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Abstract

The standard model describing the fluctuations of mRNA numbers in single cells is the telegraph model which
includes synthesis and degradation of mRNA, and switching of the gene between active and inactive states. While
commonly used, this model does not describe how fluctuations are influenced by the cell cycle phase, cellular
growth and division, and other crucial aspects of cellular biology. Here we derive the analytical time-dependent
solution of a stochastic model that explicitly considers various sources of intrinsic and extrinsic noise: switching
between inactive and active states, doubling of gene copy numbers upon DNA replication, dependence of the
mRNA synthesis rate on cellular volume, gene dosage compensation, partitioning of molecules during cell division,
cell-cycle duration variability, and cell-size control strategies. We show that generally the analytical distribution
of transcript numbers in steady-state growth cannot be accurately approximated by the steady-state solution of
extrinsic noise models, i.e. a telegraph model with parameters drawn from probability distributions. This is because
the mRNA lifetime is often not small enough compared to the cell cycle duration to erase the memory of division
and replication. Accurate approximations are possible when this memory is weak, e.g. for genes with bursty
expression and for which there is sufficient gene dosage compensation when replication occurs.

Introduction

Experiments have revealed a large cell-to-cell variation in the number of mRNA molecules in isogenic
populations [1–3]. This can in part be explained by stochastic effects in gene expression due to the low copy numbers
of many components, including DNA and important regulatory molecules [4]. Live-cell imaging approaches allow
a direct visualization of stochastic bursts of gene expression in living cells [5]. However these experiments
are challenging and hence more commonly one measures the mRNA expression per cell from single-molecule
fluorescence in situ hybridization (smFISH) [5] or single-cell RNA sequencing (scRNA-seq) experiments [6].

The experimental distributions of mRNA numbers are fitted to the predictions of mathematical models, by
which one can obtain estimates of the rates of several important transcriptional processes [7–9]. The most common
model of this type is the so-called two-state or random telegraph model of gene expression [10, 11]. This is
composed of four (effective) reactions

G
σ1−−→ G∗, G∗ σ0−−→ G, G∗ ρ−−→ G∗ +M, M

d−−→ ∅, (1)

where the first two reactions describe the switching of the gene between an active state G∗ and an inactive state G,
the third reaction describes transcription while the gene is in the active state, and the fourth reaction describes the
degradation of the mRNA M . The chemical master equation (CME) describing the telegraph model can be exactly
solved in steady-state, as well as in time [11–13]. Extensions of this model to include more than two gene states
have also been considered [14–16].
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A substantial number of genes are inactive most of the time and in the brief time that they are active, a large
number of mRNA molecules are transcribed but not degraded [17]. This leads to bursty expression. The probability
of r new mRNA molecules being transcribed before the gene switches off, i.e. a burst of size r, is P (r) = pr(1−p),
where p = ρ/(ρ+ σ0) is the probability that the gene synthesizes an mRNA molecule, conditional on it being in
the active state [18]. This distribution is geometric with mean ρ/σ0. The average time between two consecutive
bursts is 1/σ0 + 1/σ1 ≈ 1/σ1 since the gene spends most of its time off (σ0 ≫ σ1); in other words the rate of
burst production is approximately σ1. It follows that the reaction scheme given in Eq. (1) can be reduced to an
effective one-state model composed of only two reactions

G
σ1−−→ G+ kM, M

d−−→ ∅, (2)

where k is the transcriptional burst size which is geometrically distributed with mean ρ/σ0. The geometric burst size
distribution has been validated experimentally [1]. The CME for this model can be solved exactly in steady-state
leading to the well-known negative binomial distribution of mRNA numbers [19–21], which is also widely used in
scRNA-seq analysis [22]. Because of the unimodality of this distribution, this simplified model cannot explain
bimodality in gene expression [23, 24], a feature that can be explained by the two-state model.

However, the conventional one-state and two-state models are very limited in their predictive power because
they lack a description of many cellular processes that are known to have a profound impact on the distribution of
mRNA numbers in single cells, e.g. the doubling of gene copy numbers upon DNA replication [25], partitioning of
molecules during cell division [26], scaling of the mRNA synthesis rate with cell volume [27–31], and stochasticity
in the cell cycle duration and growth rate that is related to cell-size control strategies [32–38]. Recently, numerous
efforts have been made to extend the conventional one-state and two-state models to include some description of
these processes and yet retain analytical tractability. Some studies focused on the moment statistics (mean and
variance) of mRNA and protein numbers [39–43], while other studies additionally obtain the analytical distributions
of molecule numbers [20, 44–48]. Please refer to Table 1 for a summary of exactly solvable extensions of the
one-state and two-state models that explicitly capture cell birth, growth, and division.

Effective one-state models

gene replication not considered gene replication considered

volume-independent transcription Ref. [44] Refs. [45–47]

volume-dependent transcription Ref. [48] Refs. [20, 47]

Two-state models

gene replication not considered gene replication considered

volume-independent transcription × ×
volume-dependent transcription Ref. [48] ×

Table 1: Exactly solvable gene expression models that explicitly describe cell birth, growth, and division.

Due to mathematical complexity, most previous work is limited to the effective one-state model with the
gene product (mRNA or protein) produced in a constitutive or bursty manner [20, 44–47]. Some of these models
incorporate the scaling of transcription activity with cell volume [20, 47], while the rest do not. We note that
the latter case is not to be seen as unphysical since while the scaling of transcription with volume is commonly
observed, it is by no means a universal phenomenon (in both prokaryotic [49, 50] and eukaryotic cells [51–54]
there are examples where there is no such scaling). As for the conventional one-state model shown in Eq. (2), the
main limitation is the assumption of instantaneous bursts, while in reality there is a finite time for the bursts to
occur. A distinct advantage of the extended one-state models over the conventional one is that those which describe
gene replication [46] are able to produce bimodal distributions.

The exact solution of extended two-state models that incorporate cell birth, growth, and division has not
received much attention. A recent study [48] made progress in this direction. In particular, the two-state telegraph
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model in growing and dividing cells was shown to be exactly solvable when (i) the mRNA synthesis rate scales
linearly with cell volume and (ii) there is no variation of gene copy numbers across the cell cycle, i.e. gene
replication is not taken into account. As previously mentioned, while (i) is common, it is not universal. The
assumption behind (ii) is of course a means to simplify the model but clearly unrealistic. Relaxing any one of these
two properties means that within the theoretical framework presented in [48], it is not possible to obtain an exact
solution for the distribution of mRNA numbers.

While the aforementioned literature summarised in Table 1 has sought to fix the biological limitations of the
conventional one-state and two-state models by directly introducing more processes and solving the master equation
of the resulting complex models, a different indirect approach has also been proposed. This approach takes the
point of view that biological processes not explicitly modelled by the conventional models can be incorporated by
considering the model parameters themselves to vary between cells, and therefore to be drawn from probability
distributions [4, 55–57] — we call this an extrinsic noise model (ENM). This model can be solved exactly in
steady-state for various distributions of parameter values (see Table I of [57]). It is expected that such an approach
produces meaningful results provided the parameters controlling cell-to-cell variability change very slowly. Under
certain conditions, the solution of the ENM might even exactly match that of complex models of stochastic gene
expression. For example, it has recently been shown that the exact solution of the two-state telegraph model in
growing and dividing cells where gene replication is ignored and where the mRNA synthesis rate scales with cell
volume is precisely the same as that of the ENM with the mRNA synthesis rate sampled from the distribution of
cellular volume and with the mRNA degradation rate being replaced by an effective rate that also incorporates the
dilution of molecules at cell division [48]. A natural question is, if in a two-state telegraph model we introduce
gene replication and allow the mRNA synthesis rate potentially to be volume-dependent, then does the ENM still
provide an exact or at least an accurate approximation of this model?

In this paper, we answer this question. We first exactly solve an extension of the telegraph model that explicitly
describes cell birth, growth, division, replication, and an mRNA synthesis rate that can be either independent of
cell volume or else that linearly scales with it. Many of the known exact solutions of the one-state and two-state
models to-date can be shown to be special cases of the present theory. The analytical distribution of transcript
numbers is subsequently used to study the accuracy of the ENM. We show that the transcript number distribution in
steady-state growth is generally not well approximated by the steady-state distribution of the ENM. Conditions
under which the ENM provides an accurate approximation are derived and verified using simulations.

Results

Model

We consider an extension of the telegraph model which takes into account cell growth, cell division, gene
replication, gene dosage compensation, and volume-dependent transcription (see Fig. 1 for an illustration). The
specific meaning of all model parameters can be found in Table 2. The model has the following properties.

1) Let T denote the cell cycle duration and let V (t) denote the cell volume at time t. We assume that cell
volume grows exponentially within each cell cycle, i.e. V (t) = Vbe

gt for any 0 ≤ t ≤ T , where Vb is the cell
volume at birth and g is the growth rate. The exponential growth of cell volume is commonly observed for various
types of cells [36, 38, 58, 59]. For simplicity, we assume that the doubling time T and the growth rate g do not
involve any stochasticity [20]. Generalization of the model to stochastic cell volume dynamics will be discussed at
the end of the paper.

2) In each cell cycle, we use a two-state model to describe the gene expression dynamics. Let G and G∗ denote
the inactive and active states of the gene, respectively, and let M denote the corresponding mRNA. Consider a gene
expression model described by the effective reactions

G
σ1−−→ G∗, G∗ σ0−−→ G, G∗ ρV (t)β−−−−→ G∗ +M, M

d−−→ ∅,
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Figure 1: Model. Schematic of an extension of the telegraph model of gene expression in growing and dividing cells. The
volume V (t) of a cell grows exponentially with constant growth rate g and doubling time T . The gene expression dynamics is
characterized by a two-state model with volume-dependent transcription and volume-independent degradation. Specifically, the
gene can switch between an active state G∗ and an inactive state G. Transcription occurs when the gene is active. The synthesis
rate of mRNA depends on cell volume V (t) via a power law form with power β ∈ [0, 1], and the degradation rate of mRNA is
a constant. Gene replication occurs at a time T0 where w = T0/T ∈ (0, 1) is some fixed proportion of the cell cycle. Upon
replication, the activation rate for each gene copy decreases from σ1 to σ′

1 due to gene dosage compensation.

parameters meaning

Vb cell volume at birth

g growth rate of cell volume

T = log(2)/g cell cycle duration

β strength of balanced mRNA synthesis

w proportion of cell cycle before replication

σ1 switching rate of the gene from OFF to ON before replication

σ′
1 switching rate of the gene from OFF to ON after replication

σ0 switching rate of the gene from ON to OFF

ρ proportionality constant of the mRNA synthesis rate

d mRNA degradation rate

deff = d+ g effective mRNA decay rate

η = d/g ratio of the degradation rate to the growth rate

Table 2: Model parameters and their meaning.

where σ0 and σ1 are the switching rates between the two gene states, and d is the mRNA degradation rate. For many
genes in fission yeast [27, 28], mammalian cells [29, 30], and plant cells [31], there is evidence that the mRNA
number scales linearly with cell volume in order to maintain approximately constant concentrations (concentration
homeostasis; for a recent review see [60]). This is due to a coordination of the mRNA synthesis rate with cell
volume — we shall refer to this mechanism as balanced mRNA synthesis. However, in both prokaryotic [49, 50] and
eukaryotic cells [51–54] there are examples where there is no such scaling. Since each cell has a different volume,
the mechanism of volume-dependent transcription is a source of extrinsic noise [56], potentially accounting for a
significant amount of the observed cell-to-cell variation in mRNA numbers. To unify non-balanced and balanced
mRNA synthesis, we assume that the mRNA synthesis rate depends on cell volume V (t) via a power law form with
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proportionality constant ρ and power β ∈ [0, 1]. Then β = 1 (β = 0) corresponds to the situation where the mRNA
synthesis rate scales linearly with cell volume (does not depend on cell volume). It has recently been postulated that
the non-linear scaling between gene expression levels and cellular volume is due to the heterogeneous recruitment
abilities of promoters to RNA polymerases [61].

3) The replication of the gene of interest occurs at a fixed proportion w ∈ (0, 1) of the cell cycle. This is
known as a stretched cell cycle model, which is supported by experiments [62]. Under this assumption, the time
before replication within a cell cycle is wT and the time after replication is (1− w)T . We shall refer to the gene
copy that is replicated as the mother copy and to the duplicated gene copies as the daughter copies. For haploid
cells, there is only one mother copy before replication and two daughter copies after replication; for diploid cells,
the number of gene copies varies from two to four upon replication. For diploid cells, we assume that the two
alleles act independently of each other [63, 64].

4) At replication, the daughter copies inherit the gene state from the mother copy [20, 65]. The presence of
specific histone marks dictate transcription permissiveness [66] and the landscape of histone modifications is copied
during DNA replication [67]. An alternative case is the one where all daughter copies are reset to the inactive state
upon replication — potentially a mechanism to avoid the risk of conflict between replication and transcription (and
the resulting DNA damage) [20]. Here we only consider the former perfect state copying mechanism.

5) A doubling of gene copy numbers upon replication would be expected to also double the amount of mRNA
molecules. However, experiments show that this is not always the case [25, 29, 68] principally due to a decrease of
the gene activation rate upon replication, a phenomenon known as gene dosage compensation. We model this by
choosing the gene activation rate before replication σ1 to be potentially different than that after replication σ′

1. In
the absence of dosage compensation, we have σ′

1 = σ1. Perfect dosage compensation occurs when σ′
1 = σ1/2; in

this case, the total burst frequency (the sum is over all gene copies) is unaffected by replication.
6) At division, the mother cell is divided into two daughter cells. The volumes of the two daughter cells are

assumed to be the same and exactly one half of the volume of the mother cell before division (of course there
is some stochasticity in the partitioning of cell size [69, 70] which we are here ignoring). Moreover, we assume
that each mRNA molecule has probability 1/2 of being allocated to each daughter cell. With this assumption, the
number of transcripts that are allocated to each daughter cell has a binomial distribution. We also assume that gene
state is not changed upon cell division.

Time-dependent mRNA distribution within a cell cycle

Here we compute the time-dependent distribution of the mRNA number within a cell cycle under arbitrary
initial conditions. We first consider the dynamics before replication for haploid cells. The microstate of the gene of
interest can be described by an ordered pair (i, n), where i denotes the state of the gene with i = 0, 1 corresponding
to the inactive and active states, respectively, and n denotes the number of mRNA molecules. Let pi,n(t) denote the
probability of having n transcripts at time t ∈ [0, wT ] when the gene is in state i. Note that t = 0 corresponds to
cell birth. Then the stochastic gene expression dynamics before replication is governed by the coupled set of CMEs

ṗ0,n = d[(n+ 1)p0,n+1 − np0,n] + [σ0p1,n − σ1p0,n],

ṗ1,n = ρV (t)β [p1,n−1 − p1,n] + d[(n+ 1)p1,n+1 − np1,n] + [σ1p0,n − σ0p1,n],
(3)

where p1,−1 = 0 by default, the term involving ρ represents mRNA synthesis, the terms involving d represent
mRNA degradation, and the terms involving σ0 and σ1 represent gene switching. To solve these, we define a pair
of generating functions Fi(t, z) =

∑∞
n=0 pi,n(t)(z + 1)n for i = 0, 1. Note that here we use (z + 1)n rather than

the conventional zn in the definition of the generating function — with this choice, the formulas given below are
much more concise. In addition, let pn(t) = p0,n(t) + p1,n(t) denote the probability of having n transcripts at
time t and let F (t, z) = F0(t, z) + F1(t, z) be the corresponding generating function. In terms of the generating
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functions, Eq. (3) can be converted into the first-order linear partial differential equations (PDEs)

∂tF0 = −dz∂zF0 + σ0F1 − σ1F0,

∂tF1 = ρV (t)βzF1 − dz∂zF1 + σ1F0 − σ0F1.
(4)

To solve these, we first convert them into a second-order parabolic PDE and then transform the second-order PDE
into a hypergeometric differential equation through a change of variables. Complex computations show that for
each t ∈ [0, wT ], the generating functions Fi, i = 0, 1 can be computed in closed form as (see Supplementary
Section 1 for the proof)

F0(t, z) = K00(t, z)F0(0, e
−dtz) +K01(t, z)F1(0, e

−dtz),

F1(t, z) = K10(t, z)F0(0, e
−dtz) +K11(t, z)F1(0, e

−dtz).
(5)

Here Fi(0, z), i = 0, 1 are the generating functions at t = 0 which can be determined by the initial conditions, and
the functions Kij , i, j = 0, 1 are given by

K00(t, z) =
b− a

b

[
M(1 + a− b; 1− b;ue−dtz)M(a; 1 + b;ueβgtz) +

a

b− a
e−(r+βg)t

×M(1 + a; 1 + b;ue−dtz)M(a− b; 1− b;ueβgtz)
]
e−ue−dtz,

K01(t, z) =
b− a

b

[
M(a− b; 1− b;ue−dtz)M(a; 1 + b;ueβgtz)− e−(r+βg)t

×M(a; 1 + b;ue−dtz)M(a− b; 1− b;ueβgtz)
]
e−ue−dtz,

K10(t, z) =
a

b

[
M(1 + a− b; 1− b;ue−dtz)M(1 + a; 1 + b;ueβgtz)− e−(r+βg)t

×M(1 + a; 1 + b;ue−dtz)M(1 + a− b; 1− b;ueβgtz)
]
e−ue−dtz,

K11(t, z) =
a

b

[
M(a− b; 1− b;ue−dtz)M(1 + a; 1 + b;ueβgtz) +

b− a

a
e−(r+βg)t

×M(a; 1 + b;ue−dtz)M(1 + a− b; 1− b;ueβgtz)
]
e−ue−dtz,

(6)

where the parameters r, a, b, and u are given by

r = σ0 + σ1 − βg, a =
σ1

d+ βg
, b =

σ0 + σ1

d+ βg
, u =

ρV β
b

d+ βg
. (7)

Adding the two identities in Eq. (5) gives the explicit expression of the generating function F before replication, i.e.

F (t, z) = L0(t, z)F0(0, e
−dtz) + L1(t, z)F1(0, e

−dtz), t ∈ [0, wT ], (8)

where the functions Li, i = 0, 1 are given by

L0(t, z) =
[
M(1 + a− b; 1− b;ue−dtz)M(a; b;ueβgtz) +

auz

b(b− 1)
e−rt

×M(1 + a; 1 + b;ue−dtz)M(1 + a− b; 2− b;ueβgtz)
]
e−ue−dtz,

L1(t, z) =
[
M(a− b; 1− b;ue−dtz)M(a; b;ueβgtz)− (b− a)uz

b(b− 1)
e−rt

×M(a; 1 + b;ue−dtz)M(1 + a− b; 2− b;ueβgtz)
]
e−ue−dtz.

(9)

When b = 1, the term b − 1 appears in the dominator of the above two equations and the equalities should be
understood in the limiting sense. Note that when the mRNA synthesis rate is volume-independent (β = 0), the
expression of F given in Eq. (8) coincides with the time-dependent solution of the standard telegraph model [13].

We next focus on the dynamics after replication for haploid cells. Since there are two daughter gene copies
after replication, to distinguish them, we call them daughter copy A and daughter copy B. The dynamics of each
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gene copy is governed by the CMEs given in Eq. (3) with σ1 being replaced by σ′
1. Let pn(t) denote the probability

of having n transcripts at time t ∈ [wT, T ] and let F (t, z) =
∑∞

n=0 pn(t)(z+1)n be the corresponding generating
function. In Supplementary Section 2, we prove that the generating function F after replication can be computed in
closed form as

F (t, z) = L′
0(t− wT, z)2F0(wT, e

−d(t−wT )z) + L′
1(t− wT, z)2F1(wT, e

−d(t−wT )z), t ∈ [wT, T ],

where L′
0 and L′

1 are functions obtained from L0 and L1 by replacing the parameters r, a, b and u with

r′ = σ0 + σ′
1 − βg, a′ =

σ′
1

d+ βg
, b′ =

σ0 + σ′
1

d+ βg
, u′ = 2βwu.

In summary, we have derived the analytical expression of the generating function F at any time t ∈ [0, T ] within a
cell cycle, which is given by

F (t, z) =


∑1

i=0 Li(t, z)Fi(0, e
−dtz), t ∈ [0, wT ],∑1

i=0 L
′
i(t− wT, z)2Fi(wT, e

−d(t−wT )z), t ∈ [wT, T ],
(10)

where Fi(wT, z), i = 0, 1 are determined by Eq. (5). The time-dependent distribution of the mRNA number can
be recovered by taking the derivatives of the generating function F at z = −1, i.e.

pn(t) =
1

n!

∂n

∂zn
F (t, z)

∣∣∣
z=−1

. (11)

Our analytical expression of the transient mRNA distribution is rather complicated. However, it can be
simplified to a large extent in some special cases. In Supplementary Section 3, we show how the analytical solution
can be simplified for two non-trivial special cases: (i) the gene switches rapidly between the active and inactive
states (σ0, σ1 ≫ g); (ii) the mRNA is produced in a bursty manner (σ0 ≫ σ1), i.e. the gene is mostly inactive but
synthesizes a large number of transcripts when it becomes active [71–73]. In the latter case, the mean burst size is
ρ/σ0; the burst frequency is σ1 before replication and the total burst frequency for the two gene copies is 2σ′

1 after
replication.

Thus far, we have obtained the transient mRNA distribution for haploid cells. For diploid cells, since the two
alleles act independently and since each allele has the mRNA distribution given in Eq. (11), the generating function
for the total number of transcripts at any time t ∈ [0, T ] is given by Fdiploid(t, z) = F (t, z)2, where F (t, z) is
given by Eq. (10). Due to independence of the two alleles, when the rate parameters for each allele are fixed, the
gene expression noise (measured by the coefficient of variation squared of mRNA numbers) in diploid cells is one
half that in haploid cells. Without loss of generality, we always focus on haploid cells in what follows.

Time-dependent mRNA distribution across cell cycles

Thus far, we have derived the exact mRNA distribution at any time within a cell cycle. Here we focus on the
full time-dependence of the mRNA distribution across cell cycles under arbitrary initial conditions. To this end, we
not only need the expression of F at any time t ∈ [0, T ], but also need the expressions of Fi, i = 0, 1.

Recall that Eq. (5) gives the analytical expressions of the generating functions Fi, i = 0, 1 before replication
under any initial conditions. In particular, at replication, we have

Fi(wT, z) = Ki0(wT, z)F0(0, e
−dwT z) +Ki1(wT, z)F1(0, e

−dwT z). (12)

Now we focus on the dynamics of daughter copy A after replication. Let pi,n(t) denote the probability of having n

transcripts at time t ∈ [wT, T ] when the daughter copy A is in state i and let Fi(t, z) =
∑∞

n=0 pi,n(t)(z + 1)n be
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the corresponding generating function. In Supplementary Section 2, we prove that the generating functions Fi,
i = 0, 1 after replication can be computed exactly as

Fi(t, z) = K ′
i0(t− wT, z)L′

0(t− wT, z)F0(wT, e
−d(t−wT )z)

+K ′
i1(t− wT, z)L′

1(t− wT, z)F1(wT, e
−d(t−wT )z), t ∈ [wT, T ],

(13)

where K ′
ij , i, j = 0, 1 are functions obtained from Kij by replacing the parameters r, a, b, and u with the

parameters r′, a′, b′, and u′, respectively. Inserting Eq. (12) into Eq. (13) and taking t = T , we obtain

Fi(T, z) = K̃i0(z)F0(0, e
−dT z) + K̃i1(z)F1(0, e

−dT z), (14)

where

K̃ij(z) = K ′
i0((1− w)T, z)L′

0((1− w)T, z)K0j(wT, e
−d(1−w)T z)

+K ′
i1((1− w)T, z)L′

1((1− w)T, z)K1j(wT, e
−d(1−w)T z), i, j = 0, 1.

(15)

Suppose that the daughter cell with daughter copy A is tracked after division. Since we have assumed binomial
partitioning of molecules at division, the probability pnexti,n (0) at birth in the next generation is given by

pnexti,n (0) =
∞∑

m=n

pi,m(T )

(
m

n

)(
1

2

)m

. (16)

In terms of the generating function, the above relation can be written as

F next
i (0, z) = Fi (T, z/2) . (17)

This gives the initial conditions for the next generation and the time-dependent mRNA distribution within the next
cell cycle can be computed via Eq. (10). Applying Eqs. (14), and (17) repeatedly, we are able to compute the full
time-dependence of the Fi functions across cell cycles; substituting these in Eq. (10) gives the full-time dependence
of the mRNA distribution across cell cycles.

As a check of our analytical solutions, we compare the exact distributions of the mRNA number with the
numerical ones obtained from a modified version of the finite-state projection (FSP) [74] algorithm at three different
time points (birth, replication, and division) across four cell cycles (Fig. 2). In this algorithm, we couple the
standard FSP with cell cycle events; for details see Supplementary Section 4. Here we assume that initially there is
no mRNA molecules in the cell and the gene is off. This mimics the situation where the gene has been silenced by
some repressor over a period of time such that all transcripts have been removed via degradation; at time t = 0, the
repressor is removed and we study how gene expression recovers. When using FSP, we truncate the state space (to
exclude states that are visited very rarely) and solve the associated truncated master equation numerically using
the MATLAB function ODE45 with the dynamics before and after replication solved separately. Note that while
the FSP and the stochastic simulation algorithm (SSA) yield comparable distributions of molecule numbers, the
computational time of the former is much less than of the latter provided the biochemical reaction networks are
small enough — hence here we used the FSP. As expected, the analytical and simulated solutions coincide with
each other completely at all times, and the mRNA distributions at birth, replication, and division reach a steady
state within a few cell cycles.

Another interesting observation is that the time-dependent mRNA distributions for our detailed telegraph
model may have more than two modes (Fig. 2) — this is the combined effect of gene replication and slow
switching between gene states. This is different from the prediction of the conventional telegraph model [11] whose
distribution has at most two modes.
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Figure 2: Time-dependent mRNA distributions at birth, replication, and division across four cell cycles. The blue
curves show the analytical distributions computed by applying Eqs. (10), (14), and (17) repeatedly, and the red circles show
the numerical ones obtained from FSP. The model parameters are chosen as Vb = 1, g = 1, β = 1, w = 0.4, d = 5, ρ =
20deff , σ0 = 1.5, σ1 = 3, σ′

1 = 2.4.

Time-dependent mRNA distribution under cyclo-stationary conditions

Thus far, we have obtained the full time-dependence of the mRNA distribution across cell cycles under
arbitrary initial conditions. After several generations, the distribution at any fixed time within a cell cycle (such
as the distributions at birth, replication, and division) becomes independent of the generation number. This is
also called the cyclo-stationary condition in the literature [45] or steady-state growth [18]. Next we compute the
time-dependent mRNA distribution within a cell cycle under cyclo-stationary conditions.

Before computing the mRNA distribution, we first derive the probabilities of the gene being in the active and
inactive states at any time within a cell cycle under cyclo-stationary conditions. Let pon(t) denote the probability of
each gene copy being in the active state at time t ∈ [0, T ]. Before replication, the dynamics of the active probability
satisfies the differential equation ṗon = σ1(1− pon)− σ0pon. Solving this equation gives rise to

pon(t) =
a

b
+
[
pon(0)−

a

b

]
e−(r+βg)t, t ∈ [0, wT ], (18)

where we have used the fact that a/b = σ1/(σ0 + σ1) and r + βg = σ0 + σ1 (see Eq. (7)). Recall that the gene
activation rate decreases from σ1 to σ′

1 upon replication. After replication, the dynamics of the active probability
satisfies the differential equation ṗon = σ′

1(1− pon)− σ0pon. Solving this equation yields

pon(t) =
a′

b′
+

[
pon(wT )−

a′

b′

]
e−(r′+βg)(t−wT ), t ∈ [wT, T ], (19)
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where pon(wT ) is determined by Eq. (18). Combining Eqs. (18) and (19), we obtain the active probability of the
gene at division, i.e.

pon(T ) =
a′

b′
+

[
a

b
− a′

b′

]
e−(r′+βg)(1−w)T +

[
pon(0)−

a

b

]
e−(r+βg)wT−(r′+βg)(1−w)T .

Under cyclo-stationary conditions, the active probabilities at cell birth in two successive generations must be the
same, i.e. psson(0) = psson(T ). Then the steady-state active probability of the gene at birth is given by

pbon = psson(0) =
a′

b′

[
1− e−(r′+βg)(1−w)T

]
+ a

b e
−(r′+βg)(1−w)T

[
1− e−(r+βg)wT

]
1− e−(r+βg)wT−(r′+βg)(1−w)T

, (20)

and thus the steady-state inactive probability at birth is given by pboff = 1− pbon. It then follows from Eq. (18) that
the steady-state active probability of the gene at replication is given by

pron = psson(wT ) =
a
b

[
1− e−(r+βg)wT

]
+ a′

b′ e
−(r+βg)wT

[
1− e−(r′+βg)(1−w)T

]
1− e−(r+βg)wT−(r′+βg)(1−w)T

, (21)

and thus the steady-state inactive probability at replication is given by proff = 1− pron.
Next we focus on the time-dependent mRNA distributions under cyclo-stationary conditions. Recall that

we have obtained the time-dependent mRNA distributions within a cell cycle, whose generating function F (t, z)

is given by Eq. (10), provided that the initial conditions Fi(0, z), i = 0, 1 are known. Under cyclo-stationary
conditions, the values of Fi(0, z) in two successive generations must be the same, i.e. Fi(0, z) = F next

i (0, z),
where F next

i (0, z) has been derived in Eqs. (14) and (17). It then follows that the steady-state values of Fi(0, z)

should satisfy (
F ss
0 (0, z)

F ss
1 (0, z)

)
= R(z)

(
F ss
0 (0, e−dT z/2)

F ss
1 (0, e−dT z/2)

)
, (22)

where

R(z) =

(
K̃00(z/2) K̃01(z/2)

K̃10(z/2) K̃11(z/2)

)
is a matrix-valued function with K̃ij , i, j = 0, 1 being given in Eq. (15). Applying Eq. (22) repeatedly, we obtain(

F ss
0 (0, z)

F ss
1 (0, z)

)
=

n−1∏
k=0

R((e−dT /2)kz)

(
F ss
0 (0, (e−dT /2)nz)

F ss
1 (0, (e−dT /2)nz)

)
.

Taking n → ∞ in the above equation yields(
F ss
0 (0, z)

F ss
1 (0, z)

)
=

∞∏
k=0

R((e−dT /2)kz)

(
pboff
pbon

)
, (23)

where we have used the fact that

lim
n→∞

F ss
0 (0, (e−dT /2)nz) = F ss

0 (0, 0) = pboff ,

lim
n→∞

F ss
1 (0, (e−dT /2)nz) = F ss

1 (0, 0) = pbon.

Once we have derived the steady-state values of Fi(0, z), i = 0, 1, it immediately follows from Eq. (10) that the
time-dependent generating function F under cyclo-stationary conditions is given by

F ss(t, z) =


∑1

i=0 Li(t, z)F
ss
i (0, e−dtz), t ∈ [0, wT ],∑1

i=0 L
′
i(t− wT, z)2F ss

i (wT, e−d(t−wT )z), t ∈ [wT, T ].
(24)
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Comparison with the effective dilution model

Special case 1. Consider the case where gene replication is not taken into account (w = 1) and when the
mRNA synthesis rate scales with cell volume (β = 1) [48]. In this case, the functions K̃ij(z) given in Eq. (15)
reduce to K̃ij(z) = Kij(T, z), and it is not difficult to see that Eq. (22) can be solved analytically as

F ss
0 (0, z) =

b− a

b
M(a; b+ 1;uz), F ss

1 (0, z) =
a

b
M(a+ 1; b+ 1;uz).

Inserting these equations into Eq. (24) yields

F ss(t, z) = L0(t, z)F
ss
0 (0, e−dtz) + L1(t, z)F

ss
1 (0, e−dtz) = M(a; b;uegtz), t ∈ [0, T ].

For a given cell of volume V , its age is given by t = log(V/Vb)/g. Taking t = log(V/Vb)/g in the above equation
shows that the steady-state generating function for a cell of constant volume V is given by FV (z) = M(a; b; ũz),
where a = σ1/(d+ g), b = (σ0 + σ1)/(d+ g), and ũ = ρV/(d+ g). We make a crucial observation that this is
exactly the steady-state generating function of the mRNA distribution for the conventional telegraph model [11]

G
σ1−−→ G∗, G∗ σ0−−→ G, G∗ ρV−−→ G∗ +M, M

d+g−−−→ ∅. (25)

This result has been found in [48], which states that when w = β = 1, the steady-state mRNA distribution for a
cell of constant volume V of the detailed telegraph model is the same as that of the conventional telegraph model
with effective decay rate deff = d+ g. Note that the two terms in this rate capture the fact that transcripts are lost
both by active degradation (with rate d) and by dilution at cell division (with rate g) — hence a model of this type
is known as an effective dilution model (EDM) [75]. Intuitively, the EDM considers a population of cells with
synchronised cell cycles so that at each time, all cells have the same volume.

Special case 2. Experiments have shown that in bacteria, most mRNAs have a half-life that is much shorter
than the cell cycle duration, i.e. d ≫ g (see Supplementary Section 5 for the typical values of d and g in various
cell types), and thus are very unstable. The value of η = d/g can be used to measure the stability of mRNA. For
unstable mRNAs (η ≫ 1), the terms e−dt and e−d(t−wT ) in Eq. (10) are very small and thus can be approximated
by zero (whenever t is not very close to 0 and wT ). In this case, the time-dependent generating function F under
cyclo-stationary conditions reduces to

F ss(t, z) =

pboffL0(t, z) + pbonL1(t, z), t ∈ (0, wT ],

proffL
′
0(t− wT, z)2 + pronL

′
1(t− wT, z)2, t ∈ (wT, T ],

(26)

where we have used the fact that Fi(0, 0) =
∑∞

n=0 pi,n(0) and Fi(wT, 0) =
∑∞

n=0 pi,n(wT ) are the probabilities
of the gene being in state i at birth and at replication, respectively. Imposing the term e−dt as zero in Eq. (9) yields

L0(t, z) = M(a; b;ueβgtz) +
auz

b(b− 1)
e−rtM(1 + a− b; 2− b;ueβgtz),

L1(t, z) = M(a; b;ueβgtz)− (b− a)uz

b(b− 1)
e−rtM(1 + a− b; 2− b;ueβgtz).

(27)

When one of the gene switching rates σ0 and σ1 is very large, we have r = σ0 + σ1 − βg ≫ g and thus the
second term on the right-hand side of Eq. (27) can be neglected. This may occur when (i) the gene switches rapidly
between the two states (σ0, σ1 ≫ g), or (ii) the mRNA is produced in a constitutive manner (σ1 ≫ σ0, g), or (iii)
the mRNA is produced in a bursty manner (σ0 ≫ σ1, g). In this case, the cyclo-stationary generating function F ss

can be simplified significantly as

F ss(t, z) =

M(a; b;ueβgtz), t ∈ (0, wT ],

M(a′; b′;ueβgtz)2, t ∈ (wT, T ].
(28)
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This contains much information. For a given cell of volume V < 2wVb, its age is given by t = log(V/Vb)/g < wT

and hence there is only one gene copy in the cell. Taking t = log(V/Vb)/g in the above equation shows that the
steady-state generating function for a cell of constant volume V is given by FV (z) ≈ M(a; b; ũz), where

a =
σ1

d+ βg
≈ σ1

deff
, b =

σ0 + σ1

d+ βg
≈ σ0 + σ1

deff
, ũ =

ρV β

d+ βg
≈ ρV β

deff
.

Here we have used the fact that deff/(d + g) ≈ 1 when mRNA is very unstable. Note that FV (z) is exactly the
steady-state generating function of the mRNA distribution for the EDM

G
σ1−−→ G∗, G∗ σ0−−→ G, G∗ ρV β

−−−→ G∗ +M, M
deff−−→ ∅. (29)

On the other hand, for a given cell of volume V > 2wVb, its age is given by t = log(V/Vb)/g > wT and
hence there are two gene copies in the cell. In this case, the EDM should be modified as

GA
σ′
1−−→ G∗

A, G∗
A

σ0−−→ GA, GB
σ′
1−−→ G∗

B , G∗
B

σ0−−→ GB ,

G∗
A

ρV β

−−−→ G∗
A +M, G∗

B
ρV β

−−−→ G∗
B +M, M

deff−−→ ∅,

(30)

where GA and GB denote the two daughter copies whose dynamics are both governed by the conventional telegraph
model. Taking t = log(V/Vb)/g in Eq. (28) shows that the steady-state generating function for a cell of constant
volume V is given by FV (z) = M(a; b; ũz)2, where a′ ≈ σ′

1/deff and b′ ≈ (σ0 + σ′
1)/deff . Note that FV (z) is

exactly the steady-state generating function of the mRNA distribution for the EDM given in Eq. (30) since the two
gene copies are independent of each other.

In summary, our analysis shows that for mRNAs with short lifetimes, the EDM makes a good approximation
when one of the gene switching rates σ0 and σ1 is large (here the cell age t cannot be very close to 0 and wT , i.e.
newborn cells and cells that have just finished gene replication should be excluded). This can be understood as
follows. Previous studies [76] have shown that the relaxation speed of the EDM to the steady state is governed by
both the mRNA degradation rate d and the total gene switching rate σtot = σ0 + σ1. When d and σtot are both
large, any memory at birth from the previous cycle (due to binomial partitioning of molecules at division and to the
gene state prior to division) and any memory at replication (due to gene state copying of the two daughter copies)
will be rapidly erased. Each time that the volume changes, the mRNA distribution instantaneously equilibrates and
hence the EDM works. Note that when the cell age t is close to 0 and wT , the memory at birth and at replication
cannot be erased, which leads to the failure of the EDM. Relatively slow mRNA degradation and relative slow gene
switching will both result in a deviation of the EDM from the full model.

Testing the accuracy of the EDM approximation. In Fig. 3 we compare the exact mRNA distributions with
the numerical ones obtained from FSP at three different time points (birth, replication, and division) across the cell
cycle under cyclo-stationary conditions. The truncated master equations are solved across several (usually less than
five) cell cycles until the Hellinger distance between mRNA distributions at birth in two successive generations
is less than 10−4. This guarantees that cyclo-stationary conditions are reached. When gene replication is not
taken into account (w = 1) and when the mRNA synthesis rate scales with cell size (β = 1), the distributions
of the full model agree perfectly with those of the EDM given in Eq. (25) (Fig. 3(a)). This coincides with our
theoretical predictions. When gene replication is taken into account, the EDMs before and after replication are
given by Eqs. (29) and (30), respectively. In this case, the EDM may deviate remarkably from the full model with
the deviation being much larger at early stages of the cell cycle (Fig. 3(b)), especially when mRNA degradation and
gene switching are relatively slow. This can be understood as follows. According to the steady-state properties of
the conventional telegraph model, in the presence of gene replication, the mean and the Fano factor of the mRNA
number at birth for the EDM are given by

⟨n⟩EDM(0) =
au

b
, Fano EDM(0) = 1 +

(a+ 1)u

b+ 1
,
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and the mean and the Fano factor of the mRNA number at division are given by

⟨n⟩EDM(T ) =
2β+1a′u

b′
, Fano EDM(T ) = 1 +

2β(a′ + 1)u

b′ + 1
+

1

2
⟨n⟩EDM(T ).

Under cyclo-stationary conditions, it follows from Eq. (16) that the mean mRNA numbers at birth and at division
for the full model should satisfy ⟨n⟩(T ) = 2⟨n⟩(0) and Fano (T ) = 2Fano (0)−1. However, these two restrictions
in general do not hold for the EDM — the EDM satisfies these two restrictions only when

2β
a′

b′
=

a

b
, 2β−1

[
a′ + 1

b′ + 1
+

a′

b′

]
=

a+ 1

b+ 1
.

Note that when mRNA synthesis is balanced (β = 1) and bursty (σ0 ≫ σ1), the above restrictions are satisfied
when dosage compensation is perfect (σ′

1 = σ1/2), i.e. when the total burst frequency does not change when
replication occurs. When these three conditions are satisfied, the EDM makes accurate predictions and the mRNA
number follows a negative binomial distribution (Fig. 3(c)). The breakdown of the above restrictions will give rise
to the deviation of the EDM from the full model, as observed in Fig. 3(b). Intuitively, this is because the mRNA
distribution at birth is affected by the fluctuations of the two gene copies at division and thus in general it cannot be
captured solely by an EDM with only one gene copy. Note that special case 2 discussed above may not satisfy the
above moment equalities since in this special case, the EDM fails for newborn cells.

Comparison with the extrinsic noise model

We next compute the steady-state distributions of transcript numbers measured over a cell lineage or from a
population snapshot . In lineage measurements, the mRNA number from an individual cell is tracked at any point
in time, i.e. once the cell divides, only one of the two daughter cells is tracked. Clearly, the probability of observing
a cell of age t ∈ [0, T ] is 1/T for lineage measurements. As a result, the generating function of the steady-state
distribution along a cell lineage is given by

Flin(z) =
1

T

∫ T

0

F ss(t, z)dt. (31)

In contrast, in population measurements, the mRNA numbers in a population of isogenic cells are observed
at a particular time. Previous studies [18] have shown that the probability of observing a cell of age t ∈ [0, T ]

is 2(1−t/T )(log 2)/T = 2ge−gt for population measurements. Thus the generating function of the steady-state
distribution in a population of cells is given by

Fpop(z) = 2g

∫ T

0

F ss(t, z)e−gtdt. (32)

Our analytical expression of the steady-state distribution is rather complicated since we have to integrate the
time-dependent distribution over time which involves complex confluent hypergeometric functions. However, it
can be simplified to a large extent in some special cases. In Supplementary Section 3, we show how the analytical
solution can be simplified in two non-trivial special cases: (i) the mRNA is unstable and the gene switches rapidly
between the two states; (ii) the mRNA is unstable and the gene switches slowly between the two states. In
Supplementary Section 6 and Fig. S1, we also compute the time-dependent mean of the mRNA number, as well as
the steady-state means of lineage and population measurements. We find that the lineage mean is always greater
than the population mean, and the difference between them is at most 10%.

Our detailed telegraph model involves the coupling between gene expression dynamics, cell volume dynamics,
and cell cycle events. In Supplementary Section 7 and Fig. S2, we show that the steady-state distribution of the
detailed model cannot be captured by the steady-state solution of the conventional telegraph model given in Eq. (1)
with volume-independent rates, even when gene replication is not taken into account (w = 1). In previous studies,
the lineage and population distributions for the detailed model have often been approximated by the distributions
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Figure 3: Comparison between the full model and the EDM. (a) Steady-state mRNA distributions at birth, replication, and
division for the full model and the EDM when gene replication is not taken into account. The blue curves show the analytical
distributions given in Eqs. (23) and (24), the red circles show the numerical ones obtained from FSP, and the grey regions show
the distributions of the EDM. (b) Same as (a) but when gene replication is taken into account. In (a),(b), the model parameters
are chosen as Vb = 1, g = 1, β = 1, d = 4, ρ = 20deff , σ0 = 1.5, σ1 = 3, σ′

1 = 2.4. The parameter w is chosen as w = 1
in (a) and w = 0.4 in (b). (c) Same as (b) but in the special case where mRNA synthesis is balanced and bursty, and dosage
compensation is perfect. The model parameters are chosen as Vb = 1, g = 1, β = 1, w = 0.4, d = 4, ρ = 200deff , σ0 =
300, σ1 = 30, σ′

1 = 15.

for the ENM [48]. In the ENM, the mRNA distribution for a cell of constant volume V is exactly the one predicted
by the EDM, and the fluctuations of cell volume V are regarded as extrinsic noise [56, 57]. In other words, the
mRNA distribution for the ENM is given by

pENM(n) =

∫ ∞

0

pEDM(n|V )Π(V )dV, (33)

where Π(V ) is the distribution of cell volume. We emphasize here that the EDM varies depending on the number
of gene copies and thus also depending on cell volume. For a cell of volume V < 2wVb, there is only one gene
copy and the EDM is given by Eq. (29); for a cell of volume V ≥ 2wVb, there are two gene copies and the EDM
is given by Eq. (30). In addition, note that the distribution of cell volume is different for lineage and population
measurements. Since cell volume V (t) and cell age t are related by V (t) = Vbe

gt, the cell volume distribution can
be obtained from the cell age distribution which has already been given above (see the paragraphs before Eqs. (31)
and Eq. (32)). Specifically, the volume distribution for lineage measurements is given by [69]

Π(V ) =
1

(log 2)V
, Vb ≤ V ≤ 2Vb,

and the volume distribution for population measurements is given by

Π(V ) =
2Vb

V 2
, Vb ≤ V ≤ 2Vb.
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Inserting the above two equations into Eq. (33) gives the mRNA distribution for the ENM.
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Figure 4: Comparison between the full model and the ENM. (a) Heat plot of the Hellinger distance D between lineage
distributions for the full model and the ENM as σ0/σ1 and σ′

1/σ1 vary. The model parameters are chosen as Vb = 1, g =
1, β = 1, w = 0.5, d = 5, σ1 = 30. (b) Comparison between the lineage distributions for the full model and the ENM as
σ0/σ1 and σ′

1/σ1 vary. The blue curves show the analytical distributions for the full model given in Eq. (31), the red circles
show the numerical ones obtained from FSP, and the grey regions show the distributions for the ENM. The model parameters
are chosen as in (a). The parameter σ0 is chosen as σ0 = 10σ1 (bursty case) and σ0 = 0.5σ1 (non-bursty case). The parameter
σ′
1 is chosen as σ′

1 = σ1/2 (perfect dosage compensation) and σ0 = σ1 (no dosage compensation). The parameters associated
with the four panels are marked in (a) by stars. (c) Heat plot of D as β and σ′

1/σ1 vary. The model parameters are chosen
as Vb = 1, g = 1, w = 0.5, d = 5, σ0 = 300, σ1 = 30. (d) Heat plot of D as η and σtot/g vary. The model parameters are
chosen as Vb = 1, g = 1, β = 1, w = 0.5, σ0 = 2.5σ1, σ

′
1 = σ1. (e) The model parameters are chosen to be the same as in the

third panel of (b) but η is varied. In (a)-(e) the parameter ρ is chosen so that ⟨n⟩lin = 30.

To evaluate the performance of the ENM approximation, we first illustrate the Hellinger distance D between
the lineage distributions of the full model and the ENM as a function of σ0/σ1 and σ′

1/σ1 when mRNA synthesis
is balanced, i.e. β = 1 (Fig. 4(a)). It can be seen that the ENM serves as a good approximation when gene
expression is bursty (σ0 ≫ σ1) and when dosage compensation is perfect (σ′

1 = σ1/2). This is indeed a sufficient
condition for mRNA to display concentration homeostasis when gene replication is taken into account [47]. A
proof of this condition can be found in Supplementary Section 6. The breaking of either dosage compensation or
bursty expression will lead to a significant deviation of the ENM from the full model (Fig. 4(b)). In particular, the
distribution of the ENM model can show bimodality whereas that of the full model is unimodal.

It is still unclear how the ENM performs when mRNA synthesis is not balanced (β < 1). To see this, we
further illustrate D as a function of β and σ′

1/σ1 when gene expression is bursty (Fig. 4(c)). Interestingly, there is a
region of parameter space (shown in dark blue) where D is minimised. In particular, when the mRNA synthesis
rate is volume-independent (β = 0), the ENM works well when σ′

1/σ1 is between 0.65 and 0.8. This shows
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that to maintain the effectiveness of the ENM approximation, a lack of balanced mRNA synthesis requires also a
lower degree of dosage compensation. Recent studies have shown that even when β < 1, strong concentration
homeostasis (characterised by a small coefficient of variation of the mean concentrations across the cell cycle)
can still be obtained when σ′

1/σ1 ≈ 1/
√
2
β+1

(shown by the yellow dashed line) and when replication occurs
halfway through the cell cycle (w = 0.5) [47]. Note that the region where D is minimized is exactly around the
yellow dashed line. This shows that the effectiveness of the ENM approximation is closely related to concentration
homeostasis even when β < 1.

To further confirm our results, we use the transcriptional parameters inferred in [25]. In this case, the mRNA
distributions for two bursty genes Oct4 and Nanog in mouse embryonic stem cells were measured as a function of
time in the cell cycle from which all the rate parameters involved in our model were estimated. Since the cell-to-cell
variability in volume within each cell-cycle phase was quite small, it was assumed that β = 0, i.e. the mRNA
synthesis rate is volume-independent. Dosage compensation was found to be apparent for both genes, with σ′

1/σ1

estimated to be 0.63 for Oct4 and 0.71 for Nanog. Based on the inferred parameters, we compare the mRNA
distributions of population measurements for the full model and the ENM (Supplementary Fig. S3(a)). We find that
the ENM performs well for both genes. This agrees with our prediction that the ENM is valid when β = 0 and
when σ′

1/σ1 is around 0.7 (Fig. 4(c)). However, if we keep all rate parameters the same but reset σ′
1/σ1 to 1 (no

dosage compensation), then the EDM approximation will become significantly less satisfying (Supplementary Fig.
S3(b)). This also coincides with the simulations shown in Fig. 4(c).

When mRNA synthesis is balanced and bursty, we have seen that the ENM approximation is accurate when
dosage compensation is strong. However, in bacteria and budding yeast, there has been some evidence that dosage
compensation is not widespread [49, 77]. It is unclear under what conditions the ENM is still valid when dosage
compensation is weak. To see this, we also depict D as a function of η = d/g and σtot/g when there is no dosage
compensation, i.e. σ′

1 = σ1 (Fig. 4(d)). In this case, we find that the ENM still works well when the mRNA is
very unstable (d ≫ g) and when the total gene switching rate is very large (σtot ≫ g). This is fully consistent
with our earlier theoretical predictions for the accuracy of the EDM, on which the ENM depends. In particular,
when gene expression is bursty (σ0 ≫ σ1, g), increasing the mRNA degradation rate will give rise to a better ENM
approximation (Fig. 4(e)). Note that this is not true when the total gene switching rate is slow (Fig. 4(d)). We
emphasize that while Figs. 4(b),(e) show the mRNA distributions for lineage measurements, the same results are
applicable for population measurements (Supplementary Fig. S4).

The value of η = d/g can be determined experimentally since both d and g can be measured. In bacteria, η
is typically between 6 − 30, depending strongly on the strain and the growth condition; in yeast, it is typically
between 3 − 8; in mammalian cells, it is typically between 2 − 4 (see Supplementary Section 5 for the median
and range of η in various cell types). This suggests that the ENM approximation may be generally most useful in
bacteria and less useful in yeast and mammalian cells.

Including stochasticity in cell cycle duration and cell size dynamics

Thus far, we have considered a detailed telegraph model of gene expression with a cell cycle description when
the cell volume dynamics and the cell cycle duration are deterministic. However, in naturally occurring systems,
the cell cycle duration is appreciably stochastic (see Fig. 1(c) of [46] for experimental distributions of cell cycle
durations in eight different cell types). Moreover, there has been ample evidence [32–38] that the amount of growth
produced during the cell cycle must be controlled such that, on average, larger cells at birth have shorter cell cycle
durations than smaller ones. This mechanism maintains size homeostasis.

To model cell-cycle duration variability and size homeostasis, we use the size-additive autoregressive model
of stochastic cell volume dynamics [35, 78]. The model assumes that the volume at birth Vb and the volume at
division Vd are connected by the relation

Vd = αVb + (2− α) v̄ + ϵ, (34)
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where 0 ≤ α ≤ 2 is the strength of size control, v̄ > 0 is the typical (average over generations) birth volume which
is a time-independent constant, and ϵ ∼ N(0, σ2

ϵ ) is a Gaussian noise term independent of Vb. The idea behind the
model is as follows: upon being born with volume Vb, the cell attempts to grow for a period of time such that its
target volume at division is f(Vb) = αVb + (2− α) v̄, but due to stochasticity, the actual volume at division may
deviate from the target volume. Due to exponential cell growth, the cell cycle duration T is given by

T =
1

g
log

Vd

Vb
=

1

g
log

[
α+

(2− α)v̄ + ϵ

Vb

]
, (35)

where for simplicity we have assumed constant growth rate g across generations. This implies that on average,
larger cells at birth have shorter cell cycle durations than smaller ones. Different size control strategies correspond
to different values of α. When α = 0, the target division volume f(Vb) = 2v̄ is constant; this corresponds to the
sizer strategy, where cells have to reach a certain size before division occurs. When α = 1, the cell attempts to add
a constant volume f(Vb)− Vb = v̄ to its newborn size; this corresponds to the adder strategy. Since the growth is
exponential, attempting to grow for a constant time is the same as having f(Vb) = 2Vb; hence α = 2 corresponds to
the timer strategy. The adder or near-adder behavior has been observed in bacteria, budding yeast, and mammalian
cells [34, 36, 38], while fission yeast exhibits a near-sizer behavior [32].

When σϵ = 0, the model reduces to deterministic (previously considered) cell volume dynamics, in which
case the timer, adder, and sizer strategies are exactly the same since Vb = v̄ is a constant. As σϵ increases, the time
series of cell volume becomes much more noisy; however, it is difficult to identify whether there is a change in the
magnitude of fluctuations solely from the time series of the mRNA number (Fig. 5(a)). Note that when σϵ is small,
the model produces a steady-state cell size distribution (from lineage simulations) characterized by three features: a
fast increase in the size count for small cells, a slow decay for moderately large cells, and a fast decay for large
cells (Fig. 5(b)). This is consistent with the cell size distribution in E. coli [69]. A natural question is what are
the values of σϵ in naturally occurring systems. To see this, we examined the publicly available lineage data of
cell size in E. coli and fission yeast [35, 79] and found that the typical value of σϵ is between 0.2v̄ and 0.3v̄ (see
Supplementary Section 8 for a discussion about the inference of σϵ and the estimated values of σϵ in E. coli and
fission yeast under different growth conditions).

To compute the mRNA distribution for stochastic cell volume dynamics, note that the evolution of the system
within a cell cycle is controlled by four random variables: (i) the gene state at birth αb, (ii) the mRNA number at
birth Nb, (iii) the birth volume Vb, and (iv) the cell cycle duration T . Once the values of the four variables are fixed,
the generating function F at any time t ∈ [0, T ] within a cell cycle is given by Eq. (10), i.e.

F (t, z|αb, Nb, Vb, T ) =


∑1

i=0 Li(t, z|Vb)Fi(0, e
−dtz|αb, Nb), t ∈ [0, wT ],∑1

i=0 L
′
i(t− wT, z|Vb)

2Fi(wT, e
−d(t−wT )z|αb, Nb, Vb, T ), t ∈ [wT, T ].

(36)

Here the initial conditions Fi(0, z), i = 0, 1 are determined by αb and Nb as

Fαb
(0, z|αb, Nb) = zNb , F1−αb

(0, z|αb, Nb) = 0.

The functions Li and L′
i, i = 0, 1 given in Eq. (9) depend on Vb since the parameters u and u′ are functions of Vb;

the replication time wT depends on T . Hence the generating function F depends on all the four variables. Once
we know the joint distribution of the four variables in some generation, we can use Eq. (34) to compute their joint
distribution in the next generation. In this way, we obtain the full time-dependence of the mRNA distribution cross
cell cycles. In Supplementary Section 8, we have generalized the analytical results obtained previously to the model
with stochastic cell volume dynamics. Specifically, we have derived the exact time-dependent mRNA distribution
for a cell of any age in any generation, as well as the exact steady-state distribution for lineage measurements.

To reveal the influence of cell-cycle duration variability and size homeostasis on gene expression, we compare
the lineage distributions for the model with deterministic cell size dynamics and the model with stochastic cell size

17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.15.496247doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496247
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

0.036

0.072

0.108

0 10 20 30

pr
ob

ab
ilit

y

sizer timeradder

analytical solution
SSA
deterministic cell size
dynamics

0

0.036

0.072

0.108

0 10 20 30
0

0.036

0.072

0.108

0 10 20 30

0

0.011

0.022

0.033

0 20 40 60
0

0.014

0.028

0.042

0 20 40 60
0

0.006

0.012

0.018

0 40 80 120

mRNA number mRNA number mRNA number

birth divisionreplication

pr
ob

ab
ilit

y

c

d
σε = 0.1

σε = 0.3,
SSA

σε = 0

σε = 0.2
σε = 0.3

0

0.46

0.92

1.38

0 1 2 3 0 1
0

0.46

0.92

1.38

2 3
0

0.46

0.92

1.38

0 1 2 3

0

45

90

0 2 4 86
0

45

90

0 2 4 86
0

45

90

0 2 4 86

1

2

0 2 4 86

1

2

0 2 4 86

1

2

0 2 4 86

ce
ll

si
ze

a
pr

ob
ab

ilit
y

b

cell volume cell volume cell volume

time time time

m
R

N
A

nu
m

be
r

σε = 0.1 σε = 0.2 σε = 0.3

mRNA number mRNA number mRNA number

fast
increase fast

decay

slow decay

0

0.011

0.022

0.033

0 30 60 90
0

0.013

0.026

0.039

0 30 60 90

mRNA number mRNA numbermRNA numbermRNA number

0

0.013

0.026

0.039

0 30 60 90
0

0.015

0.03

0.045

0 30 60 90

pr
ob

ab
ilit

y

e bursty
perfect dosage compensation

bursty
no dosage compensation

non-bursty
perfect dosage compensation

non-bursty
no dosage compensation

analytical solution
SSA
ENM approximation

Figure 5: Effects of stochastic cell volume dynamics on mRNA fluctuations. (a) Typical trajectories of cell size and mRNA
number as σϵ increases. (b) Cell volume distribution of lineage measurements as σϵ increases. In (a),(b), the model parameters
are chosen as v̄ = 1, g = 1, β = 1, w = 0.4, d = 4, ρ = 20deff , σ0 = 1.5, σ1 = 3, σ′

1 = 2.4, α = 1. (c) Comparison between
the steady-state mRNA distributions of lineage measurements for deterministic and stochastic cell size dynamics under different
size control strategies. The blue curves show the analytical distributions for stochastic cell size dynamics, the red circles show
the numerical ones obtained from the SSA, and the grey regions show the distributions for deterministic cell size dynamics. The
model parameters are chosen as v̄ = 1, g = 1, β = 1, w = 0.5, d = 5, σ0 = σ1 = 100, σ′

1 = 50, σϵ = 0.4. The parameter ρ
is chosen so that ⟨n⟩lin = 10 for deterministic cell size dynamics. Previous studies [80] have shown that the timer strategy with
α = 2 is not stable since it cannot produce a finite and nonzero mean of cell volume. Hence we choose α = 1.8 for the timer
strategy here. (d) Steady-state mRNA distributions at birth, replication, and division as σϵ increases. The model parameters are
the same as in (a),(b). (e) Comparison between the lineage distributions of the full model and the ENM for stochastic cell size
dynamics. The grey regions show the distributions for the ENM. The model parameters are chosen to be the same as in Fig. 4(b).
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dynamics under different size control strategies (Fig. 5(c)). The two distributions deviate remarkably from each
other for the timer strategy, but the deviation is much smaller for the adder and sizer strategies. This demonstrates
the advantage of the adder and sizer strategies in reducing gene expression noise. In addition, Fig. 5(d) illustrates
the steady-state mRNA distribution at three different points (birth, replication, and division) across the cell cycle
as noise in cell size dynamics, characterized by σϵ, varies. Clearly, larger noise in cell size results in larger noise
in gene expression, as expected. A sufficiently large σϵ may even change the number of modes of the mRNA
distribution. Interestingly, we find that when the mRNA distribution exhibits multimodality, increasing σϵ will not
change the height of the zero peak but may affect the height and position of non-zero peaks (Fig. 5(d)).

Finally we investigate the accuracy of the ENM approximation for stochastic cell volume dynamics. Note
that we can no longer use the EDM to approximate the mRNA distributions at birth, replication, and division,
since the cell volumes are stochastic. We compare the steady-state mRNA distributions at birth, replication, and
division for the full model with their ENM approximations in Supplementary Fig. S5 and also compare the lineage
distribution for the full model with its ENM approximation in Fig. 5(e) (see Supplementary Section 8 for the
analytical expressions of the ENM approximations). The model parameters in the two figures are chosen to be the
same as in Figs. 3(b),(c) and 4(b), respectively. We can see that in the presence of fluctuations in cell volume, the
results of the present paper are still valid — the ENM does not work in general but performs well when mRNA
synthesis is balanced and bursty and when dosage compensation is perfect. Comparing Supplementary Fig. S5
with Fig. 3(b),(c) and comparing Fig. 5(e) with Fig. 4(b), we also find that the differences between the mRNA
distributions for the full model and the ENM are slightly diminished when the cell volume dynamics is stochastic.

Discussion

In this work, we analytically solved a detailed model of stochastic gene expression with cell cycle and
cell volume descriptions including gene switching, cell growth, cell division, volume-dependent transcription,
gene replication, and gene dosage compensation. We first considered the case where the cell volume dynamics
is deterministic and then generalized the results to include cell-cycle duration variability and cell-size control
strategies. Previous models of stochastic mRNA dynamics in growing and dividing cells [20, 46] can be seen as
special cases of the present modelling framework. In addition, we emphasize that our model not only characterizes
the mRNA dynamics, but can also be used to describe the protein dynamics. For example, when gene expression is
bursty and when the degradation rate is taken to be zero, our model reduces to the effective one-state model of
the protein dynamics proposed in [40, 41, 45]. If the intrinsic noise due to the random birth-death of transcripts
is ignored, then our model reduces to the one-state model studied in [39]. Our work is also distinctive from
recent related work [48] since our derivations of the distributions of mRNA numbers as a function of cell age
and generation number, and of the distributions in steady-state growth do not need the assumption of stochastic
concentration homeostasis (SCH); the relaxation of this assumption is crucial to model the variation of gene
copy numbers across a cell cycle due to DNA replication. We have also investigated how well can the model be
approximated by the effective dilution and extrinsic noise models (EDM/ENM). When gene replication is taken
into account, we showed that the mRNA distributions of the full model may differ significantly from the predictions
of the EDM/ENM. We elucidated three cases where the EDM/ENM makes accurate approximations.

The first case takes place when the mRNA is very unstable and the total gene switching rate (the sum of
the gene activation and inactivation rates) is very large such that on the timescale of volume change, the mRNA
distribution instantaneously equilibrates. This condition is intuitive and has been discussed in earlier work [56].
However as we showed using data from various cell types, the typical mRNA lifetime in eukaryotes (especially
mammalian cells) is generally not small enough compared to the cell cycle duration to enforce instantaneous
equilibrium; rather the fluctuations have memory of birth and replication events.

The second case occurs when mRNA synthesis is balanced and bursty, and when dosage compensation is
perfect. While our model does not generally obey SCH due to gene copy number variation upon replication,
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however in this case parameter conditions effectively enforce SCH. Note that if expression is balanced and it
is bursty with weak dosage compensation or else it is constitutive with perfect dosage compensation, there is
an apparent breakdown of the EDM/ENM’s ability to accurately approximate the full model. This is since in
these cases the dependence of the mean mRNA numbers with cellular volume is significantly influenced by the
doubling of gene copy numbers at replication. Examples where expression is balanced but the effects of replication
are not completely buffered by dosage compensation are starting to be uncovered, e.g. in human cells while the
overall mRNA synthesis rates increase with cell volume, however S/G2-phase cells show increased synthesis rates
compared to G1-phase cells of the same volume [81]. As pointed out in [60], this is reminiscent of a step-increase
in RNA production during or after S phase which was previously observed in synchronized HeLa cell populations
and other organisms [82] – this suggests that perfect dosage compensation in mammalian cells may not be common.

The third case is when mRNA synthesis is non-balanced and bursty, and when dosage compensation is of an
intermediate strength such that concentration homeostasis is approximately maintained, i.e. there is only a small
variation of the mean mRNA concentration throughout the cell cycle — note that this is a much weaker condition
than SCH. We showed that this is indeed the case for two genes, Oct4 and Nanog in mouse embryonic stem cells,
whose parameters have been previously estimated before and after gene replication [25].

In summary, our work shows that caution is needed when the ENM is applied to explain data collected in
growing and dividing cells and that the accuracy of this reduced model of gene expression cannot be a priori

assumed genome-wide. Our model, though detailed, has some limitations. We have focused on models that
explain cell-to-cell variability in the synthesis rates due to their dependence on cell volume. However, likely other
descriptors of cell state (such as shape, local cell crowding, mitochondrial abundance, capacity to respond to Ca2+)
can explain a higher degree of cell-to-cell variability than size alone [83, 84]. Also it is the case that here we
have considered the expression of unregulated genes but it is well known that many genes regulate each other
resulting in complex gene regulatory networks [85]. Overcoming the latter limitation is particularly pressing but
it is analytically challenging because such models have nonlinear propensities stemming from the modelling of
bimolecular interactions between transcriptional factors and genes [86]. Progress in this direction will be reported
in a separate paper.

Data and Code Availability

MATLAB codes of the FSP algorithm are found on GitHub https://github.com/chenjiacsrc/telegraph-model.
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[63] Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene
expression in mammalian cells. Science 343, 193–196 (2014).
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