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Abstract 

Epithelial-mesenchymal transition (EMT) is a cellular process involved in development and disease 
progression. Intermediate EMT states were observed in tumors and fibrotic tissues, but previous in vitro 
studies focused on time-dependent responses with single doses of signals; it was unclear whether single-
cell transcriptomes support stable intermediates observed in diseases. Here, we performed single-cell 
RNA-sequencing with human mammary epithelial cells treated with multiple doses of TGF-β. We found 
that dose-dependent EMT harbors multiple intermediate states at nearly steady state. Comparisons of 
dose- and time-dependent EMT transcriptomes revealed that the dose-dependent data enable higher 
sensitivity to detect genes associated EMT. We identified cell clusters unique to time-dependent EMT, 
reflecting cells en route to stable states. Combining dose- and time-dependent cell clusters gave rise to 
accurate prognosis for cancer patients. Our transcriptomic data and analyses uncover a stable EMT 
continuum at the single-cell resolution, and complementary information of two types of single-cell 
experiments. 
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Introduction 

Epithelial-mesenchymal transition (EMT) is a cellular process in which epithelial (E) cells undergo fate 
switches towards mesenchymal (M) types. This process renders the loss of apical-basal polarity and the 
gain of migratory properties. EMT plays crucial roles in development and disease progressions such as 
metastasis and fibrosis [1, 2]. EMT is not a binary process. In tumor cells, for example, intermediate (partial) 
EMT states were observed [3-5], and it was suggested that there is an association between intermediate 
EMT states and metastatic potentials [6, 7]. Interestingly, intermediate EMT states can also be observed 
in vitro with epithelial cell lines treated with EMT signals, such as TGF-β [3, 8], and these in vitro 
experiments provide useful insights into molecular programs underlying partial EMT [9]. For example, 
experiments with genetically perturbed cells have suggested that interconnected feedback loops in gene 
regulatory networks can generate multiple intermediate EMT states [10]. Additionally, mathematical 
models postulated stability of these states arising from intricate gene regulatory networks  [10-12].  

At the fundamental level, intermediate EMT states can be understood as either cell states en route to M-
like states, or those stable states induced by weak (low-dose) EMT signals in the microenvironment. 
Recent single-cell transcriptomic studies showed that the time-dependent EMT programs contains 
intermediate states that delineate a continuum-like EMT spectrum [13-15]. However, it is unclear whether 
stable cell states in EMT program induced by multiple levels of signals support a continuum or a discrete 
EMT spectrum. While previous dose-dependent single-cell experiments with two EMT markers (E-
cadherin for E, Vimentin for M) support the existence of intermediate EMT states [8, 10], much less is 
known about the transcriptomic profiles of the dose-dependent EMT spectrum. 

In this work, we performed single-cell RNA-sequencing (scRNA-seq) using human mammary epithelial 
(MCF10A) cells treated with multiple concentrations of TGF-β. We found that the dose-dependent EMT 
program is a continuum containing multiple intermediate states that are stable after two-week treatment 
of TGF-β. We performed integrated analyses with our dataset and a recent time-dependent scRNA-seq 
dataset for the same cell line and EMT inducer [13] (Figure 1A). We found that the dose-dependent EMT 
spectrum has a stronger anti-correlation of E and M transcriptional programs than the time-dependent 
spectrum. While both spectrums show strong cell-to-cell variability and continuum-like patterns, the 
dose-dependent dataset has higher separability in terms of the groups of cells with neighboring labels 
(similar doses vs. similar time points). These differences enable higher sensitivity for the dose-dependent 
model to detect non-canonical EMT genes that are associated with the core EMT programs in terms of 
the expression pattern. Furthermore, the time-dependent dataset contains unique cell clusters at E-low 
region in the transcriptomic space, which correspond to en route cell states that do not appear at steady 
state. We found that signature genes in both dose- and time-enriched clusters are useful for prognostic 
predictions of cancer patients. Our analyses revealed key differences between dose- and time-dependent 
EMT programs in terms of the underlying dynamical processes, and showed the widespread existence of 
stable EMT continuum under multiple assumptions that may be relevant to physiological and pathological 
conditions. 
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Results 

A single-cell transcriptomic landscape of dose-dependent EMT reveals a continuum-like spectrum  

To characterize the transcriptomic spectrum with multiple levels of EMT signals, we performed dose-
dependent induction of EMT with MCF10A cells, and analyzed cells at a near-steady-state time point (14 
days after TGF-β treatment) using scRNA-seq (Figure 1A, red box). Transcriptomic profiles of 8876 cells 
with dosage annotation were identified after a standard filtering process and each condition of TGF-β 
concentration (dose) yielded more than 800 cells. We found that cells treated with various concentrations 
of TGF-β showed a continuous spectrum when visualized in the low-dimensional Uniform Manifold 
Approximation and Projection (UMAP) space (Figure 1B). To visualize the transcriptomic variability with 
interpretable, functional space, we used a recently developed projection method based on nonnegative 
principal component analysis (nnPCA) [16]. Previously identified epithelial-associated genes (E-genes) and 
mesenchymal-associated genes (M-genes), of which 203 E- and 136 M-genes were present in the 
processed dataset, were used to construct low-dimensional space with E-scores and M-scores (Figure 1C) 
[17]. We observed a progression of MCF10A cells from E-high-M-low state to E-low-M-high state with 
increasing concentrations of TGF-β. The effect of the progression was saturated with the TGF-β over 200 
pM (Figure 1C). This progression was also observed with direct sums of the Z-scores of the E-genes and 
M-genes respectively with reduced resolution in terms of the separability of different conditions (Figure 
1D, Table 1). Furthermore, we observed the continuous progression of key E-genes (e.g. CDH1) and M-
genes (e.g. VIM and FIN1) expression (Figure 1E-G). The continuity of the transition and the saturation of 
the progression were similar to time-dependent EMT in MCF10A cells reported recently [13]. We also 
identified moderate divergence of mesenchymal-like cell states upon TGF-β treatment that appears to be 
driven by a difference in high (≥100pM) dose cells and predominantly lower dose cells in G1, which may 
have undergone cell cycle arrest [18] (Figure S1). Finally, we constructed Gaussian mixture models (GMMs) 
for the M-scores of all cells in the dose-dependent dataset, and we found that a non-binary, three-
component model had the best fit to the data with highest scoring sub-optimal models favoring more, 
rather than fewer components (Figure S2). This dose-label-free approach suggests that the continuity of 
the spectrum was not merely due to the choice of TGF-β concentrations. Overall, our results show that 
the near-steady-state EMT program of MCF10A cells has a continuum-like spectrum that is independent 
of projection methods and sample labels. 
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Figure 1. Analysis overview and progression of dose-dependent EMT at single-cell level. (A) A schematic 
of our analysis in this study. The analyses involve the existing time-course data (top) contain MCF10A cells 
at different time points following a common TGF-β treatment (about 200 pM; Deshmukh et al. [13]) as 
well as the dose-dependent data (bottom) containing MCF10A cells treated with different dosage levels 
of TGF-β after a fixed time period representing near-steady-state. Gene expression of cells from both 
experiments were measured using single-cell RNA-sequencing and were subsequently used individually 
and integrated for downstream analyses. (B) Projection of dose treatment single-cell expression data 
using UMAP. The color of individual points indicates the dose of TGF-β treatment from 0 pM (red) to 800 
pM (pink). (C-D) Contour plots of gene set scores of E (x-axis) and M (y-axis) genes using nnPCA (C) and Z-
score (D). Color indicates the dose of TGF-β as in (B). Circles indicate the mean E- and M-score of samples 
from each dose point and the associated error bars show the standard deviation (E-G) Overlay of the 
scaled expression of EMT marker genes CDH1 (an epithelial marker, E), VIM (a mesenchymal marker, F), 
and FN1 (a highly expressed mesenchymal gene, G). The color of individual points indicates the Z-score of 
expression of each gene from low (blue) to high (red).   
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Table 1. Common language effective size of separation of dosage groups based on EMT scores 

Comparison Z-score E nnPCA E Z-score M nnPCA M 
0 vs. 12.5 pM 0.884* 0.920* 0.741* 0.779* 

12.5 vs. 25 pM 0.630* 0.645* 0.590* 0.612* 
25 vs. 50 pM 0.434 0.429 0.491 0.497 

50 vs. 100 pM 0.545* 0.597* 0.628* 0.674* 
100 vs. 200 pM 0.483 0.483 0.493 0.497 
200 vs. 400 pM 0.573* 0.568* 0.480 0.456 
400 vs. 800 pM 0.437 0.444 0.505 0.501 

* Indicates statistically significant separation based on Mann-Whitney U-test (p < 0.05) 

 

 

Dose-dependent states show less variation and are more separable than time-dependent states in the 
E/M space 

We next compared the dose-dependent EMT and time-dependent EMT at the single-cell resolution. We 
first integrated our dose-dependent dataset (abbreviated as dose dataset) with the previously published 
time-dependent dataset (abbreviated as time dataset) using the same approach as in Deshmukh et al. [13] 
(see Methods). Because the time-dependent dataset contains two sets of experiment (short-time and 
long-time conditions), the integration involved three experiments. While comparison can be performed 
with unintegrated datasets, the integration is helpful as it reduces the effect of experimental batches not 
associated with the meaningful biological differences and increases the similarity between common cell 
states. As expected, we found that the integrated data contains cells from all experiments distributed in 
one region more continuously (Figure 2A) compared to the same analysis of unintegrated data (Figure 
S3). Furthermore, the untreated control in the dose-dependent dataset and the Time-0 control in the 
time-dependent dataset were located in similar regions in the expression space (Figure 2A, middle and 
right panels). These results suggest that the datasets can be compared in a reasonably uniform framework. 

The data integration resulted in some alteration of the gene expression values and coverage (207 E and 
141 M genes), but the progression of EMT in the dose-dependent manner was preserved, especially in the 
mesenchymal axis (Figure 2B and D). Notably, the time-dependent data points were distributed more 
broadly compared to the dose-dependent data (Figure 2A-C). Nonetheless, the continuous E-to-M 
progression was observed (Figure 2C and E). Note that the broader distribution of cells in the time-
dependent dataset was also observed with unintegrated data (Figure S4). Dosage data maintained a 
similar pattern of separability as the unintegrated data with superior differences between conditions up 
to the putative saturation point between 100 and 200 pm. Time samples, however, show greater 
separability between the earliest (0 vs 1 day) and latest (4 vs 8 days) time points, with the separation of 
interior points varying between E and M scores and failing for 3 vs 4 days, which is the breakpoint between 
the two time data batches (Table 2).  
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Figure 2. Continuity of integrated single cell dose and time data in low-dimensional projections. (A) 
Projection of integrated dose and time data using UMAP. Each panel uses the same underlying UMAP for 
samples, but the coloring of points has different meaning. Left panel: color indicates the origin of the 
sample from the Days 0, 4 and 8 of the time experiment (red), the Days 0, 1, 2 and 3 of the time experiment 
(green), or the dose experiment (blue). Middle panel: color indicates the treatment dose of samples from 
the dose experiment; time samples are masked. Right panel: color indicates the time of treatment for 
samples from the time experiment, dose samples are masked. (B-C) Contour plots of gene set scores of E 
(x-axis) and M (y-axis) genes using nnPCA for dose (B) and time (C) samples from integrate data. Color 
indicates the dose of TGF-β treatment from 0 pM (red) to 800 pM (pink) for dose data and time of 
treatment from 0 days (red) to 8 days (pink) for time data. Circles indicate the mean E- and M-score of 
samples from each dose point and the associated error bars show the standard deviation. (D) Boxplots 
show the distribution of E (left) and M (right) scores across different dose treatments from integrated 
data. Color indicates the dose of TGF-β as in (B). (E) Boxplots show the distribution of E (left) and M (right) 
scores across different time treatments from integrated data. Color indicates the time of treatment as in 
(C).  
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Table 2. Common language effect size of separation of time and dosage groups based on EMT scores of 
integrated data 

Comparison nnPCA E nnPCA M 
Time 

0 vs. 1 days 0.685* 0.883* 
1 vs. 2 days 0.439 0.781* 
2 vs. 3 days 0.554* 0.439 
3 vs. 4 days 0.281 0.416 
4 vs. 8 days 0.701* 0.650* 

Dosage 
0 vs. 12.5 pM 0.890* 0.905* 

12.5 vs. 25 pM 0.618* 0.688* 
25 vs. 50 pM 0.377 0.532* 

50 vs. 100 pM 0.487 0.753* 
100 vs. 200 pM 0.469 0.517 
200 vs. 400 pM 0.554* 0.434 
400 vs. 800 pM 0.448 0.523* 

* Indicates statistically significant separation based on Mann-Whitney U-test (p < 0.05) 

 

In addition to the difference in the width of the distribution, the dose-dependent dataset had stronger 
anti-correlation between E and M scores (𝑅𝑅 = −0.531) than the time dataset (𝑅𝑅 = −0.288) (Figure 2B 
and C). We hypothesized that the stronger coordination between E and M transcriptional programs can 
facilitate the discovery of EMT-associated genes within our integrated dataset that were not classically 
considered EMT genes in previous studies [17, 19]. Indeed, with the same threshold of Pearson correlation 
coefficient (0.25), the dose-dependent dataset revealed greater numbers of genes that had significant 
association (correlation with M-scores and anti-correlation with E-scores or vice-versa) with the overall 
expression of E and M genes (191) compared to the time-dependent dataset (42) (Figure 3A and B). The 
genes that showed significant association with E-program in the dose-dependent dataset but not in the 
time-dependent dataset were enriched with functions such as keratinization, keratinocyte differentiation 
and epidermis development, while M-correlated genes included those associated with integrin and 
chemokine binding (Figure 3C). Notably, TGF-β has been shown to be involved in keratinocyte growth 
arrest [20], which is consistent with keratinocyte differentiation being associated with the E-program. We 
then focused on specific genes there were specifically correlated in with EMT progression in dose data, 
but not time data. FARP1 was among the genes most highly correlated M-scores scores (𝑅𝑅 = 0.57) in 
dose data, but not in time data (𝑅𝑅 = 0.17). FARP1 was recently shown to be important for cancer cell 
motility and associated with poor prognosis [21]. Similarly, ESM1 was highly correlated with M-scores in 
dose (𝑅𝑅 = 0.50) but no time (𝑅𝑅 = 0.10) , and it contributes to the metastasis in colorectal cancer via NK-
ƙB activation [22]. Note that these analyses were performed in the absence of dose and time treatment 
labels, so the correlations were primarily driven by the intrinsic EMT continuum. Our results suggest that 
compared to the time-dependent data, the dose-dependent scRNA-seq data may provide higher 
sensitivity to detect non-classical EMT genes that are coordinated by the core EMT module. 
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Figure 3. Correlation of non-classical EMT genes with E and M scores in integrated data. (A-B) Correlation 
(𝑅𝑅) of non-EMT gene expression with sample E-scores (x-axis) and M-scores (y-axis) in dose (A) and time 
(B) samples from the integrated dataset. Each point represents one of the 15000 most variable genes from 
the integrated single cell dataset, excluding those genes used to define the E- and M- scores. Blue points 
indicate genes which are anti-correlated with EMT progression (𝑅𝑅 > 0.25 for E-scores, < -0,25 for M-scores), 
while red points indicate genes which are correlated with EMT progression (𝑅𝑅 < -0.25 for E-scores, > 0.25 
for M-scores). (C) Bar chart showing the log odds of the top 5 biological process, molecular function, and 
cellular component GO terms enriched in EMT correlated (red) and anti-correlated (blue) genes in dose 
data. GO terms were selected based on adjusted p-value and if there were less than 5 GO terms in each 
category with an adjusted p-value < 0.05, only those terms with an adjusted p-value < 0.05 were reported. 

 

En route cell clusters unique to time-dependent EMT program 

Based on the distinct distributions of cells between time- and dose-dependent EMT programs (Figure 4A), 
we wondered whether our comparative study can reveal expression regions containing cells that are en 
route to the M state rather than (partially) stabilized at intermediate EMT attractors. To simplify the 
representation of the expression profiles in the EMT spectrum, we focused on a 4 × 4 grid in the E- and 
M-score space. We found that a region with low scores of one (E or M) program, and low-to-medium 
scores of the other program (M or E) is enriched with cells in the time-dependent EMT program (Figure 
4B, lower left). This result reveals a transient EMT path that may primarily involve the relatively low 
expression of both E and M genes. Nonetheless, the enrichment of time data points in the regions of high 
E-gene activity and M-gene activity suggested a possible alternative transient EMT path (Figure 4B, right) 
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[23, 24]. We then identified significantly differentially expressed genes across all sixteen segments of the 
4 × 4  grid and focused first on known EMT marker genes. Interestingly, while the transient path crossing 
the E-low-M-low region is generally consistent with the profiles of the E marker CDH1 and EPCAM as well 
as M markers VIM and FN1 (Figure 4C-F), a distinct sequence of M gene activations was observed in the 
hypothetical E-to-M path: for example, VIM was activated before FN1 in this path (Figure 4E and F). This 
observation is consistent with our earlier transcriptomic data showing significant diversity of M-genes in 
response to EMT signals [19]. We also found correspondence between the time versus dose enrichment 
and graph-based clusters of the full data (Figure S5). Two clusters containing predominantly (>75%) time 
samples correspond to the transient low expression path while another cluster overlaps with time-
enriched segment with high E but moderate M expression (Figure S5B). Similarly, two clusters containing 
predominantly dose samples further show that dose is enriched in the most extreme high E, low M and 
low E, high M segments, while a third cluster reflecting the general enrichment of dose samples in high M 
segments towards the middle of E- and M-score space (Figure S5C). We then divided the 4 × 4  grid into 
time and dose enriched regions based on log-transformed odds ratio (LogOdds), and looked for Gene 
Enrichment (GO) terms among significantly up-regulated genes. Time-dominant segments had LogOdds 
greater than 0.4, dose-dominant segments had LogOdds less than -0.4, and segments without and 
differentially expressed genes were not considered for the subsequent GO analysis (Figure 4G). Overall, 
we identified 1378 enriched biological process and molecular function terms enriched in at least one 
segment. 102 of the terms were predominantly found in either the time enriched or dose enriched region 
(≥ 50% of segments in the regions and twice as many segments as the opposing region). Among the 
terms with the greatest differences in enriched segments between regions include ‘extracellular matrix 
structural constituent’ and ‘endodermal development’ (which favor dose) as well as ‘neuron death’ and 
‘cellular detoxification’ (which favor time, Figure 4G) 

 

 

Figure 4. Enrichment of dose and time samples in E- and M-score space. (A) A contour map showing the 
distributions of time (blue) and dose (red) samples in E- and M-score space. (B) Bubble chart showing the 
enrichment of time samples in different segments of E- and M-score space. Each point represents a 
segment of E- and M-score space defined by a particular quartile of E-score (x-axis) and M-score (y-axis). 
The size of the point corresponds to the total number samples in the segment and the color of the point 
represent the log-odds of time sample enrichment from low (blue) to high (red) with a log-odds of 0 (white) 
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indicating balanced representation. (C-F) Bubble charts showing the differential expression of key EMT 
genes, CDH1 (C), EPCAM (D) VIM (E), and FN1 (F) in different segments of E- and M-score space. Point 
positions and size are defined as in (B). The color of the point represents the log fold change of expression 
of the gene from low (blue) to high (red) with a log fold change of 0 (white) indicating no-change relative 
to other samples. Gray circles indicate below-threshold (± 0.25 log fold change) differences. (G) Left: A 
bubble chart showing the number of significantly up-regulated genes in each segment of E- and M-score 
space. Point positions and size are defined as in (B). The color of the point represents the number of 
upregulated genes from 0 (black) to > 200 (red). The colored shading behind the points represents 
whether the segment is enriched from time samples (log odds > 0.4, blue) or dose samples (log-odds < -
0.4, red), ignoring segments without any upregulated genes. Right: Bar chart showing 5 GO terms enriched 
across time and dose segments. GO term were chosen based on the difference in number of enriched 
segments between time and dose and distinction function. Significant enrichment was assessed based on 
adjusted p-value (p < 0.05). 

 

Signature genes from both dose- and time-dependent datasets contribute to better prognostic models 

To examine the roles of the signature genes at various locations of the EMT spectrum in prognosis, we 
again focused on the sixteen segments of the 4 × 4 grid of the EMT space containing both time and dose 
data. We used 27 diverse cancer datasets with tumor RNA-seq and patient data from The Cancer Genome 
Atlas (TCGA). We used the signature genes of each segment to construct a Lasso penalized Cox model for 
predicting the survival outcomes of cancer patients for each of the 27 cancer types. Interestingly, 
signature genes in both the E-low-M-high segment corresponding to the extreme M-state, and some 
intermediate EMT segments had relatively high average prognostic performance measured in C-index 
(Figure 5A, red). Notably, the high-performing intermediate EMT segments had either low E-scores or 
high M-scores. We scaled performance index across cancer types to account for dataset level variance in 
model construction, (Figure 5B). We found that, in general, E-low intermediate states (green) and M-high 
intermediates (light blue) both outperformed other (blue) segments with similar average performance to 
the extreme M state (yellow), although there was a large degree of variance across cancers and on the 
high end of the performance spectrum. The superior prognostic performance of the extreme M-state and 
certain intermediate states was also observed in the recent study based on time-dependent EMT alone 
[13], and our analysis revealed the characteristics of these high-performing groups in the 2-dimensional 
EMT spectrum. Unsurprisingly, the performance of the E-low segments was primarily driven by the time 
data (Figure 5C), whereas both time and dosage data contributed to the performance M-high segments 
(Figure 5D). The low performance of the E-medium-M-medium segments was at least partially due to the 
low numbers of signature genes in these groups (Figure 5A and C, middle). Nonetheless, the condition 
(time or dose) plays a significant role in the two E-high segments which only perform well in dose data 
(Figure 5A and D, right). 
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Figure 5. Performance of prognostic models. (A) Bubble chart shows the average performance of Cox 
hazard models built using the up-regulated genes from different segments of the E- and M-score space. 
Each point represents a segment defined by a particular quartile of E-score (x-axis) and M-score (y-axis). 
The size of the point corresponds to the average number predictor genes across all models built using the 
up-regulated genes from that segment. Color represents the C-index averaged across all models of cancer 
datasets, where C-index is a measure of the correspondence between the models predicted risk and 
survivorship, similar to the Area Under the Receiver Operating Curve (AUC-ROC). Red represents higher 
C-index (better performance). Black represents lower C-index (poorer) performance. White represents 
the approximate median of scores (0.635). (B) Heatmap of individual model performance across all 
combinations of segment-gene-derived models (x-axis) and cancer datasets (y-axis). The color of 
individual cells represents the C-index of the model scaled against all models of that cancer datasets to 
account for data-set-level differences in model performance. Segments are ordered across the x-axis by 
the increased average scaled C-index from left to right, while cancer datasets are ordered by increasing 
number of samples from bottom to top. The shading of segment coordinates along the x-axis distinguishes 
between the extreme M state (yellow), E-low intermediates (green), M-high intermediates (light blue), 
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and other segments (dark blue). (C-D) Bubble charts show the average performance Cox hazard models 
built using the up-regulated genes identified using only time (C) or dose (D) samples from different 
segments of E- and M-score space. Point position, size, and color as defined as in (A). 
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Discussion 

Time dependent EMT processes have been extensively studied with single-cell transcriptomics in recent 
years [3, 13, 14]. While these studies provided substantial information about EMT progression in multiple 
contexts, the connection between the intermediate cell states observed in these experiments and cell 
attractors was elusive. Using near-steady-state single-cell transcriptomic profiling, we showed that the 
EMT spectrum can be described as a stable continuum under multiple levels of EMT signals. This 
information complements earlier studies with single-dose time course data, and it provides stronger 
evidence supporting the existence of multiple intermediate EMT states that widely exist in tumors and 
metastatic cells [5]. Furthermore, by comparing the time- and dose- dependent single-cell data, we 
identified groups of cells that are exclusively en route to M state, which shows the possibility that some 
cells can transiently deactivate the epithelial program before activating the mesenchymal program. 
Nonetheless, it is likely that many other en route cells are also close to the stable intermediate EMT states, 
and these states have intermediate levels of both E and M genes. Furthermore, given the heterogeneous 
microenvironment of cells under physiological conditions, the cells states may be determined by both the 
multi-level EMT signals and the time-dependent stages of the EMT process, so both dose dependent and 
time dependent in vitro data can contribute to the understanding of the EMT program in vivo. 

Previous mathematical models have provided mechanistic insights into the gene network structures 
supporting multiple intermediate EMT states [10-12, 25-28]. While interconnected positive feedback 
loops involving a few genes can govern discrete intermediate states, the continuum-like, wide 
distributions of cells in the EMT spectrum even under the near-steady-state condition suggest that the 
discrete cells states may only partially explain the stable phenotypical heterogeneity. At least two 
mechanisms may explain the gap between the existing theories the observed continuum: realistic gene 
regulatory networks may contain much more positive feedback loops than those described by existing 
models [29], and these loops can support many intermediate states; dynamical and reversible cell-state 
transitions at stationary phase, such as those driven by transcriptional noise and slow-timescale 
oscillations [30], can give rise to cells that are far away from point attractors in the gene expression space. 
Nonetheless, existing models have provided a strong theoretical foundation for stable intermediate EMT 
states, and future development of the theories and quantitative experiments will be important to the 
understanding of EMT continuum. 

EMT involves dramatic phenotypic changes of cells. It is therefore expected that transcriptome-wide 
alteration is induced during the multi-stage transition. This suggests that classically defined core EMT 
genes may not be sufficient to provide a holistic view of the EMT program. We showed that the dose-
dependent single-cell transcriptomes can be useful to identify genes that show expression patterns highly 
correlated with the core EMT genes at the single-cell level. The dose-dependent scRNA-seq experiment 
can therefore provide crucial links of the core EMT networks to the rest of the transcriptomes, and some 
of these connections may not be revealed by time-course scRNA-seq experiments due to the large 
numbers of cells that transiently activate parts of the transcriptional program. Nonetheless, the two types 
of scRNA-seq experiments contain complementary information, and we suggest that both can be used in 
future studies to reveal cellular programming that determines cell-to-cell variabilities in cell populations. 
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Methods 

Cell culture 

MCF10A cells were obtained from ATCC and grown in DMEM/F12(1:1) medium with 5% horse serum, 
epidermal growth factor (10 ng/mL), cholera toxin (100 ng/mL), and insulin (0.023 IU/mL). For TGF-β 
treatment, cells were incubated with indicated concentrations (Figure 1B) of human TGF-β1 protein (R&D 
systems) in the complete culture medium. The culture medium was replaced daily, and cells were 
passaged right before reaching full confluency. 

 

Single-cell RNA-sequencing 

MCF10A cells were first labelled with Perturb-seq vectors without sgRNA expression using guide barcodes 
(GBCs) that were originally used to identify sgRNAs [31]. Barcoded MCF10A cells were then treated with 
different dosages of TGF-β for 14 days and single cells were prepared and mixed at a concentration of 
approximately 1,000 cell/μL. Transcriptome library generation was performed following the Chromium 
Single Cell 3ʹ Reagents Kits v2 (following the CG00052 Rev B. user guide) where we target 10,000 cells per 
sample for capture. GBC library was generated from a fraction (5ng) of amplified whole transcriptome by 
dial-out PCR method according to a previous publication [31]. Both libraries were mixed at 9:1 ratio and 
sequenced by paired-end sequencing (26bp Read 1 and 98bp Read 2) with a single sample index (8bp) on 
the Illumina HiSeq 2500. Generated FASTQ files were aligned utilizing 10× Genomics Cell Ranger 2.1.0. 
Each library was aligned to an indexed hg38 genome using Cell Ranger Count. The cell barcode (CBC)-GBC 
table was generated from the GBC library and used to identify the treatment groups.  

 

Data processing and integration 

Sequencing data for time-course single-cell data from Deshmukh et al. [13] was obtained from National 
Center for Biotechnology Information Sequence Read Archive (BioProject ID: PRJNA698642) and mapped 
using to the same human genome assembly as our dose (CRXh38.84) data using Cell Ranger [32]. Aligned 
sequences we processed using the Seurat package (version 4.0.2) in R [33]. Gene names between 
experiments were correlated using the HGNChelper package [34], using the suggested gene symbol for 
each gene except when it would create a duplicate reference. Genes were filtered from individual runs if 
they did not appear in three or more cells. We then filtered each dataset for cells with fewer than 500 
features or more than three median absolute deviations beyond the median number of features of the 
sample set (i.e., the long time, short time, and dose datasets). We additionally eliminated any sample with 
a fraction of mitochondrial reads that was greater than 0.2. We then integrated all time and dose data 
following the procedure used in Deshmukh et al. to best preserve the relationship between time samples 
observed in the study [13]. Briefly, the integration involves identifying the most variable genes in each 
dataset, defining ‘anchor’ samples between datasets using canonical correlation analysis, correcting the 
expression of related anchor samples and finally propagating this correction to other samples based on 
the similarity to the anchors. We normalized and calculated cell cycles scores for each dataset 
independently prior to integration and used the 15000 most variable genes to identify anchors. We 
applied the same top 15000 variable genes filter to unintegrated dose data for calculating UMAP, nnPCA 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2022. ; https://doi.org/10.1101/2022.05.06.490972doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490972
http://creativecommons.org/licenses/by-nc-nd/4.0/


scores and clustering. Finally, each dataset was scaled across genes and the expression was corrected for 
cell-cycle phases. 

 

Projection of single cell data in reduced dimensional space 

Projection of single cell data was done using the scaled expression values for both unintegrated and 
integrated data. For this process we employed three main approaches, Uniform Manifold Approximation 
and Projection (UMAP), average Z-scores, and non-negative Principal Component Analysis (nnPCA). For 
UMAP, we performed principal component analysis (PCA). We then used the first 15 principal components 
to construction the map using the RunUMAP function from Seurat with defaults parameters beyond 
specifying the PCA input and size. UMAP was primarily used to assess the continuity of both unintegrated 
and integrated datasets. Average Z-score was determined using the gsva package [35]. nnPCA-based 
scores were computed by performing non-negative principal component analysis on subsets of the scaled 
dataset defined using epithelial (E) and mesenchymal (M) genes identified by Tan et al. [17]. We used the 
nsprcomp function from the R package of the same name with the option nneg=TRUE and ncomp=5 to 
identify the top five components for each subset [36]. While the first five components we calculated, only 
the first was used as the function greedily optimizes the variance explained by each component in order. 
Further details about our nnPCA scoring approach can be found in Panchy et al. [16]. 

 

Gaussian mixture models 

Gaussian mixture models of E and M scores were performed using the mclust package [37] and figures 
were generated using the plotMix function from MineICA [38]. For each score, we used the unequal 
variance model (V) with the optimal Bayesian information criterion (BIC) as our optimal model. 

 

Enrichment analysis 

To examine the distribution of time and dose samples, we divided E and M-score space into a 4 × 4 grid 
based on the 25th, 50th and 75th percentile of E and M-scores. Our dose dataset contains 2402 unlabeled 
dose samples (within a reasonable range [31]), which show roughly even distribution across unintegrated 
dose data in both UMAP and E- and M-score space (Figure S6), suggesting that they are merely missing 
annotation rather than contamination. Nonetheless, to obtain results comparable to progression plots in 
Figure 2, enrichment only considered labeled time dosage samples. Odds of the enrichment of time and 
dose samples in each segment of the 4 × 4 grid of E and M-score space were calculated using the Fisher’s 
exact test implemented in R (fisher.test). Differentially expressed marker genes for each segment were 
identified using the FindAllMarkers function from Seurat. As recommended, for FindAllMarkers we used 
unintegrated, normalized counts and introduced non-independence between samples. For GO 
enrichment in each segment, we selected all genes in each segment with a fold change in expression > 
the 75th percentile of all marker genes across all segments and an adjusted p-value < 0.05. GO enrichment 
of identified genes set was performed using the clusterProfiler package in R [39], using a background of 
all expressed genes in the unintegrated data, and significance was assessed using the Benjamini-Hochberg 
adjusted p-value. 
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Prognostic models 

TCGA bulk RNA-seq data and associated meta-data were obtained from TCGAbiolinks [40]. Of the 33 
available datasets (cancer types), we selected those with at least ten samples in both the survivor and 
non-survivor groups, which gave rise to the 27 samples listed in Figure 5B. For each dataset, FPKM 
expression values from all non-normal tissue samples were extracted. For features, we used the set of up-
regulated marker genes (a fold change in expression > the 75th percentile of all marker genes across all 
segments and an adjusted p-value < 0.05) in each segment. Each combination of cancer expression data 
and gene set was then used to construct Cox proportional hazard models using glmnet implemented in R. 
In brief, a glmnet model employed Lasso regularization (alpha = 1) and performed 10-fold cross validation 
to optimize the lambda parameter which influences the strength of regularization. In theory, the stronger 
Lasso regularization should reduce the number of active predictors (genes) in the model, but we do not 
actively seek the minimized predictors. Instead, we report the model which maximizes the average cross-
fold C-index, which is the proportion of concordant pairs to total pairs in the dataset, i.e. the proportion 
of all possible samples pairs where increased model hazard corresponds to reduced survival. This measure 
is roughly analogous to AUC-ROC in a censored data context such as survival. 

 

Clustering from shared-nearest-neighbor graphs 

To confirm that the associations we found in E- and M-score space reflect the full dataset, we examined 
sample associations across the 15000 most variable expressed genes in the integrated and dose only 
dataset using the clustering based on shared-nearest-neighbor graphs via Seurat. After scaling and 
correcting single cell data, principal component analysis was done using RunPCA with 15 components 
(npcs=15) and then passed to FindNeighbors with options reduction=’pca’, dims=1:15. Finally, FindCluster 
was run with resolution = 0.5 and default parameters and seeding otherwise. 

 

 

Data and code availability 

All code and sequencing data are available at 

GitHub repository: https://github.com/panchyni/Time_and_Dose 

GEO: GSE200941 
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Supplemental Figures 

 

 

Figure S1. Clustering based on shared-nearest-neighbor graphs in dose UMAP and E- and M-score space. 

(A) Projection of dose treatment single cell expression data using UMAP. The color of individual points 
indicates the clusters based on shared-nearest-neighbor graphs to which the sample was assigned (B) 
Contour plots of gene set scores of E (x-axis) and M (y-axis) genes using nnPCA for dose data. Color 
indicates cluster of samples in UMAP space, with individual colors corresponding directly to clusters in (A). 
Circles indicate the mean E- and M-score of samples from each dose point and the associated error bars 
show the standard deviation. (C) Bar charts show the frequency (y-axis) of different treatment dosages 
(x-axis) in Cluster 0(left) and Cluster 1 (right). The frequency of each dosage is broken down by the inferred 
cell-cycle state: S (blue), G2/M (green) and G1 (red). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2022. ; https://doi.org/10.1101/2022.05.06.490972doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490972
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure S2. Gaussian mixture model of E- and M-score of dose data. Gaussian mixture model (GMM) of E-
score (top) and M-scores (bottom) of dose treatment single cell data. Each panel shows a histogram of 
scores with the score values along the x-axis and density along the y-axis. The colored curves overlain on 
the histogram show the number, position, and spreads of the optimum GMM for each score. To the right 
of each histogram is a table of BIC scores for GMM models with a different number of components with 
the optimal model highlighted in green and sub-optimal models with better fits than a binary model 
highlighted in yellow. Note that McClust calculates the inverse of the normal BIC score, so the maximum 
score indicates the best fit. 

 

 

Figure S3. Positioning of samples from different experiments in unintegrated UMAP Space. Projection 
of unintegrated dose and time data using UMAP. Color indicates the origin of the sample from the Days 
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0, 4 and 8 of the time experiment (red), the Days 0, 1, 2 and 3 of the time experiment (green), or the dose 
experiment (blue). 

 

 

 

Figure S4. Overlap of unintegrated E- and M-scores across time and dose data. Scatter plot of E-scores 
(x-axis) and M-scores (y-axis) of samples from the Days 0,4,8 of time experiment (red), Days 0,1,2,3 of 
time experiment (green) and dose experiment (blue) prior to full integration. Note that time samples have 
been integrated relative to one another as in Deshmukh et al.[13], but have not been integrated with the 
samples from the dose experiment. 
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Figure S5. Clustering based on shared-nearest-neighbor graphs in integrated UMAP and E- and M-score 
space. (A) Projection of dose treatment single cell expression data using UMAP. The color of individual 
points indicates the cluster based on shared-nearest-neighbor graphs to which the sample was assigned. 
Dotted circles highlight three time-dominant (blue) and dose-dominant (red) clusters which we mapped 
to E- and M-score space. (B) Bubble charts showing the fraction of samples from three time dominant 
Nearest Neighbor clusters (4, 5, and 7 from left to right) in different segments of E- and M-score space. 
Each point represents a segment of E- and M-score space defined by a particular quartile of E-score (x-
axis) and M-score (y-axis). The size of the point corresponds to the total number samples in the segment 
and the color of the point represent the fraction of samples from the corresponding cluster from 0 (black) 
to 0.5 (red). (C) Bubble charts showing the fraction of samples from three time-dominant clusters (0, 3, 
and 9 from left to right) in different segments of E- and M-score space. Point positions, size and color as 
are defined as in (B). 
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Figure S6. Positioning of unlabeled dose samples in UMAP space. (A) Projection of dose-dependent single 
cell expression data using UMAP. The color of individual points indicates whether the sample has a 
treatment level label (black) or is missing a label (red). (B) Scatter plots of gene set scores of E (x-axis) and 
M (y-axis) genes using nnPCA for dose data. Circles indicate the mean E- and M-score of samples from 
each shared nearest neighbor cluster, with the red dots representing labeled samples only and the blue 
points representing unlabeled samples. The associated error bars show the standard deviation 
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