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Abstract 

Despite long knowing what brain areas support language comprehension, our knowledge of the 
neural computations that these frontal and temporal regions implement remains limited. One 
important unresolved question concerns functional differences among the neural populations 
that comprise the language network. Leveraging the high spatiotemporal resolution of 
intracranial recordings, we examined responses to sentences and linguistically degraded 
conditions and discovered three response profiles that differ in their temporal dynamics. These 
profiles appear to reflect different temporal receptive windows (TRWs), with average TRWs of 
about 1, 4, and 6 words, as estimated with a simple one-parameter model. Neural populations 
exhibiting these profiles are interleaved across the language network, which suggests that all 
language regions have direct access to distinct, multi-scale representations of linguistic input—a 
property that may be critical for the efficiency and robustness of language processing. 
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Introduction 

Language processing engages a network of brain regions that reside in the temporal and frontal 
lobes and are typically left-lateralized (e.g., Fedorenko et al., 2010; Pallier et al., 2011). These 
brain regions respond strongly to linguistic stimuli across presentation modalities (Fedorenko et 
al., 2010; Vagharchakian et al., 2012; Regev et al., 2013; Scott et al., 2017), tasks (Fedorenko et 
al., 2010; Cheung et al., 2020; Diachek, Blank, Siegelman et al., 2020), and languages (Malik-
Moraleda, Ayyash et al. 2022). This language-responsive network is highly selective for language, 
showing little or no response to diverse non-linguistic inputs and tasks (e.g., Fedorenko et al., 
2011; Monti et al., 2012; Deen et al., 2015; Ivanova et al., 2020, 2021; Liu et al., 2020; Chen et 
al., 2023; Shain, Paunov, Chen et al., 2023; see Fedorenko, Ivanova & Regev, in press, for a 
review). However, the precise computations and neuronal dynamics that underlie language 
comprehension remain debated. 
 
Based on neuroimaging and aphasia evidence, some have argued for dissociations among 
different aspects of language, including phonological/word-form processing (e.g., Okada and 
Hickok, 2006; Graves et al., 2008; DeWitt and Rauschecker, 2012), the processing of word 
meanings (e.g., Price et al., 1997; Rodd et al., 2005; Mesulam et al., 2013), and 
syntactic/combinatorial processing (e.g., Friederici, 2002, 2011; Hagoort, 2005; Grodzinsky and 
Santi, 2008; Matchin and Hickok, 2020). However, other studies have reported distributed 
sensitivity to these aspects of language across the language network (Fedorenko et al., 2010, 
2020; Bautista and Wilson, 2016; Blank et al., 2016; Anderson et al., 2021; Caucheteux et al., 
2021; Reddy & Wehbe, 2021; Shain, Blank et al., 2020; Regev et al., 2024). Some of the challenges 
in discovering robust functional differences within the language network may have to do with 
the limitations of fMRI—the dominant methodology available for studying language processing. 
Each fMRI voxel contains a million or more individual neurons, which may differ functionally. If 
different linguistic computations are implemented in distinct neural populations that are 
distributed and interleaved across the language cortex, such dissociations may be difficult to 
detect with fMRI. Further, the relatively slow temporal resolution of fMRI (typically, ~2 seconds) 
may obscure the dynamics of linguistic computations. 
 
In recent years, invasive recordings of human neural activity (e.g., Mukamel and Fried, 2011), 
including electrocorticography (ECoG) and stereo electroencephalography (sEEG), have become 
increasingly available to language neuroscience researchers, as patients undergoing presurgical 
evaluation (usually for intractable epilepsy) agree to perform linguistic tasks while implanted with 
intracranial electrodes. These data have high spatial and temporal resolution, allowing the 
tracking of neural dynamics across both space and time. Several previous studies have probed 
intracranial neural responses during language comprehension (e.g., Fedorenko et al., 2016; 
Nelson et al., 2017; Woolnough et al., 2023; Desbordes et al., 2023; Goldstein et al., 2022; 2023). 
For example, Fedorenko et al. (2016) reported sensitivity in language-responsive electrodes to 
both word meanings and combinatorial processing, in line with fMRI findings (e.g., Fedorenko et 
al., 2010; Bedny et al., 2011). They also reported a temporal profile where neural activity 
gradually increases (builds up) across the sentence (replicated by Nelson et al., 2017; Desbordes 
et al., 2023; Woolnough et al., 2023), which they interpreted as reflecting the construction of a 
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sentence meaning. However, considerable disagreement exists in the field regarding the number 
of distinct profiles that characterize cortical language responses, how they functionally differ, 
and what computations they collectively support in the service of language comprehension and 
production.  
 
Here, we report a detailed investigation of neural responses during language processing. To 
isolate the language network from nearby lower-level perceptual areas and domain-general 
cognitive areas, we focus on electrodes that show a characteristic functional signature of the 
language areas: a stronger response to sentences than to sequences of nonwords (as in 
Fedorenko et al., 2016). To foreshadow our findings, we report three response profiles that differ 
in their temporal dynamics and overall magnitude of response to linguistically degraded 
conditions. Using a toy model with a single parameter—the timescale of information 
integration—we argue that these profiles reflect distinct temporal receptive window sizes in the 
language system (e.g., Lerner et al., 2011; Blank and Fedorenko, 2020; Jain et al., 2020).  
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Results 

We used intracranial recordings from patients with intractable epilepsy to investigate neural 
responses during language comprehension. Participants in Dataset 1 were presented with four 
types of linguistic stimuli that have been traditionally used to tease apart neural responses to 
word meanings and syntactic structure (Fedorenko et al., 2010, 2012, 2016; Pallier et al., 2011; 
Shain, Kean et al., in press; Desbordes et al., 2023; for earlier uses of this paradigm, see Mazoyer 
et al., 1993; Friederici et al., 2000; Humphries et al., 2001; Vandenberghe et al., 2002): sentences 
(S), lists of unconnected words (W), Jabberwocky sentences (J), and lists of unconnected 
nonwords (N) (Figure 1A-B, Methods, all stimuli are available at osf.io/xfbr8/). In each trial, 8 
words or nonwords were presented on a screen serially and participants were asked to silently 
read them. To maintain alertness, after each trial, participants judged whether a probe 
word/nonword had appeared in that trial. See Methods for further details of stimulus 
presentation and behavioral response data. In Dataset 2, just two of these conditions were used: 
sentences and lists of nonwords. 
 
We asked three research questions: 1) Does the language network contain reliably distinct 
response profiles? If so - 2) What do these profiles reflect? And finally - 3) Do electrodes exhibiting 
different response profiles tend to be located in particular regions of the language network? We 
used Dataset 1 (n=6) for initial evaluation of these questions because this dataset contained a 
richer set of experimental conditions. We then used Dataset 2 (n=16) as an attempt to replicate 
the findings despite the more compact experimental paradigm. 
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Figure 1 – Experimental procedure and the distribution of the implanted electrodes for Dataset 
1. A) A sample trial from the Sentence condition. B) For each of the four experimental conditions, items are either 
presented with probes that appeared in the trial or not. Adapted from Fedorenko et al. (2016). C) The locations of 
language-responsive (n=177, red; Methods) and non-language-responsive (n=373, black) electrodes across the six 
participants in Dataset 1. Electrodes were implanted almost exclusively in the left hemisphere for Dataset 1 and 
concentrated in the temporal and frontal lobes. D) Response reliability across odd and even trials (based on a 
correlation of mean condition-level responses) for language-responsive and non-language-responsive electrodes. 
Language-responsive electrodes exhibit more reliable responses to linguistic stimuli than non-language-responsive 
electrodes. 
 
 
1. Language-responsive electrodes exhibit reliably distinct response profiles. 
 
We clustered the high gamma neural response patterns of language-responsive electrodes from 
Dataset 1 (6 participants, same as those used in Fedorenko et al., 2016, 177 language-responsive 
electrodes; Figure 1C, Methods, Table 1) to sentences (S), word lists (W), Jabberwocky sentences 
(J) and nonword lists (N) (Figure 1A-B). We focused on differences across experimental conditions 
and therefore clustering was performed on the average condition timecourses, which were 
concatenated across the four conditions to create a single timecourse per electrode (Figure 2B, 
Methods). The k-medoids clustering algorithm, combined with the “elbow” method (Methods), 
suggested that three clusters (k=3) optimally explain the data (Figure 2A; similar results emerged 
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with a k-means clustering algorithm, see OSF osf.io/xfbr8/). Although we combined the 
electrodes from all 6 participants for clustering, electrodes that belong to each of the three 
clusters were evident in every participant individually (Figure 2B, S1). 
 
Additional analyses suggested that although the three observed response types may not be the 
only response types that exist in the language network, they do capture a substantial amount of 
the functional heterogeneity in our dataset. First, we repeated the clustering analysis while 
omitting electrodes below a parametrically varying reliability threshold, and found that the elbow 
at k=3 became more pronounced (Figure 2A inset). Second, when clustering was performed using 
a larger value of k (e.g., k=10), the profiles of many of the additional clusters resembled the 
profiles that we discovered when clustering using k=3 (Figure S2). And third, responses within a 
given cluster—especially the more reliable responses—appeared visually similar to the 
prototypical cluster response profiles, with only a couple of highly reliable responses exhibiting 
a distinct profile (Figure S3). 
 
The average timecourses for the three clusters are shown in Figure 2E (see Figure 2D for best 
representative electrodes from each cluster —'medoids’— chosen by the k-medoids algorithm). 
Cluster 1 (n=92 electrodes; range across participants: 5-34, Figure S1) was characterized by a 
relatively slow increase (build-up) of neural activity across the 8 words in the S condition (a 
pattern similar to the one reported by Fedorenko et al., 2016; Nelson et al., 2017; Desbordes et 
al., 2023; Woolnough et al., 2023; but see Discussion), and much lower activity for the W, J, and 
N conditions, with no difference between the J and N conditions (Figure 2F). Cluster 2 (n=67 
electrodes; range across participants: 1-21, Figure S1) displayed a quicker build-up of neural 
activity in the S condition that plateaued approximately 3 words into the sentence, a quick build-
up of activity in the W condition that began to decay after the third word, and a similar response 
to the J and N conditions as to the W condition with an overall lower magnitude. Cluster 2 also 
exhibited ‘locking’ of the neural activity to the onsets of individual words in the S condition. 
Finally, Cluster 3 (n=18 electrodes; range across participants: 1-7, Figure S1) showed no build-up 
of activity, and was instead characterized by a high degree of locking to the onset of each word 
or nonword in all conditions. Additionally, the response magnitudes of Cluster 3 were more 
similar across conditions compared to the other two clusters, although the S>W>J>N pattern was 
still present (Figure 2F). 
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Figure 2 – Dataset 1, k-medoids clustering with k=3. A) Search for optimal k using the “elbow method”. 
Top: Variance (sum of the distances of all electrodes to their assigned cluster center) normalized by the variance 
when k=1 as a function of k (normalized variance (NV)). Inset: Clustering was performed while omitting electrodes 
below a parametrically sampled reliability threshold. Orange shading represents the reliability threshold for omitting 
electrodes. The elbow (point of transition between a steeper to a more moderate slope) gets more pronounced 
when eliminating lower-reliability electrodes, which suggests that k=3 best describes these data. Bottom: Change in 
NV as a function of k (NV(k+1) – NV(k)). After k=3, there was a large drop in the change in variance. B) Clustering 
mean electrode responses (concatenated across the four experimental conditions: sentences (S), word lists (W), 
Jabberwocky (J), nonword lists (N)) using k-medoids (k=3) with a correlation-based distance (Methods). Shading of 
the data matrix reflects normalized high-gamma power (70-150Hz). Electrodes are sorted vertically due to 
participant and their assignment to clusters (right color bar). All three clusters are present in each of the six 
participants. C) Electrode responses visualized on their first two principal components, colored by cluster and shaded 
by the reliability of the neural signal as estimated by correlating responses to odd and even trials (Figure 1D). D) 
Timecourses of best representative electrodes (‘medoids’) selected by the algorithm from each of the three clusters. 
The timecourses reflect normalized high-gamma (70-150Hz) power averaged over all trials of a given condition. a.u. 
stands for arbitrary units; the signals were z-scored and normalized to have minimum value of 0 and maximum value 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2024. ; https://doi.org/10.1101/2022.12.30.522216doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

of 1. E) Timecourses averaged across all electrodes in each cluster. Shaded areas around the signal reflect a 99% 
confidence interval over electrodes. F) Mean condition responses by cluster. Error bars reflect standard error of the 
mean over electrodes. After averaging across time, response profiles are not as distinct by cluster (especially for 
Clusters 2 and 3), which underscores the importance of temporal information in elucidating this grouping of 
electrodes. 
 
We then evaluated the stability of these clusters across trials and their robustness to data loss. 
We found that clusters derived from half of the data (either odd- or even-numbered trials) were 
significantly more similar to the clusters derived from the full dataset or from the other half of 
the data than would be expected by chance (ps<0.001, permutation test, Methods, Figure 3A). 
The clusters were also robust to the number of electrodes used: clustering solutions derived from 
only a subset of the language-responsive electrodes (down to ~27%, ~32%, and ~69% of 
electrodes for Clusters 1, 2, and 3, respectively) were significantly more similar to the clusters 
derived from all the electrodes than would be expected by chance (using a threshold of p<0.05, 
evaluated with a permutation test, Methods, Figure 3B).  
 
To further quantify the apparent differences among the three response profiles, we performed 
two additional analyses. First, we examined how strongly the neural signal exhibited ‘locking’ to 
individual word/nonword onsets by correlating the observed responses with a fitted sinusoidal 
function (Methods). This analysis revealed that—consistent with visual examination—electrodes 
in Cluster 3 showed the strongest degree of stimulus locking, followed by electrodes in Cluster 2, 
with electrodes in Cluster 1 showing the weakest stimulus-related locking (Figure 3C, Table S1A-
B). And second, we tested how quickly and strongly the S, W, J, and N conditions diverged from 
one another in each of the profiles. We did this using a binary logistic classifier—trained for each 
cluster separately—using incrementally more of the timecourse for discrimination (Figure 3D-F, 
Methods). The classification performance (averaged across 10 folds of the cross-validated 
classifier) revealed that neural populations in Cluster 1 reliably distinguished S from W earlier 
and more strongly than the neural populations in Clusters 2 and 3.  In contrast, neural populations 
in Cluster 2 reliably distinguished W from N and J from N earlier and more strongly than neural 
populations in Clusters 1 and 3. 
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Figure 3 – Evaluation of Dataset 1 clusters. A) Comparison of clusters from all trials (top three rows) versus 
only even (middle three rows) or odd (bottom three rows) trials. Clusters that emerge using only odd or even trials 
are highly similar to the clusters that emerge when all trials are used (ps<0.001; evaluated with a permutation test; 
Methods). B) Robustness of clusters to electrode omission. Random subsets of electrodes were removed in 
increments of 5 (Methods). Similarity of cluster centers when all electrodes were used versus when random subsets 
of electrodes were removed. Stars reflect significant similarity with the full dataset (using a threshold of p<0.05; 
evaluated with a permutation test; Methods). Shaded regions reflect standard error of the mean over randomly 
sampled subsets of electrodes. Cluster 3 was driven the most by individual electrodes relative to Clusters 1 and 2. C) 
Correlation of fitted stimulus train with timecourse of electrodes by cluster and by condition (Methods). Error bars 
reflect standard error of the mean over electrodes. Electrodes in Cluster 3 were the most locked to word/nonword 
presentation whereas electrodes in Cluster 1 were the least locked to word/nonword presentation. There was a 
significant main effect for cluster (p<0.05) but not for condition (ANOVA for LME models, Methods, Table S1A-B). 
These qualitative between-condition differences could be due to generally greater engagement of these neural 
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populations with more language-like stimuli. D-F) Classifier performance by cluster as a function of the amount of 
timecourse included in training (Methods). A binary logistic classifier was trained to discriminate the Sentence (S) 
and Word-list (W) conditions (D), Word-list (W) and Nonword-list (N) conditions (E), and Jabberwocky (J) and 
Nonword-list (N) conditions (F). Significance stars at the bottom (colored by cluster) reflect discriminability of 
conditions above chance level (ps<0.05, evaluated as a cluster statistic against a null distribution from permuted 
labels, Methods). Shaded regions reflect standard error across the 10 folds of the cross-validated classifier. 
 
Although the k-medoids clustering algorithm assigns each electrode to one of k discrete clusters, 
we wanted to additionally evaluate the degree to which single electrode profiles fell between the 
prototypical cluster response profiles. To do this, we computed the partial correlation of every 
electrode’s response profile with that of each of the cluster medoids, while controlling for the 
other two medoids (Figure S4, Methods). As shown in Figure S4B, many of the electrodes 
exhibited response profiles that were consistent with only one of the prototypical responses. 
However, a few electrodes, mostly in Clusters 1 and 2, exhibited high partial correlations with 
another cluster’s medoid (i.e., a “mixed” response profile). Visual inspection of these response 
profiles (Figure S4C-D; osf.io/xfbr8/) revealed that these electrodes displayed a blend of Cluster 
1 and Cluster 2 response characteristics. The existence of mixture electrodes primarily between 
Clusters 1 and 2 is in line with the generally high correlation between their medoids (0.68 
between Cluster 1 and 2 medoids versus 0.21 between Cluster 1 and 3, and 0.24 between Cluster 
2 and 3; Figure 3A).  
 
2. Response profiles reflect different sizes of temporal receptive windows. 
 
The temporal dynamics of the neural responses across clusters suggested that the observed 
differences in the response profiles may reflect different ‘temporal receptive windows’ (TRWs). 
TRWs are a temporal equivalent of spatial receptive fields that corresponds to the amount of the 
preceding temporal context that affects the processing of the current input (e.g., Hasson et al., 
2008, Lerner et al., 2011; Norman-Haignere et al., 2022). In particular, a neural population that 
only processes information over the span of a single word should exhibit visible evoked responses 
at the rate of stimulus presentation, reflecting the momentary stimulus-related fluctuations. On 
the other hand, a neural population that processes information over spans of multiple words 
should exhibit a response that reflects a more smoothed version of the stimulus train, with no 
momentary stimulus-related fluctuations. As described in Section 1, the three clusters differed 
significantly in their degree of locking to the individual word onsets. Cluster 3 showed the 
strongest locking, followed by Cluster 2, with Cluster 1 showing the weakest amount of locking 
(Figure 3C). Moreover, a neural population that only processes information over the span of ~a 
single word (or less) should show little sensitivity to whether nearby words can be composed into 
phrases. This is the pattern we saw for electrodes in Cluster 3 (Figure 3D): these electrodes did 
not reliably discriminate between the Sentence and Word-list conditions. In contrast, a 
population that processes information over spans of multiple words should show sensitivity to 
the composability of nearby words, and thus should strongly discriminate between sentences 
and word lists. This is the pattern we saw for electrodes in Clusters 1 and 2, with Cluster 1 
electrodes showing earlier and stronger discrimination (Figure 3D). Note that this greater 
difference between the Sentence and Word-list conditions for longer-TRW neural populations is 
presumably due to the fact that linguistic differences between these two conditions become 
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more pronounced for longer word sequences (e.g., see Figure S5 for evidence from n-gram 
frequency counts). 
 
To formally test whether the clusters indeed differ in the size of their TRWs, we constructed a 
toy model wherein we convolved a simplified stimulus train with response functions (gaussian-
based ‘kernels’) of varying widths (TRW sizes denoted as 𝜎; Figure 4A, see Methods for model 
assumptions and implementational details). The resulting simulated responses exhibited striking 
visual similarity to the observed response patterns (Figure 4A). We then computed—for every 
electrode—a correlation between each simulated response and the observed response, and we 
selected the 𝜎 value that yielded the highest correlation (Figure 4B-C, Methods). The estimated 
TRW sizes showed a clear pattern of decrease from Cluster 1 to 2 to 3; the average 𝜎 values per 
cluster were ~6, ~4, and ~1 words for Clusters 1, 2, and 3, respectively (ps<0.0001 comparing 
TRWs across all pairs of clusters, evaluated with a LME model, Methods, Figure 4B-C, Table S5). 
To evaluate the robustness of this result, we repeated the TRW fitting procedure using other 
kernel shapes, and confirmed that the relative sizes of the TRWs of the three clusters did not 
depend on the specific choice of kernel shape (Figure S6). Furthermore, the estimated values of 
𝜎	in number of words (as reported above) appear to be invariant to the stimulus presentation 
rate, which suggests that the TRW of language-responsive electrodes is information-, not time-, 
dependent (Table S6 and Table S7). However, this rate-invariance should be investigated further 
in future work given the small number of participants in each presentation rate group (n=3) and, 
correspondingly, the low statistical power. 
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Figure 4 – Estimating the size of the temporal receptive window (TRW) of different electrodes. 
A) A toy model that simulates neural responses to the sentence condition as a convolution of a simplified stimulus 
train and truncated Gaussian kernels with varying widths. Top: Simplified stimulus train where peaks indicate a 
word/nonword onset, and sample kernels correspond to varying temporal receptive window sizes (𝜎). The kernels 
were constructed from Gaussian curves with a standard deviation of 𝜎/2 truncated at +/- 1 standard deviation 
(capturing 2/3 of the area under the Gaussian, Methods) and normalized to a minimum of 0 and a maximum of 1. 
Bottom: The resulting simulated neural signals for sample kernel widths, normalized to a minimum of 0 and a 
maximum of 1. B) Best TRW fit for all electrodes colored by cluster and sized by the reliability of the neural signal as 
estimated by correlating responses to odd and even trials (Figure 1D). The goodness of fit, or correlation between 
the simulated and observed neural signal (Sentence condition only), is shown on the y-axis. C) Estimated TRW sizes 
across all electrodes (grey) and per cluster (red, green, and blue). Black vertical lines correspond to the mean window 
size and the white dots correspond to the median. “x” marks (present in Cluster 3 only) indicate outliers (more than 
1.5 interquartile ranges above the upper quartile or less than 1.5 interquartile ranges below the lower quartile). 
Significance was evaluated with an LME model (Methods, Table S5). Together, B and C show that the clusters varied 
in the size of their TRWs, from a relatively long TRW (Cluster 1) to a relatively short one (Cluster 3). 
 
 
3. Clusters 1 and 2 are distributed across the language network, whereas cluster 3 exhibits a 
posterior bias. 
 
We tested for differences in the anatomical distribution of the electrodes that belong to the 3 
clusters in Dataset 1. We excluded from this analysis right-hemisphere (RH) electrodes because 
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only 4 RH electrodes passed the language selectivity criterion (S>N). We focused on the y 
(posterior-anterior) and z (inferior-superior) directions in the MNI coordinate space within the 
left hemisphere. Electrodes in both Clusters 1 and 2 were distributed across the temporal and 
frontal language regions (Figure 5). When examining all electrodes together, or focusing on only 
the frontal or only the temporal electrodes, the MNI coordinates of electrodes in Clusters 1 and 
2 did not significantly differ in either of the two tested directions (ps>0.05, evaluated with a LME 
model, Methods, Figure 5C-D, Table S2A). However, when weighting the electrodes by their 
reliability in the LME model, electrodes in Cluster 1 fell more anteriorly and inferiorly relative to 
electrodes in Cluster 2 (ps<0.05, evaluated with a LME model, Methods, Table S2B). Electrodes 
in Cluster 3 were located significantly more posteriorly than those in Clusters 1 and 2 (lower y-
coordinate values, both Clusters 3 vs. 1 and Clusters 3 vs. 2, ps<0.0001, Methods, Figure 5C, Table 
S2A).  
 
To complement this analysis, we visualized the anatomical distribution of electrodes in two 
additional ways. First, we visualized all language-responsive electrodes by their partial 
correlations to each of the cluster medoids (Figure S4E). This approach does not enforce a 
categorical grouping into clusters, potentially allowing for more subtle response gradients. 
However, this analysis revealed a similar picture: Cluster-1- and Cluster-2-like responses were 
present throughout frontal and temporal areas, whereas Cluster-3-like responses were localized 
to the posterior superior temporal gyrus. Second, we examined the distribution of electrodes by 
their fitted TRW (Figure 5F). This visualization exhibited a gross anatomical trend of TRWs 
increasing from posterior to anterior regions, however, there remained a substantial local mosaic 
pattern, with long-TRW electrodes present in posterior temporal areas and short-TRW electrodes 
present in anterior temporal and frontal areas. 
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Figure 5 – Anatomical distribution of the clusters in Dataset 1. A) Anatomical distribution of language-
responsive electrodes in Dataset 1 across all participants in MNI space, colored by cluster. B) Anatomical distribution 
of language-responsive electrodes in participant-specific space. C-E) Violin plots of MNI coordinate values for the 3 
Clusters, where plotted points represent the mean of all coordinate values for a given participant and cluster. The 
mean across participants is plotted with a black horizontal line, and the median is shown with a white circle. 
Significance was evaluated with a LME model (Methods). Cluster 3 exhibited a posterior bias (more negative Y 
coordinate) relative to Cluster 1 and 2 when modeled using all language electrodes (ps<0.001, C). This trend was 
also evident when examining only the frontal (D) or temporal electrodes (E) separately, but the difference only 
reaches significance for the temporal electrodes (p<0.01). F) Anatomical distribution of electrodes in Dataset 1 
colored by their estimated temporal receptive window (TRW, Figure 4). There was a slight trend of increasing TRW 
size from posterior to anterior regions but with considerable local heterogeneity. 
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4. Clusters 1 and 3 replicate in Dataset 2 and Cluster 2 partly replicates. 
 
We asked whether the same clusters would emerge in a second, independent dataset with new 
participants and different linguistic materials (Dataset 2; 16 participants; 362 language-
responsive electrodes; mostly depth electrodes, Figure 6A, Methods). Participants in Dataset 2 
only saw two of the four conditions presented to participants in Dataset 1 (Sentences (S) and 
Nonword-lists (N), but not Word-lists (W) or Jabberwocky sentences (J)); therefore, we started 
by re-clustering the electrodes from Dataset 1 using only the responses to the S and N conditions 
to allow for direct comparisons with Dataset 2. 
 
The Dataset 1 cluster averages, when only the S and N conditions were used, exhibited a strong 
qualitative similarity to those of the clusters derived using the data from all four conditions 
(Figure S7). ~80% of electrodes in Dataset 1 were assigned to the same cluster (‘matched’ to the 
original clusters by highest correlation). However, Cluster 2 was less robust to electrode loss than 
Clusters 1 and 3 (compare the green curve in Figure 3B to the green curve in Figure S7G). This 
finding suggests that responses to the Word-list and Jabberwocky conditions are especially 
important for differentiating Cluster 2 from the other response profiles, presumably because 
these conditions pattern differently for Clusters 1 and 2. 
 
We next clustered the electrodes in Dataset 2 using the same approach as for Dataset 1. The 
optimal number of clusters in Dataset 2 was k=2 based on the elbow method, and the resulting 
clusters were visually similar to Clusters 1 and 3 from Dataset 1 (p<0.001 for Cluster 3, p=0.061 
for Cluster 1, permutation test, Methods, see OSF osf.io/xfbr8/; note that this permutation test 
is especially conservative with only two experimental conditions and when k=2). We also 
performed a version of clustering Dataset 2 enforcing k=3 to test whether a Cluster-2-like 
response would emerge (Figure 6). The same two cluster centers as in the case of k=2 were again 
apparent and showed reliable similarity to Clusters 1 and 3 in Dataset 1 (p<0.001 and p=0.023, 
respectively, permutation test, Methods, Figure 6G, I). The third cluster qualitatively resembled 
Cluster 2 from Dataset 1 (Figure 6G), but the resemblance was not statistically reliable (p=0.732, 
permutation test, Methods). 
 
As another, less stringent, test of whether Cluster 2 responses were present in Dataset 2, we 
assigned each electrode in Dataset 2 to a “group” based on their highest correlation with the 
average response profiles from Dataset 1, in a “winner-take-all” approach (Figure S8). In this 
approach, a substantial number of electrodes (n=95 of the total of n=362) were assigned to Group 
2 (the analog of Cluster 2). This analysis indicates that Cluster-2-like responses are indeed present 
in Dataset 2, even though they did not reliably emerge through the data-driven clustering 
approach. The lower robustness of the Cluster-2-like responses in Dataset 2 could be, in part, 
attributable to the lower split-half reliability of Dataset 2 compared to Dataset 1 (compare Figure 
6B vs. 6C), as well as the sparser spatial coverage due to the prevalence of depth electrodes 
(Figure 6A). For completeness, an analysis of the anatomical trends in Dataset 2 is presented in 
Figure S9 (Tables S3 and S4). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2024. ; https://doi.org/10.1101/2022.12.30.522216doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

Finally, we estimated the temporal receptive window (TRW) size (as in Section 2) for each 
electrode in Dataset 2 (Figure S10). Clusters 1 and 3 (the two clusters that consistently replicated 
from Dataset 1), were best described by TRWs of ~4.5 and ~1 words, respectively (Figure S10A-
B), similar to the TRW sizes observed for those clusters in Dataset 1. The TRW of Cluster 2 did not 
significantly differ from Cluster 3 when relying on the electrode assignments from the clustering 
algorithm with k=3 (where Cluster 2 did not replicate, Methods, Figure 6, Figure S10B, Table S8). 
However, using the winner-take-all approach (where a Cluster-2-like response was “pulled out” 
into Group 2, Figure S8, Figure S10D), the TRW of Group 2 was ~2.1 words, which significantly 
differed from that of Groups 1 and 3 (ps<0.001 comparing TRWs across all pairs of groups, 
evaluated using an LME model, Methods, Figure S10C-D, Table S9) and was similar to the TRW 
of Cluster 2 from Dataset 1. 
 
 

 
Figure 6 – Dataset 2 k-medoids clustering with k=3. A) The locations of language-responsive (n=362, red; 
Methods) and non-language-responsive (n=2,017, black) electrodes across the sixteen participants in Dataset 2 (both 
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surface and depth electrodes were implanted). Language-responsive electrodes were found across the cortex, in 
both the left and right hemispheres (Table 2). B and C) Response reliability as estimated by correlating responses to 
odd and even trials for language-responsive and non-language-responsive electrodes (as in Figure 1D). Language-
responsive electrodes exhibit more reliable responses to linguistic stimuli than non-language-responsive electrodes 
for both Dataset 1 (Sentence and Nonword-list conditions only, B) and Dataset 2 (C), however, the responses of 
language electrodes were less reliable in Dataset 2 than Dataset 1.  D) Clustering mean electrode responses 
(concatenated responses to sentences and nonword lists) in Dataset 2 using k-medoids (k=3) with a correlation-
based distance. Shading of the data matrix reflects normalized high-gamma power (70-150Hz). E) Electrodes 
visualized on their first two principal components, colored by cluster.  F and G) Average timecourse by cluster from 
Dataset 1 when using only the Sentence and Nonword-list conditions (F; see Figure S7) and from Dataset 2 (G). 
Shaded areas around the signal reflect a 99% confidence interval over electrodes. H) Mean condition responses by 
cluster in Dataset 2. Error bars reflect standard error of the mean over electrodes. As with Dataset 1, after averaging 
across time, response profiles were not as distinct by cluster, underscoring the importance of temporal information 
in elucidating this grouping of electrodes. I) Evaluation of clusters from Dataset 1 (clustering with Sentence and 
Nonword-list conditions only) against clusters from Dataset 2. Clusters 1 and 3 from Dataset 1 replicated in Dataset 
2 (p<0.001 and p=0.023, respectively; permutation test; Methods). Although Cluster 2 demonstrated some 
qualitative similarity across the two datasets, this similarity was not statistically reliable (p=0.732, permutation test, 
Methods).  
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Discussion 
 
The nature of the neural computations that support our ability to extract meaning from linguistic 
input remains an important open question in the field of language research. Here, we leveraged 
the high temporal and spatial resolution of human intracranial recordings to probe the fine 
temporal dynamics and the spatial distribution of language-responsive neural populations. We 
uncovered three temporal profiles of response during the processing of sentences and 
linguistically degraded conditions such as lists of words or nonwords. We suggest that these 
profiles differ in the size of their temporal receptive window (TRW)—the amount of temporal 
context that affects the neural processing of the current input. Further, we found that electrodes 
with distinct response profiles manifest in a scattered spatial distribution across both frontal and 
temporal cortices. Below, we contextualize these results with respect to prior empirical work and 
discuss their implications for our understanding of human language processing. 
 
Three profiles characterize language-responsive neural populations 
 
In the present study, we used a clustering approach in order to group neural populations (as 
measured by intracranial macroelectrodes; note that when we write that ‘electrodes’ exhibit a 
response, we are referring to the neural populations that the electrodes are measuring) by their 
responses to four types of language stimuli: sentences (S), lists of unconnected words (W), 
Jabberwocky sentences (where content words are replaced with pronounceable nonwords; J), 
and lists of nonwords (N). We uncovered three dominant response profiles (‘clusters’) that 
differed in the presence and timing of the increase (build-up) of neural activity over the course 
of a sentence, the degree of locking to individual word/nonword onsets, and the overall 
magnitude of response to the linguistically degraded conditions (W, J, and N). Within each 
cluster, individual electrodes exhibited highly similar responses, with a small number of 
electrodes displaying a mixed response between Clusters 1 and 2. Finally, we found evidence for 
each of the three response profiles in an independent dataset that only included two of the four 
linguistic conditions (Sentences and Nonword-lists), although Clusters 1 and 3 were more 
robustly replicated. Importantly, because we had restricted our analyses to electrodes that show 
a functional signature of the language network (a stronger overall response during the processing 
of structured and meaningful language stimuli—sentences—than during the processing of 
perceptually similar but meaningless and unstructured stimuli—nonword lists; Fedorenko et al., 
2010), these findings provide evidence for functional heterogeneity within the language 
network proper, rather than between the language areas and nearby functionally distinct brain 
regions, like speech areas (e.g., Overath et al., 2015; Keshishian et al., 2023) or higher-level 
cognitive networks (e.g., Braga et al., 2020; Fedorenko & Blank 2020; Shain, Paunov, Chen et al., 
2023; see Fedorenko, Ivanova & Regev, in press, for discussion). 
 
The experimental design adopted in the current study has traditionally been used as a way to 
tease apart neural responses to word meanings (present in sentences and word lists, but not in 
Jabberwocky sentences and nonword lists) and syntactic structure (present in sentences and, 
under some views of syntax, in Jabberwocky sentences, but not in word/nonword 
lists; Fedorenko et al., 2010, 2012, 2016; for earlier uses of this paradigm, see Mazoyer et al., 
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1993; Friederici et al., 2000; Humphries et al., 2001; Vandenberghe et al., 2002). As measured 
with fMRI, all areas of the language network show sensitivity to both word meanings and 
syntactic structure: the response is strongest to sentences, lower to word lists and Jabberwocky 
sentences, and lowest to nonword lists (e.g., Fedorenko et al., 2010; Bedny et al., 2011; Shain, 
Kean et al., in press; Pallier et al., 2011; Desbordes et al., 2023 see Bautista & Wilson, 2016 and 
Fedorenko et al., 2020 for evidence against the lexical/syntactic dissociation from other 
paradigms; see Dick et al., 2001 for earlier arguments and evidence). Using a similar design in an 
intracranial recording study, Fedorenko et al. (2016) replicated this overall pattern of response 
and also reported a temporal profile—present in a subset of electrodes—whereby high gamma 
power builds-up across words over the course of a sentence but not in other conditions 
(replicated by Nelson et al., 2017; Desbordes et al., 2023; Woolnough et al., 2023). They 
interpreted this build-up effect as indexing the process of constructing a sentence-level meaning. 
 
Here, we investigated the temporal profiles of language-responsive electrodes more 
comprehensively. By leveraging the fine-grained temporal information in the signal (i.e., 
considering the full timecourses instead of averaging high gamma power in each word/nonword 
as in Fedorenko et al., 2016), we found that the build-up effect reported in Fedorenko et al. 
(2016) represents a mix of functionally distinct populations. The timecourse of response to the 
Sentence condition in Fedorenko et al. (2016) is most similar to that in Cluster 1 here. However, 
a reliable sentences > word lists > Jabberwocky sentences > nonword lists profile in Fedorenko 
et al. (2016) suggests a contribution from Cluster 2 neural populations. As such, our analyses 
identify two functionally distinct build-up profiles and additionally uncover a third profile, which 
does not show build-up of activity over time, and we replicated these results in a new, larger 
dataset with a different set of language materials (Dataset 2). Importantly, here we show that 
despite strong integration between lexical and syntactic processing, neural populations within 
the language network do differ functionally, although along a different dimension—the temporal 
scale of information integration. 
 
The response profiles reflect distinct temporal receptive windows 
 
A temporal receptive window (TRW) denotes the amount of the preceding context that a given 
neural unit integrates over (e.g., Hasson et al., 2008; Lerner et al., 2011; Norman-Haignere et al., 
2022). Previous studies have demonstrated that cortical neural activity is organized into a 
hierarchy of timescales, wherein information over tens to hundreds of milliseconds is encoded 
by sensory cortical areas, and information over many seconds is encoded by higher-order areas 
(Chaudhuri et al., 2015; Runyan et al., 2017; Murray et al., 2014; Chien et al., 2020). Past fMRI 
studies have shown that the TRW of the language network falls somewhere between a word and 
a short sentence (e.g., Lerner et al., 2011; Jacoby and Fedorenko, 2020; Blank and Fedorenko, 
2020; Jain et al., 2020; Caucheteux et al., 2023; Chang et al., 2022; Shain, Kean et al., in press), 
although some work has suggested that language regions are, at least to some degree, sensitive 
to sub-lexical regularities (Bozic et al., 2010; Regev et al., 2024). Using a simple instantiation of 
an information processing system—with one (interpretable) free parameter: the length of past 
stimulus context—we estimated the TRW of different language-responsive neural populations. 
Based on this analysis, we argue that our observed response profiles differ in their timescale of 
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information processing, from sub-lexical units and single words (Cluster 3) to short phrases 
(Cluster 2) to longer phrases/sentences (Cluster 1).  
 
Do the observed response profiles reflect categorically distinct clusters that integrate 
information over different timescales, or is the underlying structure of language-selective 
responses in the brain best described by a continuum of TRWs with no sharp boundaries or 
groupings of response types? Although we do not rule out the possibility of a TRW continuum, 
our data are well explained by the grouping of responses into three categories. A few electrodes 
do exhibit a "mixed” response profile, falling somewhere between the prototypical Cluster 1 and 
Cluster 2 responses, but this mixing could be due to these electrodes picking up activity of 
multiple neural populations. Recordings at a higher spatial resolution would be needed to 
evaluate this possibility (e.g., Paulk et al., 2022; Leonard, Gwilliams et al., 2023). Nevertheless, 
the current data suggest the existence of neural populations within the language network that 
are sensitive to information chunks of distinct and specific size. This functional organization is 
presumably driven by the statistics of natural language and is likely critical for efficient extraction 
of meaning from language (see Future directions). 
 
To estimate the TRW values, we made several simplifying assumptions that can be revisited in 
future studies. First, we have discussed TRWs in terms of the number of words. However, natural 
languages vary substantially in how they package information into words (Evans & Levinson, 
2009) and the processing of a given word is highly dependent on how informative the word is in 
context (e.g., Shannon, 1949; for behavioral evidence, see Levy, 2008b; Shain et al., 2024). As a 
result, TRWs may instead be bounded by the number of bits of information. Future work should 
evaluate multiple accounts of the units in which TRWs are measured. The second simplifying 
assumption we made was that TRWs are fixed in size. Much recent evidence suggests that human 
comprehension mechanisms can flexibly accommodate corrupt linguistic input, e.g., due to 
speech errors (e.g., Levy, 2008a; Gibson et al., 2013; Gibson et al., 2017; Keshev & Meltzer-
Asscher, 2021; Ryskin et al., 2018, 2021; see Gibson et al., 2019 for a review), which may make it 
desirable for TRWs to be somewhat adaptable to allow for the possibility of continuously revising 
one’s interpretation of the input. Future work should seek to understand if and how the TRW of 
a specific neural population can be affected by linguistic context. And third, the response function 
(kernel) that we used to generate the simulated signals was intentionally simple and is likely not 
consistent with the underlying neurophysiology (see Methods for details). A model that is more 
faithful to neurobiological principles may better capture the observed neural responses and such 
models should be explored in future work.  
 
Finally, our toy TRW model currently does not take into account the form and content of the 
stimulus, as it does not use any linguistic information to generate responses. However, responses  
of neural populations in the language network are highly sensitive to stimulus properties. One 
key modulator of response strength is how well the stimulus matches natural language statistics, 
as evidenced by both condition-level effects (e.g., sentences > word lists; Fedorenko et al., 2010) 
and fine-grained preferences for particular linguistic strings (Tuckute et al., 2024). A more 
complete model of language processing should therefore include both “gating” of linguistic input 
into different lengths of effective input (defined by a neural population’s TRW) and a scaling of 
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the neural response by the effective input’s probability. This idea—that responses of neural 
populations in the language network reflect the probability of linguistic inputs at variable context 
lengths due to their TRW—may explain why the Sentence and Word-list conditions were best 
discriminated by Cluster 1 populations. In particular, Cluster 1 populations have the longest TRW, 
and the linguistic difference between sentences and word lists becomes more apparent over 
longer timescales (as we demonstrated for our stimuli using n-gram probabilities, Figure S5). We 
leave more thorough exploration of stimulus-dependent accounts of the computations carried 
out by the language network to future work (see Future directions). 
 
The spatially distributed nature of language processing 
 
There is a long history in language neuroscience of attempts to divide language comprehension 
into both temporally distinct stages and spatially distinct components. At some level, language 
comprehension can indeed be broken up across time and space. In particular, clear separation 
exists between the language-processing system (Fedorenko et al., 2011) and both i) lower-level 
perceptual areas, and ii) higher-level cognitive areas (see Fedorenko, Ivanova & Regev, in press, 
for a review). The lower-level perceptual areas, such as the speech perception area (Norman-
Haignere et al., 2015; Overath et al., 2015; Keshishian et al. 2023) and the visual word-form area 
(e.g., Baker et al., 2007; Hamamé et al., 2013; Saygin et al., 2016), process information earlier 
than—and likely provide input to—the language network. And higher-level cognitive areas, such 
as the areas of the Default network (Buckner & DiNicola, 2019) or the Theory of Mind network 
(Saxe et al., 2006), process information later than—and likely receive input from—the language 
network. These latter areas plausibly carry out further processing on the meaning 
representations extracted from language, including connecting those meaning representations 
across long spans of time (e.g., Lerner et al., 2011; Baldassano et al., 2017; 2018). However, 
discovering spatial subdivisions within the language-selective network proper has proven 
challenging (e.g., Fedorenko et al., 2010, 2020; Bautista & Wilson, 2016; Blank & Fedorenko, 
2020; Shain, Kean et al., in press). 
 
The current work demonstrates that there exist functional differences within the language 
network, but functionally distinct populations do not seem to exhibit strong spatial clustering and 
are instead distributed in an interleaved fashion across the language network. The latter explains 
why most past fMRI work could not reveal this functional heterogeneity (cf. Fedorenko et al., 
2012 for implied functional heterogeneity based on multivariate patterns of fMRI response; and 
see Jain et al., 2020 for evidence of voxel-level heterogeneity with respect to TRWs as discovered 
in an encoding approach with artificial neural network language models). This architectural 
design makes it possible for each area of the network to have access to information at different 
timescales, which likely makes language processing efficient and robust. A clear exception in our 
data is the concentration of Cluster 3 (shortest-TRW) electrodes in the posterior superior 
temporal gyrus, which may suggest that this area serves a unique computational role within the 
language network (see Wilson et al., 2023 and Shain, Kean et al., in press, for other recent 
evidence of the special role of this area); however, we cannot rule out the possibility that these 
electrodes are picking up some activity from the nearby speech areas (e.g., Overath et al., 2015). 
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We also acknowledge that a macro-scale organization could become more evident with more 
participants and a more systematic coverage of the frontal and temporal cortex. 
 
Future directions 
 
The current findings lay the foundation for several exciting future research avenues. First, the 
size of a neural unit’s temporal receptive window (TRW) should determine its sensitivity to 
different linguistic features. As noted above, one limitation of the current investigation is the 
focus on condition-level differences, rather than trying to explain fine-grained responses to 
individual linguistic items. The reason for this choice is two-fold. To start, the current linguistic 
materials were not constructed with the goal of investigating linguistic (e.g., lexical and syntactic) 
features: in order to make the materials easy to process for diverse populations, the sentences 
were constructed to be short and to use common structures and words, which limits the range 
of variability to be explored. And additionally, we did not observe reliable stimulus-related 
activity (beyond the level of conditions; see OSF osf.io/xfbr8/). However, the TRW-based 
framework makes clear predictions that can be evaluated in future work. For example, short-
TRW populations should show greater sensitivity to lexical features, such as word frequencies, 
whereas longer-TRW populations should be more sensitive to linguistic features at longer 
timescales, such as higher-order n-gram frequencies and syntactic-structure-related features. 
Because many linguistic features are strongly inter-correlated in naturalistic language materials 
(e.g., Piantadosi et al., 2011; Shain, Blank et al., 2020; Shain et al., 2022; see OSF osf.io/xfbr8/ for 
evidence of inter-correlation of linguistic features in the current stimuli), evaluating these 
predictions will require constructing materials that are specifically designed to best dissociate 
different linguistic dimensions. 
 
Second, artificial neural network (ANN) language models—which have proven to be powerful 
tools for understanding the human language system (Toneva & Wehbe, 2019; Jain et al., 2020; 
Schrimpf et al., 2021; Goldstein et al., 2022; Caucheteux & King, 2022; see Tuckute et al., in press, 
for a review)—could be leveraged to gain insights into the constraints on the language processing 
architecture. For example, do successful language architectures require particular proportions of 
units with different TRWs or particular distributions of such units within and/or across model 
layers? In Dataset 1, we found the fewest electrodes belonging to Cluster 3 (shortest TRW), more 
electrodes belonging to Cluster 2 (intermediate TRW), and the majority of electrodes belonging 
to Cluster 1 (longest TRW). These proportions align with the idea that compositional semantic 
space is highly multi-dimensional, but word-form information can be represented in a relatively 
low-dimensional space (e.g., Mollica and Piantadosi, 2019). However, the proportions can also 
be affected by biases in where intracranial electrodes tend to be implanted, so investigating these 
questions in ANNs, where we can probe all units in the network and have the freedom to alter 
the architecture in various ways, may yield insights that cannot be gained from human brains at 
least with the current experimental tools available. 
 
And third, we have here focused on language comprehension. However, the same language 
network also supports language production (Awad et al., 2007; Menenti et al. 2011; Segaert et 
al. 2012; Silbert et al., 2014; Giglio et al., 2022; Hu, Small et al., 2022). Whether the TRW-based 
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organization discovered here in a language comprehension task applies to language production—
given that utterance planning is known to unfold at multiple scales (e.g., Lee et al., 2013)—
remains to be determined. 
 
In conclusion, across two intracranial-recording datasets, we here demonstrate the existence of 
functionally distinct neural populations within the fronto-temporal language-selective network 
proper, opening the door to investigations of how these populations work together to accomplish 
the incredible feats of language comprehension and production. 
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Methods 

Participants 
Dataset 1 (also used in Fedorenko et al., 2016): Electrophysiological data were recorded from 
intracranial electrodes in 6 participants (5 female, aged 18–29 years) with intractable epilepsy. 
These participants underwent temporary implantation of subdural electrode arrays at Albany 
Medical Center to localize the epileptogenic zones and to delineate it from eloquent cortical 
areas before brain resection. All participants gave informed written consent to participate in the 
study, which was approved by the Institutional Review Board of Albany Medical Center. One 
further participant was tested but excluded from analyses because of difficulties in performing 
the task (i.e., pressing multiple keys, looking away from the screen) during the first five runs. 
After the first five runs, the participant required a long break during which a seizure occurred. 
 
Dataset 2: Electrophysiological data were recorded from intracranial electrodes in 16 participants 
(4 female, aged 21-66 years) with intractable epilepsy. These participants underwent temporary 
implantation of subdural electrode arrays and depth electrodes to localize the epileptogenic 
zones before brain resection at one of four sites: Albany Medical Center (AMC), Barnes-Jewish 
Hospital (BJH), Mayo Clinic Jacksonville (MCJ), and St. Louis Children’s Hospital (SLCH). All 
participants gave informed written consent to participate in the study, which was approved by 
the Institutional Review Board at each relevant site. Two further participants were tested but 
excluded from analyses due to the lack of any language-responsive electrodes (see Language-
Responsive Electrode Selection). 
 
Data Collection 
Dataset 1: The implanted electrode grids consisted of platinum-iridium electrodes that were 4 
mm in diameter (2.3–3 mm exposed) and spaced with an inter-electrode distance of 0.6 or 1 cm. 
The total numbers of implanted grid/strip electrodes were 120, 128, 98, 134, 98, and 36 for the 
six participants, respectively (Table 1). Electrodes were implanted in the left hemisphere for all 
participants except P6, who had bilateral coverage (16 left hemisphere electrodes). Signals were 
digitized at 1,200 Hz. 
 
Dataset 2: The implanted electrode grids and depth electrodes consisted of platinum-iridium 
electrodes. Implanted grid contacts were spaced at 0.6 or 1cm (2.3–3 mm exposed), while SEEG 
leads were spaced 3.5 - 5 mm depending on the trajectory length, with 2 mm exposed. The total 
numbers of implanted electrodes by participant can be found in Table 2 (average=167 electrodes; 
st. dev.=51; range 92-234), along with the frequencies at which the signals were digitized. 
Electrodes were implanted in only the left hemisphere for 2 participants, in only the right 
hemisphere for 2 participants, and bilaterally for 12 participants (Table 2). All participants, 
regardless of the lateralization of their coverage, were included in all analyses. 
 
For both datasets, recordings were synchronized with stimulus presentation and stored using the 
BCI2000 software platform (Schalk et al., 2004).  
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Cortical Mapping  
Electrode locations were obtained from post-implantation computerized tomography (CT) 
imaging and co-registered with the 3D surface model of each participant’s cortex—created from 
the preoperative anatomical MRI image—using the VERA software suite (Adamek et al., 2022). 
Electrode locations were then transformed to MNI space within VERA via nonlinear co-
registration of the subjects’ skull-stripped anatomical scan and the skull-stripped MNI152 
Freesurfer template using ANTs (Avants et al., 2008). 
 
Preprocessing and Extraction of Signal Envelope 
Neural recordings were collected and saved in separate data files by run (see Experiment and 
Tables 1-2), and all preprocessing procedures were applied within data files to avoid inducing 
artifacts around recording breaks. 
 
First, the ECoG/sEEG recordings were high-pass filtered at the frequency of 0.5 Hz, and line noise 
was removed using IIR notch filters at 60, 120, 180, and 240 Hz. The following electrodes were 
excluded from analysis: a) ground, b) reference, and c) those that were not ECoG or sEEG contacts 
(e.g., microphone electrodes, trigger electrodes, scalp electroencephalography (EEG) electrodes, 
EKG electrodes), as well as d) those with significant line noise, defined as electrodes with line 
noise greater than 5 standard deviations above other electrodes, e) those with large artifacts 
identified through visual inspection, and, for all but four participants, f) those that had a 
significant number of interictal discharges identified using an automated procedure (Janca et al., 
2015). (For 4 participants—P3 in Dataset 1 and P15, P17, and P21 in Dataset 2—electrodes that 
were identified as having a significant number of interictal discharges were not excluded from 
analyses because more than 1/3 of each of these participants’ electrodes fit this criterion.) These 
exclusion criteria left 108, 115, 92, 106, 93, and 36 electrodes for analysis for the 6 participants 
in Dataset 1 (Table 1) and between 76 and 228 electrodes for the 16 participants in Dataset 2 
(Table 2). 
 
Next, the common average reference (from all electrodes connected to the same amplifier) was 
removed for each timepoint separately. The signal in the high gamma frequency band (70 Hz–
150 Hz) was then extracted by taking the absolute value of the Hilbert transform of the signal 
extracted from 8 gaussian filters (center frequencies: 73, 79.5, 87.8, 96.9, 107, 118.1, 130.4, and 
144; standard deviations (std): 4.68, 4.92, 5.17, 5.43, 5.7, 5.99, 6.3, and 6.62, respectively, as in 
e.g., Dichter et al., 2018). The resulting envelopes from each of the Gaussian filters were averaged 
into one high gamma envelope. We focus on the high gamma frequency range because this 
component of the signal has been shown to track neural activity most closely (e.g., Janca et al., 
2015). Linear interpolation was used to remove data points whose magnitude was more than 5 
times the 90th percentile of all magnitudes (Norman-Haignere et al., 2022), and we downsampled 
the signal by a factor of 4. For all data analysis basic Matlab (version 2021a) functions were used. 
 
Finally, the data were z-scored and normalized to a min/max value of 0/1 to allow for 
comparisons across electrodes, and the signal was downsampled further to 60 Hz (regardless of 
the participant’s native sampling frequency) to reduce noise and standardize the sampling 
frequency across participants. For the participants who performed a slower version of the 
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paradigm (e.g., words presented for 700 ms each; see Experiment), the signal was time-warped 
to a faster rate (words presented for 450 ms each) so that timecourses could be compared across 
subjects. This time-warping was done by resampling (Matlab procedure resample). 
 
Experiment 
Dataset 1: In an event-related design, participants read sentences, lists of words, Jabberwocky 
sentences, and lists of nonwords. All stimuli were eight words/nonwords long. The materials 
were adapted from Fedorenko et al. (2010; Experiment 2) and the full details of stimulus 
construction are described there. In short, sentences were manually constructed to cover a wide 
range of topics using various syntactic structures. Sentences were intended to be easily read, to 
fit participants with diverse clinical conditions and only included mono- and bi-syllabic words. 
The full list of materials is available at OSF (https://osf.io/xfbr8/). The word lists were created by 
scrambling the words from the sentences. Jabberwocky sentences were created from the 
sentences by removing content words (e.g., nouns, verbs, etc.), but leaving the syntactic frame, 
consisting of function words (e.g., articles, conjunctions, prepositions, pronouns, etc.), intact. 
Content words were replaced with other pronounceable nonwords, matched for length (in 
syllables). Lastly, the nonword lists were generated from scrambling the words/nonwords from 
the Jabberwocky condition. Originally, a set of 160 items per each condition were created and 
here, 80 or 60 items of those were used (depending on stimulus presentation rate, as detailed 
below). 
 
Each event (trial) consisted of eight words/nonwords, presented one at a time at the center of 
the screen. At the end of each sequence, a memory probe was presented (a word in the Sentence 
and Word-list conditions, and a nonword in the Jabberwocky and Nonword-list conditions) and 
participants had to decide whether the probe appeared in the preceding sequence by pressing 
one of two buttons. Two different presentation rates were used: P1, P5, and P6 viewed each 
word/nonword for 450 ms (fast-timing), and P2, P3, and P4 viewed each word/nonword for 700 
ms (slow-timing). The presentation speed was determined before the experiment based on the 
participant’s preference. After the last word/nonword in the sequence, a fixation cross was 
presented for 250 ms, followed by the probe item (1,400-ms fast-timing, 1,900 ms slow-timing), 
and a post-probe fixation (250 ms). Behavioral responses were continually recorded, but only 
responses 1 second before and 2 seconds after the probe were considered for calculating 
behavioral performance (Table 3). Participants performed best on the sentence trials and worst 
on the nonword list trials, with an average accuracy across all conditions of 81.01% (Table 3). 
After each trial, a fixation cross was presented for a variable amount of time, semi-randomly 
selected from a range of durations from 0 to 11,000 ms, to obtain a low-level baseline for neural 
activity. 

Trials were grouped into runs to give participants short breaks throughout the experiment. In the 
fast-timing version of the experiment, each run included eight trials per condition and lasted 220 
s, and in the slow-timing version, each run included six trials per condition and lasted 264 s. The 
total amount of intertrial fixation in each run was 44 s for the fast-timing version and 72 s for the 
slow-timing version. All participants completed 10 runs of the experiment, for a total of 80 trials 
per condition in the fast-timing version and 60 trials per condition in the slow-timing version. P1 
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was accidentally shown one run twice, and consequently saw only 9 unique runs for a total of 72 
trials per condition (as they opted for the fast presentation rate). 	 

Dataset 2: In an event-related design that was similar to the one used in Dataset 1, participants 
read sentences and lists of nonwords (the other two conditions—lists of words and Jabberwocky 
sentences—were not included). The materials were adapted from a version of the language 
localizer in use in the Fedorenko lab (e.g., Lipkin et al., 2022). The sentences came from a 
language corpus (Brown corpus; Kučera et al., 1967) where we searched for 12-word long 
sentences and chose a diverse set among those. The nonwords were created using the Wuggy 
software to match to the words from the sentences on low-level phonology. 
 
Each event (trial) consisted of twelve words/nonwords, presented one at a time at the center of 
the screen. At the end of each sequence, a memory probe was presented (a word in the Sentence 
condition and a nonword in the Nonword-list condition) and participants had to decide whether 
the probe appeared in the preceding sequence by pressing one of two buttons. Two presentation 
rates were used: 600 ms per word/nonword (medium-timing) and 750 ms per word/nonword 
(slow-timing; see Table 2 for a description of the presentation rates by participant). The 
presentation speed was determined before the experiment based on the participant’s 
preference. After the last word/nonword in the sequence, a fixation cross was presented for 400 
ms, followed by the probe item (1,000 ms for both fast- and slow-timing), and a post-probe 
fixation (600 ms). Behavioral responses were continually recorded, but only responses 1 second 
before and 2 seconds after the probe were considered for calculating behavioral performance 
(Table 4). As in Dataset 1, participants performed best on the sentence trials and worse on the 
nonword-list trials. However, in this sample of participants there was substantial individual 
variability in the consistency and accuracy of responses (Table 4). On average participants 
provided a correct response 68.57% of the time (Table 4). After each trial, a fixation cross was 
presented for a variable amount of time, semi-randomly selected from a range of durations from 
0 to 6,000 ms. 

Trials were grouped into runs to give participants short breaks throughout the experiment. In the 
medium-timing version of the experiment, each run included 36 trials per condition and lasted 
~898 s, and in the slow-timing version, each run included 24 trials per condition and lasted 692 
s. The total amount of intertrial fixation in each run was 216 s for the medium-timing version and 
144 s for the slowest-timing version. One participant (P7) saw a modified slow-timing version of 
the paradigm where only 48 of the full 72 items per condition were shown. 13 participants 
completed 2 runs of the experiment (all saw the medium-timing version, 72 trials per condition), 
2 participants completed 3 runs of the experiment (one saw the slow-timing version, 72 trials per 
condition; and the other saw the modified slow-timing version, 48 trials per condition), and 1 
participant completed 1 run of the experiment (medium-timing version, 36 trials per condition, 
Table 2). 

For all clustering analyses, only the first eight words/nonwords of the stimulus were used to 
ensure that the length of the timecourses being analyzed was the same across Dataset 1 and 2.  
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Language-Responsive Electrode Selection 
In both datasets, we identified language-responsive electrodes as electrodes that respond 
significantly more (on average, across trials) to sentences (the S condition) than to perceptually 
similar but linguistically uninformative (i.e., meaningless and unstructured) nonword sequences 
(the N condition). First, the envelope of the high-gamma signal was averaged across 
word/nonword positions (8 positions in the experiment used in Dataset 1, and 12 positions in the 
experiment used in Dataset 2) to construct an ‘observed’ response vector for each electrode (1 x 
nTrialsS + nTrialsN; the number of trials, across the S and N conditions, varied by participant 
between 72 and 160). The observed response vector was then correlated (using Spearman’s 
correlation) with an ‘idealized’ language response vector, where sentence trials were assigned a 
value of 1 and nonword trials—a value of -1. The values in the ideal response vector were then 
randomly permuted without replacement and a new correlation was computed. This process was 
repeated 10,000 times, for each electrode separately, to construct a null distribution (with 
shuffled labels) relative to which the true correlation between the observed values and the 
‘idealized’ values could be evaluated. Electrodes were determined to be language-responsive if 
the observed vs. idealized correlation was greater than 95% of the correlations computed using 
the permuted idealized response vectors (equivalent to p < 0.05). (We chose a liberal significance 
threshold in order to maximize the number of electrodes to be included in the critical analyses, 
and to increase the chances of discovering distinct response profiles.) The majority of the 
language-responsive electrodes (98.3% in Dataset 1, 53.9% in Dataset 2) fell in the left 
hemisphere, but we use electrodes across both hemispheres in all analyses (see e.g., Lipkin et al., 
2022 for evidence of a robust right-hemisphere component of the language network in a dataset 
of >800 participants). 
 
 

Participants Age Sex Site ECoG 
or 
sEEG 

Language-
responsive 
electrodes 
(S>N) 

Total clean 
electrodes 

Total 
electrodes 

Native 
sampling 
freq (Hz) 

Elec 
per  
amp 
 

Runs Pres. rate 
(per word) 

Trials 
per 
cond 

Participant 1 29 F AMc ECoG 62 (0 RH) 108 (0 RH) 120 (0 RH) 1200 16 10 450ms 80 
Participant 2 25 F AMc ECoG 17 (0 RH) 115 (0 RH) 128 (0 RH) 1200 16 10 700ms 60 
Participant 3 18 F AMc ECoG 17 (0 RH) 92 (0 RH) 98 (0 RH) 1200 16 10 700ms 60 
Participant 4 28 M AMc ECoG 26 (0 RH) 106 (0 RH) 134 (0 RH) 1200 64 10 700ms 60 
Participant 5 25 F AMc ECoG 48 (0 RH) 93 (0 RH) 98 (0 RH) 1200 64 10 450ms 80 
Participant 6 20 F AMc ECoG 7 (3 RH) 36 (20 RH) 36 (20 RH) 1200 64 10 450ms 80 

Table 1 – Details for Dataset 1. (All data were collected at the Albany Medical Center (Site=AMC).) Here and 
in Table 2, ‘Total electrodes’ excludes reference electrodes, ground electrodes, microphone electrodes, trigger 
electrodes, skull EEG electrodes, and EKG electrodes; and ‘Total clean electrodes’ excludes electrodes with 
significant line noise, significant interictal discharges, or large visual artifacts identified through manual inspection. 
‘Elec per amp’ – Number of electrodes per amplifier. ‘Pres rate (per word)’ – duration of presentation of each single 
word or nonword. 
 

Participant Age Sex Site ECoG 
or 
sEEG 

Language-
responsive 
electrodes 
(S>N) 

Total clean 
electrodes 

Total 
electrodes 

Native 
sampling 
freq (Hz) 

Elec  
per  
amp 
 

Runs Pres rate 
(per word) 

Trials 
per 
cond 

Participant 7 51 M AMc ECoG 14 (7 RH) 116 (25 RH) 126 (26 RH) 1200 64 3 750ms 48 
Participant 8 30 F AMC both 18 (0 RH) 76 (1 RH) 92 (3 RH) 1200 64 3 750ms 72 
Participant 9 31 M AMC sEEG 2 (1 RH) 90 (44 RH) 98 (52 RH) 1200 64 2 600ms 72 
Participant 10 59 F AMC sEEG 2 (0 RH) 113 (0 RH) 124 (0 RH) 1200 64 2 600ms 72 
Participant 11 23 M AMc ECoG 58 (33 RH) 209 (110 RH) 216 (110 RH) 1200 64 2 600ms 72 
Participant 12 39 M AMC sEEG 5 (5 RH) 112 (112 RH) 128 (128 RH) 1200 64 2 600ms 72 
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Participant 13 29 M AMc ECoG 9 (0 RH) 126 (0 RH) 132 (0 RH) 1200 64 2 600ms 72 
Participant 14 36 M AMC sEEG 3 (2 RH) 169 (84 RH) 184 (90 RH) 1200 64 2 600ms 72 
Participant 15 25 M BJH sEEG 19 (16 RH) 183 (93 RH) 183 (93 RH) 1000 64 2 600ms 72 
Participant 16 38 M BJH sEEG 49 (15 RH) 169 (72 RH) 224 (112 RH) 1000 64 2 600ms 72 
Participant 17 31 F BJH sEEG 17 (0 RH) 228 (30 RH) 228 (30 RH) 1000 64 2 600ms 72 
Participant 18 40 M BJH sEEG 35 (5 RH) 137 (11 RH) 192 (14 RH) 1000 64 2 600ms 72 
Participant 19 66 M BJH sEEG 32 (1 RH) 210 (13 RH) 234 (16 RH) 2000 64 2 600ms 72 
Participant 20 24 M BJH sEEG 7 (0 RH) 156 (30 RH) 218 (30 RH) 2000 64 2 600ms 72 
Participant 21 39 M MCJ sEEG 11 (1 RH) 108 (45 RH) 109 (45 RH) 1200 64 1 600ms 36 
Participant 22 21 F SLCH sEEG 81 (81 RH) 176 (176 RH) 186 (186 RH) 2000 64 2 600ms 72 

Table 2 – Details for Dataset 2. (The data were collected at four sites: Albany Medical Center (Site=AMC), 
Barnes-Jewish Hospital (Site=BJH), Mayo Clinic Jacksonville (Site=MCJ), and St. Louis Children’s Hospital (Site=SLCH)).  
 

Participant Trials responded Sentences Word lists Jabberwocky Nonword lists All conditions 

Participant 1 99.69% 97.50% 91.25% 81.01% 78.48% 87.11% 
Participant 2 99.17% 100.00% 91.67% 88.33% 72.88% 88.24% 
Participant 3 100.00% 100.00% 93.33% 90.00% 78.33% 90.42% 
Participant 4 100.00% 100.00% 86.67% 81.67% 71.67% 85.00% 
Participant 5 98.75% 45.00% 65.82% 49.37% 52.56% 53.16% 
Participant 6 96.25% 93.59% 89.61% 76.62% 68.42% 82.14% 
average 98.98% 89.35% 86.39% 77.83% 70.39% 81.01% 

Table 3 – Behavioral results for Dataset 1. Percentage of trials where participants in Dataset 1 responded 
and their accuracy on completed trials.  
 

Participant Trials responded Sentences Nonword lists All conditions 

Participant 7 79.17% 70.00% 75.00% 72.37% 
Participant 8 95.83% 88.41% 81.16% 84.78% 
Participant 9 45.83% 50.00% 57.69% 53.03% 
Participant 10 98.61% 94.44% 65.71% 80.28% 
Participant 11 16.67% 40.00% 44.44% 41.67% 
Participant 12 99.31% 93.06% 64.79% 79.02% 
Participant 13 86.81% 83.87% 76.19% 80.00% 
Participant 14 99.31% 97.18% 79.17% 88.11% 
Participant 15 95.14% 71.01% 55.88% 63.50% 
Participant 16 0.69% 0.00% 0.00% 0.00% 
Participant 17 83.33% 95.16% 79.31% 87.50% 
Participant 18 90.97% 92.65% 76.19% 84.73% 
Participant 19 100.00% 94.44% 83.33% 88.89% 
Participant 20 34.72% 57.14% 36.36% 48.00% 
Participant 21 52.78% 46.15% 64.00% 57.89% 
Participant 22 98.61% 91.55% 83.10% 87.32% 

average 73.61% 72.82% 63.90% 68.57% 

Table 4 – Behavioral results for Dataset 2. Percentage of trials where participants in Dataset 2 responded 
and their accuracy on completed trials. 
 
Clustering analysis 
Using Dataset 1 (n=6 participants, m=177 language-responsive electrodes), we created a single 
timecourse per electrode by concatenating the average timecourses across the four conditions 
(sentences (S), word lists (W), Jabberwocky sentences (J), nonword lists (N)). All the timepoints 
of the concatenated timecourses (864 data points: 60 Hz * 4 conditions * 3.60 seconds per trial 
after resampling) served as input to a k-medoids clustering algorithm (Kaufman & Rousseuw, 
1990). K-medoids is a clustering technique that divides data points—electrodes in our case—into 
k groups, where k is predetermined. The algorithm attempts to minimize the distances between 
each electrode and the cluster center, where cluster centers are represented by ‘medoids’ 
(exemplar electrodes selected by the algorithm) and the distance metric is correlation-based. K-
medoids clustering was chosen over the more commonly used k-means clustering to allow for 
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the use of a correlation-based distance metric as we were most interested in the shape of the 
timecourses over their scale which can vary due to cognitively irrelevant physiological differences 
(but see Figure S1 for evidence that similar clusters emerge with a k-means clustering algorithm 
using a Euclidean distance). 
 
Optimal number of clusters 
To determine the optimal number of clusters, we used the “elbow” method (e.g., Rokach and 
Maimon, 2005) which searches for the value of k above which the increase in explained variance 
becomes more moderate. For each k (between 2 and 10), k-medoids clustering was performed, 
and explained variance was computed as the sum of the correlation-based distances of all the 
electrodes to their assigned cluster center and normalized to the sum of the distances for k=1 
(equivalent to the variance of the full dataset). This explained variance was plotted against k and 
the “elbow” was determined as the point after which the derivative became more moderate. We 
plot the derivative of this curve as well for easier inspection of the transition point. We also 
repeat the elbow method while enforcing a parametrically sampled reliability threshold (from 
0.1 to 0.4 in increments of 0.1) to further examine our choice of k. If the chosen k does, in fact, 
appropriately describe the data, we would expect the strength of the elbow (that is, the drop in 
explained variance for k+1) to increase.   
 
Partial correlation of individual electrodes with each of the cluster medoids 
To evaluate the extent to which the observed responses can be attributed to a single profile, we 
computed partial correlations (Fisher, 1924) of every electrode’s mean timecourse with that of 
each of the cluster medoids, while controlling for the other two cluster medoids. For instance, 
take 𝑟!"#",#%#& as the partial correlation between a signal s1 and Cluster 1 medoid C1, while 
controlling for the Cluster 2 medoid C2 and Cluster 3 medoid C3. 𝑟!"#",#%#& can be computed by, 
i) performing a multiple regression analysis with s1 as the dependent variable and C2 and C3 as 
the independent variables, obtaining the residual e1; ii) performing a multiple regression analysis 
with C1 as the dependent variable and C2 and C3 as the independent variable, obtaining the 
residual e2; and iii.) calculating the correlation coefficient between the residuals e1 and e2. This 
is the partial correlation 𝑟!"#",#%#&. The analysis was performed using the Matlab partialcorr 
function. 
 
Cluster stability across trials  
We evaluated the stability of the clustering solution by performing the same clustering procedure 
as described above (Clustering analysis) on half the trials. To evaluate the similarity of the clusters 
derived based on only half of the trials to the clusters derived based on all trials, we first had to 
determine how clusters correspond between any two solutions. In particular, given that the 
specific order of the clusters that the k-medoids algorithm produces depends on the (stochastic) 
choice of initial cluster medoids, the electrodes that make up Cluster 1 in one solution may be 
labeled as Cluster 2 in another solution. To determine cluster correspondence across solutions, 
we matched the cluster centers (computed here as the average timecourse of all electrodes in a 
given cluster) from a solution based on half of the trials to the most highly correlated cluster 
centers from the solution based on all trials. 
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We then conducted a permutation analysis to statistically compare the clustering solutions. This 
was done separately for each of the two halves of the data (odd- and even-numbered subsets of 
trials). Under the null hypothesis, no distinct response profiles should be detectable in the data, 
and consequently, responses in one electrode should be interchangeable with responses in 
another electrode. Using half of the data, we shuffled average responses across electrodes 
(within each condition separately, thus disrupting the relationship between the conditions for a 
given electrode while leaving the distribution of within-condition average responses intact), re-
clustered the electrodes into 3 clusters, and then correlated the resulting cluster centers to the 
‘corresponding’ cluster centers from the full dataset. This permutation test was determined to 
be more conservative than shuffling individual trials across electrodes (within each condition 
separately). However, comparisons remained significant when shuffling individual trials. We 
repeated this process 1,000 times to construct a null distribution of the correlations for each of 
the 3 clusters. These distributions were used to calculate the probability that the correlation 
between the clusters across the two solutions using the actual, non-permuted data was higher 
than would be expected by chance. 
 
Cluster robustness to data loss  
We evaluated the robustness of the clustering solution to loss of electrodes to ensure that the 
solution was not driven by particular electrodes or participants. 
 
To evaluate the similarity of the clusters derived based on only a subset of language-responsive 
electrodes to the clusters derived based on all electrodes, we progressively removed electrodes 
from the full set (n=177) until only 3 electrodes remained (the minimal number of electrodes 
required to split the data into 3 clusters) in increments of 5. Each subset of electrodes was 
clustered into 3 clusters, and the cluster centers were correlated with the corresponding cluster 
centers (see section Cluster stability across trials above) from the full set of electrodes. For each 
subset of electrodes, we repeated this process 100 times, omitting a different random set of n 
electrodes with replacement, and computed the average correlation across repetitions. 
 
To statistically evaluate whether the clustering solutions with only a subset of electrodes were 
more similar to the solution on the full set of electrodes on average (across the 100 repetitions 
at each subset size) than would be expected by chance, we conducted a permutation analysis like 
the one described in Cluster stability across trials. In particular, using the full dataset, we shuffled 
average responses across electrodes (within each condition separately), re-clustered the 
electrodes into 3 clusters, and then correlated the resulting cluster averages to cluster averages 
from the actual, non-shuffled data. We repeated this process 1,000 times to construct a null 
distribution of the correlations for each of the 3 clusters. These distributions were used to 
calculate the probability that the correlation between the clusters across the two solutions using 
the actual, non-permuted data (a solution on all the electrodes and a solution on a subset of the 
electrodes) was higher than would be expected by chance. To err on the conservative side, we 
chose the null distribution for the cluster with the highest average correlation in the permuted 
version of the data. For each subset of electrodes, if the average correlation (across the 100 
repetitions) fell below the 95th percentile of the null distribution, this was taken to suggest that 
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the clustering solution based on a subset of the electrodes was no longer more correlated to the 
solution on the full set of electrodes than would be expected by chance. 
Electrode locking to onsets of individual word/nonwords 
To estimate the degree of stimulus locking for each electrode and condition separately, we fitted 
a sinusoidal function that represented the stimulus train to the mean of the odd trials and then 
computed the Pearson correlation between the fitted sinusoidal function and the mean of the 
even trials. For the sinusoidal function fitting, we assumed that the frequency of the sinusoidal 
function was the frequency of stimulus presentation and we fitted the phase, amplitude and 
offset of the sinusoid by searching parameter combinations that minimized the sum of squared 
differences between the estimated sinusoidal function and the data. Cross-validation (fitting on 
odd trials and computing the correlation on even trials) ensured non-circularity. To statistically 
quantify differences in the degree of stimulus locking between the clusters and among the 
conditions, we ran a linear mixed-effects (LME, using the Matlab procedure fitlme)  model 
regressing the locking values of all electrodes and conditions on the fixed effects categorical 
variable of cluster (with 3 levels for Cluster 1, 2 or 3 according to which cluster each electrode 
was assigned to) and condition (with 4 levels for conditions S, W, J, N), both grouped by the 
random effects variable of participant, as well as a fixed interaction term between cluster and 
condition: 
 
Locking ~ 1 + cluster*condition + (cluster|participant) + (condition|participant) 
 
An ANOVA test for LME was used to determine the main effects of cluster and condition and their 
interaction. Pairwise comparisons of all 3 clusters and 4 conditions as well as interactions 
between all (cluster, condition) pairs were extracted from the model estimates. 
 
Electrode discrimination between conditions 
To examine the timecourse of condition divergence, as quantified by the electrodes’ ability to 
linearly discriminate between the magnitudes of pairs of conditions. We focused on condition 
pairs that critically differ in their engagement of particular linguistic processes: conditions S and 
W, which differ in whether they engage combinatorial (syntactic and semantic) processing 
(S=yes, W=no), conditions W and N, which differ in whether they engage word meaning 
processing (W=yes, N=no), and conditions J and N, which differ in whether they engage syntactic 
processing (J=yes, N=no). This analysis tests how early the relevant pair of conditions reliably 
diverge and the strength of that divergence. For every electrode, the mean response to the three 
conditions of interest (S, W, and N) was averaged across 100 ms bins with a 100 ms sliding 
window. For each cluster separately, a binary logistic classifier (selected from the best of 20 
random instantiations; performed using the Matlab fitclinear function) was trained (to 
discriminate S from W, W from N, or J from N) at each time bin using the binned neural signal up 
to, and including, that time bin. Each classifier was trained using 10-fold cross validation (train on 
90% of the data and test using the remaining 10%, repeated for 10 splits of the data such that 
every observation was included in the test set exactly once). The predicted and actual conditions 
across all folds were used to calculate accuracy (the percent of mean responses from all 
electrodes in a particular cluster correctly classified as S/W, W/N, or J/N). The performance of 
the model at a given time bin was statistically evaluated using a cluster permutation test to 
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control for multiple comparisons and account for the autocorrelation structure of the signals 
(Stelzer et al., 2013; Maris & Oostenveld, 2007). This was done by shuffling the condition labels 
1000 times for each time bin to simulate surrogate data. For each surrogate data repetition, we 
computed the sum of consecutive t-values that passed some arbitrary t-value threshold, referred 
to as the t-sum statistics. We chose a t-value threshold corresponding to an alpha level of 0.05. 
Using the t-sum values from the 1000 permutations, we constructed a null distribution for this t-
sum statistic, and then compared it to the same t-sum statistic computed from the real data to 
assess significance. 
 
Computing Ngram frequencies of sentence and nonword stimuli 
N-gram frequencies were extracted from the Google n-gram online platform 
(https://books.google.com/ngrams/), averaging across Google books corpora between the years 
2010 and 2020. For each individual word, n-gram frequency for n=1 is the frequency of that 
individual word in the corpus, for n=2 is the frequency of the bigram (sequence of 2 words) ending 
in, and including, that word, for n=3 is the frequency of the trigram (sequence of 3 words) ending 
in, and including, that word, etc. Sequences that were not found in the corpus were assigned a 
value of 0. 
 
Estimation of temporal receptive window size per electrode 
We used a simplified model to simulate neural responses in the sentence (S) condition as a 
convolution of a stimulus train and truncated gaussian kernels with varying widths. The kernels 
represented an evoked ‘response function’ with a width (𝜎) corresponding to the temporal 
receptive window (TRW) of an idealized neural population underlying the intracranial responses 
measured by a single electrode. The kernels were constructed from gaussian curves with a 
standard deviation of 𝜎/2 truncated at +/- 1 standard deviation (capturing 2/3 of the area under 
the gaussian). We then normalized the truncated gaussians to have a minimum of 0 and 
maximum of 1. We chose a symmetric kernel because we wanted to capture the full assumed 
TRW for a straightforward interpretation of the fitted window size. For instance, a long-tailed 
response functions would have a shorter “effective” receptive window because the tails of the 
kernel would affect the neural response much less than the center of the kernel. We further 
chose a kernel with smooth edges because we assumed that neural activity in response to a 
stimulus would increase and decrease gradually (cf. an abrupt change of voltage such as in a 
boxcar shape), given that macroelectrodes sum activity from a large neural population. 
Furthermore, note that we assumed a fixed TRW, but see Discussion.  
 
We also verified that the specific shape of kernel did not affect our main result. We tested five 
different response functions: cosine, “wide” Gaussian (Gaussian curves with a standard deviation 
of 𝜎/2 that were truncated at +/- 1 standard deviation, as used in the manuscript), “narrow” 
Gaussian (Gaussian curves with a standard deviation of 𝜎/16 that were truncated at +/- 8 
standard deviations), a square (i.e., boxcar) function (1 for the entire window) and a linear 
asymmetric function (linear function with a value of 0 initially and a value of 1 at the end of the 
window). 
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The stimulus train took a value of 1 at the time of word onsets and 0 otherwise, assuming, for 
simplicity, that the minimal stimulus unit of interest for language-responsive neural populations 
is a word (cf. e.g., Bozic et al., 2010 and Regev et al., 2021 for evidence that the language network 
is sensitive to sub-lexical structure). Neural responses were simulated for 𝜎 ranging from one 
third of a word to 8 words (the length of our stimuli), in 1 sample increments (1/27th of a word, 
the highest resolution we were able to evaluate given our sampling rate of 60 Hz). Our 
implementation of the convolution is identical to assuming that the kernels appear as evoked 
responses starting at each word onset (see OSF https://osf.io/xfbr8/). The length of the evoked 
response/kernel is directly mapped onto a longer temporal receptive window, such that when a 
stimulus evokes a wider response its effect will remain for a longer period of time.  
 
To find the best fit of the receptive window size for each electrode after simulating neural signals 
using this toy model, we selected the TRW size that yielded the highest correlation between the 
simulated neural response (also normalized to be between 0 and 1) and the actual neural 
response. The value of the correlation was taken as a proxy for the goodness of fit.   
 
To evaluate significance, we ran linear mixed-effects (LME) models regressing the estimates 
temporal receptive window sizes (𝜎) of all electrodes on the fixed effects categorical variable of 
cluster grouped by the random effects variable of participant. Cluster was dummy-coded as a 
categorical variable with three levels, and Cluster 1 was treated as the baseline intercept. This 
approach allowed us to compare electrodes in Cluster 2 to those in Cluster 1, and electrodes in 
Cluster 3 to those in Cluster 1. To additionally compare electrodes in Clusters 2 vs. 3, we 
compared their LME coefficients using the Matlab procedure coefTest. 
 
Anatomical topography analysis 
We examined the anatomical topographic distribution of the electrodes that exhibit the three 
temporal response profiles discovered in Dataset 1. Specifically, we probed the spatial 
relationships between all electrodes that belong to different clusters (e.g., electrodes in Cluster 
1 vs. 2) with respect to the two axes: anterior-posterior [y], and inferior-superior [z]. This 
approach allowed us to ask whether, for example, electrodes that belong to one cluster tend to 
consistently fall posterior to the electrodes that belong to another cluster. 
 
To do this, we extracted the MNI coordinates of all the electrodes in each of the three clusters 
and ran linear mixed-effects (LME) models regressing each of the coordinates (either y or z) on 
the fixed effects categorical variable of cluster grouped by the random effects variable of 
participant, using the Wilkinson formula:  
 
Coordinate ~ 1 + cluster + (1 + cluster|participant) 
 
while Coordinate is either the y or z MNI coordinate. The random effect that groups the 
estimates by participant ensures that electrode coordinates are compared within participants. 
This approach is crucial for accommodating inter-individual variability in the precise locations of 
language areas (e.g., Fedorenko et al., 2010), which means that the absolute values of MNI 
coordinates cannot be easily compared between participants.  
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Cluster was dummy-coded as a categorical variable with three levels, and Cluster 1 was treated 
as the baseline intercept. This approach allowed us to compare electrodes in Cluster 2 to those 
in Cluster 1, and electrodes in Cluster 3 to those in Cluster 1. To additionally compare 
electrodes in Clusters 2 vs. 3, we ran another similar LME model with the only difference being 
that the baseline intercept was now the Cluster 2 category (Tables S2-4). To account for the 
small number of participants in Dataset 1, we used the Satterthwaite corrective degree-of-
freedom approximation method, combined with REML fitting for LME, which was shown to be 
most effective when using the Satterthwaite method (Luke, 2017). 
 
We repeated this analysis for Dataset 2, but we only examined Clusters 1 and 3, which were 
robustly present in that dataset. We performed the analysis for the electrodes in the two 
hemispheres separately. 
 
Replication of the clusters in Dataset 2. 
As described in Experiment, the design that was used for participants in Dataset 1 included four 
conditions: sentences (S), word lists (W), Jabberwocky sentences (J), and nonword lists (N). 
Because the design in Dataset 2 included only two of the four conditions (sentences (S) and 
nonword lists (N)), we first repeated the clustering procedure for Dataset 1 using only the S and 
N conditions to test whether similar clusters could be recovered with only a subset of conditions. 
 
We then applied the same clustering procedure to Dataset 2 (n=16 participants, m=362 language-
responsive electrodes). The elbow method revealed that the optimal number of clusters in 
Dataset 2 is k=2. However, because the optimal number of clusters in Dataset 1 was k=3, we 
examined the clustering solutions at both k=2 and k=3 levels. We also performed an analysis 
where we assigned electrodes in Dataset 2 to the most correlated Dataset 1 cluster. This analysis 
was intended to examine whether responses like those found in Dataset 1 were at all present in 
Dataset 2 (even if they did not emerge as strongly through clustering), and thus the assignment 
of electrodes to a ‘cluster’ was done by correlation alone – no actual clustering was performed.  
 
To statistically compare the clustering solutions between Datasets 1 and 2 for k=3 and following 
the assignment by correlation procedure, we used the same approach as the one described 
above (Stability of clusters across trials). In particular, using Dataset 2, we shuffled average 
responses across electrodes (within each condition separately), re-clustered or re-assigned the 
electrodes into 3 clusters, and then correlated the resulting cluster averages to the cluster 
averages from Dataset 1. We repeated this process 1,000 times to construct a null distribution of 
the correlations for each of the 3 clusters. These distributions were used to calculate the 
probability that the correlation between the clusters across the two datasets using the actual, 
non-permuted Dataset 2 was higher than would be expected by chance. 
 
To statistically compare the clustering solutions when k=3 in Dataset 1 and k=2 in Dataset 2, we 
used a similar procedure as the one described above. However, we only compared the resulting 
cluster centers from the permuted data to the two clusters in Dataset 1 that were most strongly 
correlated with the two clusters that emerged from Dataset 2 (i.e., Clusters 1 and 3).  
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Data Availability  
 
Preprocessed data will be publicly available on OpenNeuro at the time of publication. All stimuli 
and statistical results, as well as all additional analyses, are available on OSF at 
https://osf.io/xfbr8/. Raw data will be made available upon request. 
 
Code Availability 
 
Code used to conduct analyses and generate figures from the preprocessed data will be publicly 
available on GitHub at the time of publication.  
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Supplementary Information 
 
 

 
Figure S1 – Dataset 1 k-medoids (k=3) cluster assignments by participant. Average cluster responses 
as in Figure 2E grouped by participant. Shaded areas around the signal reflect a 99% confidence interval over 
electrodes. The number of electrodes constructing the average (n) is denoted above each signal in parenthesis. 
Prototypical responses for each of the three clusters were found in nearly all participants individually. However, for 
participants with only a few electrodes assigned to a given cluster (e.g., P5 Cluster 3), the responses were more 
variable.  
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Figure S2 – Dataset 1 k-medoids clustering with k=10. A) Clustering mean electrode responses (S+W+J+N) 
using k-medoids (k=10) with a correlation-based distance. Shading of the data matrix reflects normalized high-
gamma power (70-150Hz). B) Electrode responses visualized on their first two principal components, colored by 
cluster. C) Timecourses of best representative electrodes (‘medoids’) selected by the algorithm from each of the ten 
clusters. D) Timecourses averaged across all electrodes in each cluster. Shaded areas around the signal reflect a 99% 
confidence interval over electrodes. Correlation with the k=3 cluster averages are shown to the right of the 
timecourses. Many clusters exhibited high correlations with the k=3 response profiles from Figure 2.  
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Figure S3 – All Dataset 1 responses. A-C) All Dataset 1 electrode responses. The timecourses (concatenated 
across the four conditions, ordered: Sentences, Word-lists, Jabberwocky, Nonword-lists) of all electrodes in Dataset 
1 sorted by their correlation to the cluster medoid (shown at the bottom of each cluster). Colors reflect the reliability 
of the measured neural signal, computed by correlating responses to odd and even trials (Figure 1D). The estimated 
temporal receptive window (TRW) using the toy model from Figure 4 is displayed to the left, and the participant who 
contributed the electrode is displayed to the right. There was strong consistency in the responses from individual 
electrodes within a cluster (with more variability in the less reliable electrodes), and electrodes with responses that 
were more similar to the cluster medoid tended to be more reliable (more pink). Note that there were two reliable 
response profiles (relatively pink) that showed a pattern that was distinct from the three prototypical response 
profiles: One electrode in Cluster 2 responded only to the onset of the first word/nonword in each trial; and one 
electrode in Cluster 3 was highly locked to all onsets except the first word/nonword. These profiles indicate that 
although the prototypical clusters explain a substantial amount of the functional heterogeneity of responses in the 
language network, they were not the only observed responses.  
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Figure S4 – Partial correlations of individual response profiles with each of the cluster medoids. 
A) Pearson correlations of all response profiles with each of the cluster medoids, grouped by cluster assignment. B) 
Partial correlations (Methods) of all response profiles with each of the cluster medoids, controlling for the other two 
cluster medoids, grouped by cluster assignment. C) Response profiles from electrodes assigned to Cluster 1 that had 
a high partial correlation (>0.2, arbitrarily defined) with the Cluster 2 medoid (and split-half reliability>0.3). Top: 
Average over all electrodes that met these criteria (n=18, black). The Cluster 1 medoid is shown in red, and the 
Cluster 2 medoid is shown in green. Bottom: Four sample electrodes (black).  D) Response profiles assigned to Cluster 
2 that had a high partial correlation (>0.2, arbitrarily defined) with the Cluster 1 medoid (and split-half reliability>0.3). 
Top: Average over all electrodes that meet these criteria (n=12, black). The Cluster 1 medoid is shown in red, and 
the Cluster 2 medoid is shown in green. Bottom: Four sample electrodes (black; see osf.io/xfbr8/ for all mixed 
response profiles with split-half reliability>0.3). E) Anatomical distribution of electrodes in Dataset 1 colored by their 
partial correlation with a given cluster medoid (controlling for the other two medoids). Cluster-1- and Cluster-2-like 
responses were present throughout frontal and temporal areas (with Cluster 1 responses having a slightly higher 
concentration in the temporal pole and Cluster 2 responses having a slightly higher concentration in the superior 
temporal gyrus (STG)), whereas Cluster-3-like responses were localized to the posterior STG. 
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Figure S5 – N-gram frequencies of sentences and word lists diverge with n-gram length. N-gram 
frequencies were extracted from the Google n-gram online platform (https://books.google.com/ngrams/), averaging 
across Google books corpora between the years 2010 and 2020. For each individual word, the n-gram frequency for 
n=1 was the frequency of that word in the corpus; for n=2 it was the frequency of the bigram (sequence of 2 words) 
ending in that word; for n=3 it was the frequency of the trigram (sequence of 3 words) ending in that word; an so 
on. Sequences that were not found in the corpus were assigned a value of 0. Results are only presented until n=4 
because for n>4 most of the string sequences, both from the Sentence and Word-list conditions, were not found in 
the corpora. The plot shows that the difference between the log n-gram values for the sentences and wordlists in 
our stimulus set grew as a function of N. 
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Figure S6 – Temporal receptive window (TRW) estimates with kernels of different shapes. The 
toy TRW model from Figure 4 was applied using five different kernel shapes: cosine (A), “wide” Gaussian (Gaussian 
curves with a standard deviation of 𝜎/2 that were truncated at +/- 1 standard deviation, as used in Figure 4; B), 
“narrow” Gaussian (Gaussian curves with a standard deviation of 𝜎/16 that were truncated at +/- 8 standard 
deviations; C), a square (i.e., boxcar) function (1 for the entire window; D) and a linear asymmetric function (linear 
function with a value of 0 initially and a value of 1 at the end of the window; E). For each kernel (A-E), the plots 
represent (left to right, all details are identical to Figure 4 in the manuscript): 1) The kernel shapes for TRW = 1, 2, 3, 
4, 6 and 8 words, superimposed on the simplified stimulus train; 2) The simulated neural signals for each of those 
TRWs; 3) violin plots of best fitted TRW values across electrodes (each dot represents and electrode) for all 
electrodes (black), or electrodes from only Clusters 1 (red) 2 (green) or 3 (blue); and 4) Estimated TRW as a function 
of goodness of fit. Each dot is an electrode, its size represents the reliability of its neural response, computed via 
correlation between the mean signals when using only odd vs. only even trials, x-axis is the electrode’s best fitted 
TRW, y-axis is the goodness of fit, computed via correlation between the neural signal and the closest simulated 
signal. For all kernels the TRWs showed a decreasing trend from Cluster 1 to 3.  
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Figure S7 – Dataset 1 k-medoids clustering results with only S-N conditions. A) Search for optimal k 
using the “elbow method”. Top: variance (sum of the distances of all electrodes to their assigned cluster center) 
normalized by the variance when k=1 as a function of k (normalized variance (NV)). Bottom: change in NV as a 
function of k (NV(k+1) – NV(k)). After k=3 the change in variance became more moderate, suggesting that 3 clusters 
appropriately described Dataset 1 when using only the responses to sentences and nonwords (as was the case when 
all four conditions were used). B) Clustering mean electrode responses (only S+N, importantly) using k-medoids (k=3) 
with a correlation-based distance. Shading of the data matrix reflects normalized high-gamma power (70-150Hz). C) 
Average timecourse by cluster. Shaded areas around the signal reflect a 99% confidence interval over electrodes. 
Clusters 1-3 showed a strong similarity to the clusters reported in Figure 2. D) Mean condition responses by cluster. 
Error bars reflect standard error of the mean over electrodes. E) Electrode responses visualized on their first two 
principal components, colored by cluster. F) Anatomical distribution of clusters across all participants (n=6). G) 
Robustness of clusters to electrode omission (random subsets of electrodes were removed in increments of 5). Stars 
reflect significant similarity with the full dataset (p<0.05; evaluated with a permutation test; Methods). Shaded 
regions reflect standard error of the mean over randomly sampled subsets of electrodes. Relative to when all 
conditions were used, Cluster 2 was less robust to electrode omission (although still more robust than Cluster 3), 
suggesting that responses to word lists and Jabberwocky sentences (both not present here) are particularly 
important for distinguishing Cluster 2 electrodes from Cluster 1 and 3 electrodes.  
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Figure S8 – Dataset 2 electrode assignment to most correlated Dataset 1 cluster under “winner-
take-all” (WTA) approach. A) Assigning electrodes from Dataset 2 to the most correlated cluster from Dataset 
1. Assignment was performed using the correlation with the Dataset 1 cluster average, not the cluster medoid. 
Shading of the data matrix reflects normalized high-gamma power (70-150Hz). B) Average timecourse by group. 
Shaded areas around the signal reflect a 99% confidence interval over electrodes. C) Mean condition responses by 
group. Error bars reflect standard error of the mean over electrodes. D) Electrode responses visualized on their first 
two principal components, colored by group. E) Anatomical distribution of groups across all participants (n=16). F-
G) Comparison of cluster assignment of electrodes from Dataset 2 using clustering vs. winner-take-all (WTA) 
approach. F) The numbers in the matrix correspond to the number of electrodes assigned to cluster y during 
clustering (y-axis) versus the number electrodes assigned to group x during the WTA approach (x-axis). For instance, 
there were 44 electrodes that were assigned to Cluster 1 during clustering but were “pulled out” to Group 2 (the 
analog of Cluster 2) during the WTA approach. The total number of electrodes assigned to each cluster during the 
clustering approach are shown to the right of each row. The total number of electrodes assigned to each group 
during the WTA approach are shown at the top of each column. N=362 is the total number of electrodes in Dataset 
2. G) Similar to F, but here the average timecourse across all electrodes assigned to the same cluster/group during 
both procedures is presented. Shaded areas around the signals reflect a 99% confidence interval over electrodes. 
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Figure S9 – Anatomical distribution of the clusters in Dataset 2. Anatomical distribution of language-
responsive electrodes in Dataset 2 across all subjects in MNI space, colored by cluster. Only Clusters 1 and 3 (those 
from Dataset 1 that replicate to Dataset 2) are shown. B) Anatomical distribution of language-responsive electrodes 
in subject-specific space for eight sample participants. C-H) Violin plots of MNI coordinate values for Clusters 1 and 
3 in the left and right hemisphere (C-E and F-H, respectively), where plotted points represent the mean of all 
coordinate values for a given participant and cluster. The mean is plotted with a black horizontal line, and the median 
is shown with a white circle. Significance is evaluated with a LME model (Methods, Tables S3 and S4). The Cluster 3 
posterior bias from Dataset 1 was weakly present but not statistically reliable. 
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Figure S10 – Estimation of temporal receptive window (TRW) sizes for electrodes in Dataset 2. 
As in Figure 4 but for electrodes in Dataset 2. A) Best TRW fit (using the toy model from Figure 4) for all electrodes, 
colored by cluster (when k-medoids clustering with k=3 was applied, Figure 6) and sized by the reliability of the 
neural signal as estimated by correlating responses to odd and even trials (Figure 6C). The ‘goodness of fit’, or 
correlation between the simulated and observed neural signal (Sentence condition only), is shown on the y-axis. B) 
Estimated TRW sizes across all electrodes (grey) and per cluster (red, green, and blue). Black vertical lines correspond 
to the mean window size and the white dots correspond to the median. “x” marks indicate outliers (more than 1.5 
interquartile ranges above the upper quartile or less than 1.5 interquartile ranges below the lower quartile). 
Significance values were calculated using a linear mixed-effects model (Methods, Table S8). C-D) Same as A and B, 
respectively, except clusters were assigned by highest correlation with Dataset 1 clusters (Figure S8). Under this 
procedure, Cluster 2 reliably separated from Cluster 3 in terms of its TRW (all ps<0.001, evaluated with a LME model, 
Methods, Table S9).   
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Name Estimate SE tStat DF pValue 

C1, Condition S – reference 0.103 0.023 4.503 10.332 0.001 

C2 – relative to C1 0.074 0.038 1.974 11.573 0.073 

C3 – relative to C1 0.239 0.080 2.971 7.464 0.019 
Condition W – relative to S -0.023 0.026 -0.880 681.988 0.38 

Condition J – relative to S -0.036 0.027 -1.338 27.077 0.19 

Condition N – relative to S -0.060 0.027 -2.270 46.806 0.028 
Condition W: C2 relative to C1 -0.026 0.040 -0.657 682.349 0.51 

Condition W: C3 relative to C1 0.022 0.063 0.348 682.352 0.73 

Condition J: C2 relative to C1 -0.041 0.040 -1.046 677.506 0.30 
Condition J: C3 relative to C1 0.007 0.064 0.111 644.768 0.91 

Condition N: C2 relative to C1 -0.063 0.040 -1.588 680.554 0.11 

Condition N: C3 relative to C1 -0.046 0.063 -0.718 665.329 0.47 

C2, Condition S – reference 0.178 0.029 6.053 11.092 0.00008 
C3 – relative to C2 0.164 0.082 2.001 7.518 0.083 

C1 – relative to C2 -0.074 0.038 -1.974 11.573 0.073 

Condition W – relative to S -0.049 0.030 -1.614 682.210 0.11 
Condition J – relative to S -0.078 0.031 -2.485 52.580 0.016 

Condition N – relative to S -0.123 0.031 -4.000 90.665 0.00013 

Condition W: C3 relative to C2 0.048 0.065 0.735 682.350 0.46 
Condition W: C1 relative to C2 0.026 0.040 0.657 682.349 0.51 

Condition J: C3 relative to C2 0.048 0.065 0.741 669.544 0.46 

Condition J: C1 relative to C2 0.041 0.040 1.046 677.506 0.30 
Condition N: C3 relative to C2 0.017 0.065 0.262 677.099 0.79 

Condition N: C1 relative to C2 0.063 0.040 1.588 680.554 0.11 
 
Table S1A LME results quantifying degree of stimulus locking by cluster. All estimates from the linear 
mixed-effects model (LME) regressing the locking value (Methods) on the categorical variables of cluster (3 levels) 
and condition (4 levels for Sentences (S), Word-lists (W), Jabberwocky (J), Nonword-lists (N), Methods), including 
their interaction, all grouped by the random variable of participant. Model formula: Locking ~ cluster*condition + 
(cluster|participant) + (condition|participant)). The Satterthwaite Method was used to estimate the degrees of 
freedom (DF) due to our small sample size. Implemented with Matlab fitlme routine. Semicolon represents 
interactions. The intercept represents one level of each of the categorical variables and is denoted by “reference”. 
The models are reference-coded such that all estimate values are evaluated and compared statistically to the 
intercept/reference. Two models are presented, separated by a horizontal line. The only difference between the 
models regards the level of the categorical variable ‘Cluster’ that is assigned to the reference. In the first model the 
intercept/reference is for Cluster 1 (C1), and in the second model it is Cluster 2 (C2). We used the second model in 
order to obtain the statistical comparisons between clusters 2 and 3. The estimate magnitudes show a trend for 
stimulus locking by cluster: C1<C2<C3, but the only pairwise comparison that reached significance was of Cluster 3 
to 1 (p<0.05) and the other comparisons were marginally significant (p<0.1). Estimate magnitudes further show a 
trend for stimulus locking by Condition: S>W>J>N, but the only pairwise comparison that reached significance was S 
vs. N (p<0.05) in the first model, and J vs. S in the second model (p<0.001). No interaction terms were significant. An 
additional ANOVA test for LME revealed a significant main effect for cluster (F(2,9.13)=5.4, p<0.05) and the main 
effect for condition as well as the interaction term did not reach significance . See Figure 5. 
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Name FStat DF1 DF2 pValue 

(Intercept) 20.3 1 10.33 0.0010 

Cluster 5.4 2 9.13 0.028 

Condition 1.9 3 41.84 0.15 
Cluster : Condition 0.6 6 670.00 0.73 

 
Table S1B ANOVA for the LME results presented in Table S1A. ANOVA for LME was run on the first 
model presented in Table S1A. These results reveal that the main effect of Cluster was overall significant (p<0.05), 
but the main effect of Condition as well as the interaction between cluster and condition did not reach significance. 
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Dataset Coordinate Name Estimate SE tStat DF pValue 
Dataset 1 y C1 - reference 1.36 4.09 0.33 5.16 0.75 
Dataset 1 y C2 - relative to C1 -2.93 3.62 -0.81 26.14 0.42 
Dataset 1 y C3 - relative to C1 -20.91 5.93 -3.53 63.46 0 

Dataset 1 y C2 - reference -1.57 3.65 -0.43 5.34 0.68 
Dataset 1 y C3 - relative to C2 -17.98 5.9 -3.05 159.46 0 
Dataset 1 y C1 - relative to C2 2.93 3.62 0.81 26.14 0.42 

Dataset 1 z C1 - reference -4.4 4.84 -0.91 4.43 0.41 
Dataset 1 z C2 - relative to C1 16.87 7.69 2.19 4.54 0.09 
Dataset 1 z C3 - relative to C1 10.64 8.57 1.24 7.87 0.25 

Dataset 1 z C2 - reference 12.47 4.18 2.98 6.04 0.02 
Dataset 1 z C3 - relative to C2 -6.22 7.78 -0.8 29.47 0.43 
Dataset 1 z C1 - relative to C2 -16.87 7.69 -2.19 4.54 0.09 

 
Table S2A – LME results comparing MNI coordinates of the 3 clusters, Dataset 1, Left 
hemisphere. All estimates from the linear mixed-effects model (LME) regressing the y (posterior-anterior) and z 
(inferior-superior) MNI coordinates (Methods) on the categorical variable of cluster (3 levels) grouped by the random 
variable of participant. Model formula: MNI coordinate ~ cluster + (cluster|participant). Details are similar to Table 
S1A. The y-coordinate of Cluster 3 was significantly different from Clusters 1 and 2 (ps<0.01). All the other 
comparisons did not reach significance. See Figure 6. 
 
 

Dataset Coordinate Name Estimate SE tStat DF pValue 
Dataset 1 y C1 - reference 4.9 5.6 0.9 5.2 0.413759 
Dataset 1 y C2 - relative to C1 -8.3 3.7 -2.2 38.1 0.031376 
Dataset 1 y C3 - relative to C1 -27.9 5.4 -5.1 166.1 8.00E-07 

Dataset 1 y C2 - reference -3.4 4.9 -0.7 4.9 0.52027 
Dataset 1 y C3 - relative to C2 -19.5 5.5 -3.6 64.7 0.000706 
Dataset 1 y C1 - relative to C2 8.3 3.7 2.2 38.1 0.031376 

Dataset 1 z C1 - reference -1.3 3.4 -0.4 3 0.732998 
Dataset 1 z C2 - relative to C1 19.2 5.1 3.8 2.5 0.045907 
Dataset 1 z C3 - relative to C1 14.8 7.5 2 2.5 0.162557 

Dataset 1 z C2 - reference 17.9 3.9 4.6 1.7 0.059805 
Dataset 1 z C3 - relative to C2 -4.4 8.7 -0.5 1.7 0.672232 
Dataset 1 z C1 - relative to C2 -19.2 5.1 -3.8 2.5 0.045907 

 
Table S2B – Same as Table S2A but electrodes were weighted by reliability. 
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Dataset Coordinate Name Estimate SE tStat DF pValue 
Dataset 1 y C1 - reference 9.6 7.6 1.3 5.3 0.26 
Dataset 1 y C2 - relative to C1 -5.6 6.0 -0.9 5.0 0.40 
Dataset 1 y C3 - relative to C1 -10.9 11.0 -1.0 2.4 0.41 

Dataset 1 y C2 - reference 4.0 5.0 0.8 4.7 0.46 
Dataset 1 y C3 - relative to C2 -5.3 11.0 -0.5 4.5 0.65 
Dataset 1 y C1 - relative to C2 5.6 6.0 0.9 5.0 0.40 

Dataset 1 z C1 - reference 13.3 4.7 2.8 6.7 0.03 
Dataset 1 z C2 - relative to C1 6.2 7.7 0.8 4.7 0.46 
Dataset 1 z C3 - relative to C1 8.5 11.5 0.7 10.1 0.48 

Dataset 1 z C2 - reference 19.5 9.0 2.2 4.0 0.10 
Dataset 1 z C3 - relative to C2 2.3 14.5 0.2 4.5 0.88 
Dataset 1 z C1 - relative to C2 -6.2 7.7 -0.8 4.7 0.46 

 
Table S2C – Same as Table S2A but only frontal electrodes. 
 

Dataset Coordinate Name Estimate SE tStat DF pValue 
Dataset 1 y C1 - reference -3.8 4.5 -0.8 3.7 0.45 
Dataset 1 y C2 - relative to C1 0.4 4.4 0.1 42.8 0.93 
Dataset 1 y C3 - relative to C1 -22.3 6.9 -3.2 26.6 0.003 

Dataset 1 y C2 - reference -3.4 5.6 -0.6 3.8 0.58 
Dataset 1 y C3 - relative to C2 -22.7 7.5 -3.0 17.6 0.008 
Dataset 1 y C1 - relative to C2 -0.4 4.4 -0.1 42.8 0.93 

Dataset 1 z C1 - reference -6.4 13.8 -0.5 3.6 0.67 
Dataset 1 z C2 - relative to C1 18.2 7.5 2.4 1.7 0.16 
Dataset 1 z C3 - relative to C1 10.4 15.9 0.7 1.7 0.59 

Dataset 1 z C2 - reference 11.8 9.5 1.2 3.1 0.30 
Dataset 1 z C3 - relative to C2 -7.8 11.6 -0.7 1.7 0.58 
Dataset 1 z C1 - relative to C2 -18.2 7.5 -2.4 1.7 0.16 

 
Table S2D – Same as Table S2A but only temporal electrodes. 
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Dataset Coordinate Name Estimate SE tStat DF pValue 

Dataset 2 y C1 - reference -5.3 7.5 -0.7 8.9 0.5 

Dataset 2 y C2 - relative to C1 -7.2 10.4 -0.7 7.2 0.5 

Dataset 2 y C3 - relative to C1 -1.5 11.0 -0.1 7.8 0.9 

Dataset 2 y C2 - reference -12.6 7.8 -1.6 10.4 0.1 

Dataset 2 y C3 - relative to C2 5.7 8.3 0.7 9.4 0.5 

Dataset 2 y C1 - relative to C2 7.2 10.4 0.7 7.2 0.5 

Dataset 2 z C1 - reference 3.1 4.2 0.7 12.6 0.5 

Dataset 2 z C2 - relative to C1 12.8 3.9 3.3 183.7 0.001 

Dataset 2 z C3 - relative to C1 7.3 5.9 1.2 30.1 0.2 

Dataset 2 z C2 - reference 15.8 4.6 3.4 12.0 0.005 

Dataset 2 z C3 - relative to C2 -5.4 5.9 -0.9 38.8 0.4 

Dataset 2 z C1 - relative to C2 -12.8 3.9 -3.3 183.7 0.001 
 
Table S3A – LME results comparing coordinates of the 3 clusters, Dataset 2, Left hemisphere. 
Similar to Table S2A but for Dataset 2, left hemisphere electrodes. The only significant comparison was the z-
coordinate of Cluster 2 relative to Clusters 1 (p<0.01). See Figure S5. 
 

Dataset Coordinate Name Estimate SE tStat DF pValue 

Dataset 2 y C1 - reference -0.1 6.3 0.0 7.2 0.98 

Dataset 2 y C2 - relative to C1 -16.2 11.6 -1.4 6.7 0.21 

Dataset 2 y C3 - relative to C1 -4.6 10.4 -0.4 5.1 0.68 

Dataset 2 y C2 - reference -16.3 8.5 -1.9 8.4 0.09 

Dataset 2 y C3 - relative to C2 11.6 8.9 1.3 9.5 0.23 

Dataset 2 y C1 - relative to C2 16.2 11.6 1.4 6.7 0.21 

Dataset 2 z C1 - reference 4.2 5.0 0.8 11.7 0.42 

Dataset 2 z C2 - relative to C1 15.4 5.8 2.6 11.0 0.02 
Dataset 2 z C3 - relative to C1 14.0 7.2 1.9 8.2 0.09 

Dataset 2 z C2 - reference 19.5 4.7 4.2 9.3 0.002 

Dataset 2 z C3 - relative to C2 -1.4 5.9 -0.2 11.4 0.82 

Dataset 2 z C1 - relative to C2 -15.4 5.8 -2.6 11.0 0.02 
 
Table S3B – Same as Table S3A but electrodes are weighted by reliability. 
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Dataset Coordinate Name Estimate SE tStat DF pValue 

Dataset 2 y C1 - reference 21.1 4.3 4.9 5.0 0.0045 

Dataset 2 y C2 - relative to C1 -1.0 7.4 -0.1 8.8 0.9 

Dataset 2 y C3 - relative to C1 -10.5 10.4 -1.0 5.1 0.4 

Dataset 2 y C2 - reference 20.1 5.8 3.4 7.1 0.011 

Dataset 2 y C3 - relative to C2 -9.4 8.9 -1.1 18.5 0.3 

Dataset 2 y C1 - relative to C2 1.0 7.4 0.1 8.8 0.9 

Dataset 2 z C1 - reference 11.7 6.6 1.8 7.5 0.11 

Dataset 2 z C2 - relative to C1 6.2 6.2 1.0 6.5 0.4 

Dataset 2 z C3 - relative to C1 6.1 9.4 0.6 5.2 0.5 

Dataset 2 z C2 - reference 18.0 5.5 3.3 6.7 0.015 

Dataset 2 z C3 - relative to C2 -0.2 8.2 0.0 7.8 1.0 

Dataset 2 z C1 - relative to C2 -6.2 6.2 -1.0 6.5 0.4 
 
Table S3C – Same as Table S3A but only frontal electrodes. 
 

Dataset Coordinate Name Estimate SE tStat DF pValue 

Dataset 2 y C1 - reference -24.1 5.4 -4.4 6.2 0.0040 

Dataset 2 y C2 - relative to C1 -12.8 7.0 -1.8 8.1 0.10 

Dataset 2 y C3 - relative to C1 -4.5 9.8 -0.5 7.6 0.66 

Dataset 2 y C2 - reference -36.9 4.0 -9.3 39.1 2E-11 

Dataset 2 y C3 - relative to C2 8.3 8.6 1.0 52.8 0.34 
Dataset 2 y C1 - relative to C2 12.8 7.0 1.8 8.1 0.10 

Dataset 2 z C1 - reference -4.0 4.9 -0.8 5.5 0.45 

Dataset 2 z C2 - relative to C1 8.6 5.4 1.6 46.8 0.11 

Dataset 2 z C3 - relative to C1 12.5 10.2 1.2 6.0 0.27 

Dataset 2 z C2 - reference 4.6 4.7 1.0 7.4 0.36 

Dataset 2 z C3 - relative to C2 3.9 10.6 0.4 5.6 0.72 

Dataset 2 z C1 - relative to C2 -8.6 5.4 -1.6 46.8 0.11 
 
Table S3D – Same as Table S3A but only temporal electrodes. 
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Dataset Coordinate Name Estimate SE tStat DF pValue 

Dataset 2 y C1 - reference 2.49 7.18 0.35 7.70 0.74 
Dataset 2 y C2 - relative to C1 -17.17 7.02 -2.45 11.13 0.03 

Dataset 2 y C3 - relative to C1 -7.00 7.52 -0.93 8.64 0.38 

Dataset 2 y C2 - reference -14.68 4.39 -3.35 3.20 0.04 

Dataset 2 y C3 - relative to C2 10.18 7.84 1.30 2.29 0.31 
Dataset 2 y C1 - relative to C2 17.17 7.02 2.45 11.13 0.03 

Dataset 2 z C1 - reference -8.56 5.94 -1.44 6.44 0.20 
Dataset 2 z C2 - relative to C1 5.57 4.97 1.12 2.68 0.35 

Dataset 2 z C3 - relative to C1 14.76 5.99 2.46 4.09 0.07 

Dataset 2 z C2 - reference -2.98 6.38 -0.47 2.47 0.68 

Dataset 2 z C3 - relative to C2 9.18 4.69 1.96 0.74 0.36 
Dataset 2 z C1 - relative to C2 -5.57 4.97 -1.12 2.68 0.35 

 
Table S4A – LME results comparing coordinates of the 3 clusters, Dataset 2, Right hemisphere. 
Similar to Table S3A but for right-hemisphere electrodes. The significant comparisons were of the y-coordinates of 
Cluster 2 vs. 1 (p<0.05). See Figure S5. 
 

Dataset Coordinate Name Estimate SE tStat DF pValue 

Dataset 2 y C1 - reference 3.7 9.3 0.4 8.1 0.70 
Dataset 2 y C2 - relative to C1 -17.2 8.5 -2.0 72.4 0.047 

Dataset 2 y C3 - relative to C1 -4.5 9.3 -0.5 10.9 0.64 

Dataset 2 y C2 - reference -13.4 7.4 -1.8 1.6 0.24 

Dataset 2 y C3 - relative to C2 12.7 6.3 2.0 1.3 0.25 
Dataset 2 y C1 - relative to C2 17.2 8.5 2.0 72.4 0.047 

Dataset 2 z C1 - reference -8.0 6.9 -1.2 6.5 0.29 
Dataset 2 z C2 - relative to C1 6.9 7.5 0.9 2.1 0.45 

Dataset 2 z C3 - relative to C1 16.4 6.0 2.8 7.2 0.027 

Dataset 2 z C2 - reference -1.1 8.1 -0.1 2.6 0.90 

Dataset 2 z C3 - relative to C2 9.5 5.2 1.8 0.4 0.54 
Dataset 2 z C1 - relative to C2 -6.9 7.5 -0.9 2.1 0.45 

 
Table S4B – Same as Table S4A but electrodes are weighted by reliability. The significant 
comparisons were of the y-coordinates of Cluster 2 vs. 1, and the z-coordinate of Cluster 3 relative to 1 (ps<0.05). 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2024. ; https://doi.org/10.1101/2022.12.30.522216doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522216
http://creativecommons.org/licenses/by-nc-nd/4.0/


 66 

 
Dataset Coordinate Name Estimate SE tStat DF pValue 

Dataset 2 y C1 - reference 33.9 3.4 9.9 40.9 2E-12 
Dataset 2 y C2 - relative to C1 -22.2 13.9 -1.6 1.7 0.27 

Dataset 2 y C3 - relative to C1 -13.2 9.6 -1.4 3.2 0.26 

Dataset 2 y C2 - reference 11.7 13.5 0.9 1.6 0.50 

Dataset 2 y C3 - relative to C2 9.1 15.2 0.6 4.0 0.58 
Dataset 2 y C1 - relative to C2 22.2 13.9 1.6 1.7 0.27 

Dataset 2 z C1 - reference -3.3 8.0 -0.4 2.8 0.71 
Dataset 2 z C2 - relative to C1 -4.2 10.9 -0.4 2.9 0.73 

Dataset 2 z C3 - relative to C1 23.4 14.7 1.6 2.3 0.23 

Dataset 2 z C2 - reference -7.5 6.9 -1.1 6.4 0.31 

Dataset 2 z C3 - relative to C2 27.6 15.4 1.8 4.4 0.14 
Dataset 2 z C1 - relative to C2 4.2 10.9 0.4 2.9 0.73 

 
Table S4C – Same as Table S4A but only frontal electrodes. No significant comparisons. 
 
 

Dataset Coordinate Name Estimate SE tStat DF pValue 
Dataset 2 y C1 - reference -17.5 5.6 -3.1 5.8 0.021 

Dataset 2 y C2 - relative to C1 -3.7 7.5 -0.5 13.4 0.63 
Dataset 2 y C3 - relative to C1 -6.4 6.7 -1.0 28.7 0.35 

Dataset 2 y C2 - reference -21.2 6.4 -3.3 2.9 0.048 
Dataset 2 y C3 - relative to C2 -2.7 6.1 -0.4 6.6 0.68 

Dataset 2 y C1 - relative to C2 3.7 7.5 0.5 13.4 0.63 

Dataset 2 z C1 - reference -10.7 7.7 -1.4 3.3 0.25 

Dataset 2 z C2 - relative to C1 -4.1 9.4 -0.4 3.0 0.69 
Dataset 2 z C3 - relative to C1 -1.6 8.9 -0.2 5.4 0.87 

Dataset 2 z C2 - reference -14.8 4.9 -3.0 0.6 0.30 
Dataset 2 z C3 - relative to C2 2.5 5.9 0.4 3.1 0.70 

Dataset 2 z C1 - relative to C2 4.1 9.4 0.4 3.0 0.69 
 
Table S4D – Same as Table S4A but only temporal electrodes. No significant comparisons. 
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Name Estimate SE tStat DF pValue 
C1 - reference 6.5 0.5 12.6 5.1 5.2E-05 

C2 - relative to C1 -2.5 0.6 -4.0 3.6 0.020 

C3 - relative to C1 -5.1 0.6 -8.1 8.7 2.6E-05 

C2 - reference 4.0 0.5 7.9 4.3 0.0010 

C3 - relative to C2 -2.5 0.6 -4.0 8.0 0.0040 

C1 - relative to C2 2.5 0.6 4.0 3.6 0.020 
 
Table S5 – LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset 
1. All estimates from the linear mixed-effects model (LME) regressing the estimated temporal receptive window 
(TRW) size (Methods) on the categorical variable of cluster (3 levels) grouped by the random variable of participant. 
Model formula: trw ~ cluster + (cluster|participant). The Satterthwaite Method was used to estimate the degrees of 
freedom (DF) due to our small sample size. Details are similar to Table S1A. All comparisons were statistically 
significant: Cluster 2 had a smaller TRW compared to Cluster 1, and Cluster 3 had the smallest trw compared to both 
other clusters (all ps<0.01). See Figure 4. 
 

Name Estimate SE tStat DF pValue 

C1, fast - reference 2.61 0.31 8.43 2.17 0.011 

C2, fast - relative to ref -1.02 0.27 -3.79 3.36 0.026 

C3, fast - relative to ref -2.11 0.50 -4.20 1.75 0.065 

C1, slow - relative to ref 2.64 0.48 5.49 4.54 0.004 

C2, slow - relative to C2, fast -1.30 0.98 -1.33 2.38 0.296 

C3, slow - relative to C3, fast -1.64 0.88 -1.87 3.76 0.139 

C1, slow - reference 5.25 0.37 14.35 2.43 0.002 

C2, slow - relative to ref -2.32 0.94 -2.47 2.04 0.130 

C3, slow - relative to ref -3.75 0.72 -5.21 2.22 0.028 

C1, fast - relative to C1, slow -2.64 0.48 -5.49 4.54 0.004 

C2, fast - relative to C2, slow 1.30 0.98 1.33 2.38 0.296 

C3, fast - relative to C3, slow 1.64 0.88 1.87 3.76 0.139 

C2, fast - reference 1.60 0.21 7.43 3.05 0.005 

C3, fast - relative to ref -1.09 0.44 -2.50 3.82 0.069 

C1, fast - relative to ref 1.02 0.27 3.79 3.36 0.026 

C2, slow - relative to ref 1.34 0.68 1.97 2.46 0.163 

C3, slow - relative to C3, fast -0.34 0.82 -0.42 2.58 0.706 

C1, slow - relative to C1, fast 1.30 0.98 1.33 2.38 0.296 

C3, fast - reference 0.51 0.37 1.39 29.71 0.176 

C1, fast - relative to ref 2.11 0.50 4.20 1.75 0.065 
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C2, fast - relative to ref 1.09 0.44 2.50 3.82 0.069 

C3, slow - relative to ref 0.99 0.67 1.48 4.46 0.207 

C1, slow - relative to C1, fast 1.64 0.88 1.87 3.76 0.139 

C2, slow - relative to C2, fast 0.34 0.82 0.42 2.58 0.706 

Table S6: LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset 
1, due to stimulus presentation rate. Similar to Table S5 but here we add the categorical variable Rate, 
representing stimulus presentation rate, with two levels: fast (450 ms inter-stimulus interval, n=3) or slow (700 ms 
inter-stimulus interval, n=3). Model formula: trw ~ Cluster*Rate + (Cluster*Rate|participant). The model was coded 
such that one level from each categorical variable was coded as the reference (intercept, whose estimate was 
compared to 0 for statistical testing). All other levels of the Cluster variable were modeled relative to the reference, 
and other levels of Rate were modeled relative to the corresponding estimate (see variable names in table). We ran 
4 models (LME 1-4) that differed in the order of the levels of the categorical variables, such that at each model a 
different level was coded as the reference. This allowed us to statistically compare all possible pairs of categories, 
using the LME stats output (Columns 4-6). DF were estimated using the Satterthwaite approximation. Overall, all 
models show a negative trend of TRW by Cluster for both presentation rates (smaller TRWs for C3 relative to C2 and 
for C2 relative to C1). Rate affected only the TRW of Cluster 1 (larger TRW for C1 with slow relative to fast 
presentation rates) but not of Clusters 2 and 3. The overall main effects of the interaction between Cluster and Rate 
are not significant due to an additional ANOVA (Table S7). 
 
Name FStat DF1 DF2 pValue 

Intercept (C1, fast) 71.1 1 2.2 0.01 

Cluster 10.8 2 0 NaN 

Rate (C1, slow) 30.2 1 4.5 0.004 

Cluster:Rate 1.8 2 2.7 0.3 

Intercept (C1, slow) 205.8 1 2.4 0.002 

Cluster 14.7 2 0 NaN 

Rate (C1, fast) 30.2 1 4.5 0.004 

Cluster:Rate 1.8 2 2.7 0.321 

Intercept (C2, fast) 55.2 1 3.1 0.005 

Cluster 10.8 2 3.5 0.032 

Rate (C2, slow) 3.9 1 2.5 0.163 

Cluster:Rate 1.8 2 2.5 0.329 

Intercept (C3, fast) 1.9 1 29.7 0.176 

Cluster 10.8 2 2.1 0.079 

Rate (C3, slow) 2.2 1 4.5 0.207 

Cluster:Rate 1.8 2 2.6 0.326 

Table S7 ANOVA for the LME results presented in Table S6. ANOVA for LME was run on all 4 LME models 
presented in Table S5. NaN as a p-value indicated that there were not sufficient degrees of freedom (DF) to evaluate 
the statistical effect. Importantly, the interaction between Cluster and Rate did not reach significance. 
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Name Estimate SE tStat DF pValue 
TRW C1 - reference 4.5 0.3 13.4 7.6 1E-06 

TRW C2 - relative to C1 -3.3 0.4 -8.5 10.0 7E-06 

TRW C3 - relative to C1 -3.3 0.3 -9.6 28.7 2E-10 

TRW C2 - reference 1.2 0.2 6.5 217.7 6E-10 

TRW C3 - relative to C2 0.0 0.3 0.1 15.3 0.92 

TRW C1 - relative to C2 3.3 0.4 8.5 10.0 7E-06 
 
Table S8 – LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset 
2. Similar to Table S5, but for Dataset 2 using the first 8 words per each trial. The TRW of C2 is smaller than C1 
(p<0.0001) but the same as of C3. See Figure S10A-B. 
 

Name Estimate SE tStat DF pValue 

TRW C1 – reference 4.50 0.29 15.5 10.2 2.0E-08 

TRW C2 – relative to C1 -2.38 0.29 -8.2 8.1 3.3E-05 
TRW C3 – relative to C1 -3.49 0.32 -10.8 14.1 3.4E-08 

TRW C2 – reference 2.12 0.27 7.8 11.2 7.2E-06 

TRW C3 – relative to C2 -1.11 0.31 -3.6 15.6 2.5E-03 

TRW C1 – relative to C2 2.38 0.29 8.2 8.1 3.3E-05 
 
Table S9 – LME results comparing temporal receptive windows (TRW) of the 3 clusters, Dataset 
2, using 8 words, electrodes assigned to clusters by similarity to Dataset 1 cluster centers. Similar 
to Table S8, but here the grouping of electrodes to the 3 clusters was done by assigning each electrode in Dataset 2 
to a cluster by its highest correlation with the average cluster response profiles from Dataset 1. All comparisons were 
statistically significant: Cluster 2 had a smaller TRW compared to Cluster 1, and Cluster 3 had the smallest TRW 
compared to both other clusters (all ps<0.001). See Figure S10C-D. 
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