists of nonwords.

We asked three research questions: 1) Does the language network contain reliably distinct
response profiles? If so - 2) What do these profiles reflect? And finally - 3) Do electrodes exhibiting
different response profiles tend to be located in particular regions of the language network? We
used Dataset 1 (n=6) for initial evaluation of these questions because this dataset contained a
richer set of experimental conditions. We then used Dataset 2 (n=16) as an attempt to replicate
the findings despite the more compact experimental paradigm.
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Condition Example

STEVE WAS LATE TO SCHOOL BECAUSE HE OVERSLEPT
Sentences  [probe: SCHOOL]

THE RED BALOON ROSE UP INTO THE CLOUDS

[probe: WENT]

RAIN THE WORK BEHIND REACHED GREW KIDS OPENED
[probe: GREW]

Word-lists
STOOD THE TIED CANDLE INTO SHED THE QUICKLY
[probe: WALLET]
THE GAR WAS SWARBING THE MUME FROM ATAR
[probe: ATAR]
Jabberwocky

TOMAL HOTHED THE BLESPY NULO DURING THE VAYLANT
[probe: FLORKY]

PHREZ CRE EKED PICUSE EMTO PECH CRE ZEIGELY
STEVE [probe: PHREZ]

Nonword-lists
PIV WUBA WOS PAFFING DEBON TRIENED LE KIF
0.45(0.7)s [probe: LOME]

80 [ Non language-responsive

[ Language-responsive

8 60 -
©
2 mean = 0.08
8 40 mean = 0.28
w
20
oL LjF | HLF
. -0.5 0 0.5 1
* Language-responsive Response Reliability
* Non language-responsive (correlation odd vs. even trials)

Figure 1 — Experimental procedure and the distribution of the implanted electrodes for Dataset

1. A) A sample trial from the Sentence condition. B) For each of the four experimental conditions, items are either
presented with probes that appeared in the trial or not. Adapted from Fedorenko et al. (2016). C) The locations of
language-responsive (n=177, red; Methods) and non-language-responsive (n=373, black) electrodes across the six
participants in Dataset 1. Electrodes were implanted almost exclusively in the left hemisphere for Dataset 1 and
concentrated in the temporal and frontal lobes. D) Response reliability across odd and even trials (based on a
correlation of mean condition-level responses) for language-responsive and non-language-responsive electrodes.
Language-responsive electrodes exhibit more reliable responses to linguistic stimuli than non-language-responsive
electrodes.

1. Language-responsive electrodes exhibit reliably distinct response profiles.

We clustered the high gamma neural response patterns of language-responsive electrodes from
Dataset 1 (6 participants, same as those used in Fedorenko et al., 2016, 177 language-responsive
electrodes; Figure 1C, Methods, Table 1) to sentences (S), word lists (W), Jabberwocky sentences
(J) and nonword lists (N) (Figure 1A-B). We focused on differences across experimental conditions
and therefore clustering was performed on the average condition timecourses, which were
concatenated across the four conditions to create a single timecourse per electrode (Figure 2B,
Methods). The k-medoids clustering algorithm, combined with the “elbow” method (Methods),
suggested that three clusters (k=3) optimally explain the data (Figure 2A; similar results emerged


https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522216; this version posted April 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

with a k-means clustering algorithm, see OSF osf.io/xfbr8/). Although we combined the
electrodes from all 6 participants for clustering, electrodes that belong to each of the three
clusters were evident in every participant individually (Figure 2B, S1).

Additional analyses suggested that although the three observed response types may not be the
only response types that exist in the language network, they do capture a substantial amount of
the functional heterogeneity in our dataset. First, we repeated the clustering analysis while
omitting electrodes below a parametrically varying reliability threshold, and found that the elbow
at k=3 became more pronounced (Figure 2A inset). Second, when clustering was performed using
a larger value of k (e.g., k=10), the profiles of many of the additional clusters resembled the
profiles that we discovered when clustering using k=3 (Figure S2). And third, responses within a
given cluster—especially the more reliable responses—appeared visually similar to the
prototypical cluster response profiles, with only a couple of highly reliable responses exhibiting
a distinct profile (Figure S3).

The average timecourses for the three clusters are shown in Figure 2E (see Figure 2D for best
representative electrodes from each cluster —'medoids’— chosen by the k-medoids algorithm).
Cluster 1 (n=92 electrodes; range across participants: 5-34, Figure S1) was characterized by a
relatively slow increase (build-up) of neural activity across the 8 words in the S condition (a
pattern similar to the one reported by Fedorenko et al., 2016; Nelson et al., 2017; Desbordes et
al., 2023; Woolnough et al., 2023; but see Discussion), and much lower activity for the W, J, and
N conditions, with no difference between the J and N conditions (Figure 2F). Cluster 2 (n=67
electrodes; range across participants: 1-21, Figure S1) displayed a quicker build-up of neural
activity in the S condition that plateaued approximately 3 words into the sentence, a quick build-
up of activity in the W condition that began to decay after the third word, and a similar response
to the J and N conditions as to the W condition with an overall lower magnitude. Cluster 2 also
exhibited ‘locking” of the neural activity to the onsets of individual words in the S condition.
Finally, Cluster 3 (n=18 electrodes; range across participants: 1-7, Figure S1) showed no build-up
of activity, and was instead characterized by a high degree of locking to the onset of each word
or nonword in all conditions. Additionally, the response magnitudes of Cluster 3 were more
similar across conditions compared to the other two clusters, although the S>W>J>N pattern was
still present (Figure 2F).
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Figure 2 — Dataset 1, k-medoids clustering with k=3. A) Search for optimal k using the “elbow method”.
Top: Variance (sum of the distances of all electrodes to their assigned cluster center) normalized by the variance
when k=1 as a function of k (normalized variance (NV)). Inset: Clustering was performed while omitting electrodes
below a parametrically sampled reliability threshold. Orange shading represents the reliability threshold for omitting
electrodes. The elbow (point of transition between a steeper to a more moderate slope) gets more pronounced
when eliminating lower-reliability electrodes, which suggests that k=3 best describes these data. Bottom: Change in
NV as a function of k (NV(k+1) — NV(k)). After k=3, there was a large drop in the change in variance. B) Clustering
mean electrode responses (concatenated across the four experimental conditions: sentences (S), word lists (W),
Jabberwocky (J), nonword lists (N)) using k-medoids (k=3) with a correlation-based distance (Methods). Shading of
the data matrix reflects normalized high-gamma power (70-150Hz). Electrodes are sorted vertically due to
participant and their assignment to clusters (right color bar). All three clusters are present in each of the six
participants. C) Electrode responses visualized on their first two principal components, colored by cluster and shaded
by the reliability of the neural signal as estimated by correlating responses to odd and even trials (Figure 1D). D)
Timecourses of best representative electrodes (‘medoids’) selected by the algorithm from each of the three clusters.
The timecourses reflect normalized high-gamma (70-150Hz) power averaged over all trials of a given condition. a.u.
stands for arbitrary units; the signals were z-scored and normalized to have minimum value of 0 and maximum value
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of 1. E) Timecourses averaged across all electrodes in each cluster. Shaded areas around the signal reflect a 99%
confidence interval over electrodes. F) Mean condition responses by cluster. Error bars reflect standard error of the
mean over electrodes. After averaging across time, response profiles are not as distinct by cluster (especially for
Clusters 2 and 3), which underscores the importance of temporal information in elucidating this grouping of
electrodes.

We then evaluated the stability of these clusters across trials and their robustness to data loss.
We found that clusters derived from half of the data (either odd- or even-numbered trials) were
significantly more similar to the clusters derived from the full dataset or from the other half of
the data than would be expected by chance (ps<0.001, permutation test, Methods, Figure 3A).
The clusters were also robust to the number of electrodes used: clustering solutions derived from
only a subset of the language-responsive electrodes (down to ~27%, ~32%, and ~69% of
electrodes for Clusters 1, 2, and 3, respectively) were significantly more similar to the clusters
derived from all the electrodes than would be expected by chance (using a threshold of p<0.05,
evaluated with a permutation test, Methods, Figure 3B).

To further quantify the apparent differences among the three response profiles, we performed
two additional analyses. First, we examined how strongly the neural signal exhibited ‘locking’ to
individual word/nonword onsets by correlating the observed responses with a fitted sinusoidal
function (Methods). This analysis revealed that—consistent with visual examination—electrodes
in Cluster 3 showed the strongest degree of stimulus locking, followed by electrodes in Cluster 2,
with electrodes in Cluster 1 showing the weakest stimulus-related locking (Figure 3C, Table S1A-
B). And second, we tested how quickly and strongly the S, W, J, and N conditions diverged from
one another in each of the profiles. We did this using a binary logistic classifier—trained for each
cluster separately—using incrementally more of the timecourse for discrimination (Figure 3D-F,
Methods). The classification performance (averaged across 10 folds of the cross-validated
classifier) revealed that neural populations in Cluster 1 reliably distinguished S from W earlier
and more strongly than the neural populations in Clusters 2 and 3. In contrast, neural populations
in Cluster 2 reliably distinguished W from N and J from N earlier and more strongly than neural
populations in Clusters 1 and 3.
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Figure 3 — Evaluation of Dataset 1 clusters. A) Comparison of clusters from all trials (top three rows) versus
only even (middle three rows) or odd (bottom three rows) trials. Clusters that emerge using only odd or even trials
are highly similar to the clusters that emerge when all trials are used (ps<0.001; evaluated with a permutation test;
Methods). B) Robustness of clusters to electrode omission. Random subsets of electrodes were removed in
increments of 5 (Methods). Similarity of cluster centers when all electrodes were used versus when random subsets
of electrodes were removed. Stars reflect significant similarity with the full dataset (using a threshold of p<0.05;
evaluated with a permutation test; Methods). Shaded regions reflect standard error of the mean over randomly
sampled subsets of electrodes. Cluster 3 was driven the most by individual electrodes relative to Clusters 1 and 2. C)
Correlation of fitted stimulus train with timecourse of electrodes by cluster and by condition (Methods). Error bars
reflect standard error of the mean over electrodes. Electrodes in Cluster 3 were the most locked to word/nonword
presentation whereas electrodes in Cluster 1 were the least locked to word/nonword presentation. There was a
significant main effect for cluster (p<0.05) but not for condition (ANOVA for LME models, Methods, Table S1A-B).
These qualitative between-condition differences could be due to generally greater engagement of these neural
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populations with more language-like stimuli. D-F) Classifier performance by cluster as a function of the amount of
timecourse included in training (Methods). A binary logistic classifier was trained to discriminate the Sentence (S)
and Word-list (W) conditions (D), Word-list (W) and Nonword-list (N) conditions (E), and Jabberwocky (J) and
Nonword-list (N) conditions (F). Significance stars at the bottom (colored by cluster) reflect discriminability of
conditions above chance level (ps<0.05, evaluated as a cluster statistic against a null distribution from permuted
labels, Methods). Shaded regions reflect standard error across the 10 folds of the cross-validated classifier.

Although the k-medoids clustering algorithm assigns each electrode to one of k discrete clusters,
we wanted to additionally evaluate the degree to which single electrode profiles fell between the
prototypical cluster response profiles. To do this, we computed the partial correlation of every
electrode’s response profile with that of each of the cluster medoids, while controlling for the
other two medoids (Figure S4, Methods). As shown in Figure S4B, many of the electrodes
exhibited response profiles that were consistent with only one of the prototypical responses.
However, a few electrodes, mostly in Clusters 1 and 2, exhibited high partial correlations with
another cluster’s medoid (i.e., a “mixed” response profile). Visual inspection of these response
profiles (Figure S4C-D; osf.io/xfbr8/) revealed that these electrodes displayed a blend of Cluster
1 and Cluster 2 response characteristics. The existence of mixture electrodes primarily between
Clusters 1 and 2 is in line with the generally high correlation between their medoids (0.68
between Cluster 1 and 2 medoids versus 0.21 between Cluster 1 and 3, and 0.24 between Cluster
2 and 3; Figure 3A).

2. Response profiles reflect different sizes of temporal receptive windows.

The temporal dynamics of the neural responses across clusters suggested that the observed
differences in the response profiles may reflect different ‘temporal receptive windows’ (TRWs).
TRWs are a temporal equivalent of spatial receptive fields that corresponds to the amount of the
preceding temporal context that affects the processing of the current input (e.g., Hasson et al.,
2008, Lerner et al., 2011; Norman-Haignere et al., 2022). In particular, a neural population that
only processes information over the span of a single word should exhibit visible evoked responses
at the rate of stimulus presentation, reflecting the momentary stimulus-related fluctuations. On
the other hand, a neural population that processes information over spans of multiple words
should exhibit a response that reflects a more smoothed version of the stimulus train, with no
momentary stimulus-related fluctuations. As described in Section 1, the three clusters differed
significantly in their degree of locking to the individual word onsets. Cluster 3 showed the
strongest locking, followed by Cluster 2, with Cluster 1 showing the weakest amount of locking
(Figure 3C). Moreover, a neural population that only processes information over the span of ~a
single word (or less) should show little sensitivity to whether nearby words can be composed into
phrases. This is the pattern we saw for electrodes in Cluster 3 (Figure 3D): these electrodes did
not reliably discriminate between the Sentence and Word-list conditions. In contrast, a
population that processes information over spans of multiple words should show sensitivity to
the composability of nearby words, and thus should strongly discriminate between sentences
and word lists. This is the pattern we saw for electrodes in Clusters 1 and 2, with Cluster 1
electrodes showing earlier and stronger discrimination (Figure 3D). Note that this greater
difference between the Sentence and Word-list conditions for longer-TRW neural populations is
presumably due to the fact that linguistic differences between these two conditions become
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more pronounced for longer word sequences (e.g., see Figure S5 for evidence from n-gram
frequency counts).

To formally test whether the clusters indeed differ in the size of their TRWs, we constructed a
toy model wherein we convolved a simplified stimulus train with response functions (gaussian-
based ‘kernels’) of varying widths (TRW sizes denoted as o; Figure 4A, see Methods for model
assumptions and implementational details). The resulting simulated responses exhibited striking
visual similarity to the observed response patterns (Figure 4A). We then computed—for every
electrode—a correlation between each simulated response and the observed response, and we
selected the o value that yielded the highest correlation (Figure 4B-C, Methods). The estimated
TRW sizes showed a clear pattern of decrease from Cluster 1 to 2 to 3; the average o values per
cluster were ~6, ~4, and ~1 words for Clusters 1, 2, and 3, respectively (ps<0.0001 comparing
TRWs across all pairs of clusters, evaluated with a LME model, Methods, Figure 4B-C, Table S5).
To evaluate the robustness of this result, we repeated the TRW fitting procedure using other
kernel shapes, and confirmed that the relative sizes of the TRWs of the three clusters did not
depend on the specific choice of kernel shape (Figure S6). Furthermore, the estimated values of
o in number of words (as reported above) appear to be invariant to the stimulus presentation
rate, which suggests that the TRW of language-responsive electrodes is information-, not time-,
dependent (Table S6 and Table S7). However, this rate-invariance should be investigated further
in future work given the small number of participants in each presentation rate group (n=3) and,
correspondingly, the low statistical power.
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Figure 4 — Estimating the size of the temporal receptive window (TRW) of different electrodes.
A) A toy model that simulates neural responses to the sentence condition as a convolution of a simplified stimulus
train and truncated Gaussian kernels with varying widths. Top: Simplified stimulus train where peaks indicate a
word/nonword onset, and sample kernels correspond to varying temporal receptive window sizes (). The kernels
were constructed from Gaussian curves with a standard deviation of g/2 truncated at +/- 1 standard deviation
(capturing 2/3 of the area under the Gaussian, Methods) and normalized to a minimum of 0 and a maximum of 1.
Bottom: The resulting simulated neural signals for sample kernel widths, normalized to a minimum of 0 and a
maximum of 1. B) Best TRW fit for all electrodes colored by cluster and sized by the reliability of the neural signal as
estimated by correlating responses to odd and even trials (Figure 1D). The goodness of fit, or correlation between
the simulated and observed neural signal (Sentence condition only), is shown on the y-axis. C) Estimated TRW sizes
across all electrodes (grey) and per cluster (red, green, and blue). Black vertical lines correspond to the mean window
size and the white dots correspond to the median. “x” marks (present in Cluster 3 only) indicate outliers (more than
1.5 interquartile ranges above the upper quartile or less than 1.5 interquartile ranges below the lower quartile).
Significance was evaluated with an LME model (Methods, Table S5). Together, B and C show that the clusters varied
in the size of their TRWs, from a relatively long TRW (Cluster 1) to a relatively short one (Cluster 3).

3. Clusters 1 and 2 are distributed across the language network, whereas cluster 3 exhibits a
posterior bias.

We tested for differences in the anatomical distribution of the electrodes that belong to the 3
clusters in Dataset 1. We excluded from this analysis right-hemisphere (RH) electrodes because
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only 4 RH electrodes passed the language selectivity criterion (S>N). We focused on the y
(posterior-anterior) and z (inferior-superior) directions in the MNI coordinate space within the
left hemisphere. Electrodes in both Clusters 1 and 2 were distributed across the temporal and
frontal language regions (Figure 5). When examining all electrodes together, or focusing on only
the frontal or only the temporal electrodes, the MNI coordinates of electrodes in Clusters 1 and
2 did not significantly differ in either of the two tested directions (ps>0.05, evaluated with a LME
model, Methods, Figure 5C-D, Table S2A). However, when weighting the electrodes by their
reliability in the LME model, electrodes in Cluster 1 fell more anteriorly and inferiorly relative to
electrodes in Cluster 2 (ps<0.05, evaluated with a LME model, Methods, Table S2B). Electrodes
in Cluster 3 were located significantly more posteriorly than those in Clusters 1 and 2 (lower y-
coordinate values, both Clusters 3 vs. 1 and Clusters 3 vs. 2, ps<0.0001, Methods, Figure 5C, Table
S2A).

To complement this analysis, we visualized the anatomical distribution of electrodes in two
additional ways. First, we visualized all language-responsive electrodes by their partial
correlations to each of the cluster medoids (Figure S4E). This approach does not enforce a
categorical grouping into clusters, potentially allowing for more subtle response gradients.
However, this analysis revealed a similar picture: Cluster-1- and Cluster-2-like responses were
present throughout frontal and temporal areas, whereas Cluster-3-like responses were localized
to the posterior superior temporal gyrus. Second, we examined the distribution of electrodes by
their fitted TRW (Figure 5F). This visualization exhibited a gross anatomical trend of TRWs
increasing from posterior to anterior regions, however, there remained a substantial local mosaic
pattern, with long-TRW electrodes present in posterior temporal areas and short-TRW electrodes
present in anterior temporal and frontal areas.
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Figure 5 — Anatomical distribution of the clusters in Dataset 1. A) Anatomical distribution of language-
responsive electrodes in Dataset 1 across all participants in MNI space, colored by cluster. B) Anatomical distribution
of language-responsive electrodes in participant-specific space. C-E) Violin plots of MNI coordinate values for the 3
Clusters, where plotted points represent the mean of all coordinate values for a given participant and cluster. The
mean across participants is plotted with a black horizontal line, and the median is shown with a white circle.
Significance was evaluated with a LME model (Methods). Cluster 3 exhibited a posterior bias (more negative Y
coordinate) relative to Cluster 1 and 2 when modeled using all language electrodes (ps<0.001, C). This trend was
also evident when examining only the frontal (D) or temporal electrodes (E) separately, but the difference only
reaches significance for the temporal electrodes (p<0.01). F) Anatomical distribution of electrodes in Dataset 1
colored by their estimated temporal receptive window (TRW, Figure 4). There was a slight trend of increasing TRW
size from posterior to anterior regions but with considerable local heterogeneity.
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4. Clusters 1 and 3 replicate in Dataset 2 and Cluster 2 partly replicates.

We asked whether the same clusters would emerge in a second, independent dataset with new
participants and different linguistic materials (Dataset 2; 16 participants; 362 language-
responsive electrodes; mostly depth electrodes, Figure 6A, Methods). Participants in Dataset 2
only saw two of the four conditions presented to participants in Dataset 1 (Sentences (S) and
Nonword-lists (N), but not Word-lists (W) or Jabberwocky sentences (J)); therefore, we started
by re-clustering the electrodes from Dataset 1 using only the responses to the S and N conditions
to allow for direct comparisons with Dataset 2.

The Dataset 1 cluster averages, when only the S and N conditions were used, exhibited a strong
gualitative similarity to those of the clusters derived using the data from all four conditions
(Figure S7). ~80% of electrodes in Dataset 1 were assigned to the same cluster (‘matched’ to the
original clusters by highest correlation). However, Cluster 2 was less robust to electrode loss than
Clusters 1 and 3 (compare the green curve in Figure 3B to the green curve in Figure S7G). This
finding suggests that responses to the Word-list and Jabberwocky conditions are especially
important for differentiating Cluster 2 from the other response profiles, presumably because
these conditions pattern differently for Clusters 1 and 2.

We next clustered the electrodes in Dataset 2 using the same approach as for Dataset 1. The
optimal number of clusters in Dataset 2 was k=2 based on the elbow method, and the resulting
clusters were visually similar to Clusters 1 and 3 from Dataset 1 (p<0.001 for Cluster 3, p=0.061
for Cluster 1, permutation test, Methods, see OSF osf.io/xfbr8/; note that this permutation test
is especially conservative with only two experimental conditions and when k=2). We also
performed a version of clustering Dataset 2 enforcing k=3 to test whether a Cluster-2-like
response would emerge (Figure 6). The same two cluster centers as in the case of k=2 were again
apparent and showed reliable similarity to Clusters 1 and 3 in Dataset 1 (p<0.001 and p=0.023,
respectively, permutation test, Methods, Figure 6G, 1). The third cluster qualitatively resembled
Cluster 2 from Dataset 1 (Figure 6G), but the resemblance was not statistically reliable (p=0.732,
permutation test, Methods).

As another, less stringent, test of whether Cluster 2 responses were present in Dataset 2, we
assigned each electrode in Dataset 2 to a “group” based on their highest correlation with the
average response profiles from Dataset 1, in a “winner-take-all” approach (Figure S8). In this
approach, a substantial number of electrodes (n=95 of the total of n=362) were assigned to Group
2 (the analog of Cluster 2). This analysis indicates that Cluster-2-like responses are indeed present
in Dataset 2, even though they did not reliably emerge through the data-driven clustering
approach. The lower robustness of the Cluster-2-like responses in Dataset 2 could be, in part,
attributable to the lower split-half reliability of Dataset 2 compared to Dataset 1 (compare Figure
6B vs. 6C), as well as the sparser spatial coverage due to the prevalence of depth electrodes
(Figure 6A). For completeness, an analysis of the anatomical trends in Dataset 2 is presented in
Figure S9 (Tables S3 and S4).
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Finally, we estimated the temporal receptive window (TRW) size (as in Section 2) for each
electrode in Dataset 2 (Figure $10). Clusters 1 and 3 (the two clusters that consistently replicated
from Dataset 1), were best described by TRWs of ~4.5 and ~1 words, respectively (Figure S10A-
B), similar to the TRW sizes observed for those clusters in Dataset 1. The TRW of Cluster 2 did not
significantly differ from Cluster 3 when relying on the electrode assignments from the clustering
algorithm with k=3 (where Cluster 2 did not replicate, Methods, Figure 6, Figure S10B, Table S8).
However, using the winner-take-all approach (where a Cluster-2-like response was “pulled out”
into Group 2, Figure S8, Figure S10D), the TRW of Group 2 was ~2.1 words, which significantly
differed from that of Groups 1 and 3 (ps<0.001 comparing TRWs across all pairs of groups,
evaluated using an LME model, Methods, Figure S10C-D, Table S9) and was similar to the TRW
of Cluster 2 from Dataset 1.
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Figure 6 — Dataset 2 k-medoids clustering with k=3. A) The locations of language-responsive (n=362, red;
Methods) and non-language-responsive (n=2,017, black) electrodes across the sixteen participants in Dataset 2 (both
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surface and depth electrodes were implanted). Language-responsive electrodes were found across the cortex, in
both the left and right hemispheres (Table 2). B and C) Response reliability as estimated by correlating responses to
odd and even trials for language-responsive and non-language-responsive electrodes (as in Figure 1D). Language-
responsive electrodes exhibit more reliable responses to linguistic stimuli than non-language-responsive electrodes
for both Dataset 1 (Sentence and Nonword-list conditions only, B) and Dataset 2 (C), however, the responses of
language electrodes were less reliable in Dataset 2 than Dataset 1. D) Clustering mean electrode responses
(concatenated responses to sentences and nonword lists) in Dataset 2 using k-medoids (k=3) with a correlation-
based distance. Shading of the data matrix reflects normalized high-gamma power (70-150Hz). E) Electrodes
visualized on their first two principal components, colored by cluster. F and G) Average timecourse by cluster from
Dataset 1 when using only the Sentence and Nonword-list conditions (F; see Figure S7) and from Dataset 2 (G).
Shaded areas around the signal reflect a 99% confidence interval over electrodes. H) Mean condition responses by
cluster in Dataset 2. Error bars reflect standard error of the mean over electrodes. As with Dataset 1, after averaging
across time, response profiles were not as distinct by cluster, underscoring the importance of temporal information
in elucidating this grouping of electrodes. 1) Evaluation of clusters from Dataset 1 (clustering with Sentence and
Nonword-list conditions only) against clusters from Dataset 2. Clusters 1 and 3 from Dataset 1 replicated in Dataset
2 (p<0.001 and p=0.023, respectively; permutation test; Methods). Although Cluster 2 demonstrated some
qualitative similarity across the two datasets, this similarity was not statistically reliable (p=0.732, permutation test,
Methods).
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Discussion

The nature of the neural computations that support our ability to extract meaning from linguistic
input remains an important open question in the field of language research. Here, we leveraged
the high temporal and spatial resolution of human intracranial recordings to probe the fine
temporal dynamics and the spatial distribution of language-responsive neural populations. We
uncovered three temporal profiles of response during the processing of sentences and
linguistically degraded conditions such as lists of words or nonwords. We suggest that these
profiles differ in the size of their temporal receptive window (TRW)—the amount of temporal
context that affects the neural processing of the current input. Further, we found that electrodes
with distinct response profiles manifest in a scattered spatial distribution across both frontal and
temporal cortices. Below, we contextualize these results with respect to prior empirical work and
discuss their implications for our understanding of human language processing.

Three profiles characterize language-responsive neural populations

In the present study, we used a clustering approach in order to group neural populations (as
measured by intracranial macroelectrodes; note that when we write that ‘electrodes’ exhibit a
response, we are referring to the neural populations that the electrodes are measuring) by their
responses to four types of language stimuli: sentences (S), lists of unconnected words (W),
Jabberwocky sentences (where content words are replaced with pronounceable nonwords; J),
and lists of nonwords (N). We uncovered three dominant response profiles (‘clusters’) that
differed in the presence and timing of the increase (build-up) of neural activity over the course
of a sentence, the degree of locking to individual word/nonword onsets, and the overall
magnitude of response to the linguistically degraded conditions (W, J, and N). Within each
cluster, individual electrodes exhibited highly similar responses, with a small number of
electrodes displaying a mixed response between Clusters 1 and 2. Finally, we found evidence for
each of the three response profiles in an independent dataset that only included two of the four
linguistic conditions (Sentences and Nonword-lists), although Clusters 1 and 3 were more
robustly replicated. Importantly, because we had restricted our analyses to electrodes that show
a functional signature of the language network (a stronger overall response during the processing
of structured and meaningful language stimuli—sentences—than during the processing of
perceptually similar but meaningless and unstructured stimuli—nonword lists; Fedorenko et al.,
2010), these findings provide evidence for functional heterogeneity within the language
network proper, rather than between the language areas and nearby functionally distinct brain
regions, like speech areas (e.g., Overath et al.,, 2015; Keshishian et al., 2023) or higher-level
cognitive networks (e.g., Braga et al., 2020; Fedorenko & Blank 2020; Shain, Paunov, Chen et al.,
2023; see Fedorenko, Ivanova & Regev, in press, for discussion).

The experimental design adopted in the current study has traditionally been used as a way to
tease apart neural responses to word meanings (present in sentences and word lists, but not in
Jabberwocky sentences and nonword lists) and syntactic structure (present in sentences and,
under some views of syntax, in Jabberwocky sentences, but not in word/nonword
lists; Fedorenko et al., 2010, 2012, 2016; for earlier uses of this paradigm, see Mazoyer et al.,
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1993; Friederici et al., 2000; Humphries et al., 2001; Vandenberghe et al., 2002). As measured
with fMRI, all areas of the language network show sensitivity to both word meanings and
syntactic structure: the response is strongest to sentences, lower to word lists and Jabberwocky
sentences, and lowest to nonword lists (e.g., Fedorenko et al., 2010; Bedny et al., 2011; Shain,
Kean et al., in press; Pallier et al., 2011; Desbordes et al., 2023 see Bautista & Wilson, 2016 and
Fedorenko et al.,, 2020 for evidence against the lexical/syntactic dissociation from other
paradigms; see Dick et al., 2001 for earlier arguments and evidence). Using a similar design in an
intracranial recording study, Fedorenko et al. (2016) replicated this overall pattern of response
and also reported a temporal profile—present in a subset of electrodes—whereby high gamma
power builds-up across words over the course of a sentence but not in other conditions
(replicated by Nelson et al., 2017; Desbordes et al., 2023; Woolnough et al., 2023). They
interpreted this build-up effect as indexing the process of constructing a sentence-level meaning.

Here, we investigated the temporal profiles of language-responsive electrodes more
comprehensively. By leveraging the fine-grained temporal information in the signal (i.e.,
considering the full timecourses instead of averaging high gamma power in each word/nonword
as in Fedorenko et al., 2016), we found that the build-up effect reported in Fedorenko et al.
(2016) represents a mix of functionally distinct populations. The timecourse of response to the
Sentence condition in Fedorenko et al. (2016) is most similar to that in Cluster 1 here. However,
a reliable sentences > word lists > Jabberwocky sentences > nonword lists profile in Fedorenko
et al. (2016) suggests a contribution from Cluster 2 neural populations. As such, our analyses
identify two functionally distinct build-up profiles and additionally uncover a third profile, which
does not show build-up of activity over time, and we replicated these results in a new, larger
dataset with a different set of language materials (Dataset 2). Importantly, here we show that
despite strong integration between lexical and syntactic processing, neural populations within
the language network do differ functionally, although along a different dimension—the temporal
scale of information integration.

The response profiles reflect distinct temporal receptive windows

A temporal receptive window (TRW) denotes the amount of the preceding context that a given
neural unit integrates over (e.g., Hasson et al., 2008; Lerner et al., 2011; Norman-Haignere et al.,
2022). Previous studies have demonstrated that cortical neural activity is organized into a
hierarchy of timescales, wherein information over tens to hundreds of milliseconds is encoded
by sensory cortical areas, and information over many seconds is encoded by higher-order areas
(Chaudhuri et al., 2015; Runyan et al., 2017; Murray et al., 2014; Chien et al., 2020). Past fMRI
studies have shown that the TRW of the language network falls somewhere between a word and
a short sentence (e.g., Lerner et al., 2011; Jacoby and Fedorenko, 2020; Blank and Fedorenko,
2020; Jain et al., 2020; Caucheteux et al., 2023; Chang et al., 2022; Shain, Kean et al., in press),
although some work has suggested that language regions are, at least to some degree, sensitive
to sub-lexical regularities (Bozic et al., 2010; Regev et al., 2024). Using a simple instantiation of
an information processing system—with one (interpretable) free parameter: the length of past
stimulus context—we estimated the TRW of different language-responsive neural populations.
Based on this analysis, we argue that our observed response profiles differ in their timescale of
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information processing, from sub-lexical units and single words (Cluster 3) to short phrases
(Cluster 2) to longer phrases/sentences (Cluster 1).

Do the observed response profiles reflect categorically distinct clusters that integrate
information over different timescales, or is the underlying structure of language-selective
responses in the brain best described by a continuum of TRWs with no sharp boundaries or
groupings of response types? Although we do not rule out the possibility of a TRW continuum,
our data are well explained by the grouping of responses into three categories. A few electrodes
do exhibit a "mixed” response profile, falling somewhere between the prototypical Cluster 1 and
Cluster 2 responses, but this mixing could be due to these electrodes picking up activity of
multiple neural populations. Recordings at a higher spatial resolution would be needed to
evaluate this possibility (e.g., Paulk et al., 2022; Leonard, Gwilliams et al., 2023). Nevertheless,
the current data suggest the existence of neural populations within the language network that
are sensitive to information chunks of distinct and specific size. This functional organization is
presumably driven by the statistics of natural language and is likely critical for efficient extraction
of meaning from language (see Future directions).

To estimate the TRW values, we made several simplifying assumptions that can be revisited in
future studies. First, we have discussed TRWs in terms of the number of words. However, natural
languages vary substantially in how they package information into words (Evans & Levinson,
2009) and the processing of a given word is highly dependent on how informative the word is in
context (e.g., Shannon, 1949; for behavioral evidence, see Levy, 2008b; Shain et al., 2024). As a
result, TRWs may instead be bounded by the number of bits of information. Future work should
evaluate multiple accounts of the units in which TRWs are measured. The second simplifying
assumption we made was that TRWs are fixed in size. Much recent evidence suggests that human
comprehension mechanisms can flexibly accommodate corrupt linguistic input, e.g., due to
speech errors (e.g., Levy, 2008a; Gibson et al., 2013; Gibson et al., 2017; Keshev & Meltzer-
Asscher, 2021; Ryskin et al., 2018, 2021; see Gibson et al., 2019 for a review), which may make it
desirable for TRWs to be somewhat adaptable to allow for the possibility of continuously revising
one’s interpretation of the input. Future work should seek to understand if and how the TRW of
a specific neural population can be affected by linguistic context. And third, the response function
(kernel) that we used to generate the simulated signals was intentionally simple and is likely not
consistent with the underlying neurophysiology (see Methods for details). A model that is more
faithful to neurobiological principles may better capture the observed neural responses and such
models should be explored in future work.

Finally, our toy TRW model currently does not take into account the form and content of the
stimulus, as it does not use any linguistic information to generate responses. However, responses
of neural populations in the language network are highly sensitive to stimulus properties. One
key modulator of response strength is how well the stimulus matches natural language statistics,
as evidenced by both condition-level effects (e.g., sentences > word lists; Fedorenko et al., 2010)
and fine-grained preferences for particular linguistic strings (Tuckute et al., 2024). A more
complete model of language processing should therefore include both “gating” of linguistic input
into different lengths of effective input (defined by a neural population’s TRW) and a scaling of
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the neural response by the effective input’s probability. This idea—that responses of neural
populations in the language network reflect the probability of linguistic inputs at variable context
lengths due to their TRW—may explain why the Sentence and Word-list conditions were best
discriminated by Cluster 1 populations. In particular, Cluster 1 populations have the longest TRW,
and the linguistic difference between sentences and word lists becomes more apparent over
longer timescales (as we demonstrated for our stimuli using n-gram probabilities, Figure S5). We
leave more thorough exploration of stimulus-dependent accounts of the computations carried
out by the language network to future work (see Future directions).

The spatially distributed nature of language processing

There is a long history in language neuroscience of attempts to divide language comprehension
into both temporally distinct stages and spatially distinct components. At some level, language
comprehension can indeed be broken up across time and space. In particular, clear separation
exists between the language-processing system (Fedorenko et al., 2011) and both i) lower-level
perceptual areas, and ii) higher-level cognitive areas (see Fedorenko, lvanova & Regeyv, in press,
for a review). The lower-level perceptual areas, such as the speech perception area (Norman-
Haignere et al., 2015; Overath et al., 2015; Keshishian et al. 2023) and the visual word-form area
(e.g., Baker et al., 2007; Hamamé et al., 2013; Saygin et al., 2016), process information earlier
than—and likely provide input to—the language network. And higher-level cognitive areas, such
as the areas of the Default network (Buckner & DiNicola, 2019) or the Theory of Mind network
(Saxe et al., 2006), process information later than—and likely receive input from—the language
network. These latter areas plausibly carry out further processing on the meaning
representations extracted from language, including connecting those meaning representations
across long spans of time (e.g., Lerner et al., 2011; Baldassano et al., 2017; 2018). However,
discovering spatial subdivisions within the language-selective network proper has proven
challenging (e.g., Fedorenko et al., 2010, 2020; Bautista & Wilson, 2016; Blank & Fedorenko,
2020; Shain, Kean et al., in press).

The current work demonstrates that there exist functional differences within the language
network, but functionally distinct populations do not seem to exhibit strong spatial clustering and
are instead distributed in an interleaved fashion across the language network. The latter explains
why most past fMRI work could not reveal this functional heterogeneity (cf. Fedorenko et al.,
2012 for implied functional heterogeneity based on multivariate patterns of fMRI response; and
see Jain et al., 2020 for evidence of voxel-level heterogeneity with respect to TRWs as discovered
in an encoding approach with artificial neural network language models). This architectural
design makes it possible for each area of the network to have access to information at different
timescales, which likely makes language processing efficient and robust. A clear exception in our
data is the concentration of Cluster 3 (shortest-TRW) electrodes in the posterior superior
temporal gyrus, which may suggest that this area serves a unique computational role within the
language network (see Wilson et al., 2023 and Shain, Kean et al., in press, for other recent
evidence of the special role of this area); however, we cannot rule out the possibility that these
electrodes are picking up some activity from the nearby speech areas (e.g., Overath et al., 2015).
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We also acknowledge that a macro-scale organization could become more evident with more
participants and a more systematic coverage of the frontal and temporal cortex.

Future directions

The current findings lay the foundation for several exciting future research avenues. First, the
size of a neural unit’s temporal receptive window (TRW) should determine its sensitivity to
different linguistic features. As noted above, one limitation of the current investigation is the
focus on condition-level differences, rather than trying to explain fine-grained responses to
individual linguistic items. The reason for this choice is two-fold. To start, the current linguistic
materials were not constructed with the goal of investigating linguistic (e.g., lexical and syntactic)
features: in order to make the materials easy to process for diverse populations, the sentences
were constructed to be short and to use common structures and words, which limits the range
of variability to be explored. And additionally, we did not observe reliable stimulus-related
activity (beyond the level of conditions; see OSF osf.io/xfbr8/). However, the TRW-based
framework makes clear predictions that can be evaluated in future work. For example, short-
TRW populations should show greater sensitivity to lexical features, such as word frequencies,
whereas longer-TRW populations should be more sensitive to linguistic features at longer
timescales, such as higher-order n-gram frequencies and syntactic-structure-related features.
Because many linguistic features are strongly inter-correlated in naturalistic language materials
(e.g., Piantadosi et al., 2011; Shain, Blank et al., 2020; Shain et al., 2022; see OSF osf.io/xfbr8/ for
evidence of inter-correlation of linguistic features in the current stimuli), evaluating these
predictions will require constructing materials that are specifically designed to best dissociate
different linguistic dimensions.

Second, artificial neural network (ANN) language models—which have proven to be powerful
tools for understanding the human language system (Toneva & Wehbe, 2019; Jain et al., 2020;
Schrimpf et al., 2021; Goldstein et al., 2022; Caucheteux & King, 2022; see Tuckute et al., in press,
for a review)—could be leveraged to gain insights into the constraints on the language processing
architecture. For example, do successful language architectures require particular proportions of
units with different TRWs or particular distributions of such units within and/or across model
layers? In Dataset 1, we found the fewest electrodes belonging to Cluster 3 (shortest TRW), more
electrodes belonging to Cluster 2 (intermediate TRW), and the majority of electrodes belonging
to Cluster 1 (longest TRW). These proportions align with the idea that compositional semantic
space is highly multi-dimensional, but word-form information can be represented in a relatively
low-dimensional space (e.g., Mollica and Piantadosi, 2019). However, the proportions can also
be affected by biases in where intracranial electrodes tend to be implanted, so investigating these
guestions in ANNs, where we can probe all units in the network and have the freedom to alter
the architecture in various ways, may yield insights that cannot be gained from human brains at
least with the current experimental tools available.

And third, we have here focused on language comprehension. However, the same language

network also supports language production (Awad et al., 2007; Menenti et al. 2011; Segaert et
al. 2012; Silbert et al., 2014; Giglio et al., 2022; Hu, Small et al., 2022). Whether the TRW-based

23


https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522216; this version posted April 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

organization discovered here in a language comprehension task applies to language production—
given that utterance planning is known to unfold at multiple scales (e.g., Lee et al., 2013)—
remains to be determined.

In conclusion, across two intracranial-recording datasets, we here demonstrate the existence of
functionally distinct neural populations within the fronto-temporal language-selective network
proper, opening the door to investigations of how these populations work together to accomplish
the incredible feats of language comprehension and production.
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Methods

Participants

Dataset 1 (also used in Fedorenko et al., 2016): Electrophysiological data were recorded from
intracranial electrodes in 6 participants (5 female, aged 18-29 years) with intractable epilepsy.
These participants underwent temporary implantation of subdural electrode arrays at Albany
Medical Center to localize the epileptogenic zones and to delineate it from eloquent cortical
areas before brain resection. All participants gave informed written consent to participate in the
study, which was approved by the Institutional Review Board of Albany Medical Center. One
further participant was tested but excluded from analyses because of difficulties in performing
the task (i.e., pressing multiple keys, looking away from the screen) during the first five runs.
After the first five runs, the participant required a long break during which a seizure occurred.

Dataset 2: Electrophysiological data were recorded from intracranial electrodes in 16 participants
(4 female, aged 21-66 years) with intractable epilepsy. These participants underwent temporary
implantation of subdural electrode arrays and depth electrodes to localize the epileptogenic
zones before brain resection at one of four sites: Albany Medical Center (AMC), Barnes-Jewish
Hospital (BJH), Mayo Clinic Jacksonville (MCJ), and St. Louis Children’s Hospital (SLCH). All
participants gave informed written consent to participate in the study, which was approved by
the Institutional Review Board at each relevant site. Two further participants were tested but
excluded from analyses due to the lack of any language-responsive electrodes (see Language-
Responsive Electrode Selection).

Data Collection

Dataset 1: The implanted electrode grids consisted of platinum-iridium electrodes that were 4
mm in diameter (2.3—3 mm exposed) and spaced with an inter-electrode distance of 0.6 or 1 cm.
The total numbers of implanted grid/strip electrodes were 120, 128, 98, 134, 98, and 36 for the
six participants, respectively (Table 1). Electrodes were implanted in the left hemisphere for all
participants except P6, who had bilateral coverage (16 left hemisphere electrodes). Signals were
digitized at 1,200 Hz.

Dataset 2: The implanted electrode grids and depth electrodes consisted of platinum-iridium
electrodes. Implanted grid contacts were spaced at 0.6 or 1cm (2.3—3 mm exposed), while SEEG
leads were spaced 3.5 - 5 mm depending on the trajectory length, with 2 mm exposed. The total
numbers of implanted electrodes by participant can be found in Table 2 (average=167 electrodes;
st. dev.=51; range 92-234), along with the frequencies at which the signals were digitized.
Electrodes were implanted in only the left hemisphere for 2 participants, in only the right
hemisphere for 2 participants, and bilaterally for 12 participants (Table 2). All participants,
regardless of the lateralization of their coverage, were included in all analyses.

For both datasets, recordings were synchronized with stimulus presentation and stored using the
BCI2000 software platform (Schalk et al., 2004).

25


https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522216; this version posted April 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cortical Mapping

Electrode locations were obtained from post-implantation computerized tomography (CT)
imaging and co-registered with the 3D surface model of each participant’s cortex—created from
the preoperative anatomical MRI image—using the VERA software suite (Adamek et al., 2022).
Electrode locations were then transformed to MNI space within VERA via nonlinear co-
registration of the subjects’ skull-stripped anatomical scan and the skull-stripped MNI152
Freesurfer template using ANTs (Avants et al., 2008).

Preprocessing and Extraction of Signal Envelope

Neural recordings were collected and saved in separate data files by run (see Experiment and
Tables 1-2), and all preprocessing procedures were applied within data files to avoid inducing
artifacts around recording breaks.

First, the ECoG/sEEG recordings were high-pass filtered at the frequency of 0.5 Hz, and line noise
was removed using IIR notch filters at 60, 120, 180, and 240 Hz. The following electrodes were
excluded from analysis: a) ground, b) reference, and c) those that were not ECoG or sEEG contacts
(e.g., microphone electrodes, trigger electrodes, scalp electroencephalography (EEG) electrodes,
EKG electrodes), as well as d) those with significant line noise, defined as electrodes with line
noise greater than 5 standard deviations above other electrodes, e) those with large artifacts
identified through visual inspection, and, for all but four participants, f) those that had a
significant number of interictal discharges identified using an automated procedure (Janca et al.,
2015). (For 4 participants—P3 in Dataset 1 and P15, P17, and P21 in Dataset 2—electrodes that
were identified as having a significant number of interictal discharges were not excluded from
analyses because more than 1/3 of each of these participants’ electrodes fit this criterion.) These
exclusion criteria left 108, 115, 92, 106, 93, and 36 electrodes for analysis for the 6 participants
in Dataset 1 (Table 1) and between 76 and 228 electrodes for the 16 participants in Dataset 2
(Table 2).

Next, the common average reference (from all electrodes connected to the same amplifier) was
removed for each timepoint separately. The signal in the high gamma frequency band (70 Hz—
150 Hz) was then extracted by taking the absolute value of the Hilbert transform of the signal
extracted from 8 gaussian filters (center frequencies: 73, 79.5, 87.8, 96.9, 107, 118.1, 130.4, and
144; standard deviations (std): 4.68, 4.92, 5.17, 5.43, 5.7, 5.99, 6.3, and 6.62, respectively, as in
e.g., Dichteretal., 2018). The resulting envelopes from each of the Gaussian filters were averaged
into one high gamma envelope. We focus on the high gamma frequency range because this
component of the signal has been shown to track neural activity most closely (e.g., Janca et al.,
2015). Linear interpolation was used to remove data points whose magnitude was more than 5
times the 90" percentile of all magnitudes (Norman-Haignere et al., 2022), and we downsampled
the signal by a factor of 4. For all data analysis basic Matlab (version 2021a) functions were used.

Finally, the data were z-scored and normalized to a min/max value of 0/1 to allow for
comparisons across electrodes, and the signal was downsampled further to 60 Hz (regardless of
the participant’s native sampling frequency) to reduce noise and standardize the sampling
frequency across participants. For the participants who performed a slower version of the
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paradigm (e.g., words presented for 700 ms each; see Experiment), the signal was time-warped
to a faster rate (words presented for 450 ms each) so that timecourses could be compared across
subjects. This time-warping was done by resampling (Matlab procedure resample).

Experiment

Dataset 1: In an event-related design, participants read sentences, lists of words, Jabberwocky
sentences, and lists of nonwords. All stimuli were eight words/nonwords long. The materials
were adapted from Fedorenko et al. (2010; Experiment 2) and the full details of stimulus
construction are described there. In short, sentences were manually constructed to cover a wide
range of topics using various syntactic structures. Sentences were intended to be easily read, to
fit participants with diverse clinical conditions and only included mono- and bi-syllabic words.
The full list of materials is available at OSF (https://osf.io/xfbr8/). The word lists were created by
scrambling the words from the sentences. Jabberwocky sentences were created from the
sentences by removing content words (e.g., nouns, verbs, etc.), but leaving the syntactic frame,
consisting of function words (e.g., articles, conjunctions, prepositions, pronouns, etc.), intact.
Content words were replaced with other pronounceable nonwords, matched for length (in
syllables). Lastly, the nonword lists were generated from scrambling the words/nonwords from
the Jabberwocky condition. Originally, a set of 160 items per each condition were created and
here, 80 or 60 items of those were used (depending on stimulus presentation rate, as detailed
below).

Each event (trial) consisted of eight words/nonwords, presented one at a time at the center of
the screen. At the end of each sequence, a memory probe was presented (a word in the Sentence
and Word-list conditions, and a nonword in the Jabberwocky and Nonword-list conditions) and
participants had to decide whether the probe appeared in the preceding sequence by pressing
one of two buttons. Two different presentation rates were used: P1, P5, and P6 viewed each
word/nonword for 450 ms (fast-timing), and P2, P3, and P4 viewed each word/nonword for 700
ms (slow-timing). The presentation speed was determined before the experiment based on the
participant’s preference. After the last word/nonword in the sequence, a fixation cross was
presented for 250 ms, followed by the probe item (1,400-ms fast-timing, 1,900 ms slow-timing),
and a post-probe fixation (250 ms). Behavioral responses were continually recorded, but only
responses 1 second before and 2 seconds after the probe were considered for calculating
behavioral performance (Table 3). Participants performed best on the sentence trials and worst
on the nonword list trials, with an average accuracy across all conditions of 81.01% (Table 3).
After each trial, a fixation cross was presented for a variable amount of time, semi-randomly
selected from a range of durations from 0 to 11,000 ms, to obtain a low-level baseline for neural
activity.

Trials were grouped into runs to give participants short breaks throughout the experiment. In the
fast-timing version of the experiment, each run included eight trials per condition and lasted 220
s, and in the slow-timing version, each run included six trials per condition and lasted 264 s. The
total amount of intertrial fixation in each run was 44 s for the fast-timing version and 72 s for the
slow-timing version. All participants completed 10 runs of the experiment, for a total of 80 trials
per condition in the fast-timing version and 60 trials per condition in the slow-timing version. P1
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was accidentally shown one run twice, and consequently saw only 9 unique runs for a total of 72
trials per condition (as they opted for the fast presentation rate).

Dataset 2: In an event-related design that was similar to the one used in Dataset 1, participants
read sentences and lists of nonwords (the other two conditions—lists of words and Jabberwocky
sentences—were not included). The materials were adapted from a version of the language
localizer in use in the Fedorenko lab (e.g., Lipkin et al., 2022). The sentences came from a
language corpus (Brown corpus; Kucera et al., 1967) where we searched for 12-word long
sentences and chose a diverse set among those. The nonwords were created using the Wuggy
software to match to the words from the sentences on low-level phonology.

Each event (trial) consisted of twelve words/nonwords, presented one at a time at the center of
the screen. At the end of each sequence, a memory probe was presented (a word in the Sentence
condition and a nonword in the Nonword-list condition) and participants had to decide whether
the probe appeared in the preceding sequence by pressing one of two buttons. Two presentation
rates were used: 600 ms per word/nonword (medium-timing) and 750 ms per word/nonword
(slow-timing; see Table 2 for a description of the presentation rates by participant). The
presentation speed was determined before the experiment based on the participant’s
preference. After the last word/nonword in the sequence, a fixation cross was presented for 400
ms, followed by the probe item (1,000 ms for both fast- and slow-timing), and a post-probe
fixation (600 ms). Behavioral responses were continually recorded, but only responses 1 second
before and 2 seconds after the probe were considered for calculating behavioral performance
(Table 4). As in Dataset 1, participants performed best on the sentence trials and worse on the
nonword-list trials. However, in this sample of participants there was substantial individual
variability in the consistency and accuracy of responses (Table 4). On average participants
provided a correct response 68.57% of the time (Table 4). After each trial, a fixation cross was
presented for a variable amount of time, semi-randomly selected from a range of durations from
0 to 6,000 ms.

Trials were grouped into runs to give participants short breaks throughout the experiment. In the
medium-timing version of the experiment, each run included 36 trials per condition and lasted
~898 s, and in the slow-timing version, each run included 24 trials per condition and lasted 692
s. The total amount of intertrial fixation in each run was 216 s for the medium-timing version and
144 s for the slowest-timing version. One participant (P7) saw a modified slow-timing version of
the paradigm where only 48 of the full 72 items per condition were shown. 13 participants
completed 2 runs of the experiment (all saw the medium-timing version, 72 trials per condition),
2 participants completed 3 runs of the experiment (one saw the slow-timing version, 72 trials per
condition; and the other saw the modified slow-timing version, 48 trials per condition), and 1
participant completed 1 run of the experiment (medium-timing version, 36 trials per condition,
Table 2).

For all clustering analyses, only the first eight words/nonwords of the stimulus were used to
ensure that the length of the timecourses being analyzed was the same across Dataset 1 and 2.
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Language-Responsive Electrode Selection

In both datasets, we identified language-responsive electrodes as electrodes that respond
significantly more (on average, across trials) to sentences (the S condition) than to perceptually
similar but linguistically uninformative (i.e., meaningless and unstructured) nonword sequences
(the N condition). First, the envelope of the high-gamma signal was averaged across
word/nonword positions (8 positions in the experiment used in Dataset 1, and 12 positions in the
experiment used in Dataset 2) to construct an ‘observed’ response vector for each electrode (1 x
nTrialsS + nTrialsN; the number of trials, across the S and N conditions, varied by participant
between 72 and 160). The observed response vector was then correlated (using Spearman’s
correlation) with an ‘idealized’ language response vector, where sentence trials were assigned a
value of 1 and nonword trials—a value of -1. The values in the ideal response vector were then
randomly permuted without replacement and a new correlation was computed. This process was
repeated 10,000 times, for each electrode separately, to construct a null distribution (with
shuffled labels) relative to which the true correlation between the observed values and the
‘idealized’ values could be evaluated. Electrodes were determined to be language-responsive if
the observed vs. idealized correlation was greater than 95% of the correlations computed using
the permuted idealized response vectors (equivalent to p < 0.05). (We chose a liberal significance
threshold in order to maximize the number of electrodes to be included in the critical analyses,
and to increase the chances of discovering distinct response profiles.) The majority of the
language-responsive electrodes (98.3% in Dataset 1, 53.9% in Dataset 2) fell in the left
hemisphere, but we use electrodes across both hemispheres in all analyses (see e.g., Lipkin et al.,
2022 for evidence of a robust right-hemisphere component of the language network in a dataset
of >800 participants).

Participants Age Sex Site ECoG Language- Total clean | Total Native Elec Runs | Pres. rate Trials
or responsive electrodes electrodes sampling per (per word) per
SEEG electrodes freq (Hz) amp cond
(S>N)
Participant 1 29 F AMc ECoG 62 (0 RH) 108 (0 RH) 120 (0 RH) 1200 16 10 450ms 80
Participant 2 25 F AMc ECoG 17 (0 RH) 115 (0 RH) 128 (0 RH) 1200 16 10 700ms 60
Participant 3 18 F AMc ECoG 17 (0 RH) 92 (0 RH) 98 (0 RH) 1200 16 10 700ms 60
Participant 4 28 M AMc ECoG 26 (0 RH) 106 (0 RH) 134 (0 RH) 1200 64 10 700ms 60
Participant 5 25 F AMc ECoG 48 (0 RH) 93 (0 RH) 98 (0 RH) 1200 64 10 450ms 80
Participant 6 20 F AMc ECoG 7 (3RH) 36 (20 RH) 36 (20 RH) 1200 64 10 450ms 80

Table 1 — Details for Dataset 1. (All data were collected at the Albany Medical Center (Site=AMC).) Here and
in Table 2, ‘Total electrodes’ excludes reference electrodes, ground electrodes, microphone electrodes, trigger
electrodes, skull EEG electrodes, and EKG electrodes; and ‘Total clean electrodes’ excludes electrodes with
significant line noise, significant interictal discharges, or large visual artifacts identified through manual inspection.
‘Elec per amp’ — Number of electrodes per amplifier. ‘Pres rate (per word)’ — duration of presentation of each single
word or nonword.

Participant Age Sex | Site ECoG Language- Total clean Total Native Elec Runs | Presrate Trials
or responsive | electrodes electrodes sampling per (per word) | per
SEEG electrodes freq (Hz) amp cond
(S>N)
Participant 7 51 M AMc ECoG 14 (7 RH) 116 (25 RH) 126 (26 RH) 1200 64 3 750ms 48
Participant 8 30 F AMC | both 18 (0 RH) 76 (1 RH) 92 (3 RH) 1200 64 3 750ms 72
Participant 9 31 M AMC | sEEG 2 (1RH) 90 (44 RH) 98 (52 RH) 1200 64 2 600ms 72
Participant 10 | 59 F AMC | sEEG 2 (0 RH) 113 (0 RH) 124 (0 RH) 1200 64 2 600ms 72
Participant 11 | 23 M AMc ECoG 58 (33 RH) 209 (110 RH) 216 (110 RH) 1200 64 2 600ms 72
Participant 12 | 39 M AMC | sEEG 5 (5 RH) 112 (112 RH) 128 (128 RH) 1200 64 2 600ms 72
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Participant 13 | 29 M AMc ECoG 9 (ORH) 126 (0 RH) 132 (0 RH) 1200 64 2 600ms 72
Participant 14 | 36 M AMC | sEEG 3 (2 RH) 169 (84 RH) 184 (90 RH) 1200 64 2 600ms 72
Participant 15 | 25 M BJH SEEG 19 (16 RH) 183 (93 RH) 183 (93 RH) 1000 64 2 600ms 72
Participant 16 | 38 M BJH SEEG 49 (15 RH) 169 (72 RH) 224 (112 RH) 1000 64 2 600ms 72
Participant 17 | 31 F BJH SEEG 17 (0 RH) 228 (30 RH) 228 (30 RH) 1000 64 2 600ms 72
Participant 18 | 40 M BJH SEEG 35 (5RH) 137 (11 RH) 192 (14 RH) 1000 64 2 600ms 72
Participant 19 | 66 M BJH SEEG 32 (1RH) 210 (13 RH) 234 (16 RH) 2000 64 2 600ms 72
Participant 20 | 24 M BJH SEEG 7 (ORH) 156 (30 RH) 218 (30 RH) 2000 64 2 600ms 72
Participant 21 | 39 M MmcJ SEEG 11 (1 RH) 108 (45 RH) 109 (45 RH) 1200 64 1 600ms 36
Participant 22 | 21 F SLCH | sEEG 81 (81 RH) 176 (176 RH) 186 (186 RH) 2000 64 2 600ms 72

Table 2 — Details for Dataset 2. (The data were collected at four sites: Albany Medical Center (Site=AMC),
Barnes-Jewish Hospital (Site=BJH), Mayo Clinic Jacksonville (Site=MCJ), and St. Louis Children’s Hospital (Site=SLCH)).

Participant Trials responded | Sentences Word lists Jabberwocky Nonword lists All conditions
Participant 1 99.69% 97.50% 91.25% 81.01% 78.48% 87.11%
Participant 2 99.17% 100.00% 91.67% 88.33% 72.88% 88.24%
Participant 3 100.00% 100.00% 93.33% 90.00% 78.33% 90.42%
Participant 4 100.00% 100.00% 86.67% 81.67% 71.67% 85.00%
Participant 5 98.75% 45.00% 65.82% 49.37% 52.56% 53.16%
Participant 6 96.25% 93.59% 89.61% 76.62% 68.42% 82.14%
average 98.98% 89.35% 86.39% 77.83% 70.39% 81.01%

Table 3 — Behavioral results for Dataset 1. Percentage of trials where participants in Dataset 1 responded
and their accuracy on completed trials.

Participant Trials responded | Sentences Nonword lists All conditions
Participant 7 79.17% 70.00% 75.00% 72.37%
Participant 8 95.83% 88.41% 81.16% 84.78%
Participant 9 45.83% 50.00% 57.69% 53.03%
Participant 10 | 98.61% 94.44% 65.71% 80.28%
Participant 11 | 16.67% 40.00% 44.44% 41.67%
Participant 12 | 99.31% 93.06% 64.79% 79.02%
Participant 13 | 86.81% 83.87% 76.19% 80.00%
Participant 14 | 99.31% 97.18% 79.17% 88.11%
Participant 15 | 95.14% 71.01% 55.88% 63.50%
Participant 16 | 0.69% 0.00% 0.00% 0.00%
Participant 17 | 83.33% 95.16% 79.31% 87.50%
Participant 18 | 90.97% 92.65% 76.19% 84.73%
Participant 19 | 100.00% 94.44% 83.33% 88.89%
Participant 20 | 34.72% 57.14% 36.36% 48.00%
Participant 21 | 52.78% 46.15% 64.00% 57.89%
Participant 22 | 98.61% 91.55% 83.10% 87.32%
average 73.61% 72.82% 63.90% 68.57%

Table 4 — Behavioral results for Dataset 2. Percentage of trials where participants in Dataset 2 responded
and their accuracy on completed trials.

Clustering analysis

Using Dataset 1 (n=6 participants, m=177 language-responsive electrodes), we created a single
timecourse per electrode by concatenating the average timecourses across the four conditions
(sentences (S), word lists (W), Jabberwocky sentences (J), nonword lists (N)). All the timepoints
of the concatenated timecourses (864 data points: 60 Hz * 4 conditions * 3.60 seconds per trial
after resampling) served as input to a k-medoids clustering algorithm (Kaufman & Rousseuw,
1990). K-medoids is a clustering technique that divides data points—electrodes in our case—into
k groups, where k is predetermined. The algorithm attempts to minimize the distances between
each electrode and the cluster center, where cluster centers are represented by ‘medoids’
(exemplar electrodes selected by the algorithm) and the distance metric is correlation-based. K-
medoids clustering was chosen over the more commonly used k-means clustering to allow for
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the use of a correlation-based distance metric as we were most interested in the shape of the
timecourses over their scale which can vary due to cognitively irrelevant physiological differences
(but see Figure S1 for evidence that similar clusters emerge with a k-means clustering algorithm
using a Euclidean distance).

Optimal number of clusters

To determine the optimal number of clusters, we used the “elbow” method (e.g., Rokach and
Maimon, 2005) which searches for the value of k above which the increase in explained variance
becomes more moderate. For each k (between 2 and 10), k-medoids clustering was performed,
and explained variance was computed as the sum of the correlation-based distances of all the
electrodes to their assigned cluster center and normalized to the sum of the distances for k=1
(equivalent to the variance of the full dataset). This explained variance was plotted against k and
the “elbow” was determined as the point after which the derivative became more moderate. We
plot the derivative of this curve as well for easier inspection of the transition point. We also
repeat the elbow method while enforcing a parametrically sampled reliability threshold (from
0.1 to 0.4 in increments of 0.1) to further examine our choice of k. If the chosen k does, in fact,
appropriately describe the data, we would expect the strength of the elbow (that is, the drop in
explained variance for k+1) to increase.

Partial correlation of individual electrodes with each of the cluster medoids

To evaluate the extent to which the observed responses can be attributed to a single profile, we
computed partial correlations (Fisher, 1924) of every electrode’s mean timecourse with that of
each of the cluster medoids, while controlling for the other two cluster medoids. For instance,
take 751c1.c2¢c3 as the partial correlation between a signal s1 and Cluster 1 medoid C1, while
controlling for the Cluster 2 medoid €2 and Cluster 3 medoid C3. 7511 c2¢c3 €an be computed by,
i) performing a multiple regression analysis with s1 as the dependent variable and C2 and C3 as
the independent variables, obtaining the residual e1; ii) performing a multiple regression analysis
with C1 as the dependent variable and C2 and C3 as the independent variable, obtaining the
residual e2; and iii.) calculating the correlation coefficient between the residuals el and e2. This
is the partial correlation 7511 c2c3- The analysis was performed using the Matlab partialcorr
function.

Cluster stability across trials

We evaluated the stability of the clustering solution by performing the same clustering procedure
as described above (Clustering analysis) on half the trials. To evaluate the similarity of the clusters
derived based on only half of the trials to the clusters derived based on all trials, we first had to
determine how clusters correspond between any two solutions. In particular, given that the
specific order of the clusters that the k-medoids algorithm produces depends on the (stochastic)
choice of initial cluster medoids, the electrodes that make up Cluster 1 in one solution may be
labeled as Cluster 2 in another solution. To determine cluster correspondence across solutions,
we matched the cluster centers (computed here as the average timecourse of all electrodes in a
given cluster) from a solution based on half of the trials to the most highly correlated cluster
centers from the solution based on all trials.
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We then conducted a permutation analysis to statistically compare the clustering solutions. This
was done separately for each of the two halves of the data (odd- and even-numbered subsets of
trials). Under the null hypothesis, no distinct response profiles should be detectable in the data,
and consequently, responses in one electrode should be interchangeable with responses in
another electrode. Using half of the data, we shuffled average responses across electrodes
(within each condition separately, thus disrupting the relationship between the conditions for a
given electrode while leaving the distribution of within-condition average responses intact), re-
clustered the electrodes into 3 clusters, and then correlated the resulting cluster centers to the
‘corresponding’ cluster centers from the full dataset. This permutation test was determined to
be more conservative than shuffling individual trials across electrodes (within each condition
separately). However, comparisons remained significant when shuffling individual trials. We
repeated this process 1,000 times to construct a null distribution of the correlations for each of
the 3 clusters. These distributions were used to calculate the probability that the correlation
between the clusters across the two solutions using the actual, non-permuted data was higher
than would be expected by chance.

Cluster robustness to data loss
We evaluated the robustness of the clustering solution to loss of electrodes to ensure that the
solution was not driven by particular electrodes or participants.

To evaluate the similarity of the clusters derived based on only a subset of language-responsive
electrodes to the clusters derived based on all electrodes, we progressively removed electrodes
from the full set (n=177) until only 3 electrodes remained (the minimal number of electrodes
required to split the data into 3 clusters) in increments of 5. Each subset of electrodes was
clustered into 3 clusters, and the cluster centers were correlated with the corresponding cluster
centers (see section Cluster stability across trials above) from the full set of electrodes. For each
subset of electrodes, we repeated this process 100 times, omitting a different random set of n
electrodes with replacement, and computed the average correlation across repetitions.

To statistically evaluate whether the clustering solutions with only a subset of electrodes were
more similar to the solution on the full set of electrodes on average (across the 100 repetitions
at each subset size) than would be expected by chance, we conducted a permutation analysis like
the one described in Cluster stability across trials. In particular, using the full dataset, we shuffled
average responses across electrodes (within each condition separately), re-clustered the
electrodes into 3 clusters, and then correlated the resulting cluster averages to cluster averages
from the actual, non-shuffled data. We repeated this process 1,000 times to construct a null
distribution of the correlations for each of the 3 clusters. These distributions were used to
calculate the probability that the correlation between the clusters across the two solutions using
the actual, non-permuted data (a solution on all the electrodes and a solution on a subset of the
electrodes) was higher than would be expected by chance. To err on the conservative side, we
chose the null distribution for the cluster with the highest average correlation in the permuted
version of the data. For each subset of electrodes, if the average correlation (across the 100
repetitions) fell below the 95" percentile of the null distribution, this was taken to suggest that
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the clustering solution based on a subset of the electrodes was no longer more correlated to the
solution on the full set of electrodes than would be expected by chance.

Electrode locking to onsets of individual word/nonwords

To estimate the degree of stimulus locking for each electrode and condition separately, we fitted
a sinusoidal function that represented the stimulus train to the mean of the odd trials and then
computed the Pearson correlation between the fitted sinusoidal function and the mean of the
even trials. For the sinusoidal function fitting, we assumed that the frequency of the sinusoidal
function was the frequency of stimulus presentation and we fitted the phase, amplitude and
offset of the sinusoid by searching parameter combinations that minimized the sum of squared
differences between the estimated sinusoidal function and the data. Cross-validation (fitting on
odd trials and computing the correlation on even trials) ensured non-circularity. To statistically
guantify differences in the degree of stimulus locking between the clusters and among the
conditions, we ran a linear mixed-effects (LME, using the Matlab procedure fitime) model
regressing the locking values of all electrodes and conditions on the fixed effects categorical
variable of cluster (with 3 levels for Cluster 1, 2 or 3 according to which cluster each electrode
was assigned to) and condition (with 4 levels for conditions S, W, J, N), both grouped by the
random effects variable of participant, as well as a fixed interaction term between cluster and
condition:

Locking ~ 1 + cluster*condition + (cluster [ participant) + (condition [ participant)

An ANOVA test for LME was used to determine the main effects of cluster and condition and their
interaction. Pairwise comparisons of all 3 clusters and 4 conditions as well as interactions
between all (cluster, condition) pairs were extracted from the model estimates.

Electrode discrimination between conditions

To examine the timecourse of condition divergence, as quantified by the electrodes’ ability to
linearly discriminate between the magnitudes of pairs of conditions. We focused on condition
pairs that critically differ in their engagement of particular linguistic processes: conditions S and
W, which differ in whether they engage combinatorial (syntactic and semantic) processing
(S=yes, W=no), conditions W and N, which differ in whether they engage word meaning
processing (W=yes, N=no), and conditions J and N, which differ in whether they engage syntactic
processing (J=yes, N=no). This analysis tests how early the relevant pair of conditions reliably
diverge and the strength of that divergence. For every electrode, the mean response to the three
conditions of interest (S, W, and N) was averaged across 100 ms bins with a 100 ms sliding
window. For each cluster separately, a binary logistic classifier (selected from the best of 20
random instantiations; performed using the Matlab fitclinear function) was trained (to
discriminate S from W, W from N, or J from N) at each time bin using the binned neural signal up
to, and including, that time bin. Each classifier was trained using 10-fold cross validation (train on
90% of the data and test using the remaining 10%, repeated for 10 splits of the data such that
every observation was included in the test set exactly once). The predicted and actual conditions
across all folds were used to calculate accuracy (the percent of mean responses from all
electrodes in a particular cluster correctly classified as S/W, W/N, or J/N). The performance of
the model at a given time bin was statistically evaluated using a cluster permutation test to
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control for multiple comparisons and account for the autocorrelation structure of the signals
(Stelzer et al., 2013; Maris & Oostenveld, 2007). This was done by shuffling the condition labels
1000 times for each time bin to simulate surrogate data. For each surrogate data repetition, we
computed the sum of consecutive t-values that passed some arbitrary t-value threshold, referred
to as the t-sum statistics. We chose a t-value threshold corresponding to an alpha level of 0.05.
Using the t-sum values from the 1000 permutations, we constructed a null distribution for this t-
sum statistic, and then compared it to the same t-sum statistic computed from the real data to
assess significance.

Computing Ngram frequencies of sentence and nonword stimuli

N-gram frequencies were extracted from the Google n-gram online platform
(https://books.google.com/ngrams/), averaging across Google books corpora between the years
2010 and 2020. For each individual word, n-gram frequency for n=1 is the frequency of that
individual word in the corpus, for n=2 is the frequency of the bigram (sequence of 2 words) ending
in, and including, that word, for n=3 is the frequency of the trigram (sequence of 3 words) ending
in, and including, that word, etc. Sequences that were not found in the corpus were assigned a
value of 0.

Estimation of temporal receptive window size per electrode

We used a simplified model to simulate neural responses in the sentence (S) condition as a
convolution of a stimulus train and truncated gaussian kernels with varying widths. The kernels
represented an evoked ‘response function’ with a width (o) corresponding to the temporal
receptive window (TRW) of an idealized neural population underlying the intracranial responses
measured by a single electrode. The kernels were constructed from gaussian curves with a
standard deviation of g/2 truncated at +/- 1 standard deviation (capturing 2/3 of the area under
the gaussian). We then normalized the truncated gaussians to have a minimum of 0 and
maximum of 1. We chose a symmetric kernel because we wanted to capture the full assumed
TRW for a straightforward interpretation of the fitted window size. For instance, a long-tailed
response functions would have a shorter “effective” receptive window because the tails of the
kernel would affect the neural response much less than the center of the kernel. We further
chose a kernel with smooth edges because we assumed that neural activity in response to a
stimulus would increase and decrease gradually (cf. an abrupt change of voltage such as in a
boxcar shape), given that macroelectrodes sum activity from a large neural population.
Furthermore, note that we assumed a fixed TRW, but see Discussion.

We also verified that the specific shape of kernel did not affect our main result. We tested five
different response functions: cosine, “wide” Gaussian (Gaussian curves with a standard deviation
of 0/2 that were truncated at +/- 1 standard deviation, as used in the manuscript), “narrow”
Gaussian (Gaussian curves with a standard deviation of g/16 that were truncated at +/- 8
standard deviations), a square (i.e., boxcar) function (1 for the entire window) and a linear
asymmetric function (linear function with a value of 0 initially and a value of 1 at the end of the
window).
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The stimulus train took a value of 1 at the time of word onsets and 0 otherwise, assuming, for
simplicity, that the minimal stimulus unit of interest for language-responsive neural populations
is a word (cf. e.g., Bozic et al., 2010 and Regev et al., 2021 for evidence that the language network
is sensitive to sub-lexical structure). Neural responses were simulated for ¢ ranging from one
third of a word to 8 words (the length of our stimuli), in 1 sample increments (1/27t™ of a word,
the highest resolution we were able to evaluate given our sampling rate of 60 Hz). Our
implementation of the convolution is identical to assuming that the kernels appear as evoked
responses starting at each word onset (see OSF https://osf.io/xfbr8/). The length of the evoked
response/kernel is directly mapped onto a longer temporal receptive window, such that when a
stimulus evokes a wider response its effect will remain for a longer period of time.

To find the best fit of the receptive window size for each electrode after simulating neural signals
using this toy model, we selected the TRW size that yielded the highest correlation between the
simulated neural response (also normalized to be between 0 and 1) and the actual neural
response. The value of the correlation was taken as a proxy for the goodness of fit.

To evaluate significance, we ran linear mixed-effects (LME) models regressing the estimates
temporal receptive window sizes (o) of all electrodes on the fixed effects categorical variable of
cluster grouped by the random effects variable of participant. Cluster was dummy-coded as a
categorical variable with three levels, and Cluster 1 was treated as the baseline intercept. This
approach allowed us to compare electrodes in Cluster 2 to those in Cluster 1, and electrodes in
Cluster 3 to those in Cluster 1. To additionally compare electrodes in Clusters 2 vs. 3, we
compared their LME coefficients using the Matlab procedure coefTest.

Anatomical topography analysis

We examined the anatomical topographic distribution of the electrodes that exhibit the three
temporal response profiles discovered in Dataset 1. Specifically, we probed the spatial
relationships between all electrodes that belong to different clusters (e.g., electrodes in Cluster
1 vs. 2) with respect to the two axes: anterior-posterior [y], and inferior-superior [z]. This
approach allowed us to ask whether, for example, electrodes that belong to one cluster tend to
consistently fall posterior to the electrodes that belong to another cluster.

To do this, we extracted the MNI coordinates of all the electrodes in each of the three clusters
and ran linear mixed-effects (LME) models regressing each of the coordinates (either y or z) on
the fixed effects categorical variable of cluster grouped by the random effects variable of
participant, using the Wilkinson formula:

Coordinate ~ 1 + cluster + (1 + cluster|participant)

while Coordinate is either the y or z MNI coordinate. The random effect that groups the
estimates by participant ensures that electrode coordinates are compared within participants.
This approach is crucial for accommodating inter-individual variability in the precise locations of
language areas (e.g., Fedorenko et al., 2010), which means that the absolute values of MNI
coordinates cannot be easily compared between participants.
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Cluster was dummy-coded as a categorical variable with three levels, and Cluster 1 was treated
as the baseline intercept. This approach allowed us to compare electrodes in Cluster 2 to those
in Cluster 1, and electrodes in Cluster 3 to those in Cluster 1. To additionally compare
electrodes in Clusters 2 vs. 3, we ran another similar LME model with the only difference being
that the baseline intercept was now the Cluster 2 category (Tables $2-4). To account for the
small number of participants in Dataset 1, we used the Satterthwaite corrective degree-of-
freedom approximation method, combined with REML fitting for LME, which was shown to be
most effective when using the Satterthwaite method (Luke, 2017).

We repeated this analysis for Dataset 2, but we only examined Clusters 1 and 3, which were
robustly present in that dataset. We performed the analysis for the electrodes in the two
hemispheres separately.

Replication of the clusters in Dataset 2.

As described in Experiment, the design that was used for participants in Dataset 1 included four
conditions: sentences (S), word lists (W), Jabberwocky sentences (J), and nonword lists (N).
Because the design in Dataset 2 included only two of the four conditions (sentences (S) and
nonword lists (N)), we first repeated the clustering procedure for Dataset 1 using only the S and
N conditions to test whether similar clusters could be recovered with only a subset of conditions.

We then applied the same clustering procedure to Dataset 2 (n=16 participants, m=362 language-
responsive electrodes). The elbow method revealed that the optimal number of clusters in
Dataset 2 is k=2. However, because the optimal number of clusters in Dataset 1 was k=3, we
examined the clustering solutions at both k=2 and k=3 levels. We also performed an analysis
where we assigned electrodes in Dataset 2 to the most correlated Dataset 1 cluster. This analysis
was intended to examine whether responses like those found in Dataset 1 were at all present in
Dataset 2 (even if they did not emerge as strongly through clustering), and thus the assignment
of electrodes to a ‘cluster’ was done by correlation alone — no actual clustering was performed.

To statistically compare the clustering solutions between Datasets 1 and 2 for k=3 and following
the assignment by correlation procedure, we used the same approach as the one described
above (Stability of clusters across trials). In particular, using Dataset 2, we shuffled average
responses across electrodes (within each condition separately), re-clustered or re-assigned the
electrodes into 3 clusters, and then correlated the resulting cluster averages to the cluster
averages from Dataset 1. We repeated this process 1,000 times to construct a null distribution of
the correlations for each of the 3 clusters. These distributions were used to calculate the
probability that the correlation between the clusters across the two datasets using the actual,
non-permuted Dataset 2 was higher than would be expected by chance.

To statistically compare the clustering solutions when k=3 in Dataset 1 and k=2 in Dataset 2, we
used a similar procedure as the one described above. However, we only compared the resulting
cluster centers from the permuted data to the two clusters in Dataset 1 that were most strongly
correlated with the two clusters that emerged from Dataset 2 (i.e., Clusters 1 and 3).
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Data Availability

Preprocessed data will be publicly available on OpenNeuro at the time of publication. All stimuli
and statistical results, as well as all additional analyses, are available on OSF at
https://osf.io/xfbr8/. Raw data will be made available upon request.

Code Availability

Code used to conduct analyses and generate figures from the preprocessed data will be publicly
available on GitHub at the time of publication.
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Figure S1 — Dataset 1 k-medoids (k=3) cluster assignments by participant. Average cluster responses
as in Figure 2E grouped by participant. Shaded areas around the signal reflect a 99% confidence interval over
electrodes. The number of electrodes constructing the average (n) is denoted above each signal in parenthesis.
Prototypical responses for each of the three clusters were found in nearly all participants individually. However, for
participants with only a few electrodes assigned to a given cluster (e.g., P5 Cluster 3), the responses were more
variable.
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(seconds relative to trial start) (seconds relative to trial start)

Figure S2 — Dataset 1 k-medoids clustering with k=10. A) Clustering mean electrode responses (S+W+J+N)
using k-medoids (k=10) with a correlation-based distance. Shading of the data matrix reflects normalized high-
gamma power (70-150Hz). B) Electrode responses visualized on their first two principal components, colored by
cluster. C) Timecourses of best representative electrodes (‘medoids’) selected by the algorithm from each of the ten
clusters. D) Timecourses averaged across all electrodes in each cluster. Shaded areas around the signal reflect a 99%
confidence interval over electrodes. Correlation with the k=3 cluster averages are shown to the right of the
timecourses. Many clusters exhibited high correlations with the k=3 response profiles from Figure 2.
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Figure S3 — All Dataset 1 responses. A-C) All Dataset 1 electrode responses. The timecourses (concatenated
across the four conditions, ordered: Sentences, Word-lists, Jabberwocky, Nonword-lists) of all electrodes in Dataset
1 sorted by their correlation to the cluster medoid (shown at the bottom of each cluster). Colors reflect the reliability
of the measured neural signal, computed by correlating responses to odd and even trials (Figure 1D). The estimated
temporal receptive window (TRW) using the toy model from Figure 4 is displayed to the left, and the participant who
contributed the electrode is displayed to the right. There was strong consistency in the responses from individual
electrodes within a cluster (with more variability in the less reliable electrodes), and electrodes with responses that
were more similar to the cluster medoid tended to be more reliable (more pink). Note that there were two reliable
response profiles (relatively pink) that showed a pattern that was distinct from the three prototypical response
profiles: One electrode in Cluster 2 responded only to the onset of the first word/nonword in each trial; and one
electrode in Cluster 3 was highly locked to all onsets except the first word/nonword. These profiles indicate that
although the prototypical clusters explain a substantial amount of the functional heterogeneity of responses in the
language network, they were not the only observed responses.

48


https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522216; this version posted April 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

(partial)correlation with
Cluster 1 medoid

15
c
Qo
=
©
[ 10
: §
SI g
c 2 2
(e} w w
@D 5
&2
@
o)
[a
0
05
)
kel
S 25
el
o
c E
S5 20
T B
=3 o o
23 § §-
o
o) = =
o2 % I
sew w
t5
o]
£e 5
°
=2
B} 0
3 . g
Partial Correlation
Cluster 1 electrodes showing high partial correlation
with Cluster 2 medoid (n=18)
Sentences Word-lists Jabberwocky  Nonword-lists
=}
<

P1 (electrode 98)
partial corr: 0.2194
reliability: 0.3874
TRW: 4.52

P1 (electrode 45)
partial corr: 0.5255
reliability: 0.6935
TRW: 6.44

P2 (electrode 52)
partial corr: 0.3059
reliability: 0.3004
TRW: 8

P3 (electrode 34)
partial corr: 0.2997
reliability: 0.3443
TRW: 8

Time from trial onset (seconds)

(partial)correlation with
Cluster 1 medoid

(partial)correlation with

Cluster 2 medoid

meah =0.29
imean = 0.50

0 0.5 1

ean =§).073
imean = 0.43

0.5
Partial Correlation

D

Sentences

(partial)correlation with
Cluster 3 medoid

* mean =P.083

Electrodes

Correlation

f mean = 0.027
.

Electrodes

Partial Correlation

Cluster 2 electrodes showing high partial correlation

with Cluster 1 medoid (n=12)

Word-lists Jabberwocky = Nonword-lists

PS5 (electrode 91)

partial corr: 0.6844

reliability: 0.8332
RW: 7.3

P4 (electrode 38)
partial corr: 0.3574
reliability: 0.6651
TRW: 6.48

P1 (electrode 83)
partial corr: 0.4867
reliability: 0.452
TRW: 4.33

P1 (electrode 64)
partial corr: 0.5625
reliability: 0.7518
TRW: 4.37

(partial)correlation with
Cluster 2 medoid

49

2 3 12 3
Time from trial onset (seconds)

2 3 1 2 3 1

(partial)correlation with
Cluster 3 medoid



https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522216; this version posted April 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S4 — Partial correlations of individual response profiles with each of the cluster medoids.
A) Pearson correlations of all response profiles with each of the cluster medoids, grouped by cluster assignment. B)
Partial correlations (Methods) of all response profiles with each of the cluster medoids, controlling for the other two
cluster medoids, grouped by cluster assignment. C) Response profiles from electrodes assigned to Cluster 1 that had
a high partial correlation (>0.2, arbitrarily defined) with the Cluster 2 medoid (and split-half reliability>0.3). Top:
Average over all electrodes that met these criteria (n=18, black). The Cluster 1 medoid is shown in red, and the
Cluster 2 medoid is shown in green. Bottom: Four sample electrodes (black). D) Response profiles assigned to Cluster
2 that had a high partial correlation (>0.2, arbitrarily defined) with the Cluster 1 medoid (and split-half reliability>0.3).
Top: Average over all electrodes that meet these criteria (n=12, black). The Cluster 1 medoid is shown in red, and
the Cluster 2 medoid is shown in green. Bottom: Four sample electrodes (black; see osf.io/xfbr8/ for all mixed
response profiles with split-half reliability>0.3). E) Anatomical distribution of electrodes in Dataset 1 colored by their
partial correlation with a given cluster medoid (controlling for the other two medoids). Cluster-1- and Cluster-2-like
responses were present throughout frontal and temporal areas (with Cluster 1 responses having a slightly higher
concentration in the temporal pole and Cluster 2 responses having a slightly higher concentration in the superior
temporal gyrus (STG)), whereas Cluster-3-like responses were localized to the posterior STG.
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Figure S5 — N-gram frequencies of sentences and word lists diverge with n-gram length. N-gram
frequencies were extracted from the Google n-gram online platform (https://books.google.com/ngrams/), averaging
across Google books corpora between the years 2010 and 2020. For each individual word, the n-gram frequency for
n=1 was the frequency of that word in the corpus; for n=2 it was the frequency of the bigram (sequence of 2 words)
ending in that word; for n=3 it was the frequency of the trigram (sequence of 3 words) ending in that word; an so
on. Sequences that were not found in the corpus were assigned a value of 0. Results are only presented until n=4
because for n>4 most of the string sequences, both from the Sentence and Word-list conditions, were not found in
the corpora. The plot shows that the difference between the log n-gram values for the sentences and wordlists in
our stimulus set grew as a function of N.

51


https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522216; this version posted April 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

A
Cosine kernels

Gaussian kernels - narrow

Square kernels

WL

ity

Time (seconds)

Linear asymmetric kernels

//
4 words
//
6words
8words
0s 1 15 2 25 3 3s
Time (seconds)

MV~

05 1 15 2 25 3 38
Time (seconds)

LELELET L ]

'_J.—’ 4 words
‘o |
4 6 words
—
8words
05 1 15 2 25 3 35
Time (seconds)

L 4 words
e
1
6 worcs
8 words
05 1 15 2 25 3 35
Time (seconds)

52

© @ e o~

»

Fitted Temporal Receptive Window (o, words) Fitted Temporal Receptive Window (0, words) Fitted Temporal Receptive Window (0, words) Fitted Temporal Receptive Window (0, words)
- -

Fitted Temporal Receptive Window (0, words)
° -

available under aCC-BY-NC-ND 4.0 International license.

Goodness of Fit

Goodness of Fit

Goodness of Fit

Goodness of Fit

w @ Q : ’..!
Oy LI
o8 v ) e & .i
e R o o o
e . s .
04 o o B . . é
. -
IR W . S e .
2% gL . %
L .
.
0 W
% 1 4 6 7 8
Fitted Temporal Receptive Window (o, words)
1
(J
o @ ~ : ’.0
oy T . o O
o8 “ @ N : -;
Q.- o, e
o R .
“. . L. .
. po° .
s .3
H : L™ . N . 3
0z y A
T .
H
0 o
3 1 2 3 4 B 6 7 []
Fitted Temporal Receptive Window (o, words)
1
o ® & L
Q
° .” . 4
os ‘ L o °
. . T L]
] Y - Ve ‘- "
o %, N t
4 o ‘o, o, e . .
e o e’ e .. )
02 @, gt N >
L
.
0
0% 1 4 B 6 7 8
Fitted Temporal Receptive Window (0. words)
1
O.
08 e,
O ’, .0
L]
06 O > o .o
o © LR
04 ‘ : . L
.' e B e
'.o - 3 * B . . -:
. . 4 .
02 °, . .
% - .« o "t
o .
% 1 4 6 7 8
Fitted Temporal Receptive Window (0, words)
1
’ F K ., ’
08 [
| .8 ¢
. e .
o4 o® ". ¢ . M :
IS Y )
.'\o ¢ e . «'® *T9 o
04 N 3 . .
. .. . -
S A A
02 . ,'l . .
® o
.
0
3 1 2 3 4 s 6 7 8

Reliability of Neural Signal  * .

Fitted Temporal Receptive Window (0, words)

(correlation odd vs. even trials)

005 030 060 0.90


https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522216; this version posted April 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S6 — Temporal receptive window (TRW) estimates with kernels of different shapes. The
toy TRW model from Figure 4 was applied using five different kernel shapes: cosine (A), “wide” Gaussian (Gaussian
curves with a standard deviation of g/2 that were truncated at +/- 1 standard deviation, as used in Figure 4; B),
“narrow” Gaussian (Gaussian curves with a standard deviation of /16 that were truncated at +/- 8 standard
deviations; C), a square (i.e., boxcar) function (1 for the entire window; D) and a linear asymmetric function (linear
function with a value of 0 initially and a value of 1 at the end of the window; E). For each kernel (A-E), the plots
represent (left to right, all details are identical to Figure 4 in the manuscript): 1) The kernel shapes for TRW =1, 2, 3,
4, 6 and 8 words, superimposed on the simplified stimulus train; 2) The simulated neural signals for each of those
TRWs; 3) violin plots of best fitted TRW values across electrodes (each dot represents and electrode) for all
electrodes (black), or electrodes from only Clusters 1 (red) 2 (green) or 3 (blue); and 4) Estimated TRW as a function
of goodness of fit. Each dot is an electrode, its size represents the reliability of its neural response, computed via
correlation between the mean signals when using only odd vs. only even trials, x-axis is the electrode’s best fitted
TRW, y-axis is the goodness of fit, computed via correlation between the neural signal and the closest simulated
signal. For all kernels the TRWs showed a decreasing trend from Cluster 1 to 3.
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Figure S7 — Dataset 1 k-medoids clustering results with only S-N conditions. A) Search for optimal k
using the “elbow method”. Top: variance (sum of the distances of all electrodes to their assigned cluster center)
normalized by the variance when k=1 as a function of k (normalized variance (NV)). Bottom: change in NV as a
function of k (NV(k+1) — NV(k)). After k=3 the change in variance became more moderate, suggesting that 3 clusters
appropriately described Dataset 1 when using only the responses to sentences and nonwords (as was the case when
all four conditions were used). B) Clustering mean electrode responses (only S+N, importantly) using k-medoids (k=3)
with a correlation-based distance. Shading of the data matrix reflects normalized high-gamma power (70-150Hz). C)
Average timecourse by cluster. Shaded areas around the signal reflect a 99% confidence interval over electrodes.
Clusters 1-3 showed a strong similarity to the clusters reported in Figure 2. D) Mean condition responses by cluster.
Error bars reflect standard error of the mean over electrodes. E) Electrode responses visualized on their first two
principal components, colored by cluster. F) Anatomical distribution of clusters across all participants (n=6). G)
Robustness of clusters to electrode omission (random subsets of electrodes were removed in increments of 5). Stars
reflect significant similarity with the full dataset (p<0.05; evaluated with a permutation test; Methods). Shaded
regions reflect standard error of the mean over randomly sampled subsets of electrodes. Relative to when all
conditions were used, Cluster 2 was less robust to electrode omission (although still more robust than Cluster 3),
suggesting that responses to word lists and Jabberwocky sentences (both not present here) are particularly
important for distinguishing Cluster 2 electrodes from Cluster 1 and 3 electrodes.
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Figure S8 — Dataset 2 electrode assignment to most correlated Dataset 1 cluster under “winner-

take-all” (WTA) approach. A) Assigning electrodes from Dataset 2 to the most correlated cluster from Dataset
1. Assignment was performed using the correlation with the Dataset 1 cluster average, not the cluster medoid.
Shading of the data matrix reflects normalized high-gamma power (70-150Hz). B) Average timecourse by group.
Shaded areas around the signal reflect a 99% confidence interval over electrodes. C) Mean condition responses by
group. Error bars reflect standard error of the mean over electrodes. D) Electrode responses visualized on their first
two principal components, colored by group. E) Anatomical distribution of groups across all participants (n=16). F-
G) Comparison of cluster assignment of electrodes from Dataset 2 using clustering vs. winner-take-all (WTA)
approach. F) The numbers in the matrix correspond to the number of electrodes assigned to cluster y during
clustering (y-axis) versus the number electrodes assigned to group x during the WTA approach (x-axis). For instance,
there were 44 electrodes that were assigned to Cluster 1 during clustering but were “pulled out” to Group 2 (the
analog of Cluster 2) during the WTA approach. The total number of electrodes assigned to each cluster during the
clustering approach are shown to the right of each row. The total number of electrodes assigned to each group
during the WTA approach are shown at the top of each column. N=362 is the total number of electrodes in Dataset
2. G) Similar to F, but here the average timecourse across all electrodes assigned to the same cluster/group during
both procedures is presented. Shaded areas around the signals reflect a 99% confidence interval over electrodes.
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Figure S9 — Anatomical distribution of the clusters in Dataset 2. Anatomical distribution of language-
responsive electrodes in Dataset 2 across all subjects in MNI space, colored by cluster. Only Clusters 1 and 3 (those
from Dataset 1 that replicate to Dataset 2) are shown. B) Anatomical distribution of language-responsive electrodes
in subject-specific space for eight sample participants. C-H) Violin plots of MNI coordinate values for Clusters 1 and
3 in the left and right hemisphere (C-E and F-H, respectively), where plotted points represent the mean of all
coordinate values for a given participant and cluster. The mean is plotted with a black horizontal line, and the median
is shown with a white circle. Significance is evaluated with a LME model (Methods, Tables S3 and S4). The Cluster 3

posterior bias from Dataset 1 was weakly present but not statistically reliable.
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Figure S10 — Estimation of temporal receptive window (TRW) sizes for electrodes in Dataset 2.
As in Figure 4 but for electrodes in Dataset 2. A) Best TRW fit (using the toy model from Figure 4) for all electrodes,
colored by cluster (when k-medoids clustering with k=3 was applied, Figure 6) and sized by the reliability of the
neural signal as estimated by correlating responses to odd and even trials (Figure 6C). The ‘goodness of fit’, or
correlation between the simulated and observed neural signal (Sentence condition only), is shown on the y-axis. B)
Estimated TRW sizes across all electrodes (grey) and per cluster (red, green, and blue). Black vertical lines correspond
to the mean window size and the white dots correspond to the median.
interquartile ranges above the upper quartile or less than 1.5 interquartile ranges below the lower quartile).
Significance values were calculated using a linear mixed-effects model (Methods, Table S8). C-D) Same as A and B,
respectively, except clusters were assigned by highest correlation with Dataset 1 clusters (Figure S8). Under this
procedure, Cluster 2 reliably separated from Cluster 3 in terms of its TRW (all ps<0.001, evaluated with a LME model,
Methods, Table S9).

58

“y,n

X

marks indicate outliers (more than 1.5


https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522216; this version posted April 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Name Estimate SE tStat DF pValue
C1, Condition S — reference 0.103 0.023 4.503 10.332 0.001
C2 —relative to C1 0.074 0.038 1.974 11.573 0.073
C3 —relative to C1 0.239 0.080 2.971 7.464 0.019
Condition W —relative to S -0.023 0.026 -0.880 681.988 0.38
Condition J —relative to S -0.036 0.027 -1.338 27.077 0.19
Condition N —relative to S -0.060 0.027 -2.270 46.806 0.028
Condition W: C2 relative to C1 -0.026 0.040 -0.657 682.349 0.51
Condition W: C3 relative to C1 0.022 0.063 0.348 682.352 0.73
Condition J: C2 relative to C1 -0.041 0.040 -1.046 677.506 0.30
Condition J: C3 relative to C1 0.007 0.064 0.111 644.768 0.91
Condition N: C2 relative to C1 -0.063 0.040 -1.588 680.554 0.11
Condition N: C3 relative to C1 -0.046 0.063 -0.718 665.329 0.47

C2, Condition S — reference 0.178 0.029 6.053 11.092 0.00008
C3 —relative to C2 0.164 0.082 2.001 7.518 0.083
C1 —relative to C2 -0.074 0.038 -1.974 11.573 0.073
Condition W —relative to S -0.049 0.030 -1.614 682.210 0.11
Condition J —relative to S -0.078 0.031 -2.485 52.580 0.016

Condition N — relative to S -0.123 0.031 -4.000 90.665 0.00013
Condition W: C3 relative to C2 0.048 0.065 0.735 682.350 0.46
Condition W: C1 relative to C2 0.026 0.040 0.657 682.349 0.51
Condition J: C3 relative to C2 0.048 0.065 0.741 669.544 0.46
Condition J: C1 relative to C2 0.041 0.040 1.046 677.506 0.30
Condition N: C3 relative to C2 0.017 0.065 0.262 677.099 0.79
Condition N: C1 relative to C2 0.063 0.040 1.588 680.554 0.11

Table S1A LME results quantifying degree of stimulus locking by cluster. All estimates from the linear
mixed-effects model (LME) regressing the locking value (Methods) on the categorical variables of cluster (3 levels)
and condition (4 levels for Sentences (S), Word-lists (W), Jabberwocky (J), Nonword-lists (N), Methods), including
their interaction, all grouped by the random variable of participant. Model formula: Locking ~ cluster*condition +
(cluster|[participant) + (condition[participant)). The Satterthwaite Method was used to estimate the degrees of
freedom (DF) due to our small sample size. Implemented with Matlab fit/me routine. Semicolon represents
interactions. The intercept represents one level of each of the categorical variables and is denoted by “reference”.
The models are reference-coded such that all estimate values are evaluated and compared statistically to the
intercept/reference. Two models are presented, separated by a horizontal line. The only difference between the
models regards the level of the categorical variable ‘Cluster’ that is assigned to the reference. In the first model the
intercept/reference is for Cluster 1 (C1), and in the second model it is Cluster 2 (C2). We used the second model in
order to obtain the statistical comparisons between clusters 2 and 3. The estimate magnitudes show a trend for
stimulus locking by cluster: C1<C2<C3, but the only pairwise comparison that reached significance was of Cluster 3
to 1 (p<0.05) and the other comparisons were marginally significant (p<0.1). Estimate magnitudes further show a
trend for stimulus locking by Condition: S>SW>J>N, but the only pairwise comparison that reached significance was S
vs. N (p<0.05) in the first model, and J vs. S in the second model (p<0.001). No interaction terms were significant. An
additional ANOVA test for LME revealed a significant main effect for cluster (F(2,9.13)=5.4, p<0.05) and the main
effect for condition as well as the interaction term did not reach significance . See Figure 5.
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Name FStat DF1 DF2 pValue

(Intercept) 20.3 1 10.33 0.0010
Cluster 5.4 2 9.13 0.028
Condition 1.9 3 41.84 0.15
Cluster : Condition 0.6 6 670.00 0.73

Table S1B ANOVA for the LME results presented in Table S1A. ANOVA for LME was run on the first
model presented in Table S1A. These results reveal that the main effect of Cluster was overall significant (p<0.05),
but the main effect of Condition as well as the interaction between cluster and condition did not reach significance.
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Dataset Coordinate  Name Estimate SE tStat DF pValue
Dataset 1 y C1 - reference 1.36 4.09 0.33 5.16 0.75
Dataset 1 y C2 - relative to C1 -2.93 3.62 -0.81 26.14 0.42
Dataset 1 y C3 - relative to C1 -20.91 5.93 -3.53 63.46 0
Dataset 1 y C2 - reference -1.57 3.65 -0.43 5.34 0.68
Dataset 1 y C3 - relative to C2 -17.98 5.9 -3.05 159.46 0
Dataset 1 y C1 - relative to C2 2.93 3.62 0.81 26.14 0.42
Dataset 1 z C1-reference -4.4 4.84 -0.91 4.43 0.41
Dataset 1 z C2 - relative to C1 16.87 7.69 2.19 4.54 0.09
Dataset 1 z C3 - relative to C1 10.64 8.57 1.24 7.87 0.25
Dataset 1 z C2 - reference 12.47 4.18 2.98 6.04 0.02
Dataset 1 z C3 - relative to C2 -6.22 7.78 -0.8 29.47 0.43
Dataset 1 z C1 - relative to C2 -16.87 7.69 -2.19 4.54 0.09

Table S2A — LME results comparing MNI coordinates of the 3 clusters, Dataset 1, Left

hemisphere. All estimates from the linear mixed-effects model (LME) regressing the y (posterior-anterior) and z
(inferior-superior) MNI coordinates (Methods) on the categorical variable of cluster (3 levels) grouped by the random
variable of participant. Model formula: MN/ coordinate ~ cluster + (cluster|participant). Details are similar to Table
S1A. The y-coordinate of Cluster 3 was significantly different from Clusters 1 and 2 (ps<0.01). All the other
comparisons did not reach significance. See Figure 6.

Dataset Coordinate  Name Estimate SE tStat DF pValue
Dataset 1 y C1 - reference 4.9 5.6 0.9 5.2 0.413759
Dataset 1 y C2 - relative to C1 -8.3 3.7 -2.2 38.1 0.031376
Dataset 1 Yy C3 - relative to C1 -27.9 5.4 -5.1 166.1 8.00E-07
Dataset 1 y C2 - reference -3.4 4.9 -0.7 4.9 0.52027
Dataset 1 y C3 - relative to C2 -19.5 5.5 -3.6 64.7 0.000706
Dataset 1 y C1 - relative to C2 8.3 3.7 2.2 38.1 0.031376
Dataset 1 z C1-reference -1.3 3.4 -0.4 3 0.732998
Dataset 1 z C2 - relative to C1 19.2 5.1 3.8 2.5 0.045907
Dataset 1 z C3 - relative to C1 14.8 7.5 2 2.5 0.162557
Dataset 1 z C2 - reference 17.9 3.9 4.6 1.7 0.059805
Dataset 1 z C3 - relative to C2 -4.4 8.7 -0.5 1.7 0.672232
Dataset 1 z C1 - relative to C2 -19.2 5.1 -3.8 2.5 0.045907

Table S2B — Same as Table S2A but electrodes were weighted by reliability.
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Dataset Coordinate  Name Estimate SE tStat DF pValue
Dataset 1 y C1 - reference 9.6 7.6 1.3 5.3 0.26
Dataset 1 y C2 - relative to C1 -5.6 6.0 -0.9 5.0 0.40
Dataset 1 y C3 - relative to C1 -10.9 11.0 -1.0 2.4 0.41
Dataset 1 y C2 - reference 4.0 5.0 0.8 4.7 0.46
Dataset 1 y C3 - relative to C2 -5.3 11.0 -0.5 4.5 0.65
Dataset 1 y C1 - relative to C2 5.6 6.0 0.9 5.0 0.40
Dataset 1 z C1 - reference 13.3 4.7 2.8 6.7 0.03
Dataset 1 z C2 - relative to C1 6.2 7.7 0.8 4.7 0.46
Dataset 1 z C3 - relative to C1 8.5 11.5 0.7 10.1 0.48
Dataset 1 z C2 - reference 19.5 9.0 2.2 4.0 0.10
Dataset 1 z C3 - relative to C2 2.3 14.5 0.2 4.5 0.88
Dataset 1 z C1 - relative to C2 -6.2 7.7 -0.8 4.7 0.46

Table S2C — Same as Table S2A but only frontal electrodes.

Dataset Coordinate  Name Estimate SE tStat DF pValue
Dataset 1 y C1 - reference -3.8 4.5 -0.8 3.7 0.45
Dataset 1 y C2 - relative to C1 0.4 4.4 0.1 42.8 0.93
Dataset 1 y C3 - relative to C1 -22.3 6.9 -3.2 26.6 0.003
Dataset 1 y C2 - reference -3.4 5.6 -0.6 3.8 0.58
Dataset 1 y C3 - relative to C2 -22.7 7.5 -3.0 17.6 0.008
Dataset 1 y C1 - relative to C2 -04 4.4 -0.1 42.8 0.93
Dataset 1 z C1-reference -6.4 13.8 -0.5 3.6 0.67
Dataset 1 z C2 - relative to C1 18.2 7.5 2.4 1.7 0.16
Dataset 1 z C3 - relative to C1 10.4 15.9 0.7 1.7 0.59
Dataset 1 z C2 - reference 11.8 9.5 1.2 3.1 0.30
Dataset 1 z C3 - relative to C2 -7.8 11.6 -0.7 1.7 0.58
Dataset 1 z C1 - relative to C2 -18.2 7.5 -2.4 1.7 0.16

Table S2D — Same as Table S2A but only temporal electrodes.
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Dataset Coordinate  Name Estimate SE tStat DF pValue
Dataset 2 y C1 - reference -5.3 7.5 -0.7 8.9 0.5
Dataset 2 y C2 - relative to C1 -7.2 10.4 -0.7 7.2 0.5
Dataset 2 y C3 - relative to C1 -1.5 11.0 -0.1 7.8 0.9
Dataset 2 y C2 - reference -12.6 7.8 -1.6 10.4 0.1
Dataset 2 y C3 - relative to C2 5.7 8.3 0.7 9.4 0.5
Dataset 2 y C1 - relative to C2 7.2 10.4 0.7 7.2 0.5
Dataset 2 z C1-reference 3.1 4.2 0.7 12.6 0.5
Dataset 2 z C2 - relative to C1 12.8 3.9 3.3 183.7 0.001
Dataset 2 z C3 - relative to C1 7.3 5.9 1.2 30.1 0.2
Dataset 2 z C2 - reference 15.8 4.6 3.4 12.0 0.005
Dataset 2 z C3 - relative to C2 -5.4 5.9 -0.9 38.8 0.4
Dataset 2 z C1 - relative to C2 -12.8 3.9 -3.3 183.7 0.001

Table S3A — LME results comparing coordinates of the 3 clusters, Dataset 2, Left hemisphere.
Similar to Table S2A but for Dataset 2, left hemisphere electrodes. The only significant comparison was the z-

coordinate of Cluster 2 relative to Clusters 1 (p<0.01). See Figure S5.

Dataset Coordinate  Name Estimate SE tStat DF pValue
Dataset 2 y C1 - reference -0.1 6.3 0.0 7.2 0.98
Dataset 2 y C2 - relative to C1 -16.2 11.6 -1.4 6.7 0.21
Dataset 2 y C3 - relative to C1 -4.6 10.4 -04 5.1 0.68
Dataset 2 y C2 - reference -16.3 8.5 -1.9 8.4 0.09
Dataset 2 y C3 - relative to C2 11.6 8.9 1.3 9.5 0.23
Dataset 2 y C1 - relative to C2 16.2 11.6 1.4 6.7 0.21
Dataset 2 z C1-reference 4.2 5.0 0.8 11.7 0.42
Dataset 2 z C2 - relative to C1 15.4 5.8 2.6 11.0 0.02
Dataset 2 z C3 - relative to C1 14.0 7.2 1.9 8.2 0.09
Dataset 2 z C2 - reference 19.5 4.7 4.2 9.3 0.002
Dataset 2 z C3 - relative to C2 -1.4 5.9 -0.2 11.4 0.82
Dataset 2 z C1 - relative to C2 -15.4 5.8 -2.6 11.0 0.02

Table S3B — Same as Table S3A but electrodes are weighted by reliability.
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Dataset Coordinate  Name Estimate SE tStat DF pValue
Dataset 2 y C1 - reference 21.1 4.3 4.9 5.0 0.0045
Dataset 2 y C2 - relative to C1 -1.0 7.4 -0.1 8.8 0.9
Dataset 2 y C3 - relative to C1 -10.5 10.4 -1.0 5.1 0.4
Dataset 2 Yy C2 - reference 20.1 5.8 34 71 0.011
Dataset 2 y C3 - relative to C2 94 8.9 -1.1 18.5 0.3
Dataset 2 y C1 - relative to C2 1.0 7.4 0.1 8.8 0.9
Dataset 2 z C1-reference 11.7 6.6 1.8 7.5 0.11
Dataset 2 z C2 - relative to C1 6.2 6.2 1.0 6.5 0.4
Dataset 2 z C3 - relative to C1 6.1 9.4 0.6 5.2 0.5
Dataset 2 z C2 - reference 18.0 5.5 3.3 6.7 0.015
Dataset 2 z C3 - relative to C2 -0.2 8.2 0.0 7.8 1.0
Dataset 2 z C1 - relative to C2 -6.2 6.2 -1.0 6.5 0.4
Table S3C — Same as Table S3A but only frontal electrodes.
Dataset Coordinate  Name Estimate SE tStat DF pValue
Dataset 2 Yy C1 - reference -24.1 5.4 -4.4 6.2 0.0040
Dataset 2 y C2 - relative to C1 -12.8 7.0 -1.8 8.1 0.10
Dataset 2 y C3 - relative to C1 -4.5 9.8 -0.5 7.6 0.66
Dataset 2 \ C2 - reference -36.9 4.0 -9.3 39.1 2E-11
Dataset 2 y C3 - relative to C2 8.3 8.6 1.0 52.8 0.34
Dataset 2 y C1 - relative to C2 12.8 7.0 1.8 8.1 0.10
Dataset 2 z C1-reference -4.0 4.9 -0.8 5.5 0.45
Dataset 2 z C2 - relative to C1 8.6 5.4 1.6 46.8 0.11
Dataset 2 z C3 - relative to C1 12.5 10.2 1.2 6.0 0.27
Dataset 2 z C2 - reference 4.6 4.7 1.0 7.4 0.36
Dataset 2 z C3 - relative to C2 3.9 10.6 0.4 5.6 0.72
Dataset 2 z C1 - relative to C2 -8.6 5.4 -1.6 46.8 0.11

Table S3D — Same as Table S3A but only temporal electrodes.
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Dataset Coordinate Name Estimate SE tStat DF pValue
Dataset 2 y C1 - reference 2.49 7.18 0.35 7.70 0.74
Dataset 2 Yy C2 - relative to C1 -17.17 7.02 -2.45 11.13 0.03
Dataset 2 y C3 - relative to C1 -7.00 7.52 -0.93 8.64 0.38
Dataset 2 y C2 - reference -14.68 4.39 -3.35 3.20 0.04
Dataset 2 y C3 - relative to C2 10.18 7.84 1.30 2.29 0.31
Dataset 2 Yy C1 - relative to C2 17.17 7.02 2.45 11.13 0.03
Dataset 2 z C1-reference -8.56 5.94 -1.44 6.44 0.20
Dataset 2 z C2 - relative to C1 5.57 4.97 1.12 2.68 0.35
Dataset 2 z C3 - relative to C1 14.76 5.99 2.46 4.09 0.07
Dataset 2 z C2 - reference -2.98 6.38 -0.47 2.47 0.68
Dataset 2 z C3 - relative to C2 9.18 4.69 1.96 0.74 0.36
Dataset 2 z C1 - relative to C2 -5.57 4.97 -1.12 2.68 0.35

Table S4A — LME results comparing coordinates of the 3 clusters, Dataset 2, Right hemisphere.
Similar to Table S3A but for right-hemisphere electrodes. The significant comparisons were of the y-coordinates of
Cluster 2 vs. 1 (p<0.05). See Figure S5.

Dataset Coordinate Name Estimate SE tStat DF pValue
Dataset 2 y C1 - reference 3.7 9.3 0.4 8.1 0.70
Dataset 2 Yy C2 - relative to C1 -17.2 8.5 -2.0 724 0.047
Dataset 2 y C3 - relative to C1 -4.5 9.3 -0.5 10.9 0.64
Dataset 2 y C2 - reference -13.4 7.4 -1.8 1.6 0.24
Dataset 2 y C3 - relative to C2 12.7 6.3 2.0 13 0.25
Dataset 2 Yy C1 - relative to C2 17.2 8.5 2.0 724 0.047
Dataset 2 z C1-reference -8.0 6.9 -1.2 6.5 0.29
Dataset 2 z C2 - relative to C1 6.9 7.5 0.9 2.1 0.45
Dataset 2 z C3 - relative to C1 16.4 6.0 2.8 7.2 0.027
Dataset 2 z C2 - reference -11 8.1 -0.1 2.6 0.90
Dataset 2 z C3 - relative to C2 9.5 5.2 1.8 0.4 0.54
Dataset 2 z C1 - relative to C2 -6.9 7.5 -0.9 2.1 0.45

Table S4B — Same as Table S4A but electrodes are weighted by reliability. The significant

comparisons were of the y-coordinates of Cluster 2 vs. 1, and the z-coordinate of Cluster 3 relative to 1 (ps<0.05).
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Dataset Coordinate Name Estimate SE tStat DF pValue
Dataset 2 y C1 - reference 33.9 3.4 9.9 40.9 2E-12
Dataset 2 y C2 - relative to C1 -22.2 13.9 -1.6 1.7 0.27
Dataset 2 y C3 - relative to C1 -13.2 9.6 -1.4 3.2 0.26
Dataset 2 y C2 - reference 11.7 135 0.9 1.6 0.50
Dataset 2 y C3 - relative to C2 9.1 15.2 0.6 4.0 0.58
Dataset 2 y C1 - relative to C2 22.2 13.9 1.6 1.7 0.27
Dataset 2 z C1-reference -3.3 8.0 -0.4 2.8 0.71
Dataset 2 z C2 - relative to C1 -4.2 10.9 -0.4 2.9 0.73
Dataset 2 z C3 - relative to C1 234 14.7 1.6 2.3 0.23
Dataset 2 z C2 - reference -7.5 6.9 -11 6.4 0.31
Dataset 2 z C3 - relative to C2 27.6 154 1.8 4.4 0.14
Dataset 2 z C1 - relative to C2 4.2 10.9 0.4 2.9 0.73

Table S4C — Same as Table S4A but only frontal electrodes. No significant comparisons.

Dataset Coordinate Name Estimate SE tStat DF pValue
Dataset 2 Yy C1 - reference -17.5 5.6 -3.1 5.8 0.021
Dataset 2 y C2 - relative to C1 -3.7 7.5 -0.5 134 0.63
Dataset 2 y C3 - relative to C1 -6.4 6.7 -1.0 28.7 0.35
Dataset 2 Yy C2 - reference -21.2 6.4 -3.3 29 0.048
Dataset 2 y C3 - relative to C2 -2.7 6.1 -0.4 6.6 0.68
Dataset 2 y C1 - relative to C2 3.7 7.5 0.5 13.4 0.63
Dataset 2 z C1-reference -10.7 7.7 -1.4 3.3 0.25
Dataset 2 z C2 - relative to C1 -4.1 9.4 -0.4 3.0 0.69
Dataset 2 z C3 - relative to C1 -1.6 8.9 -0.2 5.4 0.87
Dataset 2 z C2 - reference -14.8 4.9 -3.0 0.6 0.30
Dataset 2 z C3 - relative to C2 2.5 5.9 0.4 3.1 0.70
Dataset 2 z C1 - relative to C2 4.1 9.4 0.4 3.0 0.69

Table S4D — Same as Table S4A but only temporal electrodes. No significant comparisons.
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Name Estimate SE tStat DF pValue

C1 - reference 6.5 0.5 12.6 5.1 5.2E-05
C2 - relative to C1 -2.5 0.6 -4.0 3.6 0.020

C3 - relative to C1 -5.1 0.6 -8.1 8.7 2.6E-05
C2 - reference 4.0 0.5 7.9 4.3 0.0010
C3 - relative to C2 -2.5 0.6 -4.0 8.0 0.0040
C1 - relative to C2 25 0.6 4.0 3.6 0.020

Table S5 — LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset

1. All estimates from the linear mixed-effects model (LME) regressing the estimated temporal receptive window
(TRW) size (Methods) on the categorical variable of cluster (3 levels) grouped by the random variable of participant.
Model formula: trw ~ cluster + (cluster | participant). The Satterthwaite Method was used to estimate the degrees of
freedom (DF) due to our small sample size. Details are similar to Table S1A. All comparisons were statistically
significant: Cluster 2 had a smaller TRW compared to Cluster 1, and Cluster 3 had the smallest trw compared to both
other clusters (all ps<0.01). See Figure 4.

Name Estimate SE tStat DF pValue
C1, fast - reference 2.61 0.31 8.43 2.17 0.011
C2, fast - relative to ref -1.02 0.27 -3.79 3.36 0.026
C3, fast - relative to ref -2.11 0.50 -4.20 1.75 0.065
C1, slow - relative to ref 2.64 0.48 5.49 4.54 0.004
C2, slow - relative to C2, fast -1.30 0.98 -1.33 2.38 0.296
C3, slow - relative to C3, fast -1.64 0.88 -1.87 3.76 0.139
C1, slow - reference 5.25 0.37 14.35 243 0.002
C2, slow - relative to ref -2.32 0.94 -2.47 2.04 0.130
C3, slow - relative to ref -3.75 0.72 -5.21 2.22 0.028
C1, fast - relative to C1, slow -2.64 0.48 -5.49 4.54 0.004
C2, fast - relative to C2, slow 1.30 0.98 1.33 2.38 0.296
C3, fast - relative to C3, slow 1.64 0.88 1.87 3.76 0.139
C2, fast - reference 1.60 0.21 7.43 3.05 0.005
C3, fast - relative to ref -1.09 0.44 -2.50 3.82 0.069
C1, fast - relative to ref 1.02 0.27 3.79 3.36 0.026
C2, slow - relative to ref 1.34 0.68 1.97 2.46 0.163
C3, slow - relative to C3, fast -0.34 0.82 -0.42 2.58 0.706
C1, slow - relative to C1, fast 1.30 0.98 1.33 2.38 0.296
C3, fast - reference 0.51 0.37 1.39 29.71 0.176
C1, fast - relative to ref 2.11 0.50 4.20 1.75 0.065

67


https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522216; this version posted April 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

C2, fast - relative to ref 1.09 0.44 2.50 3.82 0.069
C3, slow - relative to ref 0.99 0.67 1.48 4.46 0.207
C1, slow - relative to C1, fast 1.64 0.88 1.87 3.76 0.139
C2, slow - relative to C2, fast 0.34 0.82 0.42 2.58 0.706

Table S6: LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset

1, due to stimulus presentation rate. Similar to Table S5 but here we add the categorical variable Rate,
representing stimulus presentation rate, with two levels: fast (450 ms inter-stimulus interval, n=3) or slow (700 ms
inter-stimulus interval, n=3). Model formula: trw ~ Cluster*Rate + (Cluster*Rate| participant). The model was coded
such that one level from each categorical variable was coded as the reference (intercept, whose estimate was
compared to 0 for statistical testing). All other levels of the Cluster variable were modeled relative to the reference,
and other levels of Rate were modeled relative to the corresponding estimate (see variable names in table). We ran
4 models (LME 1-4) that differed in the order of the levels of the categorical variables, such that at each model a
different level was coded as the reference. This allowed us to statistically compare all possible pairs of categories,
using the LME stats output (Columns 4-6). DF were estimated using the Satterthwaite approximation. Overall, all
models show a negative trend of TRW by Cluster for both presentation rates (smaller TRWs for C3 relative to C2 and
for C2 relative to C1). Rate affected only the TRW of Cluster 1 (larger TRW for C1 with slow relative to fast
presentation rates) but not of Clusters 2 and 3. The overall main effects of the interaction between Cluster and Rate
are not significant due to an additional ANOVA (Table S7).

Name FStat DF1 DF2 pValue
Intercept (C1, fast) 71.1 1 22 0.01
Cluster 10.8 2 0 NaN
Rate (C1, slow) 30.2 1 4.5 0.004
Cluster:Rate 1.8 2 2.7 03
Intercept (C1, slow) 205.8 1 2.4 0.002
Cluster 14.7 2 0 NaN
Rate (C1, fast) 30.2 1 4.5 0.004
Cluster:Rate 1.8 2 2.7 0321
Intercept (C2, fast) 55.2 1 3.1 0.005
Cluster 10.8 2 3.5 0.032
Rate (C2, slow) 3.9 1 2.5 0.163
Cluster:Rate 1.8 2 2.5 0.329
Intercept (C3, fast) 19 1 29.7 0.176
Cluster 10.8 2 2.1  0.079
Rate (C3, slow) 2.2 1 45 0.207
Cluster:Rate 1.8 2 2.6 0.326

Table S7 ANOVA for the LME results presented in Table S6. ANOVA for LME was run on all 4 LME models
presented in Table S5. NaN as a p-value indicated that there were not sufficient degrees of freedom (DF) to evaluate
the statistical effect. Importantly, the interaction between Cluster and Rate did not reach significance.
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Name Estimate SE tStat DF pValue

TRW C1 - reference 4.5 0.3 13.4 7.6 1E-06
TRW C2 - relative to C1 -3.3 0.4 -8.5 10.0 7E-06
TRW C3 - relative to C1 -3.3 0.3 -9.6 28.7 2E-10
TRW C2 - reference 1.2 0.2 6.5 217.7 6E-10
TRW C3 - relative to C2 0.0 0.3 0.1 15.3 0.92
TRW C1 - relative to C2 33 0.4 8.5 10.0 7E-06

Table S8 — LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset

2. Similar to Table S5, but for Dataset 2 using the first 8 words per each trial. The TRW of C2 is smaller than C1
(p<0.0001) but the same as of C3. See Figure S10A-B.

Name Estimate SE tStat DF pValue

TRW C1 - reference 4.50 0.29 15.5 10.2 2.0E-08
TRW C2 - relative to C1 -2.38 0.29 -8.2 8.1 3.3E-05
TRW C3 - relative to C1 -3.49 0.32 -10.8 14.1 3.4E-08
TRW C2 - reference 2.12 0.27 7.8 11.2 7.2E-06
TRW C3 - relative to C2 -1.11 0.31 -3.6 15.6 2.5E-03
TRW C1 - relative to C2 2.38 0.29 8.2 8.1 3.3E-05

Table S9 — LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset
2, using 8 words, electrodes assigned to clusters by similarity to Dataset 1 cluster centers. Similar
to Table S8, but here the grouping of electrodes to the 3 clusters was done by assigning each electrode in Dataset 2
to a cluster by its highest correlation with the average cluster response profiles from Dataset 1. All comparisons were
statistically significant: Cluster 2 had a smaller TRW compared to Cluster 1, and Cluster 3 had the smallest TRW
compared to both other clusters (all ps<0.001). See Figure S10C-D.
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