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Abstract

Few models exist that allow for rapid and effective screening of anti-metastasis drugs. Here, we
present a phenotype-based chemical screen utilizing gastrulation of zebrafish embryos for
identification of anti-metastasis drugs. Based on the evidence that metastasis proceeds through
utilizing the molecular mechanisms of gastrulation, we hypothesize that chemicals which
interrupt zebrafish gastrulation might suppress metastasis of cancer cells. Thus, we developed a
drug screening protocol which uses epiboly, the first morphogenetic movement in gastrulation, as
a marker. The screen only needs zebrafish embryos and enables hundreds of chemicals to be
tested in five hours through observing epiboly progression of a test chemical-treated embryos. In
the screen, embryos at the two-cell stage are firstly corrected and then developed to the sphere
stage. The embryos are treated with a test chemical and incubated in the presence of the chemical
until vehicle-treated embryos develop to 90% epiboly stage. Finally, positive ‘hit’ chemicals that
interrupt epiboly progression are selected through comparing epiboly progression of the
chemical-treated embryos with that of vehicle-treated embryos under a stereoscopic microscope.
Previous study subjected 1,280 FDA-approved drugs to the screen and identified Adrenosterone
and Pizotifen as epiboly-interrupting drugs. These drugs were validated to suppress metastasis of
breast cancer cells in mice models of metastasis. Furthermore, 113—Hydroxysteroid
Dehydrogenase 1 (HSD11f1) and serotonin receptor 2C (HTR2C), which are primary target of
Adrenosterone and Pizotifen respectively, promotes metastasis through induction of epithelial-
mesenchymal transition (EMT). That indicates the screen could be diverted to a chemical genetic

screening platform for identification of metastasis-promoting genes.
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Introduction

Cancer research using zebrafish as a model has attracted attention because this model offers many
unique advantages that are not readily provided by other animal models. Futhermore, the
zebrafish system has been increasingly recognized as a platform for chemical screening because
it provides the advantage of high-throughput screening in an in vivo vertebrate setting with

physiologic relevance to humans .

Metastasis is responsible for approximately 90% of cancer-associated mortality. It
proceeds through multiple steps: invasion, intravasation, survival in the circulatory system,
extravasation, colonization, and metastatic tumor formation in secondary organs with
angiogenesis °*. Dissemination of cancer cells is an initial step of metastasis and its molecular
mechanism involves local breakdown of basement membrane, loss of cell polarity, and induction
of EMT %!°. These cellular and biological phenomena are also observed during vertebrate
gastrulation in that evolutionarily conserved morphogenetic movements of epiboly,
internalization, convergence, and extension cooperate to generate germ layers and sculpt the body
plan . In zebrafish, the first morphogenetic movement, epiboly, is initiated at approximately
four hours post-fertilization (hpf) to move cells from the animal pole to eventually engulf the
entire yolk cell by 10 hpf. These movements are governed by the molecular mechanisms that are
induced by temporally and spatially regulated gene expression, and these mechanisms and

changes in gene expression are partially observed in metastatic progression '2,

Development of the protocol

Metastasis proceeds through utilizing the molecular mechanisms of gastrulation. At least fifty
common genes were shown to be involved in both gastrulation and metastasis progression (Table
1) 1317, The fifty genes are expressed in Xenopus or zebrafish embryos, and genetic inhibition of
each of the fifty genes in these embryos interferes with gastrulation progression. Conversely, the

same fifty genes are ectopically expressed in metastatic cancer cells and confer metastatic
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properties on cancer cells, and genetic inhibition of each of the fifty genes suppresses metastasis
progression. These evidences led us to hypothesize that chemicals which interfere with zebrafish
gastrulation might suppress metastasis progression of cancer cells. Based on the hypothesis, we
developed a drug screening protocol which uses epiboly, the first morphogenetic movement in
gastrulation, as a marker. This screen measures the suppressor effect of each of test chemicals

through observing epiboly progression of the chemical-treated embryos (Fig. 1 and Fig. 2).

Applications of the method

This screen enables hundreds of chemicals to be tested in five hours. Our study subjected 1280
FDA-approved drugs to this screen and identified Adrenosterone and Pizotifen as epiboly-
interfering drugs. These drugs were further validated to suppress metastasis of breast cancer cells
in mouse models of metastasis (Fig. 3) '*!°. This screen can also measure suppressor effect of
crude drugs. We subjected 120 herbal medicines to this screen and identified cinnamon bark
extract as an epiboly-interfering drug. Cinnamon bark extract was validated to suppress
metastatic dissemination of breast cancer cells in zebrafish xenograft model ?°. Moreover, this
screen can be diverted to a chemical genetic screening platform for identification of metastasis-
promoting genes. HSD11B1 and HTR2C, which are respectively primary targets of

Adrenosterone and Pizotifen, induce EMT and promote metastasis of breast cancer cells (Fig. 4)

18,19

Comparison with other methods

Current mouse models of metastasis are too expensive and time-consuming to use for rapid and
high-throughput screening 2'*2. Also in vitro model of metastatic dissemination such as a Boyden
chamber assay can test a limited number of chemicals in one assay and needs huge time and
effort in analyzing the results *. In contrast, our screen only needs zebrafish embryos and enables

hundreds of chemicals to be tested in five hours through observing epiboly progression of a test
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99  chemical-treated embryos. Furthermore, out of the 78 chemicals which interrupt epiboly
100  progression of zebrafish embryos, 20 of the chemicals were validated to suppress cell motility
101  and invasion of highly metastatic human cancer cells without affecting cell viability in a Boyden
102  chamber assay. Among the 20 chemicals, Adrenosterone and Pizotifen were validated to suppress
103  metastasis of breast cancer cells in mice models of metastasis '*!°. A disadvantage of this screen

104 s that zebrafish have orthologues to 86% of 1318 human drug targets 2’. Therefore, 75% of the

105 chemicals which interrupt epiboly progression of zebrafish embryos, fail to suppress cell motility
106  and invasion of highly metastatic human cancer cells in a Boyden chamber assay .

107

108  Experimental design

109  This screen measures suppressor effect of each of chemicals based on epiboly progression of
110  zebrafish embryos. Niclosamid or DMSO is used as positive or negative control, respectively.
111  Epiboly progression of each of chemical treated embryos is compared with that of DMSO-treated
112 embryos. Firstly, embryos at the two-cell stage are firstly corrected and then developed to the
113  sphere stage. The embryos are treated with a test chemical and incubated in the presence of the
114  chemical until vehicle-treated embryos develop to 90% epiboly stage. Finally, positive ‘hit’

115  chemicals that interrupt epiboly progression are selected through comparing epiboly progression
116  of the chemical-treated embryos with that of vehicle-treated embryos under a stereoscopic

117  microscope .

118

119  Limitations

120  There is a limitation in delivering chemicals to zebrafish embryos. Zebrafish embryos are

121 surrounded by the acellular chorion, which is known to be about 1.5-2.5 pm thick and to consist
122 of'three layers pierced by pore canals. The pore allows passage of water, ions, and chemicals. A

123 study reported molecules which are larger than 3-4 KDa fail to pass through the chorion.
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124  Therefore, this screen may not be able to measure suppressor effect of the molecules which are
125  larger than 3-4 KDa **.

126

127  Materials

128 REAGENTS

129 e Wild-type zebrafish strain

130 e E3 medium (5.0 mM NacCl, 0.17 mM KCI, 0.33 mM MgSO4)

131 e FDA, EMA, and other agencies-approved chemical libraries were purchased from
132 Prestwick Chemical (Illkirch, France).

133 e Niclosamid

134 e DMSO

135

136 EQUIPMENT

137 e 24-well flat bottom plastic plates (Corning)
138 e Stereomicroscope (MZ75, Leica)

139 e Incubator (Thermo)

140

141 Procedure

142  Zebrafish mating setup (Day 0) Timing 10 mins

143 1. On the night before collecting embryos, arrange male and female zebrafish in pairs
144 separated by a divider

145 CRITICAL STEP

146 Young adult zebrafish should be used for the crossing. Qualities of zebrafish embryos
147 affect screening efficiency.

148

149  Embryo collection, and distribution (Day 1) Timing 10-30 min
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Remove the divider to allow the fish to spawn.

To obtain zebrafish embryos of the same development stage, zebrafish were crossed for
10 mins. If more than twenty chemicals were tested, the crossing were conducted three
times at three different time points (Group A 8:30, Group B_9:00 and Group

C 9:30AM).

After 10 mins, set back divider to prevent zebrafish from spawning.

CRITICAL STEP

This screen measures suppressor effect of each chemical on progression of epiboly in live
zebrafish embryos. Therefore, epiboly proceeds during measuring the effect under a
stereoscopic microscope. If more than 20 chemicals are tested, screening should be
divided into more than two sessions and each of the sessions start at different time point.
For example, if 60 chemicals are screened, zebrafish should be crossed at three different
time points over 30 mins apart. To do that, 30 mins for measuring the effects would be
ensured.

Collect the embryos and remove dead embryos

Incubate the embryos at 27 °C for twenty mins

Collect embryos at the two-cell stage under stereoscopic microscope.

Array approximately twenty embryos into each well of a 24-well plate

Remove E3 medium from each well including the embryos by using a pipet

10. Add 900 pl of E3 medium to the well.

Embryo development to the sphere stage Timing 4 hours

11. Incubate the embryos at 27 °C until the embryos develop to the sphere stage

CRITICAL STEP
The temperature of E3 medium affects the rate of development of zebrafish embryos.

Higher temperature accelerates the rate; conversely, lower temperature slows the rate *°.
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176 Therefore, non-uniform temperature between E3 medium of each well of 24-well plate
177 containing zebrafish embryos would cause false positive.
178

179  Addition of chemicals_Timing 30 mins

180 12. At 30 mins before adding test chemicals to embryos, prepare 10-fold concentration of
181 each of the chemicals in E3 medium

182 13. Add 100 pl of 10-fold concentration of the medium to 900 pl of E3 medium containing
183 zebrafish embryos when the embryos develop to the sphere stage.

184 14. For example, for 60 test chemicals to be screened, they are divided into three groups.
185 a. First 20 test chemicals plus Niclosamid as positive control, and DMSO as negative
186 control are added into group A when embryos from group A develop to sphere stage.
187 b. Second 20 test chemicals plus Niclosamid, and DMSO were added into group B when
188 embryos from group B develop to sphere stage.

189 c. Last 20 test chemicals plus Niclosamid, and DMSO were added into group C when
190 embryos from group C develop to sphere stage

191

192  Development of DMSO-treated embryos to 90% epiboly stage Timing 5 hours

193 15. After the addition of test chemicals, the embryos are incubated at 27 °C for approximately
194 five hours.

195 CRITICAL STEP

196 The temperature of E3 medium affects the rate of development of zebrafish embryos. Non-
197 uniform temperature between E3 medium of each well of 24-well plate containing zebrafish
198 embryos would cause false positive.

199

200  Measuring the inhibition effects of each of chemicals_Timing 30 mins
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16. Comparing epiboly progression of each of chemicals-treated embryos from group A with
that of DMSO-treated embryos from group A under the stereoscopic microscope when
DMSO-treated embryos from group A develop to 90% epiboly stage.

17. After approximately 30 min from observing embryos in group A, measuring the
inhibition effects of each of chemicals on epiboly progression of embryos in group B and
when DMSO-treated embryos from group B develop to 90% epiboly stage.

18. After approximately 30 mis from observing embryos in group B, measuring the inhibition
effects of each of chemicals on epiboly progression of embryos in group C and when
DMSO-treated embryos in group C develop to 90% epiboly stage.

CRITICAL STEP

Epiboly proceeds during comparing epiboly progression of each of chemicals-treated

embryos with that of DMSO-treated embryos under the stereoscopic microscope. Therefore,

measuring the effect should be done in 30 mins.

Timing

Step 1, Zebrafish mating setup: overnight

Step 2-5, Crossing zebrafish: 10 mins

Step 6, Develop the embryos to the two-cell stage

Step 7, Collect two cell stage embryos: 20 mins

Step 8-10, Array 20 embryos into each well of 24-well plate: 30 mins

Step 11, Develop the embryos to sphere stage: 4 hours

Step 12-14, Prepare chemical drugs in E3 medium and add the medium into each well of 24-well
plate: 30 mins

Step 15, Develop the embryos to 90% epiboly stage: 5 hours

Step 16-18, measuring epiboly progression: 30 mins
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227  Troubleshooting

228  Qualities of zebrafish embryos affect screening efficiency. Low qualities of embryos show high
229  frequencies of abnormal embryos with asymmetric cell cleavage, and development of the

230  embryos arrest at early cleavage stages . If a screen used low qualities of zebrafish embryos, it
231  would generate false ‘hit’ chemicals since suppressor effect of a test chemical is measured by
232 observing epiboly progression of the chemical-treated embryos. If the number of zebrafish

233 embryos showing morphological abnormalities correlate with final concentration of a test

234  chemical, the abnormalities may result from an effect of the test chemical on the embryos.

235

236  Anticipated results

237  Suppressor effects of a tested chemical on epiboly progression of zebrafish embryos are

238  significantly affected by final concentration of the chemical. Previous study subjected 1,280

239  FDA-approved drugs to the screen and showed 6% (78/1280) of the tested drugs affected epiboly
240  progression of the embryos when the embryos were treated with 10 uM. Out of the 78 epiboly-
241  interrupting drugs, 25% of the drugs succeed to suppress cell motility and invasion of highly

242  metastatic human cancer cells in a Boyden chamber assay. In contrast, epiboly progression was
243  affected more severely when the embryos were treated at 50 pM. 10.3% (132/1280) of the tested
244 drugs affected epiboly progression of the embryos, but 85 % (112/132) of the epiboly-

245  interrupting drugs failed to suppress cell motility and invasion of highly metastatic human cancer
246  cells in a Boyden chamber assay '°.

247
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269  Fig.1_Graphic schematic of a phenotype-based chemical screen using zebrafish embryos
270  Pairs of adult zebrafish are crossed and their embryos at the two-cell stage are collected and
271  arrayed into individual wells of 24-well plate. Chemicals are added into each well when the
272  embryos develop to the sphere stage. Epiboly progression of each of chemicals-treated embryos
273  are compared with that of DMSO-treated embryos under a stereoscopic microscope when

274  DMSO-treated embryos develop to 90% epiboly stage.

275
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Niclosamide = Hexachlorophene

Tolcapone Troglitazone Vinpocetine Zuclopenthxiol Mebendazole

277 Severe delayed Delayed Slighly delayed Non effect

278  Fig.2_Representative samples of the embryos that were treated with indicated chemicals.
279  Indicated chemicals were added when the embryos develop to the sphere stage. Embryos were
280  treated with 10 pM. Niclosamide-treated embryos serve as positive control and DMSO-treated
281  embryos serve as negative control. Epiboly progression of each of chemicals-treated embryos are
282  compared with that of DMSO-treated embryos under a stereoscopic microscope when DMSO-

283  treated embryos develop to 90% epiboly stage.
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Fig. 3_Pizotifen, one of epiboly-interrupting drugs, suppressed metastatic progression
of breast cancer cells in vitro and vivo

a, Effect of pizotifen on cell motility and invasion of MBA-MB-231, MDA-MB-435, and
PC9 cells. Either vehicle or pizotifen treated the cells were subjected to Boyden chamber
assays. Fetal bovine serum (1% v/v) was used as the chemoattractant in both assays. Each
experiment was performed at least twice. b, Representative images of primary tumors on day
10 post-injection (top panels) and metastatic burden on day 70 post-injection (bottom panels)
taken using an IVIS Imaging System. ¢, Number of metastatic nodules in the lung of either

vehicle- or pizotifen-treated mice.
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297 Dissemination patterns

298 Fig.4_ HTR2C, a primary target of Pizotifen, induces epithelial-to-mesenchymal

299  transition (EMT)-mediated metastatic dissemination of human cancer cells

300 a, Immunofluorescence staining of E-cadherin and vimentin expressions in the MCF7 cells.
301 b, Expression of E-cadherin and vimentin, and HTR2C were examined by western blotting in
302 the MCF7 and HaCaT cells; GAPDH loading control is shown (bottom). ¢, Representative
303 images of dissemination patterns of MCF7 cells expressing either the control vector (top left)
304 or HTR2C (lower left) in a zebrafish xenotransplantation model. White arrowheads indicate
305  disseminated MCF7 cells. The mean frequencies of the fish showing head, trunk, or end-tail

306 dissemination (right). Each value is indicated as the mean + SEM of two independent

307 experiments. Statistical analysis was determined by Student’s t test.
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309 metastasis progression

310
Genes Gastrulation Defects Ref Effects in Metastasis Ref
BMP Convergence and extension 3 EMT 32
WNT Convergence and extension 33 Migration and Invasion 34
FGF Convergence and extension 3 Invision 36
EGF Epiboly 37 Migration 38
PDGF Convergence and extension » EMT 40
CXCL12 Migration of endodermal cells 4 Migration and Invasion 42
CXCR4 Migration of endodermal cells 4 Migration and Invasion 42
PIK3CA Convergence and extension 3 Migration and Invasion a4
YES Epiboly 4 Migration 46
FYN Epiboly 4 Migration and Invasion 48
MAPKI Epiboly 49 Migration 30
SHP2 Convergence and extension St Migration 2
SNAILI Convergence and extension 33 EMT 4
SNAI2 Mesoderm & Neural crest formation 3 EMT 36
TWISTI Mesoderm formation 7 EMT 38
TBXT Convergence and extension 33 EMT »
ZEBI Epiboly & EMT o1
GSC Mesodermal patterning 02 EMT 63
Foxc2 Unclear, defects in gastrulation o4 EMT 6
STAT3 Convergence and extension 66 Migration o
POUSFI Epiboly B EMT &
EZH2 Unclear, defects in gastrulation 70 Invasion 7
EHMT2 Defects in Neurogenesis 2 Migration and Invasion 73
BMII Defects in skelton formation 4 EMT &
RHOA Convergence and extension 76 Migration and Invasion 7
CDC42 Convergence and extension 8 Migration and Invasion 7
RACI Convergence and extension 80 Migration and Invasion 81
ROCK2 Convergence and extension 82 Migration and Invasion 8
PARI Convergence and extension 84 Migration 85
PRKCI Convergence and extension 84 EMT 86
CAPI Convergence and extension 87 Migration 88
EZR Epiboly 89 Migration %0
EPCAM Epiboly ot Migration and Invasion 2
ITGB1 /ITA5 Mesodermal Migration 93 Migration and Invasion o4
FNI Convergence and extension % Invasion %
HAS2 Dorsal migration of lateral cells 7 Invasion 8
MMPI4 Convergence and extension » Invasion 100
coxi Epiboly ot Invasion 102
PTGES Convergence and extension 103 Invasion 104
SLC3946 Aterior migration 105 EMT 106
GNAI2/13 Convergence and extension 2 Migration and Invasion 107
OGT Epiboly 108 Migration and Invasion 109
CCNI Cell Movement 1o Migration and Invasion 1
TRPM7 Convergence and extension 1 Migration 13
MAPKAPK?2 Epiboly 14 Migration s
B4GALTI Convergence and extension 16 Invasion 1
IER2 Convergence and extension 18 Migration 19
TIP1 Convergence and extension 120 Migration and Invasion 121
PAKS Convergence and extension 122 Migration 123
MARCKS Convergence and extension 124 Migration and Invasion 125

311
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