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ABSTRACT 27 

Mutations in the spike glycoprotein of SARS-CoV-2 allow the virus to probe the sequence space 28 

in search of higher-fitness states. New sublineages of SARS-CoV-2 variants-of-concern (VOCs) 29 

continuously emerge with such mutations. Interestingly, the sites of mutation in these sublineages 30 

vary between the VOCs. Whether such differences reflect the random nature of mutation 31 

appearance or distinct evolutionary spaces of spike in the VOCs is unclear. Here we show that 32 

each position of spike has a lineage-specific likelihood for mutations to appear and dominate 33 

descendent sublineages. This likelihood can be accurately estimated from the lineage-specific 34 

mutational profile of spike at a protein-wide level. The mutability environment of each position, 35 

including adjacent sites on the protein structure and neighboring sites on the network of co-36 

mutability, accurately forecast changes in descendent sublineages. Mapping of imminent 37 

changes within the VOCs can contribute to the design of immunogens and therapeutics that 38 

address future forms of SARS-CoV-2.      39 
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INTRODUCTION 40 

Since emerging in December 2019, SARS-CoV-2 has caused devastating effects 41 

worldwide. By June 2022, more than 6 million deaths have been attributed to the infection, and 42 

estimated economic losses greater than $10 trillion are expected by the end of this year1,2. Several 43 

SARS-CoV-2 VOCs have appeared at different time points of the pandemic3,4,5. Most mutations 44 

in the VOCs that impact infection are found in the spike protein that adorns the virus surface. 45 

Spike mediates fusion with host cells and is the primary target for antibodies elicited by infection 46 

or vaccination6. Changes in spike can increase virus infectivity, transmissibility or resistance to 47 

vaccine-elicited antibodies and therapeutics7. New sublineages of the VOCs continuously appear 48 

with such mutations in spike8,9. Interestingly, only a minority of these changes are convergent, 49 

whereby the same substitution occurs in multiple lineages10,11,12,13. The latter are generally guided 50 

by positive selection pressures14. By contrast, most mutations that define VOC sublineages are 51 

found at distinct positions of spike and occur at evolutionarily neutral sites15,16. This observation 52 

raises two important questions. First, do the distinct patterns of mutations in the lineages reflect 53 

the stochastic nature of their appearance or a lineage-specific likelihood for their emergence? 54 

Second, if not driven solely by stochasticity, what clues can we identify that will inform of the 55 

evolutionary space of each lineage? Answers to these questions are critical for our ability to 56 

develop vaccines and therapeutics that can maintain their efficacy against future forms of this 57 

virus.  58 

To address the above questions, we examined the frequency of independent mutation 59 

events at each position of spike in different SARS-CoV-2 VOCs. Lineage-specific mutational 60 

spaces were observed, as defined by the patterns of low-frequency substitutions in spike within 61 

populations infected by each lineage. We compared the mutational space of spike in each lineage 62 

with the evolutionary path of the virus within the lineage (i.e., the observed mutations that define 63 

descendant sublineages). We discovered that the sites of change in the emergent sublineages 64 

were characterized by high mutability in the ancestral lineage and a high mutability “environment”, 65 

composed of adjacent positions on the protein structure and co-mutable sites across the protein. 66 

These measures of positional and environmental variability predicted remarkably well the 67 

changes observed in the new sublineages of the VOCs. Our studies of spike mutability at the 68 

protein-wide level reveal the diversifying nature of the evolutionary space of this protein and 69 

demonstrate the high predictability of the changes that give rise to new SARS-CoV-2 spike forms.   70 
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RESULTS 71 

The mutational space of SARS-CoV-2 spike is lineage-specific and diversifying 72 

We examined the sites of mutation in the spike protein that define sublineages of SARS-73 

CoV-2 VOCs. Using designations of the Pango classification system17, the lineages compared 74 

were B.1.1.7 (VOC Alpha), P.1 (Gamma), AY.4 (Delta), and lineages BA.1 and BA.2 (Omicron). 75 

Sites of mutation in descendant sublineages of the above that emerged until April 8th 2022 were 76 

compared. In addition, we calculated for these sites the synonymous and nonsynonymous 77 

mutation rates in each lineage to infer the sites under positive selection. As expected, most sites 78 

of change that define descendent sublineages did not show evidence for positive selection in their 79 

ancestral lineages (Fig. 1a). Importantly, limited similarity was observed between the sites of 80 

mutations in the different VOCs – only three of the 41 sublineage-defining mutation sites appeared 81 

in more than one VOC.  82 

To investigate the basis for these distinct patterns of change, we first compared the 83 

mutational space of spike between the above lineages, as defined by the collection of sites that 84 

exhibit amino acid variability among strains that are phylogenetically closest to the lineage 85 

ancestor. In addition, as examples, we included the highly-prevalent sublineages BA.1.1 and 86 

AY4.2, which emerged from lineages BA.1 and AY.4, respectively. All other Pango-designated 87 

sublineages of the above variants were removed from the datasets. As a group representative of 88 

isolates closest to the SARS-CoV-2 ancestral strain (designated the SARS-CoV-2 “baseline”), we 89 

used sequences within 0.0015 substitutions per site from the SARS-COV-2 spike ancestral 90 

sequence (Wuhan strain, accession number NC_045512)18. Spike sequences that appeared at 91 

least twice in the population were aligned and “compressed” to obtain a single representative for 92 

each unique sequence. Evolutionary relationships among them were inferred, and a maximum 93 

likelihood phylogenetic tree was constructed (see Methods and Fig. 1b). To quantify amino acid 94 

variability at each position of spike, the lineages were partitioned into clusters of 50 sequences 95 

based on phylogeny, and the proportion of clusters that contain amino acid variability at each 96 

position was calculated (Fig. 1c). We designate this measure of variability “volatility”, which 97 

quantifies the frequency of substitution events. 98 

Considerable differences were observed between the volatility profiles of spike in the 99 

diverse lineages (see RBD positions in Fig. 1d and all spike positions in Supplementary Fig. 1a 100 

and 1b). To determine the relationships between volatility patterns, we partitioned each lineage 101 

into groups of 10 clusters. The absence or presence of amino acid variability at each spike position 102 

was determined for each group, and all groups were assigned 1273-bit vectors that describe their 103 
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volatility profiles at all spike positions. Jaccard distances between the vectors were applied to 104 

determine hierarchical relationships using the unweighted pair group method with arithmetic mean 105 

(UPGMA) approach19,20. Clear clustering of group profiles from the same lineage was observed 106 

(Fig. 1e). To determine statistical significance of these patterns, Euclidean distances were 107 

measured between all vectors, and intra-lineage distances compared with inter-lineage distances 108 

using a permutation test21. As shown in Fig. 1f, all lineages (except the smaller AY4.2) exhibited 109 

significant specificity of their volatility patterns.  110 

  To quantify divergence of the volatility patterns, we performed pairwise comparisons 111 

between the volatility profiles of any two lineages and the genetic distance that separates them. 112 

Positions of the RBD, N-terminal domain of spike (NTD) and S2 subunit were analyzed 113 

separately. The correlation coefficient for any lineage pair was then compared with the nucleotide 114 

distance between the lineage founders. For the RBD and S2 subunits, a strong negative 115 

relationship was observed between the genetic distance that separates any two lineage founders 116 

and the correlation between their volatility profiles (Fig. 1e). For the NTD, which contains a 117 

relatively high proportion of sites with mutations, we did not observe such a relationship. 118 

These findings suggest that the mutational space of spike (i.e., the collection of sequence 119 

states that are sampled) is specific for each lineage and is diversifying. As such, and assuming 120 

that the mutational space corresponds with the evolutionary path of the virus in the population, 121 

these findings also suggest that each lineage may have a distinct set of changes that can appear 122 

in descendent sublineages. This possibility was explored in the studies described below.  123 

 124 

A high volatility state and a high volatility environment increase the likelihood of spike 125 

positions to emerge with founder mutations in descendent lineages 126 

 We examined the relationship between the volatility of any spike position in a population 127 

of related strains and the emergence of mutations at this position in descendent lineages. To this 128 

end, we first analyzed mutability profiles in the SARS-CoV-2 baseline that preceded emergence 129 

of the VOCs. These profiles were compared with the mutations that define the emergent lineages. 130 

For simplicity, we focused these analyses on all 615,374 spike sequences from samples collected 131 

worldwide between December 2019 and July 2021. Evolutionary relationships among the 132 

nucleotide sequences were inferred and a maximum likelihood tree was constructed (Fig. 2a). 133 

We then partitioned the tree into discrete groups separated by a minimal distance of 0.004 134 

substitutions per site. As expected, many groups corresponded to known SARS-CoV-2 VOCs. 135 
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The baseline groups were distinguished from the terminal emergent groups (GT1-GT8) using a 136 

threshold of 0.0015 substitutions per site between the centroid of each group and the SARS-CoV-137 

2 spike ancestral sequence. All groups are described in Supplementary Table 1. 138 

Volatility at each spike position in the baseline was compared with the absence or 139 

presence of two types of mutations: (i) Lineage-founder mutations (LFMs), which are found in 140 

the group ancestors and in at least 50% of all sequences from that group, and (ii) Sublineage-141 

founder mutations (sLFMs), which are not found in the group ancestor and represent clonal 142 

expansions that dominate at least one 50-sequence cluster but less than 50% of all group clusters 143 

(see examples in Supplementary Fig. 2a). A total of 43 LFMs and 16 sLFMs were detected in 144 

the baseline and terminal groups (see Supplementary Table 1). Most positions with high volatility 145 

in the baseline emerged with LFMs or sLFMs (see positions of spike subunit S1 in Fig. 2b and of 146 

subunit S2 in Supplementary Fig. 2b). Among positions with the highest volatilities, most 147 

appeared as s/LFMs in at least one group (Supplementary Fig. 2c). Sites of s/LFMs were more 148 

volatile than sites with no such mutations (Fig. 2c). Furthermore, non-volatile sites in the baseline 149 

did not emerge with s/LFMs in any baseline or terminal group (Fig. 2d). Therefore, for any given 150 

site, a high level of volatility (i.e., a high frequency of independent mutation events) in the baseline 151 

group precedes (as inferred phylogenetically) the emergence of s/LFMs in the descendent 152 

lineages. 153 

  We recently examined the within-host patterns of amino acid variability in the envelope 154 

glycoproteins (Envs) of human immunodeficiency virus type 1 (HIV-1)22. We found that the 155 

variability at many positions of the CD4-binding site can be accurately estimated by the variability 156 

at adjacent positions on the three-dimensional structure of the protein. Analysis of the spatial 157 

distribution patterns of volatile sites on the SARS-CoV-2 spike structure suggested a similar 158 

clustering of volatility at multiple loci, most notably in the NTD (see Fig. 2e and sites with 159 

statistically significant clustering in Fig. 2f). We hypothesized that if such associations are “stable” 160 

over time, then the likelihood for future changes at any position may be associated with volatility 161 

of its neighboring positions. To test this hypothesis, we generated a variable (designated D) that 162 

describes for each position 𝑖 the total distance-weighted “environmental” volatility:  163 

𝐷𝑖 = ∑
1

∆𝑖𝑠
 ∙ 𝑉𝑠

𝑛

𝑠=1
            [1] 164 

where n is the number of positions s within 6 Å of position 𝑖, 𝑖s is the distance between the closest 165 

two atoms of positions 𝑖 and each position s, and V𝑖 is the volatility at each position s. Similar to 166 

the volatility values, D values were higher for positions that emerged with s/LFMs (Fig. 2g). 167 
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Furthermore, positions with a non-volatile environment (i.e., a D value of zero) did not emerge 168 

with s/LFMs (Fig. 2h). Therefore, high volatility at any position in the SARS-CoV-2 baseline and 169 

high volatility at adjacent positions on the protein increase the likelihood of the site to emerge with 170 

s/LFMs in descendent lineages.  171 

 172 

Volatility at neighboring sites on the network of co-volatility increases the likelihood of 173 

spike positions to emerge with lineage founder mutations  174 

We examined whether the clustering patterns of volatility at adjacent positions on spike 175 

can be generalized to describe associations that are not dependent on physical proximity. To this 176 

end, we used the 114 baseline clusters to determine the co-occurrence of volatility at any two 177 

spike positions within the clusters (see schematic in Fig. 3a). P-values were calculated using 178 

Fisher’s exact test and used to construct the network of co-volatile sites, whereby the edges that 179 

connect the nodes (positions) are defined by the statistical significance of the association between 180 

their volatility patterns (see example of a network segment in Fig. 3b and distribution of P-values 181 

in Supplementary Fig. 3a). To determine the significance threshold to apply for network 182 

construction, we examined structural properties of the network and its robustness to random 183 

deletion of edges. Two network topological metrics were assessed: (i) Degree distribution, which 184 

describes the average number of connections each node has with other nodes, and (ii) Closeness 185 

centrality, which describes for each node the sum of the path lengths to all other nodes in the 186 

network (more central nodes have lower values)23. For robust scale-free networks, limited 187 

random-edge deletions only minimally perturb their topological properties24. We found that 188 

networks defined at a more stringent significance threshold (P<0.01) were more robust to edge 189 

deletions, with minimal impact on both degree distribution and closeness centrality at the expense 190 

of losing information (Fig. 3c and Supplementary Fig. 3b). By contrast, when less stringent 191 

significance thresholds were used (P<0.1), the number of edges was greater (i.e., they contained 192 

more information regarding the co-volatile positions); however, the network was less robust to 193 

edge deletions. This suggested that an intermediate significance threshold (P<0.05) would 194 

provide a sufficiently stable network without losing most information.  195 

We examined whether, for any position 𝑖 of spike, presence of high volatility at its network-196 

associated co-volatile sites (q) is associated with emergence of s/LFMs. To this end, we 197 

generated a simple measure (R) designed to capture for each position 𝑖 the total volatility of its 198 

network-neighbors q (q1, q2, q3 … qn), using a P-value of 0.05 as the threshold:  199 
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𝑅𝑖 = ∑  𝑤𝑖𝑞 ∙ 𝑉𝑞

𝑛

𝑞=1
        [2] 200 

where Vq is the volatility at each position q calculated using the baseline sequences, and w𝑖𝑞 is the 201 

evidence for association between volatility of position 𝑖 and each of its positions q (calculated as 202 

the -log10(P-value) in Fisher’s test). Similar to the V and D values, R values were significantly 203 

higher for positions with s/LFMs relative to positions with no such mutations (Fig. 3d). 204 

Furthermore, an R value of zero in the baseline was invariably associated with lack of s/LFM 205 

appearance (Fig. 3e). Overall, V and R values for any position correlated well, and considerably 206 

better than their correlation with D (Fig. 3, f-h). Nevertheless, as shown below, V and R values 207 

exhibit different levels of predictive performance when small population sizes are tested. 208 

We compared the performance of the three variables (V, D and R) to predict the 209 

emergence of LFMs or sLFMs using a univariate logistic regression model. Higher classification 210 

metrics were observed for V and R relative to D, with area under the receiver operating 211 

characteristic curve (AUC) values higher than 0.9 for both V and R (Fig. 3i). In comparison, 212 

precision of these variables was modest, at 0.3 for V and 0.24 for R, indicating a relatively high 213 

false-positive rate. Taken together, these findings show that the emergence of s/LFMs at any 214 

spike position is associated with a state of high volatility in the ancestral lineage, as well as high 215 

volatility at adjacent positions on the protein and at associated sites on the co-volatility network.  216 

  217 

Volatility profiles among sequences from the early pandemic capture the mutational 218 

patterns of the emergent lineages 219 

 We examined whether a combination of the volatility-based variables would better capture 220 

the observed evolutionary path of the virus than each of them separately. To this end, we indexed 221 

all sequences by the time of sample collection and tested whether viruses that temporally 222 

preceded emergence of SARS-CoV-2 lineages can predict the mutations they contain. For these 223 

analyses, sequences were classified by their Pango lineage designations rather than our 224 

phylogeny-based group definitions. We first determined the formation time of each lineage, 225 

defined as the date by which 26 unique sequences from the lineage were detected (see Fig. 4a 226 

and Supplementary Table 2). Based on these timelines, we divided the sequences into an “early-227 

phase” group that is used to predict emergence of the LFMs in the “lineage-emerging phase”. The 228 

early-phase group included one sequence from lineage B.1.1.7 and none from the other emergent 229 

lineages. Six minor lineages emerged early in the pandemic that contained mutations at positions 230 
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614, 222 and 477 (see Supplementary Table 3). To avoid a potential bias, these positions were 231 

excluded from our analyses. A total of 67 LFM sites were identified in the lineage-emerging phase. 232 

The early-phase sequences were divided into 27 clusters of 50 sequences, which were 233 

used to calculate V, D and R values. These values were applied to a logistic regression model 234 

that was trained to predict the emergence of LFMs using the phylogeny-indexed baseline 235 

sequences (see Methods section). The output of the model is the probability of each site to 236 

emerge with LFMs in the lineage-emerging phase. For all VOCs tested, as well the non-VOC 237 

lineages (analyzed collectively), the probabilities calculated for LFM sites were significantly higher 238 

than probabilities assigned to the non-LFM sites (Fig. 4b). Predictions based on the combined 239 

model exhibited considerably higher performance than those based on the individual variables 240 

(Fig. 4, c-e).  241 

To examine the changes in probabilities assigned to the sites of mutation during the early 242 

stages of the pandemic, we calculated V, D and R values and the combined probability using 243 

increasing numbers of sequences indexed by the time of sample collection. Interestingly, the 244 

pattern of LFMs was predicted with high sensitivity and specificity by the time three clusters were 245 

formed (150 unique sequences), corresponding to samples collected until April 1st, 2020 (Fig. 4f 246 

and Supplementary Fig. 4, a-c). Of the individual predictors, R exhibited the highest 247 

performance, modestly lower than the combined probability, whereas performance of V gradually 248 

increased. Further analysis of the performance of the first three clusters showed that higher 249 

probabilities were assigned to mutation sites of lineages that emerged at earlier stages of the 250 

pandemic (Fig. 4g and Supplementary Fig. 4d). Higher probabilities were also assigned to 251 

convergent sites (i.e., those that emerged with LFMs in multiple lineages, Fig. 4h and 252 

Supplementary Fig. 4e). 253 

We note that while V and R values calculated using all sequences of the baseline group 254 

correlated well (Fig. 3f), the performance of R was considerably higher when a small number of 255 

sequences was available (Fig. 4f). For example, analysis of the two major VOCs circulating during 256 

the lineage-emerging phase showed near-maximal R values for most LFM sites in March 2020 257 

whereas V values of these sites gradually increased over time (Supplementary Fig. 5).  258 

 Taken together, these findings show that a high level of volatility at any site and at its 259 

spatial- and network-associated sites precedes emergence of mutations in descendant lineages. 260 

A small number of sequences is required to accurately estimate the likelihood of sites for 261 

emergence as LFMs. Total volatility at network-associated sites exhibits a higher level of 262 

sensitivity at earlier stages of the pandemic than volatility values of the sites.  263 
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Spike mutations in emerging SARS-CoV-2 sublineages are accurately forecasted by 264 

patterns of volatility in their ancestral lineages 265 

We examined the patterns of volatility among sequences that preceded emergence of the 266 

VOC sublineages. For this purpose, we focused on SARS-CoV-2 lineages from the major VOCs, 267 

including B.1.1.7, P1, AY.4, BA.1 and BA.2. Sequences from the baseline of each lineage were 268 

used to forecast the mutations that define its descendent sublineages. All emergent sublineages 269 

with Pango designations and all clusters of 50 sequences that contain a non-lineage-ancestral 270 

residue as the majority variant at any site were excluded from the datasets. The remaining clusters 271 

were used to calculate V, D and R values and to assign a mutation probability to each position. 272 

Two mutation types were tested as outcomes: (i) Mutations that define Pango sublineages of the 273 

VOCs, and (ii) Mutations that are dominant in two or more 50-sequence clusters of the lineage 274 

(but are not assigned a Pango sublineage designation). As shown in Fig. 5a, both outcomes were 275 

predicted well using the baseline sequences of each variant (see Supplementary Table 3 for 276 

probability values). To determine the lineage specificity of the predictions, we compared the 277 

probabilities assigned to all sites of each lineage with the mutational outcomes in all other 278 

lineages. Consistent with the above findings, the highest AUC values were observed for 279 

predictions of the changes that occurred in the homologous lineage (Fig. 5b).  280 

We also investigated the changes in probabilities assigned to the sites of sublineage 281 

mutations from the time their ancestral lineage had emerged. For these tests, we focused on 282 

AY.4, which has circulated in the population for a longer time period than other lineages (global 283 

emergence in May 2021). Mutation probabilities were calculated using increasing amounts of 284 

sequences indexed by time (Fig. 5c). Similar to the mutations that define lineages B.1.1.7 and 285 

B.1.617.2 (Supplementary Fig. 5), most sites of change in the sublineages of AY.4 exhibited 286 

high mutation probabilities at early stages after AY.4 emergence. Of the 14 sites of mutation in 287 

AY.4 sublineages, nine surpassed the 0.99 probability threshold (mean 95th probability percentile) 288 

at least once during the first month after emergence of AY.4. We note that in these tests a positive 289 

outcome was defined as a mutation that appeared in immediately descendent sublineages (e.g., 290 

mutations that define AY.4.2 but not mutations that define AY.4.2.1). Nevertheless, several sites 291 

with high mutation probabilities were also observed in second-order lineages. For example, the 292 

second-highest probability in BA.1 was assigned to position 1081. Since this change was 293 

observed in the second-order sublineage BA.1.15.1, as designated by the Pango system, it was 294 

not considered a positive outcome site. 295 
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Finally, we examined the specific changes in amino acid occupancy at the sites of mutation 296 

in the emergent sublineages. In most cases, the minority variant with the highest frequency in the 297 

baseline group of each lineage also appeared as the dominant residue in the new sublineage 298 

(see characters in red font in Fig. 5d). These findings further support the notion that the 299 

evolutionary path of spike within each lineage is accurately captured by its mutational space 300 

across all sites of the protein, as detected among early isolates of the lineage. 301 

 302 

DISCUSSION 303 

 Since January 2022, SARS-CoV-2 variant Omicron has dominated the landscape of VOCs 304 

circulating worldwide. Both major lineages of Omicron (BA.1 and BA.2) contain mutations in spike 305 

that reduce virus sensitivity to immune sera and COVID-19 therapeutics25,26. To address these 306 

unique antigenic properties27,28, Omicron-specific immunogens have been developed and 307 

tested29,30,31. Nevertheless, new sublineages of this VOC emerge with mutations in spike that 308 

further impact virus transmissibility and sensitivity to COVID-19 vaccines8,9. Most changes that 309 

give rise to new sublineages do not appear to be driven by positive selective pressures (Fig. 1a). 310 

Instead, they occur at evolutionarily neutral positions and “hitchhike” onto the driver mutations32. 311 

As such, it would be expected that the evolutionary space available for spike (i.e., the sequence 312 

states that can be occupied by expanding lineages of the virus) would be large and driven by the 313 

stochastic nature of the hitchhiking event. Here we introduce a simple probabilistic definition of 314 

the evolutionary space of the virus. We show that, in fact, diverse SARS-CoV-2 lineages have 315 

vastly distinct evolutionary spaces. Each position of spike has a specific and measurable 316 

likelihood to appear as a dominant mutation within descendants of each lineage.  317 

 The volatility of each site only partially captures its likelihood for emergence with LFMs. 318 

More accurate estimates are provided by the mutability profile of spike at the whole-protein level, 319 

including adjacent sites on the protein and co-volatile sites. The latter variable is more sensitive 320 

to the changes at shorter time frames from emergence of the parental lineage. How does volatility 321 

of the “environment” capture the mutability of each site? Clustering of volatile sites on the linear 322 

sequence of the protein can be explained by mutational hotspots due to properties of the viral 323 

RNA33,34. Clustering on the three-dimensional structure can be explained by high permissiveness 324 

of the region for change due to their limited impact on fitness35. By contrast, the association 325 

between volatility of sites separated by larger distances on the protein is less intuitive. We propose 326 

that such associations describe the epistasis network of spike (i.e., the sites that the amino acid 327 

occupancy of one affects the fitness of another). Indeed, the volatility of each position likely 328 
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captures its fitness profile; low volatility describes a state with a single high-fitness residue, 329 

whereas high volatility describes the presence of multiple residues with high fitness. Accordingly, 330 

we propose that co-volatility patterns may capture the associations between the fitness profiles 331 

of the sites. Comparison of co-volatility network structure with structure of the epistasis network 332 

of spike will address this question, and may allow us to identify the adaptive sites required to 333 

facilitate changes at sites that negatively affect virus fitness35,36.  334 

 We note that, despite the high predictive performance shown, these studies constitute a 335 

relatively simple framework to understand specific factors associated with the changes in SARS-336 

CoV-2 spike. A more complete understanding will be generated by incorporating additional 337 

factors, including selective pressures applied on each site, in vitro fitness profiles35, and possibly 338 

patterns of mutations within the host. Furthermore, from a computational perspective, our strategy 339 

can be refined by applying alternative methods to define the architecture of the co-volatility 340 

network and by using more sophisticated learners to combine the volatility-based variables. In 341 

these studies, we have chosen to apply a simple logistic regression model to demonstrate the 342 

predictable nature of the changes. Importantly, the use of more homogenous donor populations, 343 

divided by their infection and vaccination status, will allow us to account for the effects of the 344 

immune response on the evolutionary path of each variant.  345 

The predictable nature of the changes in the spike protein suggest that immunogens and 346 

therapeutics can be designed to effectively address future forms expected to dominate in the 347 

population. Advance notice of the imminent changes in each lineage allows testing of their impact 348 

on virus fitness and sensitivity to immune sera37. Knowledge of the sites that are not expected to 349 

change is equally important. For example, several mutations in the RBD that affect virus sensitivity 350 

to antibodies, including L452R and T478K were assigned high probabilities to occur from the 351 

baseline group, but low probabilities to occur within lineage B.1.1.7. Similarly, the convergent 352 

N501Y mutation10 was assigned a high probability by the baseline group but a low probability in 353 

AY.4 (data not shown). Accordingly, such mutations were not observed in sublineages of the 354 

above variants. These findings further support the notion that immunogens should be tailored to 355 

the evolutionary space that is specific to each lineages, which can be inferred at early stages after 356 

it emerges in the population. 357 
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METHODS 358 

Sequence alignment 359 

 Nucleotide sequences of SARS-CoV-2 isolated from humans were downloaded from the 360 

National Center for Biotechnology Information (NCBI) database, the Virus Pathogen Database 361 

and Analysis Resource (ViPR) and from the GISAID repository38. The following processing steps 362 

and analyses were performed within the Galaxy web platform39. First, excess bases were trimmed 363 

using Cutadapt, using 5’-ATGTTTGTT-3’ and 3’-TACACATAA-5 “adapters” that flank the spike 364 

gene. Adapter sequences were allowed to match once with a minimum overlap of 5 bases, an 365 

error rate of 0.2 with a sequence length between 3,700 and 3,900 bases. All sequences with any 366 

nucleotide ambiguities were removed by replacing the non-standard bases with ‘N’ using snippy-367 

clean_full_aln, followed by filtration of N-containing sequences using Filter FASTA. Sequences 368 

that cause frameshift mutations were excluded using Transeq. Nucleotide sequences were 369 

aligned by MAFFT, using the FFT-NS-2 method40. The aligned sequences were then 370 

“compressed” using Unique.seqs to obtain a single representative for each unique nucleotide 371 

sequence41. Nucleotide sequences were then translated with Transeq and aligned with MAFFT, 372 

FFT-NS-240. The first position of each PNGS motif triplet (Asn-X-Ser/Thr, where X is any amino 373 

acid except Pro) was assigned a distinct identifier from Asn. All phylogenetic analyses were 374 

performed using the full-length spike protein, which include several sequences with amino acid 375 

insertions. To maintain consistent numbering of spike positions, all calculations described in this 376 

work were performed for the 1,273 positions of the spike protein in the SARS-CoV-2 reference 377 

strain (accession number NC_045512). 378 

                 379 

Phylogenetic tree construction and analyses  380 

 A maximum-likelihood tree was constructed for the aligned compressed nucleotide 381 

sequences using the generalized time-reversible model with CAT approximation (GTR-CAT) 382 

nucleotide evolution model with FASTTREE 42. The tree was rooted to the sequence of the SARS-383 

CoV-2 reference strain with MEGAX43. To divide the tree into “Groups” of sequences, we used an 384 

in-house code in Python (see link to GitHub repository in the Data Availability section). This tool 385 

uses the Newick file to divide the dataset into sequence groups with a user-defined genetic 386 

distance between their centroids. For all analyses we used a distance of 0.004 nucleotide 387 

substitutions per site for group partitioning. Groups that did not contain at least 50 unique 388 

sequences were excluded. To discern between baseline groups and terminal groups, we used a 389 

distance of 0.0015 nucleotide substitutions per site between each group centroid and the SARS-390 

CoV-2 reference strain.  391 
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Calculations of volatility  392 

 To calculate volatility of spike positions, we divided all sequences of each group into 393 

clusters of 50 sequences. Sequence variability in each cluster was quantified using two 394 

approaches. To calculate volatility (V) values, we used a binary approach, whereby each position 395 

in a 50-sequence cluster was assigned a value of 1 if it contains any diversity in amino acid 396 

sequence, or a value of 0 if all sequences in the cluster contain the same amino acid. Thus, each 397 

cluster is assigned a 1,273-feature vector that describes the absence or presence of volatility at 398 

each position of spike. Volatility was then calculated by averaging values by position across all 399 

clusters. For calculations of D or R values for each position 𝑖, we used a quantitative approach to 400 

define volatility at positions associated with 𝑖 (i.e., at positions s and q in Equation 1 and Equation 401 

2, respectively). Briefly, sequence variability within each cluster was measured by assigning 402 

distinct hydropathy scores to each amino acid according to a modified Black and Mould scale44. 403 

The Asn residue of PNGS motifs and deletions were also assigned unique values. The values 404 

assigned were: PNGS, 0; Arg, 0.167; Asp, 0.19; Glu, 0.203; His, 0.304; Asn, 0.363; Gln, 0.376; 405 

Lys, 0.403; Ser, 0.466; Thr, 0.542; Gly, 0.584; Ala, 0.68; Cys, 0.733; Pro, 0.759; Met, 0.782; Val, 406 

0.854; Trp, 0.898; Tyr, 0.9; Leu, 0.953; Ile, 0.958; Phe, 1; deletion site, 1.5. Variability in each 407 

cluster was calculated as the standard deviation in hydropathy values among the 50 sequences, 408 

and variability values of all clusters were averaged to obtain the volatility value for each position 409 

s or q (i.e., Vs or Vq, respectively).  410 

 411 

Lineage specificity of volatility patterns 412 

To determine relationships between volatility profiles of spike in the diverse lineages, we 413 

partitioned each lineage into 10-cluster groups (500 sequences). All sublineages with Pango 414 

designations and all 50-sequence clusters with a dominant non-lineage-ancestral residue at any 415 

spike position were removed from the datasets. Within each group, the absence or presence of 416 

amino acid variability at each spike position was determined. All groups were thus assigned 1273-417 

bit strings that describes the absence (0) or presence (1) of volatility at each position of the protein. 418 

Jaccard distances between the strings were calculated and all groups compared using the 419 

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) method19,20. The output (in 420 

Newick format) was used to generate a dendrogram plot with MEGAX.  421 

To determine the lineage specificity of the volatility patterns, we used a modification of an 422 

approach we previously described21. Briefly, each SARS-CoV-2 lineage was divided into groups 423 

of 10 clusters (500 sequences). Volatility in the groups was calculated for all positions of spike, 424 

and each group assigned a 1273-feature vector that describes the level of volatility at all positions 425 
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of spike. To compare the vectors, we first calculated for each lineage L the coordinates of the 426 

centroid (𝐶𝐿) among vectors from the same lineage. The mean intra-lineage distance 427 

(𝑑𝑖𝑛𝑡𝑟𝑎𝑙𝑖𝑛𝑒𝑎𝑔𝑒) was calculated as the average Euclidean distance between the lineage centroid 𝐶𝐿 428 

and all groups from the same lineage 𝐺𝐿, formally 𝑑𝑖𝑠𝑡(𝐶𝐿, 𝐺𝐿). In addition, we calculated the mean 429 

inter-lineage distance (𝑑𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒𝑎𝑔𝑒) as the average Euclidean distance between the centroid of 430 

lineage L and all other lineage centroids 𝑑𝑖𝑠𝑡(𝐶𝐿 , 𝐶𝐿) ∀L’L. We define the ratio as: 431 

 𝑟𝑎𝑡𝑖𝑜 =
𝑑𝑖𝑛𝑡𝑟𝑎𝑙𝑖𝑛𝑒𝑎𝑔𝑒

𝑑𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒𝑎𝑔𝑒
. The baseline ratio (Sbase) was calculated as the ratio using the non-permuted 432 

data. Under the null assumption concerning the evolution of volatility profiles, the intra-lineage 433 

distances are expected to be comparable to the inter-lineage distances, while under the lineage-434 

specific alternative, we expect clustering of volatility profiles within each lineage even across 435 

distinct 10-cluster groups. To test this, lineage identifiers were permuted and randomly assigned 436 

to each group, from which the permuted ratio (Srand) was calculated. The permutation process 437 

was repeated 10,000 times. The P value was calculated as the fraction of the 10,000 tests that 438 

Srand was smaller than Sbase.  439 

 440 

Co-volatility network construction 441 

 To determine the co-volatility of any two spike positions, we generated a matrix that 442 

contains binary volatility values in all clusters of the tested group (rows) for all 1,273 spike 443 

positions (columns). The co-occurrence of a volatile state between any two spike positions was 444 

calculated using Fisher’s exact test and the associated P-value determined using a custom Java 445 

script. To construct the network of co-volatility, we used as input the matrix that describes the -446 

log10(P-value) between the volatility profiles of any two spike positions, whereby nodes are the 447 

positions of spike and the edges that connect them reflect the P-values of their association. 448 

Network structure was visualized using the open-source software Gephi45. Networks were 449 

generated using different P-value thresholds (i.e., an edge was assigned only if the P-value was 450 

lower than 0.1, 0.05 or 0.01). To determine robustness of network structure, we randomly deleted 451 

10, 20 or 30 percent of all edges for each of the networks, and network topological properties 452 

were computed using the Cytoscape Network Analyzer tool46. Two metrics were calculated for 453 

the complete and depleted networks: (i) Degree distribution, and (ii) Closeness centrality23.  454 
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Calculations of positive selection  455 

 We estimated for each codon of spike the number of inferred synonymous (S) and 456 

nonsynonymous (N) substitutions using the GALAXY platform 47. The input phylogenetic tree was 457 

constructed using FASTTREE. The dN-dS metric was used to detect codons under positive 458 

selection, where dS is the number of synonymous substitutions per site and dN is the number of 459 

nonsynonymous substitutions per site. dN-dS values were normalized using the expected number 460 

of substitutions per site. Maximum Likelihood computations of dN and dS were conducted using 461 

the HyPhy-SLAC software package48.  462 

 463 

Spatial clustering of volatility and calculations of the variable D 464 

We performed a permutation test to determine the spatial clustering of volatile sites around 465 

each spike position. To this end, for each position 𝑖, we identified the 10 closest positions on the 466 

trimer, using coordinates of the cryo-EM structure of the cleavage-positive spike (PDB ID 6ZGI)49. 467 

We then calculated for each position 𝑖 the statistic 𝑇𝑖
0:  468 

       𝑇𝑖
0 =  ∑ 𝑉𝑖

0
𝑗∈𝜑𝑖

∗ 𝑉𝑗
0     [3] 469 

where 𝑉𝑖
0 describes the volatility at position 𝑖, 𝑉𝑗

0 is the volatility at the jth neighboring position to 𝑖, 470 

and 𝜑𝑖 denotes the positions numbers of the 10 closest neighbors to position 𝑖. We then permuted 471 

all positions identifiers other than p and calculated the statistic 𝑇𝑖
𝑘: 472 

     𝑇𝑖
𝑘 =  ∑ 𝑉𝑖

0
𝑗∈𝜑𝑖

∗ 𝑉𝑗
𝑘          [4] 473 

where 𝑉𝑗
𝑘 is the volatility at the jth adjacent position in the 𝑘th permutation (k=1,2, … 5,000).  474 

Under the null hypothesis of no spatial clustering, we would expect the neighbor labels to be 475 

arbitrary. We therefore test this null hypothesis by estimating the probability of observing a 476 

positive departure from the null distribution via:  477 

𝑃 =
∑ 𝐼

{𝑇𝑖
𝑘≥𝑇𝑖

0}
𝑁
𝑘=1

𝑁
         [5] 478 

where 𝑁 is the total number of permutations (5,000) and 𝐼 is the indicator function. Therefore, the 479 

P-value quantifies the fraction of times the volatility of the surrounding residues is larger for the 480 

permuted values relative to the non-permuted values.  481 
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To calculate D, we measured for each position 𝑖 the total volatility at all sites that are within 482 

a distance of 6 Å on the spike trimer structure. The coordinates of the cryo-electron microscopy 483 

structure of the cleaved spike protein in the closed conformation (PDB ID 6ZGI) were used49. 484 

Coordinates of all atoms were included; N-acetyl-glucosamine atoms were assigned the same 485 

position number as their associated Asn residues. We note that the 6ZGI structure is missing the 486 

following spike residues (numbered according to the SARS-CoV-2 reference strain): 1-13, 71-75, 487 

618-632, 677-688, 941-943 and 1146-1273. To calculate D values for these positions, we applied 488 

the volatility values of the positions immediately adjacent on the linear sequence of spike (i.e., 489 

positions -1 and +1).  490 

 491 

Combined model to predict emergence of dominant-group and subgroup-emerging 492 

mutations 493 

 To assign a probability for each position to emerge with a mutation, we used a logistic 494 

regression model that applies V, D and R values. The model was trained using V, D and R values 495 

calculated using the 5,700 sequences of the baseline group, with the positive outcome being the 496 

43 GDM and 16 sGEM sites described in Supplementary Table 1. To this end, we first created 497 

interaction terms between the initial predictors (i.e., V, D and R). To address the class imbalance 498 

in our datasets (59 of the 1,273 spike positions appeared with LFMs or sLFMs) we used the 499 

adaptive synthetic sampling approach (ADASYN)50. Nested cross-validation was used to tune the 500 

model while estimating the metrics of interest. This procedure was also used to generate the 501 

prediction probabilities for each position. Five folds were used for both the inner and outer parts 502 

of the nested cross-validation. Grid search was utilized to optimize hyperparameters with the area 503 

under the receiver operating characteristic curve as the objective for optimization. The model-504 

specific parameters that we incorporated into the hyperparameter tuning procedure are the 505 

inverse of the regularization strength 𝐶 and the penalty type. For this purpose, we used a set of 506 

values from 0.001 to 100 for parameter 𝐶, and for penalization we used L1 norm, L2 norm, elastic 507 

net, or no penalty in the parameter space. Since we used ADASYN to handle the class imbalance, 508 

we also added the number of positions with similar feature values as another hyperparameter to 509 

the search grid. The number of positions with similar feature values was set between 5 and 45. 510 

As classification metrics, we used sensitivity, specificity, precision, recall, AUC and balanced 511 

accuracy. The balanced accuracy metric, which is the average of sensitivity and specificity, was 512 

used due to the relative imbalance in the datasets. 513 
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