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 2 

Abstract 24 

 25 

Few models exist that allow for rapid and effective screening of anti-metastasis drugs. Here, we 26 

present a phenotype-based chemical screen utilizing gastrulation of zebrafish embryos for 27 

identification of anti-metastasis drugs. Based on the evidence that metastasis proceeds through 28 

utilizing the molecular mechanisms of gastrulation, we hypothesize that chemicals which 29 

interrupt zebrafish gastrulation might suppress metastasis of cancer cells. Thus, we developed a 30 

drug screening protocol which uses epiboly, the first morphogenetic movement in gastrulation, as 31 

a marker. The screen only needs zebrafish embryos and enables hundreds of chemicals to be 32 

tested in five hours through observing epiboly progression of a test chemical-treated embryos. In 33 

the screen, embryos at the two-cell stage are firstly corrected and then developed to the sphere 34 

stage. The embryos are treated with a test chemical and incubated in the presence of the chemical 35 

until vehicle-treated embryos develop to 90% epiboly stage. Finally, positive ‘hit’ chemicals that 36 

interrupt epiboly progression are selected through comparing epiboly progression of the 37 

chemical-treated embryos with that of vehicle-treated embryos under a stereoscopic microscope. 38 

Previous study subjected 1,280 FDA-approved drugs to the screen and identified Adrenosterone 39 

and Pizotifen as epiboly-interrupting drugs. These drugs were validated to suppress metastasis of 40 

breast cancer cells in mice models of metastasis. Furthermore, 11b-Hydroxysteroid 41 

Dehydrogenase 1 (HSD11b1) and serotonin receptor 2C (HTR2C), which are primary target of 42 

Adrenosterone and Pizotifen respectively, promotes metastasis through induction of epithelial-43 

mesenchymal transition (EMT). That indicates the screen could be diverted to a chemical genetic 44 

screening platform for identification of metastasis-promoting genes.  45 

  46 
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 3 

Introduction 47 

Cancer research using zebrafish as a model has attracted attention because this model offers many 48 

unique advantages that are not readily provided by other animal models. Futhermore, the 49 

zebrafish system has been increasingly recognized as a platform for chemical screening because 50 

it provides the advantage of high-throughput screening in an in vivo vertebrate setting with 51 

physiologic relevance to humans 1-5. 52 

 Metastasis is responsible for approximately 90% of cancer-associated mortality. It 53 

proceeds through multiple steps: invasion, intravasation, survival in the circulatory system, 54 

extravasation, colonization, and metastatic tumor formation in secondary organs with 55 

angiogenesis 6-8. Dissemination of cancer cells is an initial step of metastasis and its molecular 56 

mechanism involves local breakdown of basement membrane, loss of cell polarity, and induction 57 

of EMT 9,10. These cellular and biological phenomena are also observed during vertebrate 58 

gastrulation in that evolutionarily conserved morphogenetic movements of epiboly, 59 

internalization, convergence, and extension cooperate to generate germ layers and sculpt the body 60 

plan 11. In zebrafish, the first morphogenetic movement, epiboly, is initiated at approximately 61 

four hours post-fertilization (hpf) to move cells from the animal pole to eventually engulf the 62 

entire yolk cell by 10 hpf. These movements are governed by the molecular mechanisms that are 63 

induced by temporally and spatially regulated gene expression, and these mechanisms and 64 

changes in gene expression are partially observed in metastatic progression 12.  65 

 66 

Development of the protocol 67 

Metastasis proceeds through utilizing the molecular mechanisms of gastrulation. At least fifty 68 

common genes were shown to be involved in both gastrulation and metastasis progression (Table 69 

1) 13-17. The fifty genes are expressed in Xenopus or zebrafish embryos, and genetic inhibition of 70 

each of the fifty genes in these embryos interferes with gastrulation progression. Conversely, the 71 

same fifty genes are ectopically expressed in metastatic cancer cells and confer metastatic 72 
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properties on cancer cells, and genetic inhibition of each of the fifty genes suppresses metastasis 73 

progression. These evidences led us to hypothesize that chemicals which interfere with zebrafish 74 

gastrulation might suppress metastasis progression of cancer cells. Based on the hypothesis, we 75 

developed a drug screening protocol which uses epiboly, the first morphogenetic movement in 76 

gastrulation, as a marker. This screen measures the suppressor effect of each of test chemicals 77 

through observing epiboly progression of the chemical-treated embryos (Fig. 1 and Fig. 2). 78 

 79 

Applications of the method 80 

This screen enables hundreds of chemicals to be tested in five hours. Our study subjected 1280 81 

FDA-approved drugs to this screen and identified Adrenosterone and Pizotifen as epiboly-82 

interfering drugs. These drugs were further validated to suppress metastasis of breast cancer cells 83 

in mouse models of metastasis (Fig. 3) 18,19. This screen can also measure suppressor effect of 84 

crude drugs. We subjected 120 herbal medicines to this screen and identified cinnamon bark 85 

extract as an epiboly-interfering drug. Cinnamon bark extract was validated to suppress 86 

metastatic dissemination of breast cancer cells in zebrafish xenograft model 20. Moreover, this 87 

screen can be diverted to a chemical genetic screening platform for identification of metastasis-88 

promoting genes. HSD11b1 and HTR2C, which are respectively primary targets of 89 

Adrenosterone and Pizotifen, induce EMT and promote metastasis of breast cancer cells (Fig. 4) 90 

18,19. 91 

 92 

Comparison with other methods 93 

Current mouse models of metastasis are too expensive and time-consuming to use for rapid and 94 

high-throughput screening 21,22. Also in vitro model of metastatic dissemination such as a Boyden 95 

chamber assay can test a limited number of chemicals in one assay and needs huge time and 96 

effort in analyzing the results 23. In contrast, our screen only needs zebrafish embryos and enables 97 

hundreds of chemicals to be tested in five hours through observing epiboly progression of a test 98 
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chemical-treated embryos. Furthermore, out of the 78 chemicals which interrupt epiboly 99 

progression of zebrafish embryos, 20 of the chemicals were validated to suppress cell motility 100 

and invasion of highly metastatic human cancer cells without affecting cell viability in a Boyden 101 

chamber assay. Among the 20 chemicals, Adrenosterone and Pizotifen were validated to suppress 102 

metastasis of breast cancer cells in mice models of metastasis 18,19. A disadvantage of this screen 103 

is that zebrafish have orthologues to 86% of 1318 human drug targets 27. Therefore, 75% of the 104 

chemicals which interrupt epiboly progression of zebrafish embryos, fail to suppress cell motility 105 

and invasion of highly metastatic human cancer cells in a Boyden chamber assay 19.  106 

 107 

Experimental design 108 

This screen measures suppressor effect of each of chemicals based on epiboly progression of 109 

zebrafish embryos. Niclosamid or DMSO is used as positive or negative control, respectively. 110 

Epiboly progression of each of chemical treated embryos is compared with that of DMSO-treated 111 

embryos. Firstly, embryos at the two-cell stage are firstly corrected and then developed to the 112 

sphere stage. The embryos are treated with a test chemical and incubated in the presence of the 113 

chemical until vehicle-treated embryos develop to 90% epiboly stage. Finally, positive ‘hit’ 114 

chemicals that interrupt epiboly progression are selected through comparing epiboly progression 115 

of the chemical-treated embryos with that of vehicle-treated embryos under a stereoscopic 116 

microscope 19. 117 

 118 

Limitations 119 

There is a limitation in delivering chemicals to zebrafish embryos. Zebrafish embryos are 120 

surrounded by the acellular chorion, which is known to be about 1.5–2.5 µm thick and to consist 121 

of three layers pierced by pore canals. The pore allows passage of water, ions, and chemicals. A 122 

study reported molecules which are larger than 3-4 KDa fail to pass through the chorion. 123 
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 6 

Therefore, this screen may not be able to measure suppressor effect of the molecules which are 124 

larger than 3-4 KDa 28.  125 

 126 

Materials 127 

REAGENTS 128 

• Wild-type zebrafish strain 129 

• E3 medium (5.0 mM NaCl, 0.17 mM KCl, 0.33 mM MgSO4) 130 

• FDA, EMA, and other agencies-approved chemical libraries were purchased from 131 

Prestwick Chemical (Illkirch, France). 132 

• Niclosamid 133 

• DMSO 134 

 135 

EQUIPMENT 136 

• 24-well flat bottom plastic plates (Corning) 137 

• Stereomicroscope (MZ75, Leica) 138 

• Incubator (Thermo) 139 

 140 

Procedure 141 

Zebrafish mating setup (Day 0) _Timing 10 mins 142 

1. On the night before collecting embryos, arrange male and female zebrafish in pairs 143 

separated by a divider  144 

 CRITICAL STEP   145 

 Young adult zebrafish should be used for the crossing. Qualities of zebrafish embryos 146 

 affect screening efficiency.                                                                                                               147 

 148 

Embryo collection, and distribution (Day 1) _Timing 10-30 min 149 
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2. Remove the divider to allow the fish to spawn. 150 

3. To obtain zebrafish embryos of the same development stage, zebrafish were crossed for 151 

10 mins. If more than twenty chemicals were tested, the crossing were conducted three 152 

times at three different time points (Group A_8:30, Group B_9:00 and Group 153 

C_9:30AM). 154 

4. After 10 mins, set back divider to prevent zebrafish from spawning.                                        155 

CRITICAL STEP                                                                                                                 156 

This screen measures suppressor effect of each chemical on progression of epiboly in live 157 

zebrafish embryos. Therefore, epiboly proceeds during measuring the effect under a 158 

stereoscopic microscope. If more than 20 chemicals are tested, screening should be 159 

divided into more than two sessions and each of the sessions start at different time point. 160 

For example, if 60 chemicals are screened, zebrafish should be crossed at three different 161 

time points over 30 mins apart. To do that, 30 mins for measuring the effects would be 162 

ensured. 163 

5. Collect the embryos and remove dead embryos  164 

6. Incubate the embryos at 27 ˚C for twenty mins 165 

7. Collect embryos at the two-cell stage under stereoscopic microscope. 166 

8. Array approximately twenty embryos into each well of a 24-well plate 167 

9. Remove E3 medium from each well including the embryos by using a pipet 168 

10. Add 900 µl of E3 medium to the well. 169 

 170 

Embryo development to the sphere stage_Timing 4 hours  171 

11. Incubate the embryos at 27 ˚C until the embryos develop to the sphere stage 172 

 CRITICAL STEP 173 

 The temperature of E3 medium affects the rate of development of zebrafish embryos.   174 

 Higher temperature accelerates the rate; conversely, lower temperature slows the rate 29. 175 
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 8 

 Therefore, non-uniform temperature between E3 medium of each well of 24-well plate 176 

 containing zebrafish embryos would cause false positive. 177 

 178 

Addition of chemicals_Timing 30 mins 179 

12. At 30 mins before adding test chemicals to embryos, prepare 10-fold concentration of 180 

each of the chemicals in E3 medium  181 

13. Add 100 µl of 10-fold concentration of the medium to 900 µl of E3 medium containing 182 

zebrafish embryos when the embryos develop to the sphere stage. 183 

14. For example, for 60 test chemicals to be screened, they are divided into three groups.  184 

a. First 20 test chemicals plus Niclosamid as positive control, and DMSO as negative 185 

control are added into group A when embryos from group A develop to sphere stage. 186 

b. Second 20 test chemicals plus Niclosamid, and DMSO were added into group B when 187 

embryos from group B develop to sphere stage. 188 

c. Last 20 test chemicals plus Niclosamid, and DMSO were added into group C when 189 

embryos from group C develop to sphere stage 190 

 191 

Development of DMSO-treated embryos to 90% epiboly stage_Timing 5 hours 192 

15. After the addition of test chemicals, the embryos are incubated at 27 ˚C for approximately 193 

five hours. 194 

CRITICAL STEP 195 

The temperature of E3 medium affects the rate of development of zebrafish embryos. Non-196 

uniform temperature between E3 medium of each well of 24-well plate containing zebrafish 197 

embryos would cause false positive. 198 

 199 

Measuring the inhibition effects of each of chemicals_Timing 30 mins 200 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.07.490997doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.07.490997
http://creativecommons.org/licenses/by-nd/4.0/


 9 

16. Comparing epiboly progression of each of chemicals-treated embryos from group A with 201 

that of DMSO-treated embryos from group A under the stereoscopic microscope when 202 

DMSO-treated embryos from group A develop to 90% epiboly stage.  203 

17. After approximately 30 min from observing embryos in group A, measuring the 204 

inhibition effects of each of chemicals on epiboly progression of embryos in group B and 205 

when DMSO-treated embryos from group B develop to 90% epiboly stage. 206 

18. After approximately 30 mis from observing embryos in group B, measuring the inhibition 207 

effects of each of chemicals on epiboly progression of embryos in group C and when 208 

DMSO-treated embryos in group C develop to 90% epiboly stage. 209 

CRITICAL STEP 210 

Epiboly proceeds during comparing epiboly progression of each of chemicals-treated 211 

embryos with that of DMSO-treated embryos under the stereoscopic microscope. Therefore,  212 

measuring the effect should be done in 30 mins. 213 

 214 

Timing 215 

Step 1, Zebrafish mating setup: overnight 216 

Step 2-5, Crossing zebrafish: 10 mins 217 

Step 6, Develop the embryos to the two-cell stage 218 

Step 7, Collect two cell stage embryos: 20 mins  219 

Step 8-10, Array 20 embryos into each well of 24-well plate: 30 mins  220 

Step 11, Develop the embryos to sphere stage: 4 hours 221 

Step 12-14, Prepare chemical drugs in E3 medium and add the medium into each well of 24-well 222 

plate: 30 mins 223 

Step 15, Develop the embryos to 90% epiboly stage: 5 hours 224 

Step 16-18, measuring epiboly progression: 30 mins 225 

 226 
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Troubleshooting 227 

Qualities of zebrafish embryos affect screening efficiency. Low qualities of embryos show high 228 

frequencies of abnormal embryos with asymmetric cell cleavage, and development of the 229 

embryos arrest at early cleavage stages 30. If a screen used low qualities of zebrafish embryos, it 230 

would generate false ‘hit’ chemicals since suppressor effect of a test chemical is measured by 231 

observing epiboly progression of the chemical-treated embryos. If the number of zebrafish 232 

embryos showing morphological abnormalities correlate with final concentration of a test 233 

chemical, the abnormalities may result from an effect of the test chemical on the embryos. 234 

 235 

Anticipated results 236 

Suppressor effects of a tested chemical on epiboly progression of zebrafish embryos are 237 

significantly affected by final concentration of the chemical. Previous study subjected 1,280 238 

FDA-approved drugs to the screen and showed 6% (78/1280) of the tested drugs affected epiboly 239 

progression of the embryos when the embryos were treated with 10 µM. Out of the 78 epiboly-240 

interrupting drugs, 25% of the drugs succeed to suppress cell motility and invasion of highly 241 

metastatic human cancer cells in a Boyden chamber assay. In contrast, epiboly progression was 242 

affected more severely when the embryos were treated at 50 µM. 10.3% (132/1280) of the tested 243 

drugs affected epiboly progression of the embryos, but 85 % (112/132) of the epiboly-244 

interrupting drugs failed to suppress cell motility and invasion of highly metastatic human cancer 245 

cells in a Boyden chamber assay 19.  246 
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Fig. 1 267 

 268 

Fig. 1_Graphic schematic of a phenotype-based chemical screen using zebrafish embryos 269 

Pairs of adult zebrafish are crossed and their embryos at the two-cell stage are collected and 270 

arrayed into individual wells of 24-well plate. Chemicals are added into each well when the 271 

embryos develop to the sphere stage. Epiboly progression of each of chemicals-treated embryos 272 

are compared with that of DMSO-treated embryos under a stereoscopic microscope when 273 

DMSO-treated embryos develop to 90% epiboly stage. 274 

  275 
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Fig. 2 276 

 277 

Fig. 2_Representative samples of the embryos that were treated with indicated chemicals. 278 

Indicated chemicals were added when the embryos develop to the sphere stage. Embryos were 279 

treated with 10 µM. Niclosamide-treated embryos serve as positive control and DMSO-treated 280 

embryos serve as negative control. Epiboly progression of each of chemicals-treated embryos are 281 

compared with that of DMSO-treated embryos under a stereoscopic microscope when DMSO-282 

treated embryos develop to 90% epiboly stage.  283 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.07.490997doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.07.490997
http://creativecommons.org/licenses/by-nd/4.0/


 14 

Fig. 3 284 

 285 

Fig. 3_Pizotifen, one of epiboly-interrupting drugs, suppressed metastatic progression 286 

of breast cancer cells in vitro and vivo 287 

a, Effect of pizotifen on cell motility and invasion of MBA-MB-231, MDA-MB-435, and 288 

PC9 cells. Either vehicle or pizotifen treated the cells were subjected to Boyden chamber 289 

assays. Fetal bovine serum (1% v/v) was used as the chemoattractant in both assays. Each 290 

experiment was performed at least twice. b, Representative images of primary tumors on day 291 

10 post-injection (top panels) and metastatic burden on day 70 post-injection (bottom panels) 292 

taken using an IVIS Imaging System. c, Number of metastatic nodules in the lung of either 293 

vehicle- or pizotifen-treated mice. 294 

  295 
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Fig. 4 296 

 297 

Fig. 4_ HTR2C, a primary target of Pizotifen, induces epithelial-to-mesenchymal 298 

transition (EMT)-mediated metastatic dissemination of human cancer cells 299 

a, Immunofluorescence staining of E-cadherin and vimentin expressions in the MCF7 cells. 300 

b, Expression of E-cadherin and vimentin, and HTR2C were examined by western blotting in 301 

the MCF7 and HaCaT cells; GAPDH loading control is shown (bottom). c, Representative 302 

images of dissemination patterns of MCF7 cells expressing either the control vector (top left) 303 

or HTR2C (lower left) in a zebrafish xenotransplantation model. White arrowheads indicate 304 

disseminated MCF7 cells. The mean frequencies of the fish showing head, trunk, or end-tail 305 

dissemination (right). Each value is indicated as the mean ± SEM of two independent 306 

experiments. Statistical analysis was determined by Student’s t test.  307 
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Table 1. A list of the common fifty genes that are involved between gastrulation and 308 

metastasis progression 309 

 310 

Genes Gastrulation Defects Ref  Effects in Metastasis Ref 
BMP Convergence and extension 31 EMT 32 
WNT Convergence and extension 33 Migration and Invasion 34 
FGF Convergence and extension 35 Invision 36 
EGF Epiboly 37 Migration 38 
PDGF Convergence and extension 39 EMT 40 
CXCL12 Migration of endodermal cells 41 Migration and Invasion 42 
CXCR4 Migration of endodermal cells 41 Migration and Invasion 42 
PIK3CA Convergence and extension 43 Migration and Invasion 44 
YES Epiboly 45 Migration 46 
FYN Epiboly 47 Migration and Invasion 48 
MAPK1 Epiboly 49 Migration 50 
SHP2 Convergence and extension 51 Migration 52 
SNAI1 Convergence and extension 53 EMT 54 
SNAI2 Mesoderm & Neural crest formation 55 EMT 56 
TWIST1 Mesoderm formation 57 EMT 58 
TBXT Convergence and extension 33 EMT 59 
ZEB1 Epiboly 60 EMT 61 
GSC Mesodermal patterning 62 EMT 63 
FOXC2 Unclear, defects in gastrulation 64 EMT 65 
STAT3 Convergence and extension 66 Migration 67 
POU5F1 Epiboly 68 EMT 69 
EZH2 Unclear, defects in gastrulation 70 Invasion 71 
EHMT2 Defects in Neurogenesis 72 Migration and Invasion 73 
BMI1 Defects in skelton formation 74 EMT 75 
RHOA Convergence and extension 76 Migration and Invasion 77 
CDC42 Convergence and extension 78 Migration and Invasion 79 
RAC1 Convergence and extension 80 Migration and Invasion 81 
ROCK2 Convergence and extension 82 Migration and Invasion 83 
PAR1 Convergence and extension 84 Migration 85 
PRKCI Convergence and extension 84 EMT 86 
CAP1 Convergence and extension 87 Migration 88 
EZR Epiboly 89 Migration 90 
EPCAM Epiboly 91 Migration and Invasion 92 
ITGB1 / ITA5 Mesodermal Migration 93 Migration and Invasion 94 
FN1 Convergence and extension 95 Invasion 96 
HAS2 Dorsal migration of lateral cells 97 Invasion 98 
MMP14 Convergence and extension 99 Invasion 100 
COX1 Epiboly 101 Invasion 102 
PTGES Convergence and extension 103 Invasion 104 
SLC39A6 Aterior migration 105 EMT 106 
GNA12 / 13 Convergence and extension 72 Migration and Invasion 107 
OGT Epiboly 108 Migration and Invasion 109 
CCN1 Cell Movement 110 Migration and Invasion 111 
TRPM7 Convergence and extension 112 Migration 113 
MAPKAPK2 Epiboly 114 Migration 115 
B4GALT1 Convergence and extension 116 Invasion 117 
IER2 Convergence and extension 118 Migration 119 
TIP1 Convergence and extension 120 Migration and Invasion 121 
PAK5 Convergence and extension 122 Migration 123 
MARCKS Convergence and extension 124 Migration and Invasion 125 

 311 
  312 
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