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Abstract

In the single-cell and spatial omics field, computational challenges include method bench-
marking, data interpretation, and in silico data generation. To address these challenges,
we propose an all-in-one statistical simulator, scDesign3, to generate realistic single-cell and
spatial omics data, including various cell states, experimental designs, and feature modalities,
by learning interpretable parameters from real datasets. Furthermore, using a unified proba-
bilistic model for single-cell and spatial omics data, scDesign3 can infer biologically meaningful
parameters, assess the quality of cell clusters and trajectories, and generate in silico negative
and positive controls for benchmarking computational tools.
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Introduction

Single-cell and spatial omics technologies have provided unprecedented multi-modal views of
individual cells. As the earliest single-cell technologies, single-cell RNA-seq (scRNA-seq) enabled
the measurement of transcriptome-wide gene expression levels and the discovery of novel cell
types and continuous cell trajectories [1, 2]. Later, other single-cell omics technologies were
developed to measure additional molecular feature modalities, including single-cell chromatin ac-
cessibility (e.g., scATAC-seq [3] and sci-ATAC-seq [4]), single-cell DNA methylation [5], and single-
cell protein abundance (e.g., single-cell mass cytometry [6]). More recently, single-cell multi-omics
technologies were invented to simultaneously measure more than one modality, such as SNARE-
seq (gene expression and chromatin accessibility) [7] and CITE-seq (gene expression and surface
protein abundance) [8]. In parallel to single-cell omics, spatial transcriptomics technologies were
advanced to profile gene expression levels with spatial location information of cell neighborhoods
(i.e., multi-cell resolution; e.g., 10x Visium [9] and Slide-seq [10]), individual cells (i.e., single-cell
resolution; e.g., Slide-seqV2 [11]), or sub-cellular components (i.e., sub-cellular resolution; e.g.,
MERFISH [12]).

Thousands of computational methods have been developed to analyze single-cell and spatial
omics data for various tasks [13], making method benchmarking a pressing challenge for method
developers and users. Fair benchmarking relies on comprehensive evaluation metrics that reflect
real data analytical goals; however, meaningful metrics usually require ground truths that are
rarely available in real data. (For example, most real datasets contain “cell types” obtained by cell
clustering and manual annotation without external validation; using such “cell types” as ground
truths would biasedly favor the clustering method used in the original study.) Therefore, fair
benchmarking demands in silico data that contain ground truths and mimic real data, calling for
realistic simulators.

The demand for realistic simulators motivated two recent benchmark studies, in which 12 and
16 scRNA-seq simulators were evaluated [14, 15]. Due to the complexity of scRNA-seq data, these
benchmarked simulators all require training on real scRNA-seq data, and they are more realistic
than the de novo simulators that use no real data but generate synthetic data from theoretical
models [15]. Although the benchmark studies found that the simulators scDesign2 [16], ZINB-
WaVE [17], and muscat [18] can generate realistic scRNA-seq data from discrete cell types [14,
15], few simulators can generate realistic scRNA-seq data from continuous cell trajectories by
mimicking real data [15, 19–22]. Moreover, realistic simulators are lacking for single-cell omics
other than scRNA-seq, not to mention single-cell multi-omics and spatial transcriptomics. (To our
knowledge, simATAC is the only scATAC-seq simulator that learns from real data, but it can only
generate discrete cell types [23].) Hence, a large gap exists between the diverse benchmarking
needs and the limited functionalities of existing simulators.

To fill in the gap, we introduce scDesign3, a realistic and most versatile simulator to date. As
Fig. 1a shows, scDesign3 can generate realistic synthetic data from diverse settings, including cell
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latent structures (discrete cell types and continuous cell trajectories), feature modalities (e.g., gene
expression, chromatin accessibility, methylation, protein abundance, and multi-omics), spatial
coordinates, and experimental designs (batches and conditions). Note that the predecessor
scDesign2 is a special case of scDesign3 for generating scRNA-seq data from discrete cell types.
To our knowledge, scDesign3 offers the first probabilistic model that unifies the generation and in-
ference for single-cell and spatial omics data. Equipped with interpretable parameters and a model
likelihood, scDesign3 is beyond a versatile simulator and has unique advantages for generating
customized in silico data, which can serve as negative and positive controls for computational
analysis, and for assessing the quality of cell clusters and trajectories with statistical rigor (Fig.
2a).

Results

We verified scDesign3 as a realistic and versatile simulator in four exemplar settings where existing
simulators have gaps: (1) scRNA-seq data of continuous cell trajectories, (2) spatial transcrip-
tomics data, (3) single-cell epigenomics data, and (4) single-cell multi-omics data (Fig. 1). Under
each setting, we show that the synthetic data of scDesign3 resemble the test data (i.e., left-out
real data unused for training), confirming that the scDesign3 model fits well but does not overfit
the training data.

In the first setting about continuous cell trajectories, scDesign3 mimics three scRNA-seq datasets
containing single or bifurcating cell trajectories (datasets EMBRYO, MARROW, and PANCREAS
in Table S3). Fig. 1b–c and Figs. S1–S3c–d show that scDesign3 generates realistic synthetic
cells that resemble left-out real cells, as evidenced by high values (≥ 1.75) of mLISI (mean Local
Inverse Simpson’s Index), which indicates the degree of similarity between synthetic and real cells
and has a perfect value of 2 [24]. Moreover, scDesign3 preserves five gene- and cell-specific char-
acteristics (i.e., gene expression mean and variance, gene detection frequency, cell library size,
and cell detection frequency) and, in particular, gene-gene correlations (Figs. S1–S3a–b). Since
no existing simulators can generate cells in continuous trajectories by learning from real data,
we benchmarked scDesign3 against ZINB-WaVE, muscat, and SPARSIM—three top-performing
simulators for generating discrete cell types in previous benchmark studies [14, 15]—and a deep-
learning-based simulator scGAN [25]. The results show that scDesign3 outperforms these four
simulators in generating more realistic synthetic cells (by achieving higher mLISI values) and in
better preserving the gene- and cell-specific characteristics and gene-gene correlations (Fig. 1b–c
and Figs. S1–S3). In addition, scDesign3 can output the pseudotime truths of synthetic cells for
benchmarking purposes, a functionality unavailable in existing simulators to our knowledge.

In the second setting about spatial transcriptomics, scDesign3 emulates two spatial tran-
scriptomics datasets generated by the 10x Visium and Slide-seq technologies (datasets VISIUM
and SLIDE in Table S3). First, Fig. 1d–e show that scDesign3 recapitulates the expression
patterns of spatially variable genes (by achieving high correlations between the corresponding

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2022. ; https://doi.org/10.1101/2022.09.20.508796doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.20.508796
http://creativecommons.org/licenses/by-nc-nd/4.0/


synthetic and real spatial patterns). Second, Figs. S4–S5a–b show that scDesign3 preserves
the gene- and cell-specific characteristics mentioned above and gene-gene correlations. Third,
Figs. S4–S5c–d use PCA and UMAP embeddings to confirm that the synthetic data of scDesign3
resemble the test data (mLISI values ≥ 1.87). Notably, in these examples, scDesign3 generates
spatial transcriptomics data from spatial coordinates without cell type annotations (i.e., scDesign3-
spatial; see Methods 1.1.2). Figs. S4–S5 show that these synthetic data of scDesign3 are
similarly realistic compared to the synthetic data scDesign3 generates under an ideal scenario
where annotated cell types are available (i.e., scDesign3-ideal; see Methods 1.1.2). These
results confirm scDesign3’s ability to recapitulate cell heterogeneity without needing cell type
annotations. Moreover, by fitting a model for spatial transcriptomics data, scDesign3 can estimate
a smooth function for every gene’s expected expression levels at spatial coordinates, a functionality
unachievable by existing scRNA-seq simulators.

In the third setting about single-cell epigenomics, scDesign3 resembles two single-cell chro-
matin accessibility datasets profiled by the sci-ATAC-seq and 10x scATAC-seq protocols (datasets
SCIATAC and ATAC in Table S3). For both protocols, scDesign3 generates realistic synthetic cells
(with each cell represented as a vector of genomic regions’ read counts) despite the higher sparsity
of single-cell ATAC-seq data compared to scRNA-seq data (Fig. 1g left; Fig. S7). Moreover, cou-
pled with our newly proposed read simulator scReadSim [26], scDesign3 extends the simulation
of synthetic cells from the count level to the read level, unblocking its application for benchmarking
read-level bioinformatics tools (Fig. 1g right).

In the fourth setting about single-cell multi-omics, scDesign3 mimics a CITE-seq dataset (dataset
CITE in Table S3) and simulates a multi-omics dataset from separately measured RNA expression
and DNA methylation modalities (dataset SCGEM in Table S3). First, scDesign3 resembles the
CITE-seq dataset by simultaneously simulating the expression levels of 1000 highly variable genes
and 10 surface proteins. Fig. 1f shows that the RNA and protein expression levels of four exemplary
surface proteins are highly consistent between the synthetic data of scDesign3 and the test data.
Moreover, scDesign3 recapitulates the correlations between the RNA and protein expression
levels of the 10 surface proteins (Fig. S8b). Second, scDesign3 simulates a single-cell multi-omics
dataset with joint RNA expression and DNA methylation modalities by learning from (1) two single-
omics datasets measuring the two modalities separately (Fig. 1h left) and (2) joint low-dimensional
embeddings of the two single-omics datasets. This synthetic multi-omics dataset preserves the
cell trajectory in the two single-omics datasets (Fig. 1h right). The functionality to generate multi-
omics data from single-omics data allows scDesign3 to benchmark the computational methods
that integrate modalities from unmatched cells [27].

Providing the first universal probabilistic model for single-cell and spatial omics data, scDesign3
has broad applications beyond generating realistic synthetic data. We summarize the prominent
applications of the scDesign3 model in three aspects: model parameters, model selection, and
model alteration (Fig. 2a).

First, the scDesign3 model has an interpretable parametric structure consisting of genes’
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marginal distributional parameters and pairwise gene correlations, which have direct biological
relevance. In addition to being interpretable, the scDesign3 model is flexible to incorporate cell
covariates (such as cell type, pseudotime, and spatial coordinates) via the use of generalized
additive models (see Methods 1.1.2), making the scDesign3 model fit well to various single-cell
and spatial omics data—a property confirmed by scDesign3’s realistic simulation in the above
four settings (Fig. 1). The combined interpretability and flexibility enables scDesign3 to estimate
the possibly non-linear relationship between every gene’s mean expression and cell covariates,
thus allowing statistical inference of gene expression changes between cell types, along cell
trajectories (Fig. 2b), and across spatial coordinates (Fig. 2c). Besides inferring every gene’s
expression characteristics, scDesign3 also estimates pairwise gene correlations conditional on
cell covariates, thus providing insights into the possible gene regulatory relationships within each
cell type, at a cell differentiation time, or in a spatial region. Specifically, scDesign3 estimates
gene correlations by two statistical techniques, Gaussian copula and vine copula, which have
complementary advantages (see Methods 1.1.3): Gaussian copula is fast to fit but only outputs
a gene correlation matrix; vine copula is slow to fit but outputs a hierarchical gene correlation
network (a “vine” with the top layer indicating the most highly correlated genes, i.e., “hub genes”)
and thus more interpretable. As an example application to a dataset containing four human
peripheral blood mononuclear cell (PBMC) types (ZHENGMIX4 in Table S3), Fig 2d shows that
Gaussian copula reveals similar gene correlation matrices for similar cell types (regulatory T cells
vs. naive cytotoxic T cells) and distinct gene correlation matrices for distinct cell types (CD14+
monocytes vs. naive cytotoxic T cells). Moreover, vine copula discovers canonical cell-type marker
genes as hub genes: LYZ for CD14+ monocytes and CD79A for B cells.

Second, scDesign3 outputs the model likelihood, enabling likelihood-based model selection
criteria such as Akaike information criterion (AIC) and Bayesian information criterion (BIC). This
model selection functionality allows scDesign3 to evaluate the “goodness-of-fit” of a model to data
and to compare competing models. A noteworthy application of this functionality is to evaluate how
well an inferred latent variable (e.g., cell cluster assignment or cell pseudotime) describes data,
thus enabling us to compare cell clustering results and trajectory inference results without needing
ground truths. To our knowledge, no existing approaches can evaluate the quality of inferred cell
pseudotime without ground truths, so scDesign3 fills this gap. We demonstrate that scDesign3
BIC is a reasonable “unsupervised” criterion for assessing both pseudotime inference and cell
clustering quality. For pseudotime inference, scDesign3 BIC is strongly correlated (mean absolute
Spearman correlation > 0.95) with the “supervised” R2, which measures the consistency between
the true and inferred (or perturbed) pseudotime values, on multiple synthetic datasets with true
pseudotime (Fig. 2e top; Fig. S9a). Further, scDesign3 BIC agrees with UMAP visualization:
compared to TSCAN and Monocle3, the pseudotime inferred by Slingshot has the best (smallest)
BIC and best agrees with the low-dimensional representation of the cell manifold (Fig. 2e bot-
tom). For cell clustering, we benchmark scDesign3 BIC against the “supervised” adjusted Rand
index (ARI), which requires true cell cluster labels, and a newly proposed unsupervised criterion,
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clustering deviation index (CDI) [28], on eight datasets with known cell types in a published
benchmark study [29]. The results show that scDesign3 BIC has good agreement with ARI (mean
absolute Spearman correlation > 0.7) and has better or similar performance compared to CDI’s
performance on six out of the eight datasets (Fig. S9b).

Third, scDesign3 has a model alteration functionality enabled by its transparent probabilistic
modeling and interpretable parameters: given the scDesign3 model parameters estimated on real
data, users can alter the model parameters to reflect a hypothesis (i.e., a hypothetical truth) and
generate the corresponding synthetic data that bear real data characteristics. Hence, users can
flexibly generate synthetic data with varying ground truths for comprehensive benchmarking of
computational methods. We argue that this functionality is a vital advantage scDesign3 has over
deep-learning based simulators [25], which cannot be easily altered to reflect a specific hypothesis.
We demonstrate how to use this model alteration functionality in three examples. In the first
example, scDesign3 generates synthetic data with different cell-type-specific condition effects
(Fig. 2f). In the real data (CONDITION in Table S3), gene IFI6’s expression is up-regulated after
stimulation in both CD16+ monocytes and B cells (Fig. 2f top-left). With scDesign3’s fitted model,
users can alter IFI6’s mean parameters to make IFI6’s expression up-regulated by stimulation in
both cell types (Fig. 2f top-right), unchanged by stimulation in both cell types (Fig. 2f bottom-left),
or up-regulated by stimulation in CD16+ monocytes only (Fig. 2f bottom-right). In the second
example, scDesign3 generates synthetic datasets with or without batch effects (Fig. 2g). Trained
on a real dataset (BATCH in Table S3) containing two batches with batch effects (Fig. 2g left),
scDesign3’s model, if without alteration, can generate synthetic data retaining the batch effects
(Fig. 2g middle), or it can have the batch parameter altered to generate synthetic data without
batch effects (Fig. 2g right). In the third example, scDesign3 generates synthetic data under two
hypotheses: the null hypothesis (H0) that only one cell type exists and the alternative hypothesis
(H1) that two cell types exist (Fig. 2h). Given a real dataset (ZHENGMIX4 in Table S3) containing
two cell types (Fig. 2h left), the scDesign3 model can be fitted in two ways: under H1, the model
is fitted using the cell type information (Fig. 2h middle); under H0, the model is fitted by assuming
all cells are of one type (Fig. 2h right). The two fitted models can generate the corresponding
synthetic data under H1 and H0. Particularly, the synthetic data under H0 can serve as the
negative control for benchmarking computational pipelines that use cell clustering to identify the
possible existence of cell types.

In summary, scDesign3 is the first omnibus model-based simulator for single-cell and spatial
omics data to accommodate different cell states (discrete cell types and continuous cell trajecto-
ries), diverse omics features (e.g., gene expression, chromatin accessibility, protein abundance,
and DNA methylation), and complex experimental designs (e.g., batches and conditions). Besides
generating realistic synthetic data, scDesign3 offers a comprehensive interpretation of real data,
thanks to its use of transparent modeling and interpretable parameters. Specifically, scDesign3
estimates the relationship between every feature (e.g., gene) and cell covariates, along with pair-
wise feature correlations. Moreover, scDesign3 allows likelihood-based model selection to assess
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the quality of inferred cell clusters and trajectories output by computational methods. Uniquely,
scDesign3 can generate synthetic data under specific hypotheses (e.g., no differential expression,
no batch effects, and no cell types) by altering its model parameters. Overall, scDesign3 is a multi-
functional suite for benchmarking computational methods and interpreting single-cell and spatial
omics data.
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Figure 1: scDesign3 generates realistic synthetic data of diverse single-cell and spatial omics technologies.
a, An overview of scDesign3’s simulation functionalities: cell states (e.g., discrete types, continuous trajectories,
and spatial locations); multi-omics modalities (e.g., RNA-seq, ATAC-seq, and CITE-seq); experimental designs (e.g.,
batches and conditions). b–c, scDesign3 outperforms existing simulators scGAN, muscat, SPARSim, and ZINB-WaVE
in simulating scRNA-seq datasets with a single trajectory (b) and bifurcating trajectories (c). Larger mLISI values
represent better resemblance between synthetic data and test data. d–e, scDesign3 simulates realistic gene expression
patterns for spatial transcriptomics technologies 10x Visium (d) and Slide-seq (e). Large Pearson correlation coefficients
(r) represent similar spatial patterns in synthetic and test data. f, scDesign3 simulates realistic CITE-seq data. Four
genes’ protein and RNA abundances are shown on the cell UMAP embeddings in test data (top) and the synthetic data
(bottom). Large r represent similar expression patterns in synthetic and test data. g, scDesign3 simulates a realistic
sci-ATAC-seq dataset at both the count level (left: UMAP visualizations of real and synthetic cells in terms of peak
counts) and the read level (right: pseudobulk read coverages; coupled with scReadSim [26]). h, scDesign3 generates
a multi-omics (RNA expression + DNA methylation) dataset (right) by learning from real data that only have a single
modality (left). The synthetic data preserve the linear cell topology.
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Figure 2: scDesign3 enables comprehensive interpretation of real data. a, An overview of scDesign3’s
interpretation functionalities based on its model parameters, model selection capacity, and model alteration capacity.
b, scDesign3 estimates six genes’ expression trends along cell pseudotime that indicates cell differentiation (scRNA-
seq dataset PANCREAS in Table S3). c, scDesign3 estimates six genes’ expression trends across spatial coordinates
(10x Visium spatial dataset VISIUM in Table S3). d, scDesign3 estimates cell-type-specific gene correlations in four cell
types (scRNA-seq dataset ZHENGMIX4 in Table S3): pairwise gene correlation matrices by Gaussian copula (top); vine
representations by vine copula (bottom), with genes in the first layer (roughly the genes strongly correlated) labeled.
e, scDesign3’s model selection functionality allows the evaluation of pseudotime quality using the Bayesian information
criterion (BIC). Three pseudotime inference methods—TSCAN, Monocle3, and Slingshot—have BICs evaluated on a
synthetic scRNA-seq dataset generated by scDesign3 (based on EMBYRO in Table S3) with true cell pseudotimes. For
interpretability, we plot the relative BIC (rBIC) by subtracting the smallest BIC value in e so that the rBIC starts from 0.
Top: scDesign3 rBIC (calculated without true cell pseudotimes) vs. R2 between true and inferred pseudotimes (blue:
TSCAN; green: Monocle3; orange: Slingshot; black: perturbed true pseudotime as reference, see Methods 1.3.6). The
strong negative correlation (Spearman’s rank correlation coefficient ρ = −0.95) indicates that scDesign3 BIC measures
pseudotime quality effectively. Bottom: visualization of the inferred pseudotime by TSCAN, Monocle3, and Slingshot;
Slingshot’s smallest BIC (best quality) agrees with the visualization. f, scDesign3’s model alteration functionality allows
user to specify the ground truths of cell-type-specific condition effects. In the dataset CONDITION (Table S3), gene
IFI6 is up-regulated in two cell types (CD16+ monocytes and B cells) from control (green) to stimulation (red). With its
parametric model, scDesign3 can simulate data where the gene is up-regulated in both cell types (cond++), unchanged
in both cell types (cond−−), or only up-regulated in the first cell type CD16+ monocytes (cond+−). g, scDesign3’s
model alteration functionality allows it to simulate data with or without batch effects. The real dataset (BATCH in
Table S3) contains two batches (10x v2 and v3) (left). scDesign3 can preserve the batch effects in its synthetic data
(middle: batch+) or generates synthetic data without batch effects (right: batch−). h, scDesign3’s model alteration
functionality allows it to synthesize null data that do not have cell clusters. The real dataset (ZHENGMIX4 in Table S3)
contains two cell types (left). scDesign3 can resemble the two cell types under the alternative hypothesis (H1) that
two cell types exist (middle). In contrast, under the null hypothesis (H0) that only one cell type exists, scDesign3 can
generate a synthetic null dataset that resembles the real data except the cell type number (right).
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1 Methods

1.1 The generative model of scDesign3

1.1.1 Mathematical notations of scDesign3’s training data

The training data of scDesign3 contain three matrices: a cell-by-feature matrix (e.g., features are
genes or chromatin regions), a cell-by-state-covariate matrix (e.g., cell-state covariates include the
cell type, pseudotime, or spatial coordinate), and an optional cell-by-design-covariate matrix (e.g.,
design covariates include the batch or condition).

Mathematically, first, we denote by Y = [Yij ] ∈ Rn×m the cell-by-feature matrix with n cells as
rows, m features as columns, and Yij as the measurement of feature j in cell i. For single-cell
sequencing data, Y is often a count matrix (i.e., Y ∈ Nn×m, with Yij indicating the read or unique
molecular identifier (UMI) count of feature j in cell i); then the sequencing depth (i.e., total number
of reads) is N =

∑n
i=1

∑m
j=1 Yij .

Second, we denote by X = [x1, · · · ,xn]
T ∈ Rn×p the cell-by-state-covariate matrix with n cells

as rows and p cell-state covariates as columns. Typical cell-state covariates include the cell type
(p = 1 categorical variable), the cell pseudotime in p lineage trajectories (p continuous variables),
and the 2- or 3-dimensional cell spatial coordinates (p = 2 or 3 continuous variables).

Third, we denote by Z ∈ Rn×q the cell-by-design-covariate matrix with n cells as rows and q

design covariates as columns. Example design covariates are categorical variables such as the
batch and condition. Note that Z is optional: it is not required if cells are from a single condition and
measured in a single batch. To simplify the discussion, in the following text, we write Z = [b, c],
where b = (b1, . . . , bn)

T has bi ∈ {1, · · · , B} representing cell i’s batch, and c = (c1, . . . , cn)
T has

ci ∈ {1, · · · , C} representing cell i’s condition.

1.1.2 Modeling features’ marginal distributions

For each feature j = 1, . . . ,m in every cell i = 1, . . . , n, the measurement Yij—conditional on
cell i’s state covariates xi and design covariates zi = (bi, ci)

T—is assumed to follow a distribu-
tion Fj(· | xi, zi ; µij , σij , pij), which is specified as the generalized additive model for location,
scale and shape (GAMLSS) [30] (i.e., the distribution family depends on feature j only, but the
parameters depend on both feature j and cell i):

Yij | xi, zi
ind∼ Fj(· | xi, zi ; µij , σij , pij)

θj(µij) = αj0 + αjbi + αjci + fjci(xi)

log(σij) = βj0 + βjbi + βjci + gjci(xi)

logit(pij) = γj0 + γjbi + γjci + hjci(xi)

, (1.1)
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where θj(·) denotes feature j’s specific link function of the mean parameter µij , depending on Fj

(Table S1); σij denotes the scale parameter (e.g., standard deviation or dispersion); pij denotes
the zero-inflation proportion parameter. Note that µij , σij , and pij do not always co-exist, depend-
ing on the form of Fj (Table S1). To ensure identifiability, for j = 1, . . . ,m, we set αjbi = βjbi =

γjbi = 0 when bi = 1 and αjci = βjci = γjci = 0 when ci = 1.
θj(µij) is assumed to have feature j’s specific intercept αj0, batch bi’s effect αjbi (specific

to feature j), condition ci’s effect αjci (specific to feature j), and cell-state covariates xi’s effect
fjci(xi) (specific to feature j and condition ci).

log(σij) is assumed to have feature j’s specific intercept βj0, batch bi’s effect βjbi (specific
to feature j), condition ci’s effect βjci (specific to feature j), and cell-state covariates xi’s effect
gjci(xi) (specific to feature j and condition ci).

logit(pij) is assumed to have feature j’s specific intercept γj0, batch bi’s effect γjbi (specific
to feature j), condition ci’s effect γjci (specific to feature j), and cell-state covariates xi’s effect
hjci(xi) (specific to feature j and condition ci).

For θj(µij), log(σij), and logit(pij), the interaction effects are considered between the condition
and cell-state covariates, but not between the batch and cell-state covariates. This modeling
choice is made based on empirical observations and the simplicity preference [31].

Note that if only the mean parameter µij is assumed to depend on the state covariates xi,
batch bi, and condition ci, then the GAMLSS degenerates to a generalized additive model (GAM)
[32].

Depending on the modality of feature j (e.g., a gene’s UMI count), scDesign3 specifies Fj

to be one of the six distributions: Gaussian (Normal), Bernoulli, Poisson, Negative Binomial
(NB), Zero-inflated Poisson (ZIP), and Zero-inflated Negative Binomial (ZINB); see Table S1 for
the specifications. Different specifications of Fj correspond to different link functions θj(·) and
parameters; see Table S1 for the details.

Depending on cell i’s cell-state covariates xi, scDesign3 specifies the functions fjci(·), gjci(·),
and hjci(·) in the corresponding forms. See Table S2 for the details. Below are the three typical
forms of fjci(·).

(1) When the cell-state covariate is the cell type (out of a total of KC cell types) and X =

(x1, . . . , xn)
T with xi ∈ {1, . . . ,KC},

fjci(xi) = αjcixi ,

which corresponds to the cell-type xi’s effect on feature j in condition ci. Note that for identifiability,
αjcixi = 0 if ci = 1.

(2) When the cell-state covariates are the cell pseudotimes in p lineage trajectories, i.e., xi =

(xi1, . . . , xip)
T with xil indicating cell i’s pseudotime in the l-th lineage trajectory,

fjci(xi) =

p∑
l=1

K∑
k=1

bjcilk(xil)βjcilk ,
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where
∑K

k=1 bjcilk(·)βjcilk is a cubic spline function for pseudotime in the l-th lineage. This formu-
lation means that feature j under condition ci has a specific smooth pattern in lineage l. The exact
choice K is not critical as long as K is not too small (see [32]); we set K = 10 as default.

(3) When the cell-state covariates are 2-dimensional spatial locations, i.e., xi = (xi1, xi2)
T with

xi1 and xi2 indicating cell i’s spatial coordinates,

fjci(xi) = fGP
jci (xi1, xi2,K) ,

a low-rank Gaussian process smoother described in [32, 33], where K is the number of basis
functions. This formulation means that feature j under condition ci has a smooth 2-dimensional
function (i.e., a surface). The exact choice K is not critical as long as K is large (see [32]); we set
K = 400 as default.

The distribution of (Yij | xi, zi) in (1.1) is fitted by the function gamlss() in the R package
gamlss (version 5.4-3) or the function gam() in the R package mgcv (version 1.8-40). The fitted
distribution is denoted as F̂j(· | xi, zi), i = 1, . . . , n; j = 1, . . . ,m.

1.1.3 Modeling features’ joint distribution

For cell i = 1, . . . , n, we denote its measurements of the m features as a random vector Yi =

(Yi1, . . . , Yim)T, whose joint distribution—conditional on cell i’s state covariates xi and design
covariates zi—is denoted as F (· | xi, zi) : Rm → [0, 1]. Section 1.1.2 specifies Fj(· | xi, zi), the
distribution of (Yij | xi, zi), j = 1, . . . ,m. In scDesign3, the joint cumulative distribution function
(CDF) F (· | xi, zi) is modeled from the marginal CDFs F1(· | xi, zi), . . . , Fm(· | xi, zi) using the
copula C(· | xi, zi) : [0, 1]

m → [0, 1]:

F (yi | xi, zi) = C (F1(yi1 | xi, zi), · · · , Fm(yim | xi, zi) | xi, zi) ,

where yi = (yi1, . . . , yim)T is a realization of Yi = (Yi1, . . . , Yim)T.
The copula C(· | xi, zi) can be (1) the Gaussian copula or (2) the vine copula, specified below.
The Gaussian copula is defined as

C (F1(yi1 | xi, zi), · · · , Fm(yim | xi, zi) | xi, zi)

= Φm

(
Φ−1(F1(yi1 | xi, zi)), · · · ,Φ−1(Fm(yi1 | xi, zi)); R(xi, zi)

)
,

where Φ−1 denotes the inverse of the CDF of the standard Gaussian distribution, Φm(·;R(xi, zi))

denotes the CDF of an m-dimensional Gaussian distribution with a zero mean vector and a
covariance matrix equal to the correlation matrix R(xi, zi).

An issue with the Gaussian copula is that the likelihood calculation is not straightforward
in the high-dimensional case when m is large and the sample correlation matrix R̂(xi, zi), as
an estimator of R(xi, zi), is not invertible. Then, the likelihood cannot be computed based on
R̂(xi, zi). To address this issue, we consider the vine copula.
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The vine copula is a way to “decompose” a high-dimensional copula into a sequence of low-
dimensional copulas, e.g., bivariate copulas in which every pair of features is modeled as a
bivariate Gaussian distribution. In short, the vine copula provides a regular vine (R-vine) structure
that uses conditioning to sequentially decompose an m-dimensional copula into a sequence of
bivariate copulas; then the m-dimensional copula density function is approximated by the product
of the bivariate copula density functions [34]. The vine copula is advantageous to the Gaussian
copula because it enables the likelihood calculation in the high-dimensional case. A detailed
definition of the vine copula is in Supplementary Methods 2.

To estimate C(· | xi, zi) as either the Gaussian or vine copula, we use the plug-in approach
that takes the estimated F̂1(· | xi, zi), . . . , F̂m(· | xi, zi) from Section 1.1.2. Specifically, when
F̂j(· | xi, zi) is a continuous distribution, each observed yij is transformed as uij = F̂j(yij | xi, zi).
When F̂j(· | xi, zi) is a discrete distribution with the support on non-negative integers (e.g., the
Poisson distribution), since the Gaussian and vine copulas assume that features follow continuous
distributions, we use the distributional transformation as in [16]:

uij = vijF̂j(yij − 1 | xi, zi) + (1− vij)F̂j(yij | xi, zi) , yij = 1, 2, . . . ,

where vij ’s are sampled independently from Uniform[0, 1], i = 1, . . . , n; j = 1, . . . ,m. To unify and
simplify our notations, we write uij = F̃j(yij | xi, zi), where F̃j(· | xi, zi) is the CDF of a continuous
distribution.

Then C(· | xi, zi) is estimated from u1, . . . ,un, where ui = (ui1, . . . , uim)T. For the Gaussian
copula, we use the function cora() in the R package Rfast (version 2.0.6); specifically, R̂(xi, zi)

is the sample correlation matrix of {Φ−1(uj) : (xj , zj) is in a pre-defined neighborhood of (xi, zi)},
where Φ−1(ui) = (Φ−1(ui1), . . . ,Φ

−1(uim))T. For the vine copula, we use the function vinecop()

in R package rvinecoplib (version 0.6.2.1.1).
Then the estimated joint distribution F̂ (· | xi, zi) is

F̂ (yi | xi, zi) = Ĉ
(
F̃1(yi1 | xi, zi), · · · , F̃m(yim | xi, zi)

∣∣∣ xi, zi

)
. (1.2)

1.1.4 Model likelihood, AIC, and BIC

Given (1.2), the estimated probability density function of cell i’s m-dimensional feature vector yi,
conditional on the cell-state covariates xi and the design covariates zi, is

f̂(yi | xi, zi) = ĉ
(
F̃1(yi1 | xi, zi), · · · , F̃m(yim | xi, zi)

∣∣∣ xi, zi

) m∏
j=1

f̃j(yij | xi, zi) ,
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where ĉ(· | xi, zi) is the probability density function of Ĉ(· | xi, zi), and f̃j(· | xi, zi) is the probability
density function of F̃j(· | xi, zi). Hence, the log-likelihood is

ℓ =
n∑

i=1

log f̂(yi | xi, zi)

=
n∑

i=1

log ĉ
(
F̃1(yi1 | xi, zi), · · · , F̃m(yim

∣∣∣ xi, zi) | xi, zi

)
+

n∑
i=1

m∑
j=1

log f̃j(yij | xi, zi)

= ℓCopula + ℓMarginal ,

so the log-likelihood can be written as the sum of a copula log-likelihood and a marginal log-
likelihood.

Given k model parameters and n cells (sample size is the number of cells), the Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC) are

AIC = 2k − 2ℓ ;

BIC = 2k log(n)− 2ℓ .

Because of the likelihood decomposition, the AIC and BIC are also decomposable

AIC = AICCopula +AICMarginal ,

BIC = BICCopula +BICMarginal ,

where AICCopula and BICCopula only include the number of parameters in ĉ(· | xi, zi), and AICMarginal

and BICMarginal only include the total number of parameters in f̃1(· | xi, zi), . . . , f̃m(· | xi, zi).

1.2 Synthetic data generation by scDesign3

To generate a synthetic cell-by-feature matrix Y′ ∈ Rn′×m, which contains n′ synthetic cells and
the same m features as in the training data, scDesign3 allows the specification of a cell-by-state-
covariate matrix X′ ∈ Rn′×p and an optional cell-by-design-covariate matrix Z′ ∈ Nn′×q (depending
on whether the training data have Z) for the n′ synthetic cells. Note that X′ and Z′ can be specified
by users, generated by resampling the rows of X and Z, or sampled from some generative models
of the rows of X and Z.

Given X, Z, and the fitted distributions in Sections 1.1.2 and 1.1.3, scDesign3 samples n′

synthetic cells in the following steps.
First, for each synthetic cell i′, given its cell-state covariates xi′ and design covariates zi′ ,

we sample its m-dimensional probability vector from the m-dimensional copula estimated in Sec-
tion 1.1.3:

(Ui′1, . . . , Ui′m)T ∼ Ĉ(· | xi′ , zi′) , i
′ = 1, . . . , n′ .
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Second, based on the m features’ fitted marginal distributions in Section 1.1.2, we calculate the
conditional distribution of Yi′j , the measurement of feature j in synthetic cell i′, given the synthetic
cell’s cell-state covariates xi′ and design covariates zi′ = (bi′ , ci′)

T, where bi′ ∈ {1, . . . , B} and
ci′ ∈ {1, . . . , C}:

Yi′j | xi′ , zi′ ∼ F̂j(· | xi′ , zi′) = Fj(· | xi′ , zi′ ; µ̂i′j , σ̂i′j , p̂i′j) ,

where 
θ(µ̂i′j) = α̂j0 + α̂jbi′ + α̂jci′ + f̂jci′ (xi′) ,

log(σ̂i′j) = β̂j0 + β̂jbi′ + β̂jci′ + ĝjci′ (xi′) ,

logit(p̂i′j) = γ̂j0 + γ̂jbi′ + γ̂jci′ + ĥjci′ (xi′) .

Note that µ̂i′j , σ̂i′j , and p̂i′j may not be all required, depending on the form of Fj (Table S1).
Then the m-dimensional feature vector of synthetic cell i′ is (Yi′1, . . . , Yi′m)T, where

Yi′j = F̂−1
j (Ui′j | xi′ , zi′) , j = 1, . . . ,m .

Thanks to the parametric form of F̂j(· | xi′ , zi′), users can generate the synthetic data in their
demand by modifying the parameters. For instance, if users want the expected sequencing depth
of Y′ to change from N (the sequencing depth of Y) to N ′, they can scale the mean parameter:

Yi′j | xi′ , zi′ ∼ Fj

(
·
∣∣∣∣ xi′ , zi′ ;

N ′

N
µ̂i′j , σ̂i′j , p̂i′j

)
.

If users want to remove the batch effects, they can set α̂jbi′ = β̂jbi′ = γ̂jbi′ = 0, ∀i′, j. If users
want to remove the condition effects, they can set α̂jci′ = β̂jci′ = γ̂jci′ = 0, f̂jci′ (·) = f̂j1(·),
ĝjci′ (·) = ĝj1(·), and ĥjci′ (·) = ĥj1(·), ∀i′, j.
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1.3 Data analysis

1.3.1 Data preprocessing

Supplementary Table S3 lists the real datasets from 11 published studies. Since scDesign3 can
directly model count data, we did not perform data transformation (e.g., log-transformation) on the
cell-by-feature count matrices.

For each cell-by-feature count matrix Y, feature screening was used to retain informative
features only and save computation time. For every scRNA-seq dataset, we used the R package
scran (version 1.20.1) [35] to select the top 1000 highly variable genes (HVGs). For the 10x
scATAC-seq dataset (ATAC), we used the R package Signac (version 1.7.0) [36] to first obtain
a cell-by-peak matrix and then select 1133 differentially accessible peaks. For the sci-ATAC-seq
data, the preprocessing and feature selection steps are described in [26]. For the 10x Visium
dataset (VISIUM), we used the R package Seurat (version 4.1.1) to select the top 1000 spatially
variable genes (SVGs). For the Slide-seq dataset (SLIDE), we selected the top 1000 genes with
the smallest p-values output by SPARK-X [37].

For each dataset, the cell-by-state-covariate matrix X was from the original study (if the cell-
state covariates are cell types or spatial locations) or inferred by the R package Slingshot (version
2.2.1) [38] (if the cell-state covariates are pseudotime values in trajectory lineages).

For each dataset, the optional cell-by-design-covariate matrix Z was from the original study if
available.

1.3.2 Dimensionality reduction and visualization

To compare scDesign3’s synthetic data with real test data, we used the R package irlba (version
2.3.5) to calculate the top 50 principal components (PCs) of the test cell-by-feature matrix (after
log-transformation); next, we used the R package umap (version 0.2.8.0) to project the test cells
from the 50-dimensional PC space to the 2-dimensional UMAP space. Then, we applied the
same PCA-UMAP projection to scDesign3’s synthetic cells using the R function predict(). Using
the same projection ensures that the test cells and synthetic cells are embedded in the same
2-dimensional space and thus comparable.

Unless otherwise noted, the figures were made by the R package ggplot2 (version 3.3.6). The
coverage plot in Fig. 1g was generated by IGV (version 2.12.3).

1.3.3 Evaluation metrics

• mLISI: To measure the similarity between test cells and synthetic cells in the 2-dimensional
space, we used the mean of local inverse Simpson’s index (mLISI) [24] across all cells
as the metric. Specifically, if a cell’s neighboring cells are from one group (e.g., test cells
or synthetic cells), the cell’s local inverse Simpson’s index (LISI) is 1; otherwise, if a cell’s
neighboring cells comprise two groups equally, the cell’s LISI is 2. The mLISI is the average
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of all cells’ LISIs. Hence, a mLISI close to 2 means that the test cells and synthetic cells
are perfectly mixed. The mLISI is calculated by the function evalIntegration() in the R
package CellMixS (version 1.8.0).

• Pearson correlation: To measure the similarity of between real data and the synthetic data
when the cell-state covariates are continuous (e.g., pseudotime, spatial locations, and 2-
dimensional UMAP embeddings), we also compared supervised learners trained on the real
data and the synthetic data respectively. In detail, for every feature (e.g., gene), we trained a
flexible learner, the generalized boosted regression model (GBM), separately on the real data
and the synthetic data to predict the feature from cell-state covariates; then, we compared
the two GBMs by measuring the Pearson correlation r between their predicted values from
the synthetic data’s cell-state covariates (note that the cell-state covariates can be replaced
by a random sample from the covariate space). An r close to 1 means that the two GBMs
are similar, that is, the feature’s “relationship” with cell-state covariates is similar in the real
data and the synthetic data. If all features have r close to 1, the synthetic data resemble the
real data. The GBMs were trained using the R package caret (version 6.0-93).

• Summary statistics: In Supplementary Figures S1–S7, we compared the distributions of
six feature-level, cell-level, and feature-pair-level summary statistics between real data and
synthetic data. Note that a feature represents a gene in scRNA-seq and spatial transcrip-
tomics data and a peak in scATAC-seq and sci-ATAC-seq data. The six summary statistics
are

1. mean of log expression (feature-level): a feature’s mean of log expression values across
all cells;

2. variance of log expression (feature-level): a feature’s variance of log expression values
across all cells;

3. feature detection frequency (feature-level): a feature’s proportion of non-zero values
across all cells;

4. feature-feature correlation (feature-pair-level): the correlation between two features’ log
expression values across all cells;

5. cell library size on the log scale (cell-level): a cell’s log-transformed total read or UMI
count (i.e., log per-cell sequencing depth);

6. cell detection frequency (cell-level): a cells’ proportion of non-zero values across all
features.

Feature-feature correlations were calculated for the top 100 highly expressed features in each
real dataset and the corresponding synthetic datasets. To measure the similarity between
the real and synthetic correlation matrices, we calculate the Pearson correlation r across all
1002 entries.
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1.3.4 Boxplots and scatter plots

The boxplots (Fig. 2f) were plotted by the function geom boxplot() in the R package ggplot2

(version 3.6.6). In each boxplot, the center horizontal line represents the median, the box limits
represent the upper and lower quartiles, and the whiskers cover the 1.5× interquartile range. The
p-value was calculated by the two-sided Wilcoxon rank-sum test.

The scatter plots (Fig. 2e; Fig. S9) were plotted by the function geom scatter() in the R
package ggplot2 (version 3.6.6). In each scatter plot, the p-value associated with the Spearman’s
correlation coefficient ρ was calculated by the one-sided test in the function stat cor() in the R
package ggpubr (version 0.4.0).

1.3.5 scDesign3’s assessment of clustering quality

To show that scDesign3 can assess clustering quality, we used the 8 datasets from the R package
DuoClustering2018 (version 1.10.0), in which each dataset contains cell type labels (“truth”) and
various clustering methods’ results with varying numbers of clusters. The adjusted Rand index
(ARI), a “supervised” measure calculated between each clustering result and cell type labels, was
used as the benchmark standard. scDesign3’s marginal BIC (Section 1.1.4), an “unsupervised”
measure that only uses the clustering result but not the cell type labels, was calculated for each
clustering result in each dataset. We used scDesign3’s marginal BIC because we observed that
it better captures the clustering quality, while scDesign3’s BIC is dominated by the copula BIC,
which largely reflects the number of parameters instead of the clustering quality.

In Fig. S9b, we benchmarked scDesign3’s marginal BIC against the ARI and found them to
consistently have negative correlations on the 8 datasets, suggesting that scDesign3’s marginal
BIC is an effective assessment measure of clustering quality: a lower BIC indicates better cluster-
ing.

1.3.6 scDesign3’s assessment of pseudotime quality

To show that scDesign3 can assess pseudotime quality, we used 5 synthetic datasets generated
by the R package dyngen (version 1.0.3) and 3 synthetic datasets generated by scDesign3; each
dataset contains cells’ true pseudotime values (“truth”) ranging from 0 to 1. To generate pseu-
dotime with varying quality, we randomly replaced 0%, 10%, 20%, · · · , 100% of truth pseudotime
values with randomly sampled values from the Uniform[0, 1] distribution. The benchmark standard
was the “supervised” R2 between the true pseudotime values and the perturbed pseudotime
values. scDesign3’s marginal BIC (Section 1.1.4), an “unsupervised” measure that only uses
the perturbed pseudotime values but not the true pseudotime values, was calculated for each set
of perturbed pseudotime values in each dataset. We used scDesign3’s marginal BIC because we
observed that it better captures the pseudotime quality, while scDesign3’s BIC is dominated by the
copula BIC, which largely reflects the number of parameters instead of the pseudotime quality.

In Fig. S9a, we benchmarked scDesign3’s marginal BIC against the R2 and found them to
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consistently have negative correlations on the 8 datasets, suggesting that scDesign3’s marginal
BIC is an effective assessment measure of pseudotime quality: a lower BIC indicates better
pseudotime quality.

1.3.7 Implementation of other simulators

We compared scDesign3 with existing scRNA-seq simulators including scGAN, muscat, SPAR-
Sim, and ZINB-WaVE.

• For scGAN, we used the docker and the tutorial the authors provided on scGAN’s GitHub
(https://github.com/imsb-uke/scGAN; access date: February 7, 2022) to simulate syn-
thetic data.

• For muscat, we first used the R function prepSim() to process the training dataset. Then,
we ran the R function simData() to simulate a synthetic dataset based on the processed
training dataset and cell-level information (such as cell types and experimental conditions)
of the training dataset. Both functions are from the R package muscat (version 1.6.0).

• For SPARSim, we first used the SPARSim create simulation parameter function to obtain
the parameters for each group of cells in the training dataset, whose cells were grouped
by cell types, experimental conditions, or batches. The 3 required input parameters for the
SPARSim create simulation parameter() function (intensity, variability, and library size)
were obtained using the SPARSim estimate intensity(), SPARSim estimate variability(),
and SPARSim estimate library size() functions, respectively, for each cell group. Then,
we ran the SPARSim simulation() function with the input parameters from the previous step
to generate synthetic data. All functions are from the R package SPARSim (version 0.9.5).

• For ZINB-WaVE, we used the zinbFit() function from the R package zinbwave (version
1.15.3), with the count matrix and cell-type labels as inputs.
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2 Supplementary Methods

2.1 The Vine Copula

An m-dimensional copula C is a multivariate distribution function composed of m Uniform[0, 1]

marginal distribution functions. A bivariate copula has m = 2. The vine copula provides a
regular vine (R-vine) structure that using conditioning and a tree sequence to decompose an
m-dimensional copula into bivariate copulas: the m-dimensional copula density function is the
product of the bivariate copula density functions [34].

We use a triplet (F ,R, C) to specify a vine copula, where F is a vector of marginal distributions,
R is a R-vine tree sequence, and C is a set of conditional or unconditional bivariate copulas.

R = (T1, . . . , Tm−1) is a R-vine tree sequence if it meets the following conditions [34]:

1. Each tree Tj = (Nj , Ej), where Nj denotes the node set and Ej denotes the edge set, is
connected (i.e., there exists an edge path between every two nodes).

2. T1 is a tree with m nodes corresponding to the m variables.

3. For all Tj = (Nj , Ej), j ≥ 2, Nj = Ej−1, i.e., the node set of the Tj is the edge set of Tj−1.

4. For all Tj , j = 2, . . . ,m − 1, any two connected nodes {na, nb} ∈ Ej satisfy |na ∩ nb| = 1.
That is, na and nb are two nodes in Tj and two edges in Tj−1; na and nb are connected in Tj

if and only if they share a node in Tj−1.

After obtaining a valid R-vine tree sequence R, we can construct a unique m-dimensional
R-vine copula distribution using the triplet (F ,R, C) that satisfies the following conditions [39]:

1. Given a random vector X = (X1, . . . , Xm)T, F is a vector of the marginal distribution func-
tions of X. That is, F = (F1, . . . , Fm), and Fi is continuous and invertible for i = 1, . . . ,m.

2. R is a R-vine tree sequence specified above.

3. C is a set of bivariate copulas, C = {Cej : ej ∈ Ej ; j = 1, . . . ,m− 1}, where Cej is a bivariate
copula corresponding to the edge ej , and Ei represents the edge set of tree Tj ∈ R.

Here is an example R-vine structure to demonstrate the notations above and the decomposition
of an m-dimensional joint density function into bivariate copulas. In this example, we have

• X = (X1, X2, X3, X4, X5)
T; m = 5;

• R = (T1, T2, T3, T4);

• T1 = (N1, E1), where N1 = {X1, X2, X3, X4, X5} and E1 = {(X1, X2), (X2, X3), (X3, X4), (X2, X5)};

• T2 = (N2, E2), where N2 = {(X1, X2), (X2, X3), (X3, X4), (X2, X5)} and
E2 = {(X1, X3|X2), (X2, X4|X3), (X3, X5|X2)};
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• T3 = (N3, E3), where N3 = {(X1, X3|X2), (X2, X4|X3), (X3, X5|X2)} and
E3 = {(X1, X4|X2, X3), (X4, X5|X2, X3)};

• T4 = (N4, E4), where N4 = {(X1, X4|X2, X3), (X4, X5|X2, X3)} and E4 = {(X1, X5|X2, X3, X4)}.

Then, the joint density of X can be written as

f12345(x1, x2, x3, x4, x5)

=f1(x1) · f2(x2) · f3(x3) · f4(x4) · f5(x5)

· c1,2 (F1(x1), F2(x2)) · c2,3 (F2(x2), F3(x3)) · c2,5 (F2(x2), F5(x5)) · c3,4 (F3(x3), F4(x4))

· c1,3|2
(
F1|2(x1|x2), F3|2(x3|x2)

)
· c2,4|3

(
F2|3(x2|x3), F4|3(x4|x3)

)
· c3,5|2

(
F3|2(x3|x2), F5|2(x5|x2)

)
· c1,4|2,3

(
F1|2,3(x1|x2, x3), F4|2,3(x4|x2, x3)

)
· c4,5|2,3

(
F4|2,3(x4|x2, x3), F5|2,3(x5|x2, x3)

)
· c1,5|2,3,4

(
F1|2,3,4(x1|x2, x3, x4), F5|2,3,4(x5|x2, x3, x4)

)
,

where ci,j|D : [0, 1]2 → [0,∞) is a bivariate copula density function of Fi|D(Xi) and Fj|D(Xj)

conditional on the variable set {Xk : k ∈ D}, and Fi|D is the conditional CDF of Xi given {Xk : k ∈
D}, i = 1, . . . ,m.

1 2
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Figure S1: Benchmarking scDesign3 against four existing scRNA-seq simulators (scGAN, muscat, SPARSim, and
ZINB-WaVE) for generating scRNA-seq data from a single trajectory (mouse pancreatic endocrinogenesis). a,
Distributions of six summary statistics in the test data and the synthetic data generated by scDesign3 and the four
simulators. b, Heatmaps of the gene-gene correlation matrices (showing top 100 highly expressed genes) in the test
data and the synthetic data generated by scDesign3 and the four simulators. The Pearson’s correlation coefficient
r measures the similarity between two correlation matrices, one from the test data and the other from the synthetic
data. c, PCA visualization (top two PCs) of the test data and the synthetic data generated by scDesign3 and the four
simulators. The color labels each cell’s pseudotime value; note that only the synthetic data by scDesign3 outputs the
pseudotime truths. An mLISI value close to 2 means that the synthetic data resemble the real data well in the low-
dimensional space. d, UMAP visualization of the real data and the synthetic data generated by scDesign3 and the four
simulators.
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Figure S2: Benchmarking scDesign3 against four existing scRNA-seq simulators (scGAN, muscat, SPARSim, and
ZINB-WaVE) for generating scRNA-seq data from a single trajectory (human preimplantation embryos). a, Distributions
of six summary statistics in the test data and the synthetic data generated by scDesign3 and the four simulators. b,
Heatmaps of the gene-gene correlation matrices (showing top 100 highly expressed genes) in the test data and the
synthetic data generated by scDesign3 and the four simulators. The Pearson’s correlation coefficient r measures the
similarity between two correlation matrices, one from the test data and the other from the synthetic data. c, PCA
visualization (top two PCs) of the test data and the synthetic data generated by scDesign3 and the four simulators. The
color labels each cell’s pseudotime value; note that only the synthetic data by scDesign3 outputs the pseudotime truths.
An mLISI value close to 2 means that the synthetic data resemble the real data well in the low-dimensional space. d,
UMAP visualization of the real data and the synthetic data generated by scDesign3 and the four simulators.
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Figure S3: Benchmarking scDesign3 against four existing scRNA-seq simulators (scGAN, muscat, SPARSim, and
ZINB-WaVE) for generating scRNA-seq data from bifurcating trajectories (myeloid progenitors in mouse bone marrow).
a, Distributions of six summary statistics in the test data and the synthetic data generated by scDesign3 and the four
simulators. b, Heatmaps of the gene-gene correlation matrices (showing top 100 highly expressed genes) in the test
data and the synthetic data generated by scDesign3 and the four simulators. The Pearson’s correlation coefficient
r measures the similarity between two correlation matrices, one from the test data and the other from the synthetic
data. c, PCA visualization (top two PCs) of the test data and the synthetic data generated by scDesign3 and the four
simulators. The color labels each cell’s pseudotime value; note that only the synthetic data by scDesign3 outputs the
pseudotime truths. An mLISI value close to 2 means that the synthetic data resemble the real data well in the low-
dimensional space. d, UMAP visualization of the real data and the synthetic data generated by scDesign3 and the four
simulators.

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2022. ; https://doi.org/10.1101/2022.09.20.508796doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.20.508796
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gene correlation Log library size Cell detection freq

Mean log expression Var log expression Gene detection freq

Te
st 

da
ta

sc
Des

ign
3−

ide
al

sc
Des

ign
3−

sp
at

ial

Te
st 

da
ta

sc
Des

ign
3−

ide
al

sc
Des

ign
3−

sp
at

ial

Te
st 

da
ta

sc
Des

ign
3−

ide
al

sc
Des

ign
3−

sp
at

ial

Te
st 

da
ta

sc
Des

ign
3−

ide
al

sc
Des

ign
3−

sp
at

ial

Te
st 

da
ta

sc
Des

ign
3−

ide
al

sc
Des

ign
3−

sp
at

ial

Te
st 

da
ta

sc
Des

ign
3−

ide
al

sc
Des

ign
3−

sp
at

ial
0.00

0.25

0.50

0.75

1.00

0.2

0.4

0.6

0.8

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

10

0

2

4

6

0.25

0.50

0.75

a

r=0.99 r=0.98

Test data scDesign3−ideal scDesign3−spatial

−1.0 −0.5 0.0 0.5 1.0

Pearson
Correlation

b

mLISI=1.92 mLISI=1.92

Test data scDesign3−ideal scDesign3−spatial

PC1

P
C

2

Cell type

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

NA

c

mLISI=1.91 mLISI=1.93

Test data scDesign3−ideal scDesign3−spatial

UMAP1

U
M

A
P

2

Cell type

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

NA

d

Figure S4: scDesign3 simulates 10x Visium spatial transcriptomics data (sagital mouse brain slices). a, Distributions of
six summary statistics in the test data and the synthetic data generated by scDesign3 using cell type labels (scDesign3-
ideal) and spatial locations (scDesign3-spatial), respectively. b, Heatmaps of the gene-gene correlation matrices
(showing top 100 highly expressed genes) in the test data and the synthetic data generated by scDesign3-ideal and
scDesign3-spatial. The Pearson’s correlation coefficient r measures the similarity between two correlation matrices,
one from the test data and the other from the synthetic data. c, PCA visualization (top two PCs) of the real data and
the synthetic data generated by scDesign3-ideal and scDesign3-spatial. The color labels each cell’s cell type (cluster).
Since the scDesgin3-spatial data only uses spatial locations, it does not rely on cell types. An mLISI value close to
2 means that the synthetic data resemble the real data well in the low-dimensional space. d, UMAP visualization of
the real data and the synthetic data generated by scDesign3-ideal and scDesign3-spatial. In summary, scDesign3
realistically simulates 10x Visium data based on spatial locations without needing cell type annotations.
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Figure S5: scDesign3 simulates Slide-seq spatial transriptomics data (coronal cerebellum). a, Distributions of six
summary statistics in the test data and the synthetic data generated by scDesign3 using cell type labels (scDesign3-
ideal) and spatial locations (scDesign3-spatial), respectively. b, Heatmaps of the gene-gene correlation matrices
(showing top 100 highly expressed genes) in the test data and the synthetic data generated by scDesign3-ideal and
scDesign3-spatial. The Pearson’s correlation coefficient r measures the similarity between two correlation matrices,
one from the test data and the other from the synthetic data. c, PCA visualization (top two PCs) of the real data and
the synthetic data generated by scDesign3-ideal and scDesign3-spatial. The color labels each cell’s cell type (cluster).
Since scDesgin3-spatial only uses spatial locations, it does not rely on cell types. An mLISI value close to 2 means that
the synthetic data resemble the real data well in the low-dimensional space. d, UMAP visualization of the real data and
the synthetic data generated by scDesign3-ideal and scDesign3-spatial. In summary, scDesign3 realistically simulates
Slide-seq data based on spatial locations without needing cell type annotations.
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Figure S6: scDesign3 simulates sci-ATAC-seq data (mouse bone marrow). a, Distributions of six summary statistics
in the test data and the synthetic data generated by scDesign3 using cell type labels. b, Heatmaps of the peak-
peak correlation matrices in the test data and the synthetic data generated by scDesign3. The Pearson’s correlation
coefficient r measures the similarity between two correlation matrices, one from the test data and the other from the
synthetic data. c, PCA visualization (top two PCs) of the test data and the synthetic data generated by scDesign3. The
color labels each cell’s cell type. An mLISI value close to 2 means that the synthetic data resemble the test data well in
the low-dimensional space. d, UMAP visualization of the test data and the synthetic data generated by scDesign3.
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Figure S7: scDesign3 simulates scATAC-seq data (human PBMCs). a, Distributions of six summary statistics in the test
data and the synthetic data generated by scDesign3 using cell type labels. b, Heatmaps of the peak-peak correlation
matrices in the test data and the synthetic data generated by scDesign3. The Pearson’s correlation coefficient r
measures the similarity between two correlation matrices, one from the test data and the other from the synthetic
data. c, PCA visualization (top two PCs) of the test data and the synthetic data generated by scDesign3. The color
labels each cell’s cell type. An mLISI value close to 2 means that the synthetic data resemble the test data well in the
low-dimensional space. d, UMAP visualization of the test data and the synthetic data generated by scDesign3.
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Figure S8: scDesign3 simulates CITE-seq data (human PBMCs). a, Distributions of six summary statistics in the test
data and the synthetic data generated by scDesign3. The CITE-seq dataset simultaneously measures each cell’s gene
expression and surface protein abundance by Antibody-Derived Tags (ADTs). b, Heatmaps of the gene and protein
correlation matrices (10 proteins with names starting with “ADT” and their corresponding genes) from test data and
the synthetic data generated by scDesign3. The Pearson’s correlation coefficient r measures the similarity between
two correlation matrices, one from the test data and the other from the synthetic data. scDesign3 recapitulates the
correlations between the RNA and protein expression levels of the 10 surface proteins. c, PCA visualization (top two
PCs) of the test data and the synthetic data generated by scDesign3. The color labels each cell’s cell type. An mLISI
value close to 2 means that the synthetic data resemble the real data well in the low-dimensional space. d, UMAP
visualization of the real data and the synthetic data generated by scDesign3.
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Figure S9: scDesign3 provides an unsupervised quantification of the quality of pseudotime and clusters. For visual
clarity, we plot the relative BIC (rBIC) by re-scaling scDesign3’s marginal BIC to [0, 1]. (a) The scDesign3 rBIC
(unsupervised) is negatively correlated with the R2 (supervised) between the perturbed pseudotime and the true
pseudotime in each of the eight datasets. The true pseudotime is the ground truth used for generating the synthetic
data. (b) Comparison of scDesign3 rBIC and Clustering Deviation Index (CDI) rBIC. The scDesign3 rBIC (unsupervised)
negatively correlates with the ARI (supervised). The scDesign3 rBIC has better or similar performance than CDI’s
performance on six out of the eight datasets. The color scale shows the number of clusters, and the shapes represent
clustering algorithms.
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